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INTRODUCTION

~ N this paper we discuss some results in the unified
~ ~ field theory proposed by A. Einstein. ' We first give
a brief summary of that theory:

The fundamental field quantities are the real sym-
metric tensor density g—', the imaginary tensor density
g'k' which is antisymmetric in each pair of indices, and
the Hermitian afFine connections I',k

——I'k;.
We define the Hermitian tensor density

g
i& —

g ik+ g
ik e

where the comma stands for ordinary differentiation,
and the corresponding Hermitian tensors g'k and g;k.
We define the curvature tensor

R'„=F'„, —F',„,,—F'„F ..+F',„F„,
which has the Hermitized contraction

R.'k —I k, ~ 2(F g, k+F gk, i)—I" bF,„b+~F';„(Fbb+Fb ).

We then define the Han61tonian function

'f) gikR „

and we obtain the field equations from the variational
principle

f)dV=P.

The resulting equations are

gik gik +gskFi +gieFk haik(Fa +Fe ) p

R;k=0,
R;k, i+Rkk;+Ri;, k ——P.'

The first system of equations is equivalent to either of
the systems

gik —gik +gskFi +giBFk P'
&s. . Vs

gik;l gik, l gsk+ il gis+ lk

The relation g'-k= g'k', , is equivalent to the equations

gik 0

r „=o.
Our first section deals with the solution of the equa-

tions g;k. l= 0 in terms of the I'. This is a far more diK-
cult problem than the experience with Riemannian

geometry would lead us to believe.

~ A. Einstein, Ann. Math. 46, 578 {1945};A. Einstein and E. G.
Straus, Ann. Math. 47, 731 {1946};A. Einstein, Rev. Mod. Phys.
20, 35 {1948}.

g The symbo1s —and & are used to indicate symmetry and
antisymmetry in these indices.

The second section gives a short discussion of the
stronger equations R'kl =0 which in this non-Riemari-
nian geometry do not characterize Qat space.

The rest of the paper is devoted to the problem of
the existence of regular solutions of the field equations.
Indeed there is good evidence to show that the field
equations are not suKciently restrictive so that not all
their solutions have physical significance. If the field
equations are to be augmented by a condition in the
large then the condition of the regularity of the field
quantities seems to be the most natural.

In our discussion space is assumed to be the topo-
logical equivalent of four dimensional Euclidean space.
In the third section we obtain a certain negative result
whose physical meaning might be stated as follows: "a
particle with mass cannot be represented by a static
solution which is everywhere regular. "

Since it is thus shown that the regular static solutions
cannot represent mass the question arises whether there
might exist elementary static mass free solutions which
could be used as the components of more complex non-
static solutions which represent mass. The simplest
possibility here is that of central symmetry which is
discussed in section IV. The result is again negative:
There exist no non-trivial regular static centrally sym-
metric solutions which are asymptotically Qat.

This work was done while I was assistant to Professor
A. Einstein whose ideas are used at practically every
step. My thanks are also due to Professor F. J. Murray
who was my advisor and to my wife who helped in
checking the calculations.

I. THE EQUATIONS g;k;i=e

In a previous paper' we established the fact that the
system of equations

gik;l gik, l gskI il gisI lk

cannot be solved for the I' by the same simple trick
through which it is solved in the case of symmetric g,k.

We saw this by studying the determinant. of the system
(1.1) which cannot be expressed as a power of the
determinant

~ g,k
~
.

It is now our intention to show how the Eqs. (1.1)
can be solved in a comparatively simple manner. For
this purpose we start as in the case of symmetric g, k by
writing the three equations

gk', i =gsiF'ki+gk. i 'i,
gik, '

g kF i'+gi F ik

g'i, k =gsiF'ik+g'. F'ki,

' A. Einstein and E. G. Straus, Ann. Math. 47, 731 {1946}.
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corresponding to the cyclic permutations of the indices
k, i. We now multiply the 6rst equation by —2g"'gkk',
the second by —,'g"'g'k, and the third by ~g"'gkk'. By
adding these three equations we obtain:

) =(g''g g) (+g" g g«)1 '» (13)
where

v=1/2( —g' 'g g», )+g' 'g g) a, ~+g" g g~v, a).

