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Joses all trace of its initial state as time progresses.
Such a gradual loss of “memory” can be achieved only
by the operation of a dissipative force like dynamical
friction which will gradually damp out any given
initial velocity. Thus, if we assume for the sake of
simplicity, that % is independent of |u|, then the
average velocity at later times will tend to zero like

(38)

but this is not to imply that the mean square velocity

.
U=uee™ ",
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also tends to zero. Indeed, the restoration of a Max-
wellian distribution of velocities from an arbitrary
initial state requires that

8—0 while (| u|%s—a constant as .. (39)

To achieve the first of these conditions we need dy-
namical friction and to achieve the second we need
random fluctuations as expressed by a diffusion coeffi-
cient. The recognition of these facts is, of course,
Einstein’s achievement. ’

NUMBER 3 JULY, 1949

A Special Method for Solving the Dirac Equations

A. H. Taus
Mathematics Department, University of Illinois, Urbana, Illinois

Exact solutions to the Dirac equations for an electron in an external field of an arbitrary plane wave
are obtained by transforming plane wave solutions for a free electron by variable Lorentz matrices. These
matrices are those which occur in the discussion of the classical orbits. An example shows that this method,
which applies classically, may fail for the Dirac equations when the external field is a constant one.

1. INTRODUCTION

N a previous paper! it was shown that solutions of
the classical relativistic equations of motion for a
charged particle in the external field of a plane electro-
magnetic wave may be obtained in terms of Lorentz
matrices determined by the antisymmetric tensor de-
scribing the external field. In this paper it is shown
that when plane wave solutions of the Dirac equations
for a free particle are transformed by these Lorentz
matrices then the exact solutions to the Dirac equations
for an electron in the external field described above are
obtained. These solutions have been discussed by
Volkow? and Singupta.?

We first obtain the necessary and sufficient conditions
that a variable set of Lorentz matrices must satisfy in
order that they be able to transform plane wave
solutions of the Dirac equation for a free particle into
solutions of these equations when an external field is
present. It is then shown that these conditions can be
satisfied in case the external field is that of a plane wave.

In the binary spinor formalism* the Dirac equations

are
o e

g"(— ——CI),,)¢= —imcg,
729x° ¢

(1.1)

o e _
ga(_ +——(I’,)gp= —ima//, .
70x° ¢

1 A. H. Taub, Phys. Rev. 73, 786 (1948).

2 D. M. Volkow, Zeits. f. Physik 94, 25 (1935).

3N. D. Singupta, Bull. Calcutta Math. Soc. 39, 147 (1947).

4 The notation used here is that of an earlier paper: “Tensor
equations equivalent to the Dirac equations,” Ann. of Math.
40, 937 (1939). This will be referred to as T.E.

where m and e are the mass and charge of the particle,
h is Planck’s constant divided by 2, ¢ is the velocity of -
light, ®, is the four-vector potential describing the
external field and ¢, ¢ and g° are spinors. The first two
are single index spinors and the g° are two index ones
satisfying the matrix equation

3@e+ig)=—g"-1, (1.2)

where 1 is the 2)X2 identity matrix and in a galilean
frame,

-1 0 0 O
gr=|0 —1 0 O0f=g". 1.3)
0 0 —-10
0 0 0 1
An explicit set of matrices satisfying (1.2) are given in
T.E., p. 938.

Equations (1.1) are numerically invariant under a
proper Lorentz transformation of the independent
variables x7, namely,

xcr_)xa* — Lr uxr’

where the L,” are constants, provided the spinors ¢
and ¢ have the transformation law

Y (x) =Ty (L),
o—¢*(x)=To(L ™),

where T' is the spin-image of the Lorentz matrix L.
Thus I is determined in terms of L by the equations:

(1.4)

I°T'=L,°g", (1.5)
and satisfied the condition
(1.6)

detI'=1.



