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The m-mode tube, used in the M.I.T. ac-
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locity, and zero attenuation length. Closer
examination shows that the effective attenu-
ation length is finite but small,
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IX. Feeding of Power into Linear Accelerators

It is difficult to feed power into an ac-
celerator long compared to the attenuation
1ength, for power must be fed in at many
points along the accelerator, and the power
sources must be locked in phase by some cir-
cuit external to the accelerator. The two
possibilities are discussed of feeding from
power amplifiers, in which case the phase is
determined from the primary signal, and
from self-excited oscillators, in which the
oscillator must be p'hased by an external
phasing signal.

X. I'ower Feed from a Self-Excited Oscillator

The frequency of a self-excited oscillator
. depends on the impedance of the load. The
operation of such an oscillator into a resonant
load, like that of the standing-wave ac-
celerator, is discussed and it is shown that
the load stabilizes the oscillator frequency.
An external phasing signal operates as an
additional load impedance, whose value de-
pends on the phase of the oscillator with
respect to the signal. It can lock both fre-
quency and phase of the oscillator to those of
the signal, if the signal is strong enough.

XI. Tolerances in the Long Accelerator

A very long accelerator, such as must be used
for accelerating very high energy particles,
would have to have the electromagnetic wave
rnatch the velocity of the particles, to a high
degree of accuracy. It is possible to adjust a
standing-wave accelerator to the required
accuracy, by subdividing it into short sec-
tions, and tuning each section by use of a
comparison signal. A similar adjustment of a
traveling-wave tube would be dif6cult, and
frequency control of the oscillators of a
traveling-wave tube would be difficult if self-
excited oscillators were used, though not with
power amplifiers.

XII. The Dynamics of Particles in the Accelerator

The relativistic motion of a particle along
the direction of travel of a sinusoidal travel-
ing wave is discussed. If the wave travels
slower than the velocity of light, some of the
particles form bunches, oscillating about
stable positions in the traveling wave, and
having on the average the same velocity as
the wave. Other groups of particles travel
faster or slower than the wave, and are not
locked to it. With a wave traveling with the
velocity of light, some particles are locked to
the wave, asymptotically approaching a fixed
phase, in which they continually gain energy.
In a wave whose velocity increases to match
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the acceleration of particles, stable bunches
are formed, as in the first case, but now
about positions corresponding to acceleration
of the particles. As the velocity approaches
that of light, the bunches decrease in size.

XIII. Application of Electron Dynamics to Different
Types of Accelerators

In the M.I.T. accelerator, electrons will be
injected at two million electron volts' energy,
into a tube where the velocity equals that of
light, so that many particles will be locked to
the wave in asymptotic phases, continually
gaining energy. In some other projects, in-
cluding the positive-ion accelerator, particles
are injected at lower velocity in a tube whose
velocity increases, resulting in stable acceler-
ated bunches.
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XIV. The Dynamics of Transverse Motion and
Focusing

In case stable bunches of particles are formed,
a focusing instability is necessarily present.
This defocusing is not met in the M.I.T.
accelerator, for it vanishes at the velocity of
light, as the stability of bunches also van-
ishes. In electron accelerators with injection
at less than the velocity of light, and subse-
quent acceleration, defocusing is present
while the velocity is increasing, but can be
easily counteracted by a longitudinal mag-
netic field. In positive-ion accelerators, how-
ever, the defocusing effect can be very
serious. In addition to the defocusing of
particles displaced from the axis, there can be
spreading of the beam on account of the
spread of directions in the injected beam.
It is shown that for an electron accelerator
this spreading is not serious.
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INTRODUCTION

~

'HE linear accelerator is a device for ac-
celerating electrons or positively charged

particles to a high energy, by the application of
an alternating rather than a direct field, and in a
straight line, rather than in an orbit curved by a
magnetic field as in the cyclotron, betatron, or
synchrotron. Its essential principle is some form
of loaded wave guide, in which an oscillating field
of high amplitude can be set up, which can be
analyzed into traveling waves, one of which
trave1s with the velocity of the particle to be
accelerated. Particles in the correct phase can
then remain always in the phase of the traveling
wave corresponding to acceleration, and can pick
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up energy continually, just as if they were in a
constant field. If the properties of the field are
arranged to vary, as the particle goes along the
tube, so as to keep step with the acceleration of
the particle, energies of any amount can in

principle be acquired.
The main advantages and disadvantages of the

linear accelerator are obvious from its form. As
advantages, we may list the saving of the expense
of the large magnet which is necessary in the
circular machines, the fact that the size and ex-
pense of the machine are roughly proportional to
the final energy of the particle, rather than to a
higher power of the energy, as in circular ma-
chines, suggesting that at least for very high
energies it may be a more economical device than
the circular machines, and the fact that the
particles will automatically emerge in a well
collimated beam, whereas beam ejection is one of
the principal difficulties in the circular machines.
The principal disadvantage of the linear ac-
celerator is the fact that an individual particle,
instead of passing through the same alternating
field again and again, and using the same power
source and accelerating gaps many times, as in
the cyclotron and. other circular machines, must
pass through a succession of alternating fields and
a succession of power sources. This multiplicity
of sources and fields results, in expense, in a large
duplication of high frequency equipment; in
complication, in the construction of a very long
and elaborate tube with its adjacent power
sources; and in a design difficulty, in the adjust-
ment of the phase of the oscillating field over a
great length of accelerator, so as to insure that
the field mill stay in step with the particles.

There is another design difficulty not shared by
the circular machines, which does not appear until
one makes a little mathematical analysis. In any
accelerator the particles must travel a very long
distance, either in a straight line or a circle or a
spiral, before they acquire the energies about
which one talks in present discussion of hundreds
of millions or billions of electron volts. In this
very long path they are likely to spread from
their ideal path and become lost to the beam.
The spreading can be of two sorts. First, they can
spread laterally or be defocused. Secondly, since
the operation of all these devices except the
betatron depends on having the particles bunched

longitudinally, in bunches a wave-length apart,
in the proper phase of a traveling wave to be
accelerated, the particles can spread longitudi-
nally, getting ahead or behind their bunches, and
can be debunched. Now in the cyclotron and
synchrotron those particles which are in the cor-
rect phase to be bunched and accelerated are also
in the right phase to be focused, so that stability
is automatic. On the other hand, in the linear
accelerator particles in the phase for bunching
and acceleration are defocused. This defocusing
imposes a design problem of serious proportions
for the proton linear accelerator, but is practi-
cally absent for the electron linear accelerator,
for it decreases to zero as the velocity of the
particles approaches the velocity of light.

It is too early to evaluate completely the ad-
vantages versus the disadvantages and difficulties
of the linear accelerator. Among electron ac-
celerators, the other practical devices are the
electrostatic belt generator up to perhaps twelve
million electron volts, the betatron from that
value up to perhaps a few hundred million elec-
tron volts, and the synchrotron from there up to
perhaps a billion electron volts, where it is be-
lieved to face a practical limit because of radia-
tion losses by the electrons (26).$ In the range of
the electrostatic belt generator, that device is the
ideal laboratory tool for uniformity of energy and
good beam collimation, but the linear accelerator
might well be cheaper, provided it was fed from
an electron gun at relatively low voltage, and it
might be equally useful for such purposes as x-ray
production and other uses not requiring extreme
energy homogeneity. In the range of energies
where the betatron or synchrotron can be used,
they appear to be cheaper than the linear ac-
celerator, though not by a large factor. Their
beam is perhaps more homogeneous in energy.
On the other hand, it is much more difficult to get
a well collimated electron beam with them than it
would be with a linear accelerator; their greatest
usefulness is in the production of x-rays. In the
range above a billion electron volts the linear
accelerator is probably the only practicable elec-
tron accelerator, if the radiation difficulty in the
synchrotron proves to be as great as is antici-

f. All parentheses-enclosed numbers refer to the bibliog-
raphy which will be found at the end of this article. Equa-
tion numbers will always be stated specifically as such.
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pated. From our present information it does not
seem impossible to build a linear electron acceler-
ator in the billion volt range, and its cost, though
perhaps greater than that of a proton synchrotron
for the same energy range, should not be greater
by an order of magnitude. It will certainly be
easier to evaluate the future applications of elec-
tron linear accelerators when those now under
construction, in the range up to the order of
thirty million electron volts, are operating and
are being used for physical experimentation.

Among positive ion accelerators, electrostatic
belt generators are useful to the order of twelve
million electron volts, and the ordinary cyclotron
meets relativistic difficulties at about a hundred
million electron volts. The frequency-modulated
or synchro-cyclotron is ideally adapted for ener-
gies of several hundred million electron volts.
Attempts at design of higher energy machines of
this type, however, show that the dee structure
and the magnet design begin to face problems at
about six hundred million electron volts which
become very serious indeed at a billion electron
volts, and probably are insurmountable much
above that energy. For the range of several billion
electron-volt positive ions, present thinking sug-

gests the proton synchrotron, a device in which
both magnetic field and frequency are simultane-
ously modulated during the cycle of acceleration
of the particles in such a way as to keep the
radius of the particle's orbit constant, and yet to
keep the particle in step with the radiofrequency
field. This has the advantage that only an annu-
lar magnet is required, as in the synchrotron, so
that the magnet cost does not go up so rapidly
with energy as in the synchro-cyclotron, with its
solid magnet. Furthermore, the accelerating elec-
trodes can be relatively small, and the frequencies
encountered are so low that the frequency
modulation is simple.

Practical designs for the proton synchrotron in

the range from two to ten billion electron volts
are now available. As compared to these devices,
the linear accelerator appears to oGer few ad-
vantages. We have mentioned the defocusing
difficulty, which is serious for the positive ion
linear accelerator, though not for the electron
accelerator, and which at present appears to
limit the usefulness of the proton linear accelerator
to relatively low energies, probably in the cyclo-

tron range. Furthermore, existing proton linear
accelerator designs are much larger in physical
dimensions, and consequently much more ex-
pensive, than electron linear accelerators of
comparable energy. Thus they do not seem able
to compete on grounds of cheapness with either
the electrostatic belt generator or the various
types of cyclotrons. It seems unlikely at the time
of writing that the construction of very high
energy positive ion linear accelerators will be
attempted, or that more than the existing ma-
chines at relatively low energy will be built.

The linear accelerator is not a new device. Sloan
(20), (33—35) and others in the decade before
the war worked, with moderate success, on simi-
lar instruments. The production of high energy,
high frequency power sources such as the mag-
netron (13) during the war, however, has given
the possibility of feeding enough power into a
linear accelerator, operating as a pulsed device, so
as to promise really high accelerations and to
make it a promising field for further work. Two
main lines of development have resulted since the
war, closely related to each other, and both really
stemming from radar work. First, Alvarez (5), (6,)
(19), (22)—(24), (27), (37), at the University of
Californi. a, has been working on the design of a
positive ion accelerator, working at a frequency of
about 200 megacycles, using radiofrequency
equipment designed for radars of that frequency.
Secondly, a number of laboratories have been
working on electron accelerators, using high power
magnetrons, generally at about 10-cm wave-
length, developed for radar purposes. It is such a
program that has been carried out at the Massa-
chusetts Institute of Technology, under the
auspices of the Research Laboratory of Elec-
tronics (16),(28), (30), (32).This program has been
supported by the Joint Service Contract No.
W-36-039 sc-32037 of the Signal Corps with the
Research Laboratory of Electronics. It is a fairly
direct outgrowth of thinking that was prevalent
in the M.I.T. Radiation Laboratory during the
latter days of the war, but the actual work and
detailed thinking about design have all been
carried on since the establishment of the Re-
search Laboratory of Electronics. Other similar
programs in this country are at Stanford Univer-
sity (10), (15), the General Electric Company, **

**Forthcoming papers in J. App. Phys.
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the University of Virginia (11), Purdue Univer-
sity (1), (2), (3), (17), Yale University (25), and
a number of others. Outside the country, there
are ambitious programs in England, at the
Telecommunications Research Establishment
(TRE) (14), and elsewhere, a program at the
Polytechnic Institute of Mexico, and various
other projects. As far as the writer is aware, the
general thinking in all these projects is along
similar lines, with few differences of opinion of
any moment. Preliminary reports have been
available to the writer from Stanford, where
Hansen and his collaborators have made im-

portant advances, and from TRE, where a theo-
retical group under Walkinshaw, and experi-
mental groups, have made elaborate and complete
surveys of the problem. In many respects simi-
larities will appear between the treatment of the
present paper and those of the groups just men-
tioned. The present work has been in almost all
respects carried out independently at M.I.T., in

the course of the last two years, and it has seemed
wise to make the present paper complete, even
though there might appear to be duplication be-
tween it and those of the other groups.

The project at M.I.T. is an experimental as
well as a theoretical one, devoted to exploration
of the design factors to be encountered in a large
accelerator, and to the building of an experi-
mental section to accelerate electrons to energies
of the order of twenty million electron volts. On
completion of the M. I.T. project, an experimental
paper will be published by the group concerned,
discussing the results of the project. It can be
stated in the meantime that many of the points
mentioned in the present paper have been
checked experimentally, and many more will be
before the completion of the project.

Naturally, the writer is indebted to many col-
leagues and friends for discussions of the problem.
First comes the group at M.I.T;, consisting of
Professor A. F. Kip, Dr. Winston H. Bostick, a
group of Research Associates consisting of
Messrs. R. J. Debs, P. T. Demos, L. C. Maier, S.
J. Mason, and J. R. Terrall, and several members
of the mechanical and technical group, including
Mr. I. J. Polk and Mr. M. Labitt. Former mem-
bers of the group were Dr. Jules Halpern, now of
the University of Pennsylvania, who made im-
portant contributions during its earlier stages,

Mr. E. Everhart, and Mr. R. A. Rapuano. We
have profited by discussions with other members
of the staB' of M.I.T., including Professor J. G.
Trump, and are particularly indebted to Pro-
fessor J. A. Stratton and Professor A. G. Hill,
Director and Associate Director of the Research
Laboratory of Electronics, for their constant
friendly interest. The Technical Advisory Com-
mittee of the services associated with the Re-
search Laboratory of Electronics, consisting of
Messrs. Harold A. Zahl, E. R. Piore, and John E.
Keto, of the Signal Corps, Once of Naval Re-
search, and Army Air Forces, respectively, has
taken a lively and much more than formal
interest in the project. Mr. R. Q. Twiss, of TRE,
assigned to M.I.T. for liaison purposes, has taken
a personal interest in the problem, and has con-
tributed to discussions, as well as acquainting us
with the progress of the TRE project. We have
had useful discussions with Dr. W. C. Hahn and
Dr. L.Tonks and their associates from the General
Electric Company, with Professor J. W. Beams
and colleagues from the University of Virginia,
with Professor L. Alvarez and his colleagues of
Berkeley, and Professor W. W. Hansen and his
colleagues from Stanford University, as well as
with various other workers in the field. The
writer is particularly indebted to Stanford Uni-
versity for the opportunity of spending some
weeks there in the summer of 1947, where most of
this paper was written, and of becoming ac-
quainted with the linear accelerator programs
at that University and at the University of
California.

I. PROPERTIES OF PERIODICALLY LOADED
WAVE GUIDES

The phase velocity of a wave in a wave guide is
greater than the velocity of light in free space, so
that a particle cannot travel with the same
velocity as such a wave, and some more compli-
cated structure must be used to produce the
linear accelerator field. All the structures in use
consist of periodically loaded wave guides of vari-
ous types. Accordingly, we shall take up in this
section the properties of periodically loaded wave
guides, emphasizing the general features which
all such guides have in common, more than the
peculiarities of individual structures. Much of the
theory is of a type familiar to mathematical
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physicists from many problems of wave propa-
gation in periodic structures, such as the theory
of the weighted string, filter theory in electrical
engineering, the electronic structure of metals
and crystalline solids, and x-ray and electron
diffraction. The interrelationships of these prob-
lems are described in Wave Propagation in
I'erioChc Structures, by L. Brillouin (54cGraw-
Hill Book Company, Inc. , 1946).Similar methods
were used by the writer during the war in dis-
cussing the resonant modes of the many-cavity
magnetron (touched on briefly in reference 31).
Since these general methods are so familiar, we
shall give many results in the present section in
rather general language, without proof or detailed
discussion. The structures most used are shown
schematically in Fig. 1, in which (a) shows the
iris tube, used in most of the microwave electron
accelerators, including that at M.I.T., and in

which (b) shows the structure being used by
Alvarez for his positive ion accelerator. When we
wish to discuss a specific example, it will be the
iris tube, but most of our remarks will apply to
Alvarez's structure as well.

The foundation of the study of wave propaga-
tion in periodic structures is a theorem called

Floquet's theorem, which is very simple: in a
given mode of oscillation of the structure, at a
given frequency, the wave function (that is, in
the electromagnetic case, the values of electric
and magnetic fields) is multiplied by a given com-
plex constant when we.move down the structure
by one period. The proof of this theorem is not
abstruse, and results from the fact that if the
whole structure is displaced along its axis, which
we take to be the s axis, by one period L, it
coincides with the original structure, so that the
new wave function can diAer from the original
one by only a constant factor. Let us write this
factor in the form e &~, where y is a constant, in

general complex. We now notice that a very
simple function of s which has this property,
namely, that of multiplying the function by e &

when z is increased by L, is simply e &'. In fact,
the most general function of s with this property
is the product of e &' with an arbitrary periodic
function of s of period L, which will be unchanged
when s increases by L. Such a periodic function
can be expressed as a Fourier series, which can be
written, in its complex form, as a sum of expo-
nentials exp( —2xnjs/L), where n is an. integer,
positive or negative, each exponential with an
appropriate coeScient. Thus the wave func-
tion can be written as a sum of exponentials
exp( —p —2s.nj/I )s, with appropriate coefficients.

The interpretation of this result depends on the
nature of y. In general, this constant can be
complex, but it can be shown that in a structure
without energy dissipation it must be real or pure
imaginary. If it is real, each exponential decreases
with increasing z, aside from its phase change,
and we have an attenuated wave. Such waves are
not appropriate for accelerator operation. In
other cases 7 is purely imaginary and may be
written y = jPO. Then if we define

P„=Poj(2s.n/L), (1)

(b)

Frr. 1.

we can write our exponentials in the form e»"'.
Combined with the factor e&"' expressing the
complex time dependence of the sinusoidal field,
a single Fourier component has the form e'("' &"'.
This represents a progressive wave, with angular
frequency cv, wave-length 2n./p„, traveling along
the s axis with velocitys „=~/p„.We now see that,
using Eq. (1), the disturbance can be regarded
as a superposition of a great many traveling
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waves, with a variety of velocities v„,which get
numerically smaller for large values of n. Each
traveling wave will have an appropriate coeffi-
cient or amplitude.

