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Stevens Institute of Technology, Hoboken, New Jersey

Pressure-time curves, continuous from initial shock wave incidence through the second
bubble pulse, are examined in the light of acoustic theory. Calculations of impulse and reversible
and irreversible energy flux are made for the various phases of the phenomenon. An estimate
has been made of the amount of energy dissipation associated with the propagation of the
shock front. A tabulation of the energy partition is included, and it is shown that substantial
quantities of energy are radiated or dissipated by mechanisms other than these taken into
account in this discussion.

I. INTRODUCTION

OST of the energy released by the detona-
tion of an explosive charge is ultimately

imparted to the surrounding medium and be-
comes distributed among the various phases of
succeeding phenomena. It is the purpose of the
present investigation to examine the distribution
of this energy in underwater explosions, particu-
larly from the point of view of making a complete
interpretation of data now available in the form
of pressure-time curves.

In general, underwater explosions are charac-
terized by the emission of a shock wave followed
by a series of pressure pulses caused by subse-
quent oscillations of the gas globe containing the
products of detonation. A typical pressure-time
record is reproduced in Fig. 1.

At the instant following detonation the re-
leased energy is present in the form of potential
energy of exceedingly high pressure and tempera-
ture in the resulting volume of gas. As the gas
proceeds to expand it transfers energy to the
water. Part of this energy is "radiated" in the
sense that it is not stored as reversible potential
energy in the water. Rather, it is gradually
dissipated by conversion into thermal energy
which elevates the temperature of the fluid
through which the pressure wave is propagated.

* This investigation was supported under contract with
the Navy Department, Bureau of Ordnance. Contribution
No. 449 from the Woods Hole Oceanographic Institution.
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The remainder of the energy transferred to the
water is imparted to it as kinetic energy, the
water being pushed radially outward against the
opposing hydrostatic pressure. The gas globe ex-
pansion continues until the energy available to
this phase of the motion is stored as potential
energy in the water. At this point the gas bubble
has attained its maximum radius, and its in-
ternal pressure has fallen well below that of the
surrounding hydrostatic level. The potential
energy now stored in the water is given by

&„=(4/3)~&~i'&o,

where A~& is the maximum bubble radius and I'0
is the absolute hydrostatic pressure. This will be
referred to as a "reversible" energy, since it is
returned to the gas globe on the succeeding
collapsing phase.

The collapse of the bubble and the following
expansion are characterized by emission of the
first bubble pulse, in which part of the energy 8„
is again radiated "acoustically. " Thus all the
potential energy stored in the water is not re-
turned to the bubble as compressional energy in
the gas** at minimum bubble size. An additional

**If the charge is detonated under conditions such that
the gas bubble undergoes appreciable migration because of
the influence of gravity or boundary surfaces, a substantial
part of B„willbe imparted irreversibly to vertical motion
of the water. The condition principally considered in this
report is that in which the bubble migration is negligibly
small. This, however, has no bearing on considerations
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FIG. 1. Pressure-time record showing shock wave and bubble pulses. Charge: 0.505-lb. TNT;
gauge dist: 2.25 ft. ; depth: 500 ft.

loss occurs on re-expansion, resulting in a value will be uniform over the surface of a sphere, and
2~2 (for the second maximum in the bubble the total flow of energy through the spherical
radius) considerably smaller than A ~&. surface will be given by:

E =4mR'I'.

In addition to the energy observed in waves of
compression and in reversible interchange be-
tween the gas globe and the water, energy is also
being continually dissipated because of various
other factors such as:

(i) radiation and conduction from gas globe,
(ii) viscous loss in the water,

(iii) turbulent loss in the water.

An observer at a fixed point (radial distance R
from the center of the charge) would see a "How"
of energy past his point in the positive or nega-
tive direction of R, depending upon the phase of
the explosion phenomenon. Piezoelectric gauge
measurements provide a record of pressure vs.

time at just such a point of observation. In order
to investigate the energy flux, it is necessary to
have a relation between energy and the variables
pressure and time. These relationships are de-
veloped in the following chapter.

The experimental results to be quoted subse-
quently were all obtained from measurements
on TNT.

II. GENERAL EXPRESSIONS FOR ENERGY FLUX

The symbol E will be used to designate the
total energy flow through the surface, and a
component of the total will be indicated by
attaching a suitable subscript. The symbol F will

be used in a similar way to represent the energy
flux.

In general, the energy flux will be found to
consist of a number of components varying
inversely as some power of the radius:

F= F&(R"~+F2(R"~+F3(R"~+ . . etc. (2)

If the value of an exponent n happens to be 2,
Eq. (1) shows that the total energy How, F,
corresponding to that term wi11 be the same at all
radii and therefore the energy will be radiated
away to infinity. If the value of n is greater than
2, the total energy flow will be smaller at larger
radii, indicating that some energy has been left
behind in the water. In some cases the energy
left in the water is in the form of kinetic energy
or other undissipated -forms and therefore should
be returned ultimately to the gas globe. In other
cases it represents an energy which has been
dissipated irreversibly and goes into heating of
the water.

In this report the energy flux will be defined as
the amount of energy that passes through a unit
area of surface during a given time interval. In
the case of spherical symmetry this energy Aux

pertaining to events up to the first bubble maximum, since
migration never becomes appreciable until the phase of
bubble collapse.

The general expression for what might be
termed the "useful" total energy. flow through a
sphere of radius R relative to the center of the
explosive charge is given by the following time

' integral:
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where t = time measured from instant of incidence
of the pressure wave, t& =arbitrary upper limit of
integration, Ap =excess pressure (p —Pp), a, func-
tion of time, Po=absolute hydrostatic pressure
level at point of detonation, u =particle velocity
relative to the unperturbed fluid, p =density of
the fluid at time t, Ap = increase in internal energy
of a unit mass of fluid relative to the initially
unperturbed state.

The term in hp represents a compressional
energy capable of doing work against the fluid

external to the sphere through which it passes.
The second term represents the kinetic energy of
the mass of fluid moving past the point of
observation, while the third term in Ag represents
the increment of internal energy of this mass. It
will be shown that at values of R which are large
relative to the initial charge radius, the last two
terms are both very small compared to the term
in AP.

