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The importance of irreversible entropy production is emphasized. The first and second laws of
thermodynamics are both expressed by equalities by giving due recognition to the irreversible
production of en.tropy. By specialization and combination of these equations, an "eKciency
equation" is derived, applicable to cyclical and steady-state processes, and useful in studying
the efficiency of practical processes. The thermodynamic theory involved in determining
amounts of entropy produced by irreversible processes is investigated, and six cases of irre-
versible entropy production are treated in detail. The "efficiency equation" is applied to four
practical processes to illustrate its usefulness in analyzing the causes of inefficiency in practical
situations. The first and second law equations are directly applied to two theoretical problems
so selected as to illustrate differences in the theoretical importance of being able to express the
second law in the form of an equality. The concept of temperature is discussed, and the extent
of its validity under non-equilibrium situations is analyzed.

1. INTRODUCTION

' 'N analyzing the thermodynamic behavior of
~ ~ physical chemical systems, it is essential to
give due consideration to the production of
entropy by irreversible processes that take place
inside the system. Such considerations are very
important from a practical point of view, since
a determination of the different irreversible
processes that lead to the production of entropy
inside a heat engine or other kind of industrial
apparatus makes it possible to evaluate the rela-
tive contribution of these irreversible processes
to the inefficiency of the over-all process, in terms
of useful work lost or made necessary by their
occurrence. This possibility has already been
investigated by one of the present authors. '
Such considerations are also significant from a
theoretical point of view, since the inclusion of
appropriate terms for the irreversible production
of entropy makes it possible to express the second
law of thermodynamics in terms of an equation,
rather than by an inequality, as is usually done
in the case of irreversible processes. This possi-

'A study of the irreversible increases in entropy en-
countered in the production of helium from natural gas
was made by one of the present authors in 1922, and formed
the basis for the government owned patents on helium
production, Nos. 1,676,225 and 1,728,947, taken out by
a government appointed committee, under the names of
Richard C. Tolman, W. L. DeBaufre, John W. Davis,
and Montague H. Roberts. A somewhat similar study has
been made by W. L. DeBaufre- in "Analysis of power-
plant performance based on the second law of thermo-
dynamics, " Mech. Eng. O'7, 426 (1925).

bility, which is not a new one, ' has recently been
investigated in some detail by Eckart, ' and its
importance stressed by Bridgman. '

In Part I of the present article, we shall ex-
press the first and second laws of thermodynamics
in a form suitable for our later use, with the
second law as wel) as the 6i.rst written in the form
of an equality by giving due recognition to the
irreversible production of entropy. These equa-
tions will then be specialized so as to apply par-
ticularly to cyclical processes such as are carried
out by a heat engine, or to steady-state processes
such as are carried out in continuous How pro-
duction plants. By combination we then obtain
an "efficiency equation" in a form specially
adapted to show the usefulness of the idea of
irreversible entropy production in providing a
means for measuring the various ine%ciencies
encountered in practical operations.

In Part II of the article, we shall investigate
the rigor with which the irreversible production
of entropy can be computed, consider the differ-
ent types of irreversible processes that can take
place in nature, and obtain expressions for the

2See, for example, DeDonder and Van Rysselberghe,
AJIsnity (Stanford University Press, Stanford University,
1936), Eq. (2.17) p. 9, which introduces the DeDonder
"uncompensated heat" dQ'; Weber Thermodynamics for
Chemical Zn ineers (John Wiley and Sons, Inc. , New York,
1939), Eq. 33), p. 141; Keenan, Thermodynamics (John
Wiley and Sons, Inc. , New York, 1941), Eq. (150), p. 294.

' C. Eckart, Phys. Rev. 58, 267, 269, 919 (1940).
4 P. W. Bridgman, Phys. Rev. 58, 845 (1940) and The

Nature of Thermodynamics (The Cambridge University
Press, Teddington, England, 1941).
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amounts of entropy thereby produced. These
expressions will, in general, not be new, but the
point of view used in obtaining them will be
more rigorous than is often the case, and their
deduction from this point of view should in-

crease confidence in the application of the idea
of irreversible entropy production. In addition,
it is useful to have an assembly of expressions for
irreversible entropy increases available for study-
ing the behavior of physical chemical systems.

In Part III of the article, we shall then make
specific application of the efficiency equation"
to two cyclical and to two steady-state processes,
all of them of some practical importance. This
will lead to the deduction of useful formulae
valid for these processes, and will show in de-
tail the usefulness of the idea of irreversible

entropy production in studying the causes of in-

efficiency.
In Part IV, we shall examine the theoretical

significance of being able to express the second
law of thermodynamics in the form of an equality
instead of in the usual form of an inequality.
To study this question, we shall apply our erst
and second law equations to the treatment of
two specially selected problems, that of the
theory of viscous How and that of the theory of
thermo-electromotive force. These cases have
been selected to illustrate two different possi-
bilities. In both cases we shall find that the
second law equality supplies valid information.
However, in the case of viscous How we shall
find that this information is already available
from mechanical principles combined with the
first law of thermodynamics, while in the case
of thermo-electromotive force we shall find that
the information supplied by the second law

equality is essential for the treatment. The sig-
nificance of this will be pointed out.

Finally, in Part V we shall present some
theoretical considerations of the concept of tem-
perature which will be of help in obtaining a full
understanding of the preceding work and of
thermodynamic theory in general. The considera-
tions include discussion of the diferent roles of
temperature, as a measurable property of a
system at equilibrium, as related to driving
force for thermal fiow, and as used in the calcu-
lation of entropy transfer.

PART L FORMULATION AND GONSEQUENGES OF
THE FIRST AND SECOND LAWS

2. The First Law of Thermodynamics

In accordance with the principle of the con-
servation of energy, any change AZ in the energy
content of a system must be brought about by
the transfer of energy between the system and
its surroundings. For the purposes of thermo-
dynamics we may regard this as taking place
by one or more of the following three processes:
(a) by the flow of matter across the boundary of
the system which may be in either direction and
may carry internal, kinetic, or other forms of
energy, (b) by the flow of heat across the bound-
ary which may also be in either direction, and

(c) by the performance of work by the system on
its surroundings or by the surroundings on the
system.

In agreement with the foregoing, we shall find

it convenient to write the first law of thermo-
dynamics in the following form

(2.1)

where we equate the increase in energy of a
system, AZ, which occurs in any selected time
interval of interest, to the net sum of quantities
of energy E carried into the system by transfers
of matter, plus the net sum of quantities of
energy Q carried in by transfers of heat, minus

the net work W done by the system on its sur-
roundings, all taken for the selected time interval,
with positive or negative signs for the quantities
summed according to the direction of transfer.

This form of expression for the first law of
thermodynamics is obviously correct and has
been chosen so as to be convenient for our later
use. |Ate consider the change in energy DE, for a
selected time interval, instead of the rate of
change of energy with time dE/dt, since we shall
later wish to be able to choose the time interval
as that corresponding to a particular change in
the system or its surroundings. The quantity on
the left-hand side of (2.1) could be expressed if
desired in the form of an integral, taken over the
time interval of interest and over the volume of
the system, and the quantities on the right-hand
side could be expressed by integrals taken over
the time interval and over the surface between
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the system and its surroundings in such a way
as to give a detailed evaluation of the energy
transported through the surface by the flow of
matter, flow of heat, and performance of work.
(Compare Eckart' and Bridgman, ' and also $18.)

Q
AS=+ S +Q —+65;„,

m T
(3 1)

where we equate the increase in entropy of a
systexn AS, which occurs in any selected time
interval of interest, to the net sum of quantities
of entropy S carried into the system by transfers
of matter, plus the net sum of quantities of
entropy Q„/T„carried in by transfers of heat,
pt,us the entropy 65;„produced by irreversible
processes taking place inside the system, all
taken for the selected time interval, with positive
or negative signs for the quantities summed ac-
cording as the transfer of entropy is into or out
of the system.

The quantities occurring in (3.1) could be
expressed, if desired, with the help of integrals
taken over the time interval of interest, and over
the volume of the system or over the surface
separating it from the surroundings. (Compare
Eckart' and Bridgman, ' and also $18.)

3. The Second Law of Thermodynamics

In accordance with the second law of thermo-
dynamics, entropy is not a quantity which obeys
a conservation law, and it is hence necessary to
relate the change in the entropy of a system DS,
not only to the entropy crossing the boundary
between the system and its surroundings, but
also to the entropy produced by processes taking
place inside the system. Processes taking place
inside a system may be either reversible or
irreversible. Reversible processes inside a system
may lead to the transfer of entropy from one
portion to another of the interior but do not
generate entropy. Irreversible processes inside a
system, however, lead to the generation of
entropy, and hence in computing the change in
the entropy of a system we must take into
account the entropy 55;„produced inside the
system by such irreversible processes.

In agreement with the foregoing, we may now
express the second law of thermodynamics in

the form

The above formulation of the second law of
thermodynamics (3.1) makes use of expressions
of the usual form Q/T, valid under equilibrium
conditions, for the entropy transferred across a
boundary by the transfer of heat Q at tempera-
ture T. The extent of the validity of such ex-
pressions, under non-equilibrium conditions, will
be discussed in f22, Part V of this article. The
formulation (3.1) eapresses the second law of
thermodynamics by an equality rather than by
an inequality, even when irreversibility is in-
volved. This is made possible by the inclusion of
the term 35;„ for the entropy produced inside
the system by irreversible processes. The validity
and character of expressions for irreversible
entropy increase will be discussed in Part II of
this article.

Q 5„+Q—+65;„=0.
e T

(4 2)

These equations may now be combined to
eliminate any desired one of the quantities of
heat Q„ that appear in both expressions. For

4. Ayylication to Cases of Cyclical and
Steady-State Processes

The foregoing expressions for the first and
second laws, (2.1) and (3.1), assume a specially
simple and easily usable form, in the case of
cyclical processes where the system of interest
returns to the same state at the end of each
cycle, and also in the case of steady-state processes
where the system of interest does not change
with time although matter, energy, and entropy
may be flowing through it. Under such circum-
stances it is expedient to choose the time interval
of interest, to which the equations are applied,
in the case of a cyclical process as the time
necessary to complete one cycle, and in the case
of a steady-state process as any interval that
proves convenient, for example, unit time or the
time necessary for the passage of unit amount of
matter. With such a choice of time interval, the
changes of energy b,Z and of entropy 65 to
which the equations apply evidently become zero,
and we can write the two equations in the forms
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practical applications it often proves useful to
eliminate the total heat Qo which may be re-
garded as transferred, either by design or by
accident, between the system and bodies at the
general temperature T0 prevailing in the sur-
roundings. In this we include heat transferred by
intent to cooling water supplied at temperature
To, and heat leaking spontaneously between the
system and portions of the surroundings at
temperature T0.

To make the suggested elimination we may
multiply (4.2) by To and subtract from (4.1).
Doing so, we obtain the useful result

—W —Tgh5;, , = 0, (4.3)

as an equation applicable to cyclical or to steady-
state processes.

