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It is attempted to formulate the properties of localized states on the basis of natural invariance require-
ments. Chief of these is that a state, localized at a certain point, becomes, after a translation, orthogonal
to all the undisplaced states localized at that point. It is found that the required properties uniquely define
the set of localized states for elementary systems of non-zero mass and arbitrary spin. The localized func-
tions belong to a continuous spectrum of an operator which it is natural to call the position operator. This
operator has automatically the property of preserving the positive energy character of the wave function
to which it is applied (and it should be applied only to such wave functions). It is believed that the develop-
ment here presented may have applications in the theory of elementary particles and of the collision matrix.

INTRODUCTION

T is well known that invariance arguments suffice to
obtain an enumeration of the relativistic equations
for elementary systems.! The concept of an “elementary
system” is, however, not quite identical with the
intuitive concept of an elementary particle. Intuitively,
we consider a particle “‘elementary” if it does not appear
to be useful to attribute a structure to it. The definition
under which the aforementioned enumeration can be
made is a more explicit one: it requires that all states
of the system be obtainable from the relativistic
transforms of amy state by superpositions. In other
words, there must be no relativistically invariant
distinction between the various states of the system
which would allow for the principle of superposition.
This condition is often referred to as irreducibility
condition. Relativistic transform is meant to include
in the above connection not only the customary
Lorentz transformations but also rotations and dis-
placements in space and time.

The role of elementary systems as initial and final
states of collision phenomena, and hence their connec-
tion with the theory of the collision matrix, will be
discussed at the end of this article. We wish to turn
now to the connection of elementary systems with
elementary particles.

Two conditions seem to play the most important
role in the concept of an elementary particle. The first
one is that its states shall form an elementary system in
the sense given above. This condition is quite unam-
biguous. The second condition is less clear cut: it is
that it should not be useful to consider the particle as
a union of other particles. In the case of an electron or
a proton both conditions are fulfilled and there is no
question as to the elementary nature of these particles.
Only the first condition is fulfilled for a hydrogen atom
in its normal state and we do not consider it to be an
elementary particle.

The situation is more ambiguous, for instance, in the

1E. P. Wigner, Ann. of Math. 40, 149 (1939). The concept of
an elementary system, which will be explained below, is a de-
scription of a set of states which forms, in mathematical language,

an irreducible representation space for the inhomogeneous
Lorentz group.

case of a m-meson. Qualitatively, a m-meson differs in
no way from a very sharp resonance state, formed by
the collision of a w-meson and a neutrino. Strictly
speaking, the states of a w-meson do not form an

_elementary system because, after a sufficiently long

time, it can be either in the dissociated or in the
undissociated state and the distinction between these
is surely invariant relativistically. Nevertheless, the
life time of the w-meson is very long as compared with
any relevant unit of time (such as %/mc?) and within
this time interval its states do form an elementary
system. On the other hand, the properties of a w-meson
are very different from what one would expect from a
compound consisting of a u-meson and.a neutrino.
Thus the second condition for an elementary particle is
fulfilled. It is this condition which has no counterpart
in the definition of an elementary system. As a result
of this circumstance the concept of an elementary
system is much broader than that of an elementary
particle; as was mentioned above, a hydrogen atom in
its normal state forms an elementary system.

Every system, even one consisting of an arbitrary
number of particles, can be decomposed into elementary
systems. These elementary systems can be specified in
a relativistically invariant manner, as containing only
certain states. Thus, the restriction to the normal state
of the hydrogen atom selected an elementary system
from all the states of the hydrogen atom, which,
together, do not form an elementary system. The
usefulness of the decomposition into elementary sys-
tems depends on how often one has to deal with linear
combinations containing several elementary systems.

The great drawback of using the elementary systems
as a basis of the theory is that their existence follows by
a rather abstract argument from the principles of
quantum mechanics. As a result, the expressions for
some of the most important operators “get lost” in the
process. The only physical quantities for which the
theory directly provides expressions are the basic
quantities of the components of the momentum-energy
vector and the six components of the relativistic angular
momentum tensor. The subject of the present article is
an attempt to find general, invariant theoretic principles
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on the basis of which operators for the position coordi-
nates can be found.

