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INTRODUCTION

'"0 broad review of the field of thermionic
emission has been published in English since

1936,*** Since that time our understanding of
many thermionic phenomena has advanced con-
siderably, as a result of improved experimental
techniques and more careful thought on theoretical
interpretations. Now many of the principles in-
volved in the interpretation of experiments on
thermionic or photoelectric emission from con-
taminated metals, oxide cathodes, or other surfaces
are already clearly illustrated in the case of clean
metals, for which the various phenomena can
usually be more unambiguously interpreted than
in the other fields. This fact suggests that the need
for an up-to-date review of thermionic emission
may be 611ed more suitably by a detailed and critical
review devoted mainly to thermionic emission from
clean metals, rather than by a more sketchy review
of a wider field. The present article is therefore
restricted to clean metals, with the hope that by
emphasizing basic principles it will assist workers
in the various other fields to avoid misinterpreta-
tions of experimental results such as have often
occurred in the literature. To this end an attempt
will be made throughout to point out what modi-
6cations, if any, must be made when applying the
concepts under discussion to 6elds other than that
of clean metals. The important held of space-
charge limited emission will not be treated here,
as'it has been excellently summarized by Langmuir
and Compton (L5) and by Becker (BS).

Perhaps foremost among the developments of
recent years has been the realization that nearly
all experiments involving polycrystalline emitters
are greatly inHuenced by the occurrence of dif-
ferences in work function between the different
patches of the cathode surface. The theory of some
of these so-called "patch effects" was elaborated
by Becker (BS) in his 1935 review, which also gives
an account of the earlier literature. Developments
of the past decade have confirmed Becker's picture
and supplied quantitative values for some of the
parameters entering into it. Thus by now there is need
for a more extensive discussion of the role of
patches in all the main types of thermionic experi-
ments. A major portion (Chapter II) of this article
will be devoted to this end, omitting, however, any
discussion of the interplay of patch and space-
charge effects.

Prerequisite to an understanding of phenomena
involving patchy surfaces is of course a clear com-

***The following treatises and reviews listed in the bibli-
ography at the end of this article contain a general discussion
of thermionic emission from metals: Richardson (10), (1921);
Bloch (1) (1923); Schottky and Rothe (11) (1928); Dushman
(D"/) (1930); Suhrmann (17) (1934); Becker (B8) (1935);
Reimann (9) (1935); Rukop, Schottky, and Suhrmann (R20)
(1935); Jones (8) (1936); Herrmann and ~@gener (6) (1943).

prehension of the principles underlying emission
from uniform surfaces. The thermodynamic aspects
of these principles were explored fairly thoroughly
two or three decades ago, but unfortunately there
exist few treatments of this subject which are both
sound and thorough, and- none of these is concise.
To 611 this gap the present review will commence
with a brief exposition of this classical material,
with such modifications as have been suggested by
recent theoretical developments. The reader in-
terested in a lenghthier discussion of some of the
material covered may be referred to the article of
Schottky and Rothe (11) and the book of Bridg-
man (2).

'The remaining two chapters of this article are
devoted, respectively, to a review of data on thermi-
onic emission from clean metals which have been
published since Becker's review (BS), and to a
survey of modern quantum-theoretical develop-
ments bearing on thermionic and related phe-
nomena. The latter survey is intended primarily
for the theoretical physicist interested in this 6eld,
but we hope it will be of value to many experi-
mentalists also.

Because of the length of this review, an effort
has been made to present the material in such a
way that any of the four chapters, and in many
cases any of the main sections, can be read by itself
with a minimum of consultation of other parts of
the article. Also, to avoid digressions from the
main thread of the presentation, much important
material has been relegated to appendices.

The appended bibliography lists all papers since
1935 which have come to the authors' attention
and which bear on the 6elds covered by this review.
References to earlier papers have been included as
far as is necessary to an orderly exposition of the
subject matter, but without any attempt at com-.
prehensiveness.

Although all portions of this article have been
planned and discussed by the authors jointly, the
principal responsibility for Chapters I and IV and
Appendices I, II, III, V, and VI rests with the
first author (C.H.), that for Chapters II and III
and Appendix IV with the second (M.H. N. ).

CHAPTER I. THERMODYNAMICS OF EMISSION
FROM UNIFORM SURFACES

I.1 Introductory Remarks on the Application of
Thermodynamics to Thermionic Phenomena

We shall be concerned in this chapter with a
variety of phenomena such as contact potential
difference, the variation of saturation. current with
temperature, the cooling effect accompanying emis-
sion, etc. , between which a number of relationships
can be deduced. These relatioriships can be de-
duced in a variety of ways, each of which has ad-
vantages of its own, To aid in visualizing the
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physical processes underlying them it is sometimes
useful to derive the relationships by assuming a
particular statistical model for the electrons inside
a conductor. This method has the disadvantage,
however, that it does not tell us which of the rela-
tionships we deduce are valid only for the par-
ticular model we have assumed, and which are of
universal validity, valid for any model obeying
the basic laws of statistical mechanics. An alter-
native method of attack is to try to deduce as
many relationships as possible from the principles
of thermodynamics, and to introduce detailed as-
sumptions regarding the mechanism of emission
only when it proves impossible to reach the desired
conclusion without them. This procedure, which is
of course equivalent to using statistical mechanics
with an absolute minimum of particularizing as-
sumptions, has the advantage of showing clearly
the extent to which any given theoretical formula
can be relied on. This chapter will be devoted to
theoretical considerations of this latter type, leav-
ing most of the discussion of particular models and
specific mechanisms to Chapter IV.

The starting point of the thermodynamic treat-
ment is the assumption that the phase under con-
sideration, be it metal, semiconductor, or space-
charge filled vacuum, can be divided up into
regions each of which can be treated as a thermo-
dynamic system. By this is meant that each such
region must be sensibly uniform in temperature
and composition and must have substantially the
same properties as it would have in thermal equi-
librium. In some applications of. the theory it
suffices to treat the entire cathode as a single such
region and a large but finite volume of the electron
vapor as another single region. In other applica-
tions, however, one wishes to take account of non-
uniformity of conditions inside the cathode —a
factor likely to be important when applying the
theory to semiconductors —or of variations in the
electrostatic potential in the space-charge region
outside. In such cases it is necessary to choose the
elementary regions to be small, and it is pertinent
to inquire how small they may be chosen. A rather
lengthy discussion would be necessary to answer
fully this question as to when it is permissible to
treat small regions of metal, semiconductor, or
vapor as thermodynamic systems. To avoid burden-
ing the present section with too many details, we
shall omit such discussion for the present and refer
the reader interested in this question to Appendix I
and to the article of Schottky and Rothe ((15),
Kap. III) and shall merely quote the results of
these discussions where they are needed.

I.ia The Electrochemical Potential

For our purposes the most convenient thermo-
dynamic quantity to use in describing the state of

any solid, liquid, or gaseous phase containing elec-
trons is the so-called "electrochemical potential" of
the electrons in it. To define this quantity, consider
first the case of a single, isolated body containing n
electrons; let its total energy be U, its absolute
temperature T, its entropy S, and its volume v.
Then the electrochemical potential p, of the elec-
trons in it is defined as****

fi s = [rlF /tl'Ii)sll T's, s's, others s'(I.1.2)

with F'= U —g T,S;, where U is the total energy

****In this article p and the related quantity p defined by
(1.1.3) are expressed in units of energy per electron. This
differs from the usual convention employed in the literature
according to which the same symbols are used for energy per
mole. Since the difference is merely one of units it seems proper
to use the same symbols in both cases.

$ Equivalent definitions (see Eq. (I.7.1) below) can be
given in terms of the Gibbs free energy G, the energy U, or
the heat content II:

p = (SG/Sn) r„=(a U/sn) ,s.= (aH/Srs) s, p. ,

p = (BF/r)n) T, „
(I.i.i)

where F= U —TS is the Helmholtz free energy. f
The dependence of S on n is made free from am-
biguity by the requirement that for any condensed
phase in equilibrium (f)S/cin)T, ,—+0 as T~O, in
conformity with the convention of taking the en-
tropy of a perfect crystal as zero at T=0. If we are
dealing with electrons in the vapor phase, this
specification of the zero of entropy is equivalent to
taking for the entropy the value calculated from
quantum statistics ((18), /135). The dependence
of U on n can be made similarly free from ambiguity
by agreeing to take the energy of an electron at
rest at infinity as having some specified value,
e.g. , zero.

The definition (I.1.1) is easily seen to be equiva-
lent to the following: If a small number hn of
electrons are brought up from infinity and added
isothermally to the body in question, keeping the
latter at constant volume, the work required is
phn minus the free energy which these An electrons
originally had as vapor at infinity, the latter quan-
tity to be computed with the above conventions
regarding the zeros of energy and entropy.

So far we have considered only the case of an
isolated body. When, as in most practical applica-
tions, there are a number of bodies in our system
at different temperatures and potentials, the defini-
tion (I.1.1) may appear at first sight to break down.
For because of the long range electrostatic forces,
we cannot usually break the total energy up into
a sum of contributions from the various bodies
individually. However, we can still define p for any
one of 'the bodies by the definition given in the pre-
ceding paragraph. This equivalent to writing for
the electrochemical potential of the electrons in
body i,
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of all bodies together, and T;, S; refer to the tem-
peratures and entropies of the various bodies.

(I.1.2) is identical with the energy parameter
occurring in the Fermi distribution function, so that

I.ib The Electrostatic Potential and the
Chemical Potential

probability that a state
of energy e is occupied= (I.i.5)

exp(e —p/kT)+1

I.1c Properties of the I;lectrockernical Potential

The property of the electrochemical potential p,

which makes it particularly useful is that the elec-
trochemical potentials of the electrons in any two
regions 1 and 2 in thermal equilibrium with each
other must be equal. This is easily shown from the
fact that the free energy of the whole system must
be a minimum with respect to all other configura-
tions which could be obtained by transferring elec-
trons isothermally from the one region to the other:
this means that the infinitesimal increment of free
energy resulting from any such transfer must
vanish, i.e. , by (I.1.2)

p& = p2 in equilibrium. (I.1.4)

It is helpful in visualizing the significance of the
electrochemical potential to relate it to the con-
cepts of the usual statistical model of the free
electrons in a body. In this model it is assumed
that there are a large number of quantum states
with diR'erent energies e which are populated by
non-interacting electrons. The distribution of elec-
trons among these states follows the Fermi law,
and it can be shown (e.g. (4), Chapter II) that
the quantity p, defined for this model by (I.1.1) or

It is clear from the above definitions that any
change 64 in the electrostatic potential 4 of the
region to which electrons are added will change p
by —ehC. Since one can change the potential of
the interior of a conductor by shifting charges
outside the conductor, by depositing a layer of
dipoles on its surface, etc. , this means that the p
of a body is not a function of the internal state of
the body alone, but depends on the condition of its
surface and on. external conditions. However, we
may define a quantity ti, called simply the "chemi-
cal potential, " by

ti ti+ e—@

This quantity will then be a function only of the
local internal state of the body, and independent of
surface and external conditions. The quantity C

occurring in (I.1.3) may be defined in a variety of
ways, since only changes in it have any macro-
scopic physical significance; however, the most
convenient definition for our purposes is to relate
it to the atomic picture of the body or region in
question by defining 4 as the space average of the
microscopic electrostatic potential over a volume
containing many atoms but still small on a macro-
scopic scale (see (19), Chapter I).

provided that the energy e is measured from a zero
representing an electron at rest at infinity. If e is

- measured from a zero coinciding with the local
mean electrostatic potential energy —eC, then of
course p in (I.1.5) should be replaced by p. While
this gives a useful picture of the meaning of p, it
must be emphasized that the original definitions of
p and p do not depend on the validity of any such
simple model.

In the preceding discussion we have spoken of
the various bodies or regions for which p is defined
as if they were each of macroscopic size and uni-
form in temperature and other properties. The
discussion of Appendix I alluded to at the begin-
ning of this section shows, however, that it is
meaningful to consider p defined as a function of
position inside any conductor even in the presence
of electrical and thermal gradients, provided these
are not unreasonably large. The accuracy with
which p can thus be localized is such that in prac-
tically all thermionic applications it is meaningful
to speak of diAerences in the value of p, between
points a few hundred angstroms apart. This is
true whether the points considered are in a metal,
a semiconductor, or a space-charge region in the
vacuum.

I.1d The Image Force and the 2lfotive

The behavior of electrons in the space just out-
side the surface of a conductor is greatly influenced
by the attraction of each electron to its image in
the conducting surface. If the surface is flat and
perfectly conducting this image force has the mag-
nitude e'/4x', where x is the distance of the electron
from the surface; the electron therefore behaves
as if it were moving in an electrostatic field whose
potential is the actual electrostatic potential plus
e/4x. The name "motive" has been suggested for
this fictitious potential, and will be employed in
this article: motive is defined in general as a quan-
tity whose gradient at any point gives 1/e times
the force on an electron at that point. It is note-
worthy that this conception of an image potential
is not limited in its application to ranges and
energies for which the concepts of classical physics
are valid: Bardeen (B3) has shown that it is
legitimate to use the image potential in the
Schrodinger equation to calculate the wave func-
tion of an electron outside the surface of a metal.
When the surface in question is that of a semi-
conductor the image force will of course be smaller
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than for a metal. For an insulator of effective di-
electric constant ~~ the image force would be
(e'/4x') . (Kt —1/Kt+1); for thermal electrons at
large values of x it would be reasonable to take
for ~~ the static dielectric constant ~ of the material,
while at small values of x the value Kp characteristic
of near infra-red frequencies would be more appro-
priate. The electrical conductivity of a semicon-
ductor will of course increase the image force to
something intermediate between the value for a
dielectric and that for a metal.

L2 Definition of the True Vfork Function and
Application to Contact Potentials

D

The "true work function" ep of a uniform surface
of an electronic conductor is de6ned as the differ-
ence between the electrochemical potential p of the
electrons just inside the conductor and the electro-
static potential energy —ec, of an electron in the
vacuum just outside it. Thus,

v
= —e.—(p/t:) =C,—C'.—(p/e) (I.2.1)

by (I.1.3), where C, is the electrostatic potential
inside the conductor.

The first two terms on the right of (I.2.1) repre-
sent the potential difference between the inside
and outside of the conductor and depend on the
condition of the surface as well as upon the struc-
ture of the interior. Any change, 6, in the dipole
moment per unit area of the surface changes
(C,—C.) by 4s.h. Since this dipole moment may be
expected to be different for different faces of a
single crystal, the work function will vary from
face to face. The chemical potential p, , on the other
hand, is a' volume property independent of the
structure of the surface; since it is one of the two
terms in the expression (I.2.1) for the work function,
it is sometimes called the "inner work function. "

The true work function defined by (I.2.1) is, of
course, in general a function of the temperature;
one would expect, in fact, that both the inner work
function and the potential jump should vary with
temperature and by comparable amounts. (See the
discussion in Section IV.3 below. ) Actually, of
course, the total change in p over the range from
absolute zero to incandescent temperatures is, at
least for clean metals, only a very small fraction
of y itself. The only restriction on the temperature
variation of q which can be deduced from thermo-
dynamic principles is that resulting from Nernst's
third law. As applied to our problem this law states
that as T—+0 the entropy S of a crystal approaches
a limiting value (which may be taken to be zero)
independent of the concentration of electrons in it.
Since 5= BF/BT, we have f—rom (I.1.1)

This must hold for an isolated block of conductor
of arbitrary shape. If we are interested in the work
function of any particular crystal face, we may
apply (I.2.2) to a thin slab cut parallel to this
face, and have the result that

8 p/8 T +0 —as T &0. — (I.2.3)

When two electronic conductors 1,2, are kept at
the same temperature and connected electrically
through a circuit containing no source of e.m. f. ,
electrons will How from the one to the other until
an equilibrium state is reached. In this equilibrium
state, according to (I.1.4), the electrochemical po-
tentials of the electrons in the two conductors must
be equal. By (I.2.1) this implies that there must
be a difference of potential between a point just
outside conductor 1 and a point just outside con-
ductor 2, given by the difference of the two work
functions:

~ a1 @a2 P2 P1. (I.2.4)

This is called the "contact potential difference"
between 1 and 2; the existence of such a difference
is called the Volta effect, after its discoverer. It is
to be emphasized that the validity of (I.2.4) rests
on the assumption that the two conductors are in
equilibrium at the same temperature. If their tem-
peratures are different, a thermoelectric e.m. f. must
be added to the right of (I.2.4). This will be dis-
cussed in Section 1.6a.)f

It is especially important to note that the con-
tact potential difference (I.2.4) will in general be
different from zero even when 1 and 2 refer merely
to different crystal faces of the same conductor, or
to different grains of the surface of a polycrystalline
conductor. Most of Chapter II of this article will
be devoted to a consideration of the effects of these
"patch fields" on the measured properties of poly-
crystalline cathodes.

A few words of caution are needed concerning
the various meanings which are to be found in the
literature for the term "work function. " This term
is often used indiscriminately to denote quantities
derived from a Fowler plot of photoelectric data,
a Richardson plot of thermionic emission current,
the cooling effect accompanying thermionic emis-
sion, and various types of contact potential meas-
urement. Moreover, nearly all the experiments in
the literature have been made on specimens with
polycrystalline surfaces, whose properties, as we
shall see in Chapter II below, may be related to
those of the various single crystal faces in a compli-
cated way. There are thus a variety of different
though related physical quantities to which the

Bp= ———+0 as 1~0.
DT

(I.2.2)

tt Incorrect derivations are sometimes encountered in text-
books which yield an additional term on the right of (I.2.4)
equal to the Peltier heat at the junction of 1 and 2. ActuaBy,
(I.2.4) is exactly correct when the temperatures are the same.
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name "work function" may be applied; in this
article we shall endeavor to distinguish these with
different names and symbols. For definiteness we
shall restrict the use of the term "true work func-
tion, " defined above, to homogeneous surfaces,
although the definition (I.2.1) and the contact
potential Eq. (I.2.4) can be made to apply to poly-
crystalline surfaces (see Section II.4).

I.3 The Richardson-Laue-Bushman Equation for
the Thermionic Emission Current

from a Uniform Surface

The thermodynamic derivation of the formula
for the saturation emission current from a uniform
surface involves the following steps:

(1) A calculation of the density of electron vapor a short
distance away from the surface when in equi1ibrium with the
emitter.

(2) A calculation of the number of electrons crossing a
plane at this distance from the surface in unit time in either
direction, in terms of the density of the vapor.

(3) The assumption that when "saturation current" is
being drawn no electrons cross the plane going inward.

(4) The assumption that under these saturation conditions
the number of electrons which cross the plane in unit time
going outward is equal to the number ca,lculated in (2) for
equilibrium conditions minus a fraction of this number, repre-
senting ingoing electrons which are reflected at the surface of
the conductor.

These steps illustrate the advantage mentioned in
the first section which thermodynamic derivations
possess over derivations which assume a particular
statistical model. Here as much of the reasoning as
possible involves processes taking place in the
vapor phase outside the conductor, and the only
properties of the latter which need to be assumed
are those involved in steps (1) and (4).

1.3a Zgui/ibrium Density and Flux of Zlectrons

Step (1) may be carried out by setting the electro-
chemical potential of the electrons in the vapor
equal to the value p possessed by the electrons in
the conductor, and assuming that the relation
between the density of the vapor and its chemical
potential p„is that given by the quantum statistics
for a perfect gas of particles of statistical weight
2. For a region of the vapor phase well away from
boundary surfaces, this relation is known to be
(see for example (12), p. 151)

n~ = L2 (2s.rnk T) '*/k')exp(p„/k T),

where n~ is the number of electrons per unit volume
in the vapor, and the other symbols have their
standard meanings. We can extend the validity
of this equation to regions where the image poten-
tial is appreciable by setting, in place of p„,the
quantity p+eIlII„where M„is the motive at the

given point in the vapor, thus

nt ——2$(27rrnkT)/k' j' exp(p+e3II„/kT). (I.3.1)

This assumption of perfect gas characteristics
can be shown to be entirely justified for almost all
attainable densities of the vapor. )t'f This may be
demonstrated, for example, by employing the
Debye-Huckel theory of electrolytes to evaluate
the correction hp, to the chemical potential of the
electrons resulting from non-ideality of the electron
vapor. According to this theory, ((4), Chapter IX)
which is asymptotically valid when the density of
electrons is sufficiently small, t)tt

Ap, = —(e'/2) 5 4~e' n t/kT$&,

where n~, the number of electrons per unit volume
of the vapor, may be expressed in terms of the
equivalent saturation current density j by Eq.
(I.3.3) below, assuming for definiteness that the
refIection coefficient r, discussed in connection with
step (4) below, is zero. If this is done we find, for
example, that even for j=1 amp. /cm', T= 1000',
Afz/kT is only —0.004, while for other temperatures
and currents this ratio varies as j'T

Step (2) involves merely an integration over the
Maxwellian distribution of electron velocities, and
gives

number of electrons crossing unit area in either
direction in unit time = nq(k T/2am) l (I.3.3).

Assumption (3) may be interpreted as merely a
definition of saturation, provided the plane in
question is drawn far enough from the surface to
be well beyond the maximum in the motive pro-
duced by the superposition of the applied field and
the image field.

I.3b Correspondence between Zquilibrimns
and Saturation Conditions, and the

Refection Coegcient

Step (4) contains the major assumptions of the
derivation. In the first place, it involves assuming
that the transition from equilibrium to saturation
conditions does not change the state of the emitting

tj't' Historically the question of the legitimacy of treating
the electron vapor as a perfect gas has been a rather contro-
versial one, closely related to the question of the legitimacy
of treating very small regions of the vapor as thermodynamic
systems. The most satisfactory of the early discussions of
these subjects is that of Schottky ((S4), partially summarized in
(11),tt'4. Kap. IV, where additional references are also given).
The criterion of ideality employed in this work was that the
mean potential energy of two nearest neighbor electrons be
«kT. The Debye-Hiickel theory, developed after this work
of Schottky, makes possible a much more precise treatment,
and is therefore used here.

ttt$ Strictly speaking, (I.3.2) is accurate only if the region
occupied by the electrons is electrically neutral, as would be
the case if the electronic space charge were neutralized by a
uniformly distributed positive charge. Fortunately, this space-
charge free condition is just what we wish to assume in step (1).
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conductor sufficiently to have an appreciable effect
on the rate at which electrons leave it. This assump-
tion will be valid for metals, and usually for semi-
conductors also, provided we use reasonable pru-
dence in choosing which of the various conceivable
equilibrium states of the system is to be put into
correspondence with a given set of saturation con-
ditions. For example, if we wish to compute the
saturation current when a given strong collecting
field Z is applied, we should use in step (1) not an
equilibrium state in which there is no field at the
surface of the conductor, but rather one in which a
field of the same strength B exists from the surface
out as far as the plane used in step (2); to achieve
an equilibrium state in the latter case it will, of
course, be necessary to assume that the direction
of the field reverses somewhere further out, so that
electrons which. start ouward do not continue in
that direction forever. If the drawing of current
from the conductor changes its temperature (be-
cause of the cooling effect discussed in Section I.7
below) or the chemical potential of the electrons
near its surface (as may be the case for semicon-
ductors), the equilibrium state to which step (1) is
applied should be one with the same temperature
and chemical potential as obtained under saturation
conditions, rather than those which would obtain
with the same arrangement of electrodes, heating
current, etc. if the emission current were stopped.
In extreme cases, e.g. , for a semiconductor of low
work function but low conductivity, it may happen
that even the equilibrium state which best approxi-
mates the condition of the conductor when emission
current is being drawn approximates it so poorly
that it cannot safely be. used to compute the rate
at which electrons leave the surface.

If in the equilibrium state we follow the subse-
quent paths of those electrons which cross the
plane going inward, some will be found to enter
the interior of the conductor and some, say a frac-
tion r, of the total, to return outward across the
plane. It is usually assumed that there are no
appreciable number of collisions between electrons
in the vapor in the region between the plane in
question and the conductor. This assumption has
the convenient consequence that the reflection
coefficient r„is not dependent on the density of
the vapor, and is simply a property of the surface
and the field near it, which could in principle be
measured in a separate experiment. Moreover,
some such assumption is necessary in order that the
number of electrons leaving the conductor and
passing outward across the plane be unaffected by
the difference in density of the vapor between
equilibrium and saturation conditions.

In order to justify this assumption it is desirable
to place the plane as close as possible to the sur-
face, subject to the restriction that it be beyond the

range of the image force, in order that assumption
(3) be valid. The condition for validity of the pres-
ent assumption. is therefore that the mean free
path of an electron in the vapor be large compared
with the range of the image force. Now a rough
estimation of the mean free path given by Schottky
and Rothe ((11),g 6 Kap. IV) gives a value of the
order of 10 ' cm for a saturation current density
j of 1 amp. /cm' and a temperature of 1000'K, and
proportional to T"'j '" for other conditions. Since
the image potential has fallen to 1 percent of kT
at 1000' when the distance from the surface is
only 4 X 10 ' cm, we may conclude that our assump-
tion is adequate in all ordinary cases.

I.3c The Emission Equation and Its Meaning

The result of the four steps (1) to (4) is obtained
by combining the reflection effect discussed above
with (I.3.3) and (I.3.1). Expressed in terms of the
saturation current density j, it is

j=A(1 r„)T'exp—(p+eM„/kT), (I.3.4)

where M, is the motive on the plane used in the
derivation, r„is the average reHection coefficient
for a Maxwellian distribution of electrons incident
inward across this plane, and where the universal
constant A has the value

A = ( 4nszk' /eh') = 120 amp. /cm'/deg ' (I 3 5)

As will be shown in the next subsection, the de-
pendence of (I.3.4) on the distance at which the
plane is drawn is only apparent: Changes in this
distance will merely change (1—r„)and exp(e3E„/
kT) by reciprocal amounts. If a fairly weak field
will suSce to produce saturation, a plane just
outside the range where image forces are appreci-
able will still be at a potential practically the same
as that just outside the surface of the conductor,
and using the definition (I.2.1) of the true work
function, (I.3.4) reduces to the simpler and more
familiar form

j=A (1—r) T' exp( ey/1sT), —
where r is now the reflection coefficient r„ofthe
surface for zero applied field. g The effect of stronger
collecting fields will be considered in Section I.4.

The significance of (I.3.6) should not be mis-
understood. Since q and r may be functions of the
temperature, this equation by itself does not tell us
exactly how j should vary with T, although of

$' Equation (1.3.6) appears superficially to be different from
the usual equation derived by statistical mechanics for the
thermionic emission current from a semiconductor in which
an exponential appears with a coeScient proportional to T'~'
and to the square root of the density of impurity centers. It
is easily shown, however, that substitution into (I.3.6) of the
temperature dependent expression for q, appropriate to the
statistical model being assumed, gives exactly the other for-
mula (see (3), f11.62).
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course the fact that y varies only slightly with T
insures that j will increase rapidly as the tempera-
ture rises. What (I.3.6) does do is to relate j to r
and p, which quantities can, in principle at least,
be measured in independent experiments. The
exact variation of j with T for the present case of a
uniform surface will be discussed in Section I.S,
while emission from a patchy or polycrystalline
surface will be taken up in Sections II.7 and II.8.

It may seem at first sight a little startling that
the emission current which we have derived in-
volves a mean reRection coefficient r for electrons
impinging on the surface from without, whereas
any consideration of the details of the emission
process leads one to think in terms of a reRection
coefficient for electrons coming out of the metal.
The latter type of reQection coefficient does indeed
enter in the usual statistical theory of the emission
process (see, e.g. , (3), Chapter 11); however, it is
easily shown from the first principles of wave
mechanics that the reflection coefficient for an
electron of a given energy crossing a barrier is the
same for both directions, so that whenever the
assumptions of the usual statistical theory are valid
the r of that theory and the r we have used here
are the same. However, if such complicating fea-
tures as inelastic collisions between the electron
and the metal are of importance, it is easier to think
in terms of entering electrons as we do here, and
because of the universal validity of the principle
of detailed balance, the results will always be
correct.

I.3d The Velocity Distribution

It is worth noting at this point that the principle
of detailed balance which we have used in step (4)
applies not only to the total electron current, but
also to the electrons in any particular range of
velocities. Thus the number of electrons emitted
from a uniform surface per unit time in an element
da& of solid angle in any given direction and in any
given range dv of velocities must be equal to the
number which in equilibrium pass inward with
velocities in the diametrically opposite range, times
a factor (1—y), where p is the fraction of those
electrons in the range dvdco of outward velocities
under equilibrium conditions which have come from
reAection of electrons incident from outside. One
can easily show that in the absence of magnetic
fields p equals the reAection coefficient r of the
surface for electrons incident from without with
velocities diametrically opposite to those in dvdco.

This equality is obvious when r depends only on
the normal component of velocity; a general proof
is given in Appendix Va. Since in thermal equi-
librium the distribution of velocities is Maxwellian,
the fraction dv of the emitted electrons with ve-

locities in the range dvd&o is

di = (1 r—)v,f(v)dvd&e
r

(1 r—)v,f(v) dvd(o,
g~ &p

I.3e Alternative Derivations of the Emission Eguation

In concluding this section a few words should be
said regarding the relationship between the deriva-
tion given here and the more commonly used argu-
ment based on the Clausius-Clapeyron vapor pres-
sure equation. Mathematical details of this rela-
tionship are given in Appendix II. The derivation
most commonly given yields an equation of the
form of (I.3.6), with the same A but with y re-
placed by a temperature-independent quantity.
This result is based on the approximation that a
quantity usually called "specific heat of free elec-
trons" in the metal is zero. A more careful deriva-
tion, given by Bridgman ((B25) or (2), Chapter IV)
shows that this approximation amounts to assum-
ing that the specific heat of an isolated metal block
is unchanged by removing electrons from it; if a
change in the specific heat does occur, the work
function y contains an integral involving the values
of this specific heat change over the temperature
range 0 to T. Now if this specific heat change per
mole of electrons could be equated simply to the
change in the electronic contribution to the molar
specific heat of the metal, as measured for example
at low temperatures where the vibrational specific
heat is negligible, it would be a good approximation
to neglect it, at least for most metals (see the dis-
cussion of the quantity dyp, in Section IV.3e be-
low). However, as will be shown in detail in Sec-
tion IV.3c, the removal of electrons from a metal
block may be expected to change not only the
electronic specific heat, but also the forces which
bind the atoms together, so that the vibrational
specific heat will be changed. Moreover, the electric
field produced at the surface of a metal because of
the positive charge it acquires on losing electrons
will modify the motion and hence the specific heat
of the surface atoms. Usually these secondary

where f(v) is the Maxwell distribution function and
the x direction is normal to the surface. Using the
definition of r we can write more simply, if f is
normalized over the half-space v, &0,

di = (v./v. ) (1—r)/(1 r)fd—vd(o, (I.3.7)

where v, =(2kT/vm)& Is the mean v, of a half-
Maxwellian distribution. Thus the deviation of the
emitted electrons from the Maxwellian velocity
distribution is determined simply by the velocity
dependence of the reAection coefficient r, and is

~ negligible if r is small or if r is insensitive to
velocity.
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effects on the specific heat will be considerably
larger than the direct e8'ect on the electronic spe-
cific heat. The theories summarized in Section IV.3
indicate that for typical high melting metals at
incandescent temperatures the temperature-de-
pendent part of the work function will probably
be of the order of kT.

1 t'e q
'* 1.90X10 '

xo'
2(Z& Z: cm,

Aqua
= (eZ)"=3.79X10 4Z'* volt,

(I.4.1)

(I.4.2)

if B is in volt/cm. If the surfa, ce is that of a semi-
conductor the image field will of course be weaker,
as was explained in Section I.id; however, if the
effective dielectric constant is fairly large the
image force will be almost as great as for a metal,
and (I.4.1) and (I.4.2) will be roughly correct.

One might suppose that the simplest way to
derive the emission for this case would be to apply
the considerations of the preceding section to a
plane at the distance xo from the surface. This can
in fact be done if the collecting field E is fairly
weak: for this case assumptions (3) and (4) should
be valid on a plane at the distance xo, and so we
may use (I.3.4) with M„setequal to the potential
C' just outside the surface plus 6p, and with a
value of r„which should be almost independent
of 8 and equal to the r occurring in (I.3.6). If this
is done and p expressed in terms of the true work
function by (I.2.1) we get

j=A (1—r) T' exp

——e[p —(eZ) 'g-
(I.4.3)k'1

so that a plot of logj against 8&—the so-called
Schottky plot—should give a straight line. The
logic of this derivation becomes questionable, how-
ever, when 8 is large, since then the motive will
vary so rapidly with x near its maximum that we

4'P For an account of the early history of the image force
concept and its eSect on electron emission see (11) Chapter
XI.

I.4 The Schottky Effect

In this section we shall investigate the form which
the emission equation (I.3.4) takes for a uniform sur-
face when the electric field strength 8 at the surface
is not negligible. gg For this case the graph of the

-potential energy, —eM, against distance from the
surface looks as shown in Fig. 1. It has a maximum
at a distance xo from the surface, and the height of
this maximum is an amount hp below the value
—eC which the non-image part of the potential
assumes immediately outside the surface. If the
surface is metallic, the image potential is —e'/4x
and we have

cannot neglect its variation over the minimum dis-
tance within which a thermal electron can be
localized (see Appendix I).

A better though slightly lengthier way of apply-
ing (I.3.4) to emission with strong collecting Acids
is to apply it to a plane drawn some distance out-
side the maximum of the potential energy, and to
imagine that the field 8 decreases gradually from
the large value which it has at the surface of the
conductor to a very small value in the neighborhood
of this plane, increasing again further out so that
no appreciable space charge will accumulate. For
the usual saturation field strengths the emission
under these fictitious conditions will be the same as
if the collecting field remained constant at all dis-
tances from the surface; however, the introduction
of a region of constant motive now makes it
legitimate to apply the thermodynamic methods of
the preceding section to this region. In applying
(I.3.4) it is only necessary to evaluate the fraction
r, of a Maxwellian distribution of electrons which
start toward the surface from the region just men-
tioned, which are reflected outward again. Now to a
first approximation we may say that this fraction
r„consists of all electrons whose initial normal
energies [(mv, '/2) eM„$are less—than the poten-
tial energy —eM(x&) at the top of the hump, plus
an additional fraction r of the remainder, repre-
senting electrons which cross the hump but get
reflected at the surface of the conductor. Since in a
Maxwellian distribution the number of electrons in
the element dv, dv„dv, of velocity space is propor-
tional to exp[I —m(v, '+v„'+v,') I/2kT$, the frac-
tion for which [(mv, '/2) —eM„])—eM(xs) = —e(C,
+&p) is just exp[[—eM„+8M(xp)7/kT J and so

(1 —r„)= (1—r) exp
—eM„+eC,+earp

(I.4.4)

Inserting this into (I.3.4) and using (I.2.1) and
(I.4.2) gives just the previous result (I.4.3); this
illustrates the fact that the value of (I.3.4) is inde-
pendent'of where the plane is drawn to which 2'„
and r„refer, as long as it is outside the potential
maximum. However, it must be emphasized that
the expression (I.4.4) for the transmission coeffi-
cient (1—r„)is only an approximation, although
usually a very good one, and that in interpreting
such phenomena as the periodic deviations from
the Schottky line to be discussed in Section IV.5
below it is necessary to insert a better approxima-
tion into (I.3.4). In this example it is necessary to
take account of the fact that, according to wave
mechanics, some electrons with normal energies
sufficient to pass over the potential hump will be
reflected by it, while some of energies too low to
pass over it may even "tunnel" through it.

In Section II.5 below we shall see how the simple
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relation (I.4.3) between emission current and col-
lecting 6eld is greatly modi6ed when the emitting
surface consists of patches or crystal grains having
different work functions. The analysis of the present
section does not apply to such cases, because the
contact potential differences between the patches
produce strong and irregular electrostatic fields
near the surface, which may make the dependence
of motive on position very different from that
shown in Fig. 1.

METAL VACUUM
X

cap e /4X
Xo

H

eEx+e~/4x

I.S The Apparent W'ork Function and Emission
Constant of a Uniform Surfaceggg

The "apparent work function" of an emitting
surface is obtained by measuring the emission at
various temperatures, extrapolating the emission at
each temperature to zero 6eld by an empirically
determined Schottky coefficient, and plotting the
resulting log(j/T') against (1/T). The apparent
work function y* is a measure of the slope of this
Richardson plot:

q
*=—(k/e) Ld/d(1/T) $ In(j/T') (I 5 1)

If the emitting surface is uniform, the extrapolated
zero-6eld emission will obey the Richardson-Laue-
Dushman Eq. (I.3.6), and the value of (I.5.1)
will be

y*= y —T(dy/dT) —fkT'/e(1 —r) j(dr/dT). (I.5.2)

For clean metals it is very probable that r is small
and insensitive to temperature+'ggg hence that
the last term of (I.5.2) is negligible. The term
T(dp/dT) is probably small for clean metals also,
though not negligible: the rather dubious direct
measurements of this quantity suggest that for
metals like Ta, W, and Mo, it is of the order of a
tenth of a volt (K4, P3), and this is consistent as to
order of magnitude with the values which one can
su.rmise from the apparent emission constants of
these metals, which involve both d&p/dT and the
patch structure of the surface (see Eq. (I.5.4) and
Sections I I.7 and II.S). However, the absolute
magnitude of this term may be much larger for
semiconductors or for surfaces covered with ad-
sorbed films whose density may change with
temperature.

The "apparent emission constant, "A*, is defined
similarly in terms of the intercept of the Richard-
son plot of the zero-held currents:

logA* =value of log(j/T') extrapolated
linearly to 1/T =0. (I.5.3)

ggg The first clear exposition of the facts pointed out in
this section is due to Becker and Brattain (B9). Because the
quantity y —Tdy/dT occurring in (I.5.2) is related by (11.1)
to the latent heat of vaporization, they suggest that it be
called the "heat function. "

gggg See the discussion of reflection coefficient in Sec-
tion IV.4 below.

FiG. 1. Plot of motive against distance from a uniform
metal surface, in the presence of a normal field B.

For a uniform surface this gives,

As =A (1—r)expL(eq* —ey)/kTj

T 8T
=A (1—r) exp ———— —,(I.5.4)

kdT (1—r) dT

where A is the universal constant defined by
(I.3.5). Here again we may expect the term in
dr/dT to be negligible for clean metal surfaces.

The apparent work function and emission con-
stant of a surface consisting of patches or crystal
grains of different work functions will be discussed
in Sections II.7 and II.S below, and related to the
emitting properties of the various types of surface
present in the patches. There is another type of
non-uniformity of a surface, however, which is
worth mentioning briefly here, namely small-scale
surface roughness. If it is possible to draw a plane
at such a distance from the surface that the motive
is practically constant over the plane and does not
become repulsive inside it by an amount which is
appreciable compared with kT/e, and if the re-
flection coefficient of the surface is small, then the
arguments of Section I.3 can be applied to the
electron current crossing this plane, and the emis-
sion per unit of projected area will be given by
(I.3.6), independently of the degree of roughness.
At the other extreme, if the collecting 6eld is so
large that at a distance x~ from the surface com-
parable with the scale of the roughness Bx~)&kT,
then each portion of the surface will emit according
to (I.4.3) with the proper local value of F, and the
total current will be obtained by integrating this
over the total area of the rough surface. In the
remaining cases, i.e. , if the reflection coefficient is
large and Ex~&kT, the surface excess correction is
more complicated to evaluate.