S. The Efficiency Equation

The physical significance of Eq. (4.3) can be
more easily appreciated if we solve for S" in the
form

W= Q (Ii„Tp5,.)—
Tn TO

+2 -Q- —To~5 -" (5 1)
n

This equation may be called the "eSciency
equation, " since it correlates the net work F
done by the system on its surroundings, in a
cyclical or a steady-state process, (a) with
quantities of energy 2 and entropy 5 trans-
ferred from surroundings to system by the
passage of matter, (b) with quantities of heat Q„
transferred at temperatures T„other than the
temperature To prevailing in the surroundings,
and, finally, (c) with the entropy 65;„produced
inside the system by irreversible processes. Since
AS;„ is necessarily positive, the equation clearly
shows the effect of irreversibility in cutting down
the work done by a system, or in making addi-
tional, external work on the system necessary.
By analyzing hS;„,and determining the amounts
arising from the different irreversible processes
involved, we can calculate the loss in horse-
power correlated with each process and thus

obtain useful information for attacking problems
of improving eKciency.

In using Eq. (5.1), in cases where heat leak is
involved, it is to be remembered that we have
included such heat in the quantity Qo which is
transferred between the system and surroundings
at the temperature T0 prevailing in the sur-
roundings. This means that we have included as
part of our system regions where the leaking heat
is being transported between the interior of the
system at some temperature T and the sur-
roundings at temperature T0. Hence we must
include in the entropy 65;„, produced by irre-
versible processes inside the system, the irre-
versible increase that accompanies this sponta-
neous How of heat between temperatures T
and T0. For the calculation of such increases in

entropy see 118.

If for any reason we wish to choose the bound-
ary between system and surroundings in such a
way that a particular quantity of heat Qi is
treated as leaking between the system and
surroundings at some temperature T~ intermedi-
ate between T and T0, then the irreversible
entropy increase associated with the transfer of
Qi between Ti and To is not to be included in

evaluating T06S;„, but to compensate for this
an equivalent term Qi(Ti —To)/Ti will now be
found to appear in the second summation on the
right-hand side of (5.1). Hence the results of
applying (5.1) will not be altered by our changed
point of view, in satisfactory agreement with our
c|'rtainty that the behavior of the system cannot
depend on our arbitrary choice of place where
we take the boundary between system and
surroundings.

In considering the application of the e6ciency
equation (5.1) to practical problems, it is useful
to emphasize a general principle which results
from the form of the term T0AS;„, which ex™
presses the loss of potential work which accom-
panies the irreversible production of entropy
inside the system. In accordance with the circum-
stance that entropy is a quantity having extensive
magnitude, it is evident that this term can be
calculated by adding together separate terms of
the form T065;„ for each of the irreversible
processes that accompany a total operation. This
then allows us to take each of these separate
terms T06S;„asa measure of the loss in potential
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work that results from the corresponding par-
ticular irreversible processes in the total opera-
tion. This is an importan t principle, since it
allows us to determine the reduction in e%ciency
resulting from any par ticular cause without
making an analysis of the whole operation. For
example, we can separately calculate the loss of
potential work caused by the irreversible transfer
of heat from the high temperature of the fire
bed to the lower temperature of the boiler in a
steam power plant, without making an analysis
of the whole power plant operation. '

PART H. EXAMPLES OF IRREVERSIBLE
ENTROPY PRODUCTION

- 6. Method of Treatment

In order to obtain useful results from the
foregoing formulation of the second law of
thermodynamics as given by Eq. (3.1), and from
the efficiency equation as given by Eq. (5.1), it
is necessary to have specific expressions for the
amounts of entropy produced by various irre-

.versible processes. Without such expressions, it
would not be possible to give actual content to
the terms AS;„and to 10AS;„ that appear in

these equations, and these quantities would have
to be regarded merely as correction terms defined

by the equations themselves. It is our present
task to obtain such expressions for a number of
typical irreversible processes.

In carrying out this task, we shall make use of
thermodynamic considerations, and it will be
our primary concern to provide a logically satis-
factory basis for the thermodynamic treatment
of irreversible entropy production, rather than
to provide new results. Many of the expressions
that we obtain for the amounts of entropy pro-
duced by irreversible processes will already be
familiar, but their validity from the point of

' The use of the quantity TOAS;„as a measure of loss in
potential work was introduced by one of the present
writers in the investigation of the efficiency of helium
production mentioned in reference 1. It is to be noted
that the quantity TOAS;„measures the loss in potential
work which arises, in. the case of cyclical or steady-state
processes, from the irreversible production of entropy in
amount AS;„inside the system proper, and does not include
losses caused by irreversible processes going on in the sur-
roundings. It should be distinguished from the quantity
TonS, t recently introduced by Weber (see reference 2,
p. 140), where, for any kind of process, AS, & is the net in-
crease in entropy inside the systems proper plus its sur-
roundings, treated together as isolated from the rest of the
universe.

view of thermodynamic theory has not always
been made clear. Indeed, we shall find that only
a restricted measure of validity can be claimed
for certain very familiar expressions for the rate
of irreversible entropy production. At the end
of the section we shall call attention to a theo-
retical possibility of extending the methods of
calculating irreversible entropy production with
the help of the statistical mechanical interpreta-
tion of entropy.

The need for careful consideration, in 'using
thermodynamic methods to obtain expressions
for the entropy produced by irreversible processes,
arises from the-circumstance that the entropy of
a system is a quantity which must be taken as
thermodynamically defined by its increase in the
case of reversible rather than of irreversible
processes. For the processes to be considered, we
shall in every case be able to carry out our initial
calculations of irreversible entropy production
with the help of a method of treatment which is
based strictly on the accepted thermodynamic
expl ession

~dQaS=

for changes in entropy accompa. nying reversible
processes. This equation states that the increase
in the entropy S of a system, when it changes
from one state to another by a reversible path,
can be computed, in terms of temperature T and
heat absorbed Q, by taking the integral J'dQ/T
over the reversible path. Since the entropy of a
system is a function of its state, this equation
makes it possible to determine increases in

entropy, even when resulting from irreversible
processes, provided only that we can compute
the integral J'dQ/T over some conceivable re-
versible path connecting the initial and final
states of the system, in which the irreversibly
produced entropy is loca, ted. This possible pro-
cedure provides the primary method for the
treatments of irreversible entropy production
which we are going to undertake.

Certain limitations on the use of this method
for the determination of irreversible entropy
production are implied by the circumstance that
we must compute the integral J'dQ/T for a
conceivable reversible process connecting the
initial and final states of the system where the



irreversible increase in entropy takes place. Since
a reversible process must consist in the passage
of a system through a succession of equilibrium
states, this then requires that the initial and
final states of the systems that we treat shall
themselves be states of equilibrium.

In the first place, it is to be noted that this
feature of the method limits its application to the
determination of irreversible entropy production
in systems which are initially at equilibrium
before the irreversible entropy production starts
and are again at equilibrium after the irreversible
process has been completed. It is to be specially
emphasized, however, that this implies no limiI. a-
tion on the application of the method to cases
where the system actually passes through states
that are violently disturbed from equilibrium
conditions, during the period of irreversible be-
havior intervening between the initial and final
equilibrium states. Indeed, a very important
characteristic of the method is just this circum-
stance that it does make it possible to calculate
the total entropy produced as the end result of
vlolen t iri everslble processes which have rui1

to completion.
In the second place, it is to be noted that the

method provides no expressions for the rate of
entropy production during the progress of an
irreversible process, but only gives a value for
the total entropy which has been produced by a
completed process of transition from an original
to a final state of equilibrium. Methods for de-
termining the amounts of entropy produced at
each stage during the course of an irreversible
process cannot, in general, be readily placed on
an entirely satisfying theoretical basis. Never-
theless, at least tolerably satisfactory methods
for calculating the rate of irreversible entropy
production can be found in certain situations
where the actual conditions in the system where
entropy is being produced are appropriately re-
lated to equilibrium conditions. We turn to a
brief discussion of some of these situations.

Entirely satisfactory treatments of the rate of
entropy production can be given in the case of
certain steady-state processes, in which matter or
energy is transferred at a steady rate, between
two reservoirs in states of substantial equilibrium,
through a connecting region in a state that
remains constant in time but is a non-equilibrium

condition leading to the continuous generation
of entropy as the matter or energy passes
through. Under such circumstances, since the
condition of the connecting region does not
change with time, the rate of production of
entropy can be equated to the net rate of change
in the entropies of the two reservoirs, which can
be readily calculated since changes in the reser-
voirs take place substantially under equilibrium
conditions. Examples of such situations are pro-
vided by the slow passage of gas through a
porous plug between reservoirs maintained at
constant uniform pressure as in the Joule-
Thomson experiment, by the passage of gas
through the front of a plane shock wave, and by
the flow of heat between heat reservoirs of
sufficiently large heat capacity through a heat
conductor of sufficiently low thermal conduc-
tivity so that the reservoirs can be regarded as re-
maining substantially at constant temperatures.

Somewhat satisfactory treatments of the rate
of entropy production can be given whenever
the major portions of the system of interest are
in homogeneous states that change slowly enough
with time so as to remain close to conditions of
equilibrium. Under such circumstances we can
make an approximate calculation of the rate of
entropy production, by treating these major
portions of the system as though they were
changing under strict equilibrium conditions, and
by neglecting the effect of changes in any small
portions of the system that are not close to
equilibrium. Examples are provided (a) by the
dissipation of mechanical or electrical energy in
a medium most of which can be regarded as
merely subjected to a gradually rising tempera-
ture, (b) by the equalization of gas pressure
between two containers joined by a connector,
of high enough resistance so that the contents
of the containers are kept always practically at
equilibrium, and of small enough volume so that
changes in the entropy of its contents can be
neglected, (c) by the equalization of temperature
between two bodies through a thermal conductor
of negligible heat capacity and at a slow enough
rate so that the bodies at each instant can be
regarded as nearly at equilibrium, (d) by the
progress of a homogeneous chemical reaction at
a slow enough rate so that we can regard the
reacting mixture at each instant as practically
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equivalen. t to a non-reacting mixture of definite
composition and temperature, the entropy of
which could be investigated by usual procedures.

An extension of the above type of treatment
can sometimes be successfully made to systems
or portions thereof which are in non-homogeneous
states, provided the portion can be regarded as
composed of infinitesimal elements each itself in

a condition close enough to equilibrium to permit
the specification of its entropy as a function of
its state. As an example, we have the calculation
of irreversible entropy production in the interior
of a thermally conducting medium by treating
the heat flow as taking place between elements
having lo~er and lower but well defined tempera-
tures in the direction of flow. Nevertheless, as
will be discussed again later in Part V, it becomes
more and more diRicult to ascribe unique and

appropriate values of temperature as the rate
of heat flow becomes greater and greater.