If we restrict ourselves to an elementary system, the
physical interpretation of the operators to be found is
unique: they will correspond to the position of the
particle if we deal with an elementary particle. Other-
wise they may correspond to the center of mass of the
system. If the system is not elementary, the interpreta-
tion will not be unique and neither will our postulates
lead us to a uniquely determined set of operators.

Before proceeding with our argument, we wish to
refer to other investigations with somewhat similar
objectives. The problem of the center of mass in
relativity theory has been treated particularly by
Eddington? and by Fokker?® on the basis of non-quantum
mechanics. Their work was evaluated and a quantum
mechanical generalization thereto given by Pryce.* We
shall have frequent occasion to refer to his results.
Ideas related to Pryce’s work have been first put
forward by Schrodinger® and, more recently, by
Finkelstein® and also by Mgller.”

The present paper arose from a reinvestigation of the
irreducible representations® of de Sitter space which
was undertaken by one of us.® These representations
are in a one to one correspondence with relativistically
invariant wave equations for elementary systems in de
Sitter space. At the conclusion of the investigation it
appeared that the physical content of the equations
which were obtained could be understood much more
readily if position operators could be defined on an
invariant theoretic basis. As an introduction to this,
a similar investigation was undertaken in flat space
with the results given in the following sections.

POSTULATES FOR LOCALIZED STATES AND
POSITION OPERATORS

The position operator could easily be written down
if the wave function of the state (or the states) were
known for which the three space coordinates are zero
at t=0. If ¢ is such a function and T'(a) the operator
of displacement by a., ay, a@., a:, the wave function
T(a)™W represents a state for which the space coordi-
nates are @, @y, @, at time a;: Thus the knowledge of
the wave functions corresponding to the state x=y=3
=0 at /=0 (and the knowledge of the displacement
operators) entails the knowledge of all localized states,
ie., of all characteristic functions of the position
operators. From these, the position operators are easily
obtained. For this reason we concentrated on obtaining

2 A. S. Eddington, Fundamental Theory (Cambridge University
Press, London, 1946).

3 A. D. Fokker, Relativitatstheorie (Groningen, Noordhoff, 1929).

4 M. H. L. Pryce, Proc. Roy. Soc. 195A, 62 (1948).

5 E. Schrédinger, Berl. Ber. 418 (1930); 63 (1931).

6 R. J. Finkelstein, Phys. Rev. 74, 1563A (1948). .

7 Chr. Mgller, Comm. Dublin Inst. for Adv. Studies A, No. 5
(1949); also A. Papapetrou, Acad. Athens 14, 540 (1939).

3 L. H. Thomas, Ann. of Math. 42, 113 (1941).

? T. D. Newton, Princeton Dissertation (1949).
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the wave functions of those states which are, at time

t=0, localized at the origin of the coordinate system.
We postulate that the states which represent a

‘system localized at time (=0 at x=y=25=0: (a) form

a linear set .Sy, i.e., that the superposition of two such
localized states be again localized in the same manner;
(b) that the set .Sy be invariant under rotations about
the origin and reflections both of the spatial and of the
time coordinate; (c) that if a state ¢ is localized as
above, a spatial displacement of ¢ shall make it orthog-
onal to all states of Sy; (d) certain regularity conditions,
amounting essentially to the requirement that all the
infinitesimal operators of the Lorentz group be appli-
cable to the localized states, will be introduced later.

It is to be expected that the states localized at a
certain point have the same properties as characteristic
functions of a continuous spectrum, i.e., they will not
be square integrable but the limits of square integrable
functions. It seems to us that the above postulates are
a reasonable expression for the localization of the system
to the extent that one would naturally call a system
unlocalizable if it should prove to be impossible to
satisfy these requirements.

We shall carry out our calculations in the realization
of the elementary systems which was described by
Bargmann and Wigner® and will proceed with the
calculation.