The type of experimental data available for
making an analysis of the energy Hux consists
mainly of pressure-time curves recorded by
means of piezoelectric gauges. '

Such data have previously been available for
the shock wave to times of the order of 100, where
0 is the time constant of the initially exponential
shock-wave decay. Additional data have recently
been obtained from bubble pulse measurements, ~

making it possible to extend the pressure-time
curve from 100 through the second bubble pulse.

If u in Eq. (3) can be expressed in terms of the
variables Ap and t, it becomes possible to evaluate
energy transfer from the primary pressure-time
data. A rigorous development would involve the
exact solution of the hydrodynamical equations
of motion. Such a solution would involve ex-
ceedingly laborious and complicated numerical
integrations which are impractical except in a
very few special cases.

Fortunately the compressibility of water is
sufficiently low to make the so-called acoustic
approximation useful (and probably adequate)
for the treatment of pressure-time data in the

' J. S. Coles, OSRD Report No. 6240.' A. B.Arons, J. P. Slifko, and A. Carter, J.Acous. Soc.
Am. 20, 271 (1948), and A. B. Arons, ibid. 20, 277 (1948).

region normally accessible to experimental
measurement.

The acoustic approximation in a case of
spherical symmetry yields the following relation-
ship for the particle velocity, u

sp
+ ~ apdt,

poco poR o

(4)

where

(AP q pAP
~

—+-u +~„(
"o & p &poco

r
" ((~P/t)+ pu'+~a) t r

'

+)I Jl Apdt dt . (5)
0 poR 0

The sum (-,'u'+Ay) is small relative to AP/p, as
will be shown in Section 10; at low values of d p it
can be neglected entirely. A correction is justified
at high values of Ap, but only the first term in

Eq. (5) requires this correction since the second
term is initially zero and does not acquire ap-
preciable value until after the elapse of a certain
amount of time, during which the pressure is
decaying very rapidly.

The Rankine-Hugoniot conditions*** afford
relationships for u, U, and Ag in terms of Ap and
the change in density across a shock front. (U
represents the velocity of propagation of the
shock. )

Art and u in the first term of Eq. (5) are then
replaced by the appropriate Hugoniot relations

' H. Lamb, Hydrodynamics (University Press, Cam-
bridge, 1932), p.. 490.***The Rankine-Hugoniot conditions are obtained by
application of the laws of conservation of mass, momentum,
and energy at the shock front (see reference 3). These con-
ditions are:

U= o((0—~o)/( o
—))',

+= ((P—&o) (~o—~))»
~~ = l(&o+P) (»—~),

AH=Ag+h(pv) =-,'(p —Po) (f0+v).

po
——the density of the unperturbed fluid,

Cp = (BI /Bpp) sp', the velocity of sound in the Quid.

The second term on the right-hand side of Eq. (4)
is frequently referred to as the afterflow term in

the particle velocity.
Combining Eqs. (4) and (3) we find
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and Co is replaced by the propagation velocity U.
This is equivalent to treating the fluid at time t
behind the shock front as though it had just
passed from its unperturbed state through a
shock front of corresponding amplitude d,p, i.e. ,

directly along a Hugoniot curve from 0 to Ap.
Strictly speaking this is not correct, since the
particle of fluid under consideration has actually
passed through a shock front of greater amplitude
at a preceding time and has returned to the
pressure Ap along an adiabatic. Also neglected is
the effect of spherical divergence on the particle
velocity, N. However, the above substitution is
introduced as a first approximation, and since the
correction is quite small for all practical cases, the
approximation is probably adequate.

Making the substitution discussed above in the
first term of Eq. (5) and neglecting ~iu' and Ag in

the second term, one obtains, after algebraic
manipulation:

4n.R' t.
" (Ap)'—dt

p, ~ J, gp
U—

In acoustic theory Ap varies inversely as 8, the
distance from the origin. Inspection of Eq. (7) in
the light of Eq. (2) therefore indicates that the
first term on the right-hand side represents
principally "radiated" energy associated with
what will be termed the "irreversible energy
flux, " while the second term represents energy
stored reversibly in the region covered by the
shock wave. It should be noted that the small
contributions made by 2'n' and Ag to the first
term are aIso reversible.

III. THE FIRST TERM FOR THE ENERGY FLUX
IN THE SHOCK WAVE

To complete the development of expressions
necessary for the interpretation of pressure-time
data, we return to that part of the energy flux as
given by the first term of Eq. (6):

ptl —dt.
U —(~p(v~ U)

The Rankine-Hugoniot conditions give a rela-
tion for U in terms of hp at a shock front:

poU U=vo(AP, (v, —v)l, (9)

+—
~' Ap hpdt dt (6)
0 0

For comparison, it is convenient to state the
result yielded by Eq. (5) if —,'u' and Dg are neg-
lected throughout and Co is not substituted
by U:

fs t1

Z =4~rR' (Ap) 'dt
po~o 0

ap~~ npdt dt . (7)
po~ ~o - o

It will be shown in Section 10 that Eq. (6)
differs from Eq. (7) only in that the first term
contains a correction factor which does not de-
part from unity by more than a few percent at
pressures as high as 20- or 30-thousand pounds
per square inch.

f Note that the second integral of Eq. (6) may also be
written in the form:

APdt

this form being more useful for purposes of computation.

where AP, is the excess pressure at the shock
front and vo and v are the specific volumes of the
fluid ahead and behind the shock front, re-
spectively.

Combination of Eq. (9) with certain thermo-
dynamic relations and with equation of state
data4 makes it possible to calculate U for corre-
sponding arbitrary values of AP, . Such calcula-
tions have been made for sea water at quite
closely spaced values of AP„and the results can
be represented empirically by the following ap-
proximate fit:

U= Co[1+5.6X10 '&P,
—17X10 "(hP,)'$, (10)

where the excess pressure is expressed in lb. /in. 2.