If the g;k were symmetric then the coefFicient tensor,

Vl=g' 'g g) l+g" g gl(l

would equal 2g"'gk'kg&
E and would have the trivial

inverse:

E'E & . , E'EVi sk k =qg; igk'kg

We remark that the tensor U is real and hence the
system (1.3) decomposes into two systems of linear
equations, one of 24 equations for the 24 imaginary
parts of the F, and one of 40 equations for the 40 real
parts of the F. We could proceed to solve the 24 equa-
tions for the antisymmetric parts of the F and once we
had solved them we could obtain the symmetric parts
of the F from the equations (real parts of g, ), , ~

——0):

g'k, E
—g.kF'. E

—g'.F'Ek —g.kF'E —g'.F'Ek =o,

where the coefficients of the symmetric F are the sym-
metric parts of the g so that the system of equations
can be solved in the customary manner. It is thus pos-
sible to reduce the system of 64 equations in 64 un-
knowns to one system of 24 equations in 24 unknowns
and further systems of 4 equations in 4 unknowns. This
is the greatest reduction practicable in this case.

However, we shall proceed in a diferent fashion. We
state without proof the following:

I.emma: Given 6ve covariant tensors of rank two,
T,),( )(n=1, , 5) which are formed from the g, ),

through purely rational operations then there exists a
linear relation

gk+ gk I(gk+ gk)+Igk
2 -24 —4

(1.6)

We are now in a position to give a formula for the
inverse of the tensor O'E E"" . We write:

~"k k' = gii'gkk g
apv=+1 +3 a~p~v a P v

where the coefficients A are scalar invariants (func-
a,P v

tions of Io, I2) which are to be determined from the
relation

or more explicitly

(1.7)

( A + A )g,' "g~-"'g"i
a p v —0 ~2 ~4 a+1,P+i,v+1 a —i,p —1,v —1 a p

= l),' "'()y""'I)) ', (1.8)

with the convention that all A with an index &5 vanish.
We can now use the identity (1.6) in order to replace g

by a linear combination of g, g, g, g. If we then com-
—2 0 2. 4

pare the coefFicients of the diferent

The tensors g;k, g;k, g;k, g;k are linearly independent—3 —1 1 3
and hence according to the lemma they form a basis for
g;k. In the same manner the tensors g;k, g;k, g;k, g;k
a
and g'k, g'k, g'k, g'k, respectively, form a basis for

-3 —1 1 3

the g;k and the g'k.
P v

For our purpose we need only the identity between
the tensors g,k, g;k, g;k, g,k. If we denote the two

—4 —2 2 4

(independent) scalars g, ' and g, ' by I2 and I4, respec-
2

tively, then we obtain

(g,"+ g,")—I2(g "+ g ")—-'(I2' —I,)go=0. (1.5)
4 —4 2 —2 0

We introduce the abbreviation Io= 2(I22—I4) so that
we have

P I(~)I',&(~) —0

where the I( ' are invariant scalar point functions not
all identically equal to zero.

An analogous lemma holds for contravariant and
mixed tensors of rank two.

Now, in order to find the inverse of the coefFicient
tensor U"'"'").) of (1.3), we determine the systems of
tensors g,k, g,k, g'k by the following relations:

g . g, g
.k g,k g'Ek gik

g'"'g'"g"( ~, P, v=0 ~2 4
a p v

we obtain 64 equations for the 64 coefFicients A . We
aP, v

see some properties of the A immediately:
(1) The A a,re real since the coeKcients of the linear

equations are real polynomials in the real scalars Io, I2.
(2) Since Uis real Visrealand hence A = A

a.P,v -a, -P. -v
(3) Since U is symmetric in g"', g~'~, g~ (, we have V

symmetric in g;,, gk» g" and hence A is symmetric in
the indices cx, P, y.

