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~ 'HE application of the microwave technique to
spectroscopy has greatly increased the ac-

curacy of spectroscopic measurements. Recent ex-
periments on the spectrum of hydrogen and other
simple elements have revealed that the results are
not exactly in agr'cement with our fundamental
theories of the mechanics of the electron within
the atom. Small deviations were found in checking
the values of the energy levels in hydrogen given
by the Sommerfeld formula. ' The measured value
of the magnetic moment of the electron deviated
by about 1 in 1000 from the value given by Dirac's
fundamental equation of the electron. '

These experimental findings led to a reinvestiga-
tion of the theory, and especially of its weakest
point —the interaction of the electron with radia-
tion. This interaction was treated by a theory named
"quantum electrodynamics" which, since its in-
ception by Dirac in 1926, suffered from some in-
ternal inconsistencies connected with the old prob-
lem of the internal structure of the electron. These
inconsistencies make it impossible in this theory to
calculate radiation phenomena in a rigorous way.

In the last years, however, some theoretical work
has been carried out' in an attempt to isolate the
unsolved problems and inconsistencies within the
theory and to increase the accuracy of the pre-
dictions of the theory, in spite of the fact that the
structure of the electron and its effects are not
understood. The results of this development have
been quite successful. The theoretical predictions
were in complete agreement with the new experi-
ments. The confidence in the fundamental concepts
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of "quantum electrodynamics" was greatly en-
hanced.

It is attempted in this article to present an ac-
count of this new development in a form which,
I hope, is understandable to the physicist who is
not specialized in this field. Only a qualitative and
very incomplete picture of the underlying problems
can be given. It seemed advisable not to restrict
this report to the newest achievements, but to
recapitulate shortly the development of our ideas
about the electron beginning with H. A. Lorentz's
classical electron theory and including the theory
of the positron. The significance of the present
problems cannot be evaluated without referring
to the most important steps in this development.

I. THE CLASSlCAL ELECTRON THEORY

There was hardlv any other discovery which led
to the understanding of so many and varied phe-
nomena as the discovery of the electron.

Many topics which were thought to be unrelated,
as optics, electricity, and chemistry, were under-
stood by the same fundamental mechanism on the
basis of the electron theory. It was mainly H. A.
Lorentz who brought the classical electron theory
into a consistent frame. These were his funda-
mental assumptions: The electron is an elementary
particle with a charge e and a mass m; the motion
of the electrons is determined by classical me-
chanics if the force acting on the electron is given
by the expression:

F= eG+ (e/c) (v X 3('.),
where e and v are the charge and velocity of the
electron and 8 and 3'. are the electric and magnetic
field strengths. The electromagnetic field in turn
is given by the Maxwell equations

(I/c) (BG/Bt) —curlX = 4vri, divG =4s.p,
(1/c) (fl5('./cit) +curlG =0, divX =0.

The sources of the field strengths are the charge
density p and a current density i, which are pro-
duced by the electrons.

In most cases it is possible to consider the elec-
tron as a point charge. The field created by the
electron can then be expressed in a simple manner.
We quote only one trivial example: an electron at
rest is surrounded by an electric held

8 = e/r'
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where r is the distance from the electron. The ex-
pressions for the field surrounding an electron in
motion are somewhat more complicated.

Some additional assumptions had to be made re-
garding the conditions under which electrons move
in matter: Lorentz assumed that there are several
electrons in each atom, which are elastically bound
to an equilibrium position and thus are able to per-
form harmonic vibrations with given frequencies.
In eIectric conductors additional electrons were
assumed to move freely about. With these funda-
mental theoretical tools it was possible to explain
a great number of phenomena, as for example, the
absorption, scattering, and refraction of light by
matter, the Zeeman effect, the optical properties
of metals for infra-red radiation and many more.
In many eases the explanation was only quali-
tative. Some of the detailed features were not
understood. The main assumption of the elastic
binding of electrons within atoms was unexplained,
especially in view of the planetary structure of the
atom. The frequencies of the electron within the
atom were neither understood nor determined by
the theory.

Lorentz also investigated another fundamental
problem: How far is it possible to consider the
electron as a point charge? He was forced to make
some assumptions about the internal structure of
the electron in order to apply the electrodynamic
equations within the electron. We quote from his
book The Theory of the Electron: "While I am speak-
ing so boldly of what goes on in the interior of an
electron, as if I had been able to look into these
small particles, I fear one will feel inclined to think
I had better not try to enter into all these details.
My excuse must be, that one can scarcely refrain
from doing so, if one wishes to have a perfectly
definite system of equations, moreover, as we shall
see later on, our experiments can really teach us
something about the dimensions of the electrons.
In the second place, it may be observed that in
those cases in which the internal state of the elec-
trons can make itself felt, speculations 1ike those we
have now entered upon, are at all events interesting,
be they right or wrong, whereas they are harmless
as soon as we may consider the internal state as a
matter of little importance. "

The main point of interest in the question of the
structure of the electron can be formulated very
simply today, since the equivalence of mass and
energy has become common place: the total energy
E,~ of the electrostatic field (1) of the electron is
given by

E„=(1/8~) I 8'dv,

where the integration is extended over the whole
space. 8 is given by (1) outside of the electron, but

(1) is, of course, no longer valid "inside" the elec-
tron; it is convenient to assume that the charge of
the electron is concentrated on the surface of a
sphere with the radius a. In this case 8 would
vanish inside and we would get:

f
E,g (e'/——2) (dr/r') = e'/2a (2)

Any other assumption as to the charge distribution
does not change the general character of (2): the
energy of the electric field depends critically upon
the radius of the electron. It necessarily con-
tributes to the mass m of the electron, and we obtain
from the Einstein relation

m =mp+ (E,~/ c) = mp+ (e'/2c'a),

where mo is the "mechanical" mass of the elec-
tron, by which we understand all contributions to
the mass which are not of electromagnetic origin.
Since the total mass ns is known experimentally,
there is a lower limit for the radius, corresponding
to the assumption that all the mass is of electric
origin (we exclude the rather artificial choice of a
negative value for mp):

a&e'/2mc'= rp.