SOLVING THE DIRAC EQUATIONS

We shall assume that the elements of the Lorentz
matrix L (and those of its spin image I') occurring in
Eqgs. (1.4) are functions of coordinates and determine
the conditions L must satisfy in order that ¢* and ¢*
in this equation be solutions of (1.1) if ¢ and ¢ are
plane wave solutions of (1.1) with ®,=0. We shall also
allow a transformation of gauge. Thus the problem is
that of finding conditions on L (and hence I') in order
that

7
V(&) =Ty () exp(£<p,lr«xf+s<x>>),
. (1.7
7 .
o(®)=Tx(8) exp( —;L<p.,zxxf+s<x>>),

be solutions of (1.1), where

Y1(p) = peg dbo—imeeo,

e1(p) = pag° @o+imcy,
Yo and ¢ are arbitrary constant spinors, p, are four
constants satisfying

(1.8)

Dap®=m?c?; (1.9)
l,7 are the elements of the inverse matrix of L,?, that is,
5L,°L,7=6,"; (1.10)

I,° are functions of the coordinates, and S(x) is an
arbitrary function of x°.

2. THE NECESSARY AND SUFFICIENT CONDITIONS
Substituting Egs. (1.7) into (1.1) we obtain

/3
T, 1+ gTholo 1t g A Tp1= —imcl gy,
i

(2.1)
% R
gq__P, op1— 8T poloP 01— g7 A T o1= —imcI'yy,
7

where
4,= Pﬂlr, FXT+S, o — (6/6)‘1’,,
where the comma denotes the derivative, i.e.,
[ o=0f/dx°.

Multiplying Egs. (2.1) by T on the left and using
(1.5) and the fact that ¥; and ¢, satisfy the algebraic
equations

2.2)

g6?7¢1= —i’WngZ], 8 bepr= im&‘/_/l;

we obtain
g (h/i)T, 1+g°A4,¢,=0,
/T, 01— g"A T o1=0.

In view of (1.5) these may be rewritten as

L,,"g"’(A ot (h/z) F_IF, a)‘pl =0,
L""g"(A a (h'/i)I‘*lI‘, v) ¢1=0.
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_These equations must hold for any y¥; and ¢; given by

(1.7), where ¥ and ¢, are arbitrary. Hence we must
have ‘
Lg#*A,=0, L gTT,,=0.

Since L,° is a Lorentz matrix and hence non-singular
and since the g# are linearly independent, the necessary
and sufficient conditions on L,” are

pplr, apxr+S, a (e/c)q)cr: 0 (23)

and
(2.4)

The remainder of this section will be devoted to a
rewording of these equations. We begin with (2.3).
Defining a function f by the equation

g°T ,=0.

S= 24 arf 1), (2.5)
[

and substituting this for S into (2.3) we obtain
e e
xr(ﬁplr,ap—l__(br, v+_f, oT =0~
¢ c

Since this equation must hold for arbitrary &7 we must
have

€
Pplrp: ——(@,+f,'),
Cc

where f’ is a scalar function which may differ from f by
a linear function of x. However, S will remain unaffected
if a linear function of x is added to f in (2.5). The
velocity vector associated with p, is defined by

Vo= (l/mc)Pa: VoV,=1,
and the above equation may be written as

L,oVr=x", (2.6)

where

Xo= ——e/mcz@,,—{-f, o). 2.7)

Thus Eq. (2.3) is equivalent to (2.6) which means
that the Lorentz matrices required must carry the unit
vector V7 into the vector x° related to the external field
vector potential by (2.7). Of course f' must be such
that x? is a unit vector.