For the purpose of obtaining a first-order cor-
rection to the energy flux, the propagation
velocity may be represented approximately by
the following linear relation:

U = Co[1+nAP, ],
U= Co[1+5 3X10 'APs] (11)

4 J. M. Richardson, A. B. Arons, and R. R. Halverson,
J. Chem. Phys. 15, 785 (1947).
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Although this is not a correct representation of
the whole wave, it is true for times up to t = 8,
from which region most of the correction to the
energy flux actually stems. Therefore, applying
this approximation

Equation (10) fits the results of reference (4)
quite closely from zero to 60,000 p.s.i. , while

Eq. (11) represents a, rough average fit of a
straight line in the region from zero to 40,000
p.s.i. Equation (11) falls slightly below the true
values at low and somewhat above at high
pressures.

Inserting Eq. (11) into Eq. (8), and carrying
the result to first-order terms, the following ex-
pression is obtained:

(ap) 'dt =-

0 2

00 I' '8
(t2.f ) 'dt == =—',P„-

0 3
(af ) 'dt.

(~P) 1 'l ~ l~P dt& (12) The first energy flux term then becomes
( 2

po~o o

where ~ =poCo .
The same expression may be derived by ap-

plying first-order corrections directly to the
general expression given in Eq. (5):

I" (~P
F& ——

~

—+-' u2+26 2~tpudt,

up ) (13)

where u is given by the Rankine-Hugoniot
conditions

~n =
2 (~P)'/xP2,

~ being the bulk modulus. The kinetic energy per
unit mass is

1u2 —2 (gP) 2/p 2 U2 1(gP) 2/p 2 Q 2

= 2(~f )'/p2x= ~n (23)

Equation (12) is verified by substituting these
relations in Eq. (23) and carrying the results to
first-order terms.

In its present form, Eq. (12) is unwieldy be-
cause it requires integrations of both (Dp)2 and
(62»)2. The term in (Ap)2, however, introduces
only a small correction, and it is convenient to
represent the average value of this correction in
terms of one convenient parameter, such as the
peak pressure of the shock wave. To do this, it is
assumed that the shock-wave pressure varies
exponentially with time.

gp P' ~
—t/8

u = (aP/pp U),

and the internal energy increment, Ag, is ap-
proximately the compressional energy of the
fiuid:

po~o-

(
1 —P n ——iP„~ (AP)'dt (1.6)

xj

The correction represented by the second term
in the bracket is small (the order of a few percent),
so that even though the correction itself might be
subject to a large error because of the crudeness
of various approximations, the final result for
energy flux should not be greatly in error. For I'
in lb. /in. ', and F2 in in. lb. /in. ', Eq. (16) may be
written

ptl
[1—1 6X10 'P ] I (AP)'dt. (17)

poco 0

Equation (17) is based on U as given by Eq. (11).
This equation can now be used in the computation
of the energy flux given by the first term of
Eq. (3)

This approximation can easily be carried to
second-order terms, although for most applica-
tions this is an unnecessary refinement. The
result to second order is

Equation (18) is based on U as given by Eq. (10).
If pressures are expressed in lb. /in. ' and time

in seconds, F~ is obtained in in. lb. /in. by using

po&o = 5 58+0.0065 T, (19)

where T is temperature of the water in degrees
centigrade.

F2= [1—1.8X20 'P +4X20 "P ']
poco

tl

X " (&P)2dt. (18)
0
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The quantity ppCp is commonly called the
acoustic impedance of the medium. Equation (19)
applies specifically to sea water having a salinity
of 32 parts per thousand.

10

It is now possible to investigate the relative
magnitude of the terms for internal and kinetic
energy in Eq. (3). The part of the energy flux
given by these terms is

t1

F, = (-,' pu'+ pArt) udt. (20)

From Eqs. (14) and (15)

cpu'= p~n = k(~P)'/~,

and the particle velocity is given by

u =AP/ppCO,

(14), (15)

approximately.
Using the exponential approximation for the

pressure versus time relation, the part of energy
flux given by Eq. (20) becomes

1 (2 Pml
(~P)'dt

ppCp E3 z )
1 pt

(2X10 'P„) I (d,P)'dt, (21)
Ppcp

where pressures are in lb. /in. ' and the energy flux
is in in. lb. /in. 2. The term (2X10 'P ) represents
a fractional part of the total energy flux given by
Eq. (17). The contribution of the kinetic and
internal energy terms to the flux Ii~ is, therefore,

IV. ENERGY DISSIPATION AT THE SHOCK
FRONT

Acoustic theory, which does not admit dissi-
pative effects, predicts that the pressure in a
spherically divergent wave will decay as the
inverse first power of the radial distance. It would
naturally be expected that a finite amplitude
wave should decay somewhat more rapidly, and
this fact has been confirmed by experimental
pressure-distance curves.

As noted in Section 5, a decay of this type
implies that some energy is being left behind as
thermal energy in the water through which the
wave has passed. Most of this dissipation can
probably be ascribed to the irreversible thermo-
dynamic process occurring at the shock front.

As an'element of fluid passes through the shock
front, it undergoes a sudden non-isentropic com-
pression, the final state being determined by the
Rankine-Hugoniot conditions. 4 When the pres-
sure later drops to the hydrostatic level, it is
found that the element of fluid has suffered a net
increase of enthalpy (and entropy). This increase
of enthalpy, which depends on the magnitude of
the pressure at the shock front, is known as the
dissipated enthalpy increment and will be desig-
nated by the symbol h.

The dissipated enthalpy increment is approxi-
mately proportional to the cube of the shock-
wave pressure for low and moderate pressures,
the limiting law for low pressures being given by'

lt = (1/12) (8'v/BP') (hP, ) ' (23).
Using the Ekman equation of state4 for sea

water and applying Eq. (23), it is found that

2X10-6P„

or approximately

F.
Fi 1 —1.8X10 'P X 100 percent

k=1.52X10 'o(EP, )3 (24)

where k is in in. -lb. /lb. and AP, is in lb. /in. .
Equation (24) holds quite well for pressures up to
5000 lb. /in. '.

(2X10 'P ) percent. (22) 12

At the highest pressure levels so far investi-
gated (ca. 30,000 to 40,000 lb. /in. 2) this contri-
bution is of the order of a few percent. For
pressures below 10,000 lb. /in. ' the contributions
of the kinetic and internal energy terms are
negligibly small.