Particle with no spin (Klein-Gordon particle)

The determination of the localized state is particu-
larly simple in this case. It will be carried out in some
detail in spite of this, because the same steps occur in
the consideration of systems with spin.

The wave functions are defined, in this case, on the
positive shell of a hyperboloid po®= pi>+ po>+ ps2+u?
and we shall use p!, p%, $° as independent variables. In
any formula, po is an abbreviation for (p.2+ po*+ ps?
+u?)}. The invariant scalar product is

W, ¢)= f f f Y(p1peps) o (prpepa)dprdpadps/po. (1)
The wave function @ in coordinate space becomes
3@, 2, 2, )= 20 [[o(ps, 11,9

Xexp(—i{x, p})dpidpadps/po, (2)
where
{#, p} =a'p—a'pt—a?p?—u?p?
=Xopo— X1p1— Xapa—xsps, (3)

is the Lorentz invariant scalar product. Throughout
this paper, the covariant and contravariant components
are equal for the time (0) coordinate, oppositely equal
for the space (1,2, 3) coordinates. This governs the

10V, Bargmann and E. P. Wigner, Proc. Nat, Acad. Sci. 34,
211 (1948).
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raising and lowering of all indices. Occasionally, we
shall use for the scalar product of two space-like vectors
the notation (x, ) so that, e.g., {x, p} =ap"— (x-p).

The linear manifolds which are invariant with respect
to rotations about pi= po= p3=0 are, for any integer 7,
the 2741 functions

ij(ﬁ; ¢>f(?) (m= _.77 _]+1; ]—1).7)7 (4)

where p, ¢ and ¢ are polar coordinates for py, pa, ps and
f is an arbitrary function. The P’ are the well-known
spherical harmonics. The sets (4) are also invariant
with respect to inversion, i.e., replacement of pi, ps, ps
by —p1, —pe, —ps. Naturally, not only a single set
(4) has these properties of invariance but the sum of
an arbitrary number of such sets as long as one includes
with one function (4) all 2541 functions and their
linear combinations. The f(p) could be different for
different j.
Under time reversal ¥/(pi1p2ps) goes over into'!

OU(py, P, p3) =¥(—p1, — ps, — pa)™. ®)

We understand by time reversal the operation which
makes out of a wave function ¥ the wave function 6y
on which every experiment, if carried out at —¢, yields
same results as the same experiment carried out on ¥
at time {. Because of (5) and our postulate (b), if
the P,/(0, $)f(p) are localized at the origin, the set
P_,i(0, )f(p)* ie., the P,'(6, )f(p)* are also local-
ized. The same is then true for the sum and difference
of the corresponding pairs of functions which shows
that the f(p) can be assumed to be real without loss
of generality. _

The displacement operator in momentum space is
simply multiplication with exp(—i{e, p});

T(a)y=exp(—ifa, p})¥. (6)

We shall have to consider purely space-like displace-
ments, i.e., assume that ¢®=0. It then follows from
our postulate (¢) that, in particular, exp(i(a, p))¥ is
orthogonal to ¢ if ¢ is localized, or that

fffW(Pl?ﬂ’s)|Zexpi(alp1+a2p2

Fasps)dpidpdps/po=0, (6a)
for any non-vanishing vector ¢. This shows that only
the zero wave number part occurs in the expansion of
|¢|2/po into a Fourier integral. Hence |¢|%/po is a
constant, || proportional to po?. Comparing this with
(4), we see that only the set j=0 can be chosen.
Since, furthermore, we saw that f(p) can be assumed
to be real, we have

¥r=(2m)"po. )

As was anticipated, (¢,¢¥) is infinite, the localized
function is-part of a continuous spectrum.

L E,. P. Wigner, Gottinger Nachrichten 546 (1932).
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As far as postulates (a), (8), (c) are concerned,  could
be a discontinuous function, being + pot= (p>+pu2)t for
some p, and — (p*+u?)* for the remaining p. However,
no matter how ¢ is chosen, consistently with (7), there
is, in this case, only one state localized at the origin
because if there were two, say 1, and ¥s, the ¥; would
have to be orthogonal not only to ¢, exp(—i(a, p)) but
also to ¥; exp(—i(a, p)) from which not only |¢|2~p,
but also ¢1*¥a~po and hence the proportionality of ¥
to ¥ follows.