I.6 Thermoelectric E.M.F.'s and. Convection of
Entropy by an Electric Current

In this section we shall consider two related
questions. The first concerns the way in which the
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electrochemical potential p of the electrons in a
conductor varies with position when the conductor
is not in equilibrium, i.e. , when temperature gradi-
ents or electric currents are present. A knowledge
of the variation along a temperature gradient is
desirable, for example, for the interpretation of
experiments which measure the contact potential
difference between a hot conductor and a cold one.
The second question concerns the flow of heat, or
more properly of entropy, in a conductor carrying
a current. This will, for example, affect the rela-
tionship between the work function and the magni-
tude of the cooling effect accompanying thermionic
emission, which will be discussed in the next
section.

to show that p must change as we go along the
temperature gradient in such a specimen. Consider
the thermoelectric circuit shown in Fig. 2, consist-
ing of two different metals a and b and a source of
e.m. f. , say a battery, at temperature T' in the b

part of the circuit. If this e.m. f. is chosen equal and
opposite to the e.m. f. B~, of the thermoelectric
circuit, no current will How. In this state the dif-
ference between the p's of the electrons in metal b

just to the right and just to the left of the battery
will be —eB& . Since p& =p, at each junction, we may
write

dpb t' dpa 0 drab
dT+ dT+ dT= —8Es„,

dT ~r2 dT ~rg dT

I.6a Variation of p in the Presence of Electrical
and Thermal Gradhents

Consider first the variation of p with position
inside a conductor at uniform temperature, when
an electronic current of density j is flowing. If the
state of the conductor is uniform except for the
potential gradient producing the current, p =p+eC
will be constant and Ohm's law will apply so that)
pj=B= —V'C, where p is the resistivity and C the
electrostatic potential, and where j is the vector
of current density in the usual sense, i.e. , pointing
in the equivalent direction of flow of positive
charge. When the state of the conductor is not
uniform, so that p changes from point to point,
j will contain a contribution independent of VC,
which may be interpreted as due to a diffusion of
electrons from places of high electron density to
places of lower density. To obtain the appropriate
generalization of Ohm's law to this case we may
write, whenever the departure from equilibrium
conditions is infinitesimal,

(1/p)V C y~V —p+ PV T+P~,V Q, , (I.6.1)

where a, p, and the y;, like p, are functions of tem-
perature, composition, etc. , and where the Q; are
any set of variables independent of 4 and p whose
gradients might conceivably affect the value of j.
Now when the temperature is uniform we know
from (I.1.4) that whenever j=0, p is constant, no
matter how C, p, , and the Q's may vary individually.
Therefore, we must have all 7;=0 and, by (I.1.3),
tr=1/pe, so that

epj = VP whenever T is constant, (I.6.2)

Now consider a conductor within which there is
a temperature gradient but in which no current is
Qowing. A very simple argument can be constructed

f For simplicity this and the following equations assume the
conductor to be electrically isotropic, as is the case for most
thermionically important metals and semiconductors. For
crystals of lower than cubic symmetry more general forms of
the equation must be used (H8).

where 0.„0~,are the Thomson coefficients of the
two metals, which in the usual thermodynamic
theory of thermoelectricity are related as indicated
to the thermoelectric power. $f. The relation (I.6.3)
must hold for any pair of metals whatever, and
this strongly suggests that in each metal

dP
I

tT—=e
~

—dT whenever j=o.
dT ~0 T

(I 6.4)

This relation has in fact been shown to be a conse-
quence of certain basic assumptions regarding the
reversibility and linearity of thermoelectric effects
(H8), and there can be little doubt of its correct-
ness. From (I.6.4) and (I.6.2) one can, if one
wishes, obtain the value of p which should be in-
serted into (I.6.1).

I.6b The Reversible Thermoelectric Heating Effects
i

Let us now consider the way. in which the re-
versible heating and cooling effects in a conductor
carrying current may be correlated. It is known
that an electric current, besides producing an irre-
versible Joulean heating proportions, l to the square
of the current, produces a reversible linear Peltier
or Thomson heat in a body of inhomogeneous com-
position or temperature. It has been shown that
the latter effects amount to a convection of entropy
by the electric current (E2, W1, H8). f/). We shall
not attempt here to establish the legitimacy of this
concept of convection of entropy or even to formu-
late it in its most general terms; these matters are

t$ Alternative derivations of (I.6.3) have been given by
Bridgman ((2), Chapter IV) and Wagner (Wi).

gf. In crystals of lower than cubic symmetry the vector of
entropy flow need not be parallel to the current vector,
however.

and differentiating with respect to T~ we find

dP~ dps dEb~ i '(o, o'b)
= —e =e '

)
———~dT, (I.6.3)

dT, dT, dT, , &T T)
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derived in previous sections. For the Thomson
coefficient r is not a property of a conductor in

covered in the references just cited. However, it
will be worth while to give a simple derivation of
the entropy convection coefficient for a cubic metal
or semiconductor, starting from the assumption
that a current of density j carries with it an en-
tropy Aux Cj. In the presence of a temperature
gradient certain amounts of heat must be added or
withdrawn at various places in the specimen in
order to maintain a steady state in the absence of a
current, and certain additional amounts are re-
quired to neutralize the Joulean heating, which
amounts to pj' per unit volume. Besides all this, an
amount of heat gp, 'proportional to j, must be added
reversibly per unit volume per unit, time to main-
tain a steady state in the presence of a current of
density j. This amount is due to the Thomson
effect, and by the definition of the Thomson co-
efficient 0- we have

thermal equilibrium, but is rather a property asso-
ciated with the transport of electrons. For ex-
ample, the electron theory of metals yields a value
for o which involves the rate of change of the mean
free path of an electron with its velocity (see (12),
p. 179) and mean free path has no essential con-
npction with the energy band structure which de-
termines all equilibrium properties.

I.7 The Cooling Effect Accompanying Thermionic
Emission from a Uniform Surface tt

gp=o.j VT.

On the other hand, our convection assumption re-
quires that

To make this consistent with the preceding for
arbitrary temperature and current distributions,
we must have

o = T(dC/dT).

Now as T—+0 the third law of thermodynamics re-
quires that C-+0 and o/T~O, so C must have the
value

entropy convected
per unit current= C= (o /T) d T (I.6.5).

Jp

The evaporation of electrons from the surface of
a hot conductor, like the evaporation of molecules
from a liquid, causes a cooling of the surface, and if
a steady state is to be maintained, heat must be
supplied to the surface from elsewhere, either by
conduction or by other means. Measurements of
this effect are almost always made under saturation
conditions; let the heat loss per emitted electron
for this case be l„t... To calculate theoretically the
relation between l„t,. and other measurable quan-
tities it is advantageous to proceed in two steps.
The first is to compute the heat loss per electron,
l, i, , which would occur for a very gradual quasi-
static withdrawal of electrons from the conductor.
This calculation may be based on the principle that
the entropy fed in per unit time at the surface in a
steady-state quasi-static vaporization must equal
the difference between the. entropy Huxes in the
vapor and the metal, or, in more familiar language,
must equal 1/T times the negative Peltier heat
developed at the metal-vapor junction. The second
step is to compute the difference (l.,».

—l,~,„)from
energy considerations.

This is identical with the quantity sometimes called
the "absolute thermoelectric po~er;" notice that
the same expression has already been encountered
in (1.6.4).f)$$

The three relations (I.6.2), (I.6.4), and (I.6.5)
which we have derived in this section differ in an
essential way from the thermodynamic relations

ff.ff. The use of the third law to obtain an expression like
(I.6.5) is at first sight somewhat paradoxical in the case of
semiconductors: according to the usual statistical model of a
semiconductor the absolute thermoelectric power is essen-
tially 1/T times the energy difference between the Fermi level
P and the bottom of the conduction band (or the top of the
filled band, in the case of defect conductors); this apparently
becomes infinite rather than zero as 1~0.On closer examina-
tion, however, one can see that the integration in (I.6.4) and
(I.6.5), or equivalently the differ'entiation with respect to T
which occurs in the Thomson relations, must be taken over
the sequence of states which occur in an unevenly heated
conductor when no current is flowing. It is not possible for
all such states to be electrically neutral, and as T~O a condi-
tion will eventually be reached where the Fermi level lies in
the conduction band (or the filled band). From about this
point on all the thermoelectric constants will decrease instead
of increasing as T~O.

I.7a The Heat Loss in a Quasi Static-
Uaporisation of Electrons

Let us therefore consider a uniform emitting
surface forming one boundary of a container whose
volume is slowly increased, e.g. , by drawing back a
piston. Let the emitting conductor be connected to
an external circuit so that it does not become
charged as more and more electrons are vaporized.
Draw a plane parallel to the surface just beyond
the range at which image forces are appreciable.
The entropy per electron of the electron gas near
this plane depends on its density, hence on the work
function of the surface. To compute this entropy we
may note that in any process the change in the

tt The first theoretical prediction of the cooling effect was
given by Richardson, (R8); references to subsequent treat-
ments of the problem by thermodynamics are given in the
article of Schottky and Rothe ((11), Kap. VI). The last
term in Fq. (I.7.4) for the cooling effect seems to have been
given first by Wagner, (W1), and later independently by, Her-
ring (H8).
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of vapor considered. Using the definition (I.2.1) of
the true work function, with 4,=4, we have
finally

entropy per electron = (BS/Bn) v. s
= eq /T+ (5/2) k. (I.7.2)

Frc. 2. Thermoelectric circuit.

Helmholtz free energy E= U —TS of the electron
gas is

dI' = SdT —pdv+l—j,dn,

(see the definition of p, (I.1.1)), hence that the
change in the Gibbs function G=Ii+pv= U —TS
+pv is

dG = SdT+v—dp+pdn,
so that

p = (BG/Bn) v, ~. (I.7.1)

Now the gradUal increase of' volume to which we
are subjecting the vapor phase changes the number,
n, of electrons outside the plane but does not change
the temperature or pressure. If space charge either
is negligible or is compensated by a suitable dis-
tribution of positive charge the system of electrons
outside the plane will be at constant potential,
and treating it as a perfect gas (see Section I.3a),
we have

(8 U) (B(Pv) l;aT ee„, -]
—

/
= uT,

l an) ~, „

so that (I.7.1) gives

p = (5/2)kT —ee „—T(aS//an) v, „,
where C, is the electrostatic potential of the region

The quantity (I.7.2) represents the ratio of the
entropy passing outward across the plane which
we have drawn to the net number of electrons
crossing it. Since our quasi-static vaporization is
a reversible process, the entropy l, i,„/T which
must be fed in, at, or near the emitting surface to
maintain a steady state is equal to the number of
electrons vaporized times the difference between
(I.7.2) and e times (1.6.5). Therefore, tttttt

5 T

l.i,„ep+7——z T+eT— (a/T) d T. (I.7.3)
2 "o

I.7b The Heat L,oss under Saturation Conditions

The difference (t„t.—t, i,„)must be equal to the
difference, between saturation and quasi-static con-
ditions, in the average kinetic energy per electron
crossing a plane parallel to the metal surface. For
quasi-static conditions this average energy is 2kT
plus the work per electron done against the piston,
or a total of &kT. For saturation conditions the
average kinetic energy will depend on the velocity
distribution of the emitted electrons. |:f the re-
Hection coefficient, r, of the surface is the same for
electrons of all velocities in the region of thermal
energies, as the theoretical considerations of Sec-
tion IV.4 suggest it should be, the velocity dis-
tribution will be Maxwellian, and the average
kinetic energy per electron crossing the plane will
be

expL (m/2)(v s+vss+v s)/kT)'(nz/2)(v s+vs&+v s) 'vgvgvsdv
—00 —00 0J

~00 F00 ~00

exp L
—(m/2) (v,'+v„'+v,s) /k Tjvgvgv„dv,

Thus, if r is constant we have for a uniform sur-
face tt tt

I„,. ep+2kT+eT ——(o/T)dT
0

(I.7.4)

This formula applies to zero-field emission; if a
strong collecting Geld Z is being used it is easy to
see that q should be replaced by fy —(eZ) &].

tt'll In a derivation whose correctness has been disputed
by Nottingham (N10), Fleming and Henderson (F4, F5) have
obtained an expression for l„q.differing from (I.7.4) 'through
replacement of the last term by 1.2kT. We do not understand
their reasoning and cannot agree with their conclusion.

The magnitude of the last term of (I.7.4) is not
reliably known for any metal at incandescent tem-
peratures; however, it is probably quite small, of
the order of a few hundredths of a volt or less, and
so will only be signiGcant in the most accurate
experiments. For semiconductors this term may be
orders of magnitude larger than for metals; how-
ever, in any experiment where the cathode consists

gtttt It must be emphasized that this equation applies to a
quasi-static vaporization of electrons only if the space charge
is somehow compensated. As Wagener ((6), g9) has pointed
out, the heat loss under space-charge limited conditions de-
pends upon the current density only and is independent of
the work function of the cathode.
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of a thin layer of semiconductor on a metal base,
this term will be almost entirely compensated by
the Peltier heat eII developed at the junction be-
tween metal and semiconductor, since

eII =eT,
Jo

(Omeeei &semicond. )T/

d r.

where L/No is the heat of evaporation per electron
and where S, , and S„q.are the entropies of elec-
tron vapor and conductor, respectively. We may
substitute (I.7.2) in the first term, while for the
second we have

f~Scend. ) (~ Gcond. t

E an ),, 0 anaT &„EaT3,
„

by (I.7.1).Thus, remembering the definition (I.2.1)
of q,

I,=L/No ey+ (5/2) h T——eT(dy/d T), —(I.7.5)

which differs from (I.7.3) in the last term. The
difference between (I.7.3) and (I.7.5) is clearly due
to the fact that in the present case the conductor
becomes positively charged as electrons are re-
moved, while in the former case a steady state
was assumed involving replacement electrons fed
in through the conductor. This diAerence has
accordingly been named the "surface heat of
charging" ((2), Chapters III and IV). The two
terms in it are readily understandable: because of
the absence of replacement electrons, the last
term of (I.7.3) should naturally be absent from
(I.7.5), and because the electron concentration in
the metal is being changed in the one case but not
in the other, the term —T(BS„„d./Bn)„,r occurs in
(I.7.5) but not in (I.7.3). It is sometimes useful to
divide the latter term into two parts, 6rst, the
change in S„~.which would occur if the electron
concentration in the volume of the metal could be
changed without giving the metal a net charge

I.7c The Surface Heat of Charging

This section would not be complete without a
brief discussion of an apparent paradox which one
may encounter in attempting to relate the heat
loss accompanying emission to other thermody-
namic quantities. Consider again the experiment
in which the volume of the electron vapor near a
conductor is slowly increased; this time, however,
let the conductor be electrically isolated, so that a
charge builds up on its surface as electrons leave it.
Then we have for the heat loss I; per electron
evaporated

t cjSgssl (BScond

(an&, r ( an

(e.g. , by adding electrons and at the same time
adding an imaginary continuous distribution of
positive charge); second, the further change which
would occur if the metal could be charged without
changing its electron content. The former is a
volume effect, the latter an effect of the 6eld at the
surface. This division .is closely related to the
division of dp/dT into volume and surface parts
which will be made in Section IV.3 below.

CHAPTER II. ELECTRON EMISSION FROM
NON-UNIFORM SURFACES

Up to this point the discussion has been purely
theoretical and has dealt with uniform surfaces.
The purpose of this chapter is to summarize the
experimental evidence for non-uniformity of the
properties of the diferent crystal surfaces of the
same metal and to indicate how this non-uniformity
must be taken into account in the interpretation of
surface phenomena.

II.I Experimental Evidence for Non-Uniformity

Since the last review article on thermionic emis-
sion, a number of important experiments designed
to investigate non-uniformity of surface properties
have been published. The purpose of this section
is to enumerate brieHy the results of these important
experiments.

II.1a Experimental Evidence for Non Uniformity-of
Thermionic Emission from Clean 3/Ietals

The bulk of this evidence comes from electron
projection tube studies. The results of several such
experiments have been published (828, 829, J6,
Y1, J4, M10, N1), but for the purposes of this
section, the most interesting and informative in-
vestigation is the one carried out by Martin (M10).
In this work a tungsten sphere one centimeter in
diameter made up largely of one single crystal was
mounted at the center of a spherical fluorescent
screen. This apparatus made possible the study of
the thermionic emission in all crystal directions
from clean tungsten surfaces and from tungsten
surfaces coated with caesium or barium. All emis-
sion patterns showed the proper symmetry for the
cubic system into which tungsten crystallizes.
Thermionic emission from clean tungsten varied
smoothly over the surface of the sphere showing
maxima centered around the normal emergence of
the (001) and (111) crystal directions (Miller in-
dices used) and minima around the (112) and (110)
directions. Equivalent emission was observed from
all spots (on the same or different crystals) having
the same crystal direction normal to their macro-
scopic surfaces. These results distinctly show that
the thermionic emission from the surface of the
tungsten sphere is characterized by the crystal-
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which are probably characteristic of clean metals
such as tungsten, molybdenum, and nickel. These
patterns show large variation in emission and have
the symmetry of the crystal structure of the metal
from which the emitter is made. In the case of
tungsten, these patterns are identical in character
to the corresponding thermionic emission patterns
(M10, N1). Muller (J3) has shown that the non-
emitting areas are not merely the result of depres-
sions in an otherwise approximately spherical sur-
face. There is no fundamental change in 6eld emis-
sion patterns from clean smooth surfaces over the
experimental range of voltage gradients.

lographic direction riormal to the macroscopic
surface.

As the result of certain additives, such as alkali
oxides and silica, the "non-sag" type of tungsten
wire re-crystallizes into crystals occupying the
entire cross section of the wire (13, R12).' If the
recrystallization schedule is favorable, single crys-
ta]s several centimeters long can be grown (R12).
As the result of mechanical stress during the draw-
ing process, the crystals normally have a face
diagonal very closely aligned with the axis of the
wire. If the wire is round and smooth, this orienta-
tion causes all crystal directions which have Miller
indices of the form (hhlt) to emerge normal to the
surface of the wire. As stated above, Martin found
that for uncontaminated surfaces all maxima and
minima of thermionic emission are centered about
directions having this form. Making use of this
circumstance, Nichols (N1) has made quantitative
measurements of thermionic emission along the
important crystal- directions for clean tungsten
surfaces. Figure 3 is a polar plot of the distribution
of emission around a single crystal wire. The.
maxima and minima occur along the same principal
directions as found by Martin. Apparently Martin' s
heat treatment was not sufficient to produce the
relative minimum along the (001) direction as
compared to the (116) direction. The empirical
thermionic constants given in Table I were deter-
mined for each of the maxima and minima and
will be discussed in a later section. The measure-
ments showed a variation of thermionic work func-
tion of at least 0.3v.

The well-established low voltage deviation from
the Schottky line for thermionic emission from
polycrystal surfaces of clean metals indicates a
variation in thermionic properties of the various
surfaces of the crystals. This effect is discussed at
len th in Section II.5.

II.1c Experimental Evidence for Non Uniform-ity of
Photoelectric Emission from Clean Metals

Because of difficulties of intensity, scattering,
etc. , few photoelectric studies using projection
tubes have been published. However, experiments
with large single crystals of zinc, silver, copper,
and tungsten have been reported (L10, D3, N3,
U1, M13, F2). These large specimens are very
difficult to clean up. In several cases, the reported
photoelectric work functions for the different sur-
faces exposed differed to the extent of several
tenths of an electron volt. For example, Menden-
hall and DeVoe (M13) reported a work function
of 4.50 ev for a (112) direction and 4.35 ev for a
(310) direction of a single crystal of tungsten.
Although the crystal had been heated for many
hours at 2200 degrees Kelvin, evidence of surface
impurities on the surface normal to the (310)
directions still remained.

The Schottky phenomena connected with photo-
electric emission also indicate a variation in the
photoelectric properties of the various crystal sur-
faces of the same metal. This is briefly discussed in
Section II.12.

g

Experimental Evt'dence for Non Uniformity of II.1d Experimental Evidence for the Non Uniformity-

M t ls of the Adsorptive Properties of Metal Surfaces

Electron projection tubes have also been used to
study the dependence of field emission upon crystal-
lographic direction. The technique of obtaining
clean surfaces is difficult in the case of field emission
because during observation the temperature must
be sufficiently low to rule out thermionic emission.
This permits residual gases to be adsorbed more
readily and decreases the rate of evaporation of
impurities from the surface. However, very careful
experiments (J3, M25) have resulted in patterns

'VVe have been informed by Mr. George Moore, of the
Bell Telephone Laboratories, that there is a difference in the
properties of prewar "non-sag" type of tungsten wire and the
corresponding postwar production in that it is very difficult
to produce large crystals in the latter. This may be due to
different impurities occurring in the ores or manufacturing
processes.

Projection tube experiments for thermionic' and
field emission (J3) show strong preferential ad-
sorption over the various crystal surfaces of the
same specimen. For example, in addition to the
projection tube study of thermionic emission from
the clean tungsten crystal sphere, Martin (M10)
also investigated thermionic emission from caesium
and bari. um adsorbed on the tungsten sphere.
Relatively simple adsorption patterns were ob-
tained when the surfaces were clean, but exceed-
ingly complex patterns resulted from caesium on

b For example, see (P2, M5). Briiche (827) compares the
thermionic electron projection tube with the photoelectric
projection tube.' (K2, 828, 829, Sl, S2, 88, M2, M3, 830, 831, 832, I6,
833, 834, A1, M14, J4, M10, M16, 810, FS.) See also bibli-
ography given by Blewett (816, 817).
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slightly contaminated surfaces. However, aLL the
patterns always showed fke proper symmetry. Under
different conditions of contamination, different di-
rections having high Miller indices showed proper-
ties distinctly different from those of nearby re-
gions. As the temperature was changed, certain
regions of good emission moved smoothly into
regions of poor emission and vice versa. Similar
effects have been reported for Field emission (J3).

Both photoelectric and thermionic emission (B8,
Lii, N7) from composite surfaces show more low
voltage deviation from the Schottky line than do
clean surfaces. This also indicates preferential ad-
sorption resulting in a variation of emitting prop-
erties over the various crystal surfaces exposed.

II.ie ExperimentuL Evidence for the Non Unifo-rmity
of the Contact PotentiaL

Several measurements of contact potential be-
tween different crystal surfaces of single crystals
of metals such as silver, bismuth, and copper have
been published (F2, Z1, K5, F1, R14, A6). These
experiments require rather large crystals. Conse-
quently it is very difficult to obtain clean sur-
faces, particularly with the less refractory metals.
Contact potentials of the order of tenths of volts
have been reported. Contact potential between
solid and molten phases of the same metal has
also been measured (D5, K6). In some of the
measurements the Kelvin method was used and in
others the volt-ampere characteristic of photo-
electric or thermionic emission with the specimen
as one of the electrodes was used. These methods
will be discussed in Sections II.4 and II.11.

In the case of silver, (F2), the contact potential
difference determined by the Kelvin method agreed
well with photoelectric data from the same crystals.

II.1f Experimenta/ Evidence for the Non Umiformity-
of the Surface Structure of Crystals

If metallic single crystals are heat treated in
vacuum or inert gas, surface configurations char-
acteristic of the crystal directions normal to the
underlying surface and the type of treatment evolve
(S12, J5, S3, S11). If the crystals are heated in a
chemically active gas or are etched chemically or
electrolytically under proper conditions, different
reaction rates for the various crystal surfaces result
in growth of certain crystal surfaces at the expense
of others (B26, J5, S3, S11, 13). These phenomena
indicate that the various kinds of crystal surfaces
differ appreciably from one another in such prop-
erties as surface energy, chemical activity and
perhaps evaporation rate (see Section II.2).

II.2 Atomic Arrangement at a Crysta1 Surface

The growth of certain crystal faces at the ex-
pense of others when a tiny. metal crystal is heated,

which we have mentioned in Section II.if, shows
that the different crystal faces have different sur-
face tensions, i.e., different values of the free energy
per unit area of surface. Similarly the occurrence
of preferential etching in the presence of an active
gas or solution indic'ates that reaction rates also
depend upon the orientation of the surface relative
to the lattice. It would be logical at this point to
discuss the atomic interpretation of these phenom-
ena, in an effort to infer what some of the emitting
surfaces used in electronic experiments would look
like if we were able to see every atom. But since an
adequate treatment of this subject requires a
lengthy discussion of ideas and experiments in
fields otherwise unrelated to thermionics, we have
placed the' detailed treatment in Appendix III, and
shall merely summarize here some of the principal
results. Although our present state of knowledge
does not suffice to predict with any certainty what
a metal surface should look like on an atomic scale,
it is likely that, when with the aid of new discoveries
a complete understanding of surface arrangements
is reached, this understanding will be based in
large part on the theoretical and experimental
evidence elaborated in Appendix III. We discuss
this matter in some detail there because of the im-
portance of the details of surface structure for the
intelligent interpretation of experiments. Not only
must these details be known for the construction
of specific theoretical models of the emission process,
but they may have a bearing on such matters as
the reproducibility of experimental results.

Two conflicting models of a crystal surface have
been proposed. :~

(1) The surface of the metal specimen may, in a region
where the macroscopic surface has a given orientation, always
approximate the ideal crystal plane of the corresponding
orientation, i.e., a surface formed from an infinite crystal
lattice by removing a11 atoms whose centers lie on one .side
of the plane. ' This would give steps and risers of atomic
dimensions only (M10).

(2) The surface may, on the other hand, have a hill-and-
valley structure on a scale considerably larger than atomic
dimensions, so that no matter what the orientation of the
macroscopic surface, the microscopic surface will consist of
facets of simple structure (L4, T4).

As is shown in Appendix III, the choice between
alternatives such as these usually depends upon
the relative rates of v'arious competing processes or
tendencies. For example, it is shown in Appendix
IIIa that if allowed to approach thermal equi-
librium, surfaces of certain orientations will remain
smooth while all other surfaces will develop a

~ Although mechanical polishing may produce a somewhat
amorphous surface layer on a specimen at room temperature,
this will undoubtedly recrystallize at the temperatures neces-
sary for thermionic emission studies. Thus only crystalline
surfaces will be considered here.

'Of course, the atomic spacings near the surface might
dier slightly from those in the interior.
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TABLE I. Thermionic constants for maxima and minima
of Fig. 3. From Nichols. * **

Miller indices

iii
112
116
001
iio

4.39
4.69
4.39
4.56
4.68

35
125
53

117
15

+ See reference (N1) in the Bibliography.~ Because of a numerical error, the values of q~ in Table I of this refer-
ence are 0.03 volt too low. The values in the above table are the corrected
,ones.

hill-and-valley structure; however, it is shown in
Appendix IIIc that it is sometimes possible for
one-way processes such as uncompensated evapora-
tion to produce a smoothing effect which works
counter to the tendency just mentioned. Experi-
mental evidence bearing on these points is dis-
cussed in Appendix IIId. Observations have shown
the existence of still another important type of
process, not yet understood theoretically, the "d.c.
etch. " This effect, first pointed out by Johnson
(J5), has been studied in some detail by Schmidt
(S3). It consists in a step-like structure observed
on wires which have been subjected to prolonged
heating on direct current and near the support
hooks of wires heated on alternating current, where
strong longitudinal temperature gradients occur.
Figure 4 shows some etch structures of this sort
photographed by Schmidt. Since tungsten and
tantalum wires heated on a.c. in vacuum develop
surfaces which appear smooth (J5, M19), and since
the evidence discussed in Appendix III suggests
that these surfaces may well be atomically smooth,
it seems likely that use of a.c. instead of d.c. for
heating will in many cases eliminate a troublesome
complication from the interpretation of experi-
mental results.

In the later sections of this article we shall try
to take cognizance of the possible inadequacy of
hypothesis (1) by using the term "crystal surface"
or "patch" for the emitting surface of a specimen
whose macroscopic surface has a speciGed crystal-
lographic orientation, rather than the term "crystal
plane. " Also, in the later sections the equations are
set up in terms of discrete patches. If the surface
properties vary smoothly over the surface, the
sums over the patches can be replaced by integrals.

1

D.3 Surface versus Volume EBects as Causes
of Non-Uniformity of Emission

As discussed in Section I.2, the work function
of a clean metal is made up of two parts: the inner
work function and the surface double layer of
charge. The double layer of charge at the surface
is a result of an unsymmetrical charge distribution
around the surface ions, the nature of which de-

pends upon the arrangement of the atoms at the
surface. The atomic theory of the double layer is
discussed in Section IV.2. As shown there, it is to
be expected that the moment of the double layer
will be different for different crystal faces, and this
variation will cause non-uniformity of electron
emission properties.

There is another effect, essentially a volume one,
which has been suggested as a possible explanation
for 'the non-uniformity of electron emission from
clean metals (M23, B12). This effect is caused by
the periodicity of the crystal lattice which results
in forbidden energy regions occurring for those

- electron momenta which satisfy the conditions for
Bragg reHection along the various crystal direc-
tions. If such a region exists at or just above the
top of the surface barrier in the case of thermionic
emission, or at the top of the Fermi level in the
case of Geld emission, some of the electrons one
would normally expect to emerge from the surface
will be absent since for the corresponding directions
of motion inside the crystal, the energy in question
will lie in the forbidden region. The magnitude of
the reduction in emission will depend upon the range
of energies and directions-of motion for which this
occurs. This possibility will be discussed in Sec-
tion IV.4b for the case of thermionic emission.

The observed contact potential between different
crystal surfaces of the same clean metal cannot be
explained by the volume eff'ect, and must be due
to the double layer effect inasmuch as the contact
potential is proportional to the difference in the
moments of the double layers (see Section I.2). On
the basis of the double layers, the striking corre-
spondence of thermionic emission patterns to field
emission patterns from single crystals of tungsten
would be explained by the similar way in which the
work function enters into Richardson's equation
and into the Fowler-Nordheim equation for field
emission. The Fowler-Nordheim equation, including
the correction for the Schottky effect, can be
written (G10):
j= (1.55&&10 'E'/8'p) exp( —6.838

&& 10 tty&/E) amp. /cm' (II.3.1)

where B is the surface Geld strength in volts per
centimeter, p is the work function in volts, and 8
is a slowly varying function of (Z&/rp). The general
features of this equation have been verified by ex-
periment (J3) and in particular the q' dependence
has been verified by Haefer (H2) in which he de-
termined the size of the points by use of the electron
microscope. On the basis of the work function dif-
ferences noted in Table I used in connection with
Eq. (II.3.1), Benjamin and Jenkins (B12) were
unable to account for their estimated relative values
of emission from the various crystal surfaces of
tungsten. This hinges on the surface Geld strengths
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at which the observations were made Lsee Haefer
(H2)]. More recently, Miiller (M24) in measuring
the velocity distribution of 6eld electrons from
tungsten has found that on the basis of Eq. (II.3.1)
the relatively low field emission from the (110)
surface could be accounted for quantitatively by a
work function of about'6. 0 volts for that surface.
As explained in Section 11.7b there is also evidence
from thermionic data from tungsten single crystals
for the' existence of a considerably higher work
function surface than is indicated in Table I.

In or'der to account for this correspondence of
thermionic emission patterns to field emission pat-
terns from tungsten by the volume effect, it would
be necessary for the electron momenta to satisfy
the conditions for Bragg reflection both at the top
of the surface barrier and also at the Fermi level
for the (110), (112), and (001) directions. Now the
band structure of tungsten is complex with nu-
merous overlapping bands. Results of Manning
and Chodorow (M8) indicate that in tungsten
allowed bands exist both at the Fermi level and at
the top of the surface barrier. Although the approxi-
mations involved in these calculations are many,
they at least suggest that in tungsten the volume
effect may be of no consequence either for thermi-
onic or for field emission. This question is further
discussed in Section IV.4b.

The observed non-uniformity (see Section II.1d)
of the emitting properties of layers of foreign ma-
terial adsorbed on polycrystalline surfaces can be
explained only by the surface effect since the ad-
sorption of atomic layers on the surface cannot
influence the motions of electrons inside the metal.
The principal surface effect is the formation of
double layers of charge although it is not unlikely
that in some cases the adsorbed layers may alter
the reHection effect at the surface. The double layers
of charge result from the distortion of the charge
distribution in the neighborhood of the adsorbed
atoms or ions and may be negative or positive de-
pending upon the nature of the materials. For low
concentrations of adsorbed materials, such as
barium, thorium, or caesium on tungsten strong
non-uniformity of emission is observed (see Section
II.1d). It is reasonable to conclude that this is
caused principally by a variation of the concentra-
tion of the adsorbed materials from one type of
crystal surface to another which results from a
corresponding variation of binding energy of the
adsorbed material by amounts comparable to, or
greater than, kT.

II.4 Effect of Patches on the Contact Potential

Consider an electronic conductor whose surface
is made up of different types of patches having dif-
ferent double layers and as a result, having dif-
ferent work functions. Assume that there are no

C.= Q; f,4„=—p/e —p, (II.4.2)

where f; is the fraction of the surface occupied by
the ith type of patch and

p= Zifigi (II.4.3)

Now consider two conductors 2 and 8, both with
patchy surfaces and both at the same temperature
connected electrically by a circuit containing no
sources of e.m. f. Let the distance of separation of
the conductors be sufficiently large compared to
the patch size so that the patch fields in the space
centrally located between the plates are negligibly
small. By the arguments of Section I.2, the equi-
librium state will be that in which the electro-
chemical potentials in the two conductors are equal.
Then from Eq. (II.4.2)

LA @'aB PB PA~ (II.4.4)

Thus a difference of potential exists between the
outer neighborhoods of the two patch surfaces

C3
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FIG. 3. Polar plot of thermionic emission current from
single crystal tungsten wire. Temperature 1480'.K.

externally applied electric fields. From Eq. (I.2.1)
the electrostatic potential outside the ith type of
patch a distance very small compared to the patch
dimensions is given by

(II.4.1)

where p; is the work function of the ith type of
patch (see Section I.2) and p is the electrochemical
potential inside the conductor. Thus the electro-
static potential just outside the patches is not
constant but varies from one type of patch to
another in accordance with the differences in the
work functions. In the absence of applied fields, the
electrostatic potential at a distance from the surface
sufficiently large compared to the dimensions of
the patches becomes constant (see Appendix IV).
This constant potential is given by
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equal to the difference of their average work
functions.

In order to have the outer neighborhoods of the
two conductors at equal potential, it is necessary
to insert a battery of potential Uo ——g» —g» into the
connection between the two conductors. If g~( g~,
then the positive terminal of the battery must be
connected to conductor B. If a battery of voltage U
different from Vo is inserted into the connection
between the two conductors, there will be a net
charge on one of the conductors given by ( V—Vp)/C
where C is the capacity between the two conductors.
A convenient way of experimentally determining
Vo is to adjust V so that a change in the spacing of
the conductors —i.e. , a change in the capacity C—
does not cause a How of charge. When this is real-
ized, U= Vo. This constitutes the well-known Kel-
vin method for determining the contact potential
and yields the value Vo=pz —gz. Other methods
for determining the contact potential will be dis-
cussed in Section II.11. If temperature gradients
exist anywhere in the circuit it is necessary to make
corrections for thermoelectric effects (see Section
I.6).

II.S Effect of Patches on the Current Voltage Rela-
tionship in an Accelerating Collecting Field

The Schottky theory of the current voltage rela-
tionship for emission from uniform surfaces has been
reviewed in Section I.4. Generally, the experi-
mental Schottky plots deviate from the theory of
Section I.4 in the low voltage region. As a result of
the work of Linford (L11), Becker (BS), Notting-
ham (N7), and others, it is now understood that
this low voltage deviation is the result of patchy
emitting surfaces used in the experiments. Because
of the importance of the Schottky plot as a means
of investigating patchy emitting surfaces, a brief
qualitative discussion of this topic is included.

As shown in the previous section, the potential
outside a metal surface which has patches of dif-
ferent double layers is not constant even in the
absence of applied fields but varies in such a way
that the differences between the potentials just
outside the different patches are equal to the
differences in the work functions of the patches.
The resulting field outside the metal is called the
patch field. If the patches are small compared to
the radius of curvature of the surface, the patch
field dies off exponentially so that at a distance from
the surface large compared to the patch size, the
patch field is very weak (see Appendix IV). Thus
the motive outside a patchy surface is equal to
that outside a uniform surface defined in Section
I.1 minus the term V„(xys) representing the poten-
tial of the patch field.

II.5a Qualitative Discussion of the
Patch Theory for Metals

For purposes of discussion, the problem can be
divided into three cases.

Case 1. Collecting field large compared to the patch
field. —According to the Schottky mirror image
theory of emission from a uniform surface, the
electrons pass over a.potential energy maximum at
a distance xo from the surface given by Eq. .(I.4.1).
After passing over this maximum, the electrons are
free from the metal. The lowering of the work
function, Aq, as a result of the accelerating collect-
ing field is given by Eq. (I.4.2). In the case of a
patchy metal surface, the same theory will apply
if the collecting field 8 is so strong that the absolute
value of the work done against the normal com-
ponent, 8„,of the patch field between x=0 and
x=@0 is small compared to eked. In equation form,
this condition is

p
Xo

e E„dx((ed'.
0

(II.5.1)

By letting E„bethe average value of B„overthe
limits on x and using Eqs. (I.4.1) and (I.4.2) this
becomes

/E„f
&&2E. (II.5.2)

If this equation is satisfied, the emission from each
patch is independent of the neighboring patches.
Now the effective lowering of the work function of
each of the individual patches is given by Eq.
(I.4.2). Since under these conditions the emission
from the entire surface is the sum of the currents
from each of the individual patches, it follows from
Eq. (I.4.3) that the emission from the entire surface
contains the factor expLe(eZ) '*/kT]. This is further
discussed in Section II.7. Therefore the Schottky
plot, as defined in Section I.4, will give a straight
line of the same slope as that for a uniform surface.
Roughly

E„differences in work functions of the
patches/patch diameter 8q/Ay, (II.5.3)

where bp maximum difference in the work func-
tions and Ay patch diameter. Approximately, Eq.
(II.5.2) becomes

2))8 p/Ay. (II.5.4)

Schematically, the situation in the case of a 'patchy
emitter with collecting fields satisfying Eq. (II.5.4)
is as indicated in Fig. 5a.

Case Z. Collecting field so small that xo lies
essentially outside the patch field. This requires—
that E]*,» ~Z~]*,

~
8p/Dy exp( —2~xo/t1y). ' This

means that the patch field has died off to unim-
' The coefficient of 27'-xo/Ay depends upon the shape of the

patches; it is of the order of unity. See Appendix IV.
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portance so that there is a motiVe maximum at xp
as illustrated in Fig. Sb. The reason for the motive
maximum at xp is that the patch field, because of
its exponential nature, dies off faster than the
image forces. In general, going out from the surface,
the motive slopes "upward" from the lower work
function surfaces and "downward" outside the
higher work function patches as is' indicated
schematically in Fig. 5b. Thus the individual elec-
tron trajectories in the patch field are complicated
and will be discussed, for the case of electron emis-
sion into retarding fields, in later sections. For the
discussion in this section it is assumed that the
effects of initial tangential energies average out so
that only electron velocities normal to the surface
are considered.

In the absence of applied fields, the motive, as
indicated in Fig. Sb, for suKciently large values of
x approaches the value —C,—e/4x where C, is
given by Eq. (II.4.2). The effect of sufficiently
weak applied fields is to produce a motive maxi-
mum outside the patch field whose value is —4,
—hp where Ap is given by Eq. (I.4.2). Now all
electrons from patches whose work functions are
less than p (see Eq. II.4.3) must pass over a motive
maximum no higher than —C —hy which is at xp
so that if only normal energies are considered, the
effective work function of these patches becomes
p —Aq. Electrons from patches whose work func-
tions are higher than p must pass over a barrier
higher than the one at xp so that the emission from
these patches is little affected by the applied fields
of this case. If the surface is more or less evenly
divided between the high and low work function
patches, most of the emission comes from the low
work function patches. As a first approximation
then, one can ascribe to the entire surface an
effective work function of p —Ap. (This is further
discussed in Section II.S.) To within this approxi-
mation the Schottky plot for this case will also be
a straight line with the same slope as that from a
uniform surface.

Case 3. Collecting field same order of magnitude as
patch field. —This is the transition region between
cases 1 and 2. In this region the variation of the
patch field. potential V„(xys) is very important.
For these collecting fields intermediate between
those of cases 1 and 2, the Schottky plot will not
be straight, and its average slope will be consider-
ably greater than that for a uniform surface. The
order of magnitude of this slope in this "anoma-
lous" region can be estimated simply. As the col-
lecting field 8 is increased from a value «~1E„~ to
a value )) ~E~~, the motive hump in Fig. 5 outside
the patches of Iow work function changes from
—4 —Ap to —4;„—Ap. E„is given by Eq.
(II.5.3). Most of this change will come in a range
of values of 6 which is a few times E„in width.