P =9(S)L(vg/v)" —1], (25)

~ J. G. Kirkwood and H. Bethe; J. G. Kirkwood and E.
Montroll, OSRD Reports No. 588 and 676.

For higher pressures a modified adiabatic Tait
equation of state has been used:4
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to 50 kilobars. The calculations cited' ' both lead
to values close to 36 kilobars.

In Fig. 3 the pressure-radius similarity curve
for TNT is shown extrapolated back to two
arbitrary values at the charge surface. The value
of 36 kilobars or 520,000 lb. /in. ' is considered to
be the order of magnitude of the actual peak
pressure. The similarity curve extrapolated to
1,000,000 lb. /in. ' is given for purposes of compari-
son as a possible upper limit of error. Isolated
experimental values from dome velocity measure-
ments are plotted on the same figure.

Using values from Fig. 3, the integrand of
Eq. (27) is shown plotted in Fig. 4. For the solid
curve of this figure the empirical relation
x'h=1230x "' (where x=R/W&) sa, tisfactorily
represents the integrand between the limits of
x =0.136 and x = 10. The dashed curve represents
an upper limit to the integrand based on a peak
pressure of 1,000,000 lb. /in. ' at the charge. This
curve is drawn to indicate the possible extent of
the error in calculating the energy dissipation.

From the empirical relation given above, the
energy dissipated between any two spherical
surfaces may be readily calculated:

Bv~ (v~ )" n+1 t'v~ ) "—' v

2 (v) n —1 Lv& Vl

B(vg —vo) (vg ) "
]
—

f
-1. (26)

2 Ev)

The term vo appearing here is the specific volume
of the fluid before the arrival of the shock front.
The last term on the right is relatively small and
may be neglected for shock pressures under
40,000 lb. /in. '.

Figure 2 shows a plot of h as a function of the
shock pressure, as computed from Eq. (26).

13

In a spherical wave the energy dissipated be-
tween two spherical shells is given by

R2

Ev =4v po t R'h, (AP.)dR,
~Ry

(27)
=4 o

I'
1230 —'"d

~xg
where h(AP, ) is the dissipated enthalpy incre-
ment at pressure DP„and AP, is the excess shock
pressure at distance R from the origin.

This integral can be evaluated in the low pres-
sure region by use of Eq. (25) and at higher
pressure by use of Eq. (26), providing experi-
mental data are available, giving AP, as a func-
tion of the radial distance R.

Reliable pressure-distance data, based on
piezoelectric measurements, are available up to
pressures of 20 to 30 thousand lb. /in. '. A few
experimental points based upon measurement of
spray dome velocities are available at higher
pressures, but values for the region between the
surface of the charge and the 30,000 lb. /in. '
pressure level must be based principally upon
theoretical calculations such as those of Kirk-
wood, Bethe et al. ,

' or Brinkely and Kirkwood. '
Available estimates of the pressure in the

water at the surface of the charge range from 30

=4~300~000L(W'/R~)' " (W~/R2)""j

in. -lb.
(28)

lb. chg.

where W is charge weight in. lb. and R is in ft.
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where n = 7.15 and B($)=44,400 lb. /in. '. v& is the
final specific volume after return to hydrostatic
pressure, and v is the specific volume immediately
after the passage of the shock wave. This equa-'

tion of state leads to the following formula4 for
the dissipated enthalpy increment:

S. R. Brinkely and J. G. Kirkwood, Phys. Rev. Vl, 606
(1947).

FIG. 2. Dissipated enthalpy increment, h, versus shock front
pressure, b,P,.
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FIG. 3. Peak pressure similarity curve for TNT. Legend:
isolated experimental points based on measurement of

spray dome velocity. experimental curve based on
piezoelectric measurements, extrapolated to a theoretical
value at the charge surface based upon the results of
reference 5, 6. ————similarity curve arbitrarily extrapo-
lated to a value of 10' lb. /in. ' at the charge surface.

As an example, the amount of energy dissi-
pated between the charge surface, (Wl/R) = 7.35,
and a, radius given by R= Wl/0. 352 is approxi-
mately 3,400,000 in. lb. per pound of charge or
200 cal./g of charge.

A calculation based on the dashed curve of
Fig. 4 for the same limits of integration would
yield roughly 25 percent additional dissipated
energy. The actual error is probably smaller
than this, but the above value is an indication,
at least, of the uncertainties involved in the
assumption Of the form of the pressure-radius
curve in the region very close to the charge.

It must be remembered that an additional
error, the magnitude of which cannot be esti-
mated, is present because of uncertainty with
respect to the equation of state data in the high
pressure region. The equations used are based on
extrapolation of experimental data' from pres-
sures of 10 kilobars, and at high pressures
actually imply applicability to metastable liquid
water in the ice VII region.

14

It is now possible to compare the measured
shock-wave energy Aux at diferent radii with
the loss caused by dissipation. Unfortunately,

FrG. 4. Dissipated enthalpy integrand, (R/S'&)'h, versus
R/W& for TNT. Legend: based on solid curve,
Fig. 3, ————based on dashed curve, Fig. 3.

there is considerable scatter in the shock-wave
data available, so that it is hard to state precisely
what the energy fiux is at a given radius. As a
result, the total energy flow through a surface is
known only to within about 5 to 10 percent, and
although the total How at a given radius may be
known to within these limits, the experimentally
measured dissipation, which is given by the small
difference between How at each of two radii,
will be very appreciably in error.

To illustrate this, for TNT the flux at W'/R = 1

is 2700&250 in. lb. /in. ' lb. ', and at W'/R=0. 1

it is 20.5~1.5 in. lb. /in. ' lb. l. The total energy
flow at W'*/R = 1 is then 4,900,000&450,000 in.
lb. /lb. and at Wl/R =0.1 it is 3,700,000&270,000
in. lb. /lb. The energy dissipated in the interval
Wl/R= 1 to 0.1 calculated from these figures is

1,200,000~720,000 in. lb. /lb. The large uncer-
tainty in the dissipated energy is immediately
apparent. (These values are obtained from data
taken at Woods Hole by J. S. Coles and his co-
workers. )

By the use of Eq. (28), the energy loss resulting
from dissipation between W&/R=1 and Wl/R
=0.1 would be 1,760,000 in. lb. /lb. This value is
to be compared with that of 1,200,000&720,000-
in. lb. /lb. obtained above from the Woods
Hole data. It will be noted that the two results
agree within the limit of error of the experi-
mental measurement. The calculated value,
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based on a knowledge of the somewhat more
accurate pressure-distance curve, is probably the
better of the two.