Thus the 64 variables reduce to the 10 variables

g g
. g. g,k g.k g.k gik gki gik-

P P -P v v
A,

3,3,3
A, A

3,3, 1 3,3, —1
A

3y3y 3
A,

3,1,1

g kg"= g'k g' g' = g' g g"= g'.
a P a+P a v a+v P v P+v

A, A, A
3,1, —1 3,1, —3 1,1,1

A
1,1,-3
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(2.2)~a~ i, %=+a+ lc, il a, - l a

g s(ga. gs. ,) —0(1+Ip —2Ip) '(1+Ip+ Ip) LIp'+ (—1+3Ip) Ip
+(—2+4Ip+2IP+Ip') j While it seems difficult to find the general solution of

this overdetermined system of equations, we can get an
idea of the manifold of solutions by a parametric expan-
sion. We write

and the A turn out to be rather complicated rational
expressions in the Io, I2.

The system g;I,;l=0 then has the solution

gls .—gsl + gent +g&+
0 1 2(1 9)gi'sg k'kg

app a p&

Without loss of generality we can choose u, =b;.
0

The first order term of the first system of (2.2) then
becomes:

Aside from the unwieldiness of the scalars A this
solution has the unpleasant feature that one of the
factors of the denominator, namely 1+Ip+I2, may
vanish without causing the system of equations to be-
come singular. This is due to the fact that while the
g,k(n=O, +2, 4) formed a basis for the mixed tensors
a
of rank two which were constructed from the g;& by
rational operations, it is no longer true that the tensors

g,kgi, g, gik (cs, P=O, &2, 4) form a basis for the mixed
a p a p
tensors of rank four which are formed from the g, j, by
rational operations. The latter tensors are Hnearly
deperidemt.

By using the linear dependences among the tensors
g'kgi and g, gik we can transform our solution (1.9) so
a p a p

that the denominator 1+Ip+I2 is cancelled.
It seems likely that our solution (1.9) cannot be

simplified much further. However, there may be a more
suitable choice of the basis for the tensors of rank two
and the linear dependences among the tensors of rank 4
and 6 may be applicable for a systematic simplification.

~ ', I =a I, &

-l
1 1

or if we set g= b+ic:
1 1 1

bl. yl
1 1

c,; k+c k, ,=0,
1 1

which yields the solution

bl. bl
1

c', =A', ,x, with A', k+A'k, 0. ——
1

The first order term of the second system of (2.2) then
yields

A';, =0.

By a suitable choice of the coordinates we can make
b';= 0. Thus the system is completely determined
1

through the choice of the constants A';I, . The number
of independent constants is four.

II. THE CASE R'I, lm
——0

In Riemannian geometry the equation E'I, l
——0

characterizes Oat space, but in our present geometry
where the affine connections are non-symmetric, it
characterizes the existence of so-called "distant parallel-
ism, " that is the existence of four independent vectors
a"; such that

III. ON THE NON-EXISTENCE OF REGULAR
STATIONARY SOLUTIONS REPRE-

SENTING MASS4

Einstein and Pauli' showed that no everywhere regu-
lar static solution of the field equations of the general
theory Of relativity for which space is asymptotically
flat (g,k

—sg, k as rf= (x&'+x2'+xp')'*j —s~). represents
mass; that is to say g'"—g'k=0(1/r) Their proof w. as
based on the construction of a surface integral relation

(2.1) for the field quantities.
When the held equations are obtained fro~ a rela-

tivistically invariant variational principle,

u l, = I"I,a 0.=1 . 4

if we define u ' by the relation

0 a@a =88
then we obtain

F 'Ic=Q 8l. l a,

Since we have

(gsk;l), m (gik;m), i gsk+ ilm gis+ klm —Os+- +—

The determinant of the system of equations for these F';,=0:
A is

we know that the held equations g;&.l
——0 are compatible+-

with any system of I' which satisfy the equations
E'l l =0.

