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BGRIS PoDoLSKY AND PHILIP ScHwED

Department of Physics, Unssersity of Cincinnati, Cincinnati, Ohio

This paper presents a review of five papers in which a generalized electrodynamics has
been developed. The purpose of the review is to present the results obtained so far, leaving
out duplications, false starts, and detailed calculations. The emphasis is on the sequence of
ideas, the difhculties encountered, and the methods of procedure.

I. INTRODUCTION
' 'N a series of papers published in the last five
~ ~ years' ' a field theory has been developed
which, in spite of the simplicity of its funda-
mental assumptions, leads to results free of
in6nities usually associated with a point source.
In view of a promising recent extension of the
theory to meson fields' it seems worth while to
review the results obtained so far, leaving out
duplications, false starts, and sometimes con-
fusing notation inherent in the process of active
development by several workers.

In generalizing the equations of electro-
dynamics the idea was to leave the usual assump-
tions of the Maxwell-Lorentz theory as nearly
unaltered as possible. Thus we continue to
assume that the field equations and the equations
of motion of the particles are derivable from a
variation principle

b
' Ldt=o,

in which L is the sum of the Lagrangians of the
field, of the particles, and of their interactions.

The Lagrangians of the particles and of the
interactions are left unchanged. This at once
results in preserving the Lorentz equations of
motion for particles. Further, we assume, as
usual, that the field equations are to be linear
in the field quantities.

The Lagrangian of the held, however, is gener-
alized by permitting dependence upon first
derivatives of the field quantities E and H. This
is the only new assumption used.

i B. Podolsky, Phys. Rev. 62, 68 (1942).
s B.Podolsky and C. Kikuchi, Phys. Rev. 65, 228 1944).' B.Podolsky and C. Kikuchi, Phys. Rev. 6'7, 184 1945).' D. J. Montgomery, Phys. Rev. 69, 117 (1946).
s Alex E. S. Green, Phys. Rev. '72, 628 (1947).
s Alex E. S. Green, Phys. Rev. 73, 26 (1948).
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2. CLASSICAL EQUATIONS

Using x4=ict and —ds'=dx ', with the usual
summation convention, we need not distinguish
between covariant and contravarient tensors.
Letting

F p= Fp =(B—Ap/Bx ) —(BA /Bxp) (2.1)
with

= (A, i9), (2.2)

where A is the vector potential and y the scalar
potential, we have: J'lg =H3, I"g3=II1, ~ ~ F14
= —iE» ~ ~ .etc. ; then, as usual,

E= —Vip —(1/c) (BA/Bt) and H = V X A. (2.3)

One set of the field equations is then

BF p/Bx, +BFp,/Bx +BF~ /Bxp ——0, (2.4)
or

V XE+(1/c)BH/Bt=0 and V H=0, (2.5)

which follow at once from Eq. (2.1). These are,
of course, one pair of the Maxwell-Lorentz
equations.

Equations of motion of a particle are, in the
usual way,

(d'x /ds') = (e/mc') F p(dxp/ds), (2.6)
ol

4p
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and a is some constant of nature having the leave F p unaltered. We then obtain:
dimension of length. The resulting held equations
are: (2.19)

ax.') ax,

(1 —a' )7 E= p

a set of fourth-order partial di8erential equations.
In the static case the vector potential can be

set equal to zero, and the scalar potentia1 due to
(2 11) a point charge turns out to be, in electrostatic

units,

with
j.= (pv/c, ip),

p(r) =g, e,b(r —r,).

where the four-vector j is defined by

(2.14)

which approaches a finite value e/a as r ap-
proaches zero. This result was also obtained in
a diferent way by Lande and Thomas. '

3. CANONICAL EQUATIONS FOR THE FIELD

The summation here is over all the particles; the
sth particle having the charge e, and the position
r, = r.(t).

Equations (2.11) and (2.12) are a generaliza-
tion of the second pair of Maxwell-Lorentz
equations. In the classical theory, in which
8I" p/Bxp =j, one substitutes from (2.1) ob-
tainiilg:

(O'Ap/Bx Bxp) —(O'A /Bxp') j=
then, if

(8/Bx.) (BAp/Bxp) = 0,

one obtains the wave equation

O'A /ejxp'= —j .

Before quantizing the field equations by the
method of Heisenberg and Pauli' we must be
able to write the field equations in Hamiltonian
canonical form.

Suppose the Lagrangian density LJ is a func-
tion of the potentials A„= (A, i y) as well as their
first and second derivatives

Lr Lg (A, A——
, p, A, p,),

where A are functions of the space-time coor-
dinates x, and

A, p
——cjA /Bxp, A, p, O'A ——/BxpBx,

The variationa1 equation,

The usual Lorentz condition BAp/Bxp =0 is thus
a sufhcient but not a necessary condition for the
wave equation to hold; the necessary condition
being merely 8A p/Bxp = constant.