In order to eliminate the discontinuous ¥ as localized
state, we introduce the further regularity condition that

(MY, M%Y3)/ (ny ¥rn) ®

shall remain finite as the normalizable wave functions
¥, approach y. The M is the infinitesimal operator of
a proper Lorentz transformation in the x%* plane, its
operator ist’

MO%=3p%3 /3. (8a)

This further postulate eliminates all discontinuous ¥
and we obtain for the wave function of the only state
which is localized at the origin

Y= (2m) " pot. 9)

The regularity requirement (d) actually asks for the
finiteness of (8) for all M*!. However, if one substitutes
M2, M3 or M2 for M® in (8), the resulting expression
is automatically bounded—in fact their sum is j(j41).
Hence requiring the applicability of the M2, M3, M2
to ¢ does not introduce a new condition.

The localized wave function in coordinate space is
obtained by (2). It is, apart from a constant!?

Y (r)=(u/7)"*Hs;a® (ipr). (9a)

It goes to zero at r=co as ¢, at =0 it becomes
infinite as =52, It is, of course, not square integrable
since it is part of a continuous spectrum.

Applying the operator of displacement to (9) we
obtain for the wave function of the state which is
localized at !, 2% «* at time {=0

T(—x)=(27)*ps} exp—i(p'a'+ o+ 1)
= (271-)—%1;0%6—1'(10-:6) .

This must be a characteristic function of the operator
¢* for the k-coordinate with the characteristic value «*.
The operator ¢* is therefore defined by

do(p) = (2m) f pole w93k (py')}

X el Dg(p")dxdp'/po’;  (10)

dx and dp’ stand for da'da?da® and dpi'dps’dps’. One
2 G. A. Campbell and R. M. Foster, “Fourier Integrals for

Practical Applications,” American Telephone and Telegraph
Company (1931).
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can transform (10) in a well-known fashion

()= (z*————) (2
X [ poes==(p)Ao(pdady

=—i —--l———— #(p). (11)

opr  2p¢°

These expressions are valid for finite as well as for
vanishing rest mass. It is remarkable that the operator
¢* can be transformed into coordinate space and retains
a relatively simple form

. 1 prexp(—ula—y|) 08(y)
N 1 dy.
F2() =2+ [ o

(12)

x and y stand for the spatial part of the four vectors x*
and y* and dy indicates integration over %!, %, % The
customary ¢* operator contains only the first term of
(11).

It may be well to remember at this point that the
position operators to which our postulates lead neces-
sarily commute with each ether so that only Pryce’s
case (¢) can be used for comparison. In fact, our ¢* is
identical with his g*. It may be pointed out, second,
that a state which is localized at the origin in one
coordinate system, is not localized in a moving coordi-
nate system, even if the origins coincide at ¢=0.
Hence our operators ¢* have no simple covariant mean-
ing under relativistic transfermations. This is not the
case for the customary operators ¢* either. Further-
more, even though it appears that ®(x)=26(x) is in-
variant under relativistic transformations which leave
the origin unchanged, this is not much more than a
mathematical quirk. One sees this best by transforming
the é-function to momentum space through the inver-
sion of (2). The result, po, seems to have a simple
covariant meaning. However, it does not represent a
square integrable function and if one approximates it
by one, say by ¥a=po exp(—a?pe?), the Lorentz trans-
form of ¥, will not approach ¥, with decreasing . In
fact, as soon as au<K1, the scalar product of ¥, and its
transform will be independent of o and smaller than
the norm of ¥,.