No satisfactory treatment of the rate of entropy
production, by the above methods, can be given
in the case of violent irreversible processes where

the system passes through states sufficiently re-
moved from equilibrium conditions so that their
thermodynamic specification is not possible. For
example, the violent process may involve the
transport of matter by unrelated streams of high

velocity particles of various kinds —molecules,
atoms, ions, and electrons —and may involve the
transport of energy not only by the motion of
matter but also by the flow of radiation of a
variety of unrelated frequencies and intensities.
Under such circumstances it may be dif6cult or
impossible to apply our usual methods of thermo-

dynamic specification. It may again be empha-
sized that a breakdown in the concept of tem-

perature accompanying violent processes leads
to a breakdown in the usual thermodynamic
treatment of entropy. Discussion of the concept
of temperature will be found in f)20, 21, and 22

of Part V.
It will be appreciated from the foregoing that

it is not always possible to use thermodynamic
methods to calculate rates of entropy production,
especially in the case of violent irreversible
processes. It is hence of interest to point out a
theoretical possibility of extending the methods
of entropy calculation with the help of the statis-
tical mechanical interpretation of that quantity

given by'

S —k+„P„logr'„, (6.2)

' See Tolman, ?7te Principles of Statistical Mechanics
(Oxford University Press, London, 1938), Chapter 13.

7 For important recent advances in the application of
statistical mechanics to irreversible processes, see Kirk-
wood, J. Chem. Phys. 14, 180 (1946); ibid , 15, 72 (1947)..

where the thermodynamic quantity entropy S is
related to the statistical mechanical coarse-
grained probabilities I'„ for the diferent states n
in an appropriate representative ensemble for
the thermodynamic system of interest. Since
changes with time in the quantities I' would

be determined by mechanical principles, an
acceptance of this interpretation would make the
rate of entropy production theoretically calcu-
lable in cases where purely thermodynamic con-
siderations fail. This would then permit us to
regard Eqs. (3.1) and (5.1) as having theoretical
significance also when the values of the quanti-
ties AS;„and TshS;„ therein are not calculable

by thermodynamic methods.
Several remarks must be made, however, in

connection with this possibility. In the first

place, it will be appreciated that this theoretical
possibility is not of great practical importance
at the present stage in the difficult development
of the applications of statistical mechanics to
irreversible processes. ~ In the second place, it
will be realized that the circumstance that we

cannot now always assign values to the quantities
AS;„and 'rshS;„ in Eqs. (3.1) and (5.1) does
not interfere with the usefulness of those equa-
tions when appropriate values can be substituted.
Finally, it may again be emphasized that thermo-

dynamics is adequate for the exact treatment of
irreversible entropy production on passage from

an initial to a final state of equilibrium, without
reference to the violence of the intervening irre-
versible behavior, and this is often all that is

needed.
Ke now turn to a consideration of specific

examples of irreversible entropy production. In
the case of each example, we shall first apply our

primary thermodynamic method of treatment
which gives a completely valid expression for
the irreversible increase in entropy accompanying
passage from an initial to a final state of equi-
librium. This will then usually be fo11owed by a



somewhat less satisfactory treatment leading to
approximate expressions for instantaneous rates
of irreversible entropy production.

7. Degradation of Energy

As a simple and fundamental example of
processes leading to irreversible entropy pro-
duction, we may first consider the degradation
of energy from a form where it could be used for
the performance of mechanical work to a form
where it is dissipated as part of the internal
energy of a material body. As illustrations we
have the dissipation of mechanical energy through
the action of friction or viscosity, and the dissi-
pation of electrical energy by the passage of elec-
tric current through a resistance. Such processes
are accompanied by irreversible entropy pro-
duction, since the change in state of the body,
in which the mechanical or electrical energy is
dissipated, is a change in state which could also
be brought about by the reversible absorption
of heat.

To apply our proposed method for calculating
the amounts of entropy produced by irreversible
processes, let us assume that the body in which
the degraded energy is dissipated is originally in
a state of equilibrium at temperature Ti and is
again in a state of equilibrium at temperature T2
after the energy has been dissipated, the rise in

temperature being determined by the amount of
energy dissipated. This is a change in state,
however, which could also be brought about by
the reversible absorption of heat. Hence, apply-
ing our method of calculation, we can evidently
equate the irreversible increase in entropy AS;„
that actually occurs to the reversible increase
J'dQ/T that would be brought about by such a
reversibIe absorption of heat. This then leads to
the desired expression for the irreversible in-

crease in entropy

(7.1)

where C is the heat capacity of the body in which
the energy is dissipated.

This expression for the increase in entropy of
the body receiving the dissipated energy applies
to the over-all change from the initial equilibrium
state originalIy set up at temperature T» to th.e

final equilibrium state ultimately established at
temperature T2, and does not require equilibrium
for the intermediate states through which the
body passes. When the process does have such a
character that we can regard each particular
element of dissipated energy dF as having
approximately the same effects as the absorp-
tion of that same amount of energy dQ in the
form of heat at an equilibrium temperature T,
we can write,

(dSy 1 dF

(dt J;„Tdt
(7.2)

as an expression for the corresponding rate of
irreversible production of entropy. In the case
of the dissipation of mechanica1 energy by
friction or viscosity, this expression assumes the
form,

(dSi 1 dF

Ed&);„T dt' (7.3)

8. Irreversible Heat Flow

As a second example of a fundamental kind of
process leading to irreversible entropy produc-
tion, we may now consider the fiow of heat from
higher to lower temperatures. To apply ouI
method of calculating irreversible entropy pro-
duction, let us assume two heat reservoirs R
and R', of heat capacities C and C', initially at
equilibrium at temperatures T» and T»', and
again at equilibrium at temperatures T2 and T&'

after the How of heat has ceased or been inter-
rupted.

For the corresponding. irreversible increase in
entropy we can evidently write

where dF/dt is the rate at which work is being
done against frictional or viscous forces. And in
the case of dissipation of electrical energy, by
the flow of current I through a resistance R in
material at temperature T, the expression assumes
the form,

)dSq PR
( dt &;„ T
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since this is obviously the net increase in entropy
of the two reservoirs that would be calculated if
we changed them reversibly from their initial to
their final states. Moreover, we can evidently
use the equation

p I'2

CdT+ C'dT=O (8.2)

as an expression determining the relation be-
tween the two final temperatures T2 and T2'.

The expression for the irreversible increase in
entropy given by Eq. (8.1) applies to the over-all
result of the change from one equilibrium con-
dition to another, and does not assume equi-
librium conditions during the process of heat
transfer. When heat flow does take place, how-
ever, .under conditions such that we can regard
the elements of the conducting medium as
substantially at equilibrium temperatures which
decrease in the direction of the flow, we can
write

(8 3)

)d5y p1~ q
=q gradi —

)
=- ——gradT (8.4)

E dt);„' &T) I'

as an expression for the irreversible production of
entropy associated with the transfer of an amount
of heat dQ through the medium from a place
where the temperature has the higher value T to
a place where the temperature has the lower
value T'. Hence taking q as a vector which
expresses the rate of heat flow per unit area per
unit time, we can write

as an appropriate expression for the rate of irre-
versible production of entropy per unit volume
of the conducting medium.

More rigorous consideration of the limits of
validity for Eqs. (8.4), (8.5), and (8.6) will be
given in $)21 and 22 of Part V.

9. Free Expansion

As our next example of a process leading to
irreversible entropy production, we may con-
sider the free expansion of a gas, without ab-
sorption of heat, under conditions, as in the Gay-
Lussac experiment, such that the gas does not
perform the external work that would be possible
if it were made to exert its pressure against a
movable piston, rather than allowed to expand
freely. This process leads to the irreversible pro-
duction of entropy, since a reversible change
from the same initial to the same final state
would be accompanied by the performance of
work and by a corresponding absorption of heat,
which would lead to a calculable increase in
entropy.

For simplicity let us assume that the gas is a
perfect one, and let us consider the result of the
free expansion of one mole, without absorption
of heat, from an initial state of equilibrium in
the volume v, at pressure p, and at temperature T,
to a final state of equilibrium in the larger volume
v', at the lower pressure p', and in accordance
with the properties of perfect gases at unchanged
temperature T. For the irreversible increase in

entropy we can then immediately write

q= —~ gradT, (8.5)

)dSq =—,CgradT]'
E d~);„T' (8.6)

as an expression for the rate of irreversible pro-
duction of entropy per unit volume at any point
in a conducting medium for which temperature
has a su%ciently well defined meaning. Or when
heat flow can be expressed in terms of tempera-
ture gradient and thermal conductivity by the
Fourier expression,

since the heat absorbed in a reversible isothermal
expansion from the same initial to the same
final state would have the well-known value
RT logv'/v, where R is the gas constant per mole.

This expression for AS;„applies, of course, to
the over-all change from the initial to the final
state of equilibrium, and is independent of the
way in which the expansion actually takes place,
except that it shall be without net performance
of work or absorption of heat. If the expansion
takes place sufficiently slowly, for example,
through a porous plug, so that we can treat the
major portions of the system as passing through
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pi
dS;„=Rd& log—,

2

(9.2)

as an approximate expression for the irreversible
increase in entropy accompanying the transfer of
any particular element of the gas, consisting of
dN moles, from pressure pi to pressure p2. In the
case of the sudden expansion, we should have to
consider the entropy produced by the degrada-
tion of the mechanical energy of the acoustic
waves, and by the How of heat from regions of
higher to lower temperature in the gas, in order
to try to follow the irreversible production of
entropy in detail. Nevertheless, both in the case
of the slow and of the sudden expansion of the
gas, the final total irreversible production of
entropy would be correctly given by Eq. (9.1),
since a definite change in state is necessarily
accompanied by a definite change in entropy.

10. Diffusion of a Solute

The diffusion of a solute from regions of higher
to those of lower concentration in a solution is
an irreversible process similar to that of the
diR'usion of gas through a porous plug. In the
case of isothermal diffusion, we may write in

a succession of equilibrium states, we can easily
follow the rate of production of entropy in
detail. If the expansion takes place suddenly,
for example, through the removal of a partition
separating the original volume v from the total
volume v', a comphcated process will ensue,
which would make it diEhcult to follow the rate
of production of entropy in detail. In such a
sudden expansion, acoustic ~aves will be set up;
the accompanying interchanges of energy among
interna1, kinetic, and potential forms will lead
to temperature changes in different portions of
the gas; damping of the acoustic waves will take
place through viscosity; this will also lead to
changes in gas temperatures; and during the
process heat will How from regions in the gas of
higher to those of lower temperature until the
new state of equilibrium is reached.

In the case of the slow expansion through a
porous plug, neglecting changes in the small
amount of gas inside the p1ug, one could evi-

dently write

analogy with Eqs. (9.1) and (9.2)

C

AS;„=R log—,
C

(10.1)

for the irreversible increase in entropy accom-
panying the dilution of a mole of solute from
concentration c to c', and

dS;„=RdN 1og-
C9

(10.2)

for the irreversible increase in entropy accom-
panying the transfer of dX moles of solute from
concentration ci to c2. These equations may be
taken as valid or approximately valid for ideal
dilute solutions. For actual concentrated solu-
tions a knowledge of specific properties of the
solution is necessary for an exact calculation of
the increase in entropy resulting from dilution.

11. Passage Through a Shock Wave Front

An extremely interesting example of processes
leading to the irreversible production of entropy
is provided by the passage of shock waves
through air or other gases. Elaborate experi-
mental and theoretical investigations of shock
waves have been made during the war because
of their military importance. We give here a
treatment of simple aspects of the phenomenon,
not to make a new contribution to shock wave
theory, but to emphasize the aspects related to
irreversible entropy production.

