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of A to get different types of gravitational behavior has,
of course, often been employed in the past, and is a
possibility which will remain open until we have some
independent way of determining that quantity. It has,
. however, an arbitrary character that is not pleasing. It
is my feeling that the importance of Omer’s work lies
not in providing a necessarily correct description of the
recession of the nebulae, but in showing that the
abandonment of the assumption of homogeneity intro-
duces sufficient flexibility so that we do not need to
expect trouble as to time scale when we apply the
relativistic theory of gravitation to treat the motions of
the nebulae.
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I hope that you have been able to read this far. If so, I
will end by saying that I look for great things from the
200-inch which will have a big effect on theory. I think
that our special interest should now lie, not in the ap-
proximate linearity of red shift with distance and the
approximate uniformity of nebular distribution which
have been found, but in the deviations therefrom which
we shall find. Perhaps we shall even be able to see out to
places in the universe where contraction rather than
expansion is taking place. I hope so. Cheerio.
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INTRODUCTION

N 1905 Einstein! published his theory of electro-
dynamics of moving bodies, which has long since
been incorporated in the accepted body of physical
science under the less descriptive name of the special
theory of relativity. The kinematical background for
this theory, an operational interpretation of the Lorentz
transformation, was obtained deductively by Einstein
from a general postulate concerning the relativity of
motion and a more specific postulate concerning the
velocity of light. At the time this work was done an
inductive approach could not have led unambiguously
to the theory proposed, for the principal relevant
observations then available, notably the “ether-drift”
experiment of Michelson and Morley? (1886), could be
accounted for in other, although less appealing, ways.
Because of the revolutionary character of the postulates
and consequences of this theory, there is discernible in
the subsequent decades a certain reluctance whole-
heartedly to accept its necessity, a reluctance shared at
times even by scientists whose own work paved the
way to, or confirmed the predictions of, the theory.

It may therefore be appropriate on this occasion to
review the present status of the theory, with special
reference to the question of the degree to which postu-
late can now be replaced by observation in deriving the
kinematics on which the theory is based. This re-
examination, from a unified point of view closely allied
to Einstein’s original program, will emphasize the

1 A. Einstein, Ann. d. Phys. 17, 891 (1905).
2 A. A. Michelson and E. H. Morley, Am. J. Sci. 34, 333 (1887).

decisive nature of the two great optical experiments of
Kennedy and Thorndike? (1932) and of Ives and
Stilwell* (1938) which have been performed in the
interim, experiments which were designed and carried
out for the explicit purpose of testing aspects of the
Lorentz transformations which are insensitive to the
Michelson-Morley experiment. We shall find, in con-
firmation of conclusions drawn by Kennedy and by
Ives, that these three second-order experiments do in
fact enable us to replace the greater part of Einstein’s
postulates with findings drawn inductively from the
observations.

KINEMATICAL PRELIMINARIES

We postulate that there exists a reference frame 2—
Einstein’s “rest-system’—in which light is propagated
rectilinearly and isotropically in free space with constant
speed c. In elucidation of this postulate, we have here
presupposed that any observer P at rest with respect to
this frame may be supplied with two independent kinds
of instruments, called rods and clocks, with which he
can measure space and time intervals, respectively. By
independent we here mean that the fundamental meas-
urement of one kind of interval is not to be reduced to
that of the other with the aid of the postulated con-
stancy of the velocity of light, as would, for example,
be the case if the “clock’” consisted of a beam of light
reflected back and forth between two mirrors on the

3R. J. Kennedy and E. M. Thorndike, Phys. Rev. 42, 400
(1932).

4H. E. Ives and G. R. Stilwell, J. Opt. Soc. Am. 28, 215 (1938) :
31, 369 (1941),
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ends of a rod. We assume that the physical geometry of
the 3-dimensional space, as revealed by the measuring
rods, is Euclidean. The postulate also implies the
synchronization of all clocks at rest in Z, and that the
velocity of light in free space is independent of the
motion of its source.