Now in case 1, most of the emission comes from the
low work function patches. For a first approxima-
tion it is therefore sufficient to ascribe to the entire
surface, in Case 1, an effective work function equal
to the lowest work function in the surface, provided
the surface is reasonably evenly divided between
the low and high work function surfaces. (A more
accurate expression for the apparent work function
of a patchy surface is derived in Section II.7.) Thus
if the surface is reasonably evenly divided between
the low and high work function surfaces, the ap-
proximate difference between the effective work
function for the entire surface corresponding to
Case 2 and that corresponding to Case 1 is about
bp/2, where bp is the difference between the highest
and lowest work functions appearing in the surface.

(a) 0'. {110)-aereich.
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FIG. 4. Photographs of a tungsten wire showing the effect
of prolonged heating in vacuum by direct current. The wire,
a single crystal oriented with a (110) direction along its axis,
was photographed from a number of directions around its
circumference, corresponding to the normal emergence of the
(110), (111), (100), and (111) directions, respectively. Taken
from Schmidt (S3)."* This figure was taken from Vol. 120 (1943) of the Zeits.
f. Physik, published by Verlag Julius Springer of Berlin. The
use of this figure in this article is by permission of the At-
torney General of the United States in the public interest
under License No. JA-1316.
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To this approximation

(II.5.5)

Thus as the collecting field is increased from a
. value «)E„~to a value )) (E„~the logarithm of
the thermionic emission changes roughly by an
amount

6 lnj =e"op/kT. (II.5.6)

Using Eq. (II.5.3) the slope of the Schottky plot
over this range is given roughly by

Llnj/(a few times ~E„~)& a few times less than
e(bye) &/kT. (II.5.7)

For a uniform surface, the slope of the Schottky
plot is given by

d1 jn/dB'= &o/kT. (II.5.8)

The ratio of Eq. (II.5.7) to (II.5.8) is the anomaly
factor in the slope of the Schottky plot.

Anomaly factor a few times less than
(~~~y/o) '* (ll 5.9)

Thus if 8q is several tenths of a volt, or perhaps
one or two volts in case of adsorbed materials,
and if Ay is of the order of 10 ' cm, the expression
(II.5.9) may be of the order of tens.

Figure 6 shows the schematic Schottky plot
which is expected from these considerations for'a
surface made up of fine patches. The voltage range
in which the transition takes place depends upon
the patch size, work function differences and the
configuration of the emitter and collector. The
general characteristic of Fig. 6 has been found for
fine grain specimens such as thoriated tungsten
(see Fig. 7).*

II.5b Quantitative Calculations of the Effect of
Patches on the Schottky Plot

Compton and Langmuir (C7), Linford (L11),
Becker (B8), Nottingham (N7), and others have
investigated the effect of patches on the Schottky
plot. Compton and Langmuir rejected the patch
theory, as an explanation of experimental results,
because they felt that the required patch size was
too large. By the time of Becker's review on ther-
mionic emission, electron projection tube experi-
ments had indicated patch sizes adequate to explain
the experimental results. As mentioned in Section
II.1, subsequent experiments on the non-uniformity
of electron emission have substantiated the patch
theory for clean surfaces as well as for adsorbed
surfaces.

To calculate quantitatively the current voltage
g We have been informed by Dr. LeRoy Apker, of the

General Electric Research Laboratory, that he has obtained
photoelectric data which definitely show a straightening out
on the low. voltage side of the anomalous region.

relation for a patchy surface with applied ac-
celerating fields, Becker and the others start with
a plane surface (ys plane) made up of a regular
array of patches. The motive, consisting of the
mirror image potential, the applied potential, and
the patch potential is determined. For each value
of the applied field, the motive maximum outside
the surface'occurs at a distance xo which is a func-
tion of the corresponding y and s values. The value
of the motive at this maximum is then determined
as a function of y and z for the various values of
the applied field. This defines a motive "sky-line"
for each value of the applied field which the elec-
trons must pass over. In order to simplify the
computation of the electron current, it is assumed
that the current crossing each element of pro-
jected area, dydee, of the skyline is proportional to
expL —ep'(y, s)/kT] where q'(y, s) is the height of
the sky-line relative to the electrochemicaj poten-
tial. This amounts to assuming that the electron
distribution emerging from each patch is Max-
wellian and that the y and s momenta average out
so the problem reduces to one of normal kinetic
energy only. The latter assumption is questionable,
for reasons discussed below in Section II.6b, par-
ticularly at low applied fields. The other important
assumptions are that the applied electric Geld does
not change the thermodynamic state of the interior
of the surface or the double layer at the surface,
and that space-charge effects are negligible. These
assumptions are reasonable at least for metals at
suSciently low current densities. The theoretical
results, when the patch size and patch double-
layer differences are properly chosen, show reason-
ably good agreement with experiment. For example,
Fig. 7 is taken from Nottingharn (N7) who used a
strip distribution of patches whose work function
varied sinusoidally. This variation was assumed for
mathematical simplicity instead of the more or
less discontinuous variation of work functions from
patch to patch which one expects a polycrystal-
line surface to show. The period of variation is so
and the amplitude of variation is a. The values of a
and so were adjusted to fit the experimental data
at 1160'K which are from thoriated tungsten
whose state of activation is Z. Using these con-
stants, a reasonably good fit for the 929'K data
was obtained. These results are similar to those
obtained by Becker and others.

In connection with Fig. 7, it is to be noted that
the theoretical curves approach the asymptotic
Schottky line more rapidly than do the experi-
mental curves. This is also characteristic of the
results of Becker (B8) who worked with a checker-
board rather than a strip array of patches. This is
probably due to the fact that a regular arrangement
of patches with sinusoidally varying work functions
was used for the calculation whereas in the experi-
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ment, the patches are of various sizes and shapes
and the work functions vary more or less discon-
tinuously. The neglect of the tangential components
of the electron momenta in the calcuIation of the
current over the skyline barrier is probably most
important in the low voltage range (see Section
I I.6b).

II.5c Patch Theory for Semiconductors

The considerations just outlined, which deter-
mine the effect of patches on the emission from
metals, become somewhat more complicated when
the emitter is a semiconductor. For in this case it
is frequently not permissible to assume that the
electrochemical potential p of the electrons inside
the conductor is the same under a11 points of the
emitting surface, or that the chemical potential p,

is unaffected by the applied field. Lack of con-
stancy of p may occur when the resistivity of the
semiconductor is appreciable. If two patches of the
surface have different work functions and therefore
emit different 'current densities, the ohmic potential
drops between the core metal and the two surface
patches will be different. Moreover, even a surface
of uniform work function can manifest patch effects
if the core from which the current is supplied to the
semiconductor is a wire mesh, or otherwise non-
uniform. As for the variation of p, with applied
field, this may result from the fact that application
of a field —or in fact merely the patch fields nor-
mally present at the surfac" necessitates an ac-
cumulation of charge in the surface layers of the
semiconductor. Since the density of free electrons
originally present is small, a moderately strong field
may produce an 'appreciable modification in the
density of free electrons, hence in p,. These phe-
nomena are closely related to those treated in the
theory of rectifying contacts (S6).

II.5d The Schotthy Plot as a Tool for
Investigating Surfaces

It is clear that the shape of the Schottky curve
gives information as to the patch nature of the
emitting surface. Thus by investigating the de-
pendence of emission on collecting field strength
one can derive information regarding the sizes and
other properties of the patches of which a non-
uniform surface is composed. If the patches are
large enough to be seen with a visual or electron
microscope using low power, it will not require a
very great field to bring the emission into the region
where the Schottky plot has the normal slope, and
it may be hard to study the. anomalous region. But
if the patches have dimensions smaller than say a
micron or so, the Schottky plot can give information
which may be difficult to obtain in other ways.

II.6 Effect of Patches on the Current Voltage
Relationship in a Retarding Field

As was reviewed in Section I.3d, the deviation of
thermally emitted electrons from the Maxwellian
velocity distribution is determined by the de-
pendence of the reHection coefficient, r, upon the
velocity and is negligible if r is small or if r is onIy
slightly dependent on the velocity. Theoretica, l
considerations indicate that in many cases clean
and uniform metal surfaces should have a small
reHection coefficient and that metals such as tung-
sten and tantalum are probably of this type. This
is confirmed by the smal1 magnitude of the periodic
Schottky effect for these metals (see Section IV.4d).
In Appendix V it is shown that in the case of a,

patchy surface, the effect of the different emitting
properties of the patches can be simulated for re-
tarding fields by a uniform surface of work func-
tion p of Eq. (II.4.3) with a velocity dependent
reflection coefficient henceforth called the associated
reflectiom coegcient Depen. ding upon the nature of
the patches, the associated reflection coefficient
may be quite large even though the reHection co-
efficient of the surfaces of the individual patches
may be small.

Germer, (G2), Nottingham (N7), and others
have investigated the velocity distribution of elec-
trons thermally emitted from polycrystalline sur-
faces by means of retarding potentials. Notting-
ham's experiments indicate that for energies greater
than about 0.5 ev, the emitted electrons follow the
Maxwell distribution, but for energies less than
this, there are fewer electrons than would be ex-
pected on the basis of a Maxwell distribution from
a uniform surface. Gimpel and Richardson (G3),
and Davisson, Ahearn, and Teal (D1)" have in-
vestigated the reflection of slow electron beams
from poIycrystalline surfaces. Although the experi-
mental difficulties in this type of experiment are
very great, the results indicate an appreciable re-
Hection of electrons whose energies are of the order
of 0.1 ev or less. Since theoretical and other experi-
mental evidence as mentioned above, points to
only a small reflection effect for uniform surfaces,
such as tungsten and tantalum and probably others,
it is reasonable to look for the explanation of these
results in the patch effect at the electrodes.

In the published work on the calculation of the
effect of patches, to be referred to later, it was
assumed that the effect of the initial energies,
tangential to the emitting surface, average out so
that the problem reduces to that of normal energies
alone. The results using this normal energy approxi-
mation are not in agreement with the interpreta-
tion of the experimental results. However, before

h We are indebted to Drs. Davisson, Ahearn, and Teal for
discussion of their work prior to its publication.
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these experimental results are interpreted as a
quantitative measure of the reHection of electrons
at the metallic surface, the effect of patches should
be determined in a more rigorous manner for it is
certain that the presence of patches inHuences the
observed electron energy distribution. Inasmuch as
reHection plays an important role in the interpreta-
tion of emission phenomena and inasmuch as a
rigorous patch theory for retarding fields has not
been published, the authors feel that a brief and
more or less qualitative discussion of patch effects
should be included in this paper as follows.

It is convenient to divide the discussion into the
effects of patches on the contact potential, the
effects on electrons at the emitter, and the effects
on electrons at the collector. The effect of patches
on the contact potential has been discussed in
Section II.4 where it was pointed out that the
electric field in the neighborhood of a surface having
patches of different double layers is never every-
where zero. Figure 8 represents the potential be-
tween two plane parallel patchy electrodes illus-
trating in a schematic way the potential variation
outside the maximum and minimum work function
patches. In this figure it has been assumed that
the electrodes are sufficiently separated so that
the patch field in the space centrally located be-
tween the electrodes is essentially zero. Now zero
field in this centrally located space occurs when
the applied voltage equals g~.—p~= Vo, where g~
is the surface average work function of the emitter
defined by Eq. (II.4.3), and pz is the corresponding
average for the co11ector. The discussion of the
other effects follows in the next three sub-sections.

II.6a The Normal Energy Approximation for a
Patchy Emitter and Uniform Collector with

Retardhng Collecting Fields

Consider first the effect of a patchy emitter and
uniform collector. If it is assumed that the effect
of initial tangential energies average out, so that
the problem reduces to that of normal kinetic
energies only, the determination of the reHection
coefficient associated with the patchy emitter is
simple and straightforward. In order to arrive at
an associated reHection coefficient in this case, the
problem is to determine what sort of reHection co-
efficierit a uniform surface of work function g~
must have so as to behave in the same way as the
patchy surface it is to represent in the region of
retarding collecting fields. Now on this normal
energy picture, all emitter patches whose work
functions, q~;, are such that yg;) q~ are areas of
complete reHection for all electrons whose normal
energy is less than ep&;. For example, a checker-
board emitter with only two types of patches of
work function q~~ and qg2 with q~2) qg~ and with

these patches occupying. equal areas will have an
associated reHection coefficient of 0.5 up to electron
normal energy of ey&h ——e(go+ 8p/2) where by
= @~2—q ~j. For normal energies greater than eq ~2,
the associated reHection coefficient is zero. In terms
of normal kinetic energy e after emission from a
uniform surface of work function ps the associated
reHection coeScient for the two patch checker-
board is given by Fig. 9. If, instead, a strip arrange-
ment of patches in the ys plane with a sinusoidally
varying work function given by ps+a cos2irs/so is
used, the reHection coefFicient associated with this
surface is given by Fig. 10. This curve was ob-
tained by calculating the fraction of the area having
work function greater than cps+a. This is essen-
tially the same result obtained by Nottingham
(N7). In order to give a comparison with experi-
mental results, the solid line curve of Fig. 11 is
taken from Nottingham (N7) and represents the
transmission coefficient which he deduced from his
experimental data on polycrystalline thoriated
tungsten (by methods to be discussed in Chapter
III).. The dash-dot and dotted curves are trans-
mission coefficients taken from Fig. 10 for a=0.17
and a =0.46, respectively, values which Nottingham
found gave agreement with the characteristic for
accelerating fields (see Section II.5b), The agree-
ment between theory and experiment is not very
satisfactory particularly in the low energy range,
as might be expected partly because the normal

'energy approximation has not been justified, par-
ticularly in the low energy range, and also because
the experimental data in the low energy range are
difficult to evaluate (see Chapter III). Also, the
assumptions as regards the patch nature of the
surfaces represented in Figs. 9 and 10 were very
crude and in general do not represent accurately
an actual surface (see Section II.1 and references
thereto). For example, if it is assumed that the ex-
posure of the various crystal surfaces in the case
of the polycrystalline wire used is more or less the
same as in the case of a sphere carved from a single
crystal of the metal, then results such as those of
Martin (M10) indicate that the work function dis-
tribution over the surface is not sinusoidal for the
sinusoid puts too much weight on the low and also
perhaps too much on the high work function sur-
faces. The inadequacy of the sinusoidal varying
distribution to represent the symmetry of cubic
crystals has been pointed out by Recknagel (R1).
Of course, in the case of a polycrystalline emitter
with patches of various shapes and sizes and ar-
rangements, the use of a regular arrangement for
calculation purposes may yield results considerably
different from the actual behavior of the emitter
even if the calculation is rigorous.

Having the reHection coefficient associated with
the patch field, it is easy to calculate, for example,



the retarding potential characteristic for ther-
mionic emission in the usual way in which the
transmission coefficient associated with the patch
effect is included along with the surface transmis-
sion coefficient. Figure 18 which illustrates a method
for determining contact potential from the volt
ampere characteristic makes use of a retarding
potential characteristic for a two patch checker-
board plane emitter calculated by use of Fig. 9
under the assumption that the velocity distribu-
tion of electrons emitted from the patches is
Maxwellian.

II.6b The EfIect of Tangentia/ Energies in the
Patch Field of the Emitter

The assumption that the effect of initial tan-
gential energies of the emitted electrons averages
out so that only normal kinetic energy need be
considered is questionable. As mentioned in Sec-
tion II.5a, the patch potential for an electron slopes
"upward" outside a low work function patch and
"downward" outside a high work function patch.
Thus the trajectory of the electrons is in general
a compIicated pattern of excursions up and down
the sides of these potential "channels" with fre-
quent interchanges of kin&tie and potential energy.
A rigorous treatment of the problem has not been
published.

As indicated in Appendix V, considerable
insight into the problem can be gained by con-
sidering the equivalent case -of electrons incident
on a patchy surface. From purely geometrical
reasoning, it is shown there that for a two-dimen-
sional array of patches the associated reHection
coefficient, averaged over the tangential momenta
of a Maxwellian distribution, must approach zero
with zero slope as indicated in Fig. 33. This feature
is more in line with the experimental curve in Fig.
11 than the normal energy approximation results.
As indicated in Sections II.3 and II.7b, there is
evidence for work function differences between
crystal surfaces of clean tungsten perhaps as large
as one volt. In the case of adsorbed surfaces the
work function differences may be greater. Accord-
ingly one would expect an associated reHection
coefficient different from zero for normal kinetic
energies equal to and less than the same order of
magnitude as these work function differences.

II.6c The Eff'ect of Patches on the Collector

In the previous discussion of thermionic emission
in a retarding field, the collector surface was con-
sidered uniform. Consider now the effect of a
patchy collector in which the patch size is small
compared to the size of the anode and the anode-
cathode spacing. In the first place, the average work
function y~ must be used in the expression for the

contact potential. Secondly, the effect of reflection
in the collector patch field must be taken into ac-
count. For purposes of discussion, consider a col-
lector whose surface is a checkerboard of two kinds
of patches of work function yg~ and q g2 with
pAg 6 pg&. If only normal energies are considered,
electrons in the norma, l energy range s(V+pz) to
e(V+p~2) relative to the electrochemical potential
inside the emitter are unable to reach the
patches and are reflected back toward the emitter.
If plane parallel electrodes are used, these reHected
electrons return to the emitter. Then if only normal
energies are considered, and if it is assumed that
none of the electrons reHected back to the emitter
subsequently reach the collector, the collector cur-
rent can be computed by adding the currents col-
lected by the two types of collector patches. In
this case the current collected by the y» patches,
which occupy half of the collector area, is obtained
from the characteristic with uniform collector sur-
face multiplied by one half with Up= gg —pg2. The
current collected by the p» patches is obtained in
like manner but with Vo= p~ —g~. Thus the result
is the sum of two characteristics with one shifted
a distance bye/2 along the V—Vo axis where

On the other hand, if cylindrical or spherical
electrodes with emitter diameter small compared to
collector diameter are used, the electrons in the
energy range eV+spz to e V+ep» (relative to the
electrochemical potential inside the emitter) which
are reflected from the collector have a very good
chance of missing the emitter and approaching the
collector at a different place. If the re-approach is
made in the vicinity of a low work function patch,
these electrons can be collected. This phenomenon
thereby greatly increases the probability of elec-
trons in this energy range being collected. This
effect has been pointed out by Hill (H12). Thus in
the usual experimental case in which a cylindrical
collector and a fine wire emitter are used, the
neglect of reHection in the patch field of the col-
lector is probably justified.

II.7 The Effect of Patches on the Strong
Field Richardson Plot

II.7a General Theory

Consider a surface which is made up of patches
of different emitting properties. Let a surface field
8 be applied which is much stronger than the
patch field or more precisely, of sufficient strength
to satisfy the requirement of Case 1 of Section II.5a.
Then each patch emits independently of the nature
of its neighboring patches. From Eq. (I.4.3) the
emission per unit area from the ith patch is given by

j =A(1 —r )T'e p$ —xe(q, —(eE)&)jhT$, (II.7.1)
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where
(II.7.5)

Here q*; . is the lowest apparent work function.
From Eq. (I.5.3) the corresponding A** is given by

InA**= ln(js/T')+ep**/kT= In+;fQ
Xexp ( —eh q,*/k T)+ (e/k T)P,m;5 p;*. (II.7.6)

These equations in essentially this form have been
published by Recknagel (R1).Similar reasoning has
also been applied by Heinze and Wagener (H5),
King (K1), and Gysae and Wagener (G13).

From Eq. (II.7.4) it can be seen that y**~&y*
The relationship giving the upper limit of q** is
complicated but the upper limit is certainly less
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FIG. 5. Schottky eGect for a non-uniform surface. The
motive (see Section I.1d) is plotted against the distance from
the surface.

where q; is the zero field work function of the ith
patch and r; is the average reHection coefficient
for the ith patch. The total current per unit area
is given by

j =g;f j;=A T'Q;f, (1—r;)exp( —ey;/kT)
Xexp[e(eZ) ~/kT7, (II.7.2)

where f; is the fraction of the surface occupied by
the ith type of patch. It will be assumed that f; is
independent of temperature as is generally the case
for clean metals but not always for composite
surfaces. Define the zero field current js by

jp =A T'Q;f, (1 r,)exp—( eq ~/k—T). (II.7.3)

This definition of jo amounts to an extrapolation
of the Schottky plot for Case 1, Section II.Sa,to
zero field. In analogy with Eqs. (I.5.1) and (I.5.2)
the corresponding zero-field apparent work func-
tion, y**, for this surface is given by

q**= (k/e)din—(js/T')/d(1/T) =g,m;y;*, (II.7.4)

where m; is the fraction of the total zero Geld emis-
sion current from the ith type of patch, and y;*
is the zero field apparent work function of the ith
type of patch. Or

than the p —Tdp/dT of Eq. (II.4.3) because in
Eq. (II.7.4) the low work functions are more
heavily weighted than the high work functions.
Also, from Eq. (II.7.6) it follows that A**
~fmin. A *min. where f~;a. and A *~;~. correspond to
the lowest work function type of patch. If all A,*
are equal, 2**&~2,* as can be seen from Fig. 13.
Also in Eq. (II.7.4) the to; are temperature de-
pendent. At very low temperatures q**—&p*;„.
from above and at very high temperatures ps*~

;*f;y;a/Pg;*f; from below. This causes the
Richardson plot from a non-uniform surface to be
concave upward and is discussed in Section II.7c.
It can be shown in an identical manner that Eqs.
(II.7.4), (II.7.5), and (II.7.6) are also valid for a
surface made up of subgroups of patches, in which
case m; is the fraction of the total emission from
the ith subgroup and p;* is replaced by q;**, the
zero field apparent work function for the subgroup
which is determined by Eq. (II.7.4) summed over
all patches of the subgroup.

II.7b Strong Field lhernzionic Emission Constants
from Clean Tungsten Single Crystals

As pointed out in Section II.1a, one quantitative
projection tube experiment (N1) with a single
crystal of clean tungsten has resulted in the data
of Table I giving the thermionic constants for the
directions of maxima and minima of Fig. 3. Perhaps
the most striking thing about this table is the
wide variation in the A** values reported. In the
case of the (110) direction, the Schottky plot
indicated a patchy surface inasmuch as it deviated
from the Schottky line at a surface gradient of
about 5 X 10' volts per cm (xs ——90X 10 cm).
Microscopic examination showed a shingle-like
structure normal to the (110) direction (see Section
II.2). The Schottky plots of the other important
crystal directions did not deviate from the Schottky
line down to surface gradients of about 3.0X104
volts/cm (xs = 110X10 ' cm), below which the pro-
jection properties of the tube were not satisfactory.
However, microscopic examination showed a d.c.
etch (see Section II.2) which extended from the
shingle-like region on the (110) surface to the
(111) surface. The other surfaces were reasonably
smooth although some smooth hills and va11eys and
some small surface crystals existed (see Fig. 7,
reference N1).

It is therefore not certain that the emission con-
stants in Table I are characteristic of uniform sur-
faces; in fact, it is quite certain that those for the
(110) are influenced by patches. For this reason,
the thermionic constants in Table I are labeled
with double stars. Consider the data for the (110)
surface. In the first place, the y** for this patch
surface is essentially the same as that for the (112)
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surface. Therefore, it appears reasonable to assume
that the (110) surface is made up of a small frac-
tion of (112) surface plus one or more other patches
of considerably higher work function. In the second
place, it seems unlikely that the A* value for a uni-
form (110) face could be as small as 15 amp. /cm'
deg. ' when measured A** values for other surfaces
run as high as 120. Differences in the A;* of dif-
ferent crystal faces can be due only to differences in
the reHection coeKcients or in the temperature
derivatives of the double layer moments and theo-
retical considerations (see Sections IV.3d and IV.4)
suggest that neither of these effects is likely to be
large.

Suppose, therefore, that the (110) surface is made
up of two different types of patches, one being the
(112) surface of pal**=4.68 and A ~**=120 and the
other having q,**=4.68+by and A2**——120. Fig-
ure 12 is a rough plot of the resulting A** and
8q** for a two patch surface versus the fraction, f,
of the surface taken up by the low work function
patches for various values of by assuming that
both types of patches have a constant A*=120.
It is important to notice that a by of at least about
0.7 ev is required to get an A** value of 15 as given
in Table I. For 8q =0.7, a value of f=0 05 is re-.

quired to give an A** of 15. The corresponding
value of y** is 4.71 which is a little high so that a
8q of around 1.0 ev would be better, in which case
f is about 0.12 and q

**about 4.68. Thus it is reason-
able to assume that in addition to the three essen-
tially different work functions appearing in Table I,
there is at least another which is perhaps about
5.35 ev or greater. As pointed out in Section II.3
there is also evidence from field emission data for
a work function of about 6.0 ev for the 110 surface.

II.7c The Egect of Patches on the Strong Field
Thermionic Emission Constants from

Polycrystalline Tungsten

The purpose of this section is to describe a con-
venient method of estimating the effect of patches
on the strong field thermionic emission constants.

In order to estimate the effect of patches it is
necessary to have information as to the p,* and A;*
values of the individual types of patches and the
relative area occupied by each type of patch. In
many cases it is desirable to include numerous
types of patches of different y;* and A;* in the
estimation . It is therefore convenient to make use
of the fact that Eqs. (II.7.4) and (II.7.5) also apply
to subgroups of patches as follows. First a basic
set of a few different representative types of patches
is chosen and curves of y** and A~* calculated for
different f; values. Then by means of the curves,
combinations of these basic types of patches are
chosen to represent the different types of patches

to be included in the estimation. This results in a
set of f; values for each type of patch to be included
and the sums of the f; values are then used again
with the curves to estimate the average constants
for the entire surface.

In order to illustrate this method for tungsten,
a basic set of four types of patches was chosen. As
a result of the discussion in Section II.7b four types
of patches of work functions 4.35, 4.56, 4.68, and
5.35 were used. This gives four by;* values of 0.00,
0.21, 0.33, and 1.00. For convenience, and inasmuch
as the (112) and (001) surfaces in Table I show A**
values of about 120, the A* values of the four basic
patches were all more or less arbitrarily taken to be
120.

Figure 13 gives the by** and A** values calcu-
lated for surfaces made up of various amounts of
the four patches. The quantities f&, f2, and f3 refer,
respectively, to the fraction of the total surface
occupied by the 4.35-, 4.56-, and 4.69-ev type of
patches. The quantity f4, the fraction of the surface
occupied by the 5.35-ev type of patch is given by
1 f~ f2—fs--

The over-all by** from the patchy surface was
computed from the slope of a straight Richardson
line passed through a point computed for 1000'K
and a point computed for 2000'K. The correspond-
ing A** was computed from the value of by** and
the point at 2000'K.

Although Eq. (II.7.4) indicates that the y** is
temperature dependent, Richardson plots from
polycrystalline tungsten are straight lines, to
within experimental error, over the experimental
temperature range. The experimental temperature
range is sufficiently limited so that the calculated
Richardson plots from the four patch surfaces of
Fig. 13 are as straight as the experimental ones as
long as the fraction of the surface made up of low
work function patches is not too small. Figure 14

FIG. 6. Schematic Schottky plot giving the logarithm of
the current expected from a patchy emitter as a function of
the square root of the applied field g,t the surface of the emitter.
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was from this type of wire that Fig. 3 and Table I
were obtained. In order to estimate the average
thermionic constants for this type of wire by means
of Fig. 13, it is necessary to estimate the fraction
of the surface taken up by each of the four basic
patches. This is done by the use of Table I and
Fig. 3. Figure 15 shows a basis for an estimate in
which it is assumed that the A;** and bq;** values
vary more or less smoothly between the values given
in Table I for the maxima and minima of emission.
To get one of the many possible sets of values for
fi, fg, f3, and f4, a combination of patches is chosen
for each block of Fig. 15 by use of Fig. 13 in such a
way as to give the A;** and bq;** of that block. In
each choice, the fraction of low work function sur-
face is kept as large as convenient in order to keep
the resulting Richardson line reasonably straight.
Table II gives such a set of values for fi, f2, f, , and
f4 To .get the average constants for the wire, the
f values are added and with the use of Fig. 13, the
corresponding y** and A** values are obtained.
For the values given in Table II, the average y*~
value is 4.46 and the average A** is 45. This agrees
well with experiments carried out by the author
(see (53) Table IV; this does not agree with entry
58), using prewar non-sag wire in which the average
current is measured and the q** and the A** de-
termined from a Richardson plot.

It is to be noticed thy, t the y** value of 4.46 and
the A** value of 45 are somewhat lower than the
previously accepted values of about 4.53 and 60
for pure tungsten wire. One possibility which is
worth investigating as a cause for this discrepancy
is that previously accepted constants may have
been obtained from wire with a smaller amount of
preferred orientation of the crystals than non-sag
wire. It is therefore of interest to calculate the
average constant to be expected on the basis of the
four patch model with random crystal orientation.

Only a very crude estimate can be made of the
f values for random crystal orientation because of
lack of quantitative data. The following is such an
estimate which is based on Martin's work (M10)
using the single crystal sphere because ideally in
this case all crystal surfaces have equal exposure
and thus corresponds to random crystal orientation
in a wire. Inspection of Martin's photographs indi-
cates that the pattern from clean tungsten can be
approximated by circular patches of good emission
centering on the (116) and (111) directions and
patches of very poor emission around the (110)
directions. This is corroborated by 6eld emission
data (J3). If it is assumed that the emission peaks
of Fig. 3 are cross sections of the circular patches,
the angles subtended at the center of the sphere
by these patches can be approximated by the
blocks of Fig. 15. For example, to compute the
fractional area of the circular patch centered about

the (111) direction, to which is assigned rp** of
4.41 ev and A** of 44, the area of the circular
patch on a unit sphere which is cut out by a right
circular cone with apex at the center of the sphere
and half angle of 6' is calculated. It is assumed that
this circular patch is surrounded by an annulus
lying between this cone and another cone of half
angle 14', having A** of 80 and y** of 4.56. Since
there are eight (111) directions cutting the sphere,
these areas must be multiplied by eight. To get
fractional areas these areas are divided by 4m.
The same procedure is. applied to the (116) direc-
tion using a circular patch cut by a cone of 11.5'
half-angle with A~* of 54 and y** of 4.39 and an
annulus between this cone and another cone of
half-angle 16.5' with A** 95 and q** of 4.56.
Since there are twenty-four (116) directions cutting
the sphere these areas must be multiplied by 24.
Also there a.re twelve (110) directions with cones of
half-angle 12' and A~~ of 15 and y** of 4.69. It is
assumed that all the rest of the area is described
by A**of 120 and p**of 4.69.Table I I I summarizes
these results. The composite A** is 54 and the
composite y** is 4.49. This is, of course, only a
rough estimate. For example, if the total fi 0.05,——
the total f2=0.4, and the total fa 0 4, t——he .result
would have been composite A**=63 and com-
posite @~*=4.51.

Thus the estimate for random orientation gives
values more in line with the previously accepted
values of A~* and y** for pure polycrystalline
tungsten specimens. The literature pertaining to
the crystal orientation of pure tungsten poly-
crystalline wires which have undergone heat treat-
ment typical of thermionic specimens —i.e., Hashing
to 2900'—3000.'K for several minutes —does not
seem very conclusive. For example, Jeffries (J2) re-
ported that crystals in hard drawn tungsten wire
of 0.0005 inches diameter retained the preferred
orientation of the raw wire (110 axis aligned with
the wire axis) when heated to around 1500'K. He
included x-ray Laue photographs confirming this.
On the other hand, Goucher (G5) stated that pure
tungsten wire of about 0.008 inches diameter, if
Hashed for several minutes at 2900'—3000'K, pro-
duces crystals oriented at random. Since Goucher's
objective was to study the behavior of tungsten
crystals under tension, it is possible that he was
referring to a random orientation about a (110)
axis which was parallel to the wire axis rather than
to a completely random orientation. The x-ray
Laue photograph which he included is not conclu-
sive in this respect because only a strip cut at right
angles to the axis of the wire was included. In order
to settle this question, an x-ray analysis should be
made using pure tungsten wires which have been
given the heat treatment normally given thermi-
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onic specimens with wire diameters normally used
in thermionic experiments.

The above results show that in the detailed inter-
pretation of thermionic data even from clean metals
it is necessary to know in detail the crystalline na-
ture of the emitting surface.

II.8a cornea/ Energy Considerations

If only normal energies are considered, then all
patches with work function less than the q de-
fined in Eq. (II.4.3) will act as one patch whose
work function is g and whose fractional area is the
sum of the fractional areas of all patches whose
work function is less than g provided that reflection
effects at the metallic surface are reasonably inde-
pendent of velocity. Then the theory of Section
II.7 is applicable. Let all y; for i&k be equal to
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FIG. 9. Associated reRection coefficient for two-patch
checkerboard surface as a function of normal energy in elec-
tron volts using the normal energy approximation.

II.8 The EBect of Patches on the Weak
Field Richardson Plot

Consider the thermionic emission from a patchy
surface collected by fields so small that the motive
maximum lies outside the patch field or, more
precisely, that Case 2 of Section II.5a is satisfied.

or less than p. The hp of Eq. (I.4.2) is very small
because the field strengths are small. If Ap is
neglected and if it is assumed that r, is zero, then
the slope of the Richardson plot gives

(II.8.1)

where m; is the fraction of the total emission from
the ith patch. Also w is the fraction of the total
emission from all patches whose p;& g and is given
by m fAT'exp( —ep/kT)/jo, where jo is the total
current per unit area and f=g,&If; Al.so p*= p—Tdp/dT. Thus p** is a little larger than p* and
is therefore larger than the corresponding q** for
high 6elds. The value of 2**under these conditions
will also be higher than the corresponding A**
for high fields because all patches having work
function less than g act as one patch of work func-
tion p and fractional area f= P;&if;.

II.8b Tangentia/ Energy Considerations

As before, the problem is complicated when
tangential as well as normal energies are taken into
account. Since the associated reflection coeScients
must be averaged over a Maxwellian distribution
of normal velocities to get the emission currents, it
follows from Fig. 33 of Appendix V that if the
associated reHection coefficient is principally a re-
sult of the patch effect, the Richardson plot when
tangential energies are taken into account will be
steeper than with the corresponding normal energy
approximation provided, of course, that in the
tangential energy case the reHection coefficient does
not decrease appreciably with decreasing energy.
Therefore, the apparent work function from this
case will be greater than that for the normal energy
approximation. The corresponding emission con-
stant will also be larger.

II.Q Relative Values of the Strong Field and Weak
Field Thermionic Constants for a Patchy Surface

Although the detailed interpretation of the weak
field constants is complicated, the approximate
value of the weak field work function of a patchy
surface is a little larger than q. On the other hand,
the corresponding high field work function is
heavily weighted on the low work function side. If
the different patches occupy comparable amounts
of emitter area and if the A* do not vary too
widely, then the difference between the low 6eld
work function and the high 6eld work function is
the same order of magnitude as the maximum
difference in work function of the patches. In this
connection, it is of interest to compare the approxi-
mate weak 6eld work functions calculated by using
Eq. (II.4.3) and the f values given in Tables II and
III with the corresponding calcula, ted strong field



work functions. Application of Eq. (II.4.3) gives
5.05 ev and 4.81 ev, respectively, for the approxi-
mate weak field work functions as compared to
4.46 and 4.49 for the high field work functions. The
differences between the respective low and high
field work functions are the same order of magni-
tude as the difference in work functions of the
assumed fundamental patches. Thus a check on the
existence of the high work function patch —i.e. ,

the 5.35-ev patch postulated in Section II.7b-
could be obtained from an experimental deter-
mination of both the high field and the low field
work functions of the same polycrystalline speci-
men under conditions in which space charge effects
are negligible. In this connection it is interesting
to note that Nottingham (N7) has reported a zero
field work function for clean tungsten of 4.75
volts (see Section III.2).

The dependence of the thermionic constants on
the patch nature of the emitting surface and the
collecting fields is well illustrated by experimental
data from composite surfaces. The general theory
is the same as that of the previous sections but the
work function differences, especially for small
coverage, may be larger. In addition, the nature of
the patches and the amount of adsorbed material
is dependent upon the temperature so that straight
Richardson plots are obtained only over a limited
range of temperature. The published data from
composite surfaces such as thorium on tungsten,
vary greatly. This is undoubtedly due in part to
variations in crystal structure and purity of the
specimens as well as to differences in vacuum tech-
nique. However, the general trend of the data as
functions of collecting fields is illustrated by Fig. 16
taken from Brattain and Becker (B23). (See also
Rose (R13).) This figure is a plot of approximate
data on the dependence of rp** and A~* upon col-
lecting voltage for a thoriated polycrystalline tung-
sten wire of 0.004-inch diameter at various stages
of activation. Here the activation is designated by
f which is the ratio of activation time to the activa-
tion time required to produce maximum emission
with high collecting fields. In accordance with the
above paragraphs, it is to be noticed that both A**
and y*~ increase with decreasing field strength. It
is important to notice that the increase is less
rapid for the higher f values. This means that as f
approaches unity, the surfaces become more uni-
form. This has an important bearing on the inter-
pretation of the A** and q** from pojycrystalline
thoriated tungsten wire. For example, Fig. 17 is a
plot of Table I from Brattain and Becker (B23)
which summarizes their data for the case of thorium
evaporated onto a tungsten ribbon 0.035)&0.0036
X11.1 cm and which gives A** and y** for 100-
volt collecting potential as a function of the activa-
tion, f The authors . state that this potential gives
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FIG. 10. Associated reflection coefficient for a sinusoidal
strip surface as a function of normal energy in electron volts
using the normal energy approximation.

saturated emission. Perhaps on account of the
tendency for (001) surfaces of tungsten to pre-
dominate in the surface of the ribbon (A7), the A**
values are higher than those published by Dushman
(D7) for thoriated tungsten wire. However, the
trend is the same. Now the voltage dependence,
Fig. 16, indicates that the surface becomes rela-
tively uniform for values of activation about unity.
Thus it is difficult to account for the low values of
A~* by the patch effect alone. However, the varia-
tion of y*~ with f is reasonable on the basis of Eq.
(II.7.4) because as the activation is increased, the
areas covered become larger and the work function
of the covered areas decreases to a minimum value.
In order to better interpret the data from thoriated
tungsten, it would be desirable to have quantitative
data on single crystal thoriated surfaces.

The data of Fig. 16 show a difference of about
0.7 volt between the low field and high field work .

functions for low activation. This is the same order
of magnitude as the difference of 0.6 ev between
patches reported by Ahearn and Becker (A1). The
difference between the low field work function and
high field work function and the patch size can
both be estimated from a Schottky plot which
includes the anomalous region because the anoma-
lous region is the transition between the high fields
of case 1, Section II.5a and the low fields of Case 2
of that Section.

II.10 The Effect of Patches on the Calorimetrically
Determined Vfork Function

The cooling effect accompanying thermionic
emission has been discussed in Section I.7 for a
uniform surface. The heat loss per electron for zero
field emission is given by Eq. (I.7.4). Consider as
before a patchy surface with collecting fields much
stronger than the patch field so as to satisfy Case 1
of Section II.5. Then the heat loss per electron
extrapolated to zero collecting field is given by (H8)

(II.10.1)
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where as before, to; is the fraction of emission from
the ith patch and l„~.~ '~ is the zero-field heat loss
per electron for a uniform surface of the ith type;
Usirig Eqs. (1.5.2), (II.7.4), and (II.10.1), and
assuming that r; is independent of temperature,
this can be written in terms of y** of Eq. (II.7.4)
(see reference (HS))

ep**=i„t.**—Q; Tw,dl.,t,.&'&/dT+eo T. (II.10.2)

It follows from Section I.7 that the last term is
small, of the order of hundredths ev or less, both
for metals and semiconductor coatings on metal
cores.

The second term is of the order of k T if 0- and
dq~/dT are small because from Eq. (I.7.4)

II.1 1a The Breakpoint of the Retardhng
Potential Characteristic

For uniform plan e cathodes in the absence of space
charge, the retarding potential characteristic would
have an abrupt change in sl ope at U = Uo which is
the condition for zero field between the electrodes.
In the case of patchy cathodes, this breakpoint is
somewhat smoothed out particularly if the cathode
has a wide variation of patch size, patch work
function, and patch distribution. This makes the
determination of the break point from an inspection
of the experimental curve more

dificult

and less
accurate. Also, if the patch size is not too small,
the anomalous Schottky Effect (Case 3, Section
II.Sa) sets in at small accelerating potentials
which can obscure the breakpoint.