The electron radius is at least as large as ro which
is usually called "the classical electron radius. "
Thus we are forced to abandon the notion of an
exact point charge.

Lorentz, Abraham, and Poincare have studied
at length the consequences of this new picture. It
is not of very great interest to discuss the detailed
consequences of the assumption of a finite classical
electron. Later developments have brought into the
picture new features which completely overshadow
these classical considerations.

One point should be mentioned, however. At what
energy should one expect in the classical theory
the radius of the electron to change significantly
the results expected with a point electron? It is
easy to see that scattering cross sections of electrons
by electrons, or of electrons by equal charges (as
protons), should be inHuenced if the energy is high
enough, so that the particles could approach to
distances smaller than u. This would happen at
energies larger than 2 mc', that is, larger than one
Mev. One may remark that the physicists of that
time would have been very much surprised if they
had been able to perform these experiments. In-
stead of finding an effect of the finite extension of
the electron, they would have observed the crea-
tion of electron-positron pairs. The fundamental
connection of the pair creation with the problem of
the structure of the electron will be discussed later
in this article.
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IL THE QUANTUM THEORY OF THE ELECTRON

The problems of the structure of the electron
were soon removed from the focus of interest by
the successful development of the quantum theory
of the electron. The discovery of, the quantum of
action, Bohr's theory of the quantum orbits in
the atom, and the duality of wave and particle
properties of the electron, led eventually to the
development of quantum mechanics. A new inter-
pretation of the mechanical concepts of momentum,
energy, position, and velocity was introduced to
describe consistently the facts that appear to be
contradictory as, for example, the wave and par-
ticle properties of the electron, or the stability
against collisions of planetary orbits in atoms. The
new theory is best known in the mathematical form
of the Schroedinger wave equation.

The success of quantum mechanics was over-
whelming. Many unsolved problems of classical
electron theory were solved. One can now under-
stand and calculate the resonance frequencies of
atoms, the stability of electron orbits, and many
other facts which cannot be explained in classical
mechanics. There is scarcely any phenomenon
within the realm of atoms and molecules which, at
least in principle, cannot be accounted for by
quantum-mechanical description. It is worth while
to point out that the quantum theory of the elec-
tron could explain all forces between atoms, mole-
cules and electrons as purely electromagnetic
phenomena.

Quantum mechanics can answer all questions as
to the behavior of the electron (or other particles)
in electromagnetic fields, if these fields are given
as functions of space and time. Most of the prob-
lems in atomic physics can be put into this form by
asking: How does the electron move in an electric
or magnetic field of a well defined character? DifFi-
culties do arise, however, if the question, "What
fields are created by the moving charges them-
selves?, " is asked. For example, it could not be
explained by the theory in this stage that an atom
in its ground state does not radiate light, in spite
of the fact that charges are in rapid motion.

Nevertheless, it was possible to construct a
number of unambiguous rules to calculate the
radiation of atomic systems. This was done by
means of two principles. One is the light qmentgnz
hypothesis: light of frequency v can only be emitted
arid absorbed in quanta of an energy hv. f Thus its
emission or absorption must be accompanied by a
transition from one quantum state to another,
whose energy difference is hv. The other is the cor-
respondence principle: Quantum states of very high
excitation show the same mechanical properties as

t Here, and in what follows, we understand by v the fre-
quency in 2zI seconds, and by h the magnitude usua11y referred
fQ Qs $ Q —g ()4g $0—2z

g cm2 se

one would obtain from a, classical calculation of the
same problem. Their radiation should then also be
equal to the one which is calculated classically. It
was possible to derive rules from these two prin-
ciples with which one could calculate successfully
emission, absorption and scattering of light by
atomic systems. If the wave-'length of light is large
compared to the dimensions, a system in a quantum
state n is, in many respects, equiva1ent to an as-
sembly of classical electric oscillators with fre-
quencies given by

hv„g ——(8„—Eg),

where k is some other state of the system. The
effective charge e of these oscillators is given by
e'= e'f q where f„ is the so-called oscillator strength:

where the integral represents the matrix element
of r between the states n and k.

The problem of the structure of the electron does
not enter into this theory. The theory admits the
construction of an electronic wave packet with
arbitrarily small diameter, even smaller than e if
only wave-lengths smaller than a are used. The
difficulty arising from the field created by such a
packet did not arise since the creation of fields by
quantum-mechanical systems was not yet clearly
defined.

It is worth while mentioning, however, that it is
no longer possible to measure effects of an electron
radius e=ro by having two electrons collide with
an energy of the order mc2. The wave-length corre-
sponding to this energy is h/mc, which is much
larger than ro. Thus it is impossible at that energy
to locate the electron better than within lt/mc.
During a collision their average distance will be
h/mc, and they practically never will be within a
distance comparable with the radius.