Some one of these traveling wave components
may well he appropriate for use in a linear ac-
celerator. The velocities of many components
will be less than the velocity of light, so that the
velocity of one component can be arranged to
equal the velocity of the particle being acceler-
ated. This component will then resonate with the
particle, in the sense that the particle stays in a
fixed phase relationship to the wave (until, of
course, the particle speeds up enough to get ahead
of the wave; we shall take up such questions
later). If a particle resonates with one component
of the Fourier expansion of the field, it will not
resonate with any other, for the others all travel
with different velocities. In fact, as seen from the
moving particle, the resonating component acts
like a field independent of time, which can then
exert effects felt over many periods, but all other
components move with respect to the particle
with large velocities, so that as far as the particle
is concerned they are rapidly oscillating fields.
Their effect on the particle will be a rapidly
alternating one which will produce almost no net
motion, and for almost all purposes they can be
completely neglected. We have arrived, then, at a
very important result: only one component of the
field in the periodic structure will travel with the
same speed as the particle; it acts like a sinusoidal
traveling wave; and in considering the particle's
motion, only this traveling wave need be con-
sidered. There is, of course, a corollary to this.
Each of the components in the Fourier expansion
has a finite amplitude, and therefore stores
energy and results in energy loss in case the walls
of the system have a finite conductivity. This
expenditure of energy is quite useless for purposes
of accelerating particles, except for the particular
Fourier component that resonates with the par-
ticle. Therefore, we must look for a type of
excitation in which the resonant component has
as large an amplitude as possible, in comparison
with the other, non-resonant components.

To determine the velocity of each component
as a function of frequency, and hence'to find
which one is appropriate for use in the accelerator,
we must find Po, and hence P„,as functions of co.

I/L P/Pe= I/l, p

Fio. 2. Frequency as function of reciprocal guide wave-
length for periodically loaded line. Slopes of radius vectors
represent phase velocities of various Fourier components,
divided by velocity of light.

This is a considerable task, which we shall discuss
later. Some general results are easy to prove, how-
ever. Let us consider co as a function of Po ~ Then
we can show easily that the resulting curve is
periodic in Po, with period 2s/L. For suppose P, in-
creases by 2s/L. Then, from Eq. (1),the quantity
which was previously P z will increase to become
equal to the previous Po and, similarly, each P„
will change to equal the preceding P„+&,changing
the name of each P„,but leaving the whole set of
P's unchanged. This makes no change in the
physical situation, for we must find the same
coefficient for each of the P's that we did earlier
for the P which had the same numerical value,
and the frequency as determined from the field
must be the same. We carl also prove easily that
the curve of co as a function of Po is an even
function; that is, changing the sign of Po leaves
& unchanged. This fact arises essentially because
we can make two successive transformations
without changing the physical situation: changing
from a wave function to its conjugate, which
changes each exponential from exp( j(cot —J3„s))to
its conjugate exp( jcot+j P„s)—, then changing t to

t, resulting i—n exp(j(cvt+P„s)), the net result
being to change the sign of all P„'s without
changing the essential problem or the frequency.

As a result of these general theorems, a plot of
u as a function of PD will have the form shown in

Fig. 2. Here it is convenient to plot &a/2s~ = 1/Xo
instead of a&, and Po/2s. = 1/X, instead of PD, where
c is the velocity of light in free space, Xo is the
wave-length of the wave in free space, and X, is
the guide wave-length associated with the com-
ponent of n=0. We see that this guide wave-
length cannot be uniquely defined, but that we
can add any integral multiple of 1/L, to 1/X„and
have an equally valid guide wave-length. Other-
wise stated, 1/Xo is a periodic function of 1/X„
with a period 1/L. Now we see that the phase
velocity of the component n =0, divided by the
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FIG. 3. Hyperbola representing 1/)«vs. 1jX, for an unloaded
wave guide.

velocity of light c, is vo/c=ca/Poc= (1/Xo)/(1/X, ),
or is the slope of the radius vector out to a point
of the curve. If this slope is greater than that of
the 45' line, the velocity is greater than that of
light, and if it is less, the velocity is less than that
of light. We can now see graphically the velocities
of all the components of different n values as-
sociated with a given wave function, by setting
up the values of 1/X, spaced by intervals 1/I,
and drawing the radius vector to each, as is done
in Fig. 2. It is clear frorri this diagram how the
components of higher n value have smaller phase
velocities. Also it is clear that there are com-
ponents with both positive and negative phase
velocity, or components traveling both to the
right and the left.

We shall now discuss in qualitative language
the way in which curves like those of Fig. 2 arise,
by using a specific example. We take the example
of the iris tube (10), (30), as shown in Fig. 1a, and
ask how the curves change as the holes in the
irises change their size, at constant iris spacing,
from holes as large as the iris (so that the iris does
not exist) down through smaller and smaller
holes, to the limiting case where the hole
vanishes, and the tube consists of a set of cylin-
drical cavities, separated by conducting walls. ***
We consider only the transverse magnetic mode
in which the magnetic field runs in circles about
the axis of the circular guide, and the electric
field is in a plane containing the axis and inde-
pendent of the angle of rotation of that plane
about the axis. This is the mode ordinarily met in
a cylindrical cavity, in which the electric field
runs along the z axis from one wall to the other,

**~This problem is considered in detail by the writer,
with analytic and numerical methods leading to quanti-
tatively accurate results, in reference 30.

being proportional to Jo(kr), where k =2s/Xo, and
where the magnetic field is proportional to J&(kr)
In the cavity, the resonant frequency is fixed by
the condition that E, must be zero at the outer
wall of the cavity, or at r=R, where R is the
radius of the cylinder; thus we must have
Jo(2s'R/Xp) = 0. But the first zero of Jp, which is
concerned in the mode we are interested in,
comes for a value 2.405 of the argument of the
Bessel function. Hence the resonance comes for
27rR/Xo ——2.405. We now consider a succession of
cases with fixed iris spacing, but varying iris
openings, related to this mode of the circular
cavity.

We start with the case where there are no irises
at all, or where the radius a of the iris opening
equals the radius R of the cylinder. Then we have
an ordinary unloaded wave guide. It is mell
known that the free-space wave-length X0 and the
guide wave-length 'A~ are related by the equation

1/X '= 1/X '+1/X ' (2)

where X, is the cut-off wave-length. This latter
quantity is determined as the free-space wave-
length for which the guide wave-length becomes
infinite, or in which the field is independent of s.
In this case the problem becomes just like that in
the cylindrical cavity which we have just dis-
cussed, so that the cut-off wave-length is the free-
space wave-length found in that case, or is given
by

2s-R/X, = 2.405.

We now see that the relation between 1/Xo and
1/X, given by Eq. (2) is the equation of a, hyper-
bola, shown in Fig. 3. At values of 1/Xo less than
1/X, (that is, for free-space wave-lengths greater
than the cut-off wave-length) the curve indicates
no real value of X, ; that is, no real propagation is
possible, but there is a pure imaginary wave-
length, resulting in attenuation. For all higher
frequencies, the hyperbola lies above the 45' line,
indicating a phase velocity greater than the
velocity of light, reducing asymptotically to the
velocity of light as the frequency becomes very
large. In this case, of course, there is no periodicity
in the guide, and consequently no periodicity in
the plot of Fig. 3.

A very small iris, however (that is, an iris
whose hole radius a is nearly as large as the tube
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radius R), produces a change in the situation
resulting in periodicity, and we see in Fig. 4 how
this can come about. Over most of the range of Pp

the change of frequency is negligible, but just in
the neighborhood of the value Pp/2pr = 1/2I. , the
change is considerable. This particular value has
a simple significance: it corresponds to the situa-
tion L=X,/2, or the case where the iris spacing
equals a half-guide mave-length. Consider now
the propagation of a wave of this wave-length
down the guide. We may consider that each iris
acts as a scatterer, so that a mave approaching an
iris results in a reflected wave traveling back-
ward, as well as a transmitted wave. With irises
spaced a half-guide wave-length apart, the re-
flected wave from each successive iris will be a
whole period out of phase from the reflected
wave from the preceding iris, since the direct
wave will have traveled a half wave-length
farther, and so will the reflected wave. Thus all
these reflected waves can interfere with each
other and can produce a large eff'ect. As a matter
of fact, they interfere so strongly that no direct
wave at all can be propagated through a lossless
guide of infinite length of this sort; the reflected
wave proves on analysis to equal the incident
wave in amplitude, and a pure standing wave is
set up. This is the phenomenon which, in the
study of x-ray diffraction, becomes Bragg
reHection.

The situation becomes clearer when we con-
sider the amplitudes of the various Fourier com-
ponents of propagation constant P„ in this
problem. Let us assume that Pp/2pr equals the
value of P„/2n. nearest to the reciprocal of the
guide wave-length that a guide without irises
would have for the corresponding frequency.
Then for most frequencies, or P's, only one
Fourier component in the expansion of the field
will be appreciable, that associated with Po. We
readily find that, for positive Pp's, the wave re-
flected from the irises is characterized by n = —1,
and waves that have made multiple reflections
are given by other values of n. Unless the inter-
ference conditions we have mentioned in the
preceding paragraph are fulfilled, the reflected
maves will be weak, for there will not be con-
structive interference between waves reflected
from the various irises, and the Fourier com-
ponent associated with n = —1 mill be small, and
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FrG. 4. 1/Xp vs. |/X, for slight periodic loading of wave
guide. Heavily shaded part of curve corresponds to
Fig. 3.

all the others even smaller. As we approach our
critical value of Pp/2pr = 1/2L, however, the
amplitude of the component n= —1 becomes
large, equaling the amplitude of the component
@=0 at the critical value. As we pass beyond this
value, the amplitudes of other components than
pal=0 again become small. At the value Pp/2s
= 1/L, where the iris spacing is one wave-length,
we again get interference and the building up of a
reflected wave, this time corresponding to n = —2,
and so on.

We now consider the periodic nature of the
curves of Fig. 4. The part of the curve drawn
with a heavy line refers to the frequency as a
function of Po which me have described in the
preceding paragraph, departing from the hyper-
bola characteristic of the wave guide without
irises only in the neighborhood of the critical
values given by Pp/2pr=m/2L, where m is an
integer. At each of these critical values the curve
proves to have a break, there being two possible
frequencies associated with the same guide wave-
length. These two frequencies can be shown to be
associated with two modes, both standing rather
than traveling waves (on account of the fact that
a progressive mave under these conditions is com-
pletely reflected), and one of sine-like, the other
of cosine-like, character, so that for one of the
waves the irises come at nodes, for the other at
antinodes; it is natural that the irises have
different e6'ects on the frequency in these two
positions. For frequencies lying within these
breaks, there is no possible propagated mode, but
the value of Pp becomes imaginary, or there is an
attenuated wave. The range of frequencies is
broken up, in other words, into certain pass bands



of frequency, in which we can get propagation,
with bands of attenuation between. The periodi-
cally loaded line acts like a bandpass filter, with
an infinite number of pass bands; and in case the
loading reduces to zero, and we get the case of
Fig. 3, the bands coalesce, so that all frequencies
greater than the cut-off frequency of the unloaded
guide can be propagated.

On account of the periodicity of the curve of
frequency vs. Po, , of which we have already
spoken, we see that the curves of Fig. 4 should be
drawn in a periodic way, as v e have done. The
branch of the curve which is drawn heavily, as we
have already seen, is the one which reduces to the
hyperbola of Fig. 3 in the limiting case where the
irises disappear, but the other branches are
equally legitimate. They correspond to different
conventions for the numbering of the P's. So far,
we have named that component which had the
largest Fourier component Po. These other
branches correspond to numberings in which the
component for n=0 has small amplitude, but
some other component has a large amplitude. In
this problem, one numbering, the one we used
originally, is far more natural than any other, but
when the iris becomes more important, the dis-
tinction is no longer clear, many Fourier com-
ponents being large, and some of these other
methods of numbering are equally reasonable.

When we look at the curves of Fig. 4, we see
that now, in contrast to Fig. 3, we can have a
phase velocity less than the velocity of light. The
curves are of the form already discussed in Fig. 2,
and we know that for any frequency in one of the
pass bands we can find an infinite number of
velocities, one associated with each intersection
of the curve with the straight line co =constant.
Each of these velocities is that of a particular
Fourier component, however, and the only
Fourier component which is large is that repre-
sented by the heavy line in Fig. 4, which still,
over most of its length, lies above the 45' line,
and corresponds to a velocity greater than that of
light. In other words, though the irises have
introduced Fourier components of low velocity
into the Fourier resolution of the field, these com-
ponents have small amplitude, for a small iris,
and would not be effective components to use in
a linear accelerator.

The situation is different, however, when the

iris projects further into the tube, that is, when
the ratio a/R is smaller, where a is the radius of
the hole in the iris. In this case the curve is more
like that of Fig. 2. The curve can become so de-
pressed that the velocity of the Fourier com-
ponent of largest amplitude can become less than
that of light. Furthermore, the amplitudes of
other Fourier components increase so much, on
account of the large scattering by the irises, that
other Fourier components of lower velocity have
considerable amplitudes. These two effects are, of
course, related, and while we now have com-
ponents of considerable amplitude with velocities
suitable for a linear accelerator, there is a com-
pensating disadvantage in that other components
have considerable amplitude as well and they
absorb power, which is useless as far as the ac-
celerator is concerned. For instance, suppose we
have loaded the guide so much that the so-called
m.-mode (that is, the mode in which the phase
difference POL from one section to the next is ~;
this corresponds to Po/27r= 1/2L, or the critical
value for reflection) has a velocity less than the
velocity of light, and we use that mode. Then we
have already seen that we have a reflected wave
of amplitude equal to the direct amplitude, which
is of no use, so that the power used to set up
this reflected wave is thrown away. Or suppose
we use the ~/2 mode, for which POL = n./2,
Po/2s =1/4I. In this case, as we see from the
figure, we shall have to load even more heavily to
bring the velocity of this mode down below that
of light, the amplitudes of other Fourier com-
ponents traveling in the same direction as the
wave will become considerable, and we shall
throw power away in them. In any case we pay a
penalty for slowing the wave down, the penalty
being greater the greater the slowing down.

The limiting case is that in which the hole in
the iris vanishes altogether. Then the guide be-
comes a set of disconnected cylindrical cavities,
each oscillating like a single cavity. To set up
modes corresponding to different values of Po, we
merely arrange to have the phases of the oscilla-
tion differ from cavity to cavity by POL, . The
frequency will be independent of Po, so that in
this limit the curves of co vs. P0 degenerate to
horizontal lines, and the pass bands have shrunk
to zero. The allowed frequencies, or frequencies
of these limiting pass bands, are easily found:



DESIGN OF LI NEAR ACCELERATORS

they are just the resonant frequencies of the
cylindrical cavity. The lowest one is given by
Eq. (3), and corresponds to the lowest pass band;
the higher ones correspond to the cases in which
the disturbance varies sinusoidally along the
length of the cavity, the tangential component
of E having nodes at both plane walls of the
cavity, so that the length I. equals an integral
number of half wave-lengths. In this limiting
case, we can find easily the Fourier resolution of
the field, and the magnitude of the various
Fourier components, and these limiting values
hold approximately for irises with very small
holes, a((R. Thus, for instance, in the lowest pass
band the value of the s component of field is

approximately constant in each cavity, and equal
to e &«"~ in the pth cavity. All we have to do to
get the Fourier components is to expand this
simple step function in the way we have already
described.

II. FOURIER RESOLUTION OF THE FIELD, MODU-
LATION COEFFICIENT, AND TRANSIT

TIME CORRECTION

We have stated in the preceding section that,
to handle the operation of the loaded guide as a
linear accelerator, we need only consider the
Fourier component of the field which resonates
with the particle, or has the same phase velocity.
If we consider only this component, the particle
remains in a fixed phase relation to it, is acted on

by a constant force, and the dynamical problem
is very simple. On the other hand, various writers
on the subject proceed by a diA'erent method,
familiar from conventional analyses of triodes
and klystrons: they consider the effect of the
finite transit time of particles between the two
sides of the cavity. Suppose, for instance, that the
iris hole is small; then the two irises are similar to
two grids of a triode or klystron, and the field be-
tween them is approximately a constant, inde-
pendent of s, but, of course, varying sinusoidally
with time. As a particle moves from one to the
other, the field cannot remain at its peak value
for the whole transit, for it is varying with time.
If we calculate the average force acting on the
particle, we find that it is the peak value,
multiplied by a certain coefficient, which in the
language of klystron theory. is called a modula-
tion coefficient, equal to unity if the grids are so

close together that the transit time is zero, but
decreasing as the transit time increases, being a
function of the form (sinx)/x of the transit time.
This function can go to zero for certain transit
times, or go negative, and such effects are en-
countered in the theory of high frequency opera-
tion of triodes, where transit time becomes
important.

We shall now show that this modulation coeffi-
cient or transit time effect is not a new effect
which we must handle separately, but that, in

fact, our procedure of using a single Fourier com-
ponent is itself an elegant way of making the
transit time correction. Suppose our particle is
traveling along the s axis with a velocity v, so that
its position is given by s =et. Let the value of E„
the longitudinal component of electric field, as a
function of s and t along the s axis, be

E,= Q„F„epx(jco(t —z/v„)),

where Ii„is the amplitude, v„the velocity, of the
nth Fourier component in the analysis of the
field. As the particle moves the field wi11 change
with time, and we can take account of this by
substituting for the time t when the particle is
found at position z the value t=z/v. Thus the
field acting on the particle at the point s is

Q„F„exp(2&v [(1/v) —(1/v „)jz) .

The average of the nth term, averaged over s
(assuming the particle is traveling for a long dis-
tance) is zero if v is different from v„,since the
resulting sinusoidal function will average to zero.
Thus the average field will be zero unless the
velocity of the particle equals the velocity of one
of the Fourier components, and in that case it will
be just the I'„,or amplitude of that Fourier com-
ponent. It is to be noticed that this result is only
correct if the particle is traveling for a long dis-
tance at constant velocity in the field; this con-
dition is approximately, though not exactly, met
in the linear accelerator, and deviations from it
do not enter in a way to affect our subsequent
arguments.

We see, then, that our procedure of Fourier
analysis is all that we need to do to take account
of the transit time of the particles from cavity to
cavity or iris to iris. This result, we notice, is
quite general, and not dependent on the fact that
we are using a wave guide loaded by irises, but
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applicable to any periodic structure. Any modifi-
cation of the structure which results in an in-
crease of the amplitude of the Fourier component
which resonates with the particle will have an
effect which can alternatively be described as
improving the modulation coe%cient or transit
time situation. Our method, however, is much
more general than the conventional argument in
terms of transit time, in that that argument is
often set up only for the case of a constant field
between parallel grids or electrodes, whereas our
method is correct for an arbitrary variation of
longitudinal field with s. It is possible, as a
matter of fact, to adapt our method, not for
periodic structures, but for single grid systems, as
in the triode or klystron, by the use of Fourier
integrals instead of Fourier series. One can then
prove familiar theorems about modulation coe%-
cients and transit time and, as we shall see later,
about the transverse motions of particles and
focusing. We shall not make further use of this
fact, however.

III. GROUP VELOCITY IN THE LOADED GUIDE

In Section I we have shown that the ratio of
the phase velocity of the wave in a loaded guide,
to the velocity of light, is given by the slope of the
radius vector out to the point representing the
wave, in the graph of (1/Xo) vs. (1/X,). Now we
shall consider the group velocity, which we shall
call v„and show that it is given, not by the slope
of the radius vector, but by the slope of the
tangent:

(s./~) = (d(1/)~.)/d(1/~. )) (4)

We shall find the group velocity to be important
in the study of power How in the guide and in the
question of how much power dissipation we must
have to set up a field of a given strength.