Shock waves are characterized by a steep wave
front, traveling through the gas with supersonic
velocity, with an abrupt change in the state of
the gas between the two sides of the front.
Shock waves can be produced in air by the
detonation of a mass of high explosive, in which
case the wave travels out from the explosion
with supersonic velocity. They can also be
produced by the action of projecti1es moving
through air with supersonic velocity, or can be
set up in supersonic wind tunnels.

On the passage of gas through a shock wave
front, there will be sudden changes in the density
p of the gas, in its pressure p, in its internal
energy e per unit mass, and in its velocity u-
taken for definiteness as measured relative to
the shock front and as positive in the direction
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of motion through the front. Applying the prin-
ciples of the conservation of mass, of momentum,
and of energy to the passage, we can at once
write the following equations,

PyQy = PgQe,

pi+ piuP =p2+ p2uP,

(11.1)

(11 2)

pl Plr Tly p2 p2rT'8) (11.4)
r w

&y = Cv~ ly 6o = CvTg,

where r and c, are the gas constant and the heat
capacity at constant volume for unit mass of
the gas, and T~ and T2 are the temperatures
before and after passage through the shock
front. This then provides us with a total of seven
equations connecting the ten quantities labeled
with subscripts, and we can, if desired, solve for
seven of them in terms of any three that we wish
to regard as given.

We are now ready to investigate the change in

entropy that takes place in the gas on passage
through the shock front. This change, if any, can
only be an irreversible increase in entropy, since
in the absence of external bodies there is no
opportunity for an element of gas passing through
a uniform segment of the shock front to inter-
change heat with its surroundings.

Assuming a plane wave of constant intensity,
it will be noted that we are dealing with a steady-
state situation, of the kind discussed in )6, where
an entirely satisfactory treatment of the instan-
taneous rate of irreversible entropy production
can be given, since there is a transfer of matter
from one equilibrium condition to another

plul+ Pl ul(61+ 2ul )
=p2u2+ pmu2(e2+-,'ug'), (11.3)

connecting the values of the above-mentioned
quantities, before and after passage through the
front, as indicated by the subscripts (1) and (2).
In using these equations to study the changes in
condition that take place on passage through the
shock front, we may supplement them by an
equation of state for the gas involved, and by an
equation giving its internal energy as a function
of its state. For our purposes it will be sufFicient
to treat the gas involved as a perfect gas, with a
constant specific heat. We may then write the
following additional equations

through a transition region (the shock wave
front) which is in a condition that does not
change with time. Hence, for the rate of irre-
versible production of entropy per unit area of
the front, we can evidently write

(dSI l Tm p21= piui ' c„log——r log—,(11.6)
t

"
T, p, 1'

where p~u~ is the mass of gas passing through
the front per unit time per unit area, and the
quantity in brackets, with c„=c„+r, is the
known expression for the change in entropy per
unit mass of gas on changing from equilibrium at
pressure and temperature pi and Ti to equi-
librium at pressure and temperature p2 and T2.

The circumstance that this expression for the
rate of irreversible increase in entropy cannot be
negative, now makes it possible to draw some
important conclusions as to the character of
shock waves. Since p~N~ is necessarily positive,
it is evident that the quantity in brackets cannot
be negative. Re-expressing this quantity with
the help of Eqs. (11.1) to (11.5), we then obtain

Tc) p2
c~ log——r log-

Tl pl

p2 p2/pi+(2c„/r —1)
p log

pi p2/pi(2c. /r 1)+1—

as a necessary condition on the pressures before
and after passage through the front. Analyzing
this result, it can readily be shown that the
condition can only be satisfied with p2 equal to
or greater than pi, and combining this finding
with the relations between quantities given by
(11.1) to (11.5), we then obtain

p2=pl) T2=Tli p2= pig " u2=ul) (11 8)

as necessary conditions for the existence of a
shock wave, where the equality signs apply at
the limit where the shock wave ceases to exist.
We thus And that the concept of irreversible
entropy production leads to the conclusion that
the passage of gas through a shock front must be
accompanied by an increase in pressure, tempera-
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ture, and density and a consequent decrease in
velocity. This is in agreement with the empirical
discovery of the existence of compression but
not of rarefaction shock waves.

The results just obtained also make it possible
to draw an important conclusion as to the
actual velocity with which shock waves travel.
Solving Eqs. (11.1) to (11.5) for ui2 in terms of
pi, p2, and Ti, we can obtain the result

c~rTi p2 1r p2 1r
Qy (11.7)c„pi 2 cp pi 2 cy

which shows that the velocity. with which the
shock front travels into the gas at. temperature Tj
is greater than the ordinary velocity of sound
(c~rT&/c„)' in gas of that temperature, by a
factor which increases with the "strength" of
the shock wave as measured by the ratio p,. /p, .

12. Chemical Reaction

As our final example of processes leading to
the irreversible production of entropy, we shall
consider chemical reaction under non-equilibrium
conditions. For the sake of definiteness, and to
correspond to a situation of common interest,
Iet us assume that the reaction takes place in a
thermally isolated system, under constant ex-
ternal pressure p, for example, that of the
atmosphere. And let us take the reaction as
corresponding to the chemical equation

aA+bB+ ~ =cC+dD+, (12.1)

in accordance with which a moles of the sub-
stance A react with b moles of the substance 8,
etc. , to form c moles of the substance C, plus d
moles of the substance D, etc.

Following our fundamental plan of treatment,
let us assume that the system in which the re-
action is going to occur is initially at equilibrium
at pressure p and temperature T&, and that after
the reaction has occurred the system is again at
equilibrium at pressure p and at some new
temperature T2. The initial equilibrium must be
a metastable one, since we have the possibility
for occurrence of the chemical reaction of interest.
If desired, this can be thought of as set off by
the introduction of a small amount of catalyst.
The final equilibrium can be metastable or stable
according to the extent to which the reaction

has proceeded. The final temperature T2 will be
higher or lower than T~, according as the reaction
is exothermal or endothermal, the magnitude of
the difference depending not only on the extent
to which the reaction proceeds, but also on the
heat capacity of the system which may contain
inert material as well as the reacting substances
of interest.

To calculate the entropy increase which accom-
panies the change from the initial to the final
state, let us consider a succession of two steps by
which the change could in principle be carried
out. In the 6rst step Iet us allow the chemical
reaction to proceed under constant pressure to
the same extent as in the over-all process of
interest, but at the end of this chemical change
let us set the temperature at its initial value T&.

rather than allow the change that will actually
occur in the isolated system. For the increase in

entropy of the system, we can then write in

accordance with a familiar expression

DHg —AFg
65g ———

T
(12.2)

where DIJON and AFj are, respectively, the increase
in the enthalpy and in the thermodynamic poten-
tial of the system when the reaction occurs
at Ti. In the second step —since there must be
no change in enthalpy for the over-all process on
account of the assumed thermal isolation —Iet us
heat or cool the system at constant pressure to a
final temperature T2 such as to satisfy the
relations,

(12.3)

r. ~2 C„
65p —— —d T. (12.4)

Making use of the fact that thh increase in

entropy of the system in going from the given
initial to the given final state must be equal to
ASi+AS2, without reference to the nature of
the process by which the change is brought

where C„ is the heat capacity of the system at
constant pressure, after the chemical reaction has
occurred. For the entropy increase accompanying
this heating we can evidently write
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about, and substituting for AHi from (12.3), we
can then write

Ati f'r' t' 1 1 )AS;„=— + i C„I ———jjdT, (12.5)
Ti "r, (T T,)

as the desired expression for the irreversible pro-
duction of entropy when the reaction occurs
spontaneously.

This expression (12.5) applies to the entropy
produced as a result of the over-all change from
the original metastable equilibrium state at
pressure p and temperature Ti to the 6nal equi-
librium state at pressure p and temperature Tp,
and does not assume equilibrium conditions
during the course of the chemical reaction, which
might actually take place in a very violent and
irregular manner, once it has been started. When,
however, the reaction does take place in such a
manner that we can regard the system at each
stage as substantially in a state of metastable
equilibrium at a de6nite temperature T, we can
theo evidently write

as an expression for the rate of irreversible en-

tropy production in terms of chemically familiar
quantities.

When the heat capacity of the system is
sufficiently large, compared with the thermal
eGects of the reaction, so that we can regard
the temperature of the reacting system as re-
maining constant, Eqs. (12.5) and (12.6) both
lead to the simplified result

aS;„= AJ/T—, {12.9)

as an approximately correct expression for the
total irreversible production of entropy.

PART III. APPLICATIONS OF THE
EFFICIENCY EQUATION

13. Nature of Apylications

In Part I of this article, we have derived Eq.
(5.1) which can prove useful in analyzing the
eKciency of cyclical and steady state processes.
This equation has the form

pdSy 1 dI'

(dt);„T dt
(12.6)

—TpAS;„. (13.1)
as an expression for the rate of irreversible pro-
duction of entropy at each stage of the reaction.
Furthermore, in accordance with the known
results of chemical thermodynamics, we can
substitute for the rate of change of thermo-
dynamic potential at temperature T, the ex-
pression

fc'fn" q dx—= —RTI log%„—log I
—, (12.7)

dt 4 f f b ) dt

where X„ is the equilibrium constant for the
reaction at temperature T, f~fs fcfD etc.
are the actual instantaneous values of the fugaci-
ties of the reacting substances appearing in the
chemical equation (12.1), and dx/dt is the factor
by which we must multiply the numbers of
moles a, b, ~ ~, c, d, etc. , appearing in (12.1)
to get the molal rate at which the corresponding
substances are being used up or formed. Substi-
tuting (12.7) in (12.6), we then obtain

It correlates the external work W done in the
process by the system on its surroundings,
(a) with the quantities of energy Z and entropy
S brought into the system by the transfer of
matter from the surroundings, (b) with the
quantities of heat Q„ transferred into the system
at temperatures T„other than the temperature
Tp prevailing in the surroundings, e.g. , the tem-
perature of the cooling water available, and

(c) with the entropy AS;„produced inside the
system by irreversible processes. In the case of
cyclical processes the quantities TV, 8, S, and
hS;„are to be taken per cycle. And in the case
of steady-state processes, they can be taken over
any convenient interval of time, for example,
one second.

In Part II of the article, we have discussed
methods of calculating the amounts of entropy
produced by irreversible processes, and have
shown how these methods can be applied in a
considerable number of typical cases. Hence we
are now in a position to understand the possi-
bilities for obtaining values of AS;„ to substitute



into the efficiency equation (13.1), and thus to
make use of this equation to understand the
losses in potential external work 8' that arise
from the various sources of irreversibility that
contribute to the term TOAS;„.

In the present part of the article, we shall
consider four typical examples of the method of
applying the efficiency equation. Two of the
applications will be to cyclical processes and two
to steady-state processes.

O'= Q —TohS;„,
T

(14 1)

where the first term is the well-known Carnot
expression for the work that would be done if'

the engine operated reversibly, and the second
term gives the work lost by the irreversible pro-
duction of entropy DS;„which actually accom-
panies its operation.

