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but in 1930 Veblen and Hoffmann' pointed out that it
is su%.cient to introduce 6ve coordinates only in the
Oat local space-time, and that these may be considered
as homogeneous projective coordinates. At that time
this method was well known from the theory of pro-
jective linear connections. What we do in local-time is
just what we ordinarily do if we wish, for example, to
deal with projective geometry in a plane. This could be
done with two ordinary Cartesian coordinates, but this
being very clumsy it is much more preferable to use 3
homogerieous coordinates. The main point is that we
introduce in local space-time another more general
geometry, here projective geometry instead of affine
geometry, and it is surprising that this enlarging of the
fundamental group enables us to describe physical
phenomena from a more general point of view.

Quite independent of these authors, Einstein and
Mayer' introduced in 1931 extra 5-dimensional local
space-time manifolds. But these spaces are Rat metrical
spaces with 5 ordinary Cartesian coordinates.

From the projective point of view in every local
space-time, the fundamental tensor is represented by a
3-dimensional hypersurface whose equation is quad-
ratic in the 5 local projective coordinates. The use of a
diGerent number of coordinates in the local manifolds
and in space time in the large can be avoided by using
in the large the "curvilinear" homogeneous coordinates,
introduced by v. Dantzig in 1932.In collaboration with
v. Dantzig the author applied this method to projective
relativity. ' Many other authors developed "unitary"
theories. They all used 5 coordinates in some way or
other. All these theories could be translated into each
other fairly well and they succeeded remarkably well .as
far as unification was concerned. But with respect to the
question of the relation between particles and 6eld,
culminating into the question of how to avoid an infinite
self-energy, they were just as unsuccessful as the four-
dimensional theories. As a result, there was an increasina
conviction that only quantum mechanics could bring a
solution, and the interest in classical four- and 6ve-di-
mensional theories began to fade. During the whole

HE invariance of Maxwell's equations for trans-
J. formations of the orthogonal group in x, y, s, t

with 10 parameters having been discovered about 1904,
Cunningham' and Bateman' found in 1910 the invari-
ance for the 15-parametrical group of conformal trans-
formations, containing the orthogonal group. ' At that
time it was known that conformal transformations in n
variables can be dealt with most practically as orthogo-
nal transformations in ++2 variables.

Einstein's postulate of universal invariance for all
natural phenomena applied to the first invariance gave
rise to the first or simple theory of relativity and had
immediately an enormous success. But as to the second
invariance, an. application seemed impossible because
mechanical phenomena did not fit in any way into a
conformal scheme. It was not before 1918 and after the
development of general relativity that Weyl succeeded
in involving in some way conformal transformations
into the theory. His theory was not fully invariant for
conformal transformations of the fundamental tensor
because his equations also depended on the transforma-
tion of an extra geometrical object, that could be
identified with the electromagnetic potential vector,
but this inconvenience was fully compensated by the
fact that the theory gave for the 6rst time a "uni6ca-
tion" of gravitation and electromagnetism. This was
really something new and very important. Now ac-
cording to this theory, a bar moving in an electromag-
netic field could change its length, and this being not
in accordance with experimental facts, it was necessary
to make the supposition that the pseudoparallel dis.-
placement of the theory had nothing to do with the
real movement of a bar. But such an assumption robbed
the theory of its most charming features, with the result
that notwithstanding its remarkable ingeniosity .it re.-
tired temporarily to the background. But the idea of
unification remained and gave rise to Kaluza's theory
of 1921,4 developed by O. Klein and others. In this
theory there were 5 coordinates, and accordingly, there
was a tensor of matter and electromagnetism. yvith. a
matrix with 5 rows and columns iii which the fifth: one
was reserved for electromagnetic quantities. A't first
physicists felt a bit uneasy about this fifth dime'nsion

that could not be accounted for in i reasonable. way,
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process the idea of a conformal theory remained in the
background.