The conventional derivation of the formula for
group velocity sets up a superposition of two
waves, one with angular frequency ~ and propa-
gation constant P, the other with angular fre-
quency co+a,c0 and propagation constant p+Ap,
and considers the velocity of the beats between
these two waves. It is easy to show (see, for in-
stance, Slater and Frank, 3Achanics (McGraw-
Hill Book Company, Inc. , New York, 1947), p.
168) that this velocity is given by Ace/Ap. This is
closely related to the slope of the plot of the type

given in Fig. 2. The two waves are represented by
tw'o points on the curve of that figure. Re-
membering that the abscissa in that figure is
1/X, =P/2ir, the ordinate 1/Xo ——cu/2nc, . we see
that

beat velocity/c =D(1/XD)/h(1/), ). (5)

If the frequencies and propagation constants of
the two waves are close together, we can replace
the quantity Eq. (5), which is the slope of the
chord, by the slope of the tangent to the curve,
getting a common velocity of beat propagation
for all waves of neighboring frequencies. This is
the group velocity, as given by Eq. (4).

We may now set up a group of waves, such,
for instance, as a wave train of finite length,
by superposing sinusoidal waves of a variety of
frequencies or wave-lengths, the necessary band
of wave-lengths or frequencies being narrower
the longer the packet is in space or time. If the
curve of 1/Xo vs. 1/X, can be considered to be
straight over this range of wave-length or fre-

quency, the beat velocity as defined in Eq. (5) will

be the same for all pairs of waves in the wave
train, and the whole pattern will move forward
with a single velocity —the group velocity. If on
the other hand the wave train is too short, so
that its Fourier analysis extends over a wide
range of frequencies or wave-lengths, the beat
velocities of different pairs of components will

be diferent, the pattern mill not be preserved,
and the disturbance will spread in a compli-
cated way.

The group velocity is the velocity with which

energy is propagated in the guide. This is most
easily seen. by considering a finite wave train
of definite length traveling, say, to the right.
The energy crossing a given cross section of the
guide, per unit time, will then clearly be the
energy contained in a length v, of the guide,
since just this energy will pass the cross section
in a second. Thus we have a relation between
the Poynting's vector as integrated over a cross
section of the guide (the energy flux) and the
energy density per unit length in the guide:
the energy flux is v, times the energy density
per unit length.

As we look at the curves of 1/Xp its. 1/Xg, as
in Fig. 2 and Fig. 4, we see that the slope of the
curves is in very case less than unity, so that
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the group velocity is less than the velocity of
light, as we expect from relativistic arguments.
Furthermore, we see that as we approach the
x-mode the slope becomes horizontal; and the
group velocity goes to zero. This is consistent
with statements which we have made already
about the m-mode. We saw earlier that as we
approach that mode the reflected wave becomes
stronger, until the x-mode itself is a standing
wave, with equal amplitudes for direct and
reflected waves. In this case there is no net
flow of energy, so that v, is zero. Near the x-mode
the reflected wave almost equals the direct wave,
there is small energy flux and, consequently, the
group velocity must be very small. Furthermore,
we see that if the holes in the irises are small,
the whole band of frequencies will shrink, so
that even in the m./2 mode, where the group
velocity has its maximum value, the group
velocity will still be very small. In the limit, as
the holes shrink to zero and the frequency
becomes independent of the guide wave-length,
the group velocity will approach zero as well.
This is obviously consistent with the fact that
with vanishing holes in the irises there can be
no flow of power.

IV. ATTENUATION IN THE GUIDE

So far we have been neglecting attenuation in
the guide, but it plays an essential part in the
operation of the linear accelerator, and we must
next consider its effect. If we have a given energy
density within a short section of loaded guide,
there will be a flow of energy into the walls of
the guide because of the resistive losses in the
walls. We can relate this loss of energy to the un-
loaded Q of the guide, which we shall call Qp.
This is defined by the relation

1 energy dissipation per second in walls
(6)

Qp cv &(stored energy

It is the Q which the guide would have if it were
converted into a resonant cavity by perfectly
reflecting end plates, so that no energy would be
dissipated in the ends. Since the energy dissipa-
tion per second in the walls, arid the stored
energy, are both proportional to the length of
the section of guide we are considering, we see
that Qp is independent of the length,

If we now have a traveling wave flowing down
the guide, its power will be attenuated as it
travels down the guide, for some of its energy
will be drained oR' into the losses in the walls.
We can easily find the rate of attenuation re-
sulting from this. Let us set up an equation of
continuity for the energy flow. If S"is the energy
per unit length in the guide, S the energy flux
across a given cross section, and D the power
dissipation per unit length in the wall, then the
equation of continuity states that the time rate
of increase of S' equals the negative of the
divergence of S, minus the power dissipation D.
That is, since S will depend only on s, the dis-
tance along the guide, we have

(BW/Bt)+ (BS/Bs)+D = 0. (7)

We have just seen from Eq. (6), however, that
D= Wpi/Q pand from the preceding sectio.i we
have seen that S=vpW. Thus Eq. (7) becomes

8 t/V 8 TV o) 8S BS co

+v, +—W=O, —+v,—+—S=O. (8)
Bt Bz Qp Bt Bs Qp

assuming a steady state, so that the time deriva-
tives are zero, we find

S= Sp exp( —s/tp), tp =vpQp/co.

Thus the flux is attenuated, with an attenuation
constant 1/lp, where tp, the distance in which the
Rux falls to 1/e of its value, may be called the
attenuation length. The attenuation represented
by this expression must be applied to the fields
as found in Section I; the electric and magnetic
fields separately will have attenuation coeffi-
cients half as great as the flux.

The attenuation length may be interpreted
easily in terms of the time required for an oscilla-
tion in a resonant cavity to die down to 1/e of
its initial value. In a resonant section of wave
guide there will be no variation of energy density
with s; thus the derivatives with respect to s in
Eq. (8) must be set equal to zero. Then we shall

W= Wp exp( —( /Qpp)pt),

find showing that the energy density falls to 1/e of
its initial value in a time Qp/pi. We now see that
the attenuation length is just the distance which
the energy mill travel, moving with the group
velocity, in the time in which the energy density
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falls to 1/e of its initial value, a time which we
shall call Tp. The attenuation length, then, be-
comes greater as Qo becomes greater, but it
becomes smaller as the group velocity decreases.

We shall find that the attenuation length is a
very important concept in the discussion of
linear accelerators. We shall call a linear acceler-
ator long if its length is large compared to the
attenuation length, short if its length is short
compared to the attenuation length. It is clear
that long accelerators will involve us in diffi-
culties. Any signal introduced at one end of the
accelerator will be attenuated to negligible
amounts by the time it reaches the other end,
and if we start building up a signal at one end
at a given time, this signal will not even have
reached the other end by the time Tp, at which
the field at the first end will have built up to
its steady-state value (for the build-up of energy
naturally has the same time constant as the
decay). This situation means that the two ends
of a long accelerator are effectively decoupled
from each other, both in space and in time. Yet
we shall find that to set up a proper field in a
long accelerator we must have definite phase
relations between the fields at its two ends.
This imposes problems of excitation, which we
must consider; for it appears that if we wish
accelerators long enough to produce particles
with energies in the billions of electron volts,
the accelerators must be long in the sense in

which we are using the word.

V. POWER INPUT TO THE GUIDE

To operate a linear accelerator we must build

up a very strong electric field along the s axis,
associated with the Fourier component traveling
with the same velocity as the particle to be
accelerated. If we know the whole pattern of the
field within the accelerator, we shall find the in-

tegral of the square of the electric field per unit
length of the accelerator, and hence the stored
energy per unit length, to be proportional to the
square of this field component. In fact, if the
electric field along the s axis has the component

L exp(j(a(t —s/v))

associated with the resonant wave, we must have
the stored energy per unit length equal to a
ronstant times epB' times the cross section of

the guide. For a given geometrical shape (that is,
given iris spacings, dimensions, etc.) but arbi-
trary scale, the cross section will be proportional
to the square of the free-space wave-length at
which the accelerator is operated, since all linear
dimensions of the cavities will be proportional
to the wave-length. Thus we have

W=A~pB9 p',

where A is a constant which can be determined
when the field distribution is known. It is
assumed above that 8"is the total stored energy,
which of course is twice the electrostatic energy.

To produce a large value of E, then, we must
have a large stored energy, and hence, in a
steady state, a large dissipation of energy, and
a large amount of power fed into the accelerator.
During the build-up process W will be less than
in the steady state. Hence, the accelerating field E
will be less during build-up than in the steady
state, and the proper way to operate the acceler-
ator is to let the field build up first, then intro-
duce the particles to be accelerated when the
field has reached substantially its final value.
We shall consider in this section the amount of
power which must be fed in the steady state to
produce a given field 8, and shall also consider
the transient process of building up the steady
state.

The results are somewhat different, depending
on whether the accelerator is closed with per-
fectly reflecting walls at the ends so that a
standing wave is set up in it, or whether the ends
are terminated with non-reflecting or matching
resistances, so that traveling waves will not be
reflected from the ends. They are also somewhat
diff'erent depending on the distribution of power
inputs along the length of the accelerator. Let us
start with the case of reflecting end walls and
uniform distribution of power sources along the
tube, as in the M. I.T. and Berkeley accelerators.
In this case all the power fed into unit length
will be dissipated in power loss in unit length of
walls. We have already seen that this dissipation
is coW/Qo. Hence, if the power fed in per unit
length is P, we have

A e(P:9,p'co
P=
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Remembering that co/c= 2m. /Xo, c = I/(coiio)=*', »d
(iso/eo)-*'= 377 ohms, we find

(377PQ, q
&

P=n! !, Where n= — . (9)
E (2~A)i

We note that the accelerating voltage per unit
length is proportional to the square root of
power per unit length; thus if we wish to have an
accelerator producing a given voltage as short as
possible, or to make E as large as possible, we
wish to feed in as much power as possible per
unit length. On the other hand, if the total
power at our disposal is fixed, or if we wish to
economize on power sources, we should go to
the other extreme and make the accelerator as
long as possible. To see this fact, we rewrite Eq.
(9) in a form to give the total voltage acquired by
a particle, E/, where l is the total length of the
accelerator, in terms of Pt, the total power
input. We have

)377(P/) Qpl q
"

Pl =n
E.

showing that the total voltage is proportional to
the square root of the length, so that by making
the length indefinitely large we can in theory get
any amount of acceleration from a fixed power
input.

From the equation just written we see that a
given amount of total voltage can be produced
either by using a large amount of total power
and a short length, or a small power and large
length, and that the total voltage is a function
of the product of total power and length. There
seems to be no scientific way of deciding what
separate values of power and length to use, and
therefore the decision will presumably be based
on economic arguments. The cost of a linear
accelerator, aside from the fixed cost of end
terminations, will consist of two parts: the cost
of the accelerator tube, pumping, housing, etc. ,

which will be proportional to the length, and
the cost of the power sources with their feeds
into the accelerator tube, which will be propor-
tional to the power input, and hence, for a
definite total voltage, inversely proportional to
the length. Hence, the cost will be the sum of
two parts, one proportional to the length, the

v, 1 ( l~)
+ —

! 1+—!,
Qc Qp col Qp& I) (10)

where we may call Qc the loaded Q, loaded by
the resistive termination at the end of the guide.
In place of Eq. (9) we then have

5377PQp I
Z=n!

I+&,)

provided power is fed in continuously along the

other (for a fixed voltage) inversely proportional
to the length. We choose the length to minimize
the cost. Now the function x+1/x has its mini-
mum for x= 1, where both terms are equal in

magnitude. Thus the accelerator will cost least
if the tube (that is, the parts whom cost is
proportional to length) and the power sources
cost equal amounts. If a decision has been made
as to the type of power source to use and if the
sources are to be equally spaced along the line,
the economic way to determine the sparing of
sources is to build a length of line whose cost
equals that of the power source. We shall see
later that the spacing between oscillators must
not be large compared to the attenuation length;
therefore we must be sure that our design is such
that the economic spacing of oscillators is less
than the attenuation length. Presumably, by the
time the various preliminary accelerator projects
now under way in the various institutions are
completed, accurate enough cost estimates can
be made to find these economic spacings between
oscillators, but reliable figures are not yet avail-
able, so that it is not clear whether a close
spacing of oscillators, as at M. I.T., or a wide
sparing as at Stanford, or something intermedi-
ate, will eventually turn out to be most eco-
nomical;

The situation is quite different if we have a
traveling wave. Again we assume a fixed power
input P per unit length. Now, however, power is
lost in two ways: there is still a dissipation
co W/Qo per unit length on account of resistive
losses in the walls, but there is also a flux v, lV
out through the end of the tube into the non-
reflecting termination. Thus the total power Pt
supplied to the tube must equal (&dl/Qo+v, ) W.

'

This amounts to replacing 1/Qo by
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/377(P/)
E/ = n( Qp/

/+/pl
(12)

for in this limit it is immaterial whether power
is fed in continuously or at the end. In this
formula, for / small compared to /o, and for
constant total power input P/, we observe that
E/, the total acceleration, is proportional to the
length of the accelerating tube, which suggests
that we need only feed a traveling-wave tube at
one end to get any acceleration we desire. Never-
theless Eq. (12) is equivalent to Eq. (11), and
shows very definitely that though it is true that
the acceleration obtained is proportional to the
length of the a.ccelerator for small ///p, still it is
less, in the ratio (//(/+/p)) &, than the acceleration
that would be obtained by putting the same
power into a standing-wave tube of the same
length. It is only because this factor becomes
less disadvantageous for longer lengths that we
get the rapid increase in acceleration with length

length. If the length / of the tube is large com-
pared to the attenuation length, the new factor
(//(/+/p))& is approximately unity, and the volt-
age E is not much decreased by the loss in the
end of the guide, but if the length is small com-
pared to the attenuation length, the factor is
much less than unity, and the voltage per unit
length obtainable from a traveling-wave tube is
seriously less than that of a standing-wave tube
with the same geometry (same n) and same
power per unit length. For a short accelerator
tube, in other words, it does not seem reasonable
to use a traveling-wave tube. For a long acceler-
ator, the loss in the terminating ends becomes
negligible compared to the losses in the side
walls, and the difference in accelerating voltage
is unimportant. In this case, the decision between
standing and traveling waves must be made on
other considerations, which we shall take up
later.

Of the existing accelerator projects, at least
two, those at Stanford and at TRE, are planning
traveling-wave tubes, and at least some of their
thinking has been in the direction of feeding the
tubes with power from the input end. Provided /

is small compared to /p, we may modify Eq. (11)to
express the total acceleration in terms of total
power, finding

in this case. Furthermore, there is another dis-
advantage connected with feeding at one end;
in case / is comparable with or greater than /0, as
we have seen earlier, the energy density in the
tube falls off exponentially with s, becoming
small at a value of z equal to the attenuation
length. Thus the acceleration of the particles
will fall off after this distance. In other words,
this method of end feeding into a traveling-wave
tube is not desirable for a tube which is long
compared to the attenuation length /0., and if its
length is much smaller than /0, it is definitely
inferior to using the same power in a standing-
wave tube. We shall note presently that the
traveling-wave tube has an advantage, in that
it can have a larger n than a standing-wave tube,
and as a result of this there is a small range of
lengths, in the neighborhood of /0, for which the
traveling-wave tube fed from the end can be
slightly superior to the standing-wave tube in

the matter of acceleration; this point has been
noted by the workers both at Stanford and at
TRE, and they propose to adjust v, so that
their actual length will be approximately equal
to /. For a long tube, however, power must be
fed in along the length, either continuously or
at points separated by distances considerably
smaller than /o.

It is interesting to consider the transient phe-
nomena involved in the build-up of oscillations
in the tube. In a standing-wave tube, the time
required for the field to build up is of the order
of Qp/a&, as we have mentioned earlier. It is

interesting to compare this time, which we have
called Tp, with the time T& ——//vp required for a
field, moving with the group velocity, to travel
from one end of the guide to the other. We find

that Ty/Tp = ///p. In other words, as we have
mentioned earlier, in a long accelerator tube the
time required for the field to go from one end
to the other is large compared to the'build-up
time. During the time of build-up, one end of
the tube does not know what the other end is
doing, and to secure proper phase relations be-
tween the two ends of the tube, we must arrange
some external phasing circuit, as discussed in a
later section. On the other hand, in a short
standing-wave tube the field has time to be
rejected back and forth many times from one
end to the other in the time of build-up. Phase
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relations between the two ends can be easily
established. Furthermore, in a short tube it is
immaterial where in the tube the power is in-
troduced; because of reflections, the energy will

be properly distributed through the tube irre-
spective of the location of the power input. This
is in contrast to the long tube, where evidently
the power sources must be uniformly distributed
along the tube, the spacing being no longer than
the attenuation length, and preferably consider-
ably shorter. It is interesting to note that in the
standing-wave tube the whole phenomenon of
build-up of oscillations will occur in just the same
way, if reflecting walls (penetrated, of course, by
small holes for the passage of the particles being
accelerated) are introduced midway between the
power sources. If these reflecting walls are absent,
the field at a given point of the tube builds up
by having the waves sent out by more and more
distant power sources successively reach a given
spot, each one weaker than the preceding ones
on account of the attenuation. With the reflecting
walls these successive waves are the reflected
waves, coming back again and again to a given
spot after more and more reflections. We shall
find later that in many ways it simplifies our
thinking about the standing-wave tube, and may
actually simplify its construction, to subdivide
it in this way into short sections.

In a traveling-wave tube the situation is some-
what different. In a long traveling-wave tube we
may feed power in at uniform spacings along
the length, much as in the long standing-wave
tube. It is worth considering how to feed a
traveling wave with an oscillator. A traveling
wave-can be built up of two standing waves,
a cosine-like and sine-like wave, with a phase
difference of 90' in time. To excite the traveling
wave, we must excite both cosine-like and sine-
like components separately. Thus we must have
at least two points along the tube at which we
feed in power, at the antinodes of both com-
ponents, and by some form of phasing circuit we
must feed these components in quadrature with
each other. This phasing circuit can be as simple
as a quarter-wave delay line, so that both com-
ponents can be fed from the same oscillator.

If now we consider the build-up of a long
traveling-wave tube, fed from uniformly spaced
oscillators, the problem is substantially like that

of feeding a standing-wave tube, except that the
waves travel only one way. The field will again
not be built up until the signals from distant
oscillators have reached a given point of the
tube, and this build-up time will again be Tp.
There is an essential difference between the
traveling-wave and the standing wave excitation
of the long tube, however, near the input end.
In the traveling-wave tube, at this end, with
equally spaced oscillators, there are no reflected
signals coming back, from the input end, as
there were with the standing-wave tube; the
field has no chance to build up by the successive
signals of more and more distant oscillators, for
these signals are all traveling away from the
input end. The signal will build up more promptly
at the input end, but will not build up to as high
a value as farther down the tube. To compensate
for this we should have to add an extra power
source at the input end, to supplement the uni-
formly distributed sources down the length of the
tube. As the signal from this extra source was
attenuated, in a distance comparable to the
attenuation length, the signals from the uni-
formly spaced oscillators would build up to
supplement it, and give a constant acceleration.