The causes contributing to the irreversible
production of entropy include the dissipation of
mechanical energy by friction and by viscous
forces, the transfer of heat through 6nite tem-
perature intervals inside the engine, and the
transfer of leaking heat from the temperature of
the engine to that of the surroundings. By
analyzing the contributions of these difFerent
causes to the total irreversible production of
entropy 55;„,we can then obtain figures for the
loss in horsepower arising from each cause, and
thus essential information for studying the possi-
bilities of more efhcient design.

15. Heat Engine with Return of %'orking
Fluid. to Boiler

We may next consider a heat engine, such as a
steam engine, having a cylinder and movable

j,4. Simyle Heat Engine

We may first consider a simple heat engine,
which uses the same working fluid over and over
again, for example, in a cylinder provided with a
movable piston, and operates by absorbing heat
Q per cycle at temperature T, transforming part
of it into work W, and giving up the remainder
at the lower temperature T0. Applying Eq.
(13.1), noting that there is no transfer of matter
between t:he engine and its surroundings, we then
obtain for the work done by the engine per
cycle

piston carrying ou t a cycle ln wlilch vapor is
withdrawn from a boiler at temperature T,
expanded to a lower temperature and pressure,
condensed to liquid form with the help of cooling
water at temperature To, and then returned as
condensate to the boiler. In analyzing the opera-
tion of such an apparatus we are at liberty to
choose the boundary separating system from
surroundings in such a way as to include any
part of the total apparatus in whose performance
we may at the moment have special interest.

Let us erst consider the operation of the
engine proper, as separate from the boiler. We
then have a system, undergoing a cyclical change,
in which matter enters the system in each cycle
in vapor form at temperature T carrying the
energy E and entropy S, and leaves the system
in liquid form at temperature To, carrying the
energy Eo, and entropy So. Substituting in Eq.
(13.1), we then obtain for the work done per
cycle

~= (+—&o) —To(S—So) &'o& &', (15 &)

where the term TOAS;„expresses the loss of work
resulting from the production of entropy by
irreversible processes accompanying the opera-
tion of the engine. These irreversible processes
would be similar to those already mentioned in
the case of a simple heat engine.

In the absence of irreversibility, the last term
in the above equation disappears. Furthermore,
in the absence of irreversibility, the next to the
last term can be set equal to the latent heat I.o
given out on condensation at temperature To,
since the working Huid will still retain its original
entropy content S, until the time of condensa-
tion, owing to the reversible and adiabatic
character of the process to which it is subjected.
Hence, under reversible conditions, the equation
reduces to the simple form

(15.2)

in obvious agreement with the first law require-
ment that the work done should be equal to the
net energy carried into the system by matter
diminished by the heat given out.

Let us now consider the operation of the
apparatus as a whole, including the boiler.
Since the condensed liquid from the engine is
returned to the boiler, we then have a closed
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system, which does not take in or give out
matter, but does absorb energy in the form of
heat at elevated temperature, give out part of
this in the form of heat at lower temperature,
and transform the remainder into the form
of work.

For the heat absorbed per cycle we have in the
first place the latent heat of vaporization I. of
the vapor delivered to the engine per cycle, and
in the second place the heat JT;CdT necessary
to raise the temperature of the return feed to
that in the boiler, C being the heat capacity of
the liquid condensed in each cycle. We can take
both of the quantities of heat as supplied approxi-
mately at the temperature T, if, for sake of
definiteness, we assume that the condensate is
fed back into the boiler without preheating. Sub-
stituting in Eq. (13.1), we then obtain as an
expression for the work done per cycle

W= I.+
Jp,

TQ
Cd T —TpAS;„, (15.3).

where once more a quantity of the form TpAS;„
expresses the loss in work resulting from irre-
versible processes taking place in the system.

In the evaluation of hS;„ for use in Eq. (15.3),
it is to be noted that we must now add to the
irreversible increases of entropy which result
from the operation of the engine proper and
which have to be considered in connection with
Eq. (15.1), the further irreversible increases in

entropy which result from the operation of the
boiler. These will include the entropy produced
by the irreversible heating of the return feed
from Tp to T with heat supplied at temperature
T, and such additional increases in entropy as are
produced by heat How and Huid friction inside the
boiler, and by heat How from the temperature of
the boiler to that of the surroundings.

The above analysis, in which we 6rst treated
the results of irreversibility in the engine proper
by itself and then in the engine plus boiler,
illustrates the general principle discussed at the
end of $5, in accordance with which we can give
separate treatment to the loss in potential
work TV, correlated with the contribution to the
term TpAS;„ from each particular source of
irreversible entropy production.

16. Steady F1ow of Fluids-

As a first example of a steady-state process,
let us consider the application of Eq. (13.1) to
the steady flow of a homogeneous fluid through
an apparatus, provided with a turbine (or rotary
pump) for the transfer of work between system
and surroundings, and involving differences in
height and hence in the potential energy of the
Huid entering and leaving the apparatus.

Let m be the mass of the Huid, for example,
one mole, which passes through the apparatus
in the time interval of interest, and let S"~„,b;„,
be the work done by the turbine during this time
interval. Furthermore, let us take the fluid as
entering at height k», with the velocity I~, under
the pressure pi, having the volume vi and carry-
ing the internal energy E~ and entropy S~, and
as leaving with the values h2, u2, p2, v2, B2,
and S2 for these same quantities. Substituting in

Eq. (13.1), under the assumption that there is
no transfer of heat between system and sur-
roundings except at the temperature Tp pre-
vailing in the surroundings, we obtain the result

~turbine P1S1+P22 2

= (Ei+mghi+-'pmu12 —TpS1)
—(62+mgh2+-2mu 2' —TpS2)

TphS;„, —(16.1)

where the left-hand side expresses the total worl»

done on the surroundings, including the net worl»

done against the external fluid pressure as well as
that done by the turbine, and the right-hand.
side includes obvious expressions for the potential
and kinetic energies of the Huid entering and
leaving the apparatus. %'e note once more the
effect of the irreversible production of entropy in

reducing the external work done by the system.
Using the symbol 6 to denote differences be-

tween the values of quantities applying to the
leaving and entering Huid, and rearranging, the
above equation can be written in the shorter form

Wt.,b;..+&&+~(p2) —Tp&S+mg&&

m
+—hu2+ TphS;„= 0. (16.2)

2

This may be spoken of as a generalized Bernoulli
equation. It would be valid in cases where the
Huid enters and leaves the apparatus at tem-
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peratures different from T0, and where chemical
reaction takes place in the Quid during passage.
In applying it to such cases, however, we must
include in the term T06S;„ the irreversible in-

creases in entropy that accompany heat transfer
between the temperatures in the interior and in

the surroundings, and that accompany chemical
change under non-equilibrium condition, as well
as those caused by friction and viscosity.

If we consider cases where the fluid enters and
leaves the apparatus, in a condition of internal
equilibrium, at the temperature To prevailing in

the surroundings, we can substitute in accord-
ance with well-known relations

2

AF = ~I vdp = AE+h(pv) —T06S, (16.3)
1

where AF is the difference in thermodynamic
potential of the mass m of Quid on leaving and
entering the apparatus, a quantity which can
be set equal to the integral J'vdp taken for a
reversible isothermal path at temperature T0
connecting the two conditions. Substituting in

Eq. (16.2), we can then rewrite this in the form

2

Wg„,b;„.+ vdp+mf;hh
JI

+—Au'+ T065;„=0, (16.4)
2

where, in the absence of chemical change, the
term T06S;„will now depend only on irre-
versibilities arising from friction, viscosity, and
internal heat fiow. Calling this term the work
lost by friction, we thus obtain the ordinary form
of Bernoulli's equation applicable under the
specialized conditions.

17. Continuous Flow Processing Plant

As a final example of the application of Eq.
(13.1), let us now consider the steady-state
operation of an apparatus into which certain
chemical substances are continuously fed for
processing and from which the resulting products
are continuously withdrawn. The operation of
such an apparatus may be physical in character
as in the separation of helium from natural gas
by fractional condensation or of alcohol from
admixture with water by fractional distillation,

or it may involve chemical change as in the
production of ammonia gas by passage of hy-
drogen and nitrogen at elevated pressure and
temperature through a catalyst. We shall make
our treatment adequate to cover both types of
operation.

For the sake of definiteness, and also to corre-
spond to the situation of usual interest, we shall
assume that differences between the kinetic and
potential energies of the substances entering and
leaving the process are negligible, and shall
take the substances as entering and leaving at
the temperature T0 prevailing in the surround-
ings. We shall denote by v;, E;, S;, and v„E„S.,
respectively, the volumes, energies, and entropies
of the substances going into and coming out of
the apparatus, in the time interval of interest,
and shall take them as supplied and withdrawn
under the pressures p; and p, .

Turning our attention once more to Eq.
(13.1), we shall now be able to substitute for
the work done by the system on its surroundings

W= —W,„,—Q p,v;+ p p.v„(17.1)

where S'p p is the extra mechanical work neces-
sary to keep the process running, and the other
terms give the work done due to the pressures
acting on the substances entering and leaving
the apparatus. Furthermore, we shall be able to
substitute for the terms involving energy and
entropy

Making these substitutions, we obtain after
some rearrangement of terms

Tn —TO= Wgurnp+ 2 Qn To~&irr&
n T.

or, using a we11-known relation, we can write

Tn TO
AF = Wp„,„p+Q —

Q —TOES;„, (17.3)
T.
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where AF is the increase in the thermodynamic
potential of the substances leaving the apparatus
over that of the original substances entering.

In accordance with the above result, the in-

crease in thermodynamic potential, needed to
go from the substances at our disposal to those
we wish to produce, is equal to the mechanical
work which we put into the system, augmented
by the fraction of the heat introduced which
could be theoretically changed into work, and
diminished by the now familiar expression for
the loss of work resulting from irreversible
processes.

In using Eq. (17.3) to analyze the operation
of the process, it must be appreciated that the
dependence of AF on W0„0 and Q„does not
mean that we can obtain eRicient operation
merely by doing work on the apparatus and

supplying heat at elevated temperature without
reference to their utilization for the ends de-
sired, since energy so supplied may merely be
degraded and serve to increase the term TOAS;„
without leading to increased production. For
exa.mple, it is to be appreciated that heat intro-
duced at elevated temperature will, in general,
be wasted by conduction to the temperature of
the surroundings, unless it is supplied for direct
utilization as a needed heat of reaction, or can
be utilized in some form of heat engine for the
production of work.

The causes for irreversible increases in entropy
leading to the term T05S;„ in Eq. (17.3) will

include friction and viscosity, chemical reaction
under non-equihbrium conditions, free mixing of
separated substances, irreversible heat flow

within the apparatus, and heat flow between
the temperature of the apparatus and that of
the surroundings. In case the process operates
at a temperature above that prevailing in the
surroundings, as in the fractional distillation of
water-alcohol mixtures, the direction of heat
leak will be from apparatus to surroundings,
and in case the process operates below the tem-
perature of the surroundings, as in the separa-
tion of helium from natural gas by fractional
condensation, the direction of heat leak will be
from surroundings to the apparatus. In both
cases, however, in accordance with our method
setting up Eq. (13.1), it is to be appreciated
that we must include in the computation of

AS;„ the increase in entropy caused by the free
Row of heat to or from the temperature To of
the surroundings.