Help came for the conformal theory from a quite
unexpected side. The.spin of the electron, discovered
by Uhlenbeck and Goudsmit in 1926, gave rise first to
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the two-dimensional spin-space of Pauli (spinor analysis
of v. d. Waerden) and then to the four-dimensional
spin-space of Dirac in 1928. Now what is this spin-
space? Consider in an R„ the (n 1)-dimensional unit
sphere with center in the origin. On this sphere there is
lying for n=2v one system" of ao ("+s') E. i's and for
e=2v+1 two systems of ~ ("+s') E„'s. With orthogonal
transformations in R„ leaving the origin invariant, all
these Rat spaces and their intersections are transformed
into each other and this transformation is called a
"representation" of the corresponding orthogonal trans-
formation. Now we may say in a popular way that
spin space is nothing else than the world of all these
fiat spaces on the unit sphere. This assertion, though
popular, is quite correct, only it would take some 'time
to make clear in all details the connections between
spin-space and the unit sphere, e.g. , to prove that spin-
space is a Qat space, "and that for a= 2v its dimension
X is equal to 2". From now on we write S~ to denote
spin-space. For v=4 we get E=4 and the vectors in
64 are the ~' line vectors" in the ~' straight lines on
the unit sphere" in R4.

For m=6 there is still another way to get spin-space.
Long ago it was known to F. Klein that the ~ 4 straight
lines in 3-dimensional projective space could be con-
sidered as the points of a (4-dimensional) quadric in a
5-dimensional projective space (with 6 homogeneous
coordinates), or, in another formulation, that the ~'
bivectors" of an E4 may be considered as the
vectors of an Rs (Plucker-Klein correspondence). Now,
about 1930 Veblen got the idea to apply this corre-
spondence to spin theory. Then, the E4 is spin space
and the 6 coordinates in R6 may be considered as the
six supernumerary coordinates of a 4-dimensional con-
formal geometry. The author made the acquaintance
with this new idea during his stay in Princeton in 1931
but, however beautiful it might be, nobody seemed to
be stimulated to immediate activity and it was not
before 1933 that Veblen" and the author, in collabora-
tion with Haantjes" began independently to work out
an application. From the beginning it was very striking
that the connection between the 4-dimensional spin-
space and an R6 was in some way primary and that the
relations with a 5- or a 4-dimensional space presented
itself as secondary cases that could be obtained by
specialization.

One thing seemed very queer. We noted that iV=8
for m=6. How does this agree with the E=4 thy, t re-
sults from the Plucker-Klein correspondence? Orthogo-
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nal transformations (det=+1) in R„correspond to
certain homogeneous linear transformations in Sii, but
in this 8& there exist always two definite Ezp&'s that
are individually invariant if det=+1 (rotations) and
that are interchanged for det= —1 (refiexotations).
So, if only rotations in R are considered, we have two
definite E~~2's and each of them is transformed into
itself. Now for n=4, E=4 it can be proved that to
every transformation in one E2 corresponds just one
transformation in the other E2 and this means that in
this special case we need only one E2. This leads to
Pauli's representation and v. d. Waerden's spinor
analysis. For v=6 things are different but next to the
ordinary invariants a new invariant emerges'~ and this
happy circumstance allows one of the invariant E4's
to be taken as spin-space. And this spin-space is just
the same as the one we arrived at by means of the
Plucker-Klein correspondence.

So for the second time and quite unexpectedly con-
formal geometry made its entrance. Now the general
conformal geometry with local conformal space is no
longer fiat but it has the properties of a quadric in an
(I+1)- dimensional fiat projective space. In order to
avoid the use of two different numbers of coordinates
io local spaces and in extended space, the author in
collaboration with Haantjes succeeded in 1935 in in-
troducing also ran+2 homogeneous curvilinear v. Dant-
zig coordinates in extended space. But here a serious
difficulty arose that may be formulated as follows.

If in an ordinary fiat projective space of three dimen-
sions an arbitrary surface is considered, we know that
the two asymptotic directions at every point of this
surface fix in the surface a conformal geometry not-
withstanding the fact that in the projective space there
is no metric at all. Further, we know that the 4 homo-
geneous projective coordinates in space can be used as
conformal supernumerary coordinates in the surface.
Conversely, starting from a 2-dimensional space with
a conformal geometry it is always possible to construct
a 3-dimensional fiat projective space such that the 2-
dimensional space may be considered as a surface lying
in it, and it can be proved that two fiat 3-dimensional
spaces constructed in this way are "not essentially
different, " i.e., that they can be mapped on each other
in an invariant way. This latter property is very im-
portant because otherwise, in order to fix one of these
spaces, we would need some additional invariant next
to the given conformal geometry.