In a short traveling-wave tube, in which the
time T~ for signals to travel from one end to
the other is small compared to Tp, it is clear
that the field will have built up completely in a
time of the order of T~. For a signal sent from
one end will have traveled the length of the tube,
and will have been lost in the non-reflecting
termination, in this length of time. Since power
is being fed in only for a time T~, short compared
to Tp, before the field reaches its limiting value,
it is clear that the tube will never build up the
stored energy, and the accelerating voltage, of a
standing-wave tube of the same length, in which
the field can be reflected back and forth, re-
maining in the cavity for the whole time Tp.
This is just another way of considering the same
decrease of accelerating voltage in going from a
short standing-wave tube to the short traveling-
wave tube, which we have considered already.

VI. GEOMETRICAL FACTORS AFFECTING
ACCELERATIO N

In the preceding section we have found a form-
ula (Eq. (9)) for the amplitude of the accelerating
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field resonating with the particle, in terms of
the power input to the tube per unit length, the
unloaded Q of the cavity, and the wave-length.
This held for a short standing-wave tube and
for any long tube, whether operating as a
standing-wave or a traveling-wave tube. There
are several quantities which we may vary in this
formula, in an effort to get the maximum acceler-
ation possible. These include the wave-length,
the geometry, and the choice of what mode to
operate in, including the question of standing or
traveling wave. In the present' section we shall
consider these factors. We shall also consider
the various accelerator projects, and the perform-
ance to be expected from their designs.

First we consider the effect of wave-length. It
is well known tha. t the Qp of a resonant cavity is
proportional to its volume, divided by the
volume of a surface layer whose depth is the skin
depth 8, the constant of proportionality being of
the order of magnitude of unity. The skin depth
is given, in terms of the conductivity o (in mhos

per meter) and the free-space wave-length Xp

(in meters) by the expression

Xp

(377pro &

For a series of geometrically similar cavities of
diferent wave-lengths, the volume, of course, will

be proportional to the cube of the wave-length,
and the surface to the square of the wave-length.
Thus we shall have

p

Qp
——constant —=B(377o Xp) '*,

where 8 is a numerical constant of the order of
magnitude of unity. Substituting in (9), we find

8= o.(B)l(377P) l(377o/Xp) l

In other words, for a given power input per unit
length the voltage per unit length of acceleration
is inversely proportional to the fourth root of
the wave-length. Other things being equal, this
indicates that a short wave-length is better than
a long one for a linear accelerator. However, the
variation is so slow with wave-length that the
mechanical convenience, availability of power
sources, and such considerations are more im-

portant than wave-length. Also Eq. (13) shows
that the acceleration is proportional to the fourth
root of the electrical conductivity. This suggests
the obvious step of using a good conductor, such
as copper or silver, for the material of the
accelerator. It also suggests that an improvement
in acceleration could be obtained by going to
low temperatures, at which the conductivity of
metals will increase, but the improvement is so
small that it seems likely that the expense of
refrigeration would be greater than the expense
of providing extra power.

Next we consider the effect of geometry. This
effect is principally on the coefficient n, though
it also affects the Qp, and hence B. From its
definition, 0. will be large if the field along the s
axis, where the particles are to be accelerated,
is large for a given stored energy, or conversely
if the stored energy, and hence the fields else-
where in the cavity, are small for a given field

along the axis. As a first step in seeing how to
accomplish this, we note that the components of
electric and magnetic field in the traveling wave
resonating with the particle will vary with the
distance r from the axis according to a Bessel's
function, Jp 01 Jy, of the argument

pi 1q-:

E Xp' ),')
Since the phase velocity of this wave is given by
5 = clap/Xp, and must be less than the velocity of
light, we see that the argument of the Bessel
function must be imaginary, or zero in the limit-

ing case where v =c. Now the Bessel functions of
an imaginary argument increase more or less

exponentially, so that we see that the field com-
ponents mill increase rapidly as we go away from
the axis, more rapidly as the velocity becomes
smaller. In the limiting case of the velocity of
light, we find that the s component of electric
field is independent of r. This behavior is in

contrast to what is found in the unloaded guide,
where the phase velocity is greater than the
velocity of light, the field components are given

by Bessel functions of real arguments, and de-
crease as we go out from the axis.

If we had only the Fourier component which
resonates with the particle, then we should find

a large amount of stored energy off the axis, and
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a correspondingly small 0,. However, the other
Fourier components become more and more im-
portant as we go away from the axis, and they
have two effects: first, to allow the boundary
conditions at the surface of the guide to be
satisfied, which cannot be done with the resonant
component alone; and secondly, to cancel part
of this large field off the axis, and hence to im-
prove n. It would be very hard to give a general
discussion of the best structure, from the point
of view of large n and large Qo. For this reason
we shall proceed by specific example, speaking of
the structure of the M. I.T. accelerator, and
asking how it could be improved by various
possible changes of geometry. In Fig. 5, we show
schematically the lines of electric force for this
case. It operates in the m.-mode (that is, with a
phase difference of x, or 180', from one iris to
the next), and is designed for v/c=1. We see
that the field midway between irises stays ap-
proximately constant with increasing r, out to
about the radius of the hole in the iris, and then
begins to decrease, very much as in a closed
cylindrical cavity. This suggests that if the hole
in the iris were smaller, the decrease of field
would start earlier, and the stored energy would
be decreased. This is in fact the case. The calcu-
lated value of n for the M.I.T. case is 0.48,
while the limiting value when the hole in the
iris is reduced to zero, and we have a closed
cylindrical cavity, is i.03. The holes in the irises
in the M.I.T. case were made rather large so as
to be sure to let the electron beam through. If it
should be found that the beam was really more
concentrated, a future design could use con-
siderably smaller holes, with consequent im-
provement of 0.. This change of geometry makes
comparatively small change in Qo, or in B; the
value of J3 for the M. I.T. case is about 0.45,
compared to 0.39 for the limiting value of small
holes. Thus the quantity o.(B)'*, which is con-
cerned in Eq. (12), increases from 0.32 for the
M.I.T. case to 0.65 for the case of small holes.
The maximum improvement in voltage which
could be secured in this way is thus a factor of 2,
and much less than this would be realizable in
practice, since a considerable hole must certainly
be left for the electrons. The Stanford project
uses a considerably smaller hole than the M.I.T.

project, and its geometry is probably closer to
what would be used for construction of an actual
accelerator.

The example we have just used is for v=c.
For a velocity less than that of light, the situa-
tion changes. In the first place, as we have
already seen, in this case the field tends to in-
crease rapidly as we go away from the axis,
instead of staying constant. This increase will

presumably continue until we reach approxi-
mately the radius of the hole in the iris, after
which it will start to decrease. Thus we may
expect a considerably poorer a for large hole
size, for small velocities. However, as the hole
size is decreased this situation improves rapidly,
and the limiting value of n for zero hole size is
independent of the velocity of the wave. This is
not true, however, of Qo and of B.As the velocity
is decreased, the irises must be spaced closer
together, and there is more surface loss in pro-
portion to stored energy, so that Qo decreases,
going in the limit proportionally to the velocity
of the wave. Thus for very small velocities this
type of geometry is ine%cient. This is not serious
for electron acceleration; the M.I.T. project
proposes to use a Van de Graaff generator for
injection of electrons at 2 million electron volts,
at which the velocity is essentially equal to the
velocity of light, and most other electron acceler-
ation projects will start the electrons with at
least half the velocity of light. For positive ions,
however, with their much smaller velocities, the
iris type of cavity is unsuitable, until the ions
are accelerated up to a fairly high speed. The
structure shown in Fig. ib, used in the Berkeley
proton accelerator, is much better in this range.

Fic. 5. Lines of force in the M.I.T. accelerator. Spacing of
lines indicates field strength.
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Calculationf indicates that it has o. equal to
about 1.58, and B to 0.54, so that 0,(B)l for it is
about 1.16, much better than for the M. I.T. case,
and better than the case of iris cavities with
small holes. This geometry, however, is not
satisfactory for high velocities, for the diameter
of the drift tubes becomes smaller as the velocity
increases, and even on the very large scale of
dimensions resulting from the 200-megacycle
frequency the holes in the drift tubes are too
small to admit the proton beam.

We have so far been considering operation of
the iris tube in the m-mode; now let us ask if we
should have an improvement by operating in

some other mode. For instance, we could intro-
duce irises, just like those of Fig. 5, midway
between them. Then just the same field pattern
mould still represent a solution of Maxwell's
equations, for the electric lines will meet the new
irises at right angles, and will satisfy the correct
boundary conditions there. Thus we shall still
have resonance, with the same guide wave-
length, frequency, and phase velocity, but now
the irises will be twice as close together, the phase
change from one iris to the next is only 90'
instead of 180', and we have a vr/2 mode. We
now have two options. We may still set up a
standing wave, or we may set up a traveling
wave, a possibility which was impossible when
this wave was a m-mode. The possibility of a
traveling wave arises as follows. We have, with
the intermediate irises, not oddly the solution of
Fig. 5, but also another possible field, shifted
along one iris spacing with respect to the first.
These two possible solutions have the relation
of a sine and cosine to each other, and if they are
both excited together, with a 90' phase differ-
ence, they will represent a traveling wave, travel-
ing to the right or the left depending on whether
the 90' phase difference is positive or negative.
From these traveling waves we can get back to
our standing-wave solution by superposing travel-
ing waves in opposite directions, with equal
amplitudes. Let us consider successively the
standing-wave and the traveling-wave version of
the s./2-mode.

In the standing wave with the vr/2-mode, the

f The writer is much indebted to Dr. XV. K. H. Panofsky
for information leading to this and other numerical data
regarding the Berkeley project.

stored energy and field along the axis are just
as in the original m-mode tube. Hence o. has the
same value that we have already discussed. On
the other hand, Qo is seriously decreased. There
are twice as many irises to carry current and
produce loss, and yet just the same amount of
stored energy as before. If all the losses were in
the irises, this mould lead to twice the loss, and
a value of Qo only half as great as for the s--mode.
The situation is not so bad as this, since part of
the loss is in the cylindrical walls of the cavity,
and is the same in both cases. Calculation indi-
cates that the Qo for the s./2-mode should in
fact be about 0.70 times that in the x-mode. The
same factor is found in B. Thus for the s-/2

mode the accelerating voltage, being proportional
to o.(B)'*, will be only 0.84 times as great as for
the ~-mode. It is not an advantageous mode to
use, in other words, as far as power consumption
is concerned. It is to be assumed that since, in

going from the s.- to the ~/2 mode, there is this
much decrease in operating e%ciency, there will
be some loss in going from the x-mode to any
other mode, and the m-mode is presumably the
best from this point of view, involving as it
does the fewest irises per unit length, and hence
the least circuit losses.

Nevertheless the s/2 mode has a compensating
advantage, which is great enough so that in at
least one project, that at the General Electric
Company, it has been used in a standing-wave
tube. For a m/2 mode the group velocity v, will

have its maximum possible value, whereas for a
m-mode the group velocity is theoretically zero.
Thus the attenuation length Io can be consider-
able for a s/2 mode, whereas it is theoretically
zero for a m-mode. An accelerator of considerable
length can then be short in the s/2 mode, in
the sense of having a length less than lo, whereas
in the ~-mode the situation is quite different.
We shall discuss in a later section the peculiar
properties of a ~-mode, in the matter of its
attenuation length, and shall show that one can,
in fact, set up an accelerator of quite finite
length in this mode, and still have it act as a
short accelerator; but the corresponding length
for the s-/2 mode is much greater. Now we shall
see later that the problem of feeding power into
a short accelerator is much simpler than for a
long accelerator. In the G. E. project their
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interest is in accelerators of a medium length,
and it happens that by using the n./2 mode they
can treat it as a short accelerator, with conse-
quent ease in feeding, whereas if they had used
a m-mode it would have been considered long,
and their feeding problem would have been
more severe. On the other hand, in the M.I.T.
project, we are interested in facing the problem
of feeding a long accelerator, and this advantage
of the ~/2 mode is not present.

The other possible use of the s./2 mode is to
feed a traveling wave, and in this form it is
being used in the Stanford project. Here there is
still the decrease in 8 on account of the losses in
the extra irises, but there is an increase in n
which more than compensates for it. Let us con-
sider the standing wave, which is equivalent to
operation in the m-mode, to be set up by super-
position of two traveling waves, in opposite
directions. Only one of these traveling waves is
resonant with the electrons. By eliminating the
traveling wave in the opposite direction, which
means eliminating half the stored energy, the
traveling-wave tube still retains the same amount
of acceleration as the standing-wave tube. The
traveling-wave tube, in other words, produces
the same acceleration for half the power, and
hence from the derivation of Eq. (9), its n will
be v2 times as great. This is not strictly true in
case even the traveling wave contains an appreci-
able component of the reflected wave, as it will
as we approach the m-mode; then the improve-
ment becomes less and less, until as we approach
the m-mode the factor a for the traveling wave
approaches that of the ~-mode continuously.
For the s./2 mode, however, we can expect just
about the improvement V2 in n. When we couple
this with the decrease in 8 by the factor 0.7, we
are led to a net improvement in acceleration of
(2(0.7))'=1.18 in going from the ~-mode to the
traveling wave in the n./2 mode.

If there were no compensating disadvantages
in traveling-wave operation, this would be an
improvement worth having. In fact, in the
Stanford accelerator, by the combination of
going from standing to traveling wave, and by
reducing the size of the holes in the irises, the
factor n(B)l is improved with respect to the
M.I.T. accelerator by about a factor of 1.68,
from about 0.32 to about 0.54. This is balanced,

however, by two disadvantages. First, we have
already seen that a short traveling-wave acceler-
ator, such as the model that is being built at
present at Stanford, suffers with respect to a
standing-wave accelerator by a factor (l/(i+la)) '.
The present design of the Stanford accelerator
has an attenuation length of about 60 feet (I am
indebted to Professor Hansen for this figure),
and the total length will probably be about 20
feet. Thus this factor is 1/(1+ (60)/(20))'*=0.50.
Multiplying by 0.50, the net value of the nu-
merical coefficient for the Stanford accelerator
should be only about 0.27, as opposed to 0.32
for the M.I.T. accelerator. This situation mould
be corrected, however, if the length were made
of the order of magnitude of /o, or much longer,
as in the eventual plans at Stanford. As we have
pointed out earlier, there should be a range of
length in the neighborhood of /0 where the per-
formance of such a traveling-wave accelerator
would be slightly better than that of the stand-
ing-wave model. The second disadvantage of the
traveling-wave accelerator is encountered for
long accelerators, and is associated with the
difficulty of frequency stabilization of the oscil-
lators. This will be taken up later, and in the
writer's opinion furnishes a strong reason for
using standing-wave methods for long acceler-
ators, provided they are fed with self-excited
oscillators.

I t is interesting to compare over-all perform-
ance to be expected from three projects, at
M.I.T., Stanford, and Berkeley. Starting with
Eq. (13), we may put in numerical values for
the conductivity. We assume 5.5X10' mhos per
meter for copper. We use 0.8 of this value at
the microwave frequencies, for it is almost always
found that the observed unloaded Q of a micro-
wave cavity at 10-cm wavelength is less than
the theoretical value by about this amount, and
0.4 times this value for the Berkeley project to
agree with their observed Q. Then inserting
numerical values, (13) leads to

Z (megavolts per meter)

n(8)1(P (megawatts per meter))'—73—
(Xo (meters)) t

where we are to insert the additional factor
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(l/(l+lo))'forthe traveling-wave case, and where
the numerical factor 7.3, which involves the
actual conductivity of copper, is to be replaced
by about 6.9 in the microwave case, and 5.8 for
the Berkeley project. Then, inserting the values
mentioned already in the text, we find the
constant C=7.3n(B)'*(1/(l+lo) ~/(Xo) to be

C=3.9 for the M.I.T. accelerator,
=3.3 for the Stanford accelerator,
=6.1 for the Berkeley accelerator.

The figure for the Stanford accelerator would be
6.6, if it were not for the correction on account
of its short length. We see from these figures,
in other words, that the various accelerator
projects attain similar values for acceleration for
the same input power per unit length, in spite
of their different structures. The differences in
expected acceleration come largely from the
differences in power input. Thus in the M.I.T.
accelerator there will be one magnetron per
unit length of 32 cm. This magnetron will prob-
ably deliver about 0.8 megawatt, of which about
half will be fed into the accelerator, giving
P=O 4/0 32=.1.25. megawatts per meter, re-
sulting in K=4.4 megavolts per meter. In the
6.4 meters of the accelerator the total accelera-
tion of the electrons should be about 4.4X6.4
=28 million electron volts. In the present pre-
liminary model of the Stanford accelerator, the
design calls for only one magnetron, in its length
of about 20 feet, or 6.1 meters. Being a traveling-
wave tube, if it used the same magnetron as the
M.I.T. project, it might well feed the whole 0.8
megawatt into the accelerator, giving a power
per meter of 0.8/6. 1=0.131 megawatts per
meter, resulting in 8= 1.20 megavolts per meter,
or a total acceleration of about 6.1X1.30=7.3
megavolts. On the other hand, the Stanford
project hopes eventually to feed with high power
klystrons of new design, operated as power
amplifiers, periodically spaced with spacing com-
parable to 10, and it is too early to predict what
acceleration can be expected from it. The Berke-
ley accelerator has a power input of 2.34 mega-
watts, in its length of about 12.2 meters, so that
the power is 2.34/12.2=0.19 megawatt per
meter, resulting in K =2.66 megavolts per meter,
or about 32 million electron volts in the 12.2
meters of the accelerator, Of this, about 28

million electron volts is used for acceleration,
since the ions are not on the peak of the wave,
and this is superposed on the injection energy
of 4 Mev.

VII. INPUT IMPEDANCE OF STANDING-WAVE AND
TRAVELING-W'AVE TUBES

We shall find the distinction between long and
short accelerators, which we have taken up in

preceding sections, to be a distinction of the
greatest importance in the method of feeding
power into the accelerator, as well as in the
voltage to be expected from it. For considering
power feeding, we must investigate the input
impedance of the accelerator, looking into it
through the input through which the power is fed.
If we are using standing waves, there will be
resonant modes, separated from each other in

frequency, and the input impedance will go
through a resonant peak at each of these resonant
frequencies. The breadth of a resonant peak, in

frequency units, will be to the whole frequency
in the ratio 1/Qo, by familiar properties of
resonances. If this breadth is small compared to
the frequency separation between neighboring
modes, the modes mill be we11 separated. Then,
as we can show later, we can use the cavity
resonance to stabilize the frequency of the
oscillator, obtaining what we might call a reso-
nant feed. We shall show that this is the case
when the accelerator is short compared to the
attenuation length. On the other hand, we shall

show that if the accelerator is long compared to
the attenuation length, the modes will run
together, and resonant methods of feeding cannot
be used.