The system of vectors a; is therefore subject only to
two sets of restrictions, one due to the Hermitian
character of the F, and one due to the field equations

&~~ f)d&= 0, V= four dimensional region,

4 For a different proof of the result of this section see Papapetron,
Phys. Rev. 73, 1105 (1948).

A. Einstein and W. Pauli, "On the non-existence of regular
stationary solutions of relativistic field equations, " Ann. Math.
44, 131 (1943).
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then an infinitesimal change of the coordinate system We have

x*=x+$. x' =x'—$'

produces new field quantities and a new scalar density
I)* so that the variational principle remains satisfied. If
we call the increments 51), 6g'k, 6l', k etc. , then we obtain
(if we let I)=$(g—", g'"', r', k, r';k, )):

BI) BI)
0= I 8I)dU= ~ bg —'"+ bg"-"

J . gg~k ggik

Aikg e &gasp k &Ask) i

or~.k .
and hence (3.3) becomes

[2gskR P +gi k($ rs,

', s, S—r-, , ', s,'s—r-„))n.,dS=O. (3 4)

Bf)
51', +——6l', dV.

But we have

4= —(I)p), ,

and due to the Geld equation R,k=0,

g) (R„ging, s)

also
ggik gskj +g~sgk (gikg8)

and hence

R „ggtk 2R,„gsk(i (R „gikgs) .+gikR „(8
tel)+ 2R,„gskg +g~kR,„(s

Because of the fieM equations R,k, ,+Rk. ,+R„,k=o
and A'-k, ,=0 this becomes

R, ggik gI)+.2R, gakkai gtk(R .+R, )[s
= 8/+ 2R,kg'."(', ,+2g kR, k, ,g'

6I)+2gak(R k]') lI)+2(g.kR kP)

Hence (3.1) becomes

In general there seems to be little that can be achieved
with the help of this relation. However, if all the field
quantities are assumed to be static, that is independent
of x4= t, then we can choose V to be a right cylinder
with the bases x4= ti, xi ——t2 and P independent of xi for
i= 1, 2, 3 with P= cxi. Now if we let Bi, B2 be the bases
and I. the lateral surface of our cylinder then in the
integration over S the integrals over B~ and 8~ cancel
except for the term

J, 2g'."Rikc(t2 —ti)dB=2c(t2 —ti) ' g'"', ,RikdB;

but, since we have R4k, .—R4,, k=0, we obtain

2c(t, t,), (gi" R„—), .dB

=2c(t2—ti) ~ gi" R«n.dc, (3.5)
~c

where C is the (two dimensional) boundary of B and
n, is the s-component of the unit normal vector to C
in the plane of B.

The integral of 2g'-kR«$'n, over I. yield, s

cjI)
8g—'"+2 (g'."R,kg'), ,

goik 2G

fI

x4dx4 g'."Rikn, dC =c(t2' ti') g'."R—ikn, dC.

Blj ( Bfj
BI',k dV

ar', , Ear', ,&, . Since the remaining integrand is independent of x4, it
yields

+ 8I';kn. dS= 0, (3.2)
8 ~I', k, .

c(t,—t,) g'k(Sr, ,—-,'S, Sr, ,—-', S, Sr „)n,dC.

Hence (3.5) becomes
where S is the (three dimensional) surface of V and n,
is the i-component of the unit normal vector to S. On
the right side of (3.2) we have the variations of I) with J
respect to g'k and F',k, which vanish due to the field
equations. Thus (3.2) becomes +g'k(~r, k

——',Sk ~r —-'~ ~r )]n dC=O. (3.6)

or

BI)
2(g'-kR, kg') dV+ br' kn, dS=O,

~V
" ~S ~~ 'k, .

8$
2g' R, $'k+ kyar', k n.dS=O. (3.3)

If we now choose $"=0, i=1, 2, 3, then the surface
integral relation becomes

0=c L(t2+ti)g'."Rik+2g"'Rik
c

+gik(r4 $ s r ski rs g 4

+-'sk ~ r „+-s ~, r „)jn,dc,
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and since we have I"4,= I",4=0 and e4=0:

L(g2+g, )g'"R „+2g4"'R4„g4—"F'4„g"—4F'«)I dC= P
~e

Since the choice of t& and t& was arbitrary, we obtain

(2g'"'R43 —g'"F'44 —g"'I"I4)23,dC=O. (3.7)

Now under the assumption g'k—+gik as r~~, we can
write A'k in the asymptotic expansion

gik )43+~43+. . .

where the . - stand for terms that approach zero more
rapidly than p'k as r—+~.