Particles with spin and finite mass

We again use the description given in reference 10,
i.e., define wave functions on the positive hyperboloid
P02=P12+P22+P32+“2 and use in addition to ﬁ1, 172, Pa
the 2s spin variables £, £, - £ all of them four-
valued. The wave functions which describe the possible
states of the system will be symmetric functions of the
£ and satisfy the 2s equations

kYo p=uwy a=1,2,--2s. (13)
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The consistency of these was shown before.’® The «,
apply to £a, two v with different first indices commute,
with the same first index they satisfy the well-known
relations

2", (13a)

The great difference between the present case and that
of zero spin consists in the limitation (13) of the
permissible wave functions, in addition to the limitation
to the positive hyperboloid. This latter limitation can
be taken care of by using only the pi, ps, ps as inde-
pendent variables, the former limitation cannot be
taken care of in an equally simple fashion. We shall
make extensive use, however, of a device, most success-
fully employed by Schrodinger® and define operators

= %(?0)_1 (Zx 'YaK?x'l_ M)'Yao' (14)

This is a projection operator: E2=E, and E. auto-
matically satisfies the corresponding Eq. (13). Denoting
the product of all the E, by E

E=E\E,--

Yo Yo Ve o=

'EZs (143.)

any Ey is a permissible wave function, satisfying all
Egs. (13).
For the scalar product, we shall use the expression

¥ 0)= [ b= Tevroar. (15)

It follows from this at once, because of our postulate
(c), and since (6) is valid in this case also, that every
wave function which is localized at the origin satisfies
the analogon of (7):

2| ¥[P=2m)Fpet (16)
The operator for time reversal is
64’(?1: 23 P3)=C‘//(—1’17 — P2, —P3)*’ (17)

where C is a matrix which operates on the £ coordinates
and satisfies the equations

C7a0*=7aoc; (az 1) 2} ] 25‘)

Crat*=—7akC. (a=1,2, ---,2s;k=1,2, 3). (17a)
If 4°, 4, 7* are real, y! imaginary
28 .
C= Tl vatva®; C*=(—)%. (17b)

a=1

Since C, as defined above, is a real matrix we also have
©2= (—)%* which is true independently of the choice of
the y-matrices. The operator for the inversion of the
space coordinates is

IY(p1, oy p3) =712y - v2Y (—p1, — o,

it commutes with the E, of (14).

In order to determine the sets of wave functions
which are invariant under rotations, we first define the
analogue of the pure spin function for the relativistic

—ps); (18)
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Egs. (13). For this purpose we define auxiliary functions
vm which are independent of p1, p2, s and functions of
the £ only. They satisfy the equations

(a=1,2,--+,2s) (19)

'Yaovm =Un
and

312 o Yol Yot = Min ‘
(m=—s, —s+1, .-+, s—1,s). (19a)

Since the 4° and the iyy? commute, it is possible to
) p

assume temporarily that they are all diagonal. Equation.

(19) then demands that they all belong to the character-
istic value 41 of each 4°; there are 2%¢ such functions.
However, we are interested only in symmetric functions
of the £ and there are only 2541 of these. They are
distinguished by the index m: the v, has non-zero
components only for those £ for which s4m of the
iy'y? are 41, the remaining s—m are —1. For these £
the value of v, is ((s+m)!(s—m)!/(2s)!)}2— so that
Um is normalized in the sense

Xt o= vl =1. (19b)

Physically, 7 corresponds to the spin angular momen-
tum about the &? axis, the parity of v, is even because
of (19) and (18).

The v, are not permissible wave functions because
they do not satisfy the wave Eqs. (13). We therefore
define as spin functions

V(p1, P2, ps, &1y * - ,$). (20)

They are permissible wave functions of even parity
and V., represents a state of angular momentum mh
about the third coordinate axis. Their normalization
is, instead of (19b)

26 V| 2= ((pot-1)/2p0)*. (20a)

The most general solution of (13) is a linear combi-
nation of the V,, multiplied with arbitrary functions of
the p1, P2, pa. A set of wave functions which is invariant
under rotations and reflections contains wave functions
of the form