The same holds for spaces with a dimension &2 pro-
vided that the conformal geometry is conformal-
Euclidian. "But this is just the case we are not inter-
ested in because it would lead to an "empty" space-
time. Now in 1935—36" we proved that to a general
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n-dimensional space with an arbitrary conformal ge-
ometry (i.e., a space with a fundamental tensor given
to within an arbitrary scalar factor) always an (m+1)-
dimensional space with a (not fiat) projective geometry
can be constructed and tha, t two such (n+1)-dime n-

sional spaces are "not essentially different, " provided
that either m be odd or e be equal to 4 and in this latter
case, moreover, a special projective tensor of valence 2

(dependent on the derivatives of the fundamental
tensor to within the fourth order) be zero. Fortunately,
it could be proved that this special tensor vanishes
always if the geometry is conformal-Einsteinian, " that
is, just in the case that is interesting for physics. This
proves that, starting from a conformal and conformal-
Einsteinian space-time, it is always possible to introduce
without ambiguity six homogeneous conformal co-
ordinates in extended space.

After introduction of conformal geometry into physics,
the rest-mass is no longer invariant but, instead, a
product of rest-mass and length has invariant proper-
ties." That makes clear why relativistic mechanics
with its invariant rest-mass did not fit into a conformal
scheme. But with this new invariance, Haantjes" could
prove in 1940 that conformal transformations are in
some way connected with accelerated systems. HilP' hit
independently upon the same relation.

All these hints in the direction of a sixth coordinate
were so strong that about 1935 it could be predicted
that physics would have ere long something to do with
the number 6. But there was still another thing that
could have been predicted about that time. In every
theory with 6 coordinates there must appear a general-
ization of the material tensor with a matrix with 6
rows and 6 columns. Now the fifth row and column
being already occupied by electromagnetism in the
projective theory, the conclusion that probably some
unknown physical phenomenon had to exist that could
fill the sixth row and column was near at hand and al-
most obtruding. If some one had hit upon this conclu-
sion, the meson field, predicted by Yukawa" in 1935
could have been predicted from two approaches at the
same time. But nobody did, neither in Holland nor,
as far as I know, in the United States. History took
another course, the conformal theory failed to ask for
a meson field, but the meson field came and asked for a
conformal theory!

After the prediction of Yukawa and the identification
of certain particles of cosmic rays with the particles
corresponding to the Yukawa-field (from 1939 on called
mesons), Kemmer25 found in 1938 that, assuming that
the expression of the energy be positive definite, the
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wave function has the valence 1 or 2, and that conse-
quently there exist four different kinds of meson fields.
A wave function of valence 2 is an afiinor in 84 with
16 components that splits into a (symmetrical) tensor
with 10 and a bivector with 6 components. The tensor
corresponds in E4 to the combination of a vector or
pseudovector (=trivector) and a bivector, and the
bivector to the combination of a scalar, a vector, and
a pseudoscalar (=quadrivector). The first combination
is usually called a vector meson field and the second
(dropping either the scalar or the pseudoscalar as a
trivial solution) as a scalar meson field with 5 com-
ponents. Now Moiler and Rosenfeld'6 found in 1940
that the experiments seemed to require a very special
combination of a scalar and a vector meson field (the
"mixed" theory) and in 1941 Moller27 discovered that
just this combination appeared in a very natural way,
if 5 coordinates instead of 4 coordinates in space time
were introduced. It is true that Jauch and Hu in 1944
pointed out that there exist several possible field mix-
tures and that probably the mixture of Moiler and
Rosenfeld was not the most profitable one, but this
does not change the fact that it was proved once for all
that by introducing a more general fundamental group
(i.e., a more general geometry) relations between dif-
ferent kinds of fields could be fixed autorn. atica1.ly. The
interpretation of the 5 coordinates of Moiler was not
a projective one, but this did not have any inQuence on
the results as was pointed out by Pais."

Now the three possibilities, the scalar meson field,
together with the trivial case with 6 components, the
mixed case with 15 components and the vector meson
field with 10 components remind one immediately of
the numbers of components of the vector, the bivector
and the half-trivector (that plays a fundamental role
in the representation theory of rotations) in 6 dimen-
sions, and following this hint, I ubanski and Rosenfeld"
could prove in 1942 that the typical equation of the
matrices occurring in the wave equation of mesons is
identical with the so-called structural relation of the
group of rotations in E6. Here is a table of the different
possibilities, in which we neglected for the sake of
simplicity the difterence between ordinary quantities
and pseudoquantities. We remind that a p-vector in
R„splits always into a p-vector and a (p —1)-vector
in R„ i (e.g. , the electromagnetic bivector in R4 into
the magnetic bivector (pseudovector) and the electric
vector in Ra). Pais" remarked that in general pro-
jective geometry we always have at our disposition
the projective vector X~, corresponding to the "contact
point" of local space and that by using this projective
vector another scalar and another vector meson field

"C. Moiler and L. Rosenfeld, Kgl. Danske Vid. Sels. Math. -
fys. Medd 1? (1940).