In the study of the separation of helium from
natural gas, mentioned in reference 1, special
attention was given to irreversible increases of
entropy that were present in an already existing
process owing to the unnecessary separation of
various components of the natural gas which were
subsequently allowed to mix freely, and owing to
transfer of heat within the apparatus through
large temperature intervals. On eliminating as
far as possible these sources of inefficiency, it
also proved possible to design a process in which
the irreversibility resulting from heat leak was
reduced, since the general tempera. ture of opera, -

tion was raised by condensing the natural gas as
a combined mixture without separation of its
components, except for the small amount of
helium which was left uncondensed and drawn
oE as a gas at the low temperature end of the
apparatus.

Numerous other examples of the usefulness of
Eq. (17.3) might be considered. In many of
them there will be no transfer of heat except by
leak at temperature r0, and hence the terms in-

volving Q„will be absent. As a specially in-

teresting application of the .equation, we may
consider a living organism in an approximately
steady state, not involving rapid growth, nor
utilization of sunlight by chlorophyll. The equa-
tion could then be applied in the form

+ external Ffood 7 excreta +0+Sirrt (17.4)

where gases such as oxygen taken in and carbon
dioxide given out must be included in calculating
the thermodynamic potentials of food and ex-
creta. This must now complete our illustrations
of the possibilities of applying the efficiency
equation (13.1) to cyclical and steady-state
processes.

PART IV. APPLICATIONS OF FIRST AND
SECOND LAW EQUATIONS

18. Viscous Flow

In the immediately preceding part of this
article we have applied the eHFiciency equation
(5.1) to several different cyclical or steady-state
processes, in order to illustrate the role of irre-
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(18.1)

as an expression of Newton's secozzd law of motion

pud V=i "t;;& dA,
dt ~

(18.2)

versible entropy production in reducing the
e%ciency of such processes. The efFiciency equa-
tion (5.1) was itself derived as a consequence of
the first and second law equations (2.1) and
(3.1), after appropriate specialization to cyclical
or steady-state conditions.

In the present part of the paper, we shall
now apply the first and second law equations
directly to two selected theoretical problems, in
order to illustrate the increased effectiveness of
thermodynamics as a theoretical tool which re-
sults from expressing the second law by an
equality instead of by an inequality. The two
theoretical problems have been so chosen that
both illustrate the increased eR'ectiveness of the
second law when expressed as an equality. How-
ever, in one case we shall 6nd that the informa-
tion provided by the second law equality is
already available to us on other grounds, and
in the other case that the information so provided
is not already available at least in the present
state of theoretical knowledge. Hence, the actual
importance of being able to express the second
law of thermodynamics by an equality can be
different in different cases.

The first problem that we wish to consider is
that of developing a general theory for the vis-
cous flow of Huids, under conditions where tem-
perature gradients and heat Row as well as Huid

motion may play a role. This problem has al-
ready been treated by Eckart, ' and our present
treatment will invo ve some repetition which is
needed in order to demonstrate the actual con-
tribution of the second law equality to the theory.

lil tleatlilg tile 'tlleol y of Auld Row we sliall

regard it as appropriate to employ the me-
chanical principles of the conservation of mass
and of Newton's second law of motion as well as
the two laws of thermodynamics. In accordance
with these four principles, we may then evidently
write for any selected portion of the fluid:
as an expression of the conservation of mass

as an expression of the first law of thernzodyzza:mics

d
~I p(c+ —2zz')d V= JI q dA

dt~

+J' zz,t;j .dA, (18.3)

and as an expression of the secozzd law of thermo

dynamics

d t' t. 0 t' t'dSI
psdV= ' —dA+ '

i
—

i dV, (18.4)
dt 0 ~ T ~ (dt);„,

where, for the selected portion of Huid, we relate
the rate of change with time of integrals taken
over its volume to integrals taken over its
boundary surface, and to an integral giving the
rate of irreversible entropy production inside
the portion of Ruid considered, and where for
simplicity we do not consider the action of
gravity or other external forces. The quantities
occurring in these equations are time t, elements
of volume d V and of area dA taken as an inward
pointing vector, unit vectors i and j taken as
parallel to Cartesian coordinate axes x, , x, ,

and —at any point in the Huid —the density p,
the internal energy per unit mass e, the entropy
per unit mass s, the temperature T, the rate of
irreversible entropy production per unit volume
(d5/dt);„, the velocity of Quid flow u, the rate
of heat How per unit cross section q, and the
components of the stress tensor t;;, with the
usual convention that this symbol denotes the
force in the direction of thei axis, exerted across
unit area perpendicular to the j axis, by Auid

lying on the side of the surface corresponding to
smaller values of the coordinate x;. The expres-
sions as written assume the summation con-
vention for dummy indices i and j.

For our purposes, it will now be desirable to
re-express these equations in a differential form

applicable at any given point in the Quid. This
we do with the help of familiar methods, in-

volving the use of Gauss's theorem to replace
surface by volume integrals, the reduction in

size of the portion of Quid considered to the
neighborhood of a point, and the introduction
of obvious cancellations. We then readily obtain



the other two terms subtract oA the rates at
which work is done reversibly against the forces
of inertia and of internal pressure.

Substituting Eqs. (18.9—10—11) in (18.8), we
now obtain, with the help of obvious cancella-

(18 6) tlons,

Bs our desired expressions

dp—+pdiv u=0,
dt

dQ Bt,~-

P
dt Bx; 8Q,

p —= —div q —t;;—,
dt Bx;

(18.12)
8

p (e+-', u') = —div q
— (u;t, ;), (18.7)

ZT axe as a new expression for the information provided
by the second law equality (18.8). However, we
at once see that this expression could also have
been obtained, from Newton's second law of
motion and the first law of thermodynamics, by
taking the dot product of (18.6) with u and
subtracting from (18.7). Hence, in this case, we
are led to the conclusion that the second law
equality, although it gives us a valid expression,
does not give us additional information beyond
that already made available by the principles of
mechanics and by the principle of the conserva-
tion of energy generalized to allow for heat How.
This should not disturb us, however, since it is
clear that thermodynamics can be regarded, in
general, as providing theoretical methods to
which we need take resort only insofar as sufFicient
information is not available to permit more ele-
mentary methods of treatment.

In concluding this discussion of the general
theory of viscous Qow, it will be of interest to
exhibit a set of supplementary equations which,
combined with (18.5—6—7), would be sufhcient to
piovide a complete solution for the behavior of
the fluid. This set may be taken as

ds 1 1 /'dS)
p —= ——div q —q grad —+~ —

~
. (18.8)

T &d~);„

We now wish to examine the extent of the
information made available to us by Eq. (18.8)
which has resulted from our expression of the
second law of thermodynamics by an equality
instead of by an inequality. For this purpose, in
the first placq, we note that we can evidently
substitute for the rate of change of the entropy
density of the Quid, as a consequence of its
known dependence on energy and volume, the
expression

ds 1de pd;
+

Tdt Tdt
(18.9)

where P is the internal pressure of the fluid and
v its specific volume. In the second place, we
note that the irreversible production of entropy
in the Quid will evidently result from two causes—the dissipation of mechanical work against
viscous forces, and the flow of heat from regions
of higher to those of lower temperature. Hence,
in accordance with our previous equations, (7.3)
and (8.4), we may write for the rate of irre-
versible entropy production per unit volume of
the Quid

e=e(p, T),

p=p(~ T)

q = —K gradT,

(18.13)

(18.14)

(18 15))dS) 1 dF 1
=——+q g.ad—,

( dt);„T df T
(18.10)

BQ
3;,=p+ ~~q div u —2 ii

Bxgwhere dF/dt is the work done pei' unit time and
per unit volume against viscous forces, and for
this quantity we can evidently take

(not summed over i) (18.16)

(18.17)dI'
(u, t;,)+u,

dt Bx;

Bt;; dv
+P p—, (18.11)

Bx.
where e and p are regarded as known functions

where the first term gives the total rate at which of p and 1, g is given by our previous expression
work is done on unit volume of the Ruid, and (8.5) in terms of the coefficient of thermal con-
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ductivity z and of the temperature gradient, and
the components of the stress tensor t;; are given
by known expressions involving the coeScient of
viscosity g. ' Paying due regard to the number of
scalar quantities that correspond to a given
vector quantity, we then see that Eqs. (18.5—
6—7) together with (18.13—14—15—16—17) furnish
us a total of 19scalar equations for determining-
as a function of position and time —the values
of the 19 dependent scalar quantities corre-
sponding to p, e, p, T, u, q, and t,;.

This analysis shows once more that the second
law equality (18.8), which we did not count in as
one of our equations, is not needed in order to
secure a .quantitative solution of the equations
of motion for a viscous Quid. Nevertheless, it is
also of interest to remark at this point that the
second law of thermodynamics can be regarded
as exerting a qualitative influence on the nature
of the supplementary equations which can allow-

ably be taken in order to secure a solution, since
it is clear that these must at least be of such a
character as to make (dS/Ch);„a positive quan-
tity. Noting, however, the value for (dS/dh);„
provided by Eqs. (18.10—11), we readily verify
that this condition is satisfied by the supple-
mentary Eqs. (18.15—16—17) which we have in-

troduced as expressions for heat flow q and for
stress tensor 5;;.

Discussion of the different senses in which
temperature has been employed in the develop-
ment of the foregoing theory of viscous Qow will

be found a.t the end of )22.

19. Thermoelectric EGect

Ke now turn to the consideration of a problem
where, at least in the present state of theoretical
knowledge, the introduction of the second law

of thermodynamics in the form of an equality
does assist in providing a solution. This is Kel-
vin's old problem of the thermodynamic theory
of the thermoelectric effect, where it has already
been stated by Bridgman (see reference 4) that
the appropriate consideration of irreversible en-

tropy production leads to a more satisfactory
theoretical treatment than was previously pos-
sible.

'See Lamb, Hydrodynamics (Dover Publications, New
York, 1945), sixth edition, f326.

To apply our method of attack to this problem,
let us consider a thermoelectric circuit consisting
of two wires, A and B, composed of different
metals, with one junction maintained at an
upper temperature T and the other at a lower
temperature TD, and with the rest of the circuit
insulated from thermal contact with the sur-
roundings. Let us then consider a steady state of
this system in which I is the electric current Row-

ing in the circuit in the direction from A to B at
the hotter junction, and in which Q and Qp are
the amounts of heat absorbed per unit time at
the two junctions. In accordance with Eqs. (4.1)
and (4.2), applying to steady-state systems, we
can then write, as a consequence of the first law
of thermodynamics,

Q+Qo=0, (19.1)

and as a consequence of the second law of
thermodynamics,

Q o—+—+AS;„=0,
TD

(19.2)

Q=IP~s(T)+qg(T)+gn(T), (19.3)

where Pzrs(l ) is the Peltier heat reversibly ab-
sorbed on the passage of unit quantity of elec-
tricity from wire A to B at temperature T, and

g~(T) and gs(T) are the rates of heat flow in the
two wires A and B away from the junction at
temperature T toward the junction at the lower
temperature TD. Similarly, considering the Qow

of heat into and out of the junction at TD, we
can write

Qo = —IPQIs(Tp) —gg(Tp) —cars(To), (19.4)

where DS;„ is the entropy irreversibly produced
in unit time inside the system as a result of the
flow of electric current against resistance, and
of the flow of heat from regions of higher to
those of lower temperature.