IIL THE RELATIVISTIC WAVE EQUATION AND
QUANTUM ELECTRODYNAMICS

The quantum theory of the electron needed im-
provement-in two directions: it needed a generaliza-
tion for high energies in conformity with the theory
of relativity and it needed a consistent treatment
of the interaction of matter with radiation. It was
Dirac who initiated both steps. He was able to
devise a wave equation for the electron which
fulfilled the relativistic requirements. He made use
of the fact that the electron has an intrinsic spin
moment whose state, much like the polarization of
light, can always be described as a superposition
of a spin parallel and opposite a given direction of
reference. Thus, the electron wave had to be con-
sidered as a "spinor" wave with two components
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corresponding to the two spin directions. Dirac has
shown that, for a relativistic wave equation, one
has to introduce two more components which, for
low velocities, are very much smaller than the
others. An electron wave is fully described by giving
all four components. Dirac's relativistic wave equa-
tion determines the mechanics of this four-com-
ponent wave. For low kinetic energies (small com-
pared to mc') two of the components become
very small; the two large ones are themselves
solutions of the non-relativistic (Schroedinger) wave
equations, each of them corresponding to one of
the two directions of the spin.

The non-relativistic theory had to ascribe arbi-
trarily a magnetic moment p to the spin, whose
value it took from the experimental results. Dirac's
relativistic equation contains implicitly an inter-
action of the spin with a magnetic field. The re-
sulting magnetic moment of the electron p = eh/2mc
is in almost exact agreement with the experiment.

The relativistic wave equation of the electron
exhibits, however, several fundamentally unac-
ceptable features. The equation admits solutions
which correspond to states of a particle with nega-
tive rest mass. The kinetic energy in these states is
negative; the particle moves opposite to the motion
in ordinary states. For example: a particle of elec-
tronic charge is repelled by the field of a proton.
These states are, of course, not realized in nature
and the most obvious trouble comes from the fact
that their energy is negative and, therefore, below
the energy of the actual lowest state with positive
rest mass. There should be radiative transitions
with the emission of light quanta from the regular
states to the irregular ones. No regular state could
be stable since there are an, infinite number of
states of negative energy to which it could go with
the emission of a suitable quantum of light.

These states cannot be excluded simply by
stating that they do not exist in nature. The
regular states alone are not what one calls a corn™
piete set of solutions. Physically speaking, if by a
certain measurement the electron is put into some
arbitrary state, it will very probably be a combina-
tion of states containing some of the irregular ones.
Especially if an electron is localized in a region
smaller than the Compton "wave-length" X,= h/mc,
the states of negative mass will be strongly rep-
resented.

We now proceed to Dirac's treatment of the
radiation. In order to describe in a consistent way
the interaction between matter and radiation, it is
necessary to "quantize" not only the motion of the
material particles, but also the electromagnetic
field. We understand by "quantizing, " the con-
sistent application of certain rules, which led from
classical mechanics to quantum mechanics. It is
relatively simple to apply these rules to the electro-

magnetic field in an empty space. The field can be
decomposed into its "Fourier components;" it can
be thought as a superposition of monochromatic
waves. Each of these waves has dynamical prop-
erties very much like those of a harmonic oscillator.
Thus the "quantization" of the electromagnetic
field is equivalent to the quantization of a set of
harmonic oscillators and, hence, the energy in one
monochromatic wave can change only by multiples
of hs. Thus electromagnetic energy of a frequency
s must appear always in portions of the size hv.
This is the light quantum hypothesis. A further
important consequence is the zero-point Quctua-
tions: a harmonic oscillator in its state of lowest
energy still has a finite amplitude of vibration.
Applying this to the electromagnetic field, we con-
clude that even in the state of lowest energy the
electromagnetic vibrations in space are not zero.
The state of lowest energy is the state in which
no light quanta are present. Hence, in this state the
mean squares of the field 'strengths do not vanish.

We now give gn estimate of the strength of the
field fiuctuations averaged over a volume V of
linear dimensions c: V=a'. The amplitude 8 of the
zero-point osci11ation of an oscillator of frequency
v is given by 8 (h/2mv)'; it corresponds to a
vibration with an energy hv/2. The main contribu-
tion to the field fiuctuations in the vo) ume a'
comes from waves of a wave-length X =c/v a.f The
amplitude should correspond to an energy of hv/2,
one-half light quantum. Now (1/4s. )(8')A„a' is the
field energy content in a'; this must be put equal
to hv/2 = hc/2a, so that we get approximately

~ nuct. ~~c/a

It is larger, the smaller the volume chosen.
The interaction between light and matter can

now be described as an interaction between two
quantized systems: the electromagnetic field, on
one hand, and the electron in the atoms, on the
other. Such interaction can be treated by the cur-
rent methods of quantum mechanics. The inter-
action energy is given by the classical expression:

~(i A)dt

where i is the current density in the atom and A
is the vector potential in the field. The integral is
taken over the space. The two variables i and. A
are now physical magnitudes, which must be dealt
with according to the rules of quantum mechanics.
Dirac has shown that by this method absorption,
emission, and scattering of light can be calculated
and that the result is equal to the one which was
obtained by the correspondence principle. The

f. We use here the term "wave-length" for the length X which
is 1/2s times the conventional wave-length.
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emission of light in a transition from the state n
to the state k, for example, in this theory is de-
scribed in the following way. At a given time, say
I, =O, the emitting atom is in an excited state n
and all electromagnetic vibrations are in their
ground states. Because of the interaction, the ex-
citation energy 8„—8& goes over into one of the
vibrations; it must, of course, be a vibration whose
frequency fulfills the condition h,v=8 —B&. The
probability P that after a time 5 the excitation
energy has gone into the field turns out to have an
exponential time dependence: P =1—e '. I' is then
the emission probability per unit time. The value
of I' is given by

I' = (2e'v „A2/3mc2) f„2,

in conformity with the probability of radiation of an
oscillator with the strength f„A, as defined in (4).