The condition expressed by (2.4) is best dealt with
after it has been written in tensor form. It follows from
T.E. §1 that ' may be expressed as

I=z141Z2,,5. (2.8)

Where z is a complex scalar, Z,, is a self-dual anti-
symmetric tensor, and the matrices .S°7 are defined in
terms of the g by

Sur=%(g7gd‘gagr)- (2-9)
The coefficients of (2.8) are given by

z=1% tracel', Z,=—}% trace(T'S,s).
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The condition detI'=1 becomes
41 Zor
L.’ may be expressed in terms of z and Z°7 as
L.o=(28,"+2,°)(26,°=Z,) ~
= (20,"+2,%) (26,+ Z,%), (2.11)
where the bar denotes the complex conjugate, as follows
from Eq. (1.5) and the identities given in T.E.
Substituting (2.8) into (2.4), using Eq. (1.28) of T.E.

and using the linear independence of the g° we obtain
the equations

0T —

(2.10)

(26,°+Z,7), s =0, (2.12)

as the equivalent tensor form of (2.4), where z and Z,,
are related by (2.10).

It follows from Egs. (2.11), (2.12) and (2.6) that we
must have

O —
X, o =Y.

To prove this we take the divergence of (2.11) which
reduces to
L‘r, 7= (_2690"'— va) (zarp+er). o
=2(28pr+Zpr), o
However, since Z°7 is a self-dual tensor Egs. (2.12)
may be written as

Zﬂ',p"l—er, G'+Zp0',f=z, vgy)\(g)%e)\pur- (214')
Substituting from this equation for Z,., , we obtain
L‘r, ad= %Z_'a'pzpv’ = %Zﬂpzﬁ'fﬂ"

The last equation is a consequence of the reality of L,°.
But for any self-dual tensor

7°°Z,,=0,
and hence _
(Z*Z,,),.=0.
Therefore we must have
L, .°=0,

as a consequence of (2.12). Thus (2.13) is proved.

‘3. THE PLANE WAVE CASE

If the method described above is to be used to obtain
exact solutions to the Dirac equations for a given ®,,
we must determine x, and then find z and Z,, such that
Egs. (2.10), (2.12) and (2.6) are satisfied for every
time-like vector V7. It is sometimes impossible to find
xo. To see this we must recall that x, is essentially ®,
plus the gradient of a scalar. This scalar must satisfy
the wave equation if the divergence of ®, vanishes and
must be such that its sum with ®, gives a time-like
vector of constant length. In case ®, describes a
constant electric field, say ®,= Ex',%, it is impossible
to fulfill these conditions. Thus the method described
is a special one and gives exact solutions in very few
cases. However, it can be used to obtain approximate

(2.13)
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solutions for in some problems it may be possible to
obtain a x, which satisfies the required conditions to a
sufficient degree of approximation. If this is the case,
the discussion in the subsequent sections may be used
to determine the matrices L,” in terms of the approxi-
mate x°. :

We will now show that the method applies exactly if
®, describes a plane wave. That is, we assume that ®,
is a function only of a variable #,4™ where #, is a null
vector orthogonal to ®,. Thus we assume

&,=®,(n,x7), n®,=0, nn,=0. 3.1)
Now consider the spin-transformation
e
I'=14+——mn®.S7" (3.2)

2mc?

The Lorentz transformation corresponding to this is a
parabolic one given by

7=0,"+ (n°®,—Pn.)

mc*(n*V ,)
e(D)

e 3
© 2mc(n’ V,,)n (33)

7

It may readily be verified that for I' given by (3.2) we
have
e

z=1 and Z,,=—nu, 1P, (3.4)
. mc?
where
Nur” 7= 0,70,7— 0,70, "+ )f”ﬁgiﬂgnw (3.5)

and these quantities satisfy (2.10) and (2.12).
If we compute x7 from (2.6) using (3.3)

e
Xp= _—;(cbu"*'f. #)7
mc
where
m62 Ny € -
fu=—V.— (@,VU—_—@,@”). (3.6)
e neV, 2mc?

Since the term in parentheses in the last equation is a
function of #,x°, f, is the gradient of a scalar. Thus in
this case we may obtain exact solutions of the Dirac
equation by transforming plane wave solutions. The
solutions are

¥(£)=T expl— (ie/he) J(p),
(x)=T expl_(ie/he){Jer(p).