P may assign to an event E four coordinates (&+)
=(1; & n, {), consisting of a temporal coordinate £=r
and 3 spatial Cartesian coordinates &1=§, =y, #=¢.
He may also define in 2 the “metric”’

do*=2y,dipdg = dr*— (@E+dr+d)/¢, (1)
with the aid of which he can

(a) measure time intervals dr=do at any fixed point £* (a=1,
2, 3) in his space;

(b) measure space intervals dA=c(—do?)? at any fixed time 7;

(c¢) characterize all beams of light passing through an event E
as the generators of the cone do=0 with E as vertex.

We next postulate the existence of a reference frame
S—Einstein’s “moving system”—which is moving with
any given constant velocity d¢%/dr=v* of magnitude
v<¢, with respect to Z. Any observer R in S may be
supplied with rods and clocks of the same physical
constitution as those supplied P, with the aid of which
he can introduce coordinates (x%)=(¢;x,y,z), con-
sisting of a temporal coordinate x°=¢ and 3 spatial
coordinates x'=x, a*=y, x’=2. We further postulate
that the physical geometry of the xyz-space, as revealed
by the measurement technique, be Euclidean, where the
x¢ (a=1, 2, 3) are Cartesian coordinates. No assumption
is here made concerning the velocity of light or other
physical law in S; these are to be inferred from obser-
vation and from the laws postulated in the reference
system Z.

The problem of physical kinematics is that of deter-
mining the transformation T': (¢, xyz)—(r, £n¢) relating
the measurements of an observer R in S with those of
P in Z. This transformation should, on appropriate
choice of the spatial axes in S, involve as its only
essential parameters the velocity »* of S with respect
to 2, and should reduce to the identity for v*=0.

As we shall in the first instance be concerned with
the determination of the transformation 7" with the aid
of laboratory experiments, we assume that we may for
this purpose confine outselves to the consideration of
events E in a space-time neighborhood of a given event
Eo which is so small that we may linearize 7T, i.e.,
replace it by the transformation dx‘—df* which it
induces on the differentials. On choosing E, as the
common origin of coordinates, 7" may be taken as

s .
T: =3 aprx'. 2)
=0 :

The 16 coefficients a,* may now be reduced to 13 by an
appropriate synchronization of clocks at various points
in the space, to 7 by an appropriate choice of spatial
axes, and finally to 4 (including the magnitude v of the
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velocity of S with respect to Z) on applying the a priori
symmetry condition imposed by the requirement that
the only vector of intrinsic significance to the kine-
matics is the given velocity vector v« To this reduction
we now turn.

First, it will be convenient to replace three of the
coefficients of 7" by the three components v* (e=1, 2, 3)
of the velocity vector. The equation of the path of the
spatial origin #*=0 (¢=1, 2, 3) of S is

T= doot, £a=a0at)

and in order that d¢*/dr=1v* we must therefore have
| (a*<0). 3)

Next, we adopt the procedure proposed by Einstein
for setting clocks which are carried by observers R
which are at rest at various points x* in the reference
frame S. Consider a light signal sent out from the
spatial origin O at time =0, as recorded by the master
clock maintained there, reflected from the position
x%=p* at some event E, and received back at O at
clock time . We agree to set the auxilliary clock situ-
ated at x*=p® in such a way that it records the time
to/2 for the event E of reflection. To determine the
normalization thereby imposed on the coefficients of
the transformation 7, we make use of the equation
do=0 of the light cone. Expressed in the coordinates x?,
the “metric”

= aDOva

do?=g;idx'dx?, where g;i=vua#a, 4)

repeated indices implying, as usual, summation over
their range. The direct beam from the origin to E lies
on the cone

V¥ ur(@ot+a %% ("t ay’x®) = 0',
and the reflected beam on the cone
Yl ao*(t—to)+ae*x*JLav” (t— to)+-as’x*]=0.

On requiring that the event E(f,/2, %), at which the
beam is reflected, lies on both cones, we find the
necessary and sufficient condition

'Yuvaoﬂauvtﬁa = gOutPa =0.

Since the proposed synchronization is to be made at all
points 9, it follows from the above and Eq. (3) that

Zoa= a0°(a’—v%a,%/c?) =0
whence
.°=2 4 v%a,%/c% ©)

We choose the £-axis in 2 to lie in the plane of events
determined by the r-axis and the f-axis, i.e., by the
world lines of P and R. But then the three 4-vectors
81#, 8o” and £*=a:#8o°'=ao* must be linearly dependent,
whence .

a’=a’=0, or V*=13=0, (6)

and we write v'=9(>0); we have here introduced the
“Kronecker delta” §,* to signify 1 if pu=», and 0
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otherwise. Similarly, we choose the x-axis in S to lie
in the same plane, whence £ =a#6:*=a,* must also be
linearly dependent on 6:#, §p*; therefore

a*=a’=0. @)

Now the yz-plane in S, i.e., the plane {=0, x=0, is
given parametrically in 2 by the equations

gn = a2ﬂy+ as*2.