Tdl &'&/d T=eTd q;/d T+eo T

T

+eT, (o/T)dT+2kT. (II.10.3)
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FIG. 11. Experimental transmission coefficient for poly-
crysta11ine thoriated tungsten and calculated associated trans-
mission coefficients using the normal energy approximation
for a sinusoidal strip distribution, all plotted as functions of
normal energy. From Nottingham (N7).

II.11 The Effect of Patches on the Measurement of
Contact Potential by Means of Volt-

Ampere Characteristics

In addition to the Kelvin method described in
Section I I.4, several other methods making use of
the volt-ampere characteristics of thermionic or
photoelectric emission have been worked ou t. The
principal methods are discussed in this section.

II.11b The Intersection of the Tangent to the
Retarding Potential Curve and the Tangent

to the Saturated Zmi ssi on Curve

Consider first the case of plane parallel electrodes
with a patchy cathode and uniform anode. It
follows from Section I I.6 that for values of U —Uo

which are much larger than any difference in work
functions occurring in the cathode, the log(j) versus
V—Uo plot approaches a straight line (as before,
Vo = p&&

—gtg) . This line can be projected to inter-
sect with a tangent drawn to the log(j) versus V —Uo

curve for accelerating potentials sufficiently large
to give saturation or, more precisely, sufficiently
large so that the requirements of Case 1 in Sec-
tion II.Sa are satisfied. Actually the latter curve
varies only slowly with ( V—Vo) so that if the patch
size is not too small, the extrapolation of the tan-
gent will not involve much error. (.If the patch size
is very small, the extrapolation must extend over
a large V—Vo range thereby entailing somewhat
more error. ) This is illustrated schematically in
Fig. 18 for a two-patch checkerboard using the
normal energy approximation. Generally, this
method makes possible the determination of a
characteristic point with considerably more pre-
cision than the determination of the breakpoint by
inspection. It is clear that the intersection for
saturated erriission lies to the right of U —Vo = 0 in
Fig. 18.

Heinze and Wagener (H5) have analyzed this
method for a patchy cathode. Using the terminology
of the previous sections their analysis is briefly as
follows. Equation (II.7.3) gives the saturated emis-
sion current, j0,—i.e. , the current collected with
high accelerating fields so that Case 1 of Section
I I.5a is satisfied —extrapolated to zero field. Define
a mean work function q such that

7p =2 T' exp( —e jr/kT) Q;f 1—r;. (II.11.1)
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V—Vo= qa —
q a. (II.11.7)

Therefore since generally p&&g» the intersection
occurs to the right of the origin of V—Vo in Fig. 18.
In the case of a two-patch checkerboard emitter,
qs —ps —8y/2 where, as before, Bp is the dif-
ference in work function of the two patches. In
connection with this method it is important that
both ys and ja are different temperature de-
pendent averages of the individual patch work
functions.

If the patch size of the cathode is sufficiently
small so that Case 2 of Section II.Sa is satisfied
over an observable range of small -accelerating

Hence from Eq. (II.7.3)

t'kTq p;j';(1—r,)
q =

(
—

~

ln — (II.11.2)( s ) g;f;(1—r;)exp( —e(p;/kT)

Neglecting reflection, the y so defined is related to
y** of Section II.7 by the equation

q**=j Tdq—/dT. (II.11.3)

Now consider the case of plane parallel electrodes
with a patchy cathode and a uniform anode of work
function y&. Apply a retarding voltage V—Uo)y~ ~,x—g~, where p~ ~,„

is the highest work
function patch appearing in the cathode and ps
is the average work function of the cathode as
defined by Eq. (II.4.3). Then if only normal ener-
gies are considered, the emission from each patch
reaching the collector is independent of the presence
of the neighboring patches. If the velocity dis-
tribution of the emitted electrons is assumed to be
Maxwellian, —i.e., r, is independent of velocity-
the current per unit area of the ith type of patch
reaching the collector is given by

j,=A T'(1 —r;)exp[ —e( U+ pp)/k T], (II.11.4)

where V is the applied retarding potential —i.e.,
the positive side of V is connected to the cathode.
Therefore the total current reaching the anode from
all the patches of the cathode per unit area of the
cathode is given by

Inj = in[A T2 P;f,(1—r~)$ —e( V+ pz)/kT. (II.11.5)

The intersection of the projection of the straight
line portion of the retarding potential curve and
the tangent to the saturation current curve occurs
when the current j of Eq. (II.11.5) equals the cur-
rent jo of Eq. (II.11.1). To within the approxima-
tions outlined in the first paragraph of II.11b, this
gives at the intersection point

(II.11.6)

In terms of the Vo defined in Section II.4, the
intersection occurs at

potentials, a tangent may be drawn to this portion
of the characteristic as indicated in Fig. 18. This
case is more difficult to analyze but a rough esti-
mate is as follows. If only normal energies are
considered and if the emitted electrons have a
Maxwell velocity distribution, the current per unit
area for small accelerating potentials satisfying
Case 2 can be written

Inj = InA&**T' cps*—*/kT, (II.11.8)

when A~** and g~** are defined in Section II.8a.
At the intersection point

InAs**T' cps~*—/kT=lnAT g.f (1—r )
e( V+ y~—)/0 T. (II.11.9)

This can be written

V—Uo=g *—g
+ (&T/s)»[A P;f,(1—r;)/A. **(. (Il.».10)

If r, is small, then V—Uo at the intersection point
has a small positive value and hence the intersec-
tion occurs slightly to the left of V—UO=O in
Fig. 18. In the case of the two patch checkerboard
with 5@=0.5, Ai*=Ag~ ——120 and r=0, it can be
seen from Fig. 12 that A~** is about 90 and g~**
= ps+0.03. If T= 1160'K, then V—Uo = 0.06 as
indicated in Fig. 18.

The above discussion has been based on the
normal energy approximation. Since it is natural
to presume that the associated reHection coeffi-
cient is zero for normal kinetic energies mell
above e(ys, —pii) even when tangential energies
are taken into account, the above results in the
case of saturated emission —i.e. , Case 1—are valid,
but the results for the low field case i.e. , Case 2—
must be corrected.

In the above analysis, it has been assumed that
the collector surface is uniform. If the collector
surface is patchy, q» should be replaced by p&
defined by Eq. (II.4.3) and reHection in the patch
field of the anode should be corrected for in a
manner analogous to that outlined in Section II.6c.
If cylindrical geometry with cathode diameter
small compared to anode diameter is used, Section
IL.6c indicates that reHection in the anode patch
field can probably be neglected. In the cylindrical
case, the above analysis must be modified to take
into account the curvature of the retarding poten-
tial characteristic for uniform surfaces. To allow
for this, Heinze (H4) has applied a numerical cor-
rection thereby permitting the use of the above
results.

This method with cylindrical geometry has been
used to observe work function changes in the anode
or in the cathode. If the g~ of the anode is constant,
a shift in the intersection point (using saturated
emission) indicates a, change in the ys of the cath-
ode. For example, Heinze and Wagener (H5) have
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used this method to observe changes in pps during
the activation of oxide cathodes. On the other
hand, if the y~ of the cathode is held constant, then
the shift of the intersection point is due to a change
in the g~ of the anode. This has been used by
Rothe (R15) and others to follow changes in p~.

If this method is used to follow changes in the
cathode, the geometry can be easily arranged for
convenience in making Richardson plots of the
cathode emission. This is one of the main advan-
tages of this method.

II.11c The SPace Charge Limited Characteristic

If the emission is space-charge limited and if
initial electron velocities are taken into account, it
turns out that the potential outside the cathode
surface is depressed so that electrons which reach
the anode must pass over a barrier higher than the
surface barrier of the cathode. Gysae and tA'agener
(G12) using Langmuir's theoretical results for a
Maxwellian distribution of emitted electrons have
pointed out that the current collected by the anode
depends mostly on the applied voltage and the g»
of the anode and only slightly, if at all, on the work
function of the cathode. They verified this result
experimentally by using first a clean tungsten
cathode and then the same cathode with a layer
of barium oxide on it. No shift of the characteristic
was observed. Gysae and Wagener (G13) have also
carried out an experiment in which a patchy anode
was simulated and verified in this manner that the
current collected depends on the average anode
work function pp~. The effect of a change in p~ is to
shift the accelerating volt-ampere characteristic a
corresponding distance along the V axis. Since in
this case accelerating potentials are used, reQection
effects at the anode do not occur. Thus this method
is applicable to the measurement of changes in
anode work function g~ or to the measurement of
the difference of the q~ of different materials used
as anodes with the same geometry. This method
has been used by Riemann (R3), Gysae and
Wagener (G12), I. Langmuir and Kingdon (L6),
and others. A method similar to this but not space-
charge limited has also been used (see for example
(M15) and (L2)). This method has a disadvantage,
compared to the space-charge limited method, in
that the results are directly dependent upon the
constancy of cathode conditions during measure-
ments.

II.kid The Electron Beam Method

A modification of the above methods has been
used by Anderson (A2) who determined contact
potential differences between two surfaces by plot-
ting the retarding potential characteristics of a
beam of low energy electrons using first a. plane
collector of one surface and then the other surface.

By an inspection of the characteristics he chooses
a collector current, j., in the steepest portion of the
characteristic and determines the corresponding
potentials. The difference in these two potentials
is taken to be the contact potential between the
two plane surfaces. If the collector patch size is
sufficiently small compared to the size of the elec-
tron beam and the electrode spacing, the general
reasoning of the preceding sections can be applied
to estimate the effect of patches. If only electron
energies normal to the collector are considered, the
total collector current can be considered as the
sum of the currents collected by the various types
of patches each acting as a uniform surface inde-
pendent of the neighboring patches except that, as
before, those patches whose work functions are
less than gg act as one patch of work function g~
and fractional area given by gf; summed over-all
patches whose q~;&q~. The shape of the volt-
ampere characteristic for each type of patch de-
pends on the normal energy distribution of the
electrons in the beam and is the same shape for
each type of patch. However, the volt-ampere
characteristic for each type of patch is displaced
along the voltage scale by an amount p&;—g» for
all patches whose pg;) gg.

For purposes of discussion, consider again a two-
patch checkerboard surface on the collector whose
checker size is small compared to the beam size and
electrode spacing and let @~2&q~». Let the volt-
ampere characteristic of the current per unit area
collected by the pp» patches be somewhat as indi-
cated by the dashed line in Fig. 19. The current
per unit area collected by the ppz; patches will then
be the same shape but displaced a distance 8q~/2
to the left on the voltage scale and is indicated by
the dash dot line. The over-all characteristic per
unit area will be ha1f the sum of the currents from
the individual types of patches and is indicated by
the solid line. Let the reference current, j„for the
case of a uniform surface of work function q ~ occur
at V—Vp= V„where Vp ——p~ —g~. Then for the
patch surface, if 8p&/2 is appreciably smaller than
the range of V—Vp over which the characteristic
is essentially linear, the reference current occurs
for V—Up —— V+8 ~p/p4Now if the above col-
lector is replaced by a collector having values
pg' and 5@~', the reference current occurs for
V —Up = Up+By~ /4. Since Vp —Up = rpg —qr~, the
diff'erence V—V' in the applied potentials between
these two cases is

V—V' = ppg' —pp~'+ p (happ~' —8q g) (II.11.11)

provided that the g~ of the cathode remains con-
stant. Thus on the normal energy picture, the
difference (V—V') involves not only the difference
in the surface average of the work functions but
also the work function difference of the patches.
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If tangential kinetic energies in ' the electron
beam are taken into account, the problem is much
more difficult to analyze. Consider for example, two
collector surfaces with equal q» but with different
associated reAection coefficients and 'let the dis-
tribution of velocities in the electron beam be
Maxwellian for the electrons which reach the neigh-
borhood of the collector. Then it is easy to show that

V—V' =hT/e InL(1 —r)/(1 —r') $, (II.11.12)

where r and r' are the associated reHection coeffi-
cients averaged over a Maxwell distribution (see
Appendix V). In general, when tangential energies
are taken into account, the average reHection co-
eScients, r, will be a complicated function of the
patch arrangements and work function differences.

II.11e The Magnetron 3SIethod

Oatley (01) has developed a method of deter-
mining contact potential by the use of a magnetic
field parallel to the axis of a filament with concentric
anode. His method is to plot the square of the mag-
netic field, III), required to reduce the current, in
the absence of space charge, to one-half its field
free value versus the applied voltage V. The result
is approximately a straight line and the intercept
on the V axis, after correction for initial velocities,
is the contact potential. The previous sections in-
dicate that this is the difference in g~ arid g~ of the
anode and cathode if the local effects on the anode
are neglected. This neglect may not be entirely
justified because with the applied magnetic field a

significant fraction of the electrons "graze" the
anode so if patches of appreciable size exist on the
anode, the "grazing" electrons can be appreciably
affected.

The main advantage claimed for this method
over the intersection point method is that larger
anode currents are drawn at considerably higher
electron energy so that a beneficial cleaning of the
anode results by this electron bombardment. This
method can be used for observations of the contact
potential difference of the anode against the cathode
as well as for changes in p of either the cathode or
anode.

II.11f Comparison of 3Eethods

All the above methods, with the exception of the
space charge limited characteristic, involve the
difficult problem of evaluating patch effects at
the emitter or collector. As pointed out in Section
II.1.ib in connection with the intersection point
method, the effect of refiection in the patch field
of the collector can be minimized and can perhaps
be neglected, if the collector is cylindrical (or
spherical) with diameter very large compared to
that of the emitter. If this geometry is used, the
intersection point method can give relatively re-
liable measurement of changes in the y~ of the
collector. In this connection it should be empha-
sized that the Kelvin method described in Section
II.4 can give reliable measurement of the difference
in the p of the two electrodes free from. the problem
of motion of electrons in the patch fields. If tem-
perature gradients exist anywhere in the circuit,
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FIG. 12. Computed values of As* and Bq** for a two patch -surface with high collecting fields, where f is the
fraction of the surface occupied by the low work function patches.
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it is necessary o cto correct for thermoelectric effects
(see Section I.6).

II.12 Photoelectric Emission
1'

Many of the results of the above section carry
over in o p

' t hotoelectric emission. Alt oug it is not
the ur ose of this review. to include the fie o
p o

' ', ' ant hotoelectricphotoelectric emission, the importan p
patch effects will be brieRy discussed in this section
because of their close relationship with the pre-
ceding sections.

h surfacesThe photoelectric emission from patchy sur aces
as a function of accelerating collecting 6elds strength
has been investigated in numerous papers. ' The

S tion II.5.results are in good agreement with Sec
of the velocityThe experimental determination o

'See for example (L11), (S19), (S20), (821), (11), Ki).

distribution of photoelectrons has also beenn the
su jec o numb' t f umerous researches. " In the ow energy
regions, esth e measurements are subject to e
same difficulties as the measurements of the veloc-

the surfaces of the emitter and collector are not of
uniform work function.

The most accurate determinations of the photo-
electric work function are obtained -from an analy-

f h h f the spectral distribution curve
ethod forth long wave-length limit. A met o or

analyzing the data has been worked out by Fow ler
(F6) who derived, under simplifying assumptions,
the following expression for the spec

~ ~

ectral distribu-
tion curve for a uniform surface at temperature T:

I=HT'P/(h v e'er)/k T7, (II.12.1)—
"See for example (N6), (M12), (L8), (04), (H14), (H12).
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where I is the emission per unit area extrapolated
to zero field. H is a constant, v the frequency of the
radiation, and y the work function at the tempera-
ture T. The function p is a series whose numerical
values have been- tabulated. This expression is
meant to hold only near the threshold. Equation
(II.12.1) can be written

where
1 og(I/ T') = C+P(x), (II.12.2)

C= logH, P= logp and x = (kv ep—)/kT

In Fig. 20 the curve marked f=0.5 and bq = ~ is
a plot of Eq. (II.12.2).

Fowler's method of determining the true work
function from the spectral distribution curve of
photoelectric emission from a uniform surface at
the temperature T is as follows. Plot the measured
values of 1 og(I/ T') near the threshold versus the
quantity kv/kT. Using the same graphical units,
plot the function P(x). Superimpose the two curves
by a simple translation of axes. The shift along the
log (I/T') axis represents the constant C. The shift
along the kv/kT axis gives ep/kT

An alternative method has been worked out by
DuBridge (D6) in which the frequency of the in-
cident light is held constant and the temperature
of the emitter varied. The data are plotted as

Iog(I/ T') versus log (1/T) where I is the current per
unit area and T the temperature. Then a plot of
logP(x) versus logx, using the same graphical units
is superimposed on the experimental data by a
simple translation of axes. The shift along the
log(1/T) axis gives log(kv —ep)/k. Since v, the fre-
quency of the radiation is known, q can be com-
puted. The shift along the Iog(I/T') axis involves
the constant H, the intensity of the light, etc.
Linford (L11) has pointed out that if H is temper-
ature dependent, difficulty in superposition of the
theoretical curve on the data may result. 'The same
can be said for q.

Still another method which has often been used
is that of the complete photoelectric effect, —i.e. ,
measurement of the emission from a photoelectric
cathode when illuminated by black body radiation
of various temperatures. Since some misconceptions
are prevalent regarding the thermodynamic sig-
nificance of the emission-temperature relation, a
theoretical discussion of this method is given in
Appendix VI; no further discussion will be included
in this chapter.

(II.12.1) is correct for each patch alone, the ex-
trapolated zero-field emission from unit area of a
polycrystalline surface is

I=+ fH T'p[(kv eq—)/kT], (II.12.3)

where H; and p; are characteristic of the ith type
of patches. The rest of the notation is the same as
in the preceding sections. Figure 20 is the plot of
the logarithm of Eq. (II.12.3) versus (Izv erp&)—/kT
for a surface having two differen kinds of patches
of equal area. The work functions of the patches
are y~ and q2, 6q=q2 —q~. It is assumed that
H~=H2 and that T=273'K.

Actually, polycrystalline emitting surfaces are
generally made up of a variety of patches having
different work functions with size and arrangement
more or less random so that the result will be a
more or less smooth deviation from the Fowler
curve for a uniform surface similar to the deviation'
in Fig. 20. Inspection of Fig. 20 shows that if the
work function differences range over a few tenths
of a volt, an approximate fit can be obtained by
displacing thy fowler curve for a uniform surface
(by= ~) upward and to the right an amount corre-
sponding to about several hundredths of an electron
volt at room temperature. This corresponds to an
average photoelectric work function for the com-
posite surface several hundredths of a volt higher
than the work function of the lowest work function
type patch in the surface, provided, of course, that

0

II.12a The Effect of Patckes on the Determination of
the Strong Field Photoelectric S'orb Function

If the applied field strength is much greater than
the patch fields —i.e., large enough to satisfy Case i,
Section II.5a—the emission from each patch is
independent of its neighbors, Assuming that Eq.

4 8
7

FrG. 14. Calculated Richardson plots from four
patella sgrfacos of Fig, )3,
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TABLE II. Patch estimates for preferred crystal orientation. to satisfy Case 2 of Section II.Sa—and if only
normal energies are considered, the emission per
unit area is given by Eq. (II.12.4) in which 82, (p
for all i(0, H is the effective constant for the emis-
sion from the patches whose work functions are
less than g and

Fraction
y*~ A** of surface fiAngles

0.030
0.067
0.050

-40o—17
-120

00
80

20o
28
35o
47'

-43O to
-4p to-17 to
-12O to

p to
8O to

20 to
28O to
35 to

0.03
0.29 0;070
0.06
0.13
0.09 0.002
0.13 0.015
0.09 0.002
0.08

4.56 120.
439 54
456 . 95
4.69 120
4.56 80
4.41 44
4.56 80
4.69 120
4 69. 15

0.058 0.096
0.010

0.130
0.036
0.026

0.045
0.017
0.045

0.017
0.072
0.040

0.080
0.013 0.1170.13

Sum 0.089 0.254 0.343 0.352 I fH Tsp I-(h ) /h T)

this type of patch occupies an appreciable portion
of the area. It is of importance to notice that the
e8'ect of patches on the Fowler plot depends on the
temperature because the work function differences
enter into the function P(x) divided by h T so that
for higher temperatures the deviation from the
Fooler plot for uniform surfaces sets in at lower
values of x. This means that for higher tempera-
tures the average photoelectric work function ob-
tained by the method outlined above may deviate
less from the work function of the lowest work
function type of patch and therefore may decrease
with increasing temperatures. In the thermionic
case, the average apparent work function increases
with increasing temperature relative to the work
function of the lowest work function type of patch.
This may explain in part the results of King (K1).

Figure 21 is a plot of Eq. (II.12.3) using the
DuBridge method in which logI/T' is plotted
against log(x) for different values of 8p. In the
case that the theoretical curve for a uniform sur-
face, represented by the curve for 8p = ~, is super-
imposed to give the best approximate fit to the
average data from a patchy surface, Fig. 21 indi-
cates that the effect is a shift to the left and down
thereby giving an average work function lower than
that of the lowest work function type of patch.
Inspection of Fig. 21 shows that the average de-
termined by the method may be several hundredths
of a volt lower than the, work function of the lowest
work function patch depending on how close the
illuminating frequency is to the threshold frequency
of the lowest work function patch. However, if
accurate data are taken at the lower temperature
and at frequencies near the threshold of the lowest
work function patches and if the theoretical curve
is superimposed on the data for only the lower
temperatures, Fig. 21 indicates that the patch
effect can be reduced. The main reason 'for this is
that the plot by the DuBridge method has appreci-
able curvature for low values of x.

+g f;II,p[(hv ey;)/—kTj. (II.12.4)

Assuming that the constant II is the same for all
patches and is ind'ependent of the velocity of the
emitted electrons, the plot of the logarithm of Eq.
(II.12.4) for a surface made up of two different
kinds of patches would be the same as Fig. 20
except that the q1 of Fig. 20 becomes for this case
p and the b&p marked on the curves must be multi-
plied by two. The curves, Fig. 21, for the alterna-
tive method of DuBridge would follow in the same
way.
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II.12c Agreement with Experiment

Jamison and Cashman (J1) and Farnsworth and
Winch (F2) have published Fowler plots which
they recognized as distinctly showing the effect of

II.12b The Egect of Patches on the Determination of
the Beak Fz'eld Photoelectric 8'orb Function
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If the field strength is weak enough to give motive
tuaximum outside the patch field —i.e. , weak enough

FIG. 15. Approximate values of A. ** and titan** of single
crystal tungsten wire (prewar non-sag variety) as a function
of the angle measure(f @boqt the ryjrc axis.
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patches. In both cases the shape of the plots was in
agreement with that of Fig. 20. Mann and Du-
Bridge (M7) have also published a Fowler plot
which clearly shows patch effects. In numerous
other cases the experimental data could be fitted as
well by a Fowler curve taking into account the
patch effect as by the Fowler curve for a uniform
surface. One of the reasons for this is that the
Fowler curve is more or less linear at the higher
values of x with most of the curvature at the lower
values of x. However, most of the experimental
points are often obtained at the higher values of x
because of the convenience in measuring the larger
currents and perhaps also because the percentage
change in currents due to unstable surface condi-
tions is smaller at the higher values of x. Now from
Fig. 20 it can be seen that under these conditions,
the superposition of the theoretical curve for a
uniform surface and the data by simple translation
of axes entails an amount of arbitrariness which
may obscure the patch effect. Another point is that
photoelectric data are often taken with electrode
geometry which results in rather low applied col-
lecting field strengths at the surface of the emitter
so that in many cases the weak collecting, field
results of Section II.12b apply. In these cases, the
work function differences must be taken relative
to g of the emitter. In any case, the photoelectric
Schottky effect if observed over a sufficiently wide
range of collecting field strengths, will indicate the
magnitude of patch effect to be expected in con-
nection with the Fowler plots.

II.12d Comparison of the Average Thermionic and
Photoelectric Emission Constants arid the Contact

Potential from Non Uniform Snrfa-ces

In order to obtain information on such things
as the temperature dependence of the work func-
tion, comparison of work functions obtained from
thermionic, photoelectric, and contact potential
data have often been made. (See for example (B9),
(C2).) If the surfaces in question are not uniform,
it is clear from the above that the thermionic and
photoelectric work functions involve averages dif-
ferent from each other and from the averages enter-
ing into the contact potential. These averages also
depend on the temperature in a differen way. In
the case of collecting fields strong compared to the
patch field, the thermionic work function obtained
from a Richardson plot and the photoelectric work
function obtained from a Fowler plot may differ by
several hundredths of a volt for a metal like tung-
sten. If the photoelectric and thermionic work. -
functions are determined with different collecting
field strengths —i.e., for example the photoelectric
work function at low collecting field strength com-
pared to the emitter patch field (as is often the case

TABLE III. Patch estimates for random crystal orientation.

Surface

116 spot

111 spot

110 spot
Balance

Fraction
of surface

0.240
0.252
0.022
0.097
0.120
0.269

4.39 54
4.56 95
4.41 44
4.56 80
4.69 15
4.69 120

Sum

0.058

0.003
0.001

0.050
0.210
0.003
0.068

0.062 0.331

f3 f4

0.048 0.084
0.042

0.004 0.012
0,028

0.015 0.105
0.269

0.336 0.271

with the geometry used in photoelectric experi-
ments, because of the convenience of large emitting
areas) and the thermionic work function at high
collecting field strengths compared to the patch
field —the results may differ by an amount of the
same order of magnitude as the work function dif-
ferences appearing in the emitting surface provided,
of course, that the surface area is relatively evenly
divided between the high and low work function
patches.

Now in order to take into account in a quanti-
tative way the effect of patches on the average
data, it is first necessary to know in detail the
emission constants, arrangement, and relative areas
of the patches in the surface. This would require
something like a quantitative electron projection
tube study of the surface using both thermionic
and photoelectric emission in which case the aver-
age emission data from the non-uniform surface
have their value mainly as a check on the electron
projection tube data. Certain types of surfaces
such as single crystal surfaces, surfaces formed by
condensation of metal vapors on amorphous or on
single crystal surfaces (A6), or surfaces of ribbons
formed by rolling of such metals as tungsten which
show preference for the (100) surfaces to lie in the
surface of the ribbon (A7), may exhibit small patch
effects. As pointed out before, an estimate of the
extent of the patch effects can be determined by
electron projection tube studies of the surface or by
a Schottky plot over sufficiently wide range of
surface collecting fields.

III.l Measured Emission Constants

Since the last review article, numerous measure-
ments of the emission constants of clean metals
have been published. In order to bring the sum-

CHAPTER III. SURVEY OF RECENT EMISSION DATA

The purpose of this chapter is to list the experi-
mentally determined emission constants for clean
metals published since the last review and to dis-
cuss brieRy certain aspects of recent important
papers relating to thermionic emission on which the
authors feel that the material in the other chapters
of this paper may shed some light.
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FIG. 16. Dependence of A** and p** from polycrystalline
thoriated tungsten- wire upon collecting voltage for various
degrees of activation. Taken from Brattain and Becker (B23).

The extensive measurements of. the contact potential of
many different metals in purified argon reported by O. Klein
and E. Lange, Zeits. f. Elektrochemie 44, 542 (1938),have not
been included in this table.

mary of such measurements up to date, Tables IV
and V have been included. Table IV summarizes
the data taken in connection with polycrystalline
surfaces' and Table V summarizes the data taken
from single crystal surfaces.

In connection with the polycrystalline specimens
listed in Table IV, it is unfortunate that in many
cases the. voltage dependence of emission was not
included in the published report. Most of these
cases were for photoelectric studies in which the
specimens were in the form of surfaces evaporated
onto a base material and were of such size and
geometry that it is likely that the collecting fields
were small enough to approximate those of Case 2
of Section II.S. For those cases for which the col-
lecting conditions are not clearly indicated in the
reference, the probable conditions are stated. Since
it has been shown that in many cases the crystalline
nature of the surface inHuences the results, each
entry includes a comment on the nature of the
specimen.

In Table V are listed the results from single
crystal surfaces. With exception of entry 5, the

measurements were made on large metallic speci-
mens which are dificult to clean up by heat treat-
ment. Also undesirable . thermal etching is en-
countered. Anderson's work, entry 5, on silver
evaporated onto rock salt is of interest because of
its apparent reproducibility but more investigation
is required. For the thermionic constants from a
single crystal of tungsten, see Table I. Since the
measurements of Table I were made with a fine
single crystal wire, it was possible to clean the wire
thoroughly by heat treatment; however, surface
etching on certain crystal surfaces was observed.
These measurements should be repeated.

III.2 The Velocity Distribution of Thermally
Emitted Electrons and the ReQection Effect

Since the last review, an extensive and careful
study of the velocity distribution of thermally
emitted electrons has been carried out by Notting-
ham (N7). Measurements of the volt-ampere char-
acteristics for retarding potentials were made on
thoriated polycrystalline tungsten wire and also on
clean tungsten wire but the latter were stated by
Nottingham to be less reliable and were not re-
ported in detail.

Nottingham found that in the low energy region
the retarding potential curves deviated on the low
side from that expected on the basis of a Maxwell
distribution. After choosing zero field points on the
retarding potential curves by inspection, he found
that; the emissi:on into a retarding field from the
thoriated polycrystalline tungsten surfaces could
be simulated for a/l states of activation by a uni-
form surface with the same associated reHection co-
eKcient (see Section I I.6), namely exp( —nw, '/2~),
where v is the velocity in the direction normal to
the surface and where ~ is a constant whose value
Nottingham determined as 0.191 ev. When the
values of the logarithm of the currents at the
zero-field points for the various states of activa-
tion, as determined by Nottingham, are plotted
against the applied potential, they all fall nearly
on a straight line.

It seems very likely that patch fields were present
even for the state of activation which Nottingham
designated as the "dispersed state" because Not-
tingham's Schotfky plots show the low field devia-
tion characteristic of patchy surfaces and also be-
cause electron projection tube data from clean
polycrystalline tungsten and from thoriated poly-
crystalline tungsten show pronounced patch effects.
(See Sections II.1a and II.1d.) The voltage de-
pendence of emission constants from thoriated
tungsten wire measured by Brattain and Becker
(823) and Rose (R13) indicates patch effects which
change with activation (see Fig. 16).Therefore, it is
at first surprising that Nottingham's experimen-
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tally determined associated reflection coefFicient is
independent of activation since one would expect
from Section II.6 that the associated reflection co-
efficient would change if the work function dif-
ferences between the patches changed with ac-
tivation.

Since Nottingham's experimental data were ac-
curately taken, we would like to suggest two pos-
sible explanations for the independence. of Notting-
ham's measured associated reflection coefficient
from activation. One is an ambiguity in the deter-
mination of true zero field. That such an ambiguity
may have been present seems plausible to us be-
cause in fitting the experimental data with com-
puted curves of log current against retarding
potential, it is difficult to choose between one com-
puted curve and another if both horizontal and
vertical shifts are allowed in the fitting. For ex-
ample, over the range of retarding potentials up
to at least 10kT the curve calculated at 1330'K
from the assumption r =exp( —e,/0. 191 ev) can by
proper horizontal and vertical shifts be fitted to
within a maximum difference of about 0.015 on the
log~oj scale by the curve calculated from r=0.75
exp( —e,/0. 3 ev) or by that calculated from
r =0.75 exp( —e,/0. 191 ev). In this connection, con-
sider a surface having two types of patches and
let the work function difference between the patches
be her. Then the associated reHection coefficient
will always be the same function of mv '/2eby,
mv„2/2ebq, and mv, 2/2ebp. It follow's that changing
by should have essentially the same effect on the
retarding potential characteristic as changing co.

Thus it appears that for diferent states of activa-
tion the work function differences in Nottingham's
surfaces could change appreciably, perhaps by as
much as 50 percent, without materially affecting
the fit of the data. However, the horizontal shift
required to fit the data implies a shift in the zero-
field points. Since it would be difficult to improve
upon the accuracy of Nottingham's measurements,
this possible ambiguity in the interpretation of the
experimental results can probably only be elimi-
nated by use of an independent method of deter-
mining true zero field.

The other explanation is that for different states
of activation, the distribution of work function
differences between the various patches remains
more or 1ess the same even though the work func-
tion differences between two given types of patches
may change appreciably. (As pointed out in Chap-
ter II, there is evidence for work function differ-
ences even in clean tungsten of perhaps as much as
one volt and Ahearn and Becker (A1) measured
work function differences of about 0.7 volt in the
case of thoriated tungsten ribbon. )

Possibly the true explanation of the independence
of Nottingham's measured associated reflection co-
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FIG. 17. Dependence of A**and p** from polycrysta11ine
thoriated tungsten wire upon activation.

efficient from activation is a combination of the two
above explanations. In fact, the accuracy of
Nottingham's measurements is such that the zero-
field uncertainty would probably not suffice to
explain the results if the variation in the degree of
patchiness of the surface as the activation is varied
were as great in this experiment as is suggested by
the electron microscope data of Ahearn and Becker
(A1). However it should be mentioned that Ahearn
and Becker worked with thoriated tungsten ribbons
in which there may well have been a strong prefer-
ential crystal orientation (A7) different from that
of Nottingham's wires. Vacuum conditions may
also have been significantly different.

If the data are, in fact, represented for all states
of activation by the same associated reflection
coefficient, then it follows that the plot of the
logarithm of the zero-field current against contact
potential should be a straight line as is indicated
by Nottingham's data.

Nottingham considered the effect of patches and
on the basis of the normal energy approximation
concluded that it was incapable of accounting for
the shape of his empirical associated reflection co-
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efFicient. As is indicated in Appendix Vb especially
Fig. 33, the shape of the associated reflection coeffi-
cient, when tangential energies are taken into
account, is not necessarily inconsistent with Not-
tingham's experimental results.

By use of the empirical associated refiection
coefficient determined from the retarding potential
characteristics, Nottingham was able to translate
his measured zero-field currents into currents that
would have been observed from the associated
uniform surface without the associated reflection.
Under these conditions the apparent zero-6eld work
function should be p —Tdg /dT, where P is defined
by Eq. (II.4.3). Now for clean tungsten it is
reasonable to assume that Tdg/dT is small so that
the apparent work function from such a zero-field
p)ot should be closely p. From Section II.9 one
would expect that g for clean polycrystalline tung-
sten should be several tenths of a volt larger than
the high field work function —'i.e. , about 4.7—5.0
volts. From Figs. 10 and 11. of Nottingham's paper
(N7) the zero-field work function for clean tungsten
corrected for reflection is about 4.75 volts. Although
Nottingham points out that this value must be
taken as provisional because of experimental di%-
culties, it is entirely consistent with the results of
Section II.9.

In conclusion, it appears to the authors that the
empirical reHection coefficient deduced by Notting-
ham must have been considerably inQuenced by
patchiness of the emitting surfaces. How much of
this refiection is caused by patches and how much
by reHection at the metallic surface remains unde-

termined. Inasmuch as theory and the periodic
Schottky effect both indicate at most a small re-
Hection effect for clean tungsten (see Section IV.4),
and since it follows from above that the e8ect of
patches seems capable of accounting for the results,
the authors believe that most of the effect must be
due to patches.

III.S The Cooling Effect Accompanying
Thermionic Emission

Two papers on the cooling effect of thermionic
emission from clean metals have been published
recently. The 6rst to be commented on is that of
Fleming and Henderson (F4). By means of a ther-
mocouple in the emitting cathode, they were able
to measure the heat loss per electron. Since their
emitter was polycrystalline, Eq. (II.10.2) should
be used to relate the average calorimetric to average
thermionic constants. If, lacking information as to
the nature of their surface, Eq. (I.7.4) is used
instead and the term involving the Thomson co-
efFicient is neglected, the work function determined
from their measured heat loss is about 4.64&0.09
volts whereas their value calculated from their
equation (in notation of Chapter I) I„I.——ep+3.2kT
is 4.46~0.09 volts. As pointed out in Section 1.7b,
the correctness of their equation has been disputed.
For a metal like tungsten, it is likely that the error
in neglecting the terms in Eqs. (II.10.2) and (I.7.4)
involving the Thomson coeAicient is not larger
than several hundredths of a volt. However, for
other metals, such as palladium, the effect may be
several times larger Lsee Lander (L1)J.

In addition to measuring the cooling effect of
thermionic emission, Fleming and Henderson also
measured the thermal effect of field emission. To
within their stated sensitivity, they were unable to
detect any thermal effects. On the basis of the
experimentally measured and theoretically ex-
pected velocity distribution of field electrons (M25),
one would expect a heating effect, caused by transi-
tions of conduction electrons into the states left
vacant by the field electrons, measurable with
Fleming and Henderson's stated sensitivities.

The second publication is that of Kruger and
Stabinow (K4) who compensated the heat loss
resulting from evaporation of electrons by increas-
ing the heating current to keep the resistance
constant using a resistance bridge as the null
instrument. They measured the heat loss for tung-
sten, tantalum, and molybdenum. Using Eq. (I.7.4)
and neglecting the term involving the Thomson
coeS.cient, Kriiger and Stabinow obtained values
for the q of Eq. (I.7.4) as follows: for molybdenum
a mean value of 4.40 volts, for tungsten 4.565 volts
at 2100'K, and 4.600 volts at 2700'K, for tantalum
4.24 volts at 2550 K and 4.21 volts at 2050 K. Iii
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the case of tantalum and tungsten this implies a
temperature coefficient of about 0.6)&10 ' volt/
degree. Neglecting patch effects and assuming re-
Hection effects to be small, Kruger and Stabinow
calculated the value of A* from Eq. (I.5.4) to be
expected on the basis of their temperature coeffi-
cient for tungsten and tantalum. Their value which
involves an error is 0.66 amp. /cm' deg. ' whereas
the correct value calculated from their temperature
coefficient is 60 amp. /cm' deg. '. It should be pointed
out, of course, that the use of Eqs. (I.7.4) and
(I.5.4) is valid only for uniform surfaces. Since
Kruger and Stabinow used polycrystalline surfaces,
Eq. (II.10.2) should be used to relate the calori-
metric to the thermionic work functions (H8). On
the basis of the work function differences observed
in polycrystalline tungsten surfaces, at least an
appreciable pa, rt of Kriiger and Stabinow's tem-
perature coefficient can be accounted for by use of
Eq. (II.10.1) even if the l„t.&'& are assumed inde-
pendent of temperature. As before, the neglect of
the terms involving the Thomson coefficient prob-
ably involves an error of not more than several
hundredths of a volt for these metals.

I

III.4 Determination of the Temperature CoefRcient
of the Dork Function by the Temperature

Dependence of the Contact Potential

Two papers on the temperature dependence of
the contact potential of clean tungsten have ap-
peared since the last review. The first of these is
by D. Langmuir (L2). His method of determining
contact potential differences was that of Section
II.11c and his currents were not space charge
limited. Kith a tube which showed contamination
effects, Langmuir found a negative temperature
coefficient for clean polycrystalline tungsten of
about 4 X 10 ~ volt/deg. Langmuir also studied the
contact potentials of thoriated tungsten. In con-
nection with Section III.2 it is of interest that
when he plotted the logarithm of his zero field cur-
rents for different states of activation against the
contact potential he obtained a straight line in
agreement with Nottingham's results (N7). How-
ever, it is not obvious that Langmuir's method of
adjusting the potential of his central guard ring
gives the correct experimental results —see Fig. 3
of Langmuir's paper.

Potter (P3) has used the Kelvin method to deter-
mine the contact potential between two poly-
crystalline tungsten wires which could be held at
different temperatures. His results are also subject
to contamination effects but he deduced a mean
positive temperature coefficient of the work func-
tion of about 6.5X10 ' volt/deg. Potter points out
that this temperature coefficient, as opposed to
Langmuir's, can account for the discrepancy be-

tween the theoretical A value of 120 and the experi-
mental A~* value of about 60. As pointed out by
Nottingham (N9), the patch effect alone can ac-
count for this discrepancy in the case of tungsten.

In both of the above papers the thermoelectric
e.m. f. (see Section I.6) has been neglected. The
effect of this neglect has been discussed by Herring
(H8) and an approximate correction would change
Potter's result to about 5 && 10 ' volt/deg. and
Langmuir's result to about —5.5 &(10 ' volt/deg.