Similarly, in our theory the same procedure
leads to

hay= 8 L,~d Vdt =0, d V =dx~dx2dx3
eJ

ichlvVt= 8 LydQ=O, dQ=d Vdx4, (3.1)

the necessary condition
in the absence of particles leads to the field

(1 —u' ) (BAp/Bxp) =constant, (2.15) equation,

8A /Bx. =O. (2.16)

but we choose the more restrictive Lorentz con-
dition

BIy 8 81y i9 BLy

BA~ t9xp BA~, p Bxpt9X& BAcr, p&

= 0, (3.2)

The remaining arbitrariness in A is then given

by the usual gage transformation

A '=A +OX/Bx (2.17)

X=0. (2.18)

The gage transformation (2.17) will, of course,

with X being any solution of the wave equation

provided A, and A, p are specified and are
unvaried over the boundaries of the four-dimen-
sional manifold 0 over which the integration is
performed.

' A. Land4 and H. Thomas, Phys. Rev. 60, 514 (1941).
W. Heisenberg and W. Pauli, Zeits. f. Physik 56,

(1929).' Greek indices will range from 1 to 4, while Latin sub-
scripts range from 1 to 3. Repeated indices are summed.
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We introduce as the new generalized coor-
dinates'

q =A and Q =BA /Bt=q, (33)

The total momentum of the IIield, P can be
calculated in the usual way' and we obtain

and define the momenta conjugate to q and Q
by

P, = ~t pdSp, (3.11)

p = (BLq'Bq ) 8/—Bt(BLi/Bq )
where the energy-momentum tensor t„-& is giveil
by

8/=-Bx, (BLi/Bq, ;)

P =8L/Bq, (3.5)
with

fact p
= It5..p-A„—p„p A„.-iP-„,p (3.12)

The Hamiltonian density is now defined by

Hg= Lg+p q +—P.Q .

The time derivatives of the coordinates, j and

Q, can, in general, be eliminated by using Eqs.
(3.3) and (3.5). The result is

+f +f(qar par qa, ri qa, r'jr Qar Par Qa, r') .

If now we define the Hamiltonian

(3.7)

then it can be shown' that

respectively. In performing differentiation with
respect to j,; it is necessary to realize that both
z'cA, ;4 and icA, 4; are its equivalent forms, so
that Eq. (3.4) can be written more fully thus:

BLED 8
a

ZC BA~, 4 BX4 BA~, 44

8 ( BLy BLr q'
+»j (BAa, 4j l9Aa, j4]

p p
= BLt/BA p 8/»„(B—Li/BA. p„) (3.13)

P-pv = ~Ls/~A-, p~ (3.14)

The tensor t p is not symmetric, but satisfies
the equation of conservation of energy and
momentum, namely:

t p, 0=0 (3.15)

However, while the theory makes P definite, t p

can be changed by addition of any t p' which
gives a vanishing contribution to the integral in
(3.11) and satisfies the equation

t~p, p
—0 ~

This fact is made use of in "symmetrizing" t p,'

that is, replacing it by T p
= Tp = t p+t p' with

suitably chosen t p'.

Applying the theory of this section to the
function Lr given in Eq. (2.8), we obtain:

fact, p =Ltd p A„, (1 —a' —)F„p+a'F„p,,Fi,„„,
or upon symmetrization,

Ii = —SHE/tiq P = —hHt/pQ (3.8)

q = tiHr/8p„, Q = bHt/bP. . (3.9)

We note that

de/dt =
J I (~Hf!tiq )q +(tiHf/tip )Ii-

+(hHq/fiQ )Q +(tiHt/tiP )P Id V = 0. (3.10)

Equations (3.8) and (3.9) are the desired
canonical equations of the field, and definitions
(3.4) and (3.5) are thereby justified. Equation
(3.10) is, of course, the law of conservation of
energy of the field, in the absence of particles.

+(&'/2)[F-p F-p+(~F-p/»p)

X (BF.,/», )]8„,.

a'[F„F„+F„F—„
+ (BF„ /Bx„) (BF„p/exp) ]. (3.16)

In electrostatics this gives for the energy

F =p ' IE' —a2[(7' E)'+2E.V'E]Id V. (3.17)

Making use of V g E =0, and assuming that
EV' E vanishes at inFinity faster than 1/r', one
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F.= -.' I E'+a'(7 E)' Id V, (3.18)

hich is obviously positive. For the fields of a
point charge given by Eq. (2.20) this energy
turns out to be p'/2a, in electrostatic units.

Returning to the general case, and using Eqs.
(3.4), (3.5), and (2.8), we find

C
p4 =—F,4, ,4

tC
(3.19)

finds that Eq. (3.17) can easily be put in the form is a four divergence and therefore does not affect
the resulting field equations, and the middle
term vanishes when the auxiliary condition
(2.16) is taken into account. Thus with condition
(2.16) this I.~ is equivalent to the old. The term
Vp, p is chosen to simplify I.f as much as possible
so that it removes the third derivative contained
in the middle term.