V. IMPULSE AND ENERGY FLUX ASSOCIATED
WITH THE SHOCK WAVE

based on measurements with 0.50-, 2.50-, and
12.0-1b. charges of TNT at depths of 250 and
500 ft. Gauges were placed at such distances as
to keep the value of W'*/R constant at 0.352 for
each charge size. The curves are shown in Figs. 5,
6, and 7.

The general character of the pressure wave
emitted by an underwater explosion is illustrated

by the oscilloscope trace reproduced in Fig. i.
The first portion is generally referred to as the
shock wave, and this in turn is succeeded by
the first, second, etc. , bubble pulses. The pres-
sure-time record is continuous, and naturally
there is no sharply defined demarcation between
the various portions of the wave. For con-
venience, an arbitrary demarcation will be intro-
duced for the purposes of this report.

The shock wave will be defined as the portion
of the wave lying between the shock front (t =0)
and the first bubble maximum (t=t~&) which

occurs at the pressure minimum lying halfway
between the shock front and the peak of the
first bubble pulse. The first bubble pulse will be
defined as the portion of the wave lying between
the times of first and second bubble maxima
(i.e. , between t=t~& and t=tM2), etc. , for the
succeeding pulses.

Usually, shock-wave pressure-time recording is

carried only to times of the order of 100, where 0

is the time constant of the initial exponential
decay. Recently, a series of deep water measure-
ments' has provided data making it possible to
construct average or composite curves out to
time f~i as defined above. These curves are

16

The impulse delivered up to any time t is
defined by

I= APdt.
p

(29)

The shock wave has an initial positive phase
of relatively short duration and high amplitude
followed by a long negative phase of low ampli-
tude. The positive portion of the impulse is of
principal interest as far as damage considerations
are involved.

As the integration is carried to t~i, the value
of the integral becomes very small and in an
incompressive system would become zero. In a
compressive fluid the integral has a small posi-
tive residual at t~i, as indicated in the following.

At 1~i the bubble has attained maximum
radius, and the particle velocity at its surface
is zero. In the acoustic approximation the particle
velocity as a function of time at a point in the
Ruid is given by

Ap 1
n = +——i QPdg.

ppcp ppR ~ p

(30)

If we make an observation at R=AMi, where
AMi is the maximum bubble radius, then at

1000

FrG. S. Composite pressure-
time curve for tail of shock wave.
Explosive: TNT; charge depth:
250 ft. ; distance from center of
charge: R = W&/0. 352. Legend:
8 time constant of initial shock
wave decay, ~, && 0.5-1b. and 2.5-
lb. charges from measurements
of reference 2. 5 Points from
shock-wave composites obtained
by J. S. Coles et al. , Woods
Hole.
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FIG. 6. Composite pres-
sure-time curve for tail
of shock wave. Explosive:
TNT; charge depth: 500
ft. ; distance from center
of charge: R = W&/0. 352.
Legend: 0 time constant of
initial shock-wave decay.
~, X, 0 0.5-, 2.5-, and 12.0-
lb. charges based on meas-
urements of reference 2. 6
Points from shock-wave
composites obtained by J.
S. Coles et al. , Woods Hole.
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t = tM i, NM i =0 and from Eq. (30)

(31)

Since hp is negative in this region, IM~ is
inherently positive. Its magnitude is very small
compared to that of the total positive or negative
impulse.

17

Combining Eqs. (6) and (17), the complete
expression for total energy flow to time t be-
comes

4xR' r'
(1 —1.6X10 'P ) ~

(tlap)'dt
Po&0- 0

t q2-
+

I
"t1P«l . (32)

2R (so )

. As previously indicated, the first term in the
bracket increases monotonically with increasing
time of integration and represents energy radi-
ated acoustically, while the second or afterflow
term represents energy which is stored reversibly
in the water and returned at intervals to the gas
bubble. This term attains a maximum at time t

corresponding to the end of the positive phase
and then decreases, becoming virtually zero at
t =tM& since it involves the squaring of the small
residual impulse given by Eq. (31). In the later
stages of the positive phase at distances fairly
close to the charge, the afterflow term predomi-
nates over the irreversible term.

Although in the limit of low pressures the

afterflow term represents the contribution of
essentially incompressive flow consequent upon
the bubble expansion, it cannot be regarded as a
purely incompressive term throughout the in-

tegration. Incompressive and compressive eAects
are not dissociable in the acoustic approximation,
and in the region just behind the shock front
the afterflow term represents principally a com-
pressive contribution due to the radial divergence
of the flow initiated by passage of the wave of
compression.

r=t/8 (34)

~ is, of course, a dimensionless quantity. Any
other scale factor proportional to lV', such as
the bubble period at the given depth, might
equally well have been used.

From the pressure-time curves in Figs. 5, 6,
and 7, certain quantities (listed below) have been

ff Equation (33) is an empirical fit of TNT data obtained
at Woods Hole by J. S. Coles et al.