If we consider the corr4esponding asymptotic expan-
sion for the F',3, then we obtain for the first'terms (first
approximation)

F"3=23~'.~34(V" 2n "V),—4 n" (V'—2n"V),—'
n*.—(V" 2~ "—V)3j, , (3 8)

where y= spiky".
Substituting these expressions in the field equations

R;k=p, we obtain in the first approximation

For the antisymmetric y'- =y' ', , we obtain

ZP. —Ve. & . A st«ik & ik, a g Qisgkt~+ ~
y

and hence the Geld equations R,&, &+R&&, ,+R«, 3=0
yield

gg+ikl 0

Here again the condition y'k' —+0 as r—+~ implies
y'"'=0(1/r) and hence y'P= 0(1/r2) F'3 ——0(1/r2)
R;4,.——0(1/r3). Thus the terms involving g'"' in the inte-

grand of (3.7) are 0(1/r3).
We now choose C in (3.7) to be a two-sphere of

radius E in the hyperplane @4=0 with the origin as
center. We have then

23,=x,/r, i =1, 2, 3,
and

I 2R g43s g43F8 „g44Fs
J~

= —2) F'4423,dC+0(1/R)

= 2n, ,g.d (V
"

2n "V) -2—n" (V
'' —2n "V), '-.-—

2n;. (V
"—2n"V)—,2—.+2m, '3= o

(g g2/gx 2+ g2/gx 2+ g2/gx 2) (3.9)

%e can now normalize our coordinate system so that

~ .h- '~"7),- lv, .=p — (3 1o)

m44(x, /r3) (x,/r)dC+0(1/R)
J~

(m44/r 2)dC+0(1/R)

= —42rm44+0(1/R).

Then the 6eld equation E;k=p in the first approxima- If we let E—+~, we obtain
tion becomes

g(&84 &s4&) —. p

Considering the fact that the solutions of these equa-
tions are to approach zero as r—+~ and ignoring terms
that approach zero more rapidly than 1/r we obtain

m44=0,

and according to (3.12),

m=p and hence m, &

——0, s, t= 1, 2, 3, 4.

y—"——',q "y=m, 4/r, (3.11)
We have thus established the following:

This yields
(mug+ m22+ m33 m44)/p

and the normalization condition (3.9) yields

213,(m,.—x./4')+ 2 (ml 1+m22+ m33 m44) (x3/2') = 0
k=123

(3m,. „xr/)3=0, &=4,

or

mik 'gikm

m4„——0 4=1, 2, 3; m=2(m, ~+m22+m33 m, 4), (3.12)

hence m —m44 ——0. Equation (3.11) now becomes

and from Eq. (3.8) we obtain

F4„=-2[—q4.q&,m, &(x&/2)+q4, m, 4(x3/r3) j
= (m44/2) f q43(x~/r')+ 84'(x3/r3) j—

Theorem: If g'k is a static solution of the field equa-
tions which is regular at every point and satis6es the
condition lim g'"=2j'" (asymptotic flatness), then we

P~ 00

have g'3 —rl'3=0(1/r), or in other words the g'" repre-
sent a mass free field.

IV. THE CENTRALLY SYMMETRIC
STATIC FIELD

In the centrally symmetric static case we can choose
our coordinate system so that

g,3= A8,3+iB3,3,x,+—Cx;x3,
g, 4 Dx,+ibex;; g44

——F,3——

where A, B, , Ii are functions of r= 2(xp+x2'+x3')
and e»3= 1, haik, is antisymmetric in each pair of indices.