We elect to choose the y-axis in such a direction that
along it
7= 9%+ a3'%=0,

although this direction may not (and, as we shall see
below, will not) be unique; it follows that with such a
choice of y-axis

(120=0. (8)

The n-axis in £ may now be chosen along this same
direction in 7=0, i.e., §2* and £*=a;*0s'=as* are to be
linearly dependent; the only new condition resulting
herefrom is that

(123=0. (9)

With this we have fixed wuniquely the coordinate
systems in both 2 and S, except for a possible spatial
rotation of the y, z and 7, { axes (in case both a,° and
a3’ vanish), and we have set the clocks in S in the same
manner as was tacitly adopted in =. The conditions
(3), (5)-(9) lead to the canonical form

a® vait/¢2 0 was'/c
“D(IQO dll 0 (131
0 0 022 (132

0 0 0 as

for the matrix of the transformation T

In the problem we have set, in which the kinematics
of S are to depend solely on the. velocity v* of S with
respect to 2, the canonical form of 7" must be inde-
pendent of the particular choice of the y-axis made
above, for otherwise the kinematics in S would depend
upon the orientation of the y-axis, and hence upon a
direction other than that unique one defined by »=.
(An alternative, pseudo-physical, way of saying the
same thing is to require that the one-way velocity of
light in S be independent of its azimuth about the
x-axis.) From this requirement, which is in a sense only
a definition of the problem under consideration, it
follows that
(10)

The canonical form for the matrix thus further reduces
to

as'=0, a?=0, as’=as’

a® vail/2 0 0

N “Udoo 1111 0 0
@)=\"9 o & o
0 0 0 (122

(11)

involving the three parameters a,° ai!, a? in addition
to the magnitude v of the given velocity.
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The auxilliary form (4), the vanishing of which
defines the light cones, may now be written

do*= go?di?— [ g%dx>+ g2 (dy*+dz2) ]/ ¢, (12)
where
=(1—1%/c®)a",
S-(T0Rm gmer)  a2)

THE VELOCITY OF LIGHT: THE MICHELSON-MORLEY
AND KENNEDY-THORNDIKE EXPERIMENTS

Our problem is now the determination, by recourse
to the empirical, of the dependence of the three param-
eters ao”, ai!, a? or alternatively g, g1, g2, on the
magnitude v; the only e priori requirement on these
functions is that each of them —1 as v—0. The fact
that the light-paths in S are the generators of the cones
do*=0, Eq. (12), suggests that we may hope to establish
the ratios, and only the ratios, of the three parameters
by observations involving the velocity of light.

Before proceding to this determination, it is well to
review the effect on the velocity of light of the defini-
tions and conventions we have adopted. The linearity
of the transformation 7 insures that light will be
propagated rectilinearly in S, and Einstein’s synchron-
ization insures as a matter of definition the equality of
the forward and backward velocity along any given
line in S; the magnitude of the velocity of the beam
will in general depend on the angle # which it makes with
the wx-axis. Alternative synchronizations could have
been agreed upon; for example, absolute simultaneity
(by agreeing that the clocks in S be set to read {=0
when 7=0), or in such a way that the velocity of 2
relative to S be equal to —v (whereas under our con-
ventions it is in fact —va¢°/a,!). But while such normal-
izations are theoretically possible, they cannot in
practice be carried out as they involve a non-operational
appeal to the hypothetical rest-system 2.

We turn now to an examination of the restrictions
imposed on the kinematics by the null-result of the
Michelson-Morley experiment. This experiment may
be considered as comparing the to-and-fro times taken
by two partial beams of light to traverse the two equal
and perpendicular arms OM;, OM; of an interferometer,
by the behavior of the interference fringes produced on
bringing together the two beams after reflection on the
mirrors My, M,. No significant difference in times was
found, and since the original experiment and its repeti-
tions were carried out at various orientations and at
various times of the year, we would seem justified in
interpreting this null-result as meaning:

M-M: The total time required for light to traverse, in
free space, a distance I and to return is inde-
pendent of its direction.