Figures 5, 6, and 7 are composite pressure-
time curves for TNT at the depths of 250 and
500 ft. and at a distance from the charge given

by W'*/R= 0.352. Several charge sizes have been
plotted on the same curve by scaling the time in

terms of 0, the time constant of initial shock
wave decay which is given byf$

8=0.060W*'(W~/R) "'
=0.0725 W~ millisec. at Wi/R=0. 352. (33)

Using this scale factor, the reduced time 7 is
defined by
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computed and plotted in Figs. 8, 9, and 10.
Figure 8 shows curves for the initial positive
phase, i.e. , up. to the time at which the excess
pressure at the point of observation becomes
zero following the arrival of the shock wave.
This figure is for a charge depth of 500 ft. only,
but a similar one for a depth of 250 ft. would not
be very different. Figures 9 and 10 show the same
curves extended to the time of first bubble
maximum for depths of 250 ft. and 500 ft. ,

respectively. They are essentially the same in

form, the principal differences being due to the
longer negative phase and smaller negative pres-
sure at the 250-ft. depth. The functions plotted
in Figs. 8, 9, and 10 are:

a. Irreversible energy flux, given by

ptI= APdt.
"o

(29)

d. Particle velocity: the total particle velocity
is given by

the total afterflow energy up to this time is also
very small. Physically what has happened is
that the afterflow velocity was always outward,
while the excess pressure was first positive, then
negative. At one time the afterflow was with the
pressure, later against it so that the total work
done because of the motion has a net value that
is very small, while each of its positive and
negative components are large in magnitude.

c. Impulse: the impulse is defined by

t

Fi= [1—1.6&&10 'P ] (AP)'dt. (32a)
polyp Jp

AP
u = +, APdt.

poco poR ~ o

(30)

I2( ~t p2
~pdt

)
= . (32b)

2ppR E~p ) 2ppR

Since the total impulse up to t = t,~~ is very small,

b. Afterflow: the afterflow energy flux should,
according to the criterion of Section 5, average
out to zero because it does not represent a
radiated or an irreversibly stored energy. After-
flow energy flux is given by

Separate curves for each component of the
particle velocity have not been plotted, since
their form may be obtained directly from the
pressure-time and impulse-time curves. The form
of the total particle velocity curve will change
with the distance from the charge, since the two
components vary as the first and second powers
of the radius, respectively. The curves shown
apply to the specific ca.se where R = W&/0. 352.

Ch

4J 8XN
CJ
)C
le

0
0

REDUCED TIME T & /0

FrG. 7. Composite pressure-time curve for entire shock wave. Explosive: TNT; distance from
center of charge: R= S'&/0. 352. Legend: 8 time constant of initial shock wave decay.
initial portion of shock wave from measurements by J. S. Coles e$ al. , Woods Hole. —~ —tail
of curve from Fig. 5, 250-ft. depth. ————tail of curve from Fig. 6, 500-ft. depth.
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6 U=4mR' ddt.
0

v4PTg ——JI(W/ZP) l. (36)

The total volume flow through a spherical out at Woods Hole by J. C. Decius and E. Swift,
surface may be expressed as the following empirical equation relating maxi-

mum bubble radius to charge size and depth has
been obtained:

In the case under consideration, the total volume
Rom up to the time of bubble maximum is

~tMg QP
6V=4TFR' ) dt

o Po~o

and since the First term on the right is very small,

4A ~t
aV=

~
I,

APdt dt
Po o -~o

(35)

Since 6 U is nearly independent of the radius,
Eq. (35) should give us the total flow through
the surface at the maximum bubble radius, i.e. ,

the volume of the bubble at t~&. This volume may
also be calculated independently from experi-
mental knowledge of the maximum radius.

From high speed photographic work carried

A~i is maximum bubble radius in feet, H/" is

charge weight in pounds, Zo is the total hydro-
static head in feet (depth +33 ft.), and JT is a
nearly constant factor which has a value of 12.6
for TNT over the range of depths under con-
sideration.

At a depth of 500 ft. Eq. (35), utilizing the
pressure-time curve of Fig. 6, gives a volume of
17 cu. ft. per lb. of explosive, while Eq. (36)
gives 15.7 cu. ft. per lb. At 250 ft. the respective
figures are 33.6 cu. ft. per lb. and 29.6 cu. ft.
per lb. In each case the integrated particle
velocity gives a greater volume change than the
direct measurement of the radius by 8 and 13
percent, respectively. The error in the radius
formula. (36) is of the order of 2 percent, which
could amount to an 8 percent error in the
volume. The error in the double integration in

Eq. (35) is of the order of 5 percent, because of
base line inaccuracies, etc. (A base line shift of
about 5 lb./in. ' in the pressure-time curve would
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make the discrepancy in the volume almost
negligible, while it would not seriously affect the
impulse and afterAow energies, and a base line
error of this magnitude could easily be present. )

For these reasons it is impossible to say whether
the discrepancy is due to inaccuracies in inter-
preting the experimental resu1ts or to inadequacy
of the acoustic approximation.
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VI. IMPULSE AND ENERGY FLUX ASSOCIATED
WITH THE BUBBLE PULSES

fore be:
l~~ = —(A ~~~/Co) (39)

20

(37)

21

As in the case of the shock wave, it is possible
to determine the nature of the net impulse de-
livered by a bubble pulse from theoretical con-
siderations. At the time of a bubble maximum
the following condition holds at the bubble
surface:

r~™
u~ ——0 =—+ I' DPdt,

ppCp ppA~ ~ p

(38)

where dd'~ is the pressure in the gas bubble.
The impulse as measured at A~ would there-

The bubble pulses have been defined as those
parts of the pressure-time curve lying between
times of successive bubble maxima. In practice,
the times of bubble maxima are taken to be half-

way betmeen successive pressure peaks. This
assumes that the time of expansion of the bubble
is equal to the time of collapse. According to the
theory of the bubble phenomenon, ' the period
(or half-period) is dependent on the amount of
energy available for the oscillation. Since the
bubble is continually radiating acoustic energy,
the bubble expansion has more energy associated
with it, and therefore actually lasts longer than
the following contraction. Our approximation
can be justified, however, because most of the
radiation occurs in a relatively short length of
time near the bubble minimum, and during the
major portion of a cycle the bubble has nearly
constant energy. The difference between the time
of expansion and contraction should therefore be
very small.

Composite curves of the first two bubble
pulses from the series of measurements reported
in reference (2) are reproduced in Fig. 11.
The particular composites shown are for a depth
of 500 ft. and W'/R equal to 0.352, the gauges
being positioned to the side of the cylindrical
charges used. The time scale has been reduced
by the cube root of the charge size, thus:

s = &/W~.