In a traveling-wave system, on the other hand,
there is no trace of resonance in the input im-

pedance, the cavity cannot be used to stabilize
the oscillator frequency, and we shall have to
use other methods of frequency control. The
reason is that resonance, as far as the impedance
is concerned, is produced by the interference of
the direct and reflected waves, and there is no
reflected wave in the traveling-wave system.
There is only a pass band, with gradually
changing input impedance, which between the
pass bands becomes purely imaginary. Let us
inquire how the resonant structure of the pass
band, containing many resonant peaks, which
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we meet with the standing-wave system, becomes
lost in the traveling-wave system. The mecha-
nism is simple, and we can look at it in two ways.
First, as we go to a long accelerator the amplitude
of the reflected wave from a reflecting termina-
tion will become small; thus even in the standing-
wave case there can be only a small resonant
effect on the input impedance, which will vanish
in the limit of very long tubes. Secondly, as we
change the termination of the tube from a
reflecting termination (for a standing-wave tube)
to a resistive termination (for a traveling-wave
tube), we decrease the loaded Q of each resonant
mode. This increases the breadth of the resonant
peaks, and we shall show that the broadening
on account of the resistive termination is just
enough to make neighboring resonance peaks
overlap each other, so that they can no longer be
resolved, in a spectroscopic sense. This statement
is essentially equivalent to that of the preceding
paragraph. For if the frequency separation be-
tween adjacent lines is Acr, the frequency co,

then the condition for the modes to run together,
in a standing-wave tube, is

AN/(v ~1/Qp.

On the other hand, the condition that the con-
tribution of the termination losses to the broaden-
ing should be enough to make the lines run
together, from (10), is

We shall show that Eq. (14) gives approximately
the actual frequency separation of modes in a
standing-wave tube. We see at once, then, that for
lengths less than the attenuation length the
broadening of the lines on account of the un-
loaded Q, in a standing-wave tube, is not enough
to make the lines run together, while for lengths
greater than the attenuation length it is.

We wish, then, to consider the spacing of the
resonant modes, and to show that that spacing is
given approximately by Eq. (14). In a resonant
cavity, with reflecting terminations at the ends,
the normal modes of oscillation are determined
by the condition that the total length, l, must be
a whole number of half guide wave-lengths, in
order that a boundary condition, such as the
vanishing of the tangential component of electric
field on the end surfaces, may be applied at both

I I I I I I I I
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FIG. 6. Calculation of resonant frequencies for resonant
loaded line.

ends. Thus we have l=mX, /2, where m is an
integer, or

Thus the resonant modes come for equally
spaced values of 1/X„spaced by amounts 1/2l,
or at equally spaced values of the abscissa in
Fig. 2. We note that the x-mode, in Fig. 2, comes
for 1/X, =1/2L; thus there will be X resonant
modes, corresponding to m = 1, 2, , N for the
terminated guide, the last one being the ~-mode,
if there are N sections in the guide so that
/=NL. Larger values of m, as is clear from the
periodicity of Fig. 2, will merely repeat values
already counted. We may now And the fre-
quencies, or values of 1/Xo, of these modes as
in Fig. 6, laying off the proper values of 1/X„
and finding the corresponding values of 1/Xp.
It is clear that these modes form a group of N
(or %+1) frequencies, in a restricted pass band,
the modes being clustered in the neighborhood of
the two edges of the pass band (or near the 0
and s.-modes, corresponding to m =0 and m =X),
and more widely spaced between (in the neigh-
borhood of the s./2 mode, corresponding to
nz=X/2). Since there are X modes in the pass
band, whose breadth is independent of N, it is
clear that the average spacing of modes is equal
to the breadth of the pass band, divided by N.

If now the spacing between two adjacent
modes, in Fig. 6, is A(1/Xo), which is Aa&/2sc,
then the diAerence of abscissas for the two points
is A(1/X, ) =1/2/. Then, using (5),

v, /c = (Ace/2s c)/(1/2l), v, = lA(u/s,
and

AM/M = s'Vg/Ml = 'Irsg/QP1VL.

Except for the factor x, which represents the
numerical crudity of our methods, this agrees
with Eq. (14),which we wished to prove. This also
shows the spacing to go inversely proportional
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to X, as we mentioned in the preceding para-
graph. We have thus proved our statements
made at the beginning of this section: that for a
short accelerator tube, in the technical sense in
which we are using it, using standing waves, the
modes will be mell separated, but that in a long
tube they will run together, and that the broaden-
ing of the resonant lines produced by the resistive
termination necessary to convert the tube from
a standing-wave to a traveling-wave tube is in
any case just enough to make the lines run
together.

VIII. THE SPECIAL CASE OF THE e-MODE TUBE

For the s-mode, the slope of the curve of 1/Xo
vs. 1/X, is zero, and our formulas would tell us
that the group velocity was zero, the mode
separation zero, the attenuation length zero, and
that any oscillator of any finite length would
have to be regarded as long. The actual situation
is not so extreme as this, and we take up in this
section this special case, on account of its im-
portance for the M. I.T. accelerator, and also
for the Berkeley' accelerator, which uses essen-
tially a 2~-mode, which has the same properties.
The essential feature is that, since the slope of
the curve of 1/Xo vs. 1/X, is zero, we can write
the relation between them, near the ~-mode,
in the form

1/Xo = 1/2L —aL(1/X, ) —(1/2L) ]',

where 1/2I. is the value of 1/X, for the s.-mode,
and where a is a constant. The x-mode comes
for m=N, in the formula 1/X, =m/2NL; the
next nearest mode comes for m=X —1, and
hence it has

1/Xg = (N —1)/2NL = 1/2I. —1/2NI. .

Substituting in the equation above, we have as
the difference of 1/Xobetween the s-mode (m =N)
and its nearest neighbor

This mode separation is not zero, as we should
have concluded from our elementary theory and
the fact that the group velocity is zero, but it
decreases, with increasing length of tube, as 1/N',
rather than as 1/N as we have with the mode
separations in the neighborhood of the s./2 mode.

For practical purposes, we may treat as an
attenuation length of the m-mode cavity that
length in which the frequency breadth of the
x-mode resonance becomes comparable to the
frequency difference between the m-mode and
its nearest neighbor, as computed above. A cavity
short compared to this length will have a well
separated m-mode, so that it can be fed by
resonant methods. The velocity of the beat
phenomenon between the x-mode and. its nearest
neighbor will be given, in terms of this separation,
by Eq. (5); we cannot speak of a group velocity,
for we find easily that the beat velocity of the
(N —k)th mode will be proportional to k, instead
of being independent of k, so that a disturbance
will not preserve its form as it spreads out in
the tube. Nevertheless, in the time To necessary
to build up energy in the cavity, the beats be-
tween the m-mode and its nearest neighbor will

have traveled essentially the distance equal to
the attenuation length as we have defined it,
and beats between other pairs of modes will all
have traveled by multiples of the length, so that
the disturbance will have had a chance to spread
itself over the length of the cavity fairly uni-

formly, though it will not have spread by
regular multiple refiections as in the ordinary
case. Thus for most of our purposes our definition
of an attenuation length is adequate, and it is
the best we can do in our present case. For the
M.I.T. accelerator, the attenuation length as so
defined will be of the order of magnitude of 4
or 5 meters, so that the 6-meter length con-
templated will correspond to a long accelerator.

IX. FEEDING OF POWER INTO
LINEAR ACCELERATORS

In the preceding sections we have seen that
there are two very different problems of linear
accelerators: the short and the long accelerator.
The distinction is determined by mhether the
length is short or long compared to the charac-
teristic length /0

——v, QO/co, which is essentially the
distance mhich a traveling wave will travel down
the tube, moving with its group velocity v„in
the time. QO/co in which the field has built up
substantially to its maximum value. In a short
accelerator it is much more efficient to use a
standing mave, so as to make the accelerator tube
into a resonant cavity, and it then has its modes
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we11 separated from each other. The problem is
then just that of feeding power into a resonant
cavity. It is immaterial where in the cavity the
input power is fed in. It is essential that the
oscillator be operated at exactly the resonant
frequency of the cavity, and if a number of
oscillators are required in parallel to supply the
necessary power, as will usually be the case,
they must operate not only with the same fre-

quency but in the same phase. We shall discuss
this problem later. The problem is quite different,
depending on whether we use self-excited oscil-
lators, such as magnetrons, whose frequency of
operation is determined by the resonant fre-
quency of the load into which they operate, or
power amplifiers, in which the frequency is
determined by the signal fed into the grid circuit
of the amplifier. In either case we shall find that
the phasing of oscillators for a short accelerator
is simple, and it has been successfully solved in

practice in a number of laboratories.
The more difficult, but more important, prob-

lem is that of the long accelerator. In this case
the distinction between traveling and standing-
wave excitation is unimportant; the feeding
problem is essentially the same in both cases.
We have seen that we may subdivide the long
accelerator into short sections, short compared
to the characteristic length lo, and that we must
feed power separately into each of these sections.
The sections may be physically separated, by
reflecting walls (containing, of course, holes large
enough for the particles to pass through), in
the case of standing-wave excitation; the separa-
tions may, however, be purely imaginary walls
in the standing-wave case, and must be in
traveling-wave excitation, since walls would pro-
duce rejections. We may then think of the feed-
ing of each of these sections like feeding a short
accelerator; but there must be some external
phasing circuit to make all the sections operate
in phase. No internal phase locking, such as we
shall describe for a short accelerator with self-
excited oscillators, can produce the necessary
phasing, for the accelerator is by hypothesis too
long for a signal from one end to reach the other
end before the field is built up. We must then
phase externally, and this again is quite a
different problem, depending on whether we use
self-excited oscillators or power amplifiers.

To phase a series of short accelerators requires
first of all a phasing signal: we must start from
one frequency standard, and amplify its signal
if necessary, so that it is available in sufhcient
intensity at each of the short accelerators. If the
short accelerators are fed with self-excited oscil-
lators, each one can be locked in phase by
feeding in a signal rather small in intensity com-
pared to the power output of the oscillator, as
we shall discuss in the next section. It is possible,
in any accelerator contemplated at present, to
use a single one of the self-excited oscillators to
produce the phasing signal. Its power may be
divided, by suitably branching outputs, so as to
How to all the short sections of accelerator. Its
pulse must start enough before the other oscil-
lators of the accelerating tube are turned on so
that it provides a signal as they build up their
oscillations, and this signal locks all the oscil-
lators in phase as they build up their intensity.
If necessary, protective switches (pre-TR's) can
be put in the line, between the phasing circuit
and the accelerator tube, to cut off' the phasing
circuit from the high power in the accelerator,
once the power is built up in the accelerator.
Experiments at M.I.T. indicate that it is possible
to phase the self-excited oscillators feeding the
separate short sections of accelerator in this way.

In case power amplifiers are used for operating
the accelerator, a phasing signal of the type just
described could be provided to each of the power
amplifiers. Then by several stages of amplifica-
tion this signal could be built up to the level
needed for operating the accelerator. Power
amplifiers are not at present available in the
microwave region, though in principle it should
be possible to build either high power klystrons
or resnatrons which could be operated as power
amplifiers, and which might have power outputs
comparable with the high power magnetrons
which are now available. The Stanford project,
as mentioned earlier, hopes eventually to use
klystron power amplifiers. The Yale project is
using power amplifiers of the triode type at 568
megacycles, near the limit of frequency for which
they are available.

It is obvious from the discussion we have just
given that. a principal part of the problem of
feeding power into the accelerator from self-
excited oscillators is the phasing of such oscil-
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1ators, either by signals from one such oscillator
to another, as in the locking of phase when many
oscillators are fed into a short accelerator, or by
an external phasing signal, as in a long ac-
celerator. We now take up this problem, showing
that under proper conditions a self-excited oscil-
lator can be phased by a small external signal.

X. POWER FEED FROM A SELF-
EXCITED OSCILLATOR

The problems of feeding power from a self-
excited oscillator into a resonant circuit, of
locking many oscillators in phase, and of de-
termining their phase by an external phasing
signal, has been treated elsewhere in more detail
by the writer (32), but we give here the essentials
of the argument. In the first place, the frequency
of operation of a self-excited oscillator is de-
termined by the resonant frequency of the tank
circuit or resonant cavity built into the oscillator.
It is determined by a fundamental equation of
operation (31), which is

g+jb f co (uo) 1 1
=j( ———)+—+ (G+j B). (15)

C+0 oooo oo ~ Qo Qwct

Let us describe the significance of this equation.
There is a certain electronic discharge within the
oscillator which provides its driving power. This
discharge is set up by a radiofrequency voltage
(which is itself produced by the oscillator), a.nd it
has a radiofrequency current. The quantity I:+jb
is the corresponding admittance, or ratio of cur-
rent to voltage, g being the conductance, b the
susceptance. Since the electronic discharge is
non-linear, g+ jb is a function of voltage. In fact,
self-excited oscillators in general have a compo-
nent of current in phase with the voltage which
decreases with increasing voltage, so that g de-
creases with increasing voltage, and is a definite
function of voltage. Likewise b is a function of
voltage, whose nature does not particularly con-
cern us, but we note that since g and b both are
determined when voltage is determined, we may
eliminate the voltage from the relation and find a
functional relation between b and g.

The other quantities in Eq. (15) are circuit pa-
rameters. We can show that the electronic admit-
tance g+ jb is effectively in shunt with a parallel
tuned circuit. Multiplying Eq. (15) by Choo, where

C is the capacity of this tuned circuit, coo the res-
onant frequency, we see that the first term on the
right, jC~, is the admittance of the capacity, the
next term —jCcoo'/a& is the admittance of the in-
ductance (it can be written 1/j Lcv, if choo = 1/L C),
and the next one is the admittance of the resist-
ance, Qo being the unloaded Q of the circuit. The
final terms represent the admittance of the ex-
ternal load attached to the oscillator; G+ jB
represents this admittance, normalized to be
dimensionless, and Q, o, which we may call ex-
ternal Q, represents the coupling of the oscillator
to the load, Q. o being small for tight coupling,
large for loose coupling.

The operation of the magnetron is now de-
termined in terms of the external load as follows.
We separate Eq. (15) into real and imaginary
parts. The real part then serves to determine the
electronic conductance g, in terms of the load
conductance G and the circuit parameters. As we
have just seen, there is a functional relation be-
tween g and the r-f voltage, so that the voltage is
determined by G. This in turn determines b. The
imaginary part of Eq. (15) then gives the fre-

quency, in terms of b and the susceptance 8 of the
load. If for simplicity we assume that b is zero, this
imaginary part gives, assuming that ~ is not far
from coo,

(16)

Thus the frequency of operation differs from the
resonant frequency of the tank circuit by an
amount proportional to the load susceptance, the
change of frequency, or frequency pulling as it is
called, being smaller, the looser the coupling of
the load, or the greater the external Q. In practice
the external Q of ordinary oscillators is rather
small; for instance, for conventional 3000-mega-
cycle magnetrons it is of the order of magnitude
of 100. Thus a reasonable susceptance in the
output load can produce a large amount of fre-
quency pulling, or tuning, of the magnetron.

Next we consider the operation of a self-
excited oscillator into a resonant load, such as we
have with a short linear accelerator cavity
operating in a standing wave. In this case, G+jB
represents the input admittance of the resonant
load, suitably normalized, and reduced to a cor-
rect plane of reference for the magnetron. This
will be a rapidly varying function of frequency, so
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that the frequency is concerned in both real and
imaginary parts of Eq. (15), and we must use a
more elaborate way to get the solution of that
equation. The most useful method is to use a com-
plex plane, in which we plot the locus of the right-
hand side of Eq. (15) for all values of frequency,
and the locus of the left-hand side for all values of
voltage, and find the intersection of the two
curves. This intersection determines both voltage
and frequency. An example is shown in Fig. 7,
representing the case actually met in the M. I.T.
accelerator design. This is the case where the load
is a parallel resonant circuit, in series with a
resistance. It can be realized in practice by taking
a resonant cavity, which as seen across a suitable
plane of reference is a parallel resonant circuit,
inserting a suitable T in the output line of the
cavity, at a suitable distance, putting a resistance
in one arm of the 1, and connecting the other
arm of the T, with suitable line length, to the
oscillator. We show in Fig. 7 two cases, (1) where
the resonant cavity is tuned to exactly the
magnetron frequency, and (2) where it is tuned
slightly away from it. We now see that in case
(1) there is one intersection of the two curves
representing the left and right sides of Eq. (15),
but in case (2) there are three intersections, one
corresponding to a frequency close to resonance,
the others to displaced frequencies.

To uriderstand the meaning of these three
intersections, we must consider the process of
starting the oscillation. One may examine a non-
steady state by assuming that the frequency is
complex, the real part being the ordinary fre-
quency, the imaginary part representing a rate of
build-up or decay of oscillation. The line repre-
senting the right-hand side of Eq. (15), in Fig. 7,
is the locus of real frequencies, but every point of
the plane corresponds to a complex frequency. As
we go along the locus of real frequencies in the
direction of increasing frequency, we find the
region of building up of amplitude on our right,
and the region of decay of amplitude on our left.
We now can discuss the process of build-up or
decay, for we have already noticed that an in-
crease of voltage corresponds to a decrease of g,
or corresponds to moving to the left on the g+ jb
curve. We thus start our oscillation, with small
voltage, at a point far to the right on the g —b

curve. The voltage increases, and we travel to the
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left on this curve. Finally, as we approach the
locus of real frequencies, the rate of build-up
diminishes to zero, and when we reach the locus
of real frequencies we are in a steady state.
Furthermore, at an intersection such as that in

case (1), this is a state of stable equilibrium. For
a small displacement to the left of the intersection,
corresponding to an increase of voltage, carries us
into a region of decreasing voltage, and the
voltage is restored to its equilibrium value.
Similarly a small displacement to the right re-
sults in a restoration to equilibrium. The same
thing is true of the intersections (a) and (c) of
case (2). On the other hand, the intersection (b)
of case (2) is unstable: a displacement to the
right, corresponding to a decrease of voltage,
brings us into a region of voltage decrease, and
this process continues, until we have displaced
the point to intersection (c), a stable intersection;
similarly a displacement to the left from (b)
results in a motion to point (a). Thus, out of the
three intersections, two represent stable modes of
operation, and one an unstable one.

We next ask which of the stable modes (a) and

(c) will be set up under given circumstances. The
answer is clear: if the oscillation is built up from a
small amplitude, so that the point moves along
the g —b curve from the right to the left, we shall
build up the first mode which we meet, or (c).
This, however, is not the mode representing
energy in the resonant cavity; it is a useless
mode, in which the resonant cavity is only
slightly excited, and most of the excitation takes
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place in the oscillator itself. Now as we tune the
cavity with respect to the oscillator, or vice versa,
the effect is to shift one curve up or down with
respect to the other, in Fig. 7, as from case (1) to
case (2); the amount of tuning measures the
vertical displacement. There will be only a small
range of tuning, then, in which the desired,
resonant mode is set up: that range in which the

g —b curve passes through the narrow opening or
neck of the approximately circular resonance
curve. To widen this tuning range, we increase
the series resistance; this has the effect of
widening the neck. The neck closes as the series
resistance goes to zero, if there is a finite length of
line between magnetron and cavity, so that with
too small a series resistance the system will not
operate in the resonant mode, whereas with a
considerable series resistance the tuning range for
resonant operation is considerable, but of course
with the disadvantage that the series resistance
absorbs a considerable fraction of the power.