Dirac's quantum electrodynamics gave a more
consistent derivation of the results of the corre-
spondence principle, but it also brought about a
number of new and serious difficulties. The struc-
ture and size of the electron appeared again in the
theory. The trouble arose from the interaction with
the electron of the zero-point fluctuations of the
field. Let us consider a free electron under the
inQuence of an oscillatory field strength 8=doe'"':
it performs forced oscillations of frequency v

with a displacement x„. The average square (x 2)A„

of this displacement and the average square of the
velocity (x.2)A, of a free electron are given by

putting the total energy of the oscillation equal to:

=hv/2; 802 =42rhv/Q.

We use the well-known formula that there are

s(v)d v =Q(v2/2r2c2) dv

proper vibrations in the frequency interval dv.
Since the zero-point oscillations of diRerent fre-
quencies are statistically independent, their con-
tributions to the average square of the displace-
ment and of the velocity add up and we get for the
total of these magnitudes:

(X')A, —— (X„2)A„e(v)dv = (2e2h/2rm2C2) (d v/v), (8)
cJ pp

~ 00

(X2)A, = (2e 2h/ 2rm2C 2)
' vd v.

The integrals are extended between a lower
limit vo and infinity. The frequency v2 depends on
the state of binding of the electron. hvo is of the
order of the binding energy. If the frequency of the
field oscillations falls below the frequency vo, the
electron can no longer be considered as free and (6)
is no longer valid. The resulting effect is equivalent
to an omission of the frequencies below pp.

Both expressions (8) and (9) lead to infinite re-
(x„2)A, ——22(e28o2/m2v'), (x')A, = 2(e2822/m2v2). (6) ' suits. This is especially troublesome in the case of

The kinetic energy of the electron in these oscilla-
tions is

2 m (x 2) e28 (2
2g2/ 4m c2 (6a)

where X is the wave-length belonging to the fre-
quency v. Hence, the zero-point oscillations of the
field contribute to the electron a certain amount of
energy. Let us assume for a moment that the elec-
tron is a sphere with a radius a. Then only waves
with a wave-length X)a will act upon the electron;
the ones with X)&a are not very important, so that
we a.re allowed to put in (6a) t =a. If we then enter
the value (5) for (822)A, over a volume e2, we obtain
for the energy B~& of the electron due to the zero-
point field fluctuations:

Bqi e2h/4mca2.

In a more accurate calculation we start with ex-
pression (6), which gives the effects on the electron
induced by an oscillatory field strength of ampli-
tude 80 and frequency v. In order to calculate
the value of Go' for the zero-point oscillations,
we include the electromagnetic field and the elec-
tron into a big volume Q. The zero-point amplitude
Go|,'"' of one proper vibration can be calculated by

the velocity square because it gives rise also to an
infinite kinetic energy Z~~ of the electron due to
the zero-point Quctuations-:

Zgi ——(m/2) (x')A„——(e2h/2rmc2) (10)

hv, & (22rhC/e2) &mC2=15 MeV. (7b)

This would remove the interaction with an electron

This expression contains a quadratically diver-
gent integral. Since this energy is an inseparable
part of the total energy of an electron, it must
appear as part of its mass energy mc'. In order to
keep the mass finite, one therefore is forced to
assume some structural properties of the electron
which prevent the interaction with high frequencies
of the field. We can do this by introducing an
upper limit v, to the interaction which cuts off
the integral in (10) at tha. t limit. The fluctuation
energy assumes the form

Zgi ——(e /2h2 2rm)cv2' . , (7a)

and we can determine an upper bound for v, by
setting B~~ equal to mc':
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at rest of a quantum of an energy & 15 Mev, a
rather improbable result. The introduction of v .„
is equivalent to the assumption of an electron radius
a=c/v, , which shows the equivalence of (7) and
(7a). Equation (7b) gives rise to a value of a=
(hc/e') &ra, which is larger than the classical limit (3).
Thus the Ructuation energy seemingly pushes the
electron radius to even greater values than the one

.which we obtained from the energy of the electro-
static field. It should be noted, however, that in
interactions with light of an energy of more than
2mc', the irregular solutions with negative mass
play an essential role. Thus the significance of
these states will have an essential bearing upon
the problem of the self-energy of the electron.

Dirac's two generalizations of quantum me-
chanics, the relativistic wave equation and the
quantum electrodynamics, were very successful in
some respects: the explanation of the magnetic
moment of the electron, the derivation of the
Sommerfeld fine structure formula, and the con-
sistent derivation of the expressions for the ab-
sorption, emission, and scattering of light. Two
fundamental difhculties were introduced simul-
taneously:

(I) The existence of states of the -electron of
negative mass. They cause an instability of a normal
bound state by the emission of a quantum of high
energy and subsequent transitions into a state of
negative mass. Thus, the "normal" states of the
electron have a very strong "resonance" inter-
action with light quanta of high energy.

(2) The quantization of the electromagnetic field
introduces infinite Huctuations of the electron. In
order to keep their contribution to the energy within
the observed mass energy value, the interaction of
the electron with light quanta of an energy hv) (137mc')l would have to be basically altered. It
will be shown in the next section that the positron
theory removed the first difficulty and completely
changes the aspect of the second.

IV. THE POSITRON THEORY

The phenomenon of creation of a positron and
an electron by a light quantum introduces a new
aspect into the theory of the electron. The funda-
mental process can be described as follows: a light
quantum of an energy larger than 2mc' (1 Mev)
can be absorbed by the empty space, in the pres-
ence of strong electric fields. The energy is then
transformed into a pair consisting of a positive and
a negative electron.