‘nbjm= lZ/S(l, S)J', m—m’,m’le—m’ (7}’ ¢)fl(P) Vm" (21)

y £25)=Evn (m:‘ =S

The p, 3, ¢ are again polar coordinates for p', p%, p%;
the f; are arbitrary unknown functions of the length of
$. However, if one function of the form (21) occurs in
the set, all others with different 7 but the same f; also
occur. The summation over / is to be extended over all
even values between |j—s| and j+s if the parity of
the ¥; is to be even, over all odd values of / if the parity
of ¢; is odd. The S(J, s) are the customary coefficients®

13 See e.g., E. P. Wigner, Gruppentheorie, etc. (V. Vieweg & Sohn,
Braunschweig, 1931). The composition of the V and the spherical
harmonics P! to the y; is the same operation as the composition of
the spin functions with a definite S and the space coordinate func-
tions with a definite L, to functions of both, with definite J. This
composition is explained in Chapter XXII. The coefficients of

the composition, i.e., our S(, s) are calculated p. 202 ff (they are
denoted by s&9),

T. D. NEWTON AND E. P. WIGNER

giving a total j from wave functions with given “orbital
momentum” / and “spin momentum”’ s.

Since the polar angles &, ¢ are indeterminate for p=0,
the fi(p) must vanish for p=0 unless /=0. Otherwise,
the ¥;» would become singular at p=0 and the M%
could not be applied to them in the sense of the bound-
edness of (8). (Actually it is necessary to postulate this
equation for the square of M% instead only for M°k.)
It follows that ¥, vanishes at p=0 unless the series
(21) contains a term with /=0. However, (16) shows
that ¥ cannot vanish at this point if the rest mass is
finite and that, hence, every localizable wave function
must have an /=0 term in its expansion. This happens
only if j=s and the wave function has even parity.
If the parity of ¥jn is odd, only fi, fs, etc., enter (21)
and these still vanish at p=0. It follows that the wave
functions which are localized at the origin all have
angular momentum j=s and the form

2s
lpm: Z Z S(l: S)s‘,m—m’,m’le—m’(ﬁ, ¢)fle'. (213)
=0 m’
We now skip the part of the calculation which deals
with the determination of the f; and give only the
result: The wave functions localized at the origin are
the 2s+1 functions

= (22) 20 4 )
" ’ >0< Vn(p1peps; £1,- - -£25)  (21Db)

(i.e., the /=0 term alone remains from (21a)). Actually,
this result is far from being surprising.!*

The operator for the position coordinate can be
calculated in exactly the same way as this was done in
the case of zero spin, and gives

ﬁ ( ) P023+% 0
¢#=E 14740 ___.__(_i__
a=1 (potm)® i/ (potu)®

For s=1 this again agrees with Pryce’s result! for his
case (e), i.e., for his operator ¢.

The significance of the projection operators E in
(22) is only to annihilate any negative energy part of
the wave function to which it is applied and to produce
a purely positive energy wave function. Since ¢* is the
position operator only for wave functions which are

bt

E. (22)

14 The proof runs as follows. One first shows, by considering
Ym==Oy_,, that the f; of (21a) can all be assumed to be real. One
then subdivides ¥ into two parts: the /=0 part of the.sum (21a)
will be denoted by ¥9, the rest y". As we have seen, ¥? is finite at
=0, while ¢ vanishes at that point. The proof then consists in
showing that there can be no region in which ¢ is finite but very
much smaller than ¢°. It then follows from the continuity of both
y? and ¢ that the latter vanishes everywhere. Inserting ¥4y~
for ¢ in (16), one can neglect in the aforementioned region the
square of Y as compared with the other terms. The right side, as
well as the term from the square of ¥°, are independent of # and ¢.
This must be true, therefore, also for the term arising from the
cross product of ¢? and y. This term is, however, a sum of expres-
sions P} (&, ¢)fofi which cannot be independent of ¢,¢ except if
all f; with />0 vanish (f, is finite by assumption). It then follows
that the f; vanish everywhere and (21a) reduces to a single term.
Tgis can be obtained from (16) by taking the square root on both
sides.
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defined on the positive hyperboloid alone, the E on
the right could logically be omitted. Both E can be
omitted® if one calculates a matrix element between
two purely positive energy wave functions. The factors
involving po are necessary in order to make i9/9p;
hermitian: because of the factor py2*! in the volume
element (15), an operator is hermitian if it looks
hermitian after multiplication with po*t* on the right

and division with the same factor on the left. The
2s .

operator J] $(1+4+.% is a projection operator, i.e., it is
a=1

identical with its square and could therefore be inserted
into (22) once more before the second E, thus making
(22) somewhat more symmetric. The position operator
(11). for the Klein-Gordon particle is a special case of
(22) and can be obtained from (22) by setting s=0.