In the process of setting up this circuit, we
have at the same time stabilized the frequency of
the oscillator. We note that the marks of constant
frequency difference, on the locus of real fre-
quencies in Fig. 7, are very widely spaced in the
resonant part of the curve. Thus a given amount
of tuning of oscillator with respect to cavity,
which shifts the locus up or down with respect to
the g —b curve, will make a very small change in

frequency. The frequency of operation must, in

fact, be within the resonant band of the resonant
cavity, and if this has a Q of the order of magni-
tude of many thousand, as it will if it forms the
resonant line of a linear accelerator, the oscillator
will have its frequency correspondingly stabilized.
This is an important feature, for it is hard to tune
most oscillators very accurately and hold them
closely on a predetermined frequency, and a
stabilizing cavity of this type automatically holds
the frequency to the correct value for the cavity.
The point is that, if the oscillator frequency is
tuned slightly off from the resonator frequency,
the resonator susceptance takes on such a large
value that the frequency pulling resulting from
this susceptance pulls the frequency of the oscil-
lator back to the resonator frequency.

We have now considered the operation of a
self-excited oscillator into a non-resonant and a
resonant load. We have found that with a non-

resonant load its frequency is determined by the
resonant frequency of the tank circuit, but with
a resonant load of high Q, tuned approximately to
the same frequency as the tank circuit, the fre-

quency will be stabilized by the resonant load
rather than by the tank circuit. This is true only
if we have correctly introduced a resistance into
the circuit; for, as we usually find with two
resonant circuits tuned to approximately the
same frequency, we have two possible modes of
operation, and one may be eliminated by proper
use of resistance. Next we consider the operation
of a self-excited oscillator in the presence of an
external signal, of approximately its own fre-

quency, fed in from outside.
An external signal of -exactly the same fre-

quency as the power being put out by an oscil-
lator, fed in through the output line from the
oscillator, cannot be distinguished from a re-
Hected wave. It will then simulate a correction to
the reHection coefficient, or to the impedance or
admittance of the load, of magnitude proportional
to the ratio of the amplitude of the external signal
to the amplitude of the signal being produced by
the oscillator, and of phase depending on the
phase difference between signal and output
power. In other words, it represents an addition
to the last term of Eq. (15), of the order of
magnitude of (1/Q, t) times the ratio of external
signal amplitude to output signal amplitude, and
arbitrary phase. This term can have just the
same effect on the oscillator that a resistive or
reactive load would have and, in particular, it can
have the effect of pulling the frequency, ac-
cording to Eq. (16). If originally the oscillator
were operating at a different frequency from the
signal, the signal can pull the oscillator into
synchronism with it, and into a definite phase re-
lationship with it, provided there is some phase
for which the reactive effect of the simulated
admittance of the signal is large enough to pro-
vide the necessary frequency pulling. Examina-
tion of the transient situation when the external
signal is turned on shows that such a phase
locking will occur if it is possible (32). As soon as
the external signal is present, the phase difference
between external signal and oscillator will begin
to approach just the right value to produce this
frequency pulling, and after a very short time the
oscillator will have settled down to a steady
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state, synchronous with the external signal, and
with a phase angle between them which is
greater, the greater the original frequency differ-
ence between signal and oscillator.

Thus we can lock an oscillator to an external
signal, and so make its frequency exactly equal to
that of the signal. A relatively small signal can
produce this locking. Thus with an external Q of
100, and a signal voltage 1/10 of the voltage in

the oscillator output, which means a signal power
1/100 of the oscillator power, Eq. (16) shows that
the maximum frequency pulling of the oscillator
which the signal can produce is about 1/2000 of
the whole frequency. If the oscillator were
originally tuned closer than this to the signal,
there would be a correspondingly smaller phase
difference between the signal and the oscillator
when the steady state was reached. The situation
will be altered if the oscillator were originally
stabilized by an external resonant cavity, as we
have discussed earlier in this section; for then
as far as frequency pulling is concerned, the
magnetron acts essentially as if it had the Q of the
cavity, rather than its normal external Q. Thus in

this case there will be a much smaller range over
which locking can occur, but the oscillator is
already tuned much more accurately to the
desired frequency, by its stabilizing cavity, so
that a large range is not needed. If the external
signal lies well centered in the resonant band of
the stabilizing cavity, it will still be able to lock
the oscillator into synchronism.

Even with a signal smaller than that required
to produce locking in the steady state, it may be
possible to start an oscillator in phase with the
external signal, and for it to continue in phase
simply on account of having its frequency agree
well enough with that of the signal. During the
build-up of an oscillator, naturally its amplitude
is less than when it has reached the steady state,
and the signal voltage will be larger in proportion,
and hence will correspond to a larger simulated
admittance capable of producing more frequency
pulling. Thus it was found during the war (12)
that a signal only 10 4 times as strong in power,
or 1/100 as strong in voltage, as the Anal signal of
a magnetron, was capable of starting it off in
phase. Furthermore, it is possible to tune two
oscillators, stabilized by stabilizing cavities, so
closely together that they do not drift out of

phase by more than a small fraction of a cycle in

the time of a pulse of the length which we wish to
use in a linear accelerator. Thus if relatively weak
signals are used to start the oscillators in the
correct phase, it should be possible to adjust them
so that they stay in phase.

We have spoken about the phasing of an oscil-
lator by external signal; let us consider also the
phasing of an oscillator by another. We can have
a resonant cavity, such as a short linear acceler-
ator tube, with a number of feeds, and an
oscillator feeding into each. Each oscillator then
communicates with each other, through the
cavity, and if the cavity is short, the time re-
quired for a signal to go from one to another is
short compared to the time of build-up of the
Beld in the cavity. Each oscillator then sends a
signal to each other, which can be used to lock the
oscillators in phase with each other. The coupling
is so strong, and the phasing consequently so
positive, that the oscillators under these circum-
stances will lock very completely together. Closer
examination of the strength of locking shows that
if each oscillator is tuned near enough to the fre-
quency of the cavity so that it locks to the
stabilizing cavity, it will have far more signal
from the other oscillators than it needs to lock to
them in phase. The only trouble with this system
is a short period of confusion at the beginning of
the pulse, when the different oscillators are com-
peting to establish the phase in which they will

all operate. This can be avoided, however, by
introducing a phasing signal before they start,
either from outside, or by starting one of the
oscillators ahead of the others. In that case, this
signal starts the oscillators in phase, and they
continue to lock together in a very positive and
satisfactory way.

From what we have seen in this section, it then
seems that a long linear accelerator can be oper-
ated with self-excited oscillators in the following
manner. It is subdivided, either by actual physical
subdivisions or by imaginary surfaces, into a set
of short sections. Into each of these sections a
phasing signal is fed, from a pulsed oscillator
which supplies all these sections, through lines
whose lengths of course must be adjusted to give
proper delays and phases. Each of the short
sections then will have a number of self-excited
oscillators feeding into it, which are triggered a
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short interval after the phasing signal has started.
They will start oscillation in synchronism with
the phasing signal, will then lock to each other
and be frequency stabilized by the accelerator
cavity (if this is a standing-wave cavity), and if
all short sections are tuned suAiciently closely to
the same frequency, all the short sections will

operate in phase with each other for the duration
of the pulse.

It is clear that careful tuning of the various
short sections to the same frequency is essential;
in the next section we take up the question of
tolerances, to see whether it is practicable to hold
the necessary tolerances in a very long accelerator.

XL TOLERANCES IN THE LONG ACCELERATOR

In order that an electron or ion may resonate
with the appropriate Fourier component of the
field, that field must have the correct propagation
velocity. For positive ion acceleration, where for
most energies the velocity is small compared to
that of light, we shall see in later sections that
there is a stable bunching phenomenon, by which
bunches of particles are formed and automatically
adjust their velocity to the velocity of the field.
Thus, in this case a very accurately determined
velocity of the wave is not necessary. However,
with electrons they reach the velocity of light to
all intents and purposes in the first few feet of the
accelerator, and for the rest of its length they
travel with exactly this velocity. Thus the wave
in the tube must travel with the velocity of light
as well. Furthermore, if at the end of the acceler-
ator the phase of the wave is different from what
it should be by an appreciable fraction of 2m. , the
electrons will not be in the correct phase relation-
ship', will not be properly accelerated, and the
accelerator will not operate properly. It is neces-
sary, then, to have this phase correct within a
small tolerance, and this demands accurate me-
chanical dimensions and accurate frequency con-
trol. We shall ask in this section what this
demands, and whether the requirements can be
met.

The situation is quite diferent, depending on
what type of accelerator is being considered. The
difficulties become severe only with long ac-
celerators. Let us start, then, by considering the
long accelerator made up of many short sections,
each of these short sections being resonant, and

the various sections controlled in phase by a
phasing circuit. First we consider the conditions
on an individual short section, then on their rela-
tive phasing. The short section will have a sharply
defined resonant frequency, the breadth of the
resonance peak being to the whole frequency in
the ratio 1/Qo. We first note that it is unnecessary
to control the frequency of the signal to much
better than the breadth of this peak. The reason
comes in the pulse length used. As we have
stated, most of the time of the pulse will be
occupied in building up the oscillation. The time
required for the electron or ion to traverse the
accelerator, after the field is built up, will not be
large compared to the build-up time. But the
spectrum of a short pulse of perfectly monochro-
matic vibration is broadened, the frequency
breadth being to the total frequency in the ratio
of the reciprocal of the number of waves in the
train. In our case, the number of waves in the
train is of the order of Qo, since this is the number
of periods required to build up the field in the
cavity. Thus the spectrum width of the pulse will
be comparable with the breadth of the resonance
peak of the cavity. Since the cavity, operated as
a stabilizing cavity, can hold the frequency of a
self-excited oscillator to a tolerance well within
the band width of the cavity, it should be easy to
hold the frequency within the required limits.

There is the possibility, however, that the
cavity may not be constructed to have exactly
the right resonant frequency; an incorrect rela-
tion of frequency and wave-length will naturally
lead to the wrong velocity. In practice, one can
construct a short section having the correct
resonant frequency, for a given length, to about
two or three parts in ten thousand, and this is not
accurate enough for our purpose, since with a Qo
of the order of 18,000, as in the M.I.T. acceler-
ator, the band width will be narrower than this.
It is therefore necessary to introduce a tuner into
each short section, so as to adjust its frequency
slightly and correct errors in machining. The
problem of testing the tuning is essentially simple.
We have only to take a standard signal, whose
frequency is just what is desired, to beat this
signal with the pulsed power in one of the short
sections, and to observe whether there are any
beats between the two signals in the time of a
pulse. , If the accelerator section and its oscillators
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are tuned so that there are no beats in this length
of time, that establishes the correctness of the
frequency to the required accuracy. Furthermore,
if each section is tuned in this way to the stand-
ard signal, it is clear that if all sections are
started in phase with each other they will remain
in phase with each other during the pulse, to the
required accuracy, and this is all that one can ask.
It is not difficult in practice to tune stabilized
oscillators to this degree of accuracy, and to
maintain the tuning over periods of time.

We now ask about the relative adjustment of
short sections of the accelerator, at long distances
from each other, say at opposite en.ds of a long
accelerator. If we are thinking of an accelerator
many tens of thousands of wave-lengths long, it
is clear that an error of a small fraction of a wave-
length will be a very small fractional error indeed.
One should be able to hold manufacturing toler-
ances closely enough to make a tube of this
length, with errors of a few parts in a hundred
thousand in its total length, for there will be
widespread cancelation of chance errors. If the
over-all length is somewhat wrong, however, this
can be compensated for by an appropriate change
in the resonance frequency from the nominal
value, which can be done if each section is
equipped with a tuner. For the sake of definite-
ness, suppose the accelerator is made, as the
M.I.T. one is, to operate in the x-mode. Every
half wave-length there is an iris. Therefore the
total number of half wave-lengths in the whole
tube can be found merely by counting. By the
method of operation which we are suggesting, it
is certain that each short section will operate in
the m-mode. Then the wave-length of operation
is necessarily the total length, divided by the
number of wave-lengths. It is then a matter of
arithmetic, together with a knowledge of the
velocity of light, to determine the correct fre-
quency, and by means of the separate tuners of
the short sections, they can all be tuned to
operate with this frequency.

By the means just described it should not be
hard to adjust an accelerator consisting of short
resonant sections, each independently adjustable
in frequency and phase, to the required tolerance.
This circuit, as we have seen, automatically con-
tains a stabilizing circuit for the oscillators,
of the required sensitivity. When we consider a

traveling-wave system, however, the situation is
quite different. Here there is no resonant system
for frequency stabilization. If we use self-excited
oscillators, we must either rely on the frequency
constancy of the separate oscillators as they
stand, or must supply separate stabilizing cavities
for them. If we do the latter, we add much compli-
cation and lose much of the advantage of the
traveling-wave system. If we do not, it is a grave
question whether the oscillators can be kept in
tune accurately enough to synchronize over a
pulse, and to be locked in phase by the initial
phasing signal. The frequency put out by a
magnetron is a function of its temperature and
operating conditions, and these are hard to regu-
late. The stabilizing cavity smooths out Huctua-
tions from these causes, and it seems to the writer
practically necessary for proper operation. It is
significant that the British group at TRE, who
are designing a traveling-wave accelerator to be
operated by a magnetron, indicate in their re-
ports that frequency variation is one of the
features limiting the possible length, and the fre-
quency variations which they contemplate are
much larger than those which would be met in the
case of frequency stabilization by a resonant ac-
celerator, seriously limiting their estimate of the
maximum acceleration which they can obtain.
The other possibility with a traveling-wave tube
is to feed from power amplifiers, in which the fre-
quency is controlled from a well regulated
phasing signal. This seems to the writer the only
method of feeding a long traveling-wave tube
which is likely to be successful. This feeling is
shared by the Stanford group, which is basing its
plans on a high power klystron amplifier, still to
be designed.

An additional problem with a traveling-wave
tube is that there is no way of dividing up the
tube into physically separate short sections. Thus
we lose the possibility of easily testing the reso-
nant frequency of each section, and adjusting
them to synchronism by separate tuners. We can,
of course, terminate each section by rejecting
ends during construction, test its resonant fre-
quency, and adjust this with tuners inserted
periodically down the line. After assembly, how-
ever, there is no way of testing by checking the
resonant frequencies. It seems likely that the best
method of testing would be to have a parallel
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phasing signal, in the form of a traveling wave in
a coaxial line, and to make phase comparisons
between this signal and that in the main acceler-
ator, at various points down the line. This type of
comparison would be more complicated than in
the standing-wave case, but probably would not
be impossible.

If high power klystron power amplifiers were
available at present, it is entirely possible that on
account of the small advantage in the matter of
acceleration possessed by the traveling-wave ac-
celerator, it would be the most desirable type to
build. On the other hand, at present, when high
power magnetrons are available and high power
klystrons are not, the problem of frequency and
tolerance control of the standing-wave acceler-
ator is so much simpler than with the traveling-
wave accelerator that the M.I.T. project is pre-
ferring to use a standing-wave system.

XII. THE DYNAMICS OF PARTICLES IN
THE ACCELERATOR

. So far we have been speaking entirely of the
mechanism of setting up an accelerating field in

the tube, and the nature of that tube. Now we
consider the problem of the motion of particles in
this accelerating field. We divide the problem
into two parts: first, the longitudinal motion of
particles traveling on the axis of the accelerator;
secondly, the transverse motion of particles, and
focusing problems. Furthermore, for considering
the longitudinal motion, we divide the discussion
into two parts: first, motion in an external field

of constant velocity; secondly, motion in a field

of varying velocity. So far, we have assumed
throughout that the properties of the accelerator
tube did not vary from point to point, so that the
velocity of propagation of the resonant mode was
constant. If the particles are electrons traveling
with the velocity of light, this assumption of
course is correct, but with positive ions, or with
electrons as they are being accelerated up to the
velocity of light, the velocity of the wave must
increase to match the increase of the velocity of
the particles.

For a uniform velocity we have already seen
that only one sinusoidal component of field is of
importance, since the others have effects which
cancel out over a period. The longitudinal, or s,
component of electric field for this sinusoidal

component may be written Z, =E sin4p(t —s/vp),
where co is the resonant frequency, vp the velocity
of propagation. This is the value holding on the s
axis, which alone we consider at the moment. In
this field, a particle of rest mass mp, charge e, will
have an equation of motion

dp/dt = eZ sin4p(t —s/vp),

where p, the momentum, is given by

p =mpv/(1 v'/c—') ', v =-ds/dt.

It is convenient to introduce moving axes,
moving with the velocity vp of the traveling wave.
If s' is the displacement with respect to these
moving axes, we then have

s' =s —vpl.

We can now write the equations of motion with
respect to these moving axes in Hamiltonian
form: essentially this possibility was pointed out
to the writer by Mr. S. J. Mason, of M. I.T., and
a similar method has also been used in the TRE
reports. We set up a Hamiltonian function

H = (mp'c4+ p'c') *'—pvp

eE(vp/4p) cos(4ps /vp). (17)

In terms of it, we verify immediately by substitu-
tion that the equation of motion may be rewritten
in the form

dp/dt = BH//Bs', dz'/dt =—BH/Bp.

Since these are Hamilton's equations, with a
Hamiltonian function not involving the time
explicitly, they show that II remains constant
during the motion. Thus if we set up a phase
space in which s is abscissa, p is ordinate, and
draw lines II=constant in this phase space, these
lines will give the relation between momentum
and coordinate for a particle during its motion,
determining the speed of the particle at an
arbitrary point of its path.

In Fig. 8, we plot such a phase space for the
case vp

——c/2, where the wave is traveling with
half the velocity of light; later in Fig. 9 we shall
consider for comparison the case vp =c.As abscissa,
we use the dimensionless quantity 4ps'/vp, which
increases by 2x when we go along the s axis by
one wave-length of the wave. As ordinate, we use
the dimensionless quantity p/mpc. We also give a
scale of (mp'c'+p'c'): —mpc, which is the ordi-
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nary kinetic energy of the particle, expressed in
terms of the rest energy moc . Energy contours
are drawn for constant values of the dimension-
less quantity II/moc'. As we see from Eq. (17),
there is then one parameter in the Hamiltonian
function, which in dimensionless form becomes

(eE/mac') (vo/ra) .

We can easily see the physical significance of this
parameter. If P, is . the wave-length of the
resonant wave, which is traveling with velocity
vo, we have vo/co=A, /2x. Thus our parameter
gives the energy which the particle picks up in
1/2~ wave-lengths, if it is subject to the maxi-
mum acceleration of the field, divided by the rest
energy of the particle. In Fig. 8, this quantity is
taken to be 0.10, which is of the order of magni-
tude of what can be realized in practice in the
M.I.T. accelerator.

When we examine Fig. 8, we find first a set of
closed oval curves, representing periodic orbits.
These surround the points where the potential en-
ergy part of the Hamiltonian function (Eq. (17))
has a minimum, and where the momentum is that

of a particle traveling with velocity vo. These mov-
ing points of stable equilibrium are of course the
positions where the force is zero, and where the
particle will be pushed backward if it is ahead of
the position, forward if it is behind, or where the
force at a fixed point of space is instantaneously
zero, but is increasing as the traveling wave
moves along. A particle which is lagging behind
the stable position will then be speeded up, so
that its velocity will get greater than vo,. it will

then advance with respect to the wave, getting
out of the accelerating into the retarding phase,
will then slow down again to velocity vo and
below it, will lag behind, and so will repeat its
cycle, as in the succession of points a, b, c, d in

Fig. 8. In other words, the representative point
of the particle will traverse the closed curve of
Fig. 8 in a clockwise direction.