Two outstanding facts are shown in this phe-
nomenon: the existence of a positive electron, and
the fact that the vacuum has physical properties,
which enables it to absorb. light and to produce
electrons. Hence, the physical description of the

vacuum is bound to be more complicated than
hitherto and must contain the latent electron pairs
which can be created.

It was again Dirac who, ' turning a vice into a
virtue, used the unacceptable states of negative
mass for the description of the vacuum. A reinter-
pretation of these states gives an almost perfect
description of, the vacuum and the existence of
positrons: the states of g.egative mass correspond
in some respects to the states of a particle of
opposite charge since they move in opposite direc-
tions in any electromagnetic field. They are, how-
ever, still unacceptable because of their negative
kinetic energy. The reinterpretation which removes

'

this difFiculty can be formulated as follows: Ac-
cording to the Pauli exclusion principle, any state
can be either occupied by one single electron, or
unoccupied. The occupation of a state of energy 2;
increases the total energy of the system by the
amount 8;, the removal of an electron from the
state decreases the total energy by E;. Dirac's re-
interpretation of the states of negative mass con-
sists in the exchange of "occupation" and "re-
moval. " We decide to call an occupied state of
negative mass "empty" and an empty state
"occupied. "The transition from "empty" to "occu-
pied" is then connected with an energy change of
—E;.Since E; is negative itself, the energy actually
increases by + ~E; ~. The trouble with the negative
energy is thus removed.

The vacuum can then be described formally by
assuming that all states of negative mass are occu-
pied by electrons. They are not "actually" occupied,
because of our reinterpretation, so that one need
not be bothered by the infinite charge density
which one would get if all states of negative mass
were really occupied. The wave functions, which
represent the absence of positrons are the same func-
tions which would have represented the presence of
electrons of negative mass. It is a new feature that
the "absence" of a particle is described by a wave
function. This is, however, an expression of the
fact that the vacuum has the physical properties
described above; it is filled with latent electrons.

This reinterpretation removes at once the diffi-
culty which the states of negative mass have
introduced. Since in the vacuum these states are
occupied, no electron in the regular states can jump
into them. Thus the regular states are no longer
unstable against decay into the irregular ones.

. They no longer are in "resonance" interaction with
arbitrarily high light quanta.

The pair creation is then described as follows: a
light quantum produces a transition from an occu-
pied state of negative mass to a state of positive
mass. The result is an electron in a state of positive
mass and an unoccupied state of negative mass.
The latter must be interpreted as an occupied state



THEORY OF THE ELECTRON

of a positron with positive mass. Thus the light
quantum has created two particles positive and
negative with positive mass.

Such transition can only occur in the presence
of external fields. Without those fields energy and
momentum cannot be conserved. The transition
probability can be calculated and the results repro-
duce excellently the experimental material. The
opposite process is the annihilation of a positive
and a negative electron, with the emission of either
one quantum in an electric field or of two quanta
in the field-free space. It can be described by our
picture as the transition of the electron into the
"unoccupied" state by which the positron is repre-
sented. This transition is accompanied by the emis-
sion of light quanta.

The new aspect of the vacuum has a decisive
effect upon the problem of the self-energy of the
electron. The properties of the vacuum with re-
spect to the electrons are now, in some aspects,
analogous to its properties in respect to the electro-
magnetic field. There exist also zero-point Huctua-
tions of the electric charge and the electric current
in the vacuum. These Huctuations are very small
when averaged over a volume of a size larger than
the Compton "wave-length" X,= h/mc. They repre-
sent the latent electron pairs which, by means of
light quanta, could be brought into real existence.

Let us now consider the properties of the "vac-
uum" in the neighborhood of an actual electron.
There will be an interaction between this electron
and the latent charges, mainly because of the Pauli
exclusion principle. According to this principle,
electrons tend to keep distance from one another.
Two electrons (of equal spin) do not come nearer
than a distance d which is determined by their
relative momentum p: d h/p. (They must not be
in the same cell of the phase space. ) The presence
of one actual electron in the vacuum introduces
some changes in the "charge distribution" of the
vacuum. This charge distribution would be zero on
the average if undisturbed. The wave functions
which represent the electrons of negative mass are
slightly removed from the place of the actuaI elec-
tron. This change of charge distribution, compared
to the undisturbed vacuum, appears as an addition
to the "actual" electron. This manifests itself in
form of a spread in the charge distribution of an
electron, since the vacuum electrons are slightly
pushed away from the actual electron. The calcula-
tion shows that this spread is enough to change the
classical electrostatic self-energy to (e'/hc) mc2

log(X,
~
a). Here u is the "radius" of the electron, or,

as a better definition, a is a limit of wave-length so
that fields with A(a are no longer assumed to inter-
act with the electron.

The effects of the zero-point 6eld oscillations are
even more drastically changed by our new concept

of the vacuum. This comes from the fact that the
field oscillations also interact with the latent elec-
tron pairs in the vacuum. As long as their fre-
quency is much smaller than 2mc'/h (the minimum
frequency of pair creation), the "vacuum" is very
little influenced and the old calculation (6) of the
displacement (x„')A„and the velocity (i.2)A, are still
valid. For frequencies higher than 2mc'/h, how-
ever, the field oscillations have a strong effect on
the latent electron pairs and the induced charge
and current Huctuations in the vacuum interfere
with the induced fluctuation of the electron itself.
This interference is destructive and reduces to
some extent values of the induced dispIacement and
velocity. The reduction can be roughly approxi-
mated in its main features by a factor (mc'/hv)' to
the expressions (6) for hv) 2mc':

(x ')„=-;(e2S,'/mv2)(mc2/hv)2
" "

This effect is difficult to explain in qualitative
language. It is connected with the Pauli exclusion
principle, according to which electron have a
tendency to keep apart from one another. Thus
the charge and current Huctuations of the vacuum
in the neighborhood of the electron tend to be in
opposite phase to the Quctuations of the electron
itself and therefore cause the destructive inter-
ference.