III.S Miscellaneous Publications and Remaksr

Haberlund and Walcher (H1) and later Winkler
(W18) have investigated the thermio'nic emission
from platinum, nickel, and iron at temperatures as
low as 700'K by- making use of ion multiplication
devices similar to Geiger counters. Haberlund and
Walcher used hydrogen and Winkler used air as
filler gases. If this method were developed to use a
sufficiently purified rare gas, it would no doubt be
a useful tool in emission studies.

The periodic Schottky effect reported by Seifert
and Phipps (S9), Turnbull and Phipps (T5), and
Nottingham (N8) has been interpreted by Mott-
Smith (M18) and Guth and Mullin (G8) in terms
of reflection effects on emitted electrons. Since this
is of considerable theoretica1 importance it is dis-
cussed at length in Sections IV.4d and IV.5.

Three papers on the work function-evaporation
energy cycle have appeared since the last review
(F3, W19, and W4). Using work functions defined
in a manner analogous to Eq. (I.2.1) these authors
investigated the relationship y +p+ ——go+I where

is the electronic work function for a uniform
surface, q+ the positive ion work function for a
uniform surface, q 0 the evaporation work function
for neutral atoms for a uniform surface, and I is
the ionization potential. Although they worked with
polycrystalline surfaces and used the apparent
work functions q **,p+**, and go**, obtained from
Richardson type plots (see Section II.7a), some
measure of agreement was obtained. Fiske (F3)
working with tantalum found that the cycle failed
to close by 1.1 ev which he states is outside his
experimental error. Wright (W19) working with
molybdenum reported that his cycle closed to
within 0.1 ev.

Using the method of Section II.11e, Oatley (02)
has investigated the effect .of bombarding platinum
anode surfaces with ions of argon and oxygen.
With a suitable bombardment schedule, he ob-
tained surface average work functions for the
platinum anode surface which agreed numerically
with the high field thermionic work function re-
ported in Table IV, entry 37. This may indicate
that suitable ion bombardment is an effective way
of cleaning surfaces and may be useful in investigat-
ing surfaces of the less refractory metals.
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CHAPTER IV. ATOMIC THEORIES OF THERMIONIC
CONSTANTS AND PROCESSES

In this chapter a review will be presented cover-
ing the applications of the modern quantum theory
to the calculation of quantities relating the ther-
mionic properties of clean metal surfaces. Some of
these quantities, the work function in particular,
are equally closely related to other fields, such as
photoelectric emission; however, the mechanisms of
non-thermionic processes such as photoelectric and
field emission will not be covered.

Among general references in the field of this
chapter may be mentioned especially, the article
of Sommerfeld and Bethe (15), the book of Seitz
(12), and a review article by Nordheim (NS).

IV.l Value of the Inner Work Function at T=0

The arguments to be sketched in this section
constitute an attempt to construct a quantitatively
valid extension of the often-used energy level
diagram of Fig. 22. In using this diagram quali-
tatively it is customary to ignore the interaction
of the free electrons with one another and to treat
the interior of the metal as a region of constant
potential; for this model the work function ey can
be represented as the difference (W, —W;), where
W,je is the difference in electrostatic potential
between the inside and the outside of the metal,
and I/A'; is the kinetic energy of the highest filled
level in the metal at the absolute zero. This picture
requires but little modification to take account of
the non-uniformity of potential inside the metal,
provided the mutual interactions of the electrons
are ignored or replaced by an average "self-con-
sistent field:" in such case we can replace 8'„by
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Fj:G. 19. Characteristics illustrating the electron beam
method, using the normal energy approximation with a two-
patch checkerboard.

the difference between the potential energy of an
electron outside the metal and the energy of the
lowest state for a conduction electron in the in-
terior and replace S'; by the difference in energy
between this lowest level and the highest occupied
energy level. As we shall see below, however, one
cannot expect to compute a good value for
without taking account of the fact that the free
electrons in the metal try to avoid one another,
and hence have a smaller interaction energy than
they would have if they were statistically inde-
pendent. It is therefore best to give up the picture
of independent electrons in individual quantum
states, each making a specific contribution to the
total energy, and to base all calculations on the
original definition of the work function (Section
I.2) which at T = 0 reduces simply to

eq = —(8 U/Bn)„—e4„(IV.1.1)
where U is now simply the energy of the lowest
quantum state of a crystal containing n electrons,
and where as before 4, is the electrostatic poteritia1
in the vacuum just outside the crystal face whose
work function is being calculated.

In evaluating (IV.1.1) by means of specific theo-
retical expressions for U, it is customary to set
(BU/Bn)„equal to the change in U which would
occur, per electron added, if the added electrons
were uniformly distributed throughout the volume
of the metal. This is legitimate, in spite of the fact
that the electrons added will actually all be local-
ized at the surface of the metal block. To see this,
we may imagine the addition of the electrons to
take place in two steps. First let the electrons be
added together with an imaginary distribution of
positive charge just suAicient to neutralize the dn
added electrons and distributed uniformly over the
metal. In this step the added electrons will, of
course, distribute themselves uniformly, throughout
the volume of the metal. Then let the positive
charge be removed, permitting the excess electrons
to migrate to the surface. Now the energy change
involved in the first step is just the value of (BU/
Bn)„hn, calculated for a uniform distribution of the
added electrons, plus the energy of interaction of
the positive charge with the metal, including the
added electrons. The energy change involved in the
second step will diRer from the value of this latter
interaction energy only by a slight amount, due to
the rearrangement of the An electrons while the
positive charge is being removed. This diRerence
will be of the order of magnitude of (eAn)' divided
by the linear dimension of the metal block and
may therefore be neglected as An —+0.

IV.1a The Method of Wigner artd Bardeel

An evaluation of the work function from (IV.1.1)
can of course, be based on any theory of metallic
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binding which permits the energy of the metal to
be calculated for an arbitrary state of charge. The
only such theories which have been really successful
to date, however, are the various modifications of
that developed by VA'gner and Seitx, which have
been applied by them and others to metals at the
left side of the periodic table. The application to the
calculation of the work. function is due to signer
and Bardeen (W15). Without attempting to discuss
the details of this method, which have been fully
expounded elsewhere (e.g. , (12), Chapters IX and
X),we may state its philosophy briefly thus: A self-
consistent field solution is determined for the elec-
trons of the metal, and its energy is evaluated.
Then the assumption is made that the difference
between the actual energy of the ground state of
the metal and that of the self-consistent field solu-
tion is practically the same as it would be for a
gas of free electrons moving in a constant external
potential and having the same average density as
the free electrons in the metal. An approximate
value of this difference, or "correlation energy,

"
has been calculated for the latter case by Wigner
(W12, W14). The principal limitation of the theory
is that both in the correlation energy and in the
Coulomb and exchange terms to be discussed below
it makes use of the assumption that the wave func-
tions of the free electrons resemble plane waves
over the greater part of the volume of each unit
cell. This assumption appears to be justified for
metals on the left side of the periodic table, but is
certainly not valid for transition metals. The
analysis to follow will therefore apply only to metals
of the former type.

The theory just outlined may be formulated
mathematically in several ways, all essentially
equivalent to one another. For our purposes the
most convenient formulation is the one most closely
akin to that used for self-consistent fields in atoms.
Let the quantities c; by the energy parameters for
a single free electron moving in the field of the ion
cores plus the Coulomb field of all the electrons.
Then the total energy of a block of metal at T =0,
relative to the state of separated ion cores and
electrons, is

U= g e;—Coulomb energy —exchange
—correlation+Sr, (IV.1.2)

where El is the interaction energy of the ion cores
with one another, which at any fixed volume may
be assumed independent of the population of the
free electron levels. Note that the classical Coulomb
self-energy of the distribution of free electrons
comes in with a negative sign, because twice this
energy has already been included in ge;. Explicit

The form (IV.1.2) corresponds to the Hartree type of
calculation, rather than to the Slater-Fock type in which the
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F&G. 20. Calculated Fowler plots for a two-patch checker-
board surface for various work function differences between
the patches, with high collecting fields.

expressions for the exchange and correlation en-
ergies may be given if we assume them the same
as for a free electron gas of the same density. The
former is ((12), g 75)

exchange energy per electron=0. 458e'/r„(IV.1.3)

where r, = (3/4~n~)' is the radius of a sphere whose
volume equals the volume of the metal per free
electron. The numerical results of Wigner (W12) on
the correlation energy can be represented, over the
range of electron densities which occur in metals,
by the expression

correlation energy per' electron
=0.29e'/(r, +5.1aII), (IV.1.4)

one-electron wave functions are eigenfunctions of a Hamil-
tonian which includes exchange. If the latter method were
used the exchange term would be added instead of subtracted.
For monovalent metals, at least, the eigenfunctions and hence
the final energy are nearly the same for both methods.

where a~ is the Bohr radius P/me' =0.531'A. Multi-
plying these by the number n of free electrons, in-
serting into (IV.1.2), and differentiating with re-
spect to n gives the value of BU/Be to be inserted
into (IV.1.1). The derivative of the Coulomb en-
ergy with respect to n, i.e. , the change in this
quantity when an electron is added at the top of
the Fermi distribution, is easily shown to be equal
to the change in the Coulomb potential averaged
over the original electronic charge distribution.
Now if we assume the wave functions of the states
originally occupied to change only negligibly with
addition of the new electron, the quantity +Bc;/Bn
will be just the sum over all occupied states of the
change in Coulomb potential times the charge dis-
tribution of the ith state, hence will exactly cancel
the change in the Coulomb energy term. This
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being the case we obtain

t'8 U)
eq = —

~ (
—eC.=(—eC.—e .„)

Bn

0.29e' 0.10e'r,
+ +

r,+5.1a~ (r,+5.1a~)'

0.611e'

self-energy of spherica1 cell
= —0.6e'X'/r„(IV.1.6)

re

Here the first term represents the energy difference
between the top of the Fermi distribution and the
potential energy —eC, of an electron just outside
the surface, and thus corresponds to the (W, —W;)
of the simple picture of Fig. -22. This term depends,
of course, on the magnitude of the double layer at
the surface of the metal. The remaining terms of
(IV.1.5) are the exchange and correlation cor-
rections.

A convenient alternative expression for the work
function of a metal, based on the same assumptions,
can be obtained by subtracting —U/n from ep,
i.e., by combining (IV.1.2) and (IV.1.5). The re-
sulting expression can be made more useful by
noting that the difference (8&—Coulomb energy)
occurring in (IV.1.2) can be reduced to a summa-
tion over the various atomic cells of the metal
crystal, in which most of the terms are negligibly
small. This is a consequence of the fact that in all
the simple types of crystals each atom can be sur-
rounded by a cell of almost spherical shape. If we
consider any two of these, the electrostatic inter-
action of the ions in these two cells would be exactly
equal to that of the electronic charges if the cells
were. spherical and non-overlapping, so to a good
approximation the electrostatic contribution to
(Zz —Coulomb energy) will vanish. If this vanishing
could be assumed for every pair of cells, the only
contributions remaining would be the non-electro-

where r, is the radius of the sphere whose volume
equals the atomic volume, and X is the number of
valence electrons per atom. A more elaborate cal-
culation shows that for metals on the left side of
the periodic table this approximation is quite a
good one for the contributions from all the pairs of
cells in the interior of the metal (W16). At the
surface, however, we may expect the charge dis-
tribution around each ion to be asymmetrical, so
that the surface cells will have a dipole moment.
The effect of this on the term (El —Coulomb energy)
can readily be computed directly; however, we
may obtain the correct Anal formula for the work
function more easily by first combining (IV.1.2) and
(IV.1.5) under the assumption that the surface
cells are identical with the interior cells, and then
using the fact established earlier (Section I.2) that
addition of a dipole moment of magnitude D/4m.

per unit area to the surface changes the work func-
tion by D. This gives finally

U E~' 0.6e'X
ep= ———(6 —E )+

e r 8

0.153e' 0.10e'r,
+ +eD, (IV.1.7)

r, (r,+5.1aH)'

where eA, is the average energy of the occupied free

static interactions of the ion cores, as a result of
van der Waals and repulsive forces, and the electro-
static self-energy of the electron distribution in
each single atomic cell. If we approximate the cell
by a sphere of equal volume filled with a uniform
distribution of free electron charge, the latter is

IV.1.5
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0.737azze' ( m y
(IV.1.8)

Em*ir.2

The remaining terms in (IV.1.7) are likewise easily
computed functions of the density, except the term
eD, which depends upon the wave functions of
electrons near the surface (see Section IV.2). Let
it be emphasized again that (IV.1.7) is expected to
apply ..only to metals on the left of the periodic
table.

IV.1b The Modhfication of He/lmann
and Xassatotschkin

An interesting simpli6cation of the method just
outlined has been proposed by Hellmann and Kassa-
totschkin' (H6, H7). These authors calculate bind-
ing energies, work functions, etc. , for a number of
metals at the left of the periodic table, by a method
which differs from that of Wigner and Seitz only
in that the energies of the various states of the
conduction electrons are obtained in a diA'erent
and simpler way. In the Wigner-Seitz method one
integrates the wave equation for the conduction
electrons in the field of the ion cores and obtains
wave functions which have, generally, several nodal
surfaces near each nucleus; these nodes are necessary
if the wave functions of the conduction electrons
are to be orthogonal to those of the core electrons.
Hellmann and Kassatotschkin use wave functions
for the conduction electrons which have no such
nodes near the nuclei, and which can therefore be
approximated fairly well by single plane waves;
they show that it is possible to find an empirical
ion core field with the property that the energies
of such "nodeless" wave functions should agree
rather well with the energies of the wave functions
calculated by the signer-Seitz method. Their
procedure beings, therefore, by using a trial-and-
error method to 6nd an empirical 6eld for an iso-

electron states and where Bz' is the van der Waals
and repulsive energy of the ion cores, which is
usually negligible for metals to which the present
method applies. Here the quantity —U/n is simply
the energy per electron required to decompose the
metal into ion cores of charge Xe and free elec-
trons; it can be therefore be evaluated empirically
from the heat of sublimation of the metal and the
ionization potentials of the atoms. The quantity
(s —sA,) depends upon the distribution of levels
in energy; if this distribution is a parabolic one
corresponding to an effective mass re*, an approxi-
mation which should be fairly good for monovalent
metals, we have ((12), f26)

1 hs (3ni) '
Cmax tv

5m* &8s )

lated metal ion, in which the 1s eigenfunction will
have the same energy as the lowest s eigenfunction
for a valence electron attached to the ion (e.g. , the
4s for potassium), the 2p the sa,me energy as the
lowest valence electron p state (e.g. , the 4p for
potassium), the 2s the same energy as the next
lowest valence electron state (e.g. , the Ss for po-
tassium), etc. With an empirical field of this sort
surrounding each ion of the metal, the energies of
the eigenfunctions for the conduction electrons are
easily calculated, at least to a rough approximation,
and various energetic properties of the metal can
be obtained, including the work function from
(IV.1.5) or (IV.1.7).

IV.ic Num, encal Calculations

Table VI gives values of (p D) which—have been
calculated from (IV.1.7) and (IV.1.8), using either
the usual Wigner-Seitz model or the Hellmann-
Kassatotschkin (H-K) modification. The rows for
which the column headed "Reference" is left blank
have been calculated by one of us (C.H. ) using the
assumptions given in the "Remarks" column; since
the values of m/m* used here for Li and Na are
probably better than those used by Wigner and
Bardeen, the latters' values for these metals are
not given. The accuracy which the calculated
values may be expected to have can be gauged
roughly by comparing the second and third col-
umns, since the difference between the figures in
these two columns measures the difference between
the observed binding energy and that computed
from (IV.1.2). However, it must be remembered
that the various assumptions and approximations
of- the theory enter into the work function and the
binding energy in rather different ways. The re-
liability of the calculated values of m* or its equiva-
lent varies from case to case, the most reliable
values being those in the first two rows of Table VI.
The last column lists the values which would have
to be assumed for the moment D of the surface
double layer to make the work function computed
from the observed binding energy agree with the
observed work function. While it is unlikely, espe-
cially in the extreme case of Be, that the entire
discrepancy between the third and sixth columns
of the table is due to the double layer alone, the
figures given suggest strongly that D increases
rapidly with increasing density of conduction elec-
trons and perhaps with increasing chemical valence
as well. We shall see in Section 4.2a that Bardeen's
theoretical calculation of D agrees roughly with
the value in Table VI for sodium; unfortunately,
no comparable calculation has been carried out for
a higher density of electrons.

n The values used are those compiled by Seitz ((12), Chap-
ter I).
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TABLE IV. Experimentally determined emission constants from clean polycrystalline metals.

Entry Photoelectric
No. Element work function

Work function
obtained from

contact potential
Thermionic Thermionic

A+* Reference Comments

3 Ba

Bi

10

Ca

15

16 Cr

18 Co

19 Cb
20 Fe

22

2.48

2.49

2.51

3.92

4.22 to 4.25

4.46

4.76 to 5.06

4.32

2.71

3.21

approx. 4.63

4.08

2.39+0.05

4.34

4.39

4.60

4.41&0.10

4.01
4.48&0.06

4.21%0.05

30

37
26

1.5

G1

B22

C4

A2

J7

W7

B24

R7

R6
W3

Evaporated onto glass surface. Probably
contaminated. Determined threshold by
inspection. Probably Case 2 collecting
fields.

Contact potential against sodium deter-
mined by retarding potential curves. So-
dium work function taken to be 2.40.

Evaporated onto glass surface. Probably
Case 2 collecting fields. Determin|;d by
Fowler plot.

Evaporated onto nickel plate. Probably
Case 2 collecting fields. Determined by
Fowler plot.

Evaporated onto glass plate. Probably
Case 2 collecting fields. Determined by
Fowler plot.

Evaporated onto tungsten ribbon and de-
termined against tungsten by method of
Section II.11d. Set, note 1.

Evaporated onto a metal surface. Probably
Case 2 collecting fields. Determined by
Fowler plot.

Evaporated onto glass surface. Probably
Case 2 collecting fields. Determined by
Fowler plot.

Evaporated onto glass surface. Determined
by DuBridge method. Possibly contami-
nated. Probably Case 2 collecting fields.

Evaporated onto glass surface. Determined
by DuBridge method. Probably Case 2
collecting fields. Probably contaminated.

Sputtered onto glass surface. Probably Case
2 collecting fields. Some contamination
likely. Threshold determined by inspec-
tion.

Evaporated onto glass surface. Probably
Case 2 collecting fields. Determined by
Fowler plot.

Evaporated onto tantalum sheet. Deter-
mined by inspection from energy dis-
tribution curve.

Cylindrical filament. Collecting fields prob-
ably Case 1.

Specimen heated in oven the walls of which
served as anode.

Round filament prepared by plating a brass
tube. Case 1 collecting fields.

Sputtered onto glass surface. Probably Case
2 collecting fields. Some contamination
likely. Threshold determined by inspec-
tion.

Flat strips rolled before heat treatment.
Probably Case 1 collecting fields.

Wire. Case 1 collecting fields.
Below p —y-transition. Strip filament. Prob-

ably Case 1 collecting fields.
Above p —y-transition. Strip filament. Prob-

ably Case 1 collecting fields.
Sputtered onto glass surface. Probably Case

2 collecting fields. Some contamination
likely. Threshold determined by inspec-
tion.

IV.1d Use of the Fermi Thomas Model-
A number of papers have been published on the

problem of computing the work functions of metals
by use of the Fermi-Thomas statistical model. As
an excellent summary of this work up to 1933 is

given in the article of Sommerfeld and Bethe ((15),

4'14 and 015), only a brief discussion will be given
here. Although some of these calculations are inter-
esting and illustrate the basic physical principles
which inHuence the value of the work function, we
do not believe that one can expect quantitative
accuracy from theories of this kind, since the con-
ditions for validity of the Fermi-Thomas method
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TABLE IV.—Comtimued

F.ntry
No. Element

Photoelectric
work function

Work function
obtained from

contact potential
Thermionic Thermionic

Reference Comments

24 3.67 %0.02

3.79

26 3.68

28 Mo

30

3i approx. 4.35

32
33 4.12

36 4.87

38 greater than
6.2

39 K

40 Rh

2.26 %0.02

4i Si.

42 Ag

43

23 Mg 3.60

3.78

4.33%0.05

4.20%0.02

4.37&0.02

4.33

I*'/e =440.
4.61+0,05

5.32

4.80

3.59

55

24.6

30

32

33

C3

A4

W19

R7

F10
C5

Wio

M12

824

A3

A6

Evaporated onto molybdenum plate. Prob-
ably Case 2 fields. Determined threshold
by inspection.

Evaporated onto glass. Probably Case 2
collecting fields. Determined by Fowler
plots.

Evaporated onto nickel. Probably Case 2
collecting fields. Determined by Fowler
plots.

Evaporated onto glass surface. Determined
by Fowler plot. Probably Case 2 col-
lecting fields.

Evaporated onto glass plate and determined
against barium by method of Section
II.iid using average work function of
barium of 2.52 volts.

Strip filament cut from specially purified
sheet metal. Probably Case 1 collecting
fields.

Commercial wire. Probably Case 1 collect-
ing fields. See note Z.

Strip filaments presumably cut from sheet
metal. Probably Case 1 collecting fields.
See mote 3.

Sputtered onto glass surface. Probably Case
2 collecting fields. Some contamination
likely. Threshold determined by inspec-
tion.

Wire. Probably Case 1 collecting fields.
Sheet. Possibly Case 2 fields. Threshold de-

termined by inspection.
Determined calorimetric work function l**

of Eq. (11.10.1). Wire. Case 1 collecting
fields. See Section III.3.

Ribbon filaments. Probably Case 1 collect-
ing fields.

Sputtered onto glass surface. Probably Case
2 collecting fields. Some contamination
likely. Threshold determined by inspec-
tion.

Wire and wire rolled into ribbon. Probably
Case i collecting fields. See note 4.

Sputtered onto glass surface. Probably Case
2 collecting fields. Some contamination
likely. Threshold determined by inspec-
tion.

Evaporated onto platinum foil. Probably
Case 2 collecting field. Threshold deter-
mined by inspection.

Strip filament. Probably Case i collecting
fields.

Specimen heated in oven, the walls of
which served as anode.

Evaporated onto glass plate and determined
against barium by method of Section
II.11d using average work function of
barium of 2.39 volts.

Evaporated onto glass plate and determined
against barium by method of Section
Il.iid using average work function of
barium of 2.52 volts. Therefore agrees
well with previous entry. See also entry 5
in Table V.

are usually not adequately fulfilled. Moreover, most
of these calculations make no attempt to separate
the inner work function from the contribution of
the double layer; since we know that the work
function is different for different crystal faces and
is modified by adsorbed films, no theory can be

really acceptable which attempts, as these the
theories usually do, to express the work function of
a metal entirely in terms of volume properties such
as binding. energy or Fermi energy.

If the Fermi-Thomas model is used in its simplest
form, with neglect of exchange and correlation
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TABLE IV.—Contieged

Entry
No. Element

44 Na

47 Ta

52
53

59

60 Zn

61

Photoelectric
work function

2.29

2.28

2.40

4.05

4.49&0.02

4.24

Work function
obtained from Thermionic

contact poteatial
Thermionic

A** Reference

822

4.10 37

4.19+0.02 55+5 F3

l**/e =4.24
at 2550'K

K4

75 WS

4.52
4.45

72
38

4.53 22 F10
A7

P~/e =460.
at 2700'K

I**/e = 5.01
at 2000'K

4.52 60

4.28&0.02 A5

D2

3.27&0.05 about 6 H13

Comments

Evaporated onto glass surface. Probably
Case 2 collecting fields. Determined from
Fowler plot which indicates patch effects.

Evaporated onto glass surface. Probably
Case 2 collecting fields. Determined from
Fowler plot.

Evaporated onto aluminum. Probably Case
2 collecting fields. Determined by Fowler
plot that did not fit very well.

Shape of filament not specified. Probably
Case 1 collecting fields.

Wire slightly Qattened by rolling. Case 1
collecting fields.

Sheet. Possibly Case 2 collecting fields.
Threshold determined by inspection.

Determined the calorimetric work function
l**of Eq. (II.10.1).Wire. Case 1 collect-
ing fields. See Section III.3.

Wire. Probably Case 1 collecting fields.
See note 5.

Wire. Case 1 collecting fields.
Prewar "non-sag" wire polished smooth.

Case 1 collecting fields. See note 6.
Wire. Probably Case 1 collecting fields.
Ribbon. X-ray analysis showed that most

crystallites were oriented with (100) di-
rections within 10 of the perpendicular
to the ribbon surface. Case 1 collecting
fields. Determined by Fowler and Du-
Bridge plots.

Determined the calorimetric work function
l~~ of Eq. (II.10.1).Wire. Case 1 collect-
ing fields. See Section III.3.

Determined the calorimetric work function
P* of Eq. (II.10.1).Wire. Case 1 collect-
ing fields. See Section III.3.

Prewar "non-sag" wire. Case 1 collecting
fields.

Strip and oval filament. Case 1 collecting
fields. Purity of specimens questionable.

Evaporated onto glass plate and determined
against barium. using average work func-
tion of barium of 2.52.

Evaporated onto molybdenum strip. Col-
lecting fields uncertain.

Note 1:The value 2.39 for the work function of barium was obtained by subtracting the difference in the potentials V& corresponding to the reference
current j& (see Section II.11d) from the thermionic q+* of tungsten which was taken to be 4.52. It follows from Section II.11d that the surface average
q would have been more correct. Since q is somewhat larger than q*+. the value 2,39 is not necessarily inconsistent with entries 3, 4, and 5.

Note 2: This author states that he was unable to reproduce the increase in work function caused by rolling as reported by Wahlin and Reynolds (see
reference W4). See note 3.

Note 3:The values of q++ of 4.17 and A+@ of 51 are from two samples of pure molybdenum from the Fansteel Company. These were about 1 mm wide
and 0.05 mm thick presumably cut from sheet metal. A strip of Mo obtained from another source was cold rolled to uniform thickness and gave y** of
4.38 and A~* of 175. A sample of the Fansteel metal was cold rolled lightly and gave q++ of 4.30 and A++ of 96. The authors were unable to detect by
spectroscopic analysis any difference in the composition of the specimeris. The authors suggested that the variation in values may be due to differences
in crystal orientation but did not investigate the matter further.

Note 4: Two platinum wires were rolled flat, one before heat treatment and one after. No appreciable differences between the round and flat filaments
were detected.

Note 5:After the specimen was flashed to 3100'K the values rose to 4.63 and 212. This effect is not explained although the authors suggest that it may
be caused by a change in the crystalline nature of the surface.

Note 6: Reworking of the data revealed numerical errors in the values reported in the reference. The values given in the table are the corrected ones.

eff'ects, the calculated work function p can easily
be shown to be zero, for the same reason that the
calculated ionization potential is zero when this
approximation is applied to a free atom. For the
boundary of the electronic charge distribution is the
locus on which the electrostatic energy —ec equals
the energy E, of the highest occupied electronic
state. If there is to be no charge on the metal, this
equipotentia1 surface must have the same potential
as the surface at infinity, i.e. , zero, and therefore

p=E,„=O.More refined methods of calculating q

can be developed, however, based on (IV.I.I) and
involving an expression for the total energy U
which takes some sort of account of the fact that
the .electrons are not statistically independent of
one another. One such method, due to Eamm and
Blochinzev' and to Frohlich (F13), is based on the

'We have been unable to locate any account of this work
other than that given in the article of Sommerfeld and Bethe
((15), f15).
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assumption that the Fermi-Thomas model gives the
correct density and mean kinetic energy for the
electrons. From this the total energy can be derived
by using the virial theorem and turns out to be
different from the value one would calculate di-
rectly from the Fermi-Thomas potential, treating
the electrons as statistically independent. The
authors mentioned conclude that the work function
should be essentially equal to the Fermi energy S';.
A more satisfactory method is one due to Bartelink
(B4) and further developed by Mrowka, and Reck-
nagel (M21). These authors calculate the energy
required to remove an electron of zero kinetic
energy from an idealized metal consisting of elec-
trons plus homogeneously distributed positive
charge; they than assume that the work function is
obtained simply by subtracting from this energy
the maximum kinetic energy of the electrons as
given by the usual Sommerfeld formula. In carrying
out the calculation they take account of the sta-
tistical correlation between electrons by recognizing
that the electron being removed is surrounded,
as long as it is in the metal, by a region in which
there is a deficiency of other electrons. This defi-
ciency is calculated by solving the Fermi-Thomas
equation for the metal with a negative point charge
of strength e at a certain point inside it. The con-
tribution which this polarization effect makes to
the energy of removal is then obtained by removing
the charge e in infinitesimal units dg and re-
assembling them outside the metal, taking the
work involved in removing each dq as the difference
in electrostatic potential between the interior and
exterior positions.

It will be recognized that the procedure just de-
scribed amounts to an approximate calculation of
the correlation energy of a free electron gas, al-
though the references just cited use the computed
polarization energy as if it represented the sum of
the exchange and correlation energies. The limita-
tions of this method of calculation can be seen by
comparing the results with Wigner's wave mechani-
cal calculation of the correlation energy (W12,
W14): over the range of electron densities ordi-
narily encountered in metals the equations of
Mrowka and Recknagel. (M21) give values of the
correlation energy which are several times too high,
while at high electron densities they yield a correla-
tion energy approaching infinity, whereas Wigner's
calculation indicates that the correlation energy
should approach a finite limit. These results are to
be expected, since the statistical model neglects the
wave mechanical penetration of one electron into
the classically inaccessible region close to another.

IV. 1e Quasi Empirical Theories-

A number of papers have been published attempt-
ing empirically to correlate work functions with

such quantities as atomic number, atomic volume,
valence, compressibility, etc. of which we attempt
to cite only the more recent ones (R16, R17, B19,
B20, C6). The subsequent development of reason-
ably sound quantum mechanical theories of the
work function, as outlined above, has decreased
the significance of such attempts; moreover, the
empirical data on which they are founded are very
unreliable, because so few metals can be obtained
with clean surfaces.

Dt.2 Theory of the Surface Double Layer

In the two following subsections we shall be
concerned with the theoretical estimation of the
double layer moment D at the surface of a metal
at the absolute zero. We define D, just as in Section
IV.1a, as 4x times the dipole moment per unit area
due to the deviation of the charge distribution of
the surface atoms from the symmetrical form found
in each unit cell of the interior. The unit cell can
of course be drawn in a variety of ways; however,
the definition of D can be freed from ambiguity by
specifying that the unit cell be drawn in such way
as to have no dipole moment (see the discussion in
Section IV.3b below).

To calculate D rigorously would be a formidable
problem in-wave mechanics, and so existing theo-
ries have been based on radical simplifications. The
force field in which the electrons move has always
been assumed one-dimensional, except in the cal-
culations of Smoluchowski (S15), discussed in Sec-
tion IV.2b, which are, however, based on almost
equally idealized assumptions. The methods which
have been used can be divided into those involving
calculation of different wave functions for all the
different electrons of the metal and statistical
methods in which only the total electronic charge
density enters the calculation.

Before starting to discuss detailed calculations on
the double layer, it will be worth while to say a
few words about the physical principles which de-
termine its magnitude. Figure 23 shows how it is
natural to expect the electronic charge distribution
to spread out beyond the limits to which it would
be confined if the distribution in each unit cell
about the surface atoms were the same as in the
unit cells of the interior. It will be seen that this
spreading out produces a dipole moment D/4m per
unit area, whose sign may correspond to having
negative charges on the outside, positive on the
inside, as shown in 8 and C of the figure, or, in
extreme cases, to positive charges outside and
negative inside, as shown iri D. This spreading out
of the electron distribution occurs because, as is to
be expected quantum-mechanically, it lowers the
kinetic energy of the electrons; however, it is
limited by the increase of potential energy which
accompanies it. This increase of potential energy is
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TABLE V. Emission constants from single crystal surfaces.

Crystal direction
normal to

Entry No. Element surface
Photoelectric

work function

Work function
from contact

potential Reference Comments

Cu

Ag

100

100

112

310

4.89

5.64

4.75a0.01.

4.81&0.01

4.50

4.30

4.79

U1

U1

F2

A6

M13

M13

Measurements troubled by thermal etching
and contamination. Thresholds determined
by inspection. Probably Case 2 collecting
fields.

Difference checked to 0.01 volt by contact
potential measurement. Determined by
Fowler plots. Probably Case 2 collecting
fields. Contamination and deviation from
desired surface structure encountered.

Evaporated onto (100) surface of rock salt and
determined against barium by method of
Section II.11d using average work function
of barium of 2.52. No studies of surface
structure of specimens made.

Measurements, troubled by instability of sur-
faces particularly the 310 surface. Deter-
mined by Fowler plots. Probably Case 2
collecting fields.

partly a result of the fact that in the spread-out
configuration, 8, of Fig. 23 the electrons are on the.
average in positions of higher electrostatic potential
energy than in A. But there is an important addi-
tional, though less obvious, increase in potential
energy, namely, that due to the exchange and cor-
relation effects. The average interaction energy of
an electron. with all the other electrons is less than
the Coulomb energy because the electrons avoid
one another, and this decrease in interaction energy
is the more marked the higher the electron density
(see Eqs. (IV.1.3) and (IV.1.4)). Thus in Fig. 238,
where the electron density is lower than in A, the
electron interaction energy will be higher. It is in-
teresting to note that it is just this statistical corre-
lation between the positions of electrons which
gives rise to the image force e'/4x' which acts on an
electron at large distances outside the surface, and
that the exchange and correlation energies of an
electron in the interior can in a certain sense be
identified with the total work done against forces of
the image type in getting the electron out of the
metal. This subject will be discussed further in the
following subsection.

IV.2a S'ave 3IIechanica/ Theories

The first attempt to calculate wave mechanically
the electron distribution near a metal surface seems
to be that of Tamm and Blochinzev (T1, T2).
These authors attempted to approximate the self-
consistent field solution for an idealized metal by
determining the different wave functions for an
electron in a potential field containing one or more
parameters, these parameters being varied until the
total energy of the determinantal wave function of
all -the electrons was minimized. This procedure, if
followed through with a sufficient number of pa-
rameters in the potential field, could probably be

made to give a fair approximation to the solution
of the Slater-Fock self-consistent field equations,
although the approximation ould not be made
arbitrarily good since the wave functions in the
latter system are not eigenfunctions in any single
potential field. The actual calculations which Tamm
and Blochinzev carried through were, however,
based on a box-like potential function having as its
only adjustable parameter the height of the poten-
tial jump at the boundary. The metal they assumed
to consist simply of a continuously distributed
positive charge, of constant density p+ for x &0 and
bounded by the plane x =0, together with sufficient
electrons to make the metal neutral. With this
model and with electronic wave functions satisfying
the Schrodinger equation in a potential field U(x)
=0 for x(s, U(x) = W, for x) s, they calculated
the total energy of the metal as a function of 8',
choosing s'for each S;at the proper value to make
the surface neutral. The total energy was found to
decrease monotonically with decreasing 8"„&and
as the minimum possible value of lV is 8";, the
kinetic energy of the fastest electrons in the in-
terior, it was concluded that the surface double
layer must be such as to produce a potential jump
D equal to 8";. It was further concluded that no
self-consistent field solution is possible at the metal
surface. These conclusions are refuted by the more
refined calculations of Bardeen (B1), which we
shall now describe, and so one must conclude that
Tamm and Blochinzev placed too much reliance on
the oversimplified calculation which they made.

The method adopted by Bardeen (B1) was the

i' Tamm and Blochinzev made an error in their calculation
of the energy, due to their working with a semi-infinite, rather
than a bounded crystal, a procedure which necessitates sub-
tracting infinities to get the surface energy. However, correc-
tion of this error does not change the qualitative features of
their calculation.
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more straightforward one of constructing a solu-
tion of the Slater-Fock self-consistent field equa-
tions by trial and error, comparing the Coulomb
and exchange fields due to any computed set of
wave functions with the Coulomb and exchange
fields assumed in the wave equation from which
these wave functions were computed. Like Tamm
and Blochinzev, Bardeen assumed the metal to
consist of a uniform distribution of positive charge
bounded by the plane x =0, plus sufficient electrons
to neutralize it. It is not unreasonable to expect
the surface dipole moment, D, calculated for this
model to be roughly correct for an actual metal,
provided that the wave functions of the conduction
electrons inside the metal are very nearly plane
waves, that the electron density in the interior of
the model is chosen the same as for the metal, and
that the boundaries of the surface cells fit together
to form a plane surface. The first conditions is un-
usually well fulfilled for sodium, and so Bardeen
made his numerical calculations for the electron
density found in this metal. The third condition. is
of course not fulfilled, but a correction for its non-
fulfillment can be made.

With the aid of certain reasonable approxima-
tions in the treatment of the exchange field, Bar-
deen was able to get an approximately self-con-
sistent solution of the Slater-Fock equations, which
yielded a double layer moment D of about 1.0
volt, as shown in the first row of Table VII. He
noted, however, that one must expect the actual
double layer moment of the idealized metal to be
appreciably less than this, because of the correla-
tion energy which the self-consistent field neglects.
The correlation term in the inner work function is
given by the last two terms of (IV.1.5), and amounts
to nearly one ev for sodium. This means that, for
any given charge distribution at the surface, the
energy required to take an electron all the way out
of the metal is actually about a volt less than the
energy which would be computed from the Coulomb
and exchange fields above. This being the case, one
must assume that the energy required to get an
electron even part of the way out of the metal will
also be greater than in the self-consistent field
approximation, and that therefore there will be
less spreading out of the electron distribution be-
yond the boundary x =0 of the positive charge dis-
tribution. This effect is the analogue of the fact
that self-consistent field calculations always give
slightly too large diameters for atoms, because they
neglect polarization effects. Bardeen attempted to
calculate this effect quantitatively by introducing
into the Schrodinger equation of each electron a
"correlation potential, " in addition to the Coulomb
and exchange fields already present in the self-
consistent field approximation. This correlation
potential was so chosen as to be asymptotic to the

image potential e'/4x at large distances from the
surface, & and .to approach a constant value in the
interior, the constant value being chosen differently
for electrons of different energies, in analogy with
the known velocity dependence of the exchange
energy of free electrons (see (12), P 75), but in such
a way as to give the correct value for the average
correlation energy for all the electrons in the in-
terior. With these modified wave equations a modi-
fied self-consistent field solution was obta, ined,
which yielded a value of 0.4 volt for D, as shown
in the second row of Table VII. Comparison with
the value of 1.0 volt obtained without the correla-
tion effect shows that correlation plays a vital part
in limiting the spreading of the electron distribu-
tion, and cannot be neglected in any quantitative
calculation.

Table VII shows also the values of the work
function q for this idealized metal with a continuous
positive charge distribution, calculated with and
without correlation effects. In the first row the
correlation terms of (IV.1.5) have been omitted from
the inner work function, as well as in the calcula-
tion of D, while in the second column they have
been included. It will be noticed that the correla-
tion affects D and the inner work function in oppo-
site directions.

To apply these results to the actual metal sodium,
D must be corrected for the fact that the unit cells
forming a crystal face of sodium would not have a
common plane boundary but would have a pebbly
or roofed appearance, as indicated in Fig. 23.
Bardeen calculated the correction for the (110)
face on the assumption that the electron distribu-
tion on this face is just the same as it would be for
an idealized metal with a plane boundary in the
position which averages the peaks and valleys of
the actual surface. His result gave a value of D for
sodium which was 0.25 volt smaller than for the
idealized metal, as shown in the third row of Table
VII. Smoluchowski's calculations, discussed in the
next section, suggest that the difference may not
be as great as this.