In order to obtain useful results from these
equations, we must now analyze the quantities
which they contain. For this purpose we may
begin by considering the Qow of heat into and
out of the junction at temperature T, and writing
the obvious relation
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where the significance of the symbols will be
evident from the foregoing.

Furthermore, as we pass along either of the
wires A or 8 in the direction of T to Tp, we can
relate the increases in heat flow, for each element
of length traversed, to the thermal energy irre-
versibly evolved in that element in accordance
with the Joule effect by the How of electricity
against resistance, and to the thermal energy
reversibly absorbed or evolved in the element in

accordance with the Thomson effect by the flow

of electricity through a temperature gradient.
This permits us to write

or substituting (19,5) and (19.6)

dqz Io'a q~
5S = ' — —de — dT@

- TA TA TA

dgB Ia B gB+—+ de — dTa
TB TB TB

pq~ & (qs )— I+dl
&T,& &T,)

IO g IO'B
dTA+ d TB

TA TB

dqg = I'dRg+Io~dTg,

dgB =I dRB —IoBdTB,

(19.5)

TpZ p

q~(To) q~(T) qa(To) qs(T)—+
T T

where dRg and dRB are the resistances of the
elements considered, d T~ and d TB are the
changes in temperature on passing through these
elements, and 0-~ and 0-B are the Thomson co-
ef6cients for the two materials. Integrating Eqs.
(19.5) and (19.6) for the whole length of the
two wires, we can also write

ro

qz(To) —qx(T) = I'Rg+I o ad T, (19.7).

This then completes the results needed in order
to return to a consideration of the consequences
of the two laws of thermodynamics.

Combining the first law equation (19.1) with
Eqs. (19.3—4—7—8), and denoting the total re-
sistance of the circuit by R =Rz+Rz, we readily
obtain

all. d

|s TQ

qs(To) gii(T) = IoRQ—I 0 Bd T. (19.8)

Finally, we can evidently compute the rate
of irreversible entropy production within these
two wires by consideration of the degradation of
energy accompanying the Joule heating eRect,
and by consideration of the irreversible flow of
heat from higher to lower temperatures. In ac-
cordance with earlier. equations (7.4) and (8.4),
this then permits us to write

dZ dPgB
-+(~~ —~s),

dT dT
(19.10)

as a consequence of the first law of thermo-
dynamics.

Combining the second law equation (19.2)
with Eqs. (19.3—4—9), we readily obtain

or denoting the electromotive force for the cir-
cuit by E=IR, and differentiating with respect
to the temperature T of the upper junction, we
can write

pTp j2
aS;„= dRg—

T -TA
P~a(T) P~s(To) 0a —&B

dT=O,j g0

I2
+ dR~

TB
de and again differentiating with respect to the

TB' - temperature T of the upper junction, we can
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+rite

(19.11)

as a consequence of the second law of thermo-
dynamics taken in the form of an equality.

By solving Eqs. (19.10) and (19.11) for Peltier
heat and difference in Thomson coefficients, we
then obtain the familiar expressions

and

dEI gQ —T
dT

(19.12)

(19.13)

in a form suitable for experimental verification
with the help of calorimetric measurements.

The foregoing analysis demonstrates the sim-
ple and unforced character of the thermody-
namic treatment of the thermoelectric effect
which is made possible by expressing the second
law of thermodynamics in the form of an
equality. In the past, doubts have been felt as
to the validity of applying thermodynamics to
a derivation of thermo-electromotive force, since
it was not possible to go simultaneously to a.

limit where irreversibilities caused by heat How

and ohmic resistance would both vanish. It
should be emphasized that the expression of the
second law of thermodynamics in the form of an
equality gives assurance that we can apply the
principles of thermodynamics to systems where
irreversible processes are taking place without
having to consider the possibility of limiting
cases where the irreversibilities would vanish
(compare reference footnote 4).

Our analysis also shows, unlike the findings
in the previous case of the theory of viscous
Row, that the second law equality now provides
a necessary part of the information required for
the solution of the problem. This is connected
with the circumstance that in the theory of vis-
cous How we could make use of the Newtonian
expression (18.6) for the forces acting on the
Quid in solving for its motion, while in the
present theory of the thermoelectric circuit we
do not have a similar explicit expression for the
forces acting on the electric fluid. This is in

agreement with the general point of view that
the methods of thermodynamics are particularly
useful in the absence of knowledge as to the de-
tailed internal behavior of a system.

Discussion of the different senses in which
temperature has been employed in the develop-
ment of the foregoing theory of the thermoelec-
tric eRect will be found at the end of f22.

PART V. DISCUSSION OF THE CONCEPT
OF TEMPERATURE

20. Temperature in the Case of Equilibrium

In bringing this article to a conclusion it is
desirable to make some additional remarks on
thermodvnamic theory, which have a bearing on
our previous discussions and which are needed
in obtaining a full understanding of them. In
the present section our remarks will be directed
to the circumstance that the temperature of a
system is a concept which can be unambiguously
applied only to systems in states of thermal

equilibrium.
The concept of temperature may be intro-

duced into the theory of heat in the following
manner. In accordance with empirical facts, it is
possible to arrange any set of isolated bodies,
which are themselves in states of equilibrium,
in a series such that —on establishment of ther-
mal contact —heat will flow from any body at a
higher position to any body at a lower position
in the series, and thermal equilibrium without
How of heat will ensue for all bodies having the
same position in the series. This makes it pos-
sible to introduce a qualitative defiriition of
temperature for such bodies by assigning higher
or lower temperatures to the bodies in accord-
ance with the eventual direction of thermal Row,
and assigning the sa,me temperature to bodies in
thermal equilibrium. Employing this qualitative
definition of temperature, we can then obtain
the important empirical result that the tempera-
ture of any system in a condition of equilibrium
is definitely determined by its state, since the
position of the system in the temperature series
is experimentally found to be uniquely deter-
mined by the values of any set of independent
variables that we choose for specifying the pos-
sible states of equilibrium of the system. This
now makes it possible to introduce a quantita-



tive definition of temperature, by choosing some
given body to act as a "thermometer" and taking
the temperature of any system, with which the
thermometer comes into thermal equilibrium, as
defined in terms of the measured values of the
variables determining the state of the ther-
mometer, for example, as given by the volume
of a thermometric quid maintained under con-
stant pressure. The values of temperature given
by different kinds of thermometers are of course
interrelated and can be reduced to any par-
ticular temperature scale that we may wish to
select.

The above described method of introducing
the concept of temperature undertakes a defini-
tion of temperature only for cases of systems in
states of equilibrium. The simplicity of definition
in such cases is connected with the possibility
of then relating the temperature of the system
to the values of the relatively small number of
variables needed for the specification of equi-
librium states. For non-equilibrium conditions,
it is in general necessary to specify the values of
an inFinite number of variables in order to de-
scribe the state of a system, and no immediate
definition of temperature presents itself for sys-
tems in such states. The conclusion that we can
expect no unique definition of temperature in

the absence of equilibrium will be reinforced if
we now consider the experimental determination
of temperature by usual methods.

Unambiguous determination of temperature
by the accepted methods of thermometry is
possible only for systems in thermal equilibrium,
since it is only under such circumstances that
thermometers of different construction will give
consistent measurements. Thermometers of dif-
ferent construction respond with different de-
grees of sensitivity to the different forms of
energy that can, in general, be present inside a
system, —associated, for example, with the dis-
ordered or coherent motion of various kinds of
molecules, atoms, ions, electrons, or other par-
ticles, with the presence of electromagnetic
radiation of different frequencies, and with dif-
ferent possibilities for chemical reaction. In a
state of thermal equilibrium, the densities of the
different forms of energy inside a system will

have adjusted themselves to equilibrium values,
and the readings of different kinds of thermom-

eters wi11 be found to give consistently inter-
rela, ted values, all of which can be reduced to a
single scale of temperature, for example, abso-
lute temperature T on the Kelvin scale. In the
absence of thermal equilibrium, however, the
densities of different forms of energy will depend
essentially on the arbitrary past history of the
system, and no consistent relations will be
found between the readings of different kinds of
thermometers that responds with different sensi-
tivities to different forms of energy. A striking
example of the discrepancies between the tem-
perature readings, obtained with different kinds
of thermometers in the absence of equilibrium,
is furnished by the case of mercury thermometers
with reflecting and absorbing bulbs held out-
doors in the sunlight„where one thermometer
responds primarily to the energy of the air and
the other to that of the radiation.

In view of the foregoing we conclude that
unique values of temperature can be assigned
only in cases of thermal equilibrium and must
inquire into the extent of justification that can
be offered for the somewhat common use of the
concept of temperature in situations where
thermal equilibrium does not prevail. ln the
next section, we shall give special attention to
the role of temperature when regarded as pro-
viding a driving force for thermal flow, and in

the following section we shall consider'the role
of temperature in the calculation of the entropy
transfer accompanying thermal transfer at a
finite rate.

21. Temperature in the Case of Thermal Flow

In accordance with the preceding section, it is
evident that further consideration is necessary
when the concept of temperature is applied to
non-equilibrium situations. Under such. circum-
stances some approximation to temperature may
be sufficient, or some specific definition appro-
priate to the particular situation may be needed.
As an important example of the application of
the concept in non™equilibrium situations, we
may consider the relation of temperature dif-
ferences to flow of heat.

When two isolated bodies, in conditions of
thermal equilibrium at different temperatures,
are placed in thermal interaction, thermal equi-
librium is disturbed, and heat Row takes place



from the body at the originally higher to that
at the origina11y lower temperature. This con-
tinues until a new condition of thermal equi-
librium is reached with the two bodies at some
intermediate temperature which is the same for
both. This phenomenon makes it natural to re-
gard temperature difference as providing some
kind of driving force for heat How, and to seek for
quantitative relations connecting intensity of
heat Row with temperature diRerences which
would hold even during the period of thermal
How. As familiar examples of such quantitative
relations, we have the Fourier expression for the
How of heat inside a conducting medium, New-
ton's law for the cooling of bodies by conduction,
and Stefan's law for the cooling of bodies by
transfer of radiation.

As a. typical example of such quantitative re-
lations, which will illustrate the kinds of problem
that arise, we shall take the Fourier expression
for internal conduction, as already given by our
previous equation (8.5). This equation,

g = —~ gradT,

connects the rate of heat Row q, per unit time and
per unit cross section, inside an isotropic me-
dium, with thermal conductivity ~ regarded as
a parameter depending on the properties of the
medium at the point under consideration, and
with the rate of change in temperature, at that
point of the medium, a.s given by the gradient
of T. Since this relation is regarded as holding
under conditions of thermal How rather than of
thermal equilibrium, we must now make special
inquiry into the possibility of a satisfactory de-
termination of the quantity T which it contains.