The impulse varies inversely as the radius (allow-

ing for the time lag due to finite velocity of
propagation), so that the impulse at radius R
would be

I~ = —(A~'AP~/RCO). (40)

The incremental impulse delivered at a radius E.j
between the times of first and second bubble
maxima would therefore be

aIz = ( A~g'A—P~2/RCO)
—( A~ pA—P~g/RCO). (41)

The terms in parentheses are inherently small
and positive since the AI'~'s are small and nega-
tive. The first term is smaller than the second in

magnitude because both 2~2 and AI'~2 are
smaller than the corresponding quantities in the
second term. AIg, which is the net impulse de-
livered between the first and second bubble
maxima, should therefore be small and negative.
The same statement is, of course, true for the
second and succeeding bubble pulses. The nega-
tive impulses delivered in this manner should
ultimately cancel the net positive impulse de-
livered by the shock wave (see Section 16).

This treatment neglects the finite amplitude
of the wave and other effects such as turbulence
and migration of the bubble. The effect of these
factors on the impulse is difficult to ascertain,
but it is believed that the results of the above
discussion are in any case qualitatively correct.

Integrations of Fig. 11 show that the positive
impulse delivered by the first bubble pulse is
1.076-lb. sec./in. ' lb. &, while the net impulse for
the whole pulse is +0.106-1b. sec./in. ' lb. **.

Although the net impulse appears to be positive
in contradiction to Eq. (41), a base line shift of
the order of 5 lb. /in. ' in Fig. 11 could make the
impulse come out zero or even negative. This is
the order of magnitude of the error in originally
determining the base line on the photographic
records.

If the net volume How from the time of first
bubble maximum to second bubble maximum is
calculated from Eq. (35),

~ Bernard Friedman, Theory of Underwater Explosion
Bubbles, Report IMM-NYU 166, Inst. for Math. and
Mech. , New York University, September 1947.

av= J( Jf apdt dt,
PP Vr1 P

(35)
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it is found, using the curve of Fig. 11, that the
net flow is 9.7 cu. ft. per lb. toward the bubble.
The ratio of the volume of the bubble at its
second maximum to its volume at first maximum
should therefore be

A Mp = Jp(W/Zp) I, (42)

where J2=8.5.
The ratio of the first and second maximum

volumes as obtained from direct bubble radius
measurement is, therefore,

(AMp/AMi)'= (Jp/J'i)'=0. 31.

This ratio is considerably lower than the value
of 0.43 given above by Eq. (35), but the dis-
crepancy is in the direction of the same type of
base line error that probably caused the net
impulse to be positive. . In this case the effect
would be somewhat exaggerated because of the

(17.0—9.7/17.0) =0.43,

since the volume of 17.0 cu. ft. was found in
Section 19 to be the total outward flow up to
the time t = t~~.

As in Section 19, we have at our disposal an
equation giving the second bubble maximum in
terms of the charge size and the depth:

cumulative eff'ect of base line error upon the
integration.

The impulse of the second bubble pulse will
not be considered as the error in the base line
in that region is excessive.

22

The radiated energy flux for the first bubble
pulse is given by the equation

1 (g

typal

Fgg —— (Ap) 'dt
PPCP ~ $~1

(43)

Integration of the energy flux from the com-
posite of Fig. 11, yields

FR~/W'=139(in. -lb. /in. ' lb. &) (at R= W&/0. 352)

and

Egg/ W= 121(cal./g) .

Similarly, for the second bubble pulse

Fgp/W& = 16.8(in. -lb. /in. ' lb. ')
(at R= W&/0. 352),

EIpp/W= 14.7(cal./g).

The error in the energy flux of bubble pulses
caused by error in the base line is very small
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TABLE I. Reported detonation energies of TNT. TABLE II. Energy partition at time of first bubble maximum
(W= charge weight in lb. ; R =distance in ft.).

hII
cal./g

840

880

950

1060

Source

Bericht uber die Arbeitstagung Untenoasserspreng-
mesen, Veranstaltet von der Amtsgruppe Mar
Rust/FEP im OKM am 28/29 Oktober 1943 im
Harnackhaus im Berlin (experimental)

G. I. Taylor, The Vertical Motion of a Spherical
Bubble and the Pressure Surrounding It, TMB
510, August 1943

G. D. Clift and B. T. Federoff, A Manual for
Explosives Laboratories (Lefax, Inc. , Phila-
delphia, 1942). This value seems to have been
obtained from Soukharevsky and Pershakoff,
Explosives, Moscow, 1932

Private communication from S. R. Brinkley to W.
D. Kennedy (theoretical)

Acoustic energy flowing past R = W&/0. 352
Energy dissipated at the shock front during

propagation up to R= W&/0. 352 (calculated
in Section 13)

Unaccounted for

Total energy associated with emission of shock
wave (1050—480)

Potential energy stored in water at first bubble
maximum as calculated from measured
maximum bubble radius

Internal energy of gaseous products (referred
to infinite adiabatic expansion: (480—385)

275 cal. /g

200
95

570

385

95

1050

because of the fact that the calculated energy
Aux is near a minimum with respect to a base
line shift. In this case an error of 10 lb./in. in
the base line would cause less than 2 percent
error in the energy, while it would cause a very
large error in the impulse.

detonation energy of TNT, giving 1050 cal./g as
the approximate detonation energy relative to
infinite adiabatic expansion of the products. The
uncertainty in this figure is at least of the order
of ~10 percent.

VII. PARTITION OF ENERGY IN AN
UNDERWATER EXPLOSION

23. Energy of Detonation

At the present time there seems to be a lack
of precise knowledge concerning the quantity
of energy released in the detonation of various
explosives. A wide range of values is quoted in

the literature, and it is not always possible to
ascertain the original source of the data. A sum-

mary of such results is given in Table I. Detona-
tion energy is defined as the enthalpy change,
bH, in calories per gram, with final products
reduced to standard conditions.

In the theory of the gas bubble oscillation' it
is customary to use as a zero energy reference
the state of infinite adiabatic expansion of the
product gases. Since it is our purpose to include
bubble phenomena in the discussion of energy
partition, it will be more convenient to adopt
this reference rather than the standard state
usually used for ~.The order of magnitude of
the internal energy of the products at standard
conditions (relative to infinite adiabatic expan-
sion) is 100 cal./g, and this quantity should be
added to the values given in Table I.