6 Here and throughout this section the indices have the range
1; 2 3.
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1 7' C'
u= — r +———

27 7 27
1 n' C (C' n'i

4 a 2y(C n2

B B ('C B' n'l B (B' 1 n'le=—
2A 27&A B a. ) 2A (B 2 a&

1 Ii'
p=- —'

2F
1I'
27

where n=A2 —2rB', y= A+2r—C We no. w consider
the field equation

0=Rg4= I'
44, ,—21'4,1"44+I"441'gb

= (qx, ), ,—2(px, )(qx,)+(qx,)(u+4b+2rc)x,
= rqg3/r+ 2(q'/q) 2(F'/F )+y'/—y+ u'/n],

so we have either q=0 which implies P'=0 and for a
suitable time scale Ii = 1, or

3!r+2(q'/q) 2(F'/F)+ 7'/7+ ~'/~—=0

and hence
(r'q'ya)/F'= const. ;

but if the 6eld is to be regular then the determinant
~g;i ~

=F~y cannot vanish and n, y, q must be regular
functions of r. This is compatible with the relation
q'pa/F' =const. /r' only if the constant on the xight side
and q on the left vanish. Ke have thus established:

Ke can introduce coordinates so that g;4=0, g44=1,I' I = I'4 k= I"'
We can now specialize our coordinate system further

so that g,~
—— Ab, &+iBe;i„x, (no—x,xI, term). This spe-

cialization does not introduce singularities, that is if the
original field was everywhere regular then the new Beld
is everywhere regular and the asymptotic behavior of
the 6eld quantities is preserved. In this system we have

In this coordinate system we have A'.4='H(r)x; and
the 6eld equation g", ,=0 becomes

3H+ 2rH'= 0,

with the solution H=cr '. Thus if the field is to be
regular we must have A'-'=0 and hence g;4=0 or E=O;
It is also well known that we can introduce coordinates
so that g;4=0, that is D=O.

We also have R,& G(—r—) e,z,x, so that the field equa-
tion R;i, i+R~~, ,+R~', i= 0 becomes

3G+ 2rG' =0

with the solution G=cr '. Thus if the field is regular
we must have R;k=0.

For the F we obtain the following expressions

I';i= ubikxl+ b(bktxi+ blixk)+ cxixkxi+'idekil
+iee„,x,x,+if(e,„x.x,+erg, x,x,);

I'4i, =i &btr+imxixi+ neii„x, ; I"4i,= pxl„' I'44= gxt,

where a, b, -, q are functions of r. If we substitute
these expressions in the equations g;1,.~

——0 then we
obtain:

or if we introduce the abbreviation 8= —1+Srd',
d 2re+4rbd= —(1/Sd) (5—'/5).

The remaining equations then become

(&'/&)'= B(1+b)/"—3(P'+ 1/b)
(b'/~)'= (2!r)P(1+b)Db'/~+4(P'/0)) j

with the abbreviation P=1+2rb.
(4.1)

c=0 and the equations g;I, ;~=0 become

i2A'= Ab+B(d+2rf)
~8= —Ad

-',B'= A f—+Bb
0= A(u+b)+B(d+2rf)
O=A(e+f)+Bb.

Eliminating A, 8 and their derivatives from these
equations we obtain:

d' f+4d—'(d+2rf) =0
u+b —2d(d+2rf) =0

e+f 2bd=—O

The remaining field equations are

0=R,p 2rb, itLu——'+ (u b/r)+u—(u+2b)
+ (1/r) (d+ 2re) (d+ 2r f)7 x,xi [(u—+2b)'+ u'
—2b'+2(e —f)(d+2rf) )+iej„,x,f(d+2re)'
+ (2u —1/r) (d+2rf)+ (u+2b+1/r) (d+2re) j.

Thus the Geld quantities u, , f are to satisfy the
equations

u'+ (u b/r)+ u(—u+2b)+ 1/r(d+ 2re) (d+ 2rf) = 0
b' (u —b/2r—)—b(u+ b) —(1/2r) (d+2rf)'= 0
d' f+4d'(d+—2rf) =0
2re'+ f+ (2u —4d' —1/r) (d+2rf)

+ (u+2b+1/r) (d+ 2re) = 0
u+b 2d(d+2rf) =—0
e+f 2bd=0-

The last two equations of this system can be used in
order to eliminate the functions u, f from the system ot
equations. From the resulting four difFerential equations
for the functions b, d, e we can eliminate the quantities
b', d', e' thus obtaining one algebraic equation and three
difFerential equations.