IV.2b Theories Vsing the Fermi-Thomas Model

The earlier attempts to calculate work functions
from the Fermi-Thomas model were usually so
formulated that the contributions from the in-
terior and from the surface double layer were calcu-
lated together. For accounts of these earlier theories
the reader is referred to the article of Sommerfeld
and Bethe ((15), $15) and to the brief discussion
we have already given in Section IV.1d. Mrowka
and Recknagel (M21) have computed by the ordi-

& The relationship of the classical image potential to the
quantum-mechanical correlation effect has been described in
another paper by Bardeen (83).
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nary Fermi-Thomas method the electron distribu-
tion near the surface of an idealized metal consist-
ing of electrons plus a uniformly distributed positive
charge with a plane boundary. However, the re-
sults are, as one would expect, of little quantitative
significance, since the potential jump D resulting
from the surface double layer always comes out
by this method to be equal to the maximum kinetic
energy W; of the internal electrons (see the dis-
cussion in Section IV. ld); this is over four volts for
the electron density found in sodium while the
actual value of D is only about 0.4 volt according
to the calculations of Bardeen summarized in the
preceding section.

In an attempt to improve the utility of the
Fermi- Thomas type of approach Smoluchowski
(S15) has made use of an improved expression, as
a result of the work of Weizsacker (W9), for the
kinetic energy of a distribution of electrons in
terms of their spatial density. Whereas the ordinary
expression of the Fermi-Thomas theory for the
kinetic energy, proportional to an integral over
space of the 5/3 power of the electron density, is
valid only if the electron density is very high,
referred to the scale of its spatial variation,
Weizsacker's expression is asymptotically correct
not only at high densities but for all ordinary cases
of low densities as well. This removes the most
troublesome defect in the use of the Fermi-Thomas
model. Unfortunately, however, Smoluchowski's
calculations took the potential energy of the dis-
tribution to be merely the Coulomb energy of the
total charge distribution and as the improvement
in the kinetic energy expression only makes it
more advantageous than before for the electrons
at the metal boundary to spread out into the
vacuum, the double-layer moment which results
from minimizing the total energy comes out even
larger than in the ordinary Fermi-Thomas calcula-
tion, which as we have seen in the preceding para-
graph gives far too large values. The reason for this
unsatisfactory result is obvious from a comparison
with the wave mechanical calculations of Bardeen,
which we have discussed in Section IV.2a: none of
the Fermi-Thomas calculations so far made has
taken into account the exchange and correlation
fields, which exert a powerful influence to make

the overlapping electrons hug the boundary of the
metal.

In spite of this defect, the calculations of Smo-
luchowski are of special interest because they repre-
sent the only attempt so far to estimate the effect
of the differences in atomic arrangement from one
crystal to another. Smoluchowski idealized the
metal as consisting of a number of polyhedral unit
cells, arranged into a crystal as shown schematically
in Fig. 23, each polyhedron being filled with positive
charge of uniform density. In describing the elec-
tron distribution near the surface, Smoluchowski
distinguished two 'effects, which he called "smooth-
ing" and "spreading. " The smoothing effect is
measured by the smoothness of the contours of
constant electron density, the spreading effect by
the distance normal to these contours within which
the density decreases from its interior value to a
negligible value outside. In Fig. 23, A illustrates no
smoothing and no spreading, D illustrates complete
smoothing and no spreading while 8 illustrates
spreading and partial smoothing together. It is
clear that smoothing gives a double layer with the
positive charge outward, hence a negative con-
tribution to D, while spreading gives a positive
contribution to D. Smoluchowski attempted to
calculate both effects by assuming the electronic
charge density to be a function involving two pa-
rameters, one determining the steepness of the
essentially exponential decay of electron density
with distance normal to the surface, and the other
determining the height of the hills and valleys
in the surfaces of constant density. These two
parameters were chosen so as to minimize the
total energy. It was found that the first parameter,
which measures the spreading effect, was almost
constant from one crystal face to another. The
second parameter, however, which measures the
smoothing, showed considerable variation, the
smoothing being, as one would expect, the more
complete the shorter the spacing between the peaks
and valleys of the original surface. Thus, no at-
tempt to calculate theoretically the variation of
work function from one crystal face to another can
be quantitatively valid unless the variations in
the amount of smoothing are taken into account.
However, Smoluchowski's calculations confirm that
there should be a strong tendency for crystal faces
on which the surface atoms are densely packed to
have higher work functions than those on which
the surface arrangement is more open, since a given
amount of smoothing gives a smaller negative con-
tribution to D on a dense face than on a less dense
one.

It is interesting to note in passing that the type
of calculation just described gives figures for the
specific surface energies of the different crystal
faces of a metal. Smoj.uchowski's results for these,
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like his computed work function differences, are
probably numerically unreliable because of his
neglect of exchange and correlation effects; how-
ever, they suggest that there is a general tendency
for crystal faces of high work function to have low
surface energies, and vice versa.

IV.3 Temperature Derivative of the Vfork
Function and Its Bearing on A*

A number of attempts have been made to com-
pute the temperature derivative of the true work
function y from some assumed model describing
the electrons in a metal. According to Eq. (I.5.4),
a positive value of (d y/d T) implies that the
effective emission constant A* for a uniform surface
should be less than the universal constant A =120
amp. /cm'/deg. '. It has often been assumed, errone-
ously of course, that the observed emission con-
stant A** of a polycrystalline metal is the same as
the A* of a uniform surface, and that therefore the
fact that A** is about one-half A for W, Ta, and
Mo implies that dy/dT is of the order of 6X10 5

volt/deg. By coincidence, a value of this order
can actually be obtained from a simple theoretical
argument (H11, R2). However, as we shall see,
there are several effects which may be expected to
make contributions of comparable magnitude to
dy/dT, and most of the attempts to compute this
quantity, including the ones just cited, overlook
some of these effects.

It will be convenient to start by classifying the
various physical effects which may cause y to
vary with T, and then to try to estimate the mag-
nitude of each eKect by using modern theories of
metallic structure; some of the possible effects wi11,
of course, turn out to be, negligible. First of all we
may break y up into the inner work function and
the potential jump at the surface. Let 4 be defined
as the volume average of the electrostatic potential
in the interior of the metal (see Section I.1b) and
let the zero of potential be chosen to be the poten-
tial 4' just outside the surface, a choice which will
simplify the notation in the discussion to follow.
Then from (I.2.1)

e(dye/d T) = e(dC /d T) dIJ/d T. (IV.—3.1)

We may distinguish three contributions to the
last term by setting

I (v, T) =&(v,o)+~»+ ~,„.(IV.3.2)

Here hz p represents the small change which would
occur in p if the temperature were raised from 0 to
T while keeping the volume constant and holding
the atoms of the metal fixed in their equilibrium
positions, and pep. represents the additiona1 change
which results from the thermal vibration of the
atoms. The mechanism of this latter change will

be elucidated briefly below. The quantity 4 may
be broken up in a similar manner:

4(v, T) =40(v)+64+D. (IV.3.3)

Here 4 0(v)+64 (v, T) is defined to be the value which
the inner potential would have at temperature T
if the mean charge distribution around the surface
atoms were the same as that around the atoms in
the interior (see Section IV.2); AC. (v, T) is defined
to be the temperature-clependent part of this po-
tential, vanishing at T=O. The quantity D thus
represents the amount by which the inner poten-
tial is altered by the differences between the mean
charge distribution in the surface cells and in those
of the interior, and it therefore represents the
double layer moment according to the definition
employed in Section IV.2.

A number of terms result when (IV.3.2) and
(IV.3.3) are inserted into (IV.3.1) with the relation

d/dT = (a/BT)„+nv(8/Bv) v,

where e is the volume coefficient of expansion.
These may be grouped as indicated in the first
column of Table VIII. The remaining columns of
the table summarize the discussion to be given in
the following paragraphs; the references are listed
in the approximate order of the thoroughness with
which they treat the individual effects listed.

The results summarized in Table VIII, though
rather qualitative, indicate the range of values
within which it is likely for the effective emission
constant of an ideal metal surface to lie. According
to Eq. (I.5.4), the A* of a uniform surface depends
upon dy/d T and upon the behavior of the reflection
coefficient. Unless r is very close to unity or varies
rapidly with temperature, alternatives which the
arguments of Section IV.4 suggest are unlikely for
uncontaminated metal surfaces, reHection will not
affect the order of magnitude of A*. And since the
two largest entries in Table VIII are probably
usually of opposite signs and each of the order of
a few times k for metals with low expansion co-
efficients, one can conclude that these metals, if
free from contamination, should probably have A*
values not more than a few times larger or a few
times smaller than A = 120 amp. /cm'/deg. '. More-
over, by Section II.7 the emission constant A*~ of
a polycrystalline surface should be smaller than the
A* of the patches from which most of the emission
comes. Thus when A** values are observed as
large as say iOOA, it seems more reasonable to
suspect a temperature-dependent contamination,
giving a large negative dy/dt, than to accept them
uncritically as characteristic of a clean metal sur-
face. For example, early experiments on such metals
as platinum and nickel gave very large values for
A**, while more recent experiments employing
more careful efforts to achieve clean surfaces have
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TxsLz VI. Values of (rp —D) obtained from (IV.1.7).

Metal

Computed (q —D), volts (at
0 EC unless otherwise noted)

Using Using
theoretical observed

U U

1.96 217

2.24

Reference+ Remarks*

m/m*= 0.656 (B2)

same, but with
room temp. r,

Observed q at room
temperature. volts+

2.28 (03)

Inferred double
layer moment D,

volts

0.0-0.1

Cs

Be

Ca

1.80

1.96

1.90

1.86

—1.90

1.25

1.9

1.92

2.02

2.20

2.20

2.15

3.68

—1.2

1.0

(H6)

(W15)

(H6)

(W15)

(H6)

(H6)

(H10)

(H6)

(H6)

m/m*=1. 07 (B2)

same, but with
room temp. r.

H—K method

m/m* assumed = 1,
room temp. r,

H-K method

m/m* assumed = 1,
room temp. r,

H-K method

m/m* assumed = 1,
room temp. r,

H—K method

m/m*=1. 0 (F14)

Based on directly
computed energy
levels, rather than
on eA'ective mass
concept.

H-K method

Based on directly
computed energy
levels (M9)

H—K method

2.29 (M7)—2.28 (M11)

2.24 (03)—2.26 (M12)

2.16 (03)

1.87 (03)

4.9 (111 face)
5.55 (100 face) (U1)

3.92 (M7)

3.67—3.79 (M7, A4, C3)

2.71 (Jl)—3.21 (L8)

0.3

0.0—0, 1

0.0

—0.3

1.2-1.9

2.4-2.S

1.7—2.2

*References referred to in parentheses are found in the Bibliography.

yielded values of around 30 amp. /cm'/deg. '. (See
entries 35 and 37 in Table IV, Section III.1.) A
similar suspicion of contamination should be enter-
tained when values of A** as small as say 0.01A
are obtained; however, in this case there may also
be a possibility of attributing the low A** to very
small isolated patches of low work function, or, in
the case of metals with a large expansion coefficient,
to the principal thermal expansion effect itself.
Obvious checks could be applied to either hy-
pothesis.

Note that for the (100) and (211) faces of tung-
sten the data of fable I, Section II.1, suggest that

~

ed p/dt
~
((k, i.e. , that the various effects enumer-

ated in Table VIII cancel one another fairly ac-
curately. This cancellation, though 'doubtless for-
tuitous, is quite consistent with the views presented
here.

IV.3a The Principa/ Therma/ Expansion Egect
The quantity in the first row represents the

effect which has received the most attention in the
literature. The possibility that thermal expansion
may cause rp to vary with T was pointed out long
ago by Richardson (R9), but an attempt to calcu-
late the magnitude of the effect from modern
theories seems first to have been made by Herzfeld
(H11), and later independently by Reimann (R2).
On the basis of the simple Sommerfeld free electron
model of Fig. 22, the maximum kinetic energy t/t/';

of the occupied electronic states varies as the —-',

power of the volume, so that if W' remains constant
the expansion of the metal with increasing tem-
perature should increase the work function of this
model. This is the effect calculated by Reimann,
and gives values of ed'/dT of the order of k for
metals such as W, Ta, and Mo. Actually there is
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no reason why W, should not change. Herzfeld
identified W', with —t!4, the space .average of the
electrostatic potential, and computed its variation
with volume for Ni by straightforward methods on
the assumption that the charge distribution around
the surface atoms is the same as around those of
the interior. In this case the potential —eC was
found to become numerically less as the volume in-
creases, by an amount sufhcient to outweigh the
decrease of W; and give a negative temperature
coeNcient for q =S;—8;. A computation of the
variation of C with volume has also been made
by Blochinzev and Drabkina (818), using a, Fermi-
Thornas model developed by Tamm and Blochinzev
(T2). The validity of this model is questionable
(see Section IV.1d), however, it agrees with Herz-
feld's calculation in that the variation of —e4
outweighs that of W;. A calculation by Seely (SS),
on the other hand, yields a variation of —eC which
is smaller than that of t/V, . Seely assumes the po-
tential at any point inside the metal to be given by

C =e g„(Z—S(r„))/r„, (IV.3.4)

where Z is the atomic number, S(r) is a screening
function, and r„is the distance from the point in
question to the nucleus of the nth atom of the
crystal. This assumption thus has the property of
making the charge distribution around the surface
atoms different from that around the atoms of the
interior, in such manner as to give a positive value
to D. Seely assumed the variation of the function S
with lattice constant to be such that the values
S(r„)remain unchanged by thermal expansion. This
assumption makes D increase as the crystal ex-
pands, by an amount su%.cient to make the sign of
the computed d&p/d T positive.

Much more reliable than any of the preceding is
the method used by Wigner (W13) to evaluate the
thermal expansion effect. This method consists in
using the Wigner-Bardeen expression (IV.1.7) for
the work function. The quantity LeC» —p, (o,0)] is
represented by the right side of (IV.1.7) with the
last term omitted. When this is differentiated with
respect to volume the term in dU/do drops out,
since the energy is a minimum at the volume which
the metal has at the absolute zero. The quantity
in the first row of Table VIII is therefore given by
a sum of simple functions of the lattice constant,
plus a term involving the volume derivative of
(e~,x —

cA,). Wigner evaluated this term by assuming
the electrons to have the same effective mass as
free electrons, i.e. , by assuming that an electron of
wave vector h has energy eq = so(o)+ (h'/2m)h'. This
assumption is known to be good for Na (82), prob-
ably good for Cu (F14), but poor for Li (B2) and
for Be (H10). It is not certain to what extent this
assumption is valid for thermionic metals such as
Ta, W, and Mo; the calculations of Manning and

Chodorow (MS) suggest that the assumption is prob-
ably not justified for these metals. If this free
electron assumption is used nevertheless, for want
of a better one, the term —(e~,~ —e~„) gives a posi-
tive contribution to dp/dT. Since the sum of the
other terms of (IV.1.7), exclusive of eD, also in-
creases with increasing volume, the quantity in the
first row of Table VIII comes out positive, and the
numerical value turns out to be of the order of a
few times k, or more for metals with especially
large expansion coefficients (see the entries for Li
and Na in Table UI, Section IU.1c).

IV.3b The InternaL Electrostatic Effect
of Atomic Vibrations

The second and third entries in Table VIII,
taken together, represent the effect of atomic vibra-
tions in the interior; the quantity (eAC —Aep)
measures the amount by which the work function
would change if one could eliminate thermal vibra-
tions by holding all the atoms of the interior of
the metal fixed in their equilibrium positions, with-
out altering the volume, electron temperature, or
distribution of charge at the surface. In the treat-
ment given here this effect has been separated into
two terms because it is more convenient to calculate
the EC and Acti effects separately. Wigner, how-
ever, has treated the two effects together (W13).'

To show that the thermal vibrations of the atoms
in the interior of a metal do, in fact, alter the mean
electrostatic potential, consider the potential 0' at

A B

~ ~ ~ ~::0:-::.:.:::"-:0::i.'::.":. :l":::-"8:::y:::.

~ ~ ~

V
C D

FiG. 23. Formation of a double layer at the surface of a
metal by spreading out of the electron distribution. A: Elec-
tron distributian as. it would be if the charge distribution
about the surface atoms were the same as that about the
interior atoms. B:Actual electron distribution, mean density
of electrons being indicated by density of stippling. C: Charge
density for B minus that for A, equivalent to a dauble layer.
D: Illustratian of complete "smoothing" with no "spreading"
(see Sectian IV.2b). In all four sketches the vacuum is above,
the metal belaw; cell boundaries and nuclear positions are
drawn in merely to provide points of reference.

I

wish to thank Professor signer for discussing these
eGects with us and clarifying the relatianship between his
approach and o'urs.



T'ai.s VII. Double-layei' riiomeuts calculated by Bardeeu.

Double-layer Work function
111oNent D, volts q, volts

Idealized metal, correlation
omitted

Idealized metal, correlation
included

(110) face of sodium corre-
lation included, complete
smoothing assumed

1.0

0,4

0.15

2.0

2.35

2.17*

*From the value 2.02 volts given in Table VI for (y —D).

4'o+A4= —Q j~ 4,dr.
~0 2. cell o

(IV.3.6)

Now if the suffix —j is used to identify the cell
whose position relative to the zeroth cell is the
inverse of the position of the jth cell,

%g'dr = 0'pdr,
cell o cel l —j

and so (IV.3.6) becomes

4o+64 =—~ hodr,
~0 crysta, l

(IV.3.7)

and since under the present assumption each cell
is electrically neutral, the limits of integration may
be extended to infinity without appreciable error.
To express (IV.3.7) in terms of the charge density
p we may write

Voro

jI Cod&= j No—
6

and if the unit cell has been so drawn as to have
zero dipole moment we may transform this expres=
sion by Green's Theorem and discard the surface
integral over the sphere at infinity, with the result

. the various points within a unit cell of the crystal.
The mean potential C is the volume average of%,
which can be expressed as an integral over the
volume Qp of a single unit ce11. Now%' can be ex-
pressed as a sum of contributions from the charge
distributions in the various unit cells of the crystal:

(IV.3.5)

where@; represents the potential field produced by
all the charges in the jth unit cell.

If we assume the charge distribution in the sur-
face cells to be the same as in. the interior cells,
the average potential will, according to the defini-
tion accompanying (IU.3.3), be 4o+64. Thus

Setting p=po+hp, where po is the charge distribu-
tion at the absolute zero and Ap the statistical
average of the charge resulting from thermal vibra-
tions, we have finally

DC = — r'Dpdr.
300~ np

(IV.3.9)

P = 9k'kT/M(kO~)' (IV.3.10)

where M is the ionic mass, 0 the Debye tempera-
ture, and T is assumed well above O. Inserting
(IV.3.10) into (IV.3.9) and expressing the result in
numerical form, there results, for the idealized case
considered here,

1.47 X 10sZ
k,

MO'0
(IV.3.11)

Note that (IV.3.8) and (IV.3.9) are independent of
the choice of origin for r, by virtue of the neutrality
of the unit cell and the fact that it has been -drawn
so as to have no dipole moment.

A correct numerical evaluation of (IV.3.9) would
of course have to take account of the contribution
to Ap caused by distortion of the free electron dis-
tribution by the vibrating ion cores, as well as of
the contribution from the ion cores themselves.
However, one can probably get the correct order of
magnitude of 64 by computing the latter effect
alone and assuming the ion cores to vibrate as
rigid units. For the shear modes of the alkali
metals it is in fact probably fairly accurate to treat
the ion cores as rigid and to assume that the charge
distribution of the free electrons is unaffected by
thermal vibrations; this is shown, for example, by
the successful calculation of the shear constants of
the metals by Fuchs (F15,F16), using these assump-
tions. Even for alkalis, however, it is not legitimate
to neglect the distortion of the valence electron
distribution in compressional modes of vibration,
so the value which we shall compute for (IV.3.9)
will be at best only a rough approximation to the
truth.

If the valence electron distribution is unchanged
by the vibrations and if the lattice is monatomic
and composed of rigid ions of charge Ze, the integral
in (IV.3.9) will equal PZe, where P is the mean
square distance of the ion from its equilibrium posi-
tion. At high temperatures this quantity can be
shown to be proportional to the mean, over all
normal modes of vibration of the lattice, of the
reciprocal of the square. of the frequency. If the
frequency spectrum of the lattice is of the Debye
form a straightforward calculation gives

1
4o+&4 =

~

r'V'%odr=—
600~„

2x
rspdr. (IV.3.8)

Mo oo
if M is in atomic weight units, 0+ in degrees, and
Qp in cubic angstroms.
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IV 3c. The Egect of Atomic Vibrations on
the Chemical Potential

The third entry in Table VIII represents an
effect which can be described physically in either
of two ways, which are of course equivalent to
each other thermodynamically. The first and more
direct way of picturing the mechanism involved is
illustrated in Fig. 24. Here the energies of the vari-
ous levels which the diA'erent electrons of the metal
occupy are plotted as functions of any one of the
many possible coordinates which describe the dis-
placements of the atoms from their equilibrium
positions. If the crystal lattice is one of high sym-
metry, as is the case for most metals, the pattern
of curves will be symmetrical, although the in-
dividual curves need not be. For simplicity only
symmetrical curves are shown. The important
thing is merely that they have a curvature. For
the case shown in the figure, the average energy of
each electronic level increases with increasing am-
plitude of thermal vibration of the atoms, and this
effect will tend to make the height of the Fermi
level increase with temperature. It is perfectly
possible, of course, for the Fermi level to decrease
with temperature, instead of increase. All we can
say with certainty is that the curve of total energy
of the metal against amplitude of vibration must be
concave upward, and this does not require that the
uppermost curves in Fig. 24 be also concave up-
ward, though it makes it probable that this is the
case for most modes of vibration.

If the energy ordinates are measured from some
absolute level, this change in the mean height of
the uppermost filled levels will measure the tem-
perature derivative of the electrochemical poten-
tial p; however, we have already estimated the
temperature derivative of the mean electrostatic
potential in the preceding section, so we shall
suppose the ordinates of Fig. 24 to be measured
relative to the mean electrostatic potential, so that
we may interpret the curvature of the .curves for
the uppermost filled levels in terms of the tempera-
ture variation of the chemical potential p. This
vibration-dependent part of p, is what we have
called hey, .

To obtain a rough quantitative estimate of hejM,

and its temperature variation, however, it is more
convenient, as Wigner (W13) has shown, to use a
diFferent approach based on a thermodynamic
identity. We shall start from the relation

Here the subscript "charge" on the right means
that 8/Bn is to be interpreted as the change which
would occur if one electron were added and if an
equal positive charge, uniformly distributed over
the interior of the crystal, were imagined to be

added at the same time. Without the positive
charge the change would give p instead of p, . Inter-
changing the order of differentiation gives

BS;b. T 80 BS;b

Bn 0 Bn BT

C. 80
70 Bn

giving finally for the third row of Table VIII
—(Bosey/BT)

= —(C„/0)(80/Bn) „,r, ,g„„,(IV.3.13)

where, if C„is to be interpreted as the molar spe-
cific heat, 80/Bn must be interpreted as the change
in 0 when one electron per mole is added to the
metal with a compensating imaginary positive
charge.

The problem is thus reduced to that of estimating
how the effective Debye temperature is affected
by changes in the electron concentration. A rough
lower limit to 80~/Bn for tantalum and tungsten
can be obtained by comparing the values of Q~ for
these metals. If tungsten had the same nuclear
charge, atomic weight, and atomic volume as
tantalum and differed only in having one electron
per atom more, compensated by a uniform positive
charge in each unit cell, then the difference be-
tween the two 0~ values could be interpreted as
NBO/Bn where X is Avogadro's number. Actually,
of course, the compensating positive charge is
localized at the tungsten nucleus instead of being
spread over the cell. This will make the electronic
wave functions hug the nucleus more closely and
probably reduce 0~. Corrections for the differences
in atomic weight and atomic volume are easily
applied, since O~ varies inversely as the square root
of the nuclear mass and since the variation of 0~

with volume is related to the volume expansion
coefficient 0, in the Debye approximation by

XC„BlogO

8 8 logV

where X is the compressibility, v the molar volume,

Now the entropy, S, can, to a good approximation,
be divided into an entropy of vibration and a
generally much smaller entropy of electronic ex-
citation. The contribution of the vibrational en-
tropy to (IV.3.12) gives Aep, while the contribu-
tio'n of the electronic entropy gives the other term,
D~p, introduced in (IV.3.2) above. Following Wig-
ner (W13) we may use a Debye model for the
vibrations and write for the vibrational entropy

S„;b.=function of (T/0),
where the Debye temperature, 0', may depend on
the volume and on the electron concentration. Thus
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TABLE VIII. Contributions to ed'/dT

Term

av(d/dv) LeC 0 —p(v, 0)j
(principal thermal expan-
sion effect)

e(she/BT)
(internal electrostatic
effect of atomic vibrations)

—(s/»)~8~
(efIect of atomic vibrations
on the chemical potential)

e(dD/dT)
(temperature variation of
double-layer moment)

(s/8 T)tirp—
(effect of electronic specific '

heat)

av(s/sv) (eke erli a—ep)—
{minor expansion effects)

Probable order of magnitude

probably positive, a few times k for high
melting metals; rather larger for metals
such as Fe which have larger n

probably negative, of the order of a few
times k

probably only a fraction of k for most
metals with d shells in contact; probably
somewhat larger and negative in sign for
other metals

probably negative and not more than a
fraction of k

may be of either sign but is negligible un-
less Fermi level lies very close to the top
or bottom of a band

probably negligible

Reference

Wigner (W13)

Seely (S8)

Herzield (H11)
Reimann (R2)

Blochinzev and
Drabkina (B18)

text
Wigner (W13)

text
Wigner (W13)
Herzfeld (H11)

text

Blochinzev and
Drabkina (B18)

Sun and Band
(S21)

Remarks

Wigner-Seitz-Bardeen model,
including exchange and cor-
relation.
free electron model, no ex-
change or correlation

ditto
free electron model, ignoring
change in C
Fermi- Thomas model

principally due to thermal ex-
pansion
show effect of thermal ener-
gies of electrons to be negli-
gible

and C, the molar speci6c heat at constant volume.
When the lower limit to BO'/Bn calculated in this
way is inserted into (IV.3.13), the result is obtained
that for tantalum and tungsteri Beep/B—T should
be negative and at least as large as —,

' or 6 of k. A
similar calculation can of course be carried out for
any adjacent pair of metals in the periodic table
which have the same crystal structure; for ruthe-
nium and rhodium and for iridium and platinum
the resulting upper limit for Bhotj/BT com—es out
positive and close to -,'of k.

Thus it seems likely that BA@tz/BT is only —a
fraction of k for these transition metals, and it is
possible that it may be of either sign. This is what
one would expect if the interatomic "stiffness" on
which 0' depends is principally determined by the
d shells, and if the properties of these d shells are
not very radically altered by addition of a single
electron. This situation might be expected to pre-
vail for those metals, such as transition metals
and noble metals, which have the d shells of
neighboring atoms in contact. Fqr other metals,
especially those of low valence, a stronger de-
pendence of O~ on ti, and hence a larger (presumably
negative) value of —(Bhetz/BT) might occur.

IV.3d Temperature Variation of the
Double I.eyer Moment

Let us turn now to the fourth entry in Table
VIII. The most reasonable cause for an appreciable

temperature variation of the surface double layer,
D, is again thermal expansion: presumably if the
calculations of D described in Section IV.2a were
made for different values of the lattice constant,
appreciably different results would be obtained, so
that thermal expansion should change D. We may
make a crude estimate of the magnitude of this
effect by noting that if the atoms of a metal could
be squeezed together or pulled apart at will, a plot
of D against lattice constant ought to look some-
thing as shown in Fig. 25. The upward concavity is
suggested by Table VI; near the observed lattice
constant a variation of D with a power of the lat-
tice constant of the order of unity would be reason-
able. Taking D to be of the order of one to several
volts for a metal such as tungsten, we get a nega-
tive value of nve(dD/dv) of the order of some tenths
of k. This is rather small compared to the volume
effect in the 6rst row of the table; however, it is
entirely possible that the volume derivative of D
may be several times larger than assumed. More-
over, the expansion of the surface layers of a
crystal need not be identical with the expansion
of the body of the lattice. Other effects besides
thermal expansion might conceivably contribute to
the temperature derivative of D; but it is hard to
think of any other effect which would be any
larger. One such effect would be the roughening at
the surface by thermal vibrations. Another, which
can be shown to be negligible (B18), would be an
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increase in the extension of the electron cloud out-
side the surface due to the thermal energies of the
electrons.

IV.3e The Ejfect of Electronic Specif'tc Heat

As was explained in connection with Eq.
(IV.3.12) the fifth entry in Table VIII represents
the effect of the normal "free election" contribution
to C.. If the electrons in the metal are treated as
non-interacting and as occupying a continuum of
levels of density i(e) per unit energy, the levels
being independent of temperature, the standard
theory for an almost completely degenerate Fermi
gas (e.g. , (15), 416) gives

w' (d inv)
IJ,(T) = tip —i i (k T)'+O(T'), (IV.3.14)

6 I dp ).=„
whence

Bkrti m t'd in@)=—k T
( )

.k. (IV.3.15)
BT 3 0 de ) e=pp

Now for perfectly free electrons u~e&, so the co-
efficient of k in (IV.3.15) becomes (xP/6)(kT/tip),
which is ordinarily very small. For transition
metals, however, the existence of narrow, partially
filled d bands may make (IV.3.15) considerably
larger, and the coefficient of k may become of the
order of unity if the Fermi level p, o happens to be
within a distance of the order of kT from the top
or bottom of a band. Some calculations for this case
have been made by Sun and Band (S21), with an
attempt to allow for the overlapping of the s and d
bands. The values of —(8/BT)hrp, which they
calculate are probably too large, since the neglected
term in (IV.3.14) is positive and quite appreciable
for the cases they consider.

IV.3f 3Iinor Expansion Effects

The last entry in Table VIII, the effect of ther-
mal expansion on AC, haiti, and 68ti, could only be
appreciable if one of these quantities were to change
by an appreciable fraction of its value under the
small change of volume produced by thermal ex-
pansion from O'K to T. This is very unlikely.

IV.4 The ReQection CoefBcient for a Uniform
Surface at Zero FieM

I

It would be very dificult to calculate rigorously
the reflection coefficient of a crystal surface for an
electron incident from outside. For a rigorous
calculation should take account both of the
atomicity of the potential 6eld acting on the
electron at the surface and in the interior, and of
the possibilities of electron-electron collisions and
inelastic collisions of the electron with the crystal

lattice. Because of the difficulty of solving wave
mechanical problems with more than one degree of
freedom, however, most of the detailed calculations
which have been published so far have assumed a
simplified model of a metal, for which the potential
acting on the electron is taken to be a function only
of the coordinate normal to the surface. These will
be summarized in Section IV.4a. The effect of the
periodic field inside the crystal on the reflection
coefficient can i'n some cases be to produce total
reflection, in others merely to increase or decrease
the partial reflection. Total reflection, which in the
absence of inelastic impacts should occur when the
entering electron finds itself in a forbidden energy
region inside the crystal will be discussed in Sec-
tion IV,4b, while the influence of the lattice struc-
ture on partial reflection will be taken up in Sec-
tion IV.4c. The discussion given in these sections
makes it appear highly probable, a priori, that for
metals such as clean tungsten the reflection co-
efhcient is of the same order as that given by the
one-dimensional calculations of Section IV.4a, vis. ,
0.05 or so; nevertheless, there is a poss&bility that
the reflection coefficient may be much higher, and
this possibility is quite a likely one for certain
other metals. It is therefore fortunate that some
fairly convincing evidence for a small reflection
coefficient for tungsten is provided by the phe-
nomenon of periodic deviations from the Schottky
line; this will be discussed in Section IV.4d. Sec-
tion IV.4e, finally, will contain a few remarks about
the effects of inelastic impacts.

Throughout the whole of this section only crystal
surfaces which are practically atomically smooth
will be considered. Surfaces which are non-uniform
on a scale large compared with the wave-length of
a thermal electron will show reflection coeAicients
which are dominated by the patch field effects dis-
cussed in Section II.6; non-uniformities on a scale
of the order of tens of angstroms, however, may
produce reHection effects which are more difficult
to estimate.

IV.4a One-Dimensional Theory with Constant
Interi or Potential

The best one-dimensional approximation to the
effective potential acting on an electron colliding
with a metal surface would probably be a function
similar to that shown in the full curve of. Fig. 26.
This potential function follows the image law,

V= —e'/4x,

at large distances outside the surface, deviates from
the image law at smaller distances in a manner
similar to the effective potential used by Bardeen
(81) in calculating the charge distribution in the
double layer, and shows a periodic structure in the



interior similar to that which the actual potential
would show if averaged over y and 2'.

One or two facts regarding the choice of this opti-
mum one-dimensional potential are worth pointing
out here. One is the fact, already noted in Section
IU.2a, that because of the velocity dependence of
exchange and correlation effects, electrons of dif-
ferent velocities will move in different potential
fields. As long as one is dealing only with electrons
whose energies outside the crystal' are of the order
of kT, this difference can be ignored, since a change
as small as this in the energy will not affect the
effective potential very appreciably. However, it
should be borne in mind that the effective potential
for these thermionic electrons will not be the same
as for higher energy electrons —e.g. , those en-
countered in electron diffraction or in secondary
emission —or for lower energy electrons, e.g. , those
encountered in field emission.

For electrons of the speeds encountered in ther-
mionic emission the correctness of the image law
at large distances is indicated experimentally by
the fact that the field dependence of the emission
from metals follows the Schottky law (I.4.3). More-
over, from the purely theoretical point of view
Bardeen (B3) has treated the many-electron prob-
lem of the motion of a slow electron outside the
surface of a metal containing free electrons and
has shown that it is a good approximation to use a
wave equation for the external electron in which
the potential energy is simply the image function.

It has sometimes been surmised, especially for
composite surfaces, that there may be a hump in
the potential curve near the metal surface. This
seems a plausible possibility for composite sur-
faces, although there seems to be no reason to ex-
pect any hump at all for a clean metal surface.
The existence of a hump extending above the level
of the potential at infinity can of course be ruled
out whenever the dependence of emission on field
strength follows the Schottky law (I.4.3) though a
hump with its peak significantly lower than the
potential at infinity would not be inconsistent with
approximate fulfillment of this law. However, if the
field dependence of the emission can be measured
sufficiently accurately, the presence of even the
latter type of hump should become noticeable
through an increase in the amplitude of the periodic
deviations from the Schottky line, as compared
with a clean metal '(see Section IV.4d below).

The best theoretical estimates of the reHection
coefficient which have been published to date have
been made assuming a potential of the form

V= —e'/4x for x&xi,
V= —e'/4xi = —W, for x (xi. (IV.4.1)

This is shown by the dashed curve of Fig. 26. The
solutions of the Schrodinger equation in this po-

tential field are confluent hypergeometric functions
outside xi, and, of course, plane waves inside xI.
Using series expressions for the conHuent hyper-
geometric functions involved, Nordheim (N4) and
MacColl (M1) have calculated reflection coeffi-
cients for various values of S" and of the normal
energy c,=nw, '/2, where v, is the component of
velocity of the electron normal to the surface when
it is at an infinite distance outside the metal. The
results of MacColl are reproduced in Fig. 27 as full
curves.

It is interesting to compare these exact calcula-
tions of MacColl with previous calculations using
the same potential function (IV.1.1) but employing
the WKB approximation. According to Bethe ((15),f 18) and Frank and Young (F9), a straightforward
calculation can be made using this method for the
wave functions to the right of point 8, Fig. 26, and
joining these wave functions to plane waves in the
region left of 8; the resulting reflection coefficient is

16(e.+W.)'+ W.'
(IV.4.2)

where W and e are to be expressed in Rydberg
units. Ualues computed from this approximate
formula for S" =10 ev and 20 ev are plotted in
the dotted curves of Fig. 27.

Calculations using potential functions other than
(IV.4.1) need be mentioned only briefly. Eckart
(E1) has calculated the reHection coefficient for a
barrier represented. by a certain analytical expres-
sion involving three parameters. This expression is
capable of representing barriers with a potential
hump at the surface, as well as monotonic barriers
such as those of Fig. 26; however, the Eckart po-
tential approaches zero exponentially with increas-
ing distance outside the surface and so is not cap-
able of approximating an image law in this region.
For this reason the reflection coefficient computed
with the Eckart potential always approaches unity
as the normal energy, c, of the electron approaches
zero. This behavior is well known in the case of
the discontinuous step potential (see (15), f18),
which is a limiting case of the Eckart potential.
However, calculations we have made show that in
order to get from Eckart's formulae a reflection co-
efficient of even 0.10 for an electron of energy
e, =0.01 ev, one would have to assume a potential
whose initial drop on approaching the surface from
outside would be much more abrupt than the
image law, so much so as to be quite out of the
question.

IV.4b Tota/ Bragg Refection

"Bragg reflection" has often been cited as a
likely cause for a high reflection coefficient for
electrons incident on a metal surface. The simplest



illustration of this is when the energy of the in-
cident electron lies in the forbidden region between
two allowed bands of energies in the interior; in
such case the electron cannot continue to move
into the metal, and so must be reHected with a re-
Qection coefficient r =1.The same effect can occur
even when the energy bands in the metal overlap:
all that is necessary is that the given energy be
forbidden for electrons having certain directions of
propagation. Let us assume the surface of the metal
to be an ideal crystal plane normal to the x direc-
tion, and let the incident electron have total energy
c and correspond to a wave function exp(ik r) at a
large distance outside the metal. Then if the elec-
tron is not to be totally reHected, there must exist
a wave function of the Bloch or running-wave type
inside the metal, having the same total energy as
the incident electron and having wave numbers
k„'and k,' which either coincide, respectively, with
the incident k„and k„orelse differ from these by
2s times some vector of the two-dimensional lattice
reciprocal to that of the identity periods of the
crystal surface. Now imagine a surface to be drawn
in the three-dimensional space of k ', k„',k,', repre-
senting the locus of all wave vectors IW|,

' correspond-
ing to the particular energy value e inside the
metal. It may or may not happen that this surface
is intersected by one of the lines corresponding to
allowed values of k„'and k, '. If there is no such
intersection, the incident electron cannot continue
to move into the metal, and barring inelastic colli-
sions it must be totally reflected.

To predict when total reHection of this sort will
occur, it would, of course, be necessary to have de-
tailed calculations of the energy band structure of
the metal concerned. In only a few cases have such
calculations been made for the range of electron
energies of interest in thermionic emission, and
even for these cases the methods of calculation are
sometimes questionable. Moreover, a correction
must be applied to the electronic energy values as
they are usually calculated, to take account of
exchange and correlation effects. For the energy
values usually given represent values of a Hartree
energy parameter; an incident electron of essen-
tially zero energy will, after entering the crystal,
have a Hartree energy parameter lying consider-
ably closer to the Fermi level than would corre-
spond to the work function p. This is because the
negative exchange and correlation contributions-to
the interaction energy of the excited electron with
the other electrons will be appreciably smaller
than for an electron at the Fermi level.

Bearing these facts in mind, one can surmise
from the calculations of Tibbs (T3) on the energy
bands of copper and silver that slow electrons in-
cident on a (111) plane of either of these metals
might we11 suffer total reHection, if inelastic colli-

sions are neglected. On the other hand, the calcu-
lations of Manning and Krutter (M9) on calcium
and of Slater (S13) and Von der Lage and Bethe
(V3) on sodium suggest that total reHection is
unlikely for slow electrons incident on these metals.
The calculations of Manning and Chodorow (M8)
on tungsten are of course of particular interest, and
because of the similarity of the structures of tung-
sten and tantalum the results should be at least
roughly applicable to the latter metal. If these
calculations can be trusted, total reHection should
not occur for these metals for electrons of ther-
mionic energies, no matter what the crystallo-
graphic orientation of the surface. Moreover, this
absence of total reHection should persist over a
moderate range of higher and lower energies, cover-
ing those expected for photoelectrons and field
electrons.