In making this inquiry, it has to be pointed
out at the start that Eq. (21.1) evidently re-
quires the determination of temperature as a
sufficit„ntly precise function of time and position
to give a good value for the instantaneous
gradient, and hence requires the correction of
actual thermometer readings for "temporal lag"
and "spatial spread. " Such corrections can,
however, presumably be introduced by obvious
methods, for example, by experimentation with
smaller and smaller thermometers of the kind
chosen. Hence, there appears to be no insuper™
able theoretical obstacle to the measurement of
temperature as a suSciently precise function of

position and time, provided we have some suit-
able kind of thermometer to use. This then
brings us directly to the fundamental point of
our inquiry, since in the absence of thermal
equilibrium different kinds of thermometer
would not give concordant readings even when
corrected for "lag" and "spread. "The resolution
of this diAiculty appears to us to lie along the
following lines.

In the first place, it is to be remarked that
Eq. (21.1) has in any case merely the status of
an empirical law, rather than that of a necessary
theoretical principle. Although it agrees with
the second law of thermodynamics by making
spontaneous How of heat lead to increase in

entropy, as shown by our earlier equation (8.6),
it is not derivable from the second law as a
necessary relation. In view of this empirical
status, it is hence not essential to require precise
validity for Eq. (21.1), nor to demand the possi-
bility of precise determination for the quantities
which it contains.

In the second place, it is to be pointed out that
differences between the readings of different
kinds of thermometer will tend toward zero as
the degree of disturbance away from thermal
equilibrium is reduced. Hence, by reducing the
temperature gradient and the rate of heat How,

it is possible that discrepancies between different
kinds of temperature measurement might be-
come negligible, and that Eq. (21.1) might ap-
proach precise validity as we approach the
limit of vanishing heat How and temperature
gradient. Indeed, it appears probable that there
are many cases where the equation would have
this limiting kind of precise validity and sig-
nificance.

Finally, even in the case of finite rates of heat
How, it is to be emphasized that Eq. (21.1) often
does have at least closely approximate validity
when temperature measurements are made using
commonly available thermometric methods.
Under such circumstances, we can then maintain
the usefulness of Eq. (21.1) by introducing a
specific definition of temperature in which we
prescribe some kind of thermometer for its de-
termination which will make (21.1) approxi-
mately valid. For example, if heat transfer is
taking place mainly as a consequence of rnolecu-
lar collisions, it is presumable that an appropri-



ate kind of thermometer for the purpose would
be one primarily sensitive to molecular collision
rather than to radiation.

The foregoing discussion shows the possibility
of introducing a specific definition of tempera-
ture which proves useful in interpreting the in-

tensity of thermal flow. In the discussions given
in the next section, we shall present a possibility
for introducing a different specific definition of
temperature which proves helpful in interpreting
the transfer of entropy by thermal flow. This
illustrates the general possibility, in the ab-
sence of equilibrium, of introducing special defi-
nitions of temperature which prove useful for
some particular purpose, as, for example, when
we assign different temperatures to matter and
radiation in the path of sunlight.

r dQ
AS=) T' (22.1)

which gives the change in the entropy of the
system, that accompanies a reversible change in
its state. Since this equation is valid only for
reversible changes, it applies only to the limiting
case of change through a succession of equi-
librium states. Hence in- computing the result
given by (22.1), the temperature T to be used
at each stage of the integration is that corre-
sponding to some state of equilibrium of the
system. There is, therefore, in this case no
difficulty as to the unambiguous determination
of the correct values of T to be used, as there
would be in the absence of equilibrium.

Equation (22.1) can now be used, however, to
investigate, from a more general point of view,
the relation between entropy transfer and heat
transfer when heat is supplied from a heat
reservoir. In the first place, since the equation
applies only to reversible processes without any
irreversible production of entropy, the increase
in entropy of the system as given by (22.1) must
be equal to the entropy brought into the system

22. Temperature in the Calculation of
Entropy Transfer

In accordance with the second law of thermo-
dynamics, the temperature T of a system serves
as an integrating factor for heat in the funda-
mental equation,

by the transfer of heat. In the second place,
since the heat is transferred reversibly, we can
take the temperature T„of the reservoir from
which the heat is supplied as equal to the tem-
perature T of the system itself. Hence, in ac-
cordance with (22. 1.) we can now write

(22.2)

as an expression for the amount of entropy 5„
transferred from a heat reservoir by the transfer
of an amount of heat Q„, under limiting condi-
tions such that the reservoir can be regarded as
remaining substantially in a state of equilibrium
at temperature T„during the process of heat
transfer.

This new equation (22.2) appreciably increases
our understanding of the process of entropy
transfer since it evidently gives us a valid ex-
pression for the entropy carried into a system
by heat flow, under the restriction that the heat
is provided from a reservoir substantially in a
state of equilibrium, but now without any re-
striction on the nature of the processes that go
on inside the system which may actually take
place under non-equilibrium conditions involv-
ing irreversible production of entropy inside the
system. It is also evident that the equation can
be applied when the heat flow between reservoir
and system is in either direction, and when more
than a single heat reservoir is involved. Hence
this equation can be used, in general, to deter-
mine the transfer of entropy by thermal flow
between a system and its surroundings, when-
ever the thermal flow can be regarded as from
or into heat reservoirs of such a character that
they remain substantially at equilibrium at
definite temperatures.

Factors which affect the extent to which a
heat reservoir is disturbed away from equi-
librium include the specific heat and the thermal
conductivity of the material filling the reservoir,
and the extent of reservoir volume supplying
heat to the surface of transmission. As these
factors are made larger and larger, for a given
rate of heat transfer, thermometer readings
throughout the reservoir will become more and
more nearly uniform and constant, and the con-
dition of the reservoir will approach nearer and



nearer to that of equilibrium. Thus, in principle,
there is the possibility of constructing reservoirs
that will transfer heat under conditions ap-
proaching what is necessary for the validity of
Eq. (22.2). Furthermore, in practice, many situa-
tions are encountered where heat transfer actu-
ally does take place with reservoirs so nearly in

conditions of thermal equilibrium that there is
no appreciable uncertainty as to the values of
the temperatures T,. which should be substi-
tuted into (22.2) in order to secure correct re-
sults. Hence Eq. (22.2) has an immediate wide

range of applications.
Moreover, there is an important possibility

for extending the application of Eq. (22.2) to
certain situations where the heat reservoir is
not in a condition of thermal equilibrium. Under
such circumstances, we cannot make immediate
use of Eq. (22.2) to calculate the entropy S, car-
ried into a system by the heat Q„, since, as we

have seen in $20, diferent kinds of thermometers
will give discrepant temperature readings in the
absence of equilibrium, and we shall have no
unambiguous value of the temperature T„of
the reservoir to substitute into our equation. In
view of this difficulty, however, we may now

consider the possibility of replacing the actual
reservoir which supplies the heat Q, to the sys-
tem under non-equilibrium conditions by an
ideal reservoir constructed as described above in

such a manner as to supply heat substantially
under equilibrium conditions. On making such a
replacement, we shall have to find by trial a
temperature T„ for the ideal reservoir which will

lead to the same rate of heat transfer as from the
actual reservoir. Furthermore, we shall have to
determine by observation whether the behavior
of the system when it receives the heat Q„ from
the ideal reservoir is substantially the same as it
was when it received heat Q„ from the actual
reservoir. It is evident, however, that there will

be many situations in which this is the case.
Hence, we now have the important possibility

of extending the application of Eq. (22.2) to
situations where the heat reservoir is not in a
condition of thermal equilibrium, provided we
substitute as the value of T, in the equation the
temperature which would be found for an ideal
heat reservoir in a condition of equilibrium, which
would deliver the same heat to the system and se-'

&:ure the same behavior of the systein as in the
actual situation. We thus have a further illustra-
tion of the general possibility, in the absence of
equilibrium, of introducing a special definition of
temperature which proves useful for some par-
ticular purpose.

We have been interested in making the fore-
going analysis of the range of valid application
for Eq. (22.2), since the result shows that there
is a wide range of circumstances in which we can
properly apply our original second law equation
(3.1), which we wrote in the form

aS= P S.+P —+aS;„.
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(22.3)

There will, of course, be cases where the terms
on the right-hand side of this equation would
not be suRicient to cover all the ways in which
the entropy of a system may be increased. As a
particular example we have the possible intro-
duction of entropy by irradiation, with light of
specified frequencies, but the treatment of this
may be left to another occasion.

It is also of interest to consider the bearing
of the foregoing discussions on the validity of
our previous expressions (8.4), (8.5), and (8.6)
for the rate of irreversible production of entropy
per unit volume, in a conducting medium,

(22.4)

(ttS )
E dt);„T2 (22.6)

In accordance with the discussions in the present
section, we see that the validity of (22.4) de-
pends on a special definition for T, securing
agreement with the temperatures of ideal heat
reservoirs, that might be introduced to obtain
unaltered conditions of thermal How in the
medium, maintaining equilibrium conditions in

the reservoirs. And in accordance' with the dis-

for the rate of the thermal How in an isotropic
conducting medium

Q= —a gradT,

and, by substitution, as a new expression for rate
of entropy production,
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cussions of the preceding section, we have seen
that the validity of (22.5) depends on a different
special definition for T which would make the
equation give a good representation of the actual
rate of thermal flow. Hence the validity of the
final equation (22.6), which is obtained by sub-
stituting (22.4) in (22,5), requires agreement
between the results given by the two different
definitions. It is evident, however, that we can
often expect to find sufficient agreement between
the two definitions so that Eq. (22.6) will be a
useful one.

Finally, it is of interest to consider the bearing
of our discussion of temperature on the treat-
ments which we have given in $/18 and 19 to
the theories of viscous Row and of the thermo-
electric effect. In developing the theory of vis-
cous flow we have treated the temperature of the
fluid as a sufficiently well defined and unambigu-
ous function of position so that it could be used
in all of the following connections: as a variable
determining the state of an element of the Quid,
Eqs. (18.13) and (18.14), as the factor to be
taken in calculating change in entropy for a
reversible change in state, Eq. (18.9), as the
factor to be taken in calculating entropy transfer

as related to heat transfer, Eq. (18.8), as the
factor to be taken in calculating irreversible
entropy production by the dissipation of me-
chanical energy and by the free Qow of heat,
Eq. (18.10), and as a variable determining the
rate of heat flow, Eq. (18.15).And, in developing
the theory of the thermoelectric effect, we have
treated the temperature in the wires composing
the circuit as a sufficiently well defined and un-
ambiguous function of position so that it could
be used: as the factor to be taken in calculating
entropy transfer as related to heat transfer, Eq.
(19.2), as the factor to be taken in calculating
irreversible entropy production by the dissipa-
tion of electrical energy and by the free flow of
heat, Eq. (19.9), and as a variable the change of
which determines the Thomson heat absorbed
by the passage of electricity, Eqs. (19.5—6). In
view of these different senses in which tempera-
ture has been used, it will be necessary to regard
the above theories of viscous flow and of the
thermoelectric effect as applying under condi-
tions such that discrepancies between these
different kinds of temperature can be neglected.
It is presumable that this would often be the
case when application of these theories is desired.