27 C. Moiler, Kgl. Danske Vid. Sels. Math. -fys. Medd 18 (1941).
28 A. Pais, Physica 9) 267 (1942).
29 J. K. Lubanski and L. Rosenfeld, Physica 9, 107 (1942).
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can be constructed from the mixed case. In this paper
Pais gives the equations of all five possible meson fields.

That was the third time conformal theory came as
an uninvited and quite unexpected guest. But the
next time it got a real invitation. B.Hoffmann, induced

by the 5-dimensional treatment of the meson field,
again took up in 1947" his former investigations with
Veblen on projective relativity and tried to derive the
field equations from a projective variation principle.
The results being not quite satisfying he considered the
possibility of a conformal treatment and developed this
idea in 1948 in two papers. " It is remarkable that his

passing from projective to conformal geometry was

only induced by the invariance of Cunningham and
Bateman and by the conformal treatment of spin
theory and not yet by the introduction of 6 dimensions
in the paper of Lubanski and Rosenfeld. In fact, he
mentions this introduction only in the second paper of
1948. HoBmann does not use general conformal trans-
formations but only such that change the fundamental
tensor in all points with the same constant factor. His
investigations are not closed, he himself calls them very
modestly only an exploration, but that does not change
the fact that in his papers for the first time the con-
formal character of the meson field was established ex-

.plicitly, and the number 6 connected with its wave
function was explained.

The investigations of H. T. Flint are perhaps in
some way connected with conformal meson theory
though they arise from quite another line of thought.
Like Yositaka Mimura he tried" (1935—37) to replace
the length of the linear element by a matrix. From
1940 on" he uses 5 coordinates. Then he starts from a
unified theory in 5 dimensions and introduces a meson
field by means of a variable gauge-factor in the funda-
mental tensor in the same way as Weyl did in the 4-

' Banesh Hoffmann, Phys. Rev. 72, 458 (1947)."Banesh Hoffmann, Phys. Rev. 73, 30, 1042 (1948).
~' H. T. Flint, Proc. Roy. Soc. 150, 421 (1935}.
'3H. T. Flint, Phil. Mag. 29, 330 (1940).

dimensional theory. Hence, his meson field is in the
same relation with gravitational-electromagnetic theory
as the electromagnetic field is with gravitational theory.
This introduction of a gauge-factor smells rather "con-
formal, " and so we might expect that introduction of
6 coordinates into Flint's theory would lead to re-
markable simplifications and perhaps to new results.
Now there is one thing in Flint's theory that does not
agree with conformal ideas and that is his looking for
invariant masses and lengths, because, as we have seen,
only a product of mass and length can be conformally
invariant. However, a comparison of Flint's most in-
teresting theories with other theories is very dificult
because of his quite different definition of the linear
element.

As a mathematician the author has tried to give an
account of some interesting features of the mathemati-
cal side of the problem of conformal relativity in order
to stimulate some physicists to investigations along
these lines, using general homogeneous curvilinear co-
ordinates and not only a subgroup of the conformal
group but the whole group itself. But he has not tried
to do any physics himself. Because he is convinced
that this is a job only physicists can do properly. Only
a physicist, using the results of experiments, is able to
make the right choice from the overwhelming number
of possibilities. A mathematician is too much interested
in the beauty of his constructions and in mathematical
physics this leads too often to formalism. There exist
very few scientific men that are at the same time mathe-
matician and physicist. For these children of the gods
no rules exist, but as a matter of fact, ordinary mathe-
maticians have seldom booked much success by med-
dling with physics, unless they succeeded in making
some good physicist so very angry that he was stimu-
lated to take over the job and finish it properly.

Our task as mathematicians is to do all the pre-
liminary mathematical work, to make the mathematical
instruments, to give advice in the use of them and to
assist physicists in their work by throwing mathematical
light if things grow too unsystematic or too complicated.