If one displaces a state by ¢ and measures its x*
coordinate afterwards, the result will be greater by a*
than the x* coordinate measured on the undisplaced
state. This leads to the relation

T(-a)¢*T(a)=¢"+a* (23)

for a°=0. Inserting the expression (6) for T'(a¢) and
going to the limit of very small ¢*, one obtains

(¢*p'—p'q¢")p=—1b11$ (23a)

where ¢ is any permissible wave function. Actually
one obtains by direct calculation, using in particular
the identity

Ea(1+7uo)Ea = PO.—l(PO-i' F')Ea (24)
the commutation relation
g pt—p'gt=—idnE. (25)

The commutation relations of the ¢* with p, are natu-
rally also the usual ones as po is a function of the p*
alone. Since the ¢* are the components of a vector
operator in three-dimensional space, their commutation
relations with the spatial components of M*! are also
the usual ones.

We wish to remark, finally, that a consideration,
similar to the above, has been carried out also for the
equations with zero mass. In the case of spin 0 and %,
we were led back to the expressions for localized systems
which were given in (9) and (21b). However, for higher
but finite s, beginning with s=1 (i.e., Maxwell’s
equations), we found that no localized states in the
above sense exist. This is an unsatisfactory, if not
unexpected, feature of our work. The situation is not
entirely satisfactory for infinite spin either.

DISCUSSION

One might wonder, first, what the reason is that our
localized states are not the é-functions in coordinate
space which are usually considered to represent localized
states. The reason is, ‘naturally, that all our wave
functions represent pure positive energy states. This
is not true of the §-function. Similarly, our operator
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(22) transforms positive energy functions into positive
energy functions.

It is often stated that a measurement of the position
of a particle, such as an electron, if carried out with a
greater precision than the Compton wave-length, would
lead to pair production and that it is, therefore, natural
that the position operators do not preserve the positive
energy nature of a wave function. Since a position
measurement on a particle should result in a particle
at a definite position, and not in a particle and some
pairs, this consideration really denies the possibility of
the measurement of the position of the particle. If this is
accepted it still remains strange that pair creation ren-
ders the position measurement impossible to the same
degree in such widely different systems as an electron, a
neutron and even a neutriono. The calculations given
above prove, at any rate, that there is nothing absurd in
assuming the measurability of the position, and the
existence of localized states, of elementary systems of
non-zero mass. Moreover, the postulates (a), (8), (¢c) and
(@), which are based on considerations of invariance, de-
fine the localized states and position operators uniquely
for all non-zero mass elementary systems.

No similarly unique definition of localized states is
possible for composite systems. Although it remains
easy to show that definite total angular momenta j can

" be attributed to localized states, one soon runs into

difficulties with the rest of the argument. In particular,
the summation in (16) must be extended not only over
the spin coordinates £ but also over all states with
different total rest mass and different intrinsic spin.
As a result, one can, e.g., find states which can coexist
as localized states in the sense of our axioms even
though their 7 values are different. This is also what
one would expect on ordinary reasoning since, if the
system contains several particles, the states in which
any one of them is localized at the origin satisfy our
postulates. This holds also for the states in which
another one of the particles is so localized or for states
in which an arbitrary linear combination of the coordi-
nates is zero. As a result, not only is the number of
localized states greatly augmented but, further, one
must expect to find many such large sets for which our
postulates hold, although no two sets can be considered
to be localized simultaneously. In other words, each
set of localized states is not only much larger for
composite systems but one also has to make a choice
between many sets all of which satisfy our postulates
by themselves. It does not appear that one can proceed
much further in the definition of localized states for
composite systems without making much more specific
assumptions. Naturally, one can define as localized
states those, which, in any of the elementary parts of
the composite system, appear localizable. It appears
reasonable to assume that this definition corresponds
to the center of mass of the whole system.