It is appropriate to discuss here a paradox which
arises in the statistical theory of thermionic emis-
sion when reHection effects are ignored. It is easily
shown (e.g. , (15), f18) that if the electrons in a
metal are represented by Bloch waves, each energy
band which contains electrons of the proper energies
and directions of motion for thermionic emission
will, in the absence of reHection at the surface,
contribute a term AT'exp( —eyjkT) to the ther-
mionic emission current. This result must hold
whatever is the dependence of the electronic energy
e~ on the wave vector Ir, provided that in the region
of interest ~1, is a single-valued function of k„the
component of k normal to the surface. Since it is
perfectly possible for two or more such energy
bands to overlap, it has been suggested ((15), g 18)
that overlapping bands may cause the emission
current density to be two or more times the value
AT'exp( —e&p/kT). But according to the. general
reasoning of Section I.3, the emission can only be

ENERGIES OF
ELECTRONIC LEVELS

DISPLACEMENT OF ATOMS FROM EQUILIBRIUM

FIG. 24. Schematic variation of electronic energy levels
with amplitude of displacement of nuclei from their equi-
librium positions.
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LATTICE CONSTANT

F&G. 25. Schematic variation of double layer moment D
with lattice constant.

less than this quantity, never more! Otherwise the
principle of detailed balance cannot be satisfied
when the metal is in equilibrium with electron
vapor. The explanation must be that whenever
there are n different wave functions with the same
h„and k. and the same energy, and each with a
value of k corresponding to motion toward the
surface, it must be possible to find (n —1) or-
thogonal linear combinations of them which suRer
total reflection at the surface and so remain con-
fined within the metal. Indeed, it can easily be
proved directly that this is the case. Suppose, for
example, that fi and $2 are two such Bloch waves
inside the metal. Then there will be two complete
wave functions which have, respectively, the forms

yi=Pi+aiPi' inside, =bi exp(ik r) outside,
x2 f~+a~P~——' inside, = b~ exp(ik r) outside,

where gati' and Pq' are reflected waves moving in-
ward from the surface and where the wave vector
k outside the crystal is determined by k„,k„and
the energy. Then the linear combination (bix~
—b2yi) will vanish outside the crystal.

IV 4c Other E. sects of the Bald Structure
in the Interior

Even when total reflection does not occur it
may of course happen that the wave vector k' of
the electron after it has entered the crystal lies
so close to the boundary of a Brillouin zone that
a high reflection coefficient r results. For a slight
change in conditions would suffice to make r=1,
and it is not to be expected that the change in r
would be discontinuous. The only published calcu-
lations on this gradual rise in r as the condition for
total reflection is approached are those of Morse
(M17) and of Kronig and Penney (K3). These
authors, who were more interested in the problem
of electron diA'raction than in the reflection of
thermal electrons, used approximations to the
potential field of the metal which were discon-
tinuous on the boundary plane of the metal. For
this reason the reflection coefficient calculated by

their methods approaches unity as the normal en-
ergy of the impinging electron approaches zero,
even when the conditions are so chosen that the
wave vector of the electron inside the crystal is
nowhere near the boundary of a Brillouin zone.
We have seen in Section IV.4a that in the one-
dimensional case the more correct image barrier
gives a much lower reflection coefficient than the
discontinuous rectangular barrier; for this reason
an attempt to estimate the importance of reflection
caused by the band structure in the interior of a
metal can be carried out more easily and saf'ely on
the basis of calculations using an image barrier.
We shall therefore devote most of this section to a
discussion of some unpublished calculations of
MacColl, ' using a one-dimensional potential of the
form

V= —e'/4x for x)xi,
V= —Vo+ Ui sin L2m (x —xa)/X) for x (xi, (IV.4.3)

where Vo, V~, and X are constants to be chosen and
where to make V continuous x~ must have the
value e'/4 Uo.

All the calculations were made for a single value
of X, uzi. , ) =2 angstroms. Figure 28 shows a few
curves of reHection coefficient against normal en-
ergy; these have been selected from the many
calculated by MacColl because they correspond to
cases where the upper edge of a forbidden band of
energies lies within one or two volts above or below
the zero of normal energy, vis. , the energy of an
electron of zero normal velocity far outside the
metal. When the forbidden band extends from the
negative into the positive energy range, the re-
flection coeAicient is, of course, unity up to a cer-
tain value of normal energy, where a sharp decrease
sets in; when the top of the forbidden band lies
below the zero of normal energy, the curves are
joined by dotted lines —physically meaningless, of
course —to a point on the line r = 1 with an abscissa
corresponding to the band edge. The width of the
forbidden band in each of the cases plotted is al-
most exactly equal to the value of V&. As the be-
havior of the curves is not of a sort which can be
predicted without computation, all the computed
points are shown. The curve labeled (10,0) is of
course identical with the curve S' =10 of Fig. 27.

It will be noticed that the reflection coef6cient
decreases very rapidly as the normal energy of the
electron recedes from the band edge, and that in
all cases the reflection coefficient has sunk below
0.1 when the distance from the band edge is only a
fraction of the band width. However, over a range
of several volts from the band edge the reflection
coeRicient can be depressed considerably below the
value for a constant inner potential ( Vi ——0).

'We wish to thank Dr. MacCo11 for discussing his work
with us and supplying the results for use in this review,



Figure 29, which we have constructed by a rather
rough interpolation from MacColl's results, shows
this effect moie clearly for the case where the width
of the energy gap is 2 ev. The fact that the curve
for Vi ——2 ev continues to be below that for Vi ——0,
even at large distances from the band edge, may be
due merely to the smoother behavior of the poten-
tial near x&, and if so is hardly to be considered as
due to the band structure; however, the pronounced
dip in the reHection coefficient which commences
about 4 or 5 volts from the band edge is probably
due to the periodic potential, i.e. , it would probably
be absent if a constant potential were used in the
interior.

The tentative conclusion to be drawn from these
results is that if the effects of inelastic impacts can
be neglected, reHection coe%cients for thermal elec-
trons should less frequently be found to lie between
unity and 0.1 or 0.2 than below the latter value or
at the former (total reflection). However, if the
reHection coefficient is small, its value can easily
depart widely from the value predicted by simple
theories such as those of Section IV.4a.

Blochinzev and Drabkina (B18) have investi-
gated the complementary problem of the reHection
of electrons at a barrier of the form

V(x,y, s) =0 for x)0,

= —Vo+P, V, exp(ig„y+ig,s) for x(0,
where the vectors g/2~ run over the two-dimen-
sional reciprocal lattice of the surface. Using
methods similar to the more general ones of Morse
(M17), they derive an expression for the reflection
coefficient for electrons trying to leave the metal.
This reHection coefficient can become fairly large
if the V, are large and if Vo is large enough so that
for electrons of positive total energy there are two
or more allowable values for the normal kinetic
energy inside the metal corresponding to. given
values of the total energy and of h„and h„the
tangential components of the reduced wave vector.
This is not surprising, since we .have seen in the
prededing section that when the latter situation
occurs the sum of the transmission coefficients for
all the Bloch waves in question cannot exceed unity. '

Mrowka ((M20), see also (S5)) has published a
preliminary notice of some calculations which re-
late the crystalline anisotropy of the emission con-
stants of a metal to the anisotropy of the energy
band structure in the interior. The results seem to
conHict with the views we have presented in this
article, but since no explicit account of Mrowka's
calculations has been published, no critical com-
ments can be given here.
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FIG. 26. One-dimensional approximation to the effective
potential for an electron crossing the surface of a meta1.

IV.4d Evidence Provided by Periodic Deviations
from the Schotthy Line

In 1939 Seifert and Phipps (S9) and Turnbull
and Phipps (T5) discovered that when careful
measurements are taken on the variation of emis-
sion current, j, with the strength, E, of the col-
lecting field, at constant temperature, the Schottky
plot of logj against E" is not straight, as is de-
manded by the simple theory expressed in Eq. (18),
but shows small oscillations about a straight line,
which increase in amplitude and period as the field
B is increased. This was later fully confirmed by
Nottingham (N8). According to a suggestion of
Mott-Smith (M18), worked out in detail by Guth
and Mullin (G8, G9, G10) this phenomenon is due
to the fact that according to wave mechanics the
potential hump II of Fig. 1, produced by the super-
position of the collecting field and the image poten-
tial, is capable of reflecting a small fraction of the
electrons which have normal energies sufficient to
pass over it. The electron waves reHected from the
hump can interfere with the waves reHected from
the surface of the metal, and as the phase of this
interference will depend on the distance of the
hump from the surface, hence on the value of E,
the average reHection coefficient r may be expected
to show a slight periodic variation with K The
detailed theory of Guth and Mullin is in fairly satis-
factory agreement with the experimental results of
Turnbull and Phipps (T5) and of Nottingham (N8).
This agreement constitutes a pleasing verification
of wave mechanics. But this is not the only interest
of the phenomenon and its theory: as wi11 be shown
in the following paragraphs and in Section IV.5,
the comparison of theory and experiment enables
one to conclude with some certainty that the re-
Hection coefficient of the metal surface used was
small and of the order of magnitude given by
Fig. 27. Moreover, this result suggests the possi-
bility of using Schottky plots as a tool to investi-
gate such topics as the effect of adsorbed layers on
the reflection coefficient and the possible occasional
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FIG. 27. ReQection coeScient of the one-dimensional image
barrier (IV.4.1). The full curves are plotted from the exact
calculations of MacColl for the values W =10, 12, 14, 16, 18,
and 20 electron volts, as shown. The lower and upper dotted
curves give the values calculated from the WKB expression
(IV.4.2) for 8' = 10 and 20 electron volts, respectively.

occurrence of high reflection coefficients for certain
crystal faces of certain metals due to the electronic
band structure in the interior.

As the mathematical basis of the theory will be
developed in the next section, we shall give only a
qualitative discussion here. To begin with, let us
review the meaning of the term "reHection coeffi-
cient" in connection with thermionic emission. The
most natural way of visualizing the effect of sur-
face reHection on emission is to picture the elec-
trons as moving through the crystal toward the
surface, and these being either reflected or trans-
mitted. This is in essence what actually occurs, of
course. But it is a little easier to reason clearly
regarding the various complicating factors which
the development of the theory encounters if we
make use of the principle of detailed balance in
the way described in Sections I.3b and I.4, and so
express the saturation emission current in terms of
the reHection coefficient r„ofthe surface barrier
for electrons incident from well outside the barrier.
In this way it is possible to describe the reflection
coefficient in terms of the properties of electron
waves outside the boundary of the metal, and the
properties of the interior of the metal need to be
introduced only in one place, vis. , as a boundary
condition satisfied by the external waves.

The problem is thus to replace Eq. (I.4.4) by an
expression for r„which will take account of the
interference between the electron waves reflected at
the potential hump II of Fig. 1 and waves reflected
at the metal surface. This will be done in Section
IV.5. Here, however, we are interested only in the
dependence of r, on the individual reflecting powers
of the two barriers involved. Suppose that for in-
going electron waves incident on the outer hump,
H, the reflected wave amplitude in the absence of a
second reflecting surface (i.e. , the boundary of the
metal) would be 'A times the incident amplitude.
Similarly let p, be the ratio of reflected to incident

amplitude for waves incident on the metal surface
proper from without. If X is not too great, the re-
Hected wave resulting from superposition of the
waves reflected from the two barriers will have an
amplitude (X+li) times the incident amplitude; the
more detailed treatment of Section IV.5 shows that
regardless of the values of X and p, this ratio of
amplitudes is (X+fi)/(1+X~p), which is nearly
(X+@) if either X or fi is small. Here X and p, are, of
course, complex numbers, since the phase relation
between the two interfering waves must be taken
into account. Thus the reflection coefficient, r„,of
the composite barrier for electrons of any given
initial velocity is given approximately by

r„=
~
X+p ~

' =
(
X

~

'+
( p,

~

'+ 2RP *la) . (IV.4.4)

Here the first two terms represent the reflection
coefficients which the image hump and the metal
surface would have, respectively, each in the ab-
sence of the other. The third term, twice the real
part of ) *p,, depends upon the phase difference be-
tween X and p, and thus upon the energy of the
electron and upon the distance xo of the image
hump from the metal surface, hence upon the
field strength K

Since most of the electrons which escape from
the metal have energies within a few kT's above the
top of the image hump, we are interested in the
values of ) and p, only in this range of energies. As
we shall see in Section IV.S, ~X~ must go to zero
when the wave-length of the electron when it is
at the top of the barrier becomes small compared
with the distance the electron must move to double
its kinetic energy, a condition which is satisfied at
fields of the order of 10'v/cm when the energy of
the electron is only a few hundredths of an electron
volt above the top of the barrier. The situation is
quite different with

~ p ~, however. For any electron
capable of crossing the image hump will have a
kinetic energy of the order of volts by the time it
gets within an atomic diameter of the metal sur-
face, and it is very unlikely that a change of a few
tenths of a volt in this value can make a radical
change in ~fi~. Thus it is probably legitimate to
treat

~ p~ as a constant in averaging (IV.4.4) over
a Maxwellian distribution of incident electrons to
get r,

Since only the last term of (IV.4.4) contributes to
the periodic variation of r, with Z, the amplitude
of the periodic deviations from the Schottky line
will be proportional to ~fi~. Now the calculations
of Guth and Mullin (G8) which we shall describe
in Section IV.S are based on assumptions which
seem safe enough as far as the calculation of X is
concerned, while for the calculation of p they em-
ploy assumptions equivalent to those of the &KB
calculations discussed in Section IV.4a, assump-
tions which one might reasonably question on
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several grounds, especially on the ground of the
use of the one-dimensional approximation. How-
ever, the fact that the amplitude of the periodic
deviations predicted by these calculations agrees
with the observed amplitude for tungsten indicates
that the value of

~
p,

~

computed by Guth and Mullin
is essentially correct, since no other factor in the
computed amplitude is likely to be much in error.
Since we have seen that

~ p ~
is not likely to depend

sensitively on the energy of the electron over a
range of a few tenths of an electron volt, the re-
flection coefficient ~p, ~' computed for the metal
surface at zero field by the one-dimensional methods
of Section IV.4a is probably not far from the truth,
at least for tungsten. Similar experiments on other
surfaces would obviously yield very . useful in-
formation.

IV 4e In.elastic Impacts

In the preceding sections the reHection of the
electron by the metal surface has been treated as
elastic, i.e. , the electron has been treated as a wave
moving in a fixed potential field. Now as has been
pointed out by Compton and Langmuir (C7) and
by Becker and Brattain (B9), the occurrence of
inelastic impacts may considerably decrease the re-
Qection coefficient of a solid surface. For, because
of the image force, an electron which has only
thermal velocity when at a large distance from the
surface will enter the metal with a kinetic energy
of the order of volts; only a small fraction of this
need be lost to prevent the electron from again
escaping to infinity. Unfortunately, inelastic im-
pact has received little attention in the theoretical
literature, so only a few general remarks can be
made here.

Inelastic impact can occur either through excita-
tion of lattice vibrations, or through loss of energy
to the free electrons already present in the metal.
The latter effect is probably the more serious for
metals. Several attempts have been made to esti-
mate the mean free path of an electron whose
energy is a few volts above the Fermi level. From
photoelectric measurements on thin films of plati-
num Compton and Ross (CS) and later Goldschmidt
and Dember (G4) estimated that the mean free
path of the photoelectrons was of the order of tens
of angstroms; this result, however, was based en-
tirely on the assumption that the photoelectrons
were produced throughout the whole thickness of
the film, an assumption which conHicts with the
more modern view that photoelectrons are produced
chieHy at the surface. Direct measurements of the
transmission of low energy electron beams through
thin nickel foils have been made by Becker (B7),
but it is not clear how his results should be in-
terpreted. He found that for incident energies in
the range 6 to 100 ev only about 10 ' of the incident

electrons were able to penetrate a foil 0.02p, thick,
but that increasing the thickness to 0.04ti merely
reduced the transmission by an additional factor
of twenty. If one attempts to reconcile the two re-
sults by assumption of inhomogeneities in the foils,
one must assume a mean free path, with respect to
some kind of elastic or inelastic collision, of not
more than about 20A. A figure of this order seems
not unreasonable theoretically (see (15), p. 472)
and is plausible in view of the known rate of energy
loss of electrons of somewhat higher energy; how-
ever, more clear-cut experimental evidence is much
to be desired.

The next question is, how do such inelastic inter-
actions of a slow impinging electron with the atoms
of a metal affect the reHection coef6cientP Slater
(S14) has pictured the effect, as far as electrons of
the original energy are concerned, as equivalent
mathematically to the introduction of an imaginary
'term into the potential energy operator of the
Schrodinger equation. He has shown that this will
broaden the Bragg reHection peaks and reduce their
height, so that the reHection coefficient never
reaches unity and may be much less, even at its
maximum. Since Slater's calculations refer to en-
ergies of the order of 50—100 ev and do not take
explicit account of the surface of the metal, the
numerical details of his results are not of interest
here. His method, however, could easily be applied
to the problem of electron reHection by a simple
image barrier such as the dotted curve of Fig. 26;
it can easily be estimated that if this were done,
using a complex potential consistent with the
estimates of the preceding paragraph on the fre-
quency of inelastic collisions, the resulting reHec-
tion coefficient would not differ very greatly from
that computed with a real potential as in Section
IV.4a. Thus it is quite conceivable that the eff'ect
of inelastic impacts might merely be to decrease
greatly any Bragg reHection peaks without radically
affecting the reHection elsewhere.

For insulators and many semiconductors it is
likely that inelastic impacts by incident thermal
electrons are less probable than for metals, since
there are no conduction electrons capable of ab-
sorbing small amounts of energy, and since the
incident electrons will in most cases not have suK-
cient energy to excite the bound electrons. This fact
has been suggested by Bethe (B14) as a reason for
the fact that insulators have higher secondary elec-
tron yields than metals.

IV.S Mathematical Theory of Periodic Deviations
from the Schottky Line

We have already outlined, in Section IV.4d, the
nature of the phenomenon of periodic deviations
from the Schottky line and the physical principles
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FIG. 28. Examples of the behavior of the reflection co-
efficient near the edge of a forbidden band of energies. (Based
on MacColl's calculations using the potential (EV.4.3).) The
values in parentheses by each curve are the values of V0 and
V&, respectively, for that curve, measured in electron volts.

involved in explaining it. In the present section we
shall take up the mathematical problem of the
solution of the Schrodinger equation for an electron
approaching or leaving the surface of a metal in
the presence of a strong electric field. In doing so
our main concern will be to examine the adequacy
of the one-dimensional methods of calculation
which have to be used in problems of this sort.
Omitting computational details we shall then sum-
marize briefly some of the results obtained by
Guth and Mullin (GS, G9, G10) on the way in
which the transmission coeS.cient of the surface
region varies with the energy of the electron and
the strength of the electric field.

Following the procedure outlined in Section
IV.4d, let us set up an expression for the reHection
coefficient of the combined barrier formed by the
image hump and the metal surface, as experienced
by electrons incident from outside. Now there are
three regions within which it is meaningful to
speak of electrons of a given energy as being
either "ingoing" or "outgoing" (see Fig. 1):

(1) The region well outside the image hump, i.e. , to the
right of II.

(2) A region between the image hump and the metal sur-
face, not too close to either.

(3) The region well inside the metal.

. Near the image hump itself, and near the metal
surface, the WKB approximation breaks down, and
in these regions one cannot classify the solutions of
the Schrodinger equation into ingoing and outgoing
waves. The argument to be presented here is based
on the assumption that in regions'(1) and (2) the
potential can be taken to be a function of x, the
distance normal to. the surface, and is independent
of y and z. It will be further assumed that in regions
(1) and (2) the wave function can be adequately
represented by a single product of the form exp(ik„y

+ik,s) times a function of x. This is a reasonable
assumption. For the most general possible wave
function having tangential wave numbers k„and
k, and energy e is

exp(ik„y+ik,s)P f, (x)exp(ig r), (IV.5.1)

where the vectors g/2~ run over the two-dimen-
sional lattice reciprocal to the identity periods of
the metal surface. If the energy, e, lies only slightly
above the top of the image hump, the large tan-
gential kinetic energy of all the terms of (IV.5.1)
except the term g=0 will necessitate normal ener-
gies for the f,(x) lying far below the image hump.
These f,(x) will therefore decrease exponentially
with increasing x, and will probably become negli-
gible before the outer boundary of region (2) is
reached.

To compute the over-all reflection coe6cient for
electrons having given y and z components of mo-
mentum, corresponding to the wave numbers k„
and k„it is merely necessary to find what linear
combination of outgoing and ingoing waves in
region (1) corresponds to a purely ingoing wave in
region (3). Let

x;(x)exp(ik„y+ik,s)

be the solution of the Schrodinger equation in
region (2) which represents ingoing waves having
the given energy and wave numbers k„and k, .
Similarly let

P;(x)exp(ik„y+ik,s)

be the ingoing solution in region (1) for the same
energy, k„, and k,. Corresponding expressions
formed with the complex conjugate functions y;*,
P, *, will of course represent outgoing waves, with
the same flux density as the ingoing ones. The
phases and amplitudes of x; and P, need not be
specified at the moment; a convenient choice of
the phase of P; will be made presently. Using the
symbol —+ to mean "joins on to" we may define p, ,

c, and) by

ingoing wave (k„k„,e) in region (3)—+

(x~+px;*)exp(ik„y+ik,s), (IV.5.2)

&, cQ,+) P,*). (IV.5.3)

By proper choice of the phase of P;, c can be made
real; from now on it will be supposed that this is
the case. From (IV.5.2) and (IV.5.3),

ingoing wave (k„k„,e) in region (3)—+

c((f,+X/;*)+)i(P,*+X*/;)]exp(ik„y+ik,s),

and by comparing the coeflicients of P; and P;* the
reflection coe%cient is seen to be

r„=
~
'A+)i/1+ pX*

~

'. (IV.5.4)

This is the equation upon which the arguments of
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Section IV.4d were based. Note that no assumption
has been made regarding separability of the wave
equation in region (3), or the nature of the poten-
tial field in the transition region at the metal
surface.

To compute r explicitly as a function of the
applied electric field strength, E, and the energy, ~,

of the electron, it is necessary to get explicit ex-
pressions for X and p, . Now as has already been
pointed out in Section IV.4d, p is not likely to be
appreciably affected by B or by changes of the
order of kT in the electronic energy p,

~ p ~' may in
fact be identified with the reHection coefficient r at
zero field, and any of the one-dimensional methods
of calculation discussed in Section IV.4a will yield
a value for p, although because of the three-dimen-
sional nature of the problem at and inside the
metal surface, it is conceivable that this value may
not be correct. The calculation of ), however, is
less simple than the one-dimensional calculation of
p. Guth, and Mullin (G8) have calculated X as a,

function of Z and p = p (k'/2m)(k„'+k, '); their
procedure was to join on %KB solutions in regions
(2) and (1) to more accurate solutions of the
Schrodinger equation near the top H of the image
hump, where the WKB approximation of course
breaks down for electrons whose energies are only
slightly above the top of the hump. To obtain these
more accurate solutions in the region near the top
of the hump, they integrated exactly the Schrod-
inger equation for a parabolic potential V=con-
stant (x—xp)', so chosen as to osculate the actual
potential at the hump II.

Although Guth and Mullin did not express their
results in terms of reHection amplitudes X and p, of
the sort employed above, it is possible with a little
labor to translate their expressions into the lan-
guage used here. The results, which we shall give
without proof, give an illuminating picture of the
way in which the periodic variations in r, come
about. The results for ~X( and

( p, (
are

i p, i
= W.&/4, (IV.S.S)

[X (
= (expL2pr(xp'/2)'*p. j+1)—&, (IV.5.6)

where W is the difference in potential energy be-
tween the inside and outside of the metal at zero
field (see Fig. 26), expressed in Rydberg units, xp
is the distance of the image hump from the surface
in units of the Bohr radius k'/me', and c, is the
normal part of the energy of the electron, expressed
in Rydbergs and measured from a zero coinciding
with the height of the top H of the image hump
(see Fig. 1). Note that (IV.S.S) is consistent with
(IV.4.2), as it should be, since both are derived by
a &KB calculation using the dotted potential of
Fig. 26. Regarding ~X~, it will be noticed that its
maximum value, 2 ', occurs for e, =0, and that
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FIG. 29, Examples of the effect on the reflection coefficient
produced by introducing a periodic term in the interior po-
tential. (Based on MacColl's calculations using the poten-
tial (IV.4.3).)

with increasing electron energy it goes rapidly to
zero, as one would, of course, expect from the fact
that the image hump is so smoothly rounded. For
example, if 8=2.5)&10' volts/cm and p, =0.02 ev,
a = 0.64, and so

~

X
~

=0.13. Thus the periodic varia-
tion of r „with field is due almost entirely to those
electrons which cross the image hump with much
less than average thermal velocity.

The phase difference between X and p, turns out
to be a rather complicated function of e and E,
which Guth and Mullin were forced to approximate
in a rather crude way in order to facilitate numeri-
cal calculation. Fortunately, however, for the small
values of p where ~)

~

is la,rge, this phase is not
very sensitive to ~, and rough approximations to its
dependence on ~ are adequate. For larger values of
p, a large error in the phase does little harm, since
~X~ is very small. The calculation of (1—r„)given
by Guth and Mullin in their first paper (G8)
amounts essentially to inserting this approximate
phase together with (IV.S.S) and (IV.5.6) into
(IV.5.4).

Having calculated (1—r.) as a function of p, and
the applied field B, it is merely necessary to average
this quantity over a Maxwellian distribution of
values of e in order to get the mean transmission
coe%cient (1—r „),which is proportional to the ob-
served emission currents for the various values
of B. As can be seen from Fig. 3 of the first paper
of Guth and Mullin (G8), the agreement between
the theoretical and observed Schottky plots is
rather good, both in the amplitude and in the phase
of the periodic deviations.

Guth and Mullin have extended their calculations
to give predictions of periodic variations of photo-
electric current with applied field (G9) and have
also discussed field emission and the tunnelling of
thermally excited electrons through the upper por-
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tion of the image barrier, which gives rise to a
gradual transition from thermionic to field emission
(G10).

APPENDIX I. LIMITS OF APPLICABILITY OF
THERMODYNAMIC CONCEPTS

There are many situations in which it is de-
sirable to know on how fine a scale it is meaningful
to define the chemical potential of electrons .as a
function of position and to assume it to depend
only on the local composition, electron density, and
temperature. This is particularly true when one is
dealing with semiconductors, since beneath the
surface of a semiconductor there is often a space-
charge layer within which the concentration of free
electrons - varies rapidly with depth; moreover,
semiconducting cathodes often have a very small
crystal grain size, and the penetration of the re-
sulting patch fields into the interiors of the grains
gives rise to an additional inhomogeneity. Similar
questions arise for metals too, as for example, when
dealing with a metal containing tiny inclusions of
some precipitate. They arise again for the space-
charge cloud outside a cathode, where the potential
changes rapidly with position.

In these and other situations there are often
departures from thermal equilibrium, the com-
monest such departures being those resulting from
temperature inhomogeneities or to the How of elec-
tronic current. The latter How may be spatially
quite non-uniform, as in the case of an oxide cath-
ode whose emission comes preferentially from cer-
tain patches of a fine-scaled distribution. In such
cases one would like to know whether it is legitimate
to define a chemical potential for the electrons at
each point which will be the same function of
temperature, electron density, etc. , as in thermal
equilibrium, and whether, for example, it is cor-
rect to use the chemical potential so defined in
transport equations such as (l.6.2) and (1.6.4).

We shall start by discussing the legitimacy of
treating the chemical potential of electrons as a
function of position within a system which is in
thermal equilibrium but which contains small-scale
inhomogeneities in such properties as chemical
composition or electrostatic potential. Now it is
easy enough to define a chemical potential, p, as a
function of position in such a case: the macroscopic
system as a whole must have a definite electronic
electrochemical potential p, defined as in Section
I.ia, and so for any tiny region for which an
electrostatic potential 4 can be defined we can de-
fine p to be p+eC. However, in order that the
quantity so defined be a useful concept, it is de-
sirable that it be the same function of local state-
e.g. , of temperature, electron density, chemical
composition, etc.—as the p of a large homogeneous
specimen. The question to be answered is thus:

how fine-scaled can the spatial variations in local
state become, before the relation between p and the
other local state parameters starts to deviate
appreciably from the relation which would obtain
for a large homogeneous body) In answering this
we shall arbitrarily adopt the criterion of consider-
ing a deviation in p to be "appreciable" if it is
comparable with k 1or larger.

When speaking of p as a function of local state it
is of course necessary that the elementary regions
be large enough so that the other quantities in-
volved in the specification of local state can be
unambiguously defined, yet small enough so that
these other quantities have essentially constant
values over a region. The former condition can
usually be satisfied for regions as small as a few
tens of angstroms across, or even smaller, provided
all the regions are in thermal equilibrium with each
other and that conditions are not changing too
rapidly with time. For if, for example, the average
electrostatic potential over a unit cell of a crystal
varies sufficiently gradually with position so that it
can be considered constant over a region of the size
just mentioned, this average can be adopted as the
electrostatic potential 4 entering into the definition
of p. Again, the electron density in a tiny region
can be defined in terms of the time average of the
number of electrons in the region, even when the
region is so small as to contain on the average far
less than one electron. Chemical composition and
state of strain can be defined with no greater
difficulty.

There are two types of effects which under con-
ditions of thermal equilibrium can cause the rela-
tion between p, and local state in the presence of
small-scale variations in local state to differ from
that for a homogeneous body. One is that the po-
tential energy of interaction of the electrons in
one small region with their surroundings may
depend on conditions in neighboring regions in a
more complicated way than through the effect of
these regions on the mean electrostatic potential in
the first region. The other is associated with the
Heisenberg uncertainty principle: it makes no sense
to talk about a small difference between the p's
of two neighboring regions if the act of localizing
electrons in either region would introduce so large
an uncertainty in their kinetic energy as to eclipse
the small difference in the two p's. The limitations
resulting from these two effects will be discussed in
turn, and will be followed by a discussion of the
limitations due to departures from thermal equi-
librium.

Ia. Potential Energy Limitations

We shall consider two types of variation of local
state with position which may affect the interaction
energy of' one region with the electrons in a neigh-
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boring region, vis. , variations in dielectric constant
and variations in electron density.

The order of magnitude of the effect on p caused
by differences in the dielectric constants of neigh-
boring regions is easily estimated from the image
law. An electron located in a medium of dielectric
constant ~~, and at distance x from a plane boundary
separating this medium from one of dielectric con-
stant ~2 has a potential energy of interaction with
its image equal to

(e /4Klx) (Kl K2)/(Kl+ K2) ~

This image law will break down when x becomes
less than some length 'A of the order of a couple of
angstroms. Thus, the average interaction energy
over a region of linear dimension, d, obtained by
integrating on x, will be «kT if

d»(e'/4KlkT) (Kl —K2)/(Kl+ K2)ln (d/X). (I.1)

For the space-charge region in the vacuum outside
a metal cathode one must of course set ~1=1,
~~= ~. If the minimum distance of the region in
question from the second medium is not zero, but
some positive value d2, then do should be substituted
for X in (I.1).

Turning to the eff'ect of inhomogeneities in elec-
tron density, we may note that the effect on the p,

on one region caused by changing the electron
density in a neighboring region is due entirely to
the fact that that mean interaction energy of an
electron in the first region with the electrons in the
second differs slightly from what one would com-
pute from the mean electrostatic potential in the first
region caused by the electrons in the second. This
difference, sometimes called the "correlation en-
ergy,

" can be roughly evaluated from the Debye-
Huckel theory of electrolytes ((4), Chapter IX)
when the electron density is low, and from the
calculations of Wigner (W12) when the electrons
form a degenerate gas, as in a metal. For the former
case, which applies to electrons in a semiconductor
or a vacuum, we have for the total correlation con-
tribution to p, i.e. , the difference between the actual
p of a dilute electron gas and the p, which an electron
gas of the same density would have if the motions
of the different electrons were statistically inde-
pendent, the value (4, $913)

ap, = —(e'/2K) L42re'Nl/KkT)&, (I.2)

where n~ is the number of electrons per unit volume
and ~ is the dielectric constant, which was taken
as unity when we used this expression in Section
I.3a. The cri'terion for the validity of (I.2) is most
conveniently expressed by introducing the char-
acteristic length $ defined by

g = LKk T/42re2nlf& (I 3)
and sometimes called the "Debye length;" (I.2) is

then valid whenever
nlP»1. (I.4)

When the electron density n1 is too large for this
to be satisfied, (I.2) probably gives an upper limit
to fapf.

We wish to know what restrictions must be im-
posed on the linear dimension d of a cubical region,
in order that the part of (I.2) attributable to the
interaction of electrons inside the cube with those
outside it be (&k T. Now whenever (I.4) is satisfied,
(I.2) is ((kT, since

612/k T = 1/82m, l)2,

and for such cases the present considerations give
no lower limit for d. At higher electron densities,
where Ap becomes comparable with kT, d must be
taken large enough so that when

fdic

f
is multiplied

by the fraction of the electrons in the cube which
are close enough to the boundary to polarize the
electron distribution outside, the product will be
(&kT Takin.g 3nl */d for this fraction and taking
(I.2) as an upper limit for

f
hp, f, the restriction on d

comes out to be that any d satisfying

d»n; —:(3/8~&,~ ) (I.5)

will be allowable, but that this restriction may be
unnecessarily stringent.

For a numerical example take the case ~=5,
T=300'. Then (I.4) is satisfied if 222'((1.9)&10'
cm &, and in this range the present considerations
impose no minimum size for a region. For the same
K and T (I.5) becomes d»6. 2)& 10 'ni i' cm, if nl
is in cm '. For the large ~ and high T which one
encounters for incandescent oxide cathodes, (I.2)
will be «kT for any reasonable electron density.

Turning now to metals, it is known that if the
conduction electrons are quite "free" the correla-
tion contribution to p, is roughly one ev and does
not vary much with electron density or tempera-
ture. Local variations of electron density within a
metal of homogeneous composition are of coures
never great enough to affect this correlation energy
appreciably; if we wish to consider tiny regions of
two different metals in contact, the restriction
which the linear dimensions d of the regions must
satisfy to make their correlation interaction «kT
per electron is roughly

(3nl—&/d) . (1 ev) «kT,

d»(1000/T) 35nl & (I.6)

This limit is of the same order as that imposed by
the uncertainty principle, which we shall now
d1scuss.

lb. Uncertainty Princip1e Limitations

It will suffice to consider how much the chemical
potentia1 p. corresponding to a given mean electron
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glv1ng

40 pm 1000' '*

»/kT- —
)
—.

d&m* T)' (I.7)

if d is in angstroms, the result being valid only when
it is rather smaller than unity. For a metal we may
make the same calculation for an electron with
kinetic energy 8';, obtaining

120 ) m q
l p1000~

»/kT-
d Em') ( T )

if d is in angstroms and B", in electron volts. Thus d
may have to be of the order of hundreds of ang-
stroms to make (I.7) or (I.8) small compared with

unity.

Ic. Limitations Resulting from Current
Flow and Thermal Gradients

Consider first the case of a body at uniform tem-
perature through which an electronic current is
Rowing. The statistical picture of such a body sug-
gests a simple criterion for the legitimacy of de-
fining the chemical potential p to be the same func-
tion of local temperature and electron density as in

density would be changed by isolating a small
cubical region of side d by means of vvalls im-
penetrable to electrons but capable of conducting
heat and transmitting electrostatic fields. In such
a cubical box the energy level of a free electron
will be quantized to values which can be repre-
sented, to an approximation adequate for the pres-
ent purpose, by e, =5'kP/2m*, where nz"' is an
effective mass for the electrons and the three com-
ponents of the vectors k; are restricted to be non-
zero integral multiples of the unit M=m/d. It is
not hard to calculate rigorously the change bp in p
resulting from introduction of the walls while keep-
ing the electron density constant; for the present
purpose, however, it will suRice to calculate merely
its order of magnitude. This can be done by noting
that if k-space is divided into cubes of side bk, the
allowed states in the presence of the walls can be
put in one-to-one correspondence with the cubes
by taking for k, the corner of each cube farthest
from the origin. The continuous distribution of k
values which occurs in the absence of the walls is
roughly equivalent to assigning to each volume d'
a set of k values corresponding to the centers of
the cubes. Thus we may expect bp to be of the
order of magnitude of the average value of k'(k, 2

—k,")/2m* for thermal electrons. For a semi-
conductor we may take these to be electrons for
which 5'k '/2m*=3kT/2, moving in the direction
of a cube diagonal. Then if 6k&(k;,

k'(k —k;")/2m*= 3'5'k, bk;/2m*
= (3~5/2d) (k T/m*)',

the absence of a current, a,nd using this p in trans-
port equations such as (1.6.2) and the Richardson
Eq. (I.3.4). This criterion is that the statistical
distribution of the conduction electrons in any
region should not differ appreciably from the dis-
tribution which would obtain in the same region in
the absence of a current but at the same tempera-
ture and mean electron density. Here an "appreci-
able" difference between the two electron distribu-
tions may, in accordance with the standard adopted
above, be taken to mean any difference which for
any electronic states of importance fails to be small
compared with the change in the distribution which
would result from a change in p, of the order of kT.

Thus for a semiconductor in which the electrons
or holes have a mobility v& and an effective mass m~

the requirement in a homogeneous region of the
semiconductor is that the electric field, E, satisfy

)nz 1000i —:

v Z(((k T/m*) & = 1.7 &(10'( ——
(

. (I.9)
T J

In regions where inhomogeneities or neighboring
surfaces cause E to be different from zero even in
thermal equilibrium, Z in (I.9) should be replaced
by pj, . where j is the current density caused by
conduction and diffusion, and p is the resistivity.

For a metal a similar criterion may be set up,
replacing the mean thermal velocity on the right
of (I.9) by the change in velocity which an electron
at the Fermi surface must acquire in order to change
its energy by kT. This crude criterion for the valid-
ity of Ohm's law (I.6.2) agrees roughly with the
detailed statistical calculations of Guth and Meyer-
hofer (Gi), who found that for the best metallic
conductors current densities of the order of 10'
amp. /cm' would be required to give a 1 percent de-
viation from Ohm's law.

When there are temperature inhomogeneities the
mean free path of the electrons becomes a limita-
tion on the extent to which p, can be localized. In
such cases the limitation on the applicability of
thermodynamic concepts is most conveniently ex-
pressed as an indeterminacy in the temperature:
the temperature to be assigned to any locality is
uncertain by an amount of the order of the amount
by which the temperature changes in a mean free
path. "Temperature" can of course only be defined
in such cases as the temperature of the equilibrium
electron distribution whose properties most closely
approximate those of the actual distribution in the
region under consideration. Note that of all the
limitation discussed in this Appendix, this is the
only one which involves the mean free path.

A case analogous to the case of strong thermal
inhomogeneities might arise for a semiconducting
thermionic cathode whose conduction band lies
close to or above the energy level of an electron at
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Inserting (II.1) and (II.2) into the Clausius-
Clapeyron equation

d lnp/dT =L/RT',
and integrating with use of the value of the chemical
constant given by the quantum statistics it is
fairly easy to show that

L(0) 5
lnp = — -+—lnT

RT 2

~cond. (&Cy cond. ) dr' dr
~o r'~o R E BN

2 (2~m) '"ko"
+In (II 3)

rest in the vacuum outside the surface. Drawing
saturation current from such a cathode would, of
course, cause a serious departure from thermal
equilibrium conditions for a distance of several
mean free paths below the surface. However, we
do not know of any cathode materials known to be
of this type.

APPENDIX II. SOME THERMODYNAMIC RELATIONS

In Section I.vc it is shown that the latent heat
of evaporation of electrons from an isolated con-
ductor is

L =&oLT(&& /& )ri, r —T(&&oo d. /&ri) „T]
=Li(e[g T(dq/d—T)j+(5/2)RT, (II.1)

where y is the true work function defined by (I.2.1),S„,and S„„q.represent, respectively, the entropies
of electron vapor and conductor, and n is the
number of electrons in either phase. For the tem-
perature variation of L we can write, using the sym-
bol (8/BT), to denote (8/BT)„+(dp/dT)(B/Bp) r,

(BL i (8 (TSg c)'i (8 (T5cond. ) )
i DT'S, ,„EaTan), & . BTan ),

8(cV...C„...) 8(3l,.„d.C„.. d.)
=&o

Bs 8's

where the'2IEs refer to the number of moles of ma-
terial present in the two phases, and the C„'sare
the respective specific heats. Thus since PUBS., d and.C„„,are independent of the n's,

from which the emission Eq. (I.3.6) can be derived
in the usual way, with

L, (0) T t
r

(riCn cond. )
X

I
~«»d I (

dr' dr (.II.4)
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APPENDIX III. SURFACE STRUCTURE OF CRYSTALS

IIIa. Relative Thermodynamic Stability of
Different Surface Arrangements

The first question one is inclined to ask in at-
tempting to decide between hypotheses such as (1)
and (2) of Section II.2 is: Which arrangement has
the lower free energy? For a piece of metal must, if
held for a long time at constant temperature and
in equilibrium with its vapor, undergo progressive
changes in its surface structure in the direction of
lower and lower free energy. However, even under
conditions where an equilibrium arrangement of
minimum free energy would ultimately be achieved—to within the minor thermal fluctuations which
must always occur' —the structure actually ob-
tained in any finite time under given experimental
conditions will depend on the rate of approach to
the equilibrium state. Moreover, most experiments
are conducted under such conditions that complete
equilibrium would never be achieved —i.e. , the
metal is usually evaporating away all the time-
and the atomic distribution in a steady state will
then depend upon the relative speeds of various
competing processes, and may diRer greatly from
the arrangement in thermodynamic equilibrium.
Thus, after answering this first question, one must
still inquire about the rates of the processes in-
volved.