It follows immediately from do=0, Eq. (12), that
the time ¢ required for light to travel a distance / in
either sense along a direction making an angle % with
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the x-axis is
t=(1/cgo)(g1® cos*h+g2* sinh)}.
If this time is to be independent of # we must have
22(0)=g1(v), or al=al(1—2%/c®% (13)

This condition is completely equivalent to the Lorentz-
Fitzgerald contraction, as it can be shown to imply that
the £-intercept of a rod at rest along the x-axis in S is
contracted in the ratio (1—2?/¢%*:1 in comparison with
the g-intercept of a similar rod at rest along the y-axis.

The time ¢ required to travel a distance / in S is now

t= lgl/Cgo, (14)

and may, of course, depend on the absolute velocity v
of S. To test this dependence is the purpose of the
Kennedy-Thorndike experiment. Here the apparatus
used is, in principle, similar to that used in the Michel-
son-Morley experiment, except that the interferometer
arms OM;, OM, are as different in length as feasible.
The difference A¢ of the travel times of the two partial
beams is, by application of Eq. (14), related to the
difference Al in the lengths of the two paths by the
equation

At=(g1/cgo)Al. (15)

The velocity v of a point on the earth’s surface should
undergo a diurnal change because of the earth’s rota-
tion, and a much larger annual change because of the
revolution of the earth about the sun. Hence some
change in the phase difference, i.e., in the equivalent
time Af, should be expected if the kinematical parameter
g1/go does in fact depend on the velocity v with respect
to the rest-system 2. From the null-result of their
observations Kennedy and Thorndike conclude ‘“there
is no effect . . . unless the velocity of the solar system
in space is no more than about half that of the earth
in its orbit,” and this they judge improbable in view
of known stellar motions. We accept this interpretation
of their results, and conclude from it that:

K-T: The total time required for light to lraverse a
closed path in S is independent of the velocity v
of S relative to Z.

And since for =0 we must have gi/go=1, it follows
that this must hold for all ». We may now write, on
taking Eqs. (12), (13) into account,

£0(v) = g1(v) = ga(v) = (say)g(v),
a’=alt=g(v)/(1—v*/c?)}, 022—‘-8(”)-} (16)

These two optical experiments together thus imply
that the velocity of light, as measured in S, is equal to c,
independently of its direction and of the velocity » of S
with respect to 2. The light-paths are the minimal
geodesics of the “metric”

ds?=do?/g(v) = dP— (da2+dy*+da?) /2 (17)

which performs for S the same measuring duties as do*
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performs for Z, as described under Eq. (1) above. The
transformation T is reduced to the form

T.{r=g(t+vx/cﬂ>/(1—v%?)%, =gy,
e=glrta)/ (=), ¢=g

originally employed by Lorentz. It follows that the
velocity of 2 relative to S is in fact —v, as was assumed
by Kennedy and Thorndike in their derivation of the
Lorentz equations.

(18)

THE RATE OF A MOVING ATOMIC CLOCK:
THE IVES-STILWELL EXPERIMENT

It is clear that no experiment involving only the
velocity of light in S can succeed in determining the
value of the remaining parameter g(v). Lorentz has
shown that it is in fact possible to carry through a
consistent electro-dynamics in moving media for arbi-
trary g(v); the determination of its dependence of v is
then left to dynamical experiments, such as those of
Kaufmann and Bucherer, involving the mass of a
particle. Einstein, on the other hand, determined g(v)
to be unity by postulating that the transformations
T(v) constitute a group; it is then readily shown from
(18) and its inverse that g(»)g(—v)=1 and hence, since
g is an even function of v which reduces to 1 for =0,
it follows that g(v)=1.

The last of the three great optical experiments men-
tioned in the Introduction, that of Ives and Stilwell,
was designed and carried out to test this conclusion
empirically, by observations on the Doppler shift in
light from a moving source. It will suffice for our
purpose to restrict ourselves for the moment to the case
considered by Ives, in which the source of light is at
rest in a system S’ which is moving with a velocity
9> v relative to = in the same direction as is the system
S; we indicate briefly at the end the modification
required for the general case in which the direction and
magnitude of motion of S’ are arbitrary.