These effects represent a deFinite improvement.
The average displacement (x')A, does no longer lead
to infinities. The divergent integral in (8) con-
verges now because of the reduced contribution
(6') of the frequencies above 2mc'/h, and we obtain

(x')A, = (2e'h/xm'c') log(fmc'/hvo)

where f is a factor of the order unity, which can be
determined if the effect of the higher frequencies is
exactly taken into account. The average velocity
square (9) is still infinite but the divergence is only
logarithmic. We get from (6'):

p2mc2/A

(i')A„(2 'eh/sm' c) vdv

+(mc'/h)' I (dv/v) .
~ &me /g

The fluctuation energy Zy~=(m/2)(P)A„ is reduced
to Zq~ ——(e'/~hc)mc' log(fhv .„/mc') where f is a
numerical factor and v, the cut-off frequency. In
order to keep this energy below the total mass
energy mc' of the electron, it is now sufhcient to
keep a =c/v, larger than (h/mc)expL —(hc/e') J.
This lower limit is very much smaller than any
length considered so far. It is no longer-necessary to
tamper with the interaction of the electron with
light quanta of an energy of a few Mev. It is still
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p, (r) =A po(r) + G(r —r') po(r') dr'. (12)

Here po(r) is the external charge density; in our
case, po is the charge density of the proton. A is a
constant and G(r —r') is a function of the distance
between the points r and r'. The integral is ex-
tended over all points r'. The expression for the
induced charge consists of two parts: the first term
is exactly proportional to the inducing charge
density po, the second part is an effect at a distance.
According to this term a point charge at r = 0 (like
a proton) would give rise to a charge distribution
G(r). G(r) is different from zero only over distances
up to the Compton wave-length ),. The effect is
the same as if the dielectric coefficient of the
vacuum was different from unity by about 1/137
over a region of the order ),. It is important to note
that the first part is unobservable in principle. Its
effect is undistinguishable from the original charge
density po, since it is always induced by it. What is
actually measured in nature as the charge of the
proton would not be e, but (1+2)e. It thus repre-
sents nothing but a renormalization of the charge.
The second term only has physical significance.

There is one serious difficulty with this inter-
pretation: the factor A turns out to be logarithmi-
cally infinite: A (e'/hc)log(X, /o) if the "cut-off"
radius a is put equal to zero. This would mean that
the external charge po of the proton induces a

unsatisfactory, of course, that the limit cannot be
chosen to be infinity without obtaining infinite
self-energies; thus the internal structure of the
electron will appear somewhere in the theory. How-
ever, some changes in the interaction between light
and matter are certain to occur at very high
energy values where we have good reason to expect
the appearance of new phenomena (nuclear or
meson type).

So far we have discussed the influence of an
actual electron on the vacuum due to the Pauli-
exclusion principle. There is also an influence,
although weaker, in the form of a displacement of
the vacuum electrons due to electric interaction.
It is easier to describe this effect, not for an actual
electron, but for a proton, which is embedded in the
vacuum. The wave functions of the states of nega-
tive mass are all deformed because of the presence
of the proton. Since the vacuum is described by
the undeformed states, the diRerence between the
deformed and undeformed ones should give rise to
an actual charge density. This is called the polariza-
tion of the vacuum by an external charge (the
proton).

The proton induces a charge density p; in the
vacuum. The calculation shows that p;(r) as func-
tion of the location r has the following form:

charge in the vacuum at the same place, which
changes its value by an infinite amount. It is true
that this change is in itself unobservable, since one
always observes the total charge, external plus
induced, in nature. However, the fact that the in-
duced charge is infinite for a =0 represents a serious
difficulty of the theory.

The vacuum is polarized not only by a proton
but also by an electron. The situation is somewhat
more complicated in this case because of exchange
phenomena between the electron and the vacuum
electrons. The fact remains, however, that the
electron, if considered as a point (a=0), also in-
duces a charge in the vacuum which adds an in-
finite contribution to its original charge. Thus the
internal structure of the electron is relevant not
only for its mass but also for its charge.

One can make these infinite additions finite
without changing the second term in (12) by arbi-
trarily removing the interaction of the held with
electrons whose wave-length is smaller than a.
Here, as in the self-energy, the infinity comes from
the interaction at very high energies, and there is
hope that a future theory wi11 change this inter-
action so that the constant A remains finite and
small.

In spite of these difficulties, the theory of the
positron can be regarded as a big step forward in
our' understanding of the electron: By means of
Dirac's reinterpretation of the states of negative
mass it was possible to explain the new phenomena
of pair creation and annihilation and to remove
several fundamental difficulties of the Dirac
equation:

(1) The radiative transitions from the ordinary
states into states of negative mass are removed.

(2) The fluctuation energy is much less sensitive
to the structure of the electron because of its
logarithmic dependence on the electron radius.

(3) The average square displacement of the elec-
tron by the held fluctuations is finite and inde-
pendent of the radius or the structure.