Because atoms at a free surface are bound by
fewer neighbors than atoms in the interior of a
substance, the energy, or more conveniently the
free energy, of a given amount of material depends
upon the area a of surface which it exposes. Thus
one may, to a good approximation, set the free
energy of a drop of liquid equal to a function pro-
portional to the total mass, plus a term 7a, where
the coeKcient y is called the surface tension. For
a solid the surface term must be written in the form
Py;a;, where y, is the specific surface free energy
of the i-th crystal plane, and a, is the area of sur-
face exposing this type of plane.

It was shown many years ago by WuM ((W20),
esp. p. 512; see also (L9), (L7)) that the configura-
tion which minimizes gy, a, for a fixed total volume
is a polyhedron constructed in the following way:

~An interesting, though perhaps not entirely satisfactory
discussion of these fluctuations on a crystal surface has been
given by Frenkei (F12).
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Let y; be plotted radially as a function of the direc-
tion of the normal to the surface; a two-dimensional
cross section of this plot will look something like
the outer curve in Fig. 30, with cusped minima in
certain directions corresponding to surfaces of par-
ticularly simple structure. At each point of this
polar plot construct a plane perpendicular to the
radius vector at that point. Then the volume
which can be reached from the origin without
crossing any of the planes is geometrically similar
to the ultimate equilibrium shape for the crystal.
This construction is shown by the dashed line in
the figure.

An approach to this equilibrium shape can, of
course, only be realized in practice for very small
crystals, and it is now generally accepted that the
shapes of large crystals are usually determined by
kinetic factors dependent on conditions of growth
(16). We must expect, in fact that a crystal held in
the presence of its saturated vapor will traverse a
succession of configurations of successively lower
free energies, but that these changes will prac-
tically cease when it becomes necessary to make a
very large number of atomic displacements to
produce an appreciable further lowering of the
free energy. A change in the shape of a specimen
of macroscopic size is quite inefficient in the latter
sense, and so is not observed. However, it may in
some cases be possible with far fewer displacements
to decrease the free energy of an initially ideally
smooth surface by rearranging the atoms into hills
and valleys, many atoms on a side, but still small
compared with macroscopic dimensions. It can be
shown from simple free energy considerations that
if the macroscopic surface of a crystal has the same
orientation, relative to the crystal axes, as one of
the boundary planes of Wulff's equilibrium poly-
hedron, no hill-and-valley structure can have a
lower free energy than a flat surface, but that if
the macroscopic surface does not coincide in orienta-
tion with some one of these planes, there will

always exist a hill-and-valley structure of lower
free energy than the flat surface (H9). The proof
of the latter statement is based on the assumption
that the free energy of the surface can be repre-
sented as a sum of the form gy;a;, i.e. , that the con-
tributions of edges and corners to the free energy
can be neglected in comparison with those from
the surfaces. This assumption must be valid for a
hill-and-valley structure of suSciently large ampli-
tude, but may not be valid if the structure is only
a few atoms high. It is understood, of course, that
all the surfaces considered will have a slight irregu-
1arity as a result of thermal fluctuations.

Thus, if the shape of the equilibrium polyhedron
were known, it could be predicted which crystal
surfaces of a metal would ultimately acquire a
hill-and-valley structure when held at high tempera-

ture in equilibrium with the metal vapor, and
which ones would remain essentially atomically
smooth. However, care must be used in attempting
to draw an inference of this kind from experiments.
For example, the relative stability of diferent
crystal planes may be changed by the presence of
adsorbed gas. Again, the tendency of' the surface
to seek configurations of lower and lower free
energy may be obliterated if other kinds of irre-
versible changes are taking place simultaneously.
As we shall see below, such perturbing processes
include not only evaporation into vacuum, but
also the migration of metal atoms along the surface
under the influence of electrical or thermal gradi-
ents, and possibly even the migration caused by
inhomogeneous curvature of the surface.

There is, however, another limitation on the
applicability of the statements made above, which
applies even under equilibrium coriditions and
which it is therefore appropriate to discuss briefly
in this section. The conclusions reached above were
based on the assumption that the surface free
energy of a metal specimen is given by Py,u;, i.e. ,
depends only on the areas of the various types of
crystal faces which are exposed, and not on the
nature or extent of the edges and corners where
these faces join. This assumption becomes more and
more nearly correct the larger the scale of the sur-
face structure, but for very small specimens or for
hill-and-valley structures of small amplitude it will
certainly not be valid. Crystals with non-ionic
binding would not be expected to have absolutely
sharp corners, since the corner atoms ought to be
less tightly bound than the average, and hence in
thermal equilibrium should move to other sites.
Stranski and his collaborators (16, S16) have dis-
cussed this fact in some detail in its relation to
crystal habit. For our present purposes, however,
the important question is, how much rounding-off
will occur on the corners of the equilibrium poly-
hedron or of a quasi-equilibrium hill-and-valley
structure? The answer to this question turns out to
be closely related to the characteristics of the WuM
diagram of Fig. 30 (H9); however, a satisfactory
discussion of this matter would be too lengthy to
present here. Although quantitative predictions are
dificult, it seems, at the present writing, very un-
likely that the rounding of the equilibrium poly-
hedron for tungsten could be as complete as that
observed for field emission points (see IIId of this
Appendix).

IIIb. Mechanisms and Rates of Rearrangement
of Surface Atoms

Mechanisms which have been suggested for the
atomic rearrangement necessary in any change of
the surface structure of a crystal include evapora-
tion and condensation, surface migration, self-
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diR'usion in the volume of the metal, and plastic
Aow. It seems likely that under the proper condi-
tions any one of these can effect changes under the
motivation of surface tension forces, and in fact
except for plastic Aow there is at least indirect
evidence for the participation of each of these
mechanisms in surface changes caused by heating.
Thus, for example, the fact that when a metal is
heM at sufficiently high temperature in the pres-
ence of its vapor evaporation and condensation can
predominate over other mechanisms of rearrange-
ment, may be inferred from the fact that tungsten
(JS) and tantalum (M19) filaments develop a dif-
ferent su~face appearance according to whether
they are heated in vacuum or in an inert gas where
most of the evaporated atoms return to the sur-
face. Because of the large latent heat required for
evaporation, however, it is to be expected that the
importance of evaporation and condensation will
rapidly decrease as the temperature is lowered,
and that eventually processes having lower activa-
tion energies, such as volume or surface diffusion,
will predominate. Surface diffusion or migration of
foreign atoms on metal surfaces has been directly
observed in many thermionic and field emission
studies, of which only a few need be cited (A1,
M22, B23, S7, B11).Since in some of these cases
the foreign atoms were practically as tightly bound
to the metal surface as atoms of the base metal
itself, it is to be expected that a clean surface of
the base metal will show self-migration of com-
parable speed at comparable temperatures. Al-
though it should be easy with modern radioactive
tracer techniques to measure self-migration on high
melting metals, the only conclusive demonstrations
of this phenomenon which have come to our atten-
tion to date have involved the growth of crystals
of low melting substances by condensation (e.g. ,

(V2, V1)), and under these conditions there is a
possibility that the phenomena observed were
greatly inAuenced by contaminations on the sur-
face. It has been presumed that surface migration
is responsible for the d.c. etching phenomenon
(J5, S3, M19) and for changes in shape which
have been observed on the sharp points used in
field emission studies (M22, 812, B13, J3); how-
ever, it is hard to be absolutely certain that volume
transport is not involved in these phenomena.
Volume diffusion, finally, has been suggested as
the mechanism primarily responsible for the sinter-
ing of metal powders (P1)," and this hypothesis

"An earlier theory advanced by Frenkel (F11) attributes
sintering to a viscous flow of the solid caused by vacancies in
the crystal lattice. This is quite different from the di8'usion
process considered by Pines (P1}.Frenkel's mechanism con-
tradicts the established view that creep cannot be attributed
to the motion of lattice vacancies (S10), and we do not believe
it can be correct.

receives some support from studies of the tempera-
ture dependence of sintering rates (K4a).»

IIIc. Smoothing by Evaporation and Related Effects

Most thermionic experiments on metals are con-
ducted in vacuum and involve heating of the cath-
ode surface, at least for short times, to tempera-
tures where appreciable evaporation will occur.
This one-way evaporation will not generally bring
about the same type of surface structure as re-
sults when crystal and vapor are allowed to ap-
proach thermal equilibrium. For example, it is
sometimes supposed that evaporation proceeds at
significantly different rates from the different crys-
tal surfaces; this is perfectly possible, and there
need be no particular connection between these
rates of evaporation and the surface tensions which
determine the shape of the equilibrium polyhedron.
For the equilibrium vapor pressure must be the
same over all kinds of crystal surfaces, provided
they are Aat, and by a simple appeal to the principle
of detailed balance it can be shown that the rate
of evaporation into vacuum is proportional to the
equilibrium vapor pressure multiplied by the
"sticking coefficient, " a, which measures the frac-
tion of the atoms impinging on the surface from
the vapor phase stick and become incorporated
into the crystal ((20), Kap. 2). It is conceivable
that 0, might vary from one crystal surface to
another, and these variations need not be correlated
with any equilibrium property of the crystal. There
is both theoretical and empirical evidence, how-
ever, that n is often practically unity for metal
surfaces (L3); in these cases it is thought that
surface migration plays an important part, the
impinging atoms migrating over the surface so
rapidly that they become incorporated into a par-
tially-completed plane of atoms before they have
an appreciable chance of being re-evaporated ((20),
Kap. 2). When this happens there will be no dif-
ference in the evaporation rates from different
crystal surfaces, provided the term "evaporation
rate" is understood to refer to evaporation from a
surface which is Aat over a sufficiently large area.
We shall presently see, however, that even when
n=1 effects can occur which have the same ap-
pearance as preferential evaporation.

It is necessary at this point to say a few words
about the mechanism of evaporation which seems
most likely in the light of present knowledge ((20),
Kap. 2). This is shown schematically in Fig. 31.
The atoms, idealized in the drawing as cubes, are
arranged for the most part in complete and par-
tially completed layers. The upper left portion of
the sketch shows a partially completed layer,

Ql'e are indebted to Dr. Kuczynski for discussions of his
work prior to its publication.



260 C. HERRING AND M. H. N I C HOLS

bounded by a partially completed row which ends
with the atom C. This atom will be easier to remove
than other atoms such as D or E. An atom in a
position like that of C can be removed by placing
it in a position such as B, adjoining the edge of the
incomplete layer, or it can be placed in an isolated
position on the surface, as shown for A. The step
C—&B may be expected to require less work than
C—&A; since there are many more positions of type
A than of type B and the latter are in turn much
more numerous than those of type C, we may ex-
pect that under conditions where no atoms return
to the surface from the vapor phase the usual
itinerary of an atom which evaporates will be of
the type C~B—+A —+vapor. When the crystal is in
equilibrium with its vapor, on the other hand, this
may or may not be the case. Atoms which condense
on the crystal will usually land in posi. tions of
type A. If surface migration is suAiciently rapid in
comparison with the rate of incidence of condensing
atoms, these will usually become incorporated into
the incomplete layer before they are re-evaporated,
following itineraries of the type A —&B—&C; in such
case the sticking coefficient a mentioned above will
be nearly unity. If on the other hand surface
migration is unable to keep up with the arrivals of
new atoms on the surface, the concentration of
atoms of type A will become significantly greater
than it would be in the absence of the vapor phase,
and many of these A atoms will re-evaporate before
reaching positions of the type C; in this case n will
be significantly less than unity. Since the activa-
tion energy for migration may be expected to be
considerably less than the binding energy, the
former situation (n=1) may be expected always to
prevail at sufficiently low temperatures.

Consider now the process of evaporation into
vacuum from the vicinity of an edge or corner of
a crystal, which as we have seen in the previous
section may be expected to be somewhat rounded
even in thermal equilibrium. Per unit area of this
rounded edge or corner there will be more of the
comparatively loosely bound atoms, such as C of
Fig. 31, than on the flat faces, and there will be
fewer of the tightly bound atoms such as D or K
Therefore, the number of atoms per unit area
which detach themselves from positions of the C
type in unit time will be greater for the curved
edge or corner region than on a flat face, and conse-
quently this one-way evaporation will eat away the
edge and corner regions preferentially; however,
the atoms thus removed from edges and corners
will usually make their final jumps into space from
positions of type A on the flat faces, perhaps at
some distance from the edge or corner where they
originated. When the crystal is in equilibrium with
its vapor this preferential rate of detachment of
atoms from edges and corners is of course com-

pensated by the fact that newly arrived atoms
migrating over the surface are much more likely to
find a place to stick on the curved portion than on
an equal area of the flat portion.

The type of argument just given suggests further
conclusions. If the range of surface migration is
sufficiently great, it may happen that an atom
which gets detached from an incomplete layer on
one face of a small crystal will be more likely to
migrate to another face than to re-incorporate
itself into an incomplete layer on the original face.
In such cases those faces of a small crystal which
have a high concentration of positions of type C,
Fig. 31,will be eaten away more rapidly by evapora-
tion than will those with a low concentration of C
positions; this can happen even when the sticking
coefficient 0, is nearly unity. This preferential
evaporation could, of course, not occur for a very
large crystal when o, = 1; when the size of the crys-
tal face is much larger than the range of surface
migration a higher density of C atoms on one face
of the crystal will not only cause a higher rate of
detachment of C atoms, but will at the same time
cause a larger percentage of the A atoms to return
to C positions, so that the density of A atoms and
hence the rate of evaporation will not be any
higher than for the other faces.

Finally, we may note that the preferential eating
away of edges and corners should occur not only
when a metal evaporates into vacuum, but also in
any other thermal process in which there is a net
transport of material away from the region of the
specimen where these edges or corners are located.
Any process involving loss of material from a region
of the surface should thus have a smoothing effect
on this region, and if the rate of loss is sufficiently
rapid this smoothing may even succeed in obliterat-
ing the hill-and-valley structure which some crystal
surfaces tend to develop under equilibrium condi-
tions.

Although the smoothing effect of evaporation
should probably predominate over all other effects
caused by heat treatment in vacuum when the
temperature is high enough for evaporation to
predominate over migration, we might expect that
at temperatures where migration predominates heat
treatment of a polished surface of macroscopic
radius would cause the surface to progress toward
thermal equilibrium, hence, for some crystal sur-
faces, to develop the hill-and-valley structure dis-
cussed in Section I I Ia. However, it may take
a very long time for such a structure to develop
with appreciable amplitude. In the first place,
it may conceivably happen that a hill-and-valley
structure of small amplitude may have a higher
free energy than the flat surface, even though
one of large amplitude would have a lower free
energy. In such case an "activation energy" would
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have to be surmounted to produce the hill-and-
valley structure. Even in the absence of such
activation energy, the rate at which the sizes of
the hills grow ought to become rapidly smaller
as the hills become bigger, so that during any
actual heat treatment only a small amplitude
might result.

IIId. Observational Evidence

Observations of the appearance of heat treated
metal surfaces have been made both optically"
and by means of electron microscopy. &&There are
several ways in which electron-optical techniques
can be used to give the high magnification necessary
for a study of the fine details of surface structure;
information to be discussed below has been ob-
tained from projection tube studies (J3), from
shadowgrams (H2, J3), and from transmission
studies of replicas of surfaces (M4, M6, H3) a
method which promises to give more detailed in-
formation than any other. Important evidence on
the question of surface structure has also been
obtained in indirect ways from studies of ther-
mionic emission from single crystals (M10, N1)
and field emission from sub-microscopic single
crystal points (J3, H2, M24).

We shall begin with a discussion of the appear-
ance of tungsten filaments after various kinds of
heat treatment (J5, S3); generally similar phe-
nomena have been observed in . less detail for
tantalum (M19). Following Johnson (J5) we may
summarize the facts as follows:

(1) Filaments which had been heated on a.c. in vacuum
remained perfectly round and smooth, to within the
resolution of the optical microscope, even after a
period of incandescence sufhcient to evaporate away
17 percent of the metal in the filaments. This fits in
'with the expectation developed in the preceding sec-
tion that uncompensated evaporation should have a
smoothing effect.

(2) Filaments which had been heated on a.c. in inert gas
suffered "thermal etching" so that they exposed large
(100) faces and smaller (110) faces. Both types of
facets showed some concavity, plausibly attributed by
Johnson to secondary eRects connected with tem-
perature inhomogeneities. The faceted structure may
be presumed to represent a configuration with lower
surface free energy than the smooth wire, and its
form suggests that the {100) plane has the lowest
surface tension.

(3) Filaments which had been heated on d.c. in vacuum
showed a totally different step-like structure identical
with a structure observed near the support hooks on

The literature contains very many observations of metal
surfaces, of which only some of the more recent ones need be
cited here, with emphasis on those made on high melting
metals. Papers devoted to particular metals include: tungsten
(815, JS, S3); tantalum (M19); copper (E3; D4, G11); silver
(S11). L. Graf (G6) has published observations of surface
structure for a number of metals, with many references to the
earlier literature. Most experiments of this sort have involved
heating in air, and the structures observed may often be due
to oxidation or to the effects of adsorbed gas.

the a.c. vacuum wires, where there was of course a
strong temperature gradient. This, the "d.c. etch"
effect mentioned in Section, II.2 and shown in Fig. 4,
is apparently caused by preferential surface migra-
tion in one direction along the wire, by a mechanism
not yet understood.

(4) Filaments heated on d.c. in gas showed a combina-
tion of the effects (2) and (3).

Wires which have not been polished of course show
scratches and die marks; the smoothing effect of
evaporation in vacuum causes . these to become
gradually obliterated under prolonged heating.
Wires which have undergone mechanical polishing,
however, seem to be initially slightly roughened by
heating, and then become smooth again. This may
be due to recrystallization of a distorted surface
layer produced by the polishing.

The assumption that evaporation into vacuum
has a smoothing effect also for other metals seems
to be consistent with experiments on copper (E3)
and silver (S11), which have shown that the pres-
ence of oxygen or oxide is necessary for the appear-
ance of a "thermal etch" on these metals, and that
they become smooth when purified and heated in
vacuum. However, the fact that heating in nitrogen
also smooths silver (S11) necessitates caution in
interpreting the vacuum smoothing as due to the
process described in the preceding section.

From observation (2) above and the theoretical
result of IIIa of this Appendix one would expect
that most of the portions of a macroscopically
curved specimen of tungsten would acquire a hill-
and-valley structure if allowed to approach thermal
equilibrium, but that probably the (100) and (110)
faces would remain smooth. One might expect an
approach to thermal equilibrium to result from
heating at temperatures where migration or dif-
fusion is appreciable but evaporation is negligible.
However, as is discussed in the review by Jenkins
(J3) all the observations which have been made
on the sharp tungsten points used in field emission
studies have shown that these points, whose radii
are of the order of 10 4 cm, become smoothly
rounded when heated for a short time at tempera-
tures of the order of 1500'—1700'K or higher in
the absence of a field; the same rounding occurs
irrespective of the previous history of the point.
Similar results have been found for molybdenum.
The smoothness of the points has been confirmed
in several ways: by electron microscope shadow-
grams (H2, J3); by the smooth boundary observed
for the area of lowered work function when barium
is evaporated onto the point from one side (M22);
by the absence of any bright spots in the field
emission pattern, such as would be produced by
field enhancement if there were a hill-and-valley
structure as much as a few tens of atoms high
(M25); and by the agreement of observed field
emission currents (H2) with values calculated from
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the Fowler-Nordheirn theory (F7, N4, 610) for
points of known radius, an agreerrient which would
be spoiled if there were appreciable field enhance-
ment at the peaks of a hill-and-valley structure.
It is rather puzzling that these points become
rounded and that instead of developing a poly-
hedral or hill-and-valley structure on heating they
actually lose such structure when it has been arti-
ficially produced prior to the heating. A possible
explanation is that the tendency of surface migra-
tion to bring about thermal equilibrium is out-
weighed by a smoothing effect of the type discussed
in the preceding section, caused by a net flow of
atoms by migration or diffusion away from the
end of the point toward the less curved parts of the
wire. That something of this sort must occur is
indicated by the occurrence of changes in the shape
of the point on heating, and one would expect it to
produce a smoothing effect similar to that of one-
way evaporation. The alternative explanation that
the rounded shape is one characteristic of thermal
equilibrium cannot be entirely excluded, but, as
explained in I I Ia of this Appendix, it seems
unlikely.

Another type of evidence on the structure of
metallic surfaces, less direct than the preceding, is
provided by projection tube studies of preferential
adsorption. Elaborate patterns have been obtained
from barium, alkali metals, etc. deposited on field
emission points (J3) and on a polished tungsten
sphere emitting thermionically (M10). Martin
(M10) has argued that the sharpness and com-
plexity of the variations in adsorptive affinity with
the orientation of the crystal surface in the latter
experiments are evidence against the hypothesis of
a hill-and-valley structure many atomic spacings in

amplitude. For if this hypothesis were correct for
most of the crystal surfaces, adsorption on these
surfaces would take place on the sides of the hills,
which would presumably consist of crystal planes
of low indices; thus over a considerable portion
of the surface of the sphere the only things which
would vary would be the relative amounts of the
area covered by the various hill sides, and a
smoothly varying adsorption pattern should result.

We may mention finally the evidence from the
field dependence of the thermionic emission from
single crystal surfaces. In the measurement of the
emission in different directions from a single crystal
tungsten wire, Nichols (N1) found straight Schottky
plots with the theoretical slope over the range of
field strengths from below 30,000 to over 100,000
volts/cm, for all the crystal surfaces studied except
the (110) surface and closely neighboring ones.
According to the theory discussed in Section II.5,
this indicates that, except for the latter surfaces,
the work function of each .surface could not have
varied appreciably (say by a few tenths of a volt)

from point to point of the surface on a scale any-'
where in the range from a few tens of angstroms to
a few thousand angstroms. Thus if hill-and-valley
structures were present at all, either they must
have been very small or very large. The low voltage
deviation from the Schottky line which Nichols
found for the (110) face indicates a patch structure
on a scale of the order of thousands of angstroms or
larger, and can be correlated with a shingle-like
structure observed microscopically for this part of
the wire.

To summarize, we have seen that there is much
evidence for the non-occurrence of hill-and-valley
structures of many times atomic amplitude on the
surfaces of high melting metals which have been
subjected to the usual types of heat treatment in
vacuum. Little or no evidence contradicts the
hypothesis that these surfaces, whatever their
macroscopic orientation, are atomically smooth
if the heating has been suSciently severe and
when the etching eSects of d.c. fields and tempera-
ture gradients are eliminated. To reconcile this
smoothness with the prediction that a hill-and-
valley structure should in many cases be more
stable thermodynamically, it is tempting to sup-
pose that a certain activation energy must be sur-
mounted in order to initiate the hill-and-valley
structure. At temperatures where evaporation is
negligible but migration rapid, this activation
energy may be too high to be surmounted in any
reasonable time. At higher temperatures, evapora-
tion may be so rapid that the smoothing effect of
evaporation will predominate over the tendency to
build hills and valleys. Metals heated to a suffi-
ciently high temperature in the presence of their
saturated vapor, however, may be able to sur-
mount the activation energy and develop a hill-
and-valley structure. This tentative interpretation
cannot be relied upon, however, until further ex-
periments have been done on equilibrium surface
structures for clean metals and until the mechanism
of the d.c. etch is understood.

APPENDIX IV. ELECTROSTATIC POTENTIAL
OUTSIDE PATCHY ELECTRODES

The purpose of this appendix is to provide a
background for Sections II.4 and II.6. In general,
the potential at sufficiently large distances from an
uncharged conductor with a double layer spread
over its surface approaches a constant value which
is a surface average over the potential C, just out-
side the surface. In the case of electrode geometries
such as spherical, cylindrical, or plane, which are
commonly used, the potential at sufficiently large
distances is just the area surface average of 4,.
Since the detailed discussion in the above sections
has been limited to plane parallel electrode ge-
ometry, it has seemed desirable to write down the
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4=+;fC&, (IV.2)

where f, is the fraction of the area occupied by the
ith type of patch. The other components die oR
exponentially with increasing s so that at a dis-
tance from the surface, large compared to the period
of the patch arrangement, the patch field is very
sma11 and the potential approaches C. If an external
field is applied by means of a parallel uniform elec-
trode placed a large distance away compared to the
periodicity of the patch arrangement but a small
distance compared to the dimension of the elec-
trodes, a term linear in s should be added to Eq.
(IV.1). If the parallel electrode itself has a patchy
surface whose periodicity is small compared to the
distance of separation, it is necessary to add terms
of the same form as those of Eq. (IV.1) with con-
stants valid in the neighborhood of the added elec-
trode. These results are schematically illustrated in
Fig. 8.

Generally, a perfectly periodic patch distribution
in the case of po1ycrystalline emitters is never
realized with the result that the patch field dies
off more slowly than is indicated in Eq. (IV.1). In
the case of an isolated conductor of finite size, the
potential does nevertheless approach a constant
value at su%ciently large distances regardless of the
arrangement of the patches.

It should also be pointed out that Eq. (IV.1) is
applicable to other than plane electrodes only as
long as the periodicity of the patch distribution is
very small compared to the radius of curvature
and as long as the distance s from the surface is
small compared to the radius of curvature. If the
first condition is not satisfied, the patch field may
die off more slowly with increasing distance from
the surface than is indicated in Eq. (IV.1). For

complete expression for the potential variation be-
tween plane parallel patchy electrodes.

Consider an uncharged plane electrode (xy plane)
which has a surface made up of patches of different
double layers arranged in a periodic fashion having
period X in the x direction and 7 in the y direction.
Let both X and Y be small compared to the dimen-
sions of the electrode. It is easy to show that the
solution of Laplace's equation which gives the
potential C(xys) in the neighborhood of this elec-
trode, neglecting etid effects, is

4 =C + g g (a„sin2mnx/X+b„cos2m nx/X)
m=1 n 1

X (c sin2~my/ I"+d cos2nmy/ F)

Xexp[ —2n.z(n'/X'+m'/I") lg. (IV.1)

The constants C, a„,b„,c„,and d„canbe evaluated
in the usual way to fit the potential C„justoutside
the individual patches given by Eq. (II.4.1) with
the result that

example, in the case of cylindrical electrodes a
strip array of patches with the strips parallel to the
axis of the cylinder can produce a patch potential
which dies oR' only inversely with the radial dis-
tance from the surface. (See (14) p. 168.)

APPENDIX V. REFLECTION OF ELECTRONS
BY PATCH FIELDS

In the derivation of the velocity distribution Eq.
(I.3.7) there is nothing which precludes application
to a patchy surface: it is only necessary that the
plane across which the flow of electrons of diferent
velocities is measured be drawn at a sufficiently
great distance x~ from the metal surface to be out-
side the patch field. If the applied field Z is small
enough so that Ex~&&kT, as is usually the case in
velocity distribution measurements, then according
to Appendix IV the electrostatic potential on this
plane will be —

q relative to the electrochemical
potential inside the metal, where p is the area
average (II.4.3) of the work functions of the dif-
ferent patches. Therefore, if space-charge free emis-
sion can be achieved without violating the condi-
tions just assumed the total emission will be given
by the usual Richardson expression (I.3.6) with y
replaced. by p and with an associated reHection
coefficient r which includes the effect of the patch
field; likewise the velocity distribution expression
(I.3.7) must still hold if ris inter'preted to be the
quantity y, defined in Section I.3d as the fraction
of the electrons on the reference plane in the given
range dud~ of outward velocities which have come

POLAR PLOT OF SURFACE FREE ENERGY
SAMPLES OF PLANES NORMAL TO RADIUS VECTORS OF THIS PLOT——EQUILIBRIUM POLYHEDRON

Fio. 30. Construction of the equilibrium polyhedron from
the polar plot of surface free energy.
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there by reflection of electrons incident from out-
side. This fraction clearly lies between 0 and 1, but
we shall have to prove that it is in fact a reflection
coefficient for ingoing electrons. After this proof
has been completed we shall derive several quali-
tative relations regarding the velocity dependence
of this r associated with the patch field.

Va. Legitimacy of Using the Mean ReQection
CoefBcient for Ingoing Electrons in the

Velocity Distribution Equation

Consider the trajectories of the electrons men-
tioned in the preceding paragraph, which cross the
reference plane going inward, suffer reflection in the
patch field, and return outward across the refer-
ence plane with velocities in the range dvdko. Let y
and s be the coordinates in the reference plane
pp —x]. For certain values of y and s there will exist
trajectories of the type just described passing out-
ward across the plane at the point (y,s), while for
other points (y,s) no such reflected trajectories will
exist. Now by Liouville's theorem ((18), g 19)
the density of electrons in phase space must be
constant along any trajectory when equilibrium
conditions prevail. Therefore, the density of elec-
trons in the region dods of velocity space at any
point (x&,yp, sp) which lies on the outgoing part of
one of these reflected trajectories must be the same
as the density. where the ingoing part of this tra-
jectory crosses the reference plane, i.e. , at some
point (x~,y;,s;) of coordinate space and some par-
ticular point of velocity space, concerning which
we can say little save that it must correspond to
the same kinetic energy as the final outgoing ve-
locity. But according to the Maxwellian distribu-
tion law the ingoing density in phase space is a
function of this kinetic energy alone, so that as the
outgoing coordinates yo, so are varied the ingoing
density in phase space, and hence the reQected
density, always remain the same, as long as there
exists some reflected trajectory passing through
(yp, sp). Since the total emergent density in phase
space, compounded out of emitted and reflected
electrons, has this same Maxwellian value, it fol-
lows that for any given point (yp, sp) of the reference
plane the electrons which emerge in the region
dvdko of velocity space are either all of reAected
origin or all emitted. Therefore, the fraction y of
the total number of electrons in dvdu, for all values
of yo and so, which have come via reflected tra-
jectories is simply equal to the fraction of the area
of the reference plane which is traversed by out-
going reflected trajectories.

In the absence of magnetic fields the electron
trajectories will obey the principle of dynamical
reversibility, i.e. , if there exists a trajectory cross-
ing the reference plane at (y, ,s,) with inward ve-

locity v; which re-emerges at (yp, sp) with outward
velocity, vo then the reverse trajectory starting at
(yp, sp) with velocity —vp will emerge at (y;,s;) with
velocity —v, . The fraction of the area of the refer-
ence plane for which there exist such reverse tra-
jectories starting with velocity —vo is the mean re-
Hection coefficient r for ingoing electrons of ve-
locity —vo, so we have

v(vo) = ( —vo). (V.1)

The classical proof just given is certainly valid for
reflection in large-scale patch fields, where the mo-
tion of the electrons obeys classical mechanics; to
show that (V.1) holds also for reflection phenomena
of quantum-mechanical origin, such as the reQec-
tion from a uniform metal surface, it is merely
necessary to translate the preceding argument into
quantum-mechanical language. In quantum me-
chanics the probability that a system initially in
a state i will be found after time t to be in the state j
is

P(i-+j;t) =
~
(exp/ —iIZtlkj);;~',

7(vp) =(1/~p) Z ~" P(~~i; t)«
0

=(1I~o) 2 ' P( i~ i't)dt— —
;, ; Jp

=r( —») .

in agreement with (V.1).

Vb. Dependence of the Associated Re6ection
CoeFicient on Normal Energy

Considerable insight into the behavior of the
reAection coefficient associated with the patch field
can be obtained from geometrical considerations in
the phase space of the initial coordinates and mo-

where H is the Hamiltonian operator of the system.
If H is symmetric with respect to reversal of the
direction of time (see (W11)), as is the case in the
absence of a magnetic field, it is easily shown from
this expression that

p(i~j;t) =p( j~ i;t), — —

where —j and i refer to the s—tates derived from
j and i, respectively, by reversing velocities, which
in the absence of spin can be obtained by replacing
the wave f'unctions by their complex conjugates.
Now if j runs over all states with outward velocity
in the given range dvd~ and positions on the refer-
ence plane, there being no such states in all, and if
i' runs over all ingoing states on the reference plane,
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dashed curve of Fig. 33, raised somewhat every-
where to allow for reHection at the metal surface
itself, while the reQection coe%cient measured by
the velocity distribution method with plane-
parallel geometry should look something like the
full curve. The reHection coe%cient directly meas-
ured by the velocity distribution method using
cylindrical or spherical geometry is of course not
an average refiection coeKcient for a given normal
energy, but rather an average for given (e +e„)or
(e,+e„+e.), respectively. The behavior of averages
of this sort will differ from that shown in Fig. 33
in that there will be no limiting value of (e +e„)or
of (e,+e„+e,) above which the reHection coeffi-
cient of the patch field is exactly zero.

j = C?' exp( —e'er/k?') (VI.1)

where q is the true work function of the surface
as defined in (I.2.1) and C is a constant independent
of?'. This belief seems to have arisen from a mis-
application of some early theoretical speculations
of Richardson and others (R9, R10, R11, W17,
R18), made in the years when the light quantum
concept was relatively new and when all attention
was devoted to the qualitative laws of emission
rather than to precise measurements of thresholds.
Actually, although a formula of the type (VI.1) is
capable of representing the variation of j with T
fairly well, this formula has no basic thermody-
namic significance; by this is meant not merely
that C and y may be temperature dependent, but
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Fre. 32. Regions of reflected and non-reflected trajectories in
the phase space of incident electrons.

APPENDIX VI. THE "COMPLETE
PHOTOELECTRIC EFFECT"

A method which has sometimes been used to de-
termine the photoelectric threshold is that of the
so-called "complete photoelectric eBect."This con-
sists in"measuring the total photoelectric current
obtained from a cold surface when blackbody radia-
tion corresponding to some elevated temperature T
is allowed to fall on it. There is a widespread belief
that thermodynamic reasoning requires the photo-
electric current density j in such an experiment to
be given by

that there does not seem to be any liklihood of
relating the temperature dependence of C to any
other quantity which it is feasible to measure, ex-
cept by the trivial means of computing j from the
measured spectral response function by integration
over the blackbody spectrum.

All that thermodynamics or the principle of de-
tailed balance can say is that if the emitting surface
is in equilibrium with blackbody radiation at tem-
perature T—hence itself at temperature T—then

(a) the total number of eiectrons 1eaving the surface,
whether ejected photoelectrically or thermionically, is
given by the Richardson equation, and.

(b) the number ejected per unit time by photoelectric
emission alone is equal to the number reabsorbed per
unit time with simultaneous emission of a quantum of
light.

If the latter number is a fraction p of the total
number of electrons striking the surface, then the
complete photoelectric emission can be shown by
the methods of Section j:.3 to be simply

j =PA?'exp( —eq/k?'),

where A is the Richardson constant 120 amp. /
cm2/deg. s. Equation (VI.1) would thus be correct
with constant C if it were legitimate to assume that
p and y are independent of temperature, and that
for a given temperature T of the light source the
photoelectric yield is independent of the tempera-
ture of the target being illuminated. The former
assumption, regarding the constancy of p, is prob-
ably a fair approximation for metals, if?' is not too
large, but the second assumption will in general be
far from the truth. The complete photoelectric
yield when the target temperature Ts coincides
with T will be much higher than when To(&T, be-
cause of the contribution of electrons which are
thermally excited to levels from which they can be
liberated by frequencies smaller than vs=ay/k. For
the number of electrons which can be removed by a
frequency v(vs will contain a factor expk(v —v,)/
kTO, and since the tail of the Planck function for the
density of the radiation contains a factor exp( —kv/
kT), the number of such thermally excited electrons
which get photoelectrically ejected may become
very large, much larger in fact, then the number of
electrons which are ejected from the normally
occupied states Thus j(T. , T) arises principally from
excited electrons, while j (?'et?') arises mainly from
unexcited electrons; one cannot expect any par-
ticular relationship between them, and so the hope
of justifying (VI.1) by some such assumption as
constancy of the ratio of these two currents must
be abandoned.

The fact that experimentally Eq. (VI.1) gives
reasonable values for the threshold frequency is not
hard to understand, however. For consider a target
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the neighborhood of the value e, o at which the associated
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coeScient for given e, averaged over the y and s coordinates
of the incoming traj,ectory, and, in the cases indicated, also
averaged over a Maxwellian distribution of y and s velocities.
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at O'K, illuminated with black body radiation for
which kT((hvp. Then, if F(v vp) is t—he spectral
sensitivity function for the target, the yield will
be, to a good approximation,

V i

where the second factor is just Mien's approxima-
tion to the Planck function. Since for metals F is
proportional to (v —vp)' when (v —vp) is small, the
asymptotic form of j for small T and To will be, as
was pointed out long ago by Becker (BS, B6).

(6) G. Herrmann and S. Wagener, Die Oxydkathode, 1 Teil
(Johann Ambrosius Barth, Leipzig, 1943; Edwards
Brothers, Inc. , Ann Arbor, 1946).

(7) A. L. Hughes and L. A. DuBridge, Photoelectric Phe-
nomena, (McGraw-Hill Book Company, Inc. , New
York, 1932).

(8) T.J. Jones, Thermionic Emission (Methuen and Com-
pany, London, 1936).

(9) A. L. Reimann, Thermionic Emission (Chapman and
Hall, Ltd. , London, 1935).

(10) O. W. Richardson, Emission of Electricity from Hot
Bodies (Longmans Green and Company, London,
1921).

(11) W. Schottky and H. Rothe, Physik der Gluhelektroden,
in Handblch der Zxperimentalphysik, v. XIII 2
(Akademische Veriagsgesellschaft, Leipzig, 1928).

(12) F. Seitz, The Modern Theory of Solids (McGraw-Hill
Book Company, Inc. , New York, 1940).

(13) C. J. Smithells, Tungsten, Second Edition (D. Van
Nostrand Company, Inc. , New York, 1936).

(14) W. R. Smythe, Static and Dynamic E/ectricity
(McGraw-Hill Book Company, Inc. , New York,
1939).

(15) A. Sommerfeld and H. A. Bethe, Elektronentheorie der
Meta//e, in Hondbuch der Physik v. XXIV 2 (Verlag
Julius Springer, Berlin, 1933).

(16) K. Spangenberg, Wachstum und Auf/osen der Kristo//e,
in Handsoorterbuch der Natursoissenschaften v. X
Second Edition (Verlag Gustav Fischer, Jena, 1934).

(17) R. Suhrmann, Elektronenemission meta//ishcer Leiter,
in Miiller-Pouillets Lehrbuch der Physik v. IV 4,
Chapter 3 (Druck und Verlag von Friedr. Vieweg
und Sohn, Akt. -Ges. , Braunschweig, 1934).

(18) R. C. Tolman, The Princip/es of Statistical Mechanics
(Oxford University Press, New York, 1938).

(19) J. H. Van Vleck, The Theory of Electric and Magnetic
SuscePtibilities (Oxford University Press, New York,
1932).

(20) M. Volmer, Kinetik der Phasenbi/dung (Verlag von
Theodor Steinkopf, Dresden and Leipzig, 1939;
Edwards Brothers, Inc. , Ann Arbor, 1945).

j const T' exp(hvp/kT), (VI.2) Articles
a form which it would be hard to distinguish from
(VI.1) on the basis of existing experimental data
(S17, S18, S19, R19).

For semiconductors, where the photoelectric work
function may be much higher than the thermionic,
it is even more obvious that (VI.1) cannot ha.ve
any thermodynamic significance.
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