Where f is defined by (3.6), ¥1(p) and ¢1(p) are defined
by (1.8) and T is given by (3.2). The solutions (3.7)
were derived by Volkow? and Singupta® by another
method.

(3.7
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4. THE EQUATIONS (2.6)

These conditions determine L,° as functions of V*
and x° and three functions of coordinates as follows
from the fact that for a given set of values for the
coordinates these four equations are linear equations
for the L,°. However, these are only three independent
equations in (2.6) since L, must be a Lorentz matrix
and hence it is a consequence of (2.6) that

X Xe=V7V,=1. (4.1)

We next express L.’ as a function of Ve, x° and
three arbitrary functions. The Lorentz transformation

=8,"—(1+a)*(VV,+x"x,

+VV,—(1+2a)Vx,), (4.2)
where
a=Vx,
has the property that
Myoxr=Ve.
Hence
NVi=M,LpVT=Ve. (4.3)

Thus the matrix N, is a Lorentz transformation which
leaves the vector V¢ invariant. The most general form
for N,° is

1 sinf

N ,°=co0s5,"— e YV,

(&)t

+ ({1 —cost)(V°V,—Y°V,), (4.4)

where 6 is arbitrary and V° is an arbitrary space-like
vector satisfying

Y°V,=0, YV,=~—1. 4.5)

Therefore the matrix L is given by the matrix
equation
L=M"N,

where N is given by (4.3) and M~ is the inverse of the
Lorentz matrix given by (4.2). M~ is obtained from
(4.2) by interchanging V< and x°.

The spin image of M1 is

1
p=al——V,x,5*, (4.6)
2a
and of N is .
N=cosl/2-+% sin/2V ¥V ,S**. (4.7)
Hence the spin image of L is
T'=uvr=(a cosf/2-+1 ((1/2a) sind/2x,¥*)
+(1/2a)(Vs+x05)(V, cosf/2+414 sind/2V,)S7.  (4.8)

It may be readily verified that Eqgs. (4.8) reduce to
(3.2) if we take 6 and ¥, such that

acosf/2=1, x,Y’=0, (4.9)
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and further write
1 e
V= € ®, Vin,.  (4.10)
[2(a=1) ] me*(noV,)
In general we may write
z=c+iW p,=W+T,, (4.11)
o=, (Vi) We=q,, WsT7,  (4.12)
where
x“+V
We= P nt=a sinf/2¥*,
(4.13)
———(cV"—I—m"), c=a cosb/2.

The algebraic conditions (2.10) are satisfied by (4.11)
and (4.12). We have as a consequence of (4.13) that

’n=c=a, 7'V,=0,
VW, =a=WsW,=(1/T+T,).

The three real quantities to be determined, namely 6
and the two independent components of ¥, must be
chosen so that the eight real first order partial differ-
ential Egs. (2.12) are satisfied. These are differential
equations for § and ¥” in which the vectors x, and V,
enter, and which must be satisfied for all V,. However,
since these are tensor equations we may always choose
the coordinate system so that ¥V, has the value 6, if
we so desire. Solutions for other values of V, may
then be obtained by making a Lorentz transformation.

(4.14)

5. THE EQUATIONS (2.12)

It is convenient to work with the complex vector T*
defined in terms of 6 and Y* by Eqgs. (4.13). We then
have the four complex equations

(W“Tu), ag”‘i"'ﬂw”(WﬂTV),«r:O; (51)

to determine the vector T*. However, there are only
three independent components of 7* as follows from
(4.14). Equation (5.1) may be written as

WeT,, 0(5upg"+77wﬂ 9] =F’VTTV7 (5.2)

where the bar denotes the complex conjugate and F,”
is the self-dual tensor describing the external field,

Fyv= ﬂuvaWu, T

e (5.3)
= _"“__'rhw ©zr, T
2mc?