(—1+Srd') P(d 2re+4rbd) '—
+ (1/2r) (1+2rb)' —(1/2r) j+4d'= 0

(—1+Srd') (d 2re+ 4rbd)+ —2rd'+ d =0
(d 2re+4rbd) '+ 2—d(1+2rb) (d 2re+ 4rbd) (—2rb) ' =0—
2d(d 2re+4rbd)'+ —(—(3/2r) —3b+Srbd')

X (d 2re+ 4rbd)+ 2re—'+ (3d/2r)+ 6bd+ 4rb'd =0.
If we difFerentiate the 6rst equation then we obtain

an equation which is a linear combination of the four
equations. Hence one of the three difFerential equations
can be omitted from the system. We omit the last equa-
tion and eliminate the quantity d 2re+4rbd from t—he
other equations. We have

(—1+Srd')'
d 2re+4rbd = —(1/—Sd)

(—1+Srd')
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The first equation yields

—4O'= L~'/(1+ ~)3(t"/t')'+4/~

e' ~'/~L(2"/ +~)(h'/~)' "-t/(1+~)'(~'/~)'+( / +~)(~'/h)-(4/~)3
2—=

(r'/1+ h) (8'/8) '+ (4/8)

If we substitute these expressions in the square of both sides of the second equation, then we obtain
- r' (5'q ' 4-(1+8)'

I
—

I
+-

( &) 1+SE S)
(«'/1+~)(~'/~)'-2"/(1+~)'(~'/~)'+(4~/1+&)(&'/&) —(8/~)

X 1+ (8'/6)'. (4.2)
("/1+~) (~'/~)'+4/~

If we had 8'=0, we would have 8= —1 '(since

8(0) = —1) and hence d=0 and 8=0, so that the field
would be symmetric. In this case it is known that there
exist no non-trivial solutions of the field equations. Thus
if we divide both sides of Eq. (4.2) by (8'/8)' then we
obtain

(S'/~) = (1+~,)/r. ~.&0 (4.4)

(8'~'- r' )8'~' 4 (1+8)' 4r' (8'p'

E 8) 1+8& 8) 8 r' 1+8& 5)
r'(1 —8) pb'~ ' 4r pb'~ 4—

I

- I+ I

—I-- =o (43)
(1+tl)' I 5) 1+t'E g)

Now in order to determine the behavior of 6 we
remember that according to the result of the preceding
section we have 2=1+0(r l) and by an asymptotic
expansion we find 8=0(r &). Hence, d=0(r ') and
8= —1 at 0 and ~. Since 6= —(~.g;i[/ ~ g, q

~
)&0, we

have —1~6&0, and, since we assumed that d is not
identically zero, 8 has a maximum —1&80& 0 at r = ro.

From Eq. (4.3) we see that at ro we have

On the other hand we have (8'/8)'= 8"/80 and, since 8

is maximal at ro, we have 8"~0 there and hence

(S'/S)'=0. (4 3)

This contradicts Eq. (4.4). Thus we conclude: There
exists no static centrally symmetric solution of the 6eld
equations which is asymptotically Rat and regular
throughout.

e remark that this argument remains valid in the
case of a real non-symmetric Geld satisfying the same
field equations. In that case the quantities 8, d, e, f, l,
m of the beginning of this section must be considered
imaginary (so that the expressions in which they occur
become real). The quantity 8= —1+3rd' then satisfies
8~ —1 with the equality sign for r=0 and r= ~. Since
we again assume that d is not identically zero 8 must
have a nzAsimum 80& —1 at r= ro. At that minimum we
have on the one hand

(8'/8)'= (1+8 )/robpO) 0

and on the other hand, since 8"—0,

(S'/S)'= S"/~,=0.