V. THE EXPERIMENTAL TEST OF
QUANTUM ELECTRODYNAMICS

The quantization of the electromagnetic field so
far has not brought much reward. It is true that it
made it possible to derive the expressions for the
absorption, emission, and scattering of light, which
before were based only upon a recipe contrived by
means of the correspondence principle. On the
other hand, new difficulties came about, all con-
nected with the zero-point oscillations of the elec-
tromagnetic field and their effect on the self-
energy of the electron. Quantum electrodynamics
has not yet shown its superiority over the corre-
spondence principle. On the contrary, its actual
expressions for the electromagnetic phenomena be-
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come senseless, since a consistent interpretation of
the theory would force us to put the mass m of the
electron equal to infinity at all places where it
occurs. '

Encouraged by some new experiments, which
will be discussed later on, a new attempt was made
recently to find observable effects, which are di-
rectly connected with the new features introduced
by quantum electrodynamics. The main theo-
retical difhculty consisted in the problem of how to
separate the infinities of mass and charge from the
-rest of the theory, in order to obtain results that
can be applied to nature; This was done by isolating
the expressions for the infinite mass and charge
within the theory, in the hope that mass and
charge will be made finite by a future improvement.
Such procedure is possible since the self-energy
terms and the infinite charge come mostly from the
interaction with very high energy light quanta and
are, therefore, largely independent of the state of
binding of the electron in fields normally occurring
in nature. Hence, they can be split off as an addi-
tional mass and charge of the electron. This has
been shown already for the charge in the last sec-
tion by discussing expression (12). The separation
of the mass term is mathematically much more
complicated but can be performed in an analogous
way. The relativistic transformation properties of
the terms occurring in the calculation proved to
be of great importance for finding an unambiguous
rule as to what parts of the expression of the self-
energy can be considered as a mass term. It was
necessary to reformulate quantum electrodynamics
so that the relativistic invariance of the theory was
more explicit than before. This very laborious task
was performed by J.,Schwinger and independently
by S. Tomanaga.

There is, however, a small part of the self-energy
which is not contained in the mass and which is
due to the interaction with oscillations of lower
frequencies. This part depends on the external
conditions and may give rise to a slight shift of
energy levels, depending on the conditions of bind-
ing, and a slight change in some of the fundamental
properties of the electron. It is due mainly to the
effect of the displacement x of the electron by the
zero-point oscillations, whose square average (x')A,
turned out to be finite and due entirely to the inter-
action with lower frequencies. This can be demon-
strated by means of quite elementary calcuIations4
in a case which corresponds to an actual experi-
ment, namely, the shift of the levels in hydrogen-
like atoms.

Let us consider a stationary state e of the
electron in a Coulomb field, whose wave func-

4 We are following here a calculation outlined by T. Welton,
Phys. Rev. 74, 1157 (1948).

tion is given by f„.The Coulomb Geld is described
by the potential energy V(r) =Ze'/r, where r is the
distance from the nucleus. The average potential
energy V in the state n can be written in the form

V= V(r) )lf„(r) ~'dv, (13)

The Laplacian of the Coulomb potential is propor'-
tional to the charge density pp which produces it:
AV=4mepp, pp is the charge density of the nucleus,
which we approximate by a 8-function:** pp
=Zeb(r), where Ze is the charge of the nucleus.
Hence we obtain for 0B„:

88 = (2s./3)Ze'~ If „(0)~'(x')A„, (15)

where
~
f„(0)~' is the intensity of the wave function

at the nucleus, and we insert the value (11) which
we found for (x')A„ into (15) to calculate the level
shift. The frequency re which occurs in (11) de-
pends on the binding of the electron and is of the
order of the Rydberg frequency ~& for an electron
in a hydrogen-like atom. Since ~p appears only
under a logarithm, its exact value is not of great
importance. It has been shown by Bethe' that, for

*The simple form of the third term in (14) comes from the
fact that, in the average: (x x„)A„=0, x,'=x„'=x.s= (x)'/3.s* The S-function h(r) is zero everywhere except at r=0
It is normalized such that the volume integral J'8(r)ds is
equal to unity.

where ~Il„(r) ~' is the well-known probability of
finding the electron at a point r: the integral is ex-
tended over the volume. This expression must be
changed in view 'of the existence of the zero-point
oscillations. The effect of these oscillations on the
electromagnetic mass is already assumed to be con-
tained in the observed electron mass m. There is,
however, also an influence on the potentiaI energy,
since the electron is forced to oscillate around the
position r. It will be shown that this oscillation
changes the average value of the potential energy
by a small amount. This change gives rise to a
shift of the energy levels.

In order to calculate this change we replace U(r)
in (13) by U(r+x), where x is the zero-point oscil-
lation of the electron. We use a Taylor expansion
because of the smallness of x.*

V(r+x) = V(r)+grad V x+-,'AV (x'/3), (14)

where AV is the Laplace operation on U: d U
= [(B'/Bx') + (B'/By') +(B'/Bs') $ U The s. econd term
is zero in the average, since x is an oscillation. Thus
the addition bB„ to the average potential energy of
the state n may be written:
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a quantum state n, vo is given by the formula

2-IP-I'(E- —E-)»gl (E--E.) I

2 Ip-I'(E--E.)

where E„is the energy of the state n and the sums
are extended over all other quantum states m. p„„
is the matrix element of the momentum between
the states n and m.

We observe that ~g(0) ~' vanishes for all states
except 5 states (states with the orbital angular
momentum zero), for which simple relation holds:

~P„(0) ~'=Z'~ mPn', (16)

where l=h'~me' is the Bohr radius. Thus the level
shift vanishes for states with an angular mo-
mentum different from zero.