Take the light source in S’ at the origin #’*=0 of
spatial coordinates in S’, and let it pass through the
origin x?=0 of S at time '={=0. It then follows, from
Egs. (18) and the corresponding equations for the
transformation 7':x'"—#*, that the velocity u of S’
relative to S is

u=(v'—12)/(1—v'/c?), (19)

as in the special theory of relativity. The parametric
equations of motion of the light source, relative to S,
in terms of the proper time ¢ of the source, are

i=pt', x=upt, (20)

where
p(u, v)=g(")/g)(1—u*/c)},
v'=(u+v)/(I+uv/c?). (207
Suppose now that the source in S’ is sending out

light signals with a frequency »’, as measured in S’
A signal sent out at a time <0, while the source is
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approachihg the observer R at the spatial origin of S,
will be received by R at-a time

te=pt'+(—upt’)/c=(1—u/c)pt'.

These signals will accordingly be received with a
frequency »; and wave-length A, given by

C/V+=)\+= (1""14/0)?)\’ (21)

where N'=¢/v' is the wave-length in S’. Similarly,
signals sent out while the source is receding from R
will be received with the frequency »_ and wave-length
A

c/v—=A_=(1+4u/c)p\. 1)

Now under the assumption that the source is a
permissible clock, i.e., that its period is independent of
the proper time, a similar source which is stationary in
S will emit radiation with a frequency »=»" and wave-
length A=\’. Light from the approaching (or receding)
source should therefore suffer a Doppler displacement

A =[(1Fu/c)p—1]\, (22)

respectively, and the mean of the two lines should be
displaced an amount

AN=F0AN) A= (p— 1A (22)

with respect to the wave-length A of the stationary
source in S. For a general radial motion of the source S’
it can be shown that the Doppler displacements are
exactly the same as in (22), (22’) above, provided only
that the velocity »” appearing in the factor g(v’) be
determined from

1—92/¢2= (1—u%/c®)(1—v%/c?)/(1+4uv cosh/c?)? (23)

where % is the angle in S between the direction of
motion of the source and the x-axis.

These predictions were tested by Ives and Stilwell on
light from high speed canal rays. They found that there
was in fact a second-order shift AA/A in the mean of the
two lines which could, within the observational error,
be represented by 3(u/c)?, where #/c is determined to
first order by the observed Doppler shifts. This means
that the factor g(v’)/g(v) in p, Eq. (20), may be taken
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as unity, correct to terms of order higher than the
second. Now since there is no correlation to be expected
between # cosk and v, we may conclude that g(v) is
itself unity to within terms of higher order than (v/c)%.
While it is of course theoretically possible that higher
order terms might enter into the parameter g(v), we
follow Ives and Stilwell interpreting their results as
meaning: :

I-S: The frequency of a moving atomic source is altered
by the factor (1—u?/c®)?}, where u is the velocity of
the source with respect to the observer.

Our parameter g(v) is then taken rigorously as unity,
and the transformation 7', Eq. (18), is the Lorentz
transformation, in the form deduced and used by
Einstein. The “metric”’ do? may now be removed from
quotes, for '

do?=ds*=dP— (dx*+dy*+dz)/ (24)

is a formal invariant of 7', and may therefore serve as a
metric in any frame S. Our kinematics becomes the
Minkowskian geometry of space-time.

CONCLUSION

We have with this completed the task of replacing,
so far as possible, Einstein’s relativity postulate by
facts drawn from experience. The preliminary analysis
revealed that, within the setting of the problem, the
relationship between the moving frame S and the rest-
frame X involves three irreducible parameters go, g1, g2
which are unknown functions of the velocity ». The
three second-order optical experiments of Michelson
and Morley, of Kennedy and Thorndike, and of Ives
and Stilwell, furnished empirical evidence which, within
the limits of the inductive method, enabled us to
conclude that the three parameters may be taken as
independent of the motion of the observer. The kine-
matics im kleinen of physical space-time is thus found
to be governed by the Minkowski metric, whose motions
are the Lorentz transformations, the background upon
which the special theory of relativity and its later
extension to the general theory are based.