On the other hand, there can also be orbits like
e in Fig. 8, in which the velocity of the particle is
so much greater than that of the wave that, even
though it is slowed down in the retarding phase of
the wave, it still advances with respect to the
wave, going from one potential minimum on to
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the next, and the next, and so on. Similarly there
are retrograde orbits like f, in. which the velocity
is so much less than vp that the particle continually
slips behind the wave. The limiting orbit between
the periodic and the advancing or retrogressing
orbits is shown in g. It passes through a position
of unstable equilibrium, corresponding again to
motion with the velocity vp, but 180' out of phase
from the position of stable equilibrium. At this
unstable position the force is again zero, as it is at
the stable position, but the force is decreasing
with time, so that a particle which has advanced
in phase with respect to the wave finds itself in an
accelerating field, and advances even more, while
if it lags it is in a retarding field, and lags even
more.

We recognize the physical similarity of this
motion to the motion of a pendulum, a particle
constrained to move in a vertical plane at a fixed
distance from a pivot, with a uniform downward
force. With a pendulum, motions of small ampli-
tude are periodic, while with large energy the
particle rotates round and round, slowing down
at the top of its path, but never changing direc-
tion. Here also there is a limiting orbit passing
through the position of unstable equilibrium:
that corresponding to the case where the particle
is just at rest at the top of its path, but is dis-
placed an infinitesimal amount from this position,
rolls down to the bottom, up the other side, just
coming to rest again at the top, and as a matter
of fact requiring an infinite time to do it. We
shall show in a moment that the resemblance to
the problem of the pendulum is fundamental, and
not just superficial; we can use the analogy with
the pendulum to derive results about periods and
amplitudes of oscillation, and other properties of
the motion. Thus for small amplitudes (that is,
small ovals in Fig. 8), the period of oscilla, tion is
independent of the amplitude, but for larger

amplitudes the period will get longer, becoming
infinite in the limiting orbit which we have just
discussed. As we then go into the non-oscillating
orbits (which would be the rotating orbits in the
pendulum problem), the time of rotation again
starts infinite as we go away from the limiting
orbit, but when the orbit is far from this value,
corresponding in our case to a particle with
velocity much greater or much less than vp, the
periodic field produces only a minor perturbation,

and the motion has nearly uniform velocity, from
which the period of rotation can be found at once.

We can go further with this analogy, and use it
to compute periods and amplitudes, if we express
our mathematics in proper form. The only thing
keeping our problem from having exactly the
form of the pendulum problem is the relativistic
nature of the mass of the particle. During an
oscillation, for instance, the energy of the particle
goes from a minimum to a maximum. If this
change of energy is large enough to produce an
appreciable change of relativistic mass, then the
problem is appreciably different from the pendu-
lum problem, but if this change of mass can be
neglected, we can reduce it to the pendulum
problem. This can be expressed in mathematical
form in the following way. Let us write v' =dz'/dt
= v —vp, and let us then expand the momentum p
in powers of v'. We find for the beginning of this
expansion

vE pvp

p= + + ~ ~ ~

(1 —vp'/c')l (1 —vo'/c'):

pE pv

=Pp+miv + =Pp+P'+

where m~ ——mo/(1 —vo'/c')' is the longitudinal
mass. In a similar way we can expand the
Hamiltonian function (Eq. (17)) in powers of v'.

We find that in doing this we must carry the ex-
pansion of p one stage further than we have just
done above, but the final answer is simply

vp Ms
/

—eE—cos——
2m~ or v, (18)

p"
H =moc'(1 —vp'/c') l+

=Hp+II',

where Hp is the first term above, H' the remainder.
In terms of these quantities, the equations of
motion become

dP'/dt = BH'/Bz—', dz'/dt = BH'/8 p'

These are just the equations of motion for
a particle of mass m&, oscillating in a field
—eE sinuous'/vo, or the pendulum equations. We
may now use a new phase space, in which s' and
p' are abscissa and ordinate. The equilibrium
position in Fig. 8 is now moved down to the axis
of abscissas, but aside from this, the contours of
ronstant H' in the new phase space will look like
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those of constant II in Fig. 8, with only small
modifications on account of the fact that we have
neglected higher powers of v'.

We may now use our knowledge of the pendu-
lum problem to compute various properties. of the
motion, correct to our present approximation.
The angular frequency of small oscillations is the
square root of the force constant, over the mass.
For small oscillation s the restoring force is
—eEa&s'/vo, the sine being replaced by its argu-
ment. Thus the angular frequency of oscillation,
which we shall call coo, is

t' e co s

E—(1 —vo'/c')
I~a vo ) (19)

where XEO is the kinetic energy of a particle
moving with velocity vo. Then, for instance, the
maximum and minimum kinetic energies of a
particle moving with a given phase amplitude are

p2g
KE=KEoam, vo)

~
=KEo

im, )
80 f' 8EVO

& (amplitude) moc'—
~

(20)
c bmoc'co(1 —voo/c')&)

It is, of course, an entirely different quantity
from the angular frequency co of the electromag-
netic wave. We may also compute the amplitude
of oscillation, in phase cps'/vo, of a particle which
has an oscillatory energy 8' in the moving coordi-
nate system. We readily find this amplitude to be
given by the equation

W/moc' = o' (amplitude)' (eE/moc') (vo/u&).

This formula is correct for small amplitudes,
where the energy is proportional to the amplitude.
Its error for large amplitudes may be seen from
the limiting case of the amplitude of x, where our
formula would give W/moc'=7r'/2(eEvo/moc'ra),
whereas the correct numerical coefficient should
be 2, as we see at once from Eq. (18).

It is important to note that the quantity 8',
measuring the energy of oscillation in the moving
coordinate system, does not represent the change
in the kinetic energy of the particle in the fixed
system. We can show easily that the total kinetic
energy is

XE=EEo+m,vov'+

and for the maximum and minimum kinetic
energies of a particle in the limiting oscillatory
orbit, the one which passes through the positions
of unstable equilibrium, we have

v, ( eEvo
KE=KEo~2moc'

~ ~
. (21)

c bmoc'co(1 —vo'/c')&)

These formulas, we remember, hold only as long
as the change of kinetic energy is small enough so
that the change of mass over the oscillation is not
serious; from the formula we have just written,
we see that this approximation is not good for the
case eEvo/moc'a& = 1/10, used in Fig. 8, but even in

this case it gives an answer which is not seriously
in error. Formulas (20) and (21), of course, gimme

changes of energy which could be found from the
average force exerted by the accelerating field on
the particle, during the half-period when it is
going from its minimum energy to its maximum,
multiplied by the distance which it has traveled
in the field, at its velocity of approximately vo,

during its acceleration.
We now consider how curves of the nature of

Fig. 8 c'hange when various parameters change. If
the accelerating field E changes, the ovals become
widened or flattened vertically. From Eq. (20) and
Eq. (21), we see that their height is proportional
to (E)l, for a fixed value of vo. The case shown in

Fig. 8 corresponds to a large acceleration, which
can be attained with electrons. On the other
hand, even with the same accelerating field, but
with positive ions, Eq. (20) and Eq. (21) show that
the ovals would become Hattened in a ratio of the
square root of the ratio of masses of electron and
positive ion, corresponding to the fact. that a
given field can make a much smaller change in
the energy of a positive ion, in proportion to its
rest energy, in a given distance. The other
parameter at our disposal is the velocity vo of the
wave. As this velocity is increased to approach
the velocity of light, a number of changes occur.
In the first place, the position of stable equilib-
rium rises without limit; for its height measures
the momentum of a particle of velocity vo, and this
momentum becomes infinite as vo approaches c. At
the same time the frequency of oscillation, given
by Eq. (19), goes to zero, or the period becomes
infinite. The reason is that even a very large
change in energy, or momentum, of the particle
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we must have vp a function of position. In place of
our earlier expression, we must then assume a
voltage E,=E sin&o(t —J'ds/vp(s)), where for sim-

plicity we take only the case where 8 is inde-
pendent of s. We now ask how to solve the
dynamical problem of motion of particles in such
a field. We cannot in this case carry through an
exact solution such as that which led to the
Hamiltonian equation (17), and to the curves of
Figs. 8 and 9, but we can give a discussion equiv-
alent to that of our pendulum approximation. Let
us then start by making that approximation.

In our earlier case we measured our displace-
ment s' of the particle relative to a moving point
whose coordinate was vpt, which moved with the
wave; in fact, we chose our phase for the field in
such a way that this was the point at which the
field was always zero, so that the moving point
s =0 represented a position of equilibrium, at
which a particle could remain permanently at
rest. In this case let us similarly find a moving
point which represents a possible position of
equilibrium, and let s' be the displacement from
that point. Let zp(t) represent the displacement of
this equilibrium position as a function of time,
and let pp(t) be the momentum of a particle which
travels along at this equilibrium position; since it
now is an accelerated particle, pp will depend on
time. Evidently we shall have

mpvp
pp

(1 —vo'/c') '

where vp is to be computed at the point sp which
the particle has reached at time t. Then the
equation of motion of the equilibrium particle is

dPo
=eE sin

~

t
dt vp(sp) J

We shall assume that the equilibrium particle is
located at constant phase of the accelerating
field; that is, that the velocity vp is adjusted to
correspond to the motion of a particle with
constant force. Thus we must have

dip
l

py

vo(so)

where tp is a constant. This equation defines sp as

a function of t. Furthermore, it allows us to find
t p from the known acceleration. If the spacings of
irises are so arranged as to lead to a given ac-
celeration, we find the force which would be
necessary to produce this acceleration, and tp is a
constant such that eBsincotp is the necessary
force. We note that this equation can be satisfied
only if the assumed acceleration is less than eE,
the maximum acceleration which the field can
produce at the most favorable phase.

Now we consider a particle whose position is
given by s=s'+op, so that s' measures its dis-
placement from equilibrium, and v'=ds'/dt the
time rate of change of this displacement. We
shall limit ourselves to small enough values of s'

so that we may assume the velocity of the
traveling wave at s to be the same as at sp.

Furthermore, we shall limit ourselves to short
enough intervals of time so that the longitudinal
mass of the particle and vp will not change ap-
preciably with time. Then the force may be
written as

eE sinco(t —J'ds/vp(s) )
= eZ since (t —J'dso/vo(zo) —z /vo)

= eE sinÃ(tp —s/vp).

The time rate of change of the momentum of the
particle will be

dp dpp 4v Qv

+m~———eE sincotp+mg —.
dt dt dt dt

Thus as our equation of motion we have

dv' ( s' )
mr eE sinoo( tp —

(
—s——inootp

Vp)

This equation may be derived from the Hamil-
tonian function

P vp t' z
II =——eE COSA~ tp —~+—ebs' sin~to, (22)

2m,

where p'=m&v', and where m& is treated as a
constant.

The potential energy of Eq. (22) is shown in

Fig. 10, as a function of s . It is like the cosine
curve resulting from the pendulum problem, but
tipped up, so as to be unsymmetrical. We can
consider the motion, by the well-known method
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FIG. 10. Potential energy as function of s' for
accelerated particle.

of the energy integral. We draw a horizontal line
in Fig. 10, whose height is H . The vertical dis-
tance between this curve and the potential
energy gives the kinetic energy. In regions where
this is positive, so that H' is greater than the
potential energy, the kinetic energy is positive
and motion can occur. Thus we note that in a
case like the energy H~ we have an oscillatory
motion, between points u and b, and also a
motion, to the left of c, in which the particle
moves to the right, reverses at c, and then moves
to the left again. For a higher energy, as H~, no
oscillatory motion is possible. In other words,
oscillatory motions are possible about s' =0 only
for a narrow range of energies —narrower as the
curve is more steeply tipped. We see from Eq. (22)
that this steepness of tipping is increased as co/p

approaches s./2. This value is the phase angle to
give the maximum acceleration to the equilib-
rium orbit. At that value we find that the curve
is so steep that the potential valleys have com-
pletely disappeared, and no stable orbits are
possible any more.

These relations are also conveniently shown in
a phase space, given in Fig. 11, similar to Figs. 8
and 9. Here we label paths of representative
points connected with energies H~ and H2, as
given in Fig. 10. The periodic character of the
first case and the non-periodic character of the
second are clearly shown. Also the relation to
Fig. 8 is clear. The non-periodic orbits, in the
present case, do not move always forward or
always backboard with respect to the wave: for
they are orbits in which there is no resonant

phase relation between the particle and the wave,
so that the particle is not accelerated by the
wave, but travels, with respect to a fixed coordi-
nate system, with a constant velocity, but with
superposed periodic perturbations. If it starts
traveling more rapidly than the wave, the wave
will gradually catch up with it, on account of the
acceleration of the wave. The wave will then go
faster than the particle, and as seen from the
frame of reference traveling with the wave, the
particle starts with a positive velocity v' and
positive momentum p', gradually stops, and then
turns around and acquires negative velocity and
momentum. It is clear that such a particle can
never become captured by the wave, and follow
along with it. The particles which execute
periodic orbits, on the other hand, are effectively
captured or bunched by the wave. They travel
along with the wave, being continually acceler-
ated, just as the equilibrium particle is, but
oscillating back and forth with respect to the
equilibrium particle.

This clear distinction between the particles
which are captured by the wave and resonate
with it, continually gaining energy from it, and
the other particles which are not captured,
throws light on our assumptions of Section I, in

which we assumed that we can replace the effect
of the complete field on a particle by the effect of
the one resonant mode which travels with the
same velocity as the particle. From our present
analysis we see that there is a clear separation
between those particles that will resonate with a
wave, and those that will not. And it is quite
clear that a particle which is captured by a
particular Fourier component, and resonates with

it, will not have any resonant effect with any
other Fourier component, but only a periodic
perturbation similar to that experienced by the
non-periodic orbits in Fig. 11.

In the case of the traveling wave whose velocity
changes with position, the various parameters of
Eq. (22), the longitudina, l mass, velocity ((„and
in many cases the amplitude Z of the electric field

as well, will vary with position, and hence with
time, though this variation may be expected to
be slow. It is. thus important to ask how the
motion of a particle will behave if there is a slow

variation of these parameters. The equilibrium
particle, of course, will remain at s' =0, but if we
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have a particle oscillating about the equilibrium
position with a given amplitude, it is interesting
to know how its amplitude of oscillation changes
with changes in the parameters. The answer to
this question can be found from a familiar theorem
of mechanics, which is known in the quantum
theory as the adiabatic theorem. This theorem
can be stated in terms of the phase space, as
follows. If we have a periodic orbit, we compute
its phase integral, or the area of the closed path of
its representative point in phase space, which can
be expressed as gpdg if p is the momentum, q the
coordinate, and the integral is to be extended
around the path. Then if variations are made in

parameters of the motion, slow enough so that
the fractional change in any parameter in a
period is small, the shape of the closed paths in

phase space will of course change, and we might
well ask which closed path in the revised phase
space will actually represent the path of the
particle. The adiabatic theorem states that it is
that path which has the same phase integral as
the original motion; in other words, the phase
integral is a constant of a slowly varying motion.

This in general means that the energy will

change as the parameters are changed. For in-

stance, in a linear oscillator the phase integral,
can be shown to equal the energy, divided by the
frequency; thus as the mass or restoring force
changes, to change the frequency, the energy will

change proportionally to the frequency. Now the
energy of an oscillator, whose displacement is
A cos~ot, is the maximum value of the kinetic
energy, or ~mA'cvP. Since this is proportional to
&op, we see that A is proportional to 1/(mcap)&.

This result can be used to discuss the variation of
amplitude of small osci11ations in the linear ac-
celerator. The frequency of oscillation derived
from the Hamiltonian equation (22), similar to
the expression (19), is

pe cv

Cdp =
(

E coscokp
Em, p, ) (23)

The mass that comes into the dynamical problem
is the longitudinal mass m&. Thus we see that the
amplitude of oscillation is given by

(vp/m~EN cosrdhp)'

We see that as the velocity approaches the ve-

FIG. 11. Phase space for accelerated particle.

locity of light, and the longitudinal mass becomes
infinite, the amplitude of oscillation decreases to
zero. This can also be seen directly from the
phase space: we have seen that as we approach
the velocity of light, the oval paths of repre-
sentative points become lengthened vertically;
thus a given particle must go into an orbit of
smaller horizontal width, or smaller amplitude, to
keep the area constant. In a similar way, as the
accelerating field E increases, the amplitude of
oscillation decreases. These relations, as we shall
see in the next section, may be used to produce
very sharp bunching of the particles around the
equilibrium position.

XIII. APPLICATION OF ELECTRON DYNAMICS TO
DIFFERENT TYPES OF ACCELERATORS

In the preceding section we have investigated
the dynamics of longitudinal bunching of particles
in a traveling sinusoidal field, both in the case
where the field travels with constant velocity
and when its velocity slowly varies with position.
Now that we have acquired this theoretical back-
ground, we shall discuss its application to the
various types of linear accelerators which have
been contemplated. The simplest case is that of
the M.I.T. accelerator. . In this case we are ac-
celerating electrons, and are injecting them from
a Van de Graaff generator with two million
electron volts initial energy. The accelerating
tube is designed to have a phase velocity exactly
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that of light. Thus the case is just that of Fig. 9.
Electrons are injected with all possible phases.
Thus if we draw a horizontal line in Fig. 9, at a
height corresponding to two million electron
volts, we shall have a uniform distribution of
particles in phase at the injection end. We s&e

from Fig. 9 that something more than half of
these phases will lead to orbits which become
bound to the wave, and continue indefinitely to
gain energy. There will be a particular concentra-
tion of electrons in orbits in the neighborhood of
that marked by a, b, c in Fig. 9, which is tangent
to the horizontal line at height of two million

electron volts. This orbit reaches an asymptotic
phase of approximately 90', and hence eventually
will receive a maximum possible energy. Thus
with this particular injection energy, corre-
sponding to the accelerating field E which we
have chosen, there will be a strong concentration
of accelerated electrons in the neighborhood of
the maximum possible acceleration. A study of
the probable energy spectrum of the emerging
electrons has been made by Mr. S.J. Mason, and
he finds a rather narrow peak which should con-
tain most of the electrons. We note that if E were
smaller, the optimum injection voltage would be
correspondingly greater.

A number of the other electron acceleration
projects, including the Stanford and G.E. proj-
ects, inject their electrons at much lower energies,
and use a section of tube with gradually in-

creasing velocity to speed the electrons up to the
velocity of light. Some work on such an injection
method has been carried on at M. I.T. as well.