One may wonder, even in the case of elementary
particles, whether the determination of the localized
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states and position operators has much significance.
Such doubts might arise particularly strongly if one is
inclined to consider the collision matrix as the future
form of the theory. One must not forget, however,
that the customary exposition of this theory refers
only to questions about cross sections. There is another
interesting set of questions referring to the position of
the scattered particles: how much further back (i.e.,
closer to the scattering center) are they than if they

FOKKER

had gone straight to the scattering center and then
continued in the new direction without any delay.!® In
order to answer such questions in the relativistic region,
one will need some definition of localized states for
elementary systems. From this point of view it is
satisfactory that the localized states could be defined

without ambiguity just for these systems. '

15 1,. Eisenbud, Princeton Dissertation (1948).

REVIEWS OF MODERN PHYSICS

VOLUME 21,

NUMBER- 3 JULY, 1949

On the Space-Time Geometry of a Moving
Rigid Body

A. D. FOoKKER
Natuurkundig Laboratorium van Teyler’s Stichting, Haarlem, Nederland

A simple argument is given to explain Herglotz’ theorem that a rigid body has three degrees of freedom

only. A new example of rigid motion is given.

N this paper I propose to consider in some detail
another concept modified by relativity theory, the
concept of a rigid body and its motions. In physics a
rigid body is to be a collection of particles keeping rigid
equal distances. In the theory of invariants a particle
must not be represented by a point, but, being a
lasting event, it is represented by a time track. Thus
a rigid body must be taken to be a collection of time
tracks continuously bearing constant distances between
them.

The distance of two time tracks must be conceived
as the interval along a straight line intersecting both
tracks at right angles, in the sense of (14 3)-dimensional
geometry. Thus at a certain instant of one time track
the vectors showing the distances to neighboring tracks
will lie in a space perpendicular to the time track, and
they will continue to do so at following instants.

Now let PQRST in Fig. 1 delimit successive infini-
tesimal segments of a time track. The time track can
be seen as generated by successive infinitesimal “revolu-
tions.” (A “revolution” in (14 3)-dimensional time-
space sometimes means an acceleration.) Take the

spaces normal to the segments PQ and QR respectively,
bisecting these segments. The two spaces will intersect
in a plane, U say, which contains the points at equal
distances from P, Q and R. Therefore the arc PQR
will be generated by an infinitesimal revolution (in
(1+3) dimensions) about the plane U. Again, the space
normal to the segment RS and bisecting it, will cut the
bisecting space of QR in a plane V, and the arc QRS is
generated by an infinitesimal revolution about the
plane V. The straight intersection of U and V will
contain the points equidistant from P, Q, R and S.
Finally the normal space bisecting the segment S7" will
provide an intersection plane W which is the ‘“‘axis” of
revolution generating the arc RST. The intersection
M of the three U, V and W has equal distances from
all five P, Q, R, S, T. It is the center of the osculatory
equilateral superhyperboloid.

The osculatory plane containing PQ and QR must be
normal to the axis of revolution U. It is shown by HIA,
where A4 is the point of intersection with U. HA is the
principal normal of the time track, 4 being the center
of the flat hyperbole defined by P, Q, R. If we drop
AN perpendicular to NM, N will be the centre of the
one-blade hyperboloid defined by P, Q, R, S. This AN
is to be regarded as the binormal. Finally NM is the
trinormal of the time track PQRST.

When the series of infinitesimal revolutions about
U, V, W--- is generating the time track PQRST---
any other points P’, P, situated in the same simul-
taneous space (in the same flat present, say), defined
by P and U, will generate time tracks P'Q'R'S'T’- - -,
P"Q"R"S"T"- ... Two things are obvious. All these
time tracks will always be normal to the flat presents
P, P, P’ orQ,Q, Q" :-. The distances between