We finally get the level shift for S states from
(15), (11), and (16). It is practical to express it in
form of a relative shift by dividing bE by the
energy E of the level which is given by the Balmer
relation E„=Z'nM4/2h'n'

8Es/E„= (8/3s) (e'/hc)'(Z'/n)log(fmc'/hvs). (17)

The exact calculation for the 2S~ term yields the
values ss=18in, f=1.3. Thus the S levels of hydro-
geri-like atoms should be shifted upwards (5E„ is
positive) by small amounts, relative to the values
given by the Sommerfeld formula. This is a direct
effect of the zero-point oscillation and its experi-
mental verification constitutes a strong support of
quantum electrodynamics.

The polarization of the vacuum by the proton
produces also a shift which has to be added to (16).
According to the discussions of the last section, the
only observable effect is a small polarization around
the proton of the extension ),. The calculation
shows that this causes a line shift bE„':

"eE„'/E„=—(8/15m. ) (e'/hc)'Z'/n. (18)

It amounts to only about 1/40 of the shift sE„.
The most reliable experiment on the lineshift

was performed by Lamb and Retherford' on hy-
drogen. According to the Sommerfeld formula the
2Sg level and the 2E~ level of the hydrogen atom
should coincide in energy, and the 2Pg level should
lie 10,000 megacycles higher. Lam'b and Retherford
have measured the 2S~ level relative to the two
other levels and have found that the 2S~ level is
shifted upwards by about 1060 mc, a value which
is in good agreement with the theoretical formula
(17). Similar shifts have been, found by J. Mack'
and Kopfermann and Paul' in helium. The present
measurements are not accurate enough to prove
the existence of shifts as small as the one given by

s J. Mack, Phys. Rev. '73, 1233 (1948).
s Kopfermann and Paul, Naturwiss. (1948).

(18), caused by the polarization of the vacuum.
Future experiments will show whether this addi-
tional effect can be considered as real.

Another important result obtained by these
methods is the correction to the g factor of the
electron. According to Dirac's equation, the mag-
netic moment of the electron p, is equal to
he/2mc. The ratio between this value and the
mechanical moment 5/2 of the electron is g(e/2mc)
with g =2, in contrast to the value of this ratio for
orbital motions in which g=1. If the interaction of
the electron with the radiation field is properly
taken into account, one obtains the result that g
is not accurately equal to 2 but g=2+e'/vrhc.

Unfortunately, it is impossible to give a quali-
tative description of this effect along the lines in
which the level shift was explained. The spin of
the electron is in itself a phenomenon which is not
amenable to a simple pictorial understanding. A
way to understand the effect may be found by re-
membering that the magnetic moment of the Dirac
electron is due to circular currents of the radius
Ii/rnc. The zero-point oscillations of the electro-
magnetic field inHuence these currents to a certain
extent, and so do the current Huctuations induced
in the "vacuum. " These interactions cause the
slight change of the magnetic moment. The nu-
merical result is in excellent agreement with recent
experimental measurements. ' The magnetic mo-
ment of the electron was determined with great
accuracy from the Zeeman effect of some fine
structure doublets. Although the correction of the
g factor cannot be understood in simple terms, it
represents the most important result of quantum
electrodynamics since it deals with one of the
fundamental properties of the free electron —its
magnetic moment.

The great success in these two instances of the
quantum-electrodynamical concepts proves that
the fundamental ideas must contain a great deal of
truth. The main achievement of the recent de-
velopment consisted in finding an unambiguous
and relativistically invariant way of separating
those effects of the interaction between light and
electron which can be interpreted as additional
mass and charge, from the other effects which give
rise to observable phenomena. The additional mass
and charge are contained in the observed values of
m and e and can never be observed independently.
It must not be forgotten, however, that these mag-
nitudes are still infinite in this theory. This con-
stitutes a warning that the interaction of the elec-
tron with light quanta of very high energy is not
yet understood. Somewhere at very high energies,
the internal structure of the electron must play an
essential role in a future theory in a way which is
completely unknown. This structure appears at
present in the form of the arbitrary length a which
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we have introduced as a radius of the electron in
order to make the mass and the charge of the elec-
tron finite magnitudes.

The importance of the recent developments lies
in the recognition of the following fact: for prob-
lems dealing with atomic energies only mass and
charge of the electron are "structure dependent"
(meaning dependent on the value of a and going
to in6nity if a is chosen zero), whereas all other
effects, such as scattering cross sections, energy
levels, magnetic moments, etc. , can be calculated
without making any assumption regarding the
structure of the electron.

There is perhaps some signific. nce in the fact
that the theory of the electron cannot be brought
into a completely satisfactory form without intro-
ducing some new elements into the theory at high
energies. It cannot be a pure accident that the
charge of the proton and of the meson is equal to
the electr&ioic charge, or that the classical electron
radius ro is almost equal to the range of nuclear
forces. There must be a connection between quan-
tum electrodynamics and the future theory of
mesons and of the nuclear forces, which at present
exists only in very rudimentary form. The tie

between these theories should be of importance for
the electron only at energies of the order of the
meson rest mass or higher. This would be high
enough ()100 Mev) to leave unchanged the re-
sults of the theory for atomic energies. One may
hope that the understanding of this tie will solve
the problem of the electromagnetic mass and of the
induced charge of the electron.

In discussing the classical electron theory, we
remarked that a scattering experiment testing the
limits of the classical theory would have revealed
the existence of positrons, a phenomenon which was
of fundamental significance for the further de-
velopment of the theory. An experiment trying to
test the present theory at high energies (100 Mev
and over) will probably give rise to meson pro-
duction. This is perhaps an indication of the im-
portant role of the mesons in a future theory of the
electron. Future experiments with the new ac-
celerating machines which are now under con-
struction will reach energies of these critical values.
It is hoped that the phenomena found by means of
these new tools will shed new light upon the funda-
mental problem of the relation between elementary
particles.