In deriving (5.2), we made use of (2.13) and (3.5).
Equations (5.2) may be written as

T, Zrm=F, T, (5.4)
where :

VAL ng07+ n“vUTWI‘g"P‘ (55)
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For each value of p, Z#°7 is of the form of a multiple of
the metric tensor plus a self-dual tensor, that is of the

form
W gaf+ War_

However, if such a tensor is multiplied by
Wegn—Wa,
and summed on 7, we obtain
(W2H-LWW ) 0\°.

This means that we may solve Egs. (5.4) for T, as
functions of T, and T',,» (o= «). The discussion of the
existence of solutions of the resulting system of equa-
tions reduces to a discussion of the integrability
conditions.

To solve Eqs. (5.4) for T for one value of «, we
must multiply Egs. (5.4) by .

We(gr)‘aex_ga‘rgﬂ)n"’eﬁaﬂg&‘))
and sum on 7. We obtain for the right hand side,

We(gr)\aex"—gargﬁ)\neéaﬂ_gax)F’vTTv _ _
=Ha=W\T"+T"F\W+W'T,Fqa
+ WA\ T —ThNE W — 8 F , , WeT.
The left-hand side involves
W“(gﬁauﬁ'*' N’ py) (gf)\aex'— gargﬁ)\'ﬂe&aﬂgax) We
— 0'26)\6g”+ axp(ZWva__gaKa}) —_ 6)‘::<2W¢1Wp_gvpa2)
+2(g WeWh—go*W*W).  (5.7)

(5.6)
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The differential Eq. (5.4) may then be written as
Ty, L a0\ g o+ 63 QW W« — go*a?) — 5\ QW W *

—g70a?)+2(g"WeW—g?WW\) ]=Ha. (5.8)
Multiplying this by g® and summing, we obtain
T, (g7 a®—2WeW )= —2F ,,WeT". (5.9)
Thus (5.8) becomes
A (Tn—Tn)+2(Tn W W ATo, VW
—T s WW)=Ga, (5.10)
where
Ga=W. T+ TFNW+WT,Fat-WiF,T,
—D\F Wt galF o, WoT?.  (5.11)

Setting k=4 in Egs. (5.10), and assuming that the
coordinate system is a galilean one in which V=47,
we obtain the four equations

Gy
T4, = T¢'4—'— 2(T1 jo— T, iji)+'I;I/"‘,

4

T, WWi Gu—
Ty4=2——201—-W)T j+——iy

W, 2(W4)?
where Gy and Gy are obtained from (5.11). The
existence of solutions of these equations depends on
the nature of the functions x, and their derivatives.
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Forms of Relativistic Dynamics
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For the purposes of atomic theory it is necessary to combine the restricted principle of relativity with
the Hamiltonian formulation of dynamics. This combination leads to the appearance of ten fundamental
quantities for each dynamical system, namely the total energy, the total momentum and the 6-vector
which has three components equal to the total angular momentum. The usual form of dynamics expresses
everything in terms of dynamical variables at one instant of time, which results in specially simple expres-
sions for six or these ten, namely the components of momentum and of angular momentum. There are
other forms for relativistic dynamics in which others of the ten are specially simple, corresponding to
various sub-groups of the inhomogeneous Lorentz group. These forms are investigated and applied to a
system of particles in interaction and to the electromagnetic field.

1. INTRODUCTION

INSTEIN’S great achievement, the principle of

relativity, imposes conditions which all physical
laws have to satisfy. It profoundly influences the whole
of physical science, from cosmology, which deals with
the very large, to the study of the atom, which deals
with the very small. General relativity requires that
physical laws, expressed in terms of a system of curvi-

linear coordinates in space-time, shall be invariant
under all transformations of the coordinates. It brings
gravitational fields automatically into physical theory
and describes correctly the influence of these fields on
physical phenomena.

_Gravitational fields are specially important when one
is dealing with large-scale phenomena, as in cosmology,
but are quite negligible at the other extreme, the study