With the order of magnitude of accelerating field

which we are using, and velocities well below the
velocity of light, we 6nd from Eq. (23) that the
angular frequency of oscillation of electrons with

respect to the bunch is not greatly less than the
angular frequency of the r-f field. Furthermore,
the acceleration is so rapid that we are not really
justified in our assumptions that the change in

relativistic mass over a period of the oscillation is

small, or that the parameters involved change
slowly with time. Nevertheless, we may assume
that our derivation using the adiabatic theorem
is not entirely invalid. Suppose we inject with all

phases into a tube with varying velocity, so that
its phase space is shown approximately by Fig. 11.
Some phases will result in electrons which are

caught by the wave, other phases in electrons
which are lost; it should not be hard to capture
at least 50 percent of the electrons. In fact, if we
were to inject at just the velocity of the wave, or
at p'=0, we should capture all electrons. Then as
the velocity increases, using the adiabatic theo-
rem, we expect the amplitudes of the electron
oscillations to decrease, so that the bunches will

contract around the phases of the wave which
correspond to just enough acceleration to travel
with the same velocity as the wave. As we ap-
proach the velocity of light the bunches should
narrow down, and in the limit we should ap-
proach a situation much like that of Fig. 9, which
we have already discussed. The failure of the
adiabatic theorem and other approximations, on
account of the rapid acceleration, would probably
result in a loss of a certain number of the
electrons, and a diffuseness in phase of the final
electrons which become captured in the wave
traveling with the velocity of light, but neverthe-
less we should expect a large fraction of the
injected electrons to come through with high
energy. This prediction is in accordance with the
experience of those projects which have acceler-
ated electrons in such tubes.

The problem of accelerating positive ions is
much more easily susceptible of analysis, for
there, because of the large rest mass, the acceler-
ation must necessarily be very slow, and our
adiabatic theorem and other approximations are
true to a high degree of accuracy. Thus suppose
we inject at quite slow velocity, in a phase space
like Fig. 11.The frequency of oscillation is much
smaller than the frequency of the traveling wave,
but nevertheless the change of energy of the
particle per period of oscillation is much smaller
than in the electron case; we find as a matter of
fact, by a simple calculation, that the energy
picked up by an ion accelerated at the stable
position of the wave, per period, is, except for a
numerical constant, the same as the kinetic
energy change given in Eq. (21), though that was
calculated for a different problem. This energy
is greater for an ion than for an electron, in the
ratio of the square root of the masses, because
the period of oscillation, and hence the distance
traveled in the accelerating field, is greater in this
ratio; but this increase of energy forms a smaller
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fraction of the total energy, in the inverse ratio
of the square root of the masses.

It might well be wise, with positive ion acceler-
ation, to inject with a weak accelerating field Z.
Then B could be gradually increased, and as we
have seen this would result in a contraction of
the ion bunches, around the stable positions in
the phase space (that is, around the phases
where the accelerating field is just enough to
speed the particles up enough to keep them in

step with the acceleration of the traveling wave).
In this way practically all the ions could be
bound in the stable bunches. They would ac-
celerate with the wave, having at every point
the velocity characteristic of the wave. As the
velocity approaches that of light, the bunches
will become further narrowed, because of the
increasing longitudinal mass. Finally, at ex-
tremely high energies it should be possible to
join onto a section of guide whose velocity was
equal to that of light, with a phase space as
shown in Fig. 9, and with the ions in small
enough bunches so that practically all ions would
have maximum acceleration in this guide. This
suggests a definite advantage in starting the
particles at less than the velocity of light: it
introduces a bunching effect, which allows the
bunches to be so phased that practically all
particles receive maximum acceleration, instead
of the situation described earlier for the M.I.T.
accelerator, where the electrons are fed without
bunching into a section with va=c. It is possible
for this reason that an eventually perfected
electron accelerator may wish to use such a
bunching feed. Nevertheless the difficulties of
defocusing which would be introduced by such a
feed, and which will be described in the next
section, are so great that it has seemed wise to
avoid them in the M. I.T. accelerator by using
the Van de Graaff generator as injector.

XIV. THE DYNAMICS OF TRANSVERSE MOTION
AND FOCUSING

In the preceding sections we have studied the
dynamics of longitudinal motion of particles
along the axis of the accelerator, and have found
that particles moving with less than the velocity
of light have a tendency to form stable bunches
surrounding stable points in the field, points
where the force on a particle is just enough to

accelerate it to keep step with the field, and in
which the accelerating field is increasing with
time. The frequency of oscillation of a particle
in such a bunch around its position of equilibrium
reduces to zero as the wave and particle approach
the velocity of light, and in the limit of waves
traveling with the speed of light, the bunching
phenomenon disappears; but a bunch already
formed at a lower velocity will persist as the
particles are accelerated to the speed of light.
Now we consider the transverse motions of the.
particle, and consequent focusing or defocusing
effects, and we make the disconcerting discovery
that the phase of the stable bunch is inherently
unstable with respect to transverse motion, so
that it is inherently defocusing.

We might have foreseen this result from general
principles. For if the wave is traveling more
slowly than the velocity of light, we can make a
Lorentz transformation and transform it to rest.
It then forms a static solution of Maxwell's
equations. The stable particle similarly trans-
forms to rest, and the oscillatory particles to
particles executing oscillations about this equi-
librium position. This Lorentz transformation
would have accomplished the same thing for us
that our Newtonian transformation to moving
axes did, but it is a little more complicated to
carry out, and for that reason we have used the
Newtonian transformation in our discussion of
longitudinal motion. Once we get our trans-
formed static problem, however, we meet Earn-
shaw's theorem, which states that an electro-
static potential cannot have a maximum or
minimum in empty space, but at most a saddle
point. If the field leads to stable equilibrium for
motion in one direction, the equilibrium must be
unstable in directions at right angles to this.
Since we have longitudinal stability, or stable
bunches, we cannot have stable focusing. Or con-
versely if we choose the phase to give stable
focusing, there is bunching instability: this corre-
sponds to the position of unstable equilibrium
which we have discussed in connection with the
longitudinal motion. On the other hand, as we
approach the velocity of light the bunching
stability disappears and is replaced by a neutral
equilibrium. We saw this in our earlier treat-
ment by the vanishing of the frequency of
oscillation in this limit. If we carry out the
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Lorentz transformation, it shows itself in the
wave-length of the radiofrequency field becoming
infinite as we go to infinite velocity, so that the
accelerating force becomes independent of posi-
tion, and in any finite neighborhood we have a
constant field. Correspondingly the defocusing
effect vanishes at the velocity of light, and we
have a neutral situation as regards focusing or
defocu sing.

These results, which could be proved by
relativistic methods, can also be demonstrated
by elementary and straightforward calculation,
which is considerably simpler. Let us write down
the expressions for the electric and magnetic
fields in our traveling wave which resonates with
the particle, in our ordinary fixed frame of
reference. We can easily show that the com-
ponents are

E,=E since(t —s/vp)LJp(w)],

(—jJi(w))E„=Ecos~(t —s/vp)
(1 —vo'/c') P

vp ( —jA(w))
Bp=E cos~(t s/vp) ——

cP (l —vpP/c')P

where
w = jppr/v p(1 —vpP/c') '.

Now the r component of force on a particle of
charge e, moving along the s axis with a velocity
vp (we neglect in the defocusing problem the
slight difference between the velocity of the
particle and the velocity of the wave resulting
from the oscillation) is the r component of
e(E+v &&B), or is e(E, vpBp). This is—

E„=eE coscp(t —s/vp) I (1 v/c'p) p—l( —jJq(w)) I.
In other words, the magnetic force is —vpP/c'

times the electric force, so that in the limit as
the velocity approaches the velocity of light any
transverse force reduces to zero, and focusing
and defocusing effects disappear.

We may now use these results to discuss the
transverse force F„for small displacements of
the particle from the axis. The Bessel function
Jp(w) approaches 1 for small values of its argu-
ment, and J&(w) approaches w/2. Thus for small r
we have

F,=eE sin pp(t —s/v, ), (24)F,= (&p,/2vp) L(1 —(vp'/c') ]eE coscp(t —s/v, ).

We are inteI'ested in I'„particularly at the phase
of the wave where we can have stable bunching.
This is the region where F, is positive and in-
creasing with time; that is where sin~(t —s'/vp)

is positive, and its time derivative co cos~(t —s/vp)
is also positive. Thus we see that under these
circumstances F„is a positive force, proportional
to r, tending to drive particles away from the
axis, or to defocus them.

The motion of a particle under the action of a
force repelling it from a point proportional to
the distance is an exponential function of the
time. If we set up the equation of motion of a
particle in the force F„above, remembering that
we are now dealing with transverse motion and
so must use the transverse mass mp/(1 —vpP/c')&,

we find that this combines with the factor
1 —vpp/c' to give the longitudinal mass, and that
we find the motion to be given by

1 tt' 8Eco
r=rpe" —=

} (1 v'p/c—)*( coos&t )p}, (25)
T E 2moVO )

where t, = t s/v p. We fi—nd this reciprocal time to
be 1/v2 times the angular frequency of oscillation
about the stable position given in Eq. (23). Hence
we conclude that the time required for a given
value of r to increase in the ratio e is of the order
of magnitude of a period of the oscillation about
the stable position. For electrons in the M.I.T.
accelerator we have no problem, because the
period of oscillation is essentially infinite;
straightforward study of the transverse motion
shows that electrons injected at one side of the
axis, with two million electron volts energy, will

spread to only about twice their initial distance
from the axis in reaching any arbitrarily high
energy. In electron acceleration from a low

velocity, the problem still is not very serious.
With the high accelerations that we have here,
we have already seen that it requires only a
relatively small number of oscillations in the
bunch for the electrons to pick up enough energy
to reach substantially the velocity of light: thus,
though they may multiply their initial r by e a
number of times, the resulting factor need not
be unreasonably large, and need not result in an
impossible spreading of the beam, if we start
with a very sharp and well-focused beam at
injection. Furthermore, it is easy to focus elec-
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trons, in this initial region of r-f defocusing, by
the action of a longitudinal magnetic field, as we
shall discuss shortly.

For positive ions, however, the defocusing is
extremely serious, and will probably prove a fatal
objection to the use of long linear accelerators for
positive ions in the billion volt range. We have
seen that it will require a great many periods of
oscill.ation for a positive ion to pick up enough
energy to reach approximately the velocity of
light, and in this time the radius of the beam will
be multiplied by e, a great many times, or will

spread by an entirely inadmissible amount.
There is, it is true, one focusing feature which
we have passed over by our method of analysis,
and which may conceivably make the result not
quite so disastrous as it seems at first sight. We
may understand this feature by comparison with
the theory of the cyclotron. There the ions in
the accelerating region between the dees find
themselves in a field as in Fig. 12. As they enter
the region, they are focused, and as they leave
they are defocused. The defocusing can be less
than, or greater than, the focusing for two
reasons. First, the field may be increasing with
time as the ions go through the region. Then the
field will be stronger as they leave than as they
enter, and the net effect will be defocusing. This
is the effect we have so far been considering.
But the second reason is that as the ions go
through the gap they will be speeded up. Thus
they will be going faster when they go through
the defocusing field than when they go through
the focusing field, and this will make the focusing
more effective than the defocusing. We have
missed this effect in our analysis by neglecting
second-order effects of change of particle velocity
during the acceleration.

As a result of this effect, there is a small range
of phase when there can be both bunching and
focusing. This is the range where the accelerating
field has almost reached its maximum, so that
cosh)/p has almost reduced to zero. The angular
frequency of oscillation in the bunches given in
Eq. (23) is still real, though small, so that there is
still slight stability in the bunches. At the same
time, the quantity 1/T of Eq. (25) has also almost
reduced to zero, so that the defocusing because
of the outward component of r-f field is very
gmgll, This may be sma11 enough so that it is

FIG. 12. Lines of force in a gap.

counteracted by the other effect which we have
just been describing, with a result that there is
net focusing. This effect is discussed in the TRE
reports, and it is there shown that there is a
phase region of a few degrees where this situation
holds. Under some circumstances, with the field
concentrated in very narrow gaps, the favorable
phase can be considerable, and it seems likely
that the success of the early linear accelerators
resulted from using this favorable region of
phase. It seems not impossible that the final
success of positive ion linear accelerators may
depend on exploiting this focusing feature.

The other possible method which has been
suggested for counteracting the defocusing in a
positive ion accelerator is the use of grids, as
proposed by the Berkeley group. If we could
place a grid over the exit to an accelerating gap,
as shown in Fig. 13, it is clear that we should
preserve the focusing, and completely eliminate
the defocusing. This does not contradict our
analysis which has led to an inherent defocusing.
That analysis was based on the resolution of the
field along the axis into Fourier components,
based on the assumption that it satisfied Max-
well's equations in that region, with no charge
density. On the other hand, if there are grids
they can carry charge, and the potential can
effectively obey Poisson's rather than Laplace's
equation. This allows a real minimum of potential
energy, and allows stable bunching and stable
focusing at the same time. The obvious difhculty
is that the grid intercepts part of the beam. For a
short accelerator this is not serious, but it is a
probably fatal objection to a long accelerator in
which the beam will have to traverse many grids.

For electron focusing with velocities less than
the velocity of light, we have already mentioned
the possibility of a longitudinal magnetic field,
which would have the effect of bending the orbits
into helices. Let us consider the effect of such a
magnetic field. We can solve the problem com-
pletely by setting up the Lagrangian equations
for a particle, with the forces F, and F„already
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FIG. 13. Lines of force in a gap with focusing grid or foil.

This will represent stable rotation in a circle,
provided 8 is real. This gives a limiting case

eB/m g
——(4k/m () &.

If we take k from our formula (24) for F„,and
use Eq. (23), we have

eB/mt = ~2&@0 (26)

In other words, to counteract the defocusing we
must use a longitudinal magnetic field strong
enough so that the resulting Larmor frequency
is at least V2 times the frequency of oscillation in

the bunches. Any additional magnetic field will
result in positive stability.

We now may examine the magnitudes of the

considered, and in addition the forces resulting
from a constant magnetic induction B along the s
axis. The eAect of B on the radial motion proves
to be to add an e6'ective potential energy term
proportional to r', or an effective restoring force
proportional to r. If the magnitude of this term
is great enough to balance the repulsive force F„,
which is also proportional to r, there will be
stable orbits, the stable helical paths of the
electrons. Rather than carrying through this
whole analysis, we adopt a simple discussion
which will lead to a value of the critical magnetic
field for focusing.

In the absence of the force I'„,a particle in

the presence of a magnetic held B will execute
circular motion in the plane at right angles to
the field. In a familiar way, we may equate the
force driving the particle toward the axis, when
it moves with angular velocity 8 in a circle of
radius r, to its transverse mass times its cen-
tripetal acceleration. That is, we have eBr8

m~8'r=, from which at once 8 = eB/m ~, the
Larmor angular frequency. On the other hand,
if we have an additional force kr tending to
increase r (our force I'„),the equation will become
eBr8 —kr = m&8'r. This gives a quadratic equation
for 8, whose solutions are

8 =eB/2m&& ((eB/2m&)' —k/m&)'.

required magnetic fields. For electrons, we have
seen that the frequency coo may approach the
frequency co of the r-f field for quite high acceler-
ations, although in practical cases it is likely to
be considerably less. Thus Bwill be less than that
required to produce a Larmor frequency equal
to the r-f frequency. With the r-f frequencies
contemplated, this leads to a magnetic field of a
few hundred or at most a few thousand gauss,
which therefore is in the range that can be con-
veniently set up in practice, particularly since it
needs to be used only in the part of the acceler-
ator where the electrons have appreciably less

velocity than the velocity of light. With positive
ions, on the other hand, the required magnetic
fields become quite impossible. The frequencies

coo, it is true, are less for positive ions than for
electrons in the ratio of the square root of the
mass of the electron divided by the mass of
the ion, but the additional factor of the transverse
mass in Eq. (26) results in the magnetic field itself

being greater for a positive ion than for an
electron in the ratio of the square root of the
ratio of mass of electron to mass of ion. Thus
instead of perhaps a thousand gauss, we should

require magnetic fields of perhaps forty or fifty
thousand gauss for overcoming the defocusing
eA'ect with positive ions. Furthermore, this would

have to be applied to the whole length of the
accelerator in which the velocity of the ions was

appreciably less than the velocity of light. While
magnetic fields of this magnitude can, of course,
be obtained in limited regions, the problem of
creating such a field over the whole of a very
large accelerator would be prohibitively diAicult.

There is one additional problem of electron
focusing which we should consider. Even though
there is no defocusing force acting on an electron
traveling with the velocity of light, still the
injected beam of electrons in such an accelerator
as the M.I.T. one will have a certain spread of
directions of the electrons. We may well ask,
will the injected beam have to have such a small

spread that all the incident electrons are aimed
to hit the final iris aperture at the far end of the
tube? This would correspond to a very small
solid angle, and it would be almost impossible to
concentrate an incident beam to such an extent.
Fortunately this is not necessary. To see this
point, we may think about the problem in a
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very simple way. An incident electron whose
direction is not quite along the axis will have
two components to its momentum: one along
the axis, p„and the other along the radius, p„.
In the limiting case we are considering, there will

be no radial force, and p„will remain constant
during the subsequent motion of the electron,
whereas the longitudinal momentum p, will in-
crease proportionally to the time, because of the
constant accelerating force in that direction. As a
result, the resultant momentum vector and the
velocity vector which is parallel to it will turn
more and more along the z axis as the particle
picks up momentum. The problem is like that
of a.falling body, falling along the z axis, subject
to a constant accelerating force in that direction,
but started with a component of momentum at
right angles. The falling body would fall in a
parabola, and its horizontal motion in the time
of fall would equal its initial velocity in that
direction, times the time of fall. Here, however,
because of the relativistic nature of the motion,
we may not infer from the constancy of the
transverse momentum that there is also a con-
stant transverse velocity; as a matter of fact,
we shall find that the transverse velocity de-
creases along the path, so that the net transverse
motion is much less than we should find in the
non-relativistic case.

We may handle the problem in an elementary
way. The energy of the particle will be eEz,
where z is measured from an assumed zero at
which the energy would be zero, if the acceler-
ating force were uniform the whole way. Thus the
momentum is eEz/c, in the relativistic range.
This momentum is p, ; p„is constant. Now the
actual path of the particle will be parallel to the
momentum; thus we have dr/dz =p, /p, =p„c/eEz
This shows us at once that, since dz = cdt in the
region where the velocity equals the velocity of
light, the radial velocity decreases inversely pro-
portionally to z. Integrating the equation above
we have

r2 r~ ——(p„c/eE) lnz2—/z~.

This gives us the change in radius from z~, where
the particle is injected, to z2, where it emerges.
We can express it in more convenient form by
using the angle &0 between the incident direction
of the electron, and the axis of the tube. Then

we have &0 equal to the ratio of p„to the value
of p, when z=z~. This leads to

r2 rJ = @—oz~ In(z2/z~).

When we put numbers into the equation above,
we find very small values for the spreading, even
for a very long accelerator. Thus let us assume
that we inject at two million electron volts, and
that this corresponds to a length z~ ——60 cm. If we
accelerate to two billion electron volts, we have
z2/z~ ——10'. Let us assume that @,=10 ', corre-
sponding to a collimation through a 1-mm
aperture at a meter's distance, a collimation
which should be possible with a well adjusted
Van de Graaff beam. Then we find r2 —r~ =4 mm.
Even with an accelerator ten times as long, the
displacement is only increased by a factor of
4/3, to 5.3 mm. Thus we may expect that a
beam can be collimated well enough so that it
will not spread to be too large for the size of the
iris holes, for as long an accelerator as we are
likely to contemplate.
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