For purposes of further discussion, we shall
arbitrarily adopt the value of 950 cal./g as the

24. The Shock Wave

It is known that the total energy associated
with the gas bubble at its first maximum is
approximately 480 cal./g. ' Of this quantity, 385
cal./g are stored as potential energy because of
the formation of the cavity in the water, while
the remainder is in the form of internal energy
of the gaseous products (referred to an infinite
adiabatic expansion). The value of the potential
energy stored in the water is based on the experi-
mental maximum radius as given by Eq. (36).

The net energy lost by the bubble up to the
time of the first maximum is therefore 1050
minus 480, or about 570 cal./g.

The partition of this energy has been dis-
cussed in previous chapters and is summarized
in Table II.

The unaccounted term should comprise losses
resulting from turbulence, viscosity, conduction,
etc. It should be noted that the magnitude of

TABLE III. Successive periods of bubble oscillation (TNT
charges in free water)* at a depth of 500 ft.

T~/W& =23.2 millisec. /lb. '
T2/W'= 16.7
T /W&= 13.5

~ See reference 2.
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TABLE IV. Energy partition at time of second
bubble maximum.

TABLE V. Energy partition at time of third
bubble maximum.

Acoustic radiation in first bubble pulse
Potential energy in the water at time of second

bubble maximum based on measured maxi-
murn radius

Internal energy of gas at second bubble maxi-
mum: (B2—120)

Unaccounted for

Total energy associated with first maxi-
rnurn (Bi)

Total loss during emission of first pulse
(180+120)

Energy left for second pulse (B2)

120 cal. /g

120

60
180

480 cal. /g

300

180

Acoustic radiation in second bubble pulse
Potential energy in the water at time of third

bubble maximum
Internal energy of gas at third bubble maxi-

mum: (B3—55)
Unaccounted for

Total energy associated with second bubble
maximum (B2)

Total loss during emission of second pulse
= 70+15

Energy left for succeeding pulses (B3)

15 cal. /g

55

40
70

180 cal. /g

this portion (95 cal./g) is much smaller than the
combined uncertainty in the detonation energy
and in the energy dissipated at the shock front,
and therefore even its order of magnitude is in

doubt.

25. The Bubble Pulses

From the theory of the bubble pulsation it is
known that the period is proportional to the
cube root of the total energy associated with
the oscillation as defined in Section 24. Since the
periods of successive oscillations decrease pro-
gressively, it is evident that energy is lost be-
tween successive bubble maxima. Using the cube
root law stated above, it is seen that the energy
left after the emission of a bubble pulse is

given by

&mal = &n(~n+1/~n) I (44)

where B„=totalenergy associated with the nth
oscillation and T„=period of nth osci,llation.

The necessary period data' are summarized in
Table I II.

Using Eq. (44), the data of Table III, and
the maximum radius data quoted in Sections 21
and 22, we obtain the energy partition for the
first and second bubble pulses as given in
Tables IV and V.

Since the total energy associated with an
oscillation and the energy of acoustic radiation
are both known to within ~3 percent, it is
important to note the magnitude of the unac-
counted terms in Tables IV and V.

A summary of energy partition data is given

TABLE VI. Summary of energy partition tables.

Total acoustic radiation (through emission of
second bubble pulse) at R= 8"/0.352

Shock front dissipation up to R= W'&/0. 352
Unaccounted losses
Total energy left at third bubble maximum

410 cal. /g
200
345
95

in Table VI. It is seen from Table VI that less
than half the detonation energy is to be found
in waves of compression, while somewhat more
than half is lost in dissipative processes.

It is difficult to ascribe any appreciable portion
of the unaccounted 345 cal./g to dissipation simi-
lar to that which was computed for the shock
front. Figure 11 shows the pressure pulses to rise
relatively slowly with time, and the resulting pro-
cess should be very nearly isentropic on both com-
pression and expansion. Furthermore the second
pulse rises very much more slowly than the first,
and yet the unaccounted portion in this pulse is
an even greater fraction of the total energy loss
than is the case in the first pulse.

Because of the shortness of the time intervals
during which temperature and pressure in the
gas bubble are high, it is doubtful that losses of
such magnitude could be attributed to conduc-
tion or radiation of heat.

We conclude, therefore, that the unaccounted
for energy losses are associated with some com-
bination of the following factors:

(i) turbulence induced in the water surrounding the
bubble,

(ii) chemical or physical changes in the gaseous products,
(iii) actual loss of gaseous products in the form of small

bubbles in the water, perhaps due to high degree of
turbulence at the periphery of the gas globe.
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APPENDIX I
Summary of Notation

p= absolute pressure at any point as a function of time
P p =absolute hydrostatic pressure
Ap =excess pressure as a function of time (p —Po)
P =excess peak pressure of an exponentially decaying shock wave

hP. =excess pressure at any shock front
v=specific volume of the fluid at pressure p
p =density of the fluid (p = 1/v)
8= total energy flow through a spherical surface
F=energy. Qux (energy Qow per unit area of a spherical surface)
R =radial distance
A = radius of the gas bubble

t = time measured from instant of incidence of the pressure wave
u=radial particle velocity relative to the unperturbed fluid
U= shock front propagation velocity
Co= sound velocity (Co= (BP/Bp)8~&)
Ay=internal energy increment of a unit mass of fluid relative to the initially unperturbed

state
bH=enthalpy increment of a unit mass of fluid relative to the initially unperturbed state

(~II=s&+~(p ))
&=dissipated portion of the enthalpy increment AH, per unit mass of fluid
S=entropy per unit mass of fluid
K =bulk modulus of the fluid (~ = poCO )
0= time constant of initial exponential decay of shock wave

B(S)=characteristic pressure parameter of the modified adiabatic Tait equation of state
n =exponent of Tait equation of state
x = reduced radius (x = R/W&)
I=impulse delivered —the time integral of the pressure
~=reduced time defined by v =t/0
z = reduced time defined by z = t/W~

T =period of nth oscillation; measured between successive pressure peaks
8 = total energy associated with the nth oscillation.