The Lagrangian density (4.1) has two ad-
vantages. In the first place the field equation
obtained by its use is immediately Eq. (2.19). In
the second place it leads to

and
1

p;=—(1 —a' ) F;, ;
ZC

(3.20)
and

c'p =(1—a' )A

c'P =a' A,
(4.3)

(4.4)

None of these vanish identically. The Hamil-
having made use of the symmetry ProPerties of tonian density is now
Ji p, namely:

IIf = I.g A—
, 4(1 ——a' )A

F.p= —Fp- »d &-p, .+Fp., -+F~-,p=o

Similarly,

(~'/c') F p, p. — (3.21)

4. QUANTIZATION PRELIMINARIES

To avoid the quantization difhculty just men-

tioned we use the device previously used by
Fermi'o and by Fock and Podolsky" We use
instead of Eq. (2.8), the Lagrangian density

Ig ,' (ApA—. —p+a, 'A——
, ppA„) , (4, .1).

To see the meaning of the change, we can put
this in the form

Lf = s(s F-p'+—&'F-pp'),
—-',A, (1 —a' )Ap, p+ Vp, p, (4.2)

where

Vp ———,'(A Ap —A Ap, )

+ (~4'/2)A-, -(Av, ~p 2A p, .~). —

The first term in (4.2) is the old I y, the last term

'4 E. Fermi, Rev. Mod. Phys. 4, 87 (1932).
"V.Fock and B. Podolsky, Physik. Zeits. Sowjetunion

1, 801 (1932).

We note that p4 no longer vanishes, as it does in

the usual electrodynamics, but because of the
vanishing I'4, we shall encounter the usual dif-

ficulty in quantization.

—a'A, 44 A . (4.5)

As another preliminary to quantization it is
convenient to introduce a generalization of the
Fourier development for held quantities. When
no particles are present, any field quantity F(r, 1)
satisfies the generalized wave equation

(1-a' ) F=0, (4.6)

+F*(k) exp( —ik,x )

+F(k) exp(ik x )

where
+F*(k) exp( —ik x ) }dk, (4.7)

k = (k, ik), k = (k, ik),

&=(1+a'k')&/a, k= ~k~,

dk =dkgk„dk, .

This is a very convenient form, as it enables us
to use generalized Fourier amplitudes F(k),
without having to introduce fictitious "boxes
with periodic boundary conditions" or any other
artificial devices.

The sum of the first two terms in Eq. (4.7)

which can be seen from Eq. (2.19), since all field
quantities are obtainable by linear operations on
A . A general solution of Eq. (4.6) is

t'1)'
IF=

~

—
i I F(k) exp(ik.x.)

&2~& .
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a' F=F2, (1—a' )F=Fi, (4.9)

Fi ——0, (1—a' )F2=0. (4.10)

When working with F(k), F*(k), etc. , we shall

speak of working in k space; k is, of course, the
usual wave vector. The Hamiltonian of the field

in k space can be computed, using Eq. (4.5), and
turns out to be

=2) {O'A *(k)A (k)

—It, "A *(k)A„(k) I dk. (4.11)

We could now pass from the classical to the
quantum equations by using the usual method
of Heisenberg and Pauli. ' Accordingly, we mould

have

satisfies the usual wave equation and may be
called the orCknary field; the other two terms then
give the extraordinary field.

In classical theory, where all Fourier ampli-
tudes commute, F*(k) is the complex conjugate
of F(k) in case F(r, t) is real and the negative of
the complex conjugate of it when F(r, t) is
imaginary. Thus, for example, since A4=ip is
imaginary, A4*(k) is the negative of the complex
conjugate of A4(k) =iy(k); thus

A 4*(k) = imp*(k). (4.8)

Quantum mechanically, F(k) and F*(k) are
generally non-commuting quantities.

Let Fi and F2 be the ordinary and extra-
ordinary parts of F=F(r, t), respectively. Then
one can easily verify the following relations;

Instead of the condition BA /Bx =0 on A, one
uses the condition

{ BA./ax. , BAp'/Bxp'j&=0 (4.15)

If Eqs. (4.13) and (4.14) are consistent, Eq.
(4.15) must be a consequence of them, thus not
imposing new restrictions on P. This, however,
does not turn out to be the case, because of the
commutation properties of the extraordinary
part of A, , required by Eqs. (4.12).

Therefore, we find it necessary to make certain
classically admissible changes before performing
quantization. These consist in carrying out of a
gage transformation, "

A =q +o,BB/Bx, (4.16)

thus introducing new potentials q . We wish the
ordinary part of y to be the same as that of A .
This means that the ordinary part of 8 must be
zero, which by Eq. (4.9) means that

(1—a' )B=0. (4.17)

By (4.16), the Lorentz condition on A becomes

A, =q, +u B=O,

or, taking account of Eq. (4.17),

(8A /Bx )/=0
on P, assuming that this equation must hold for
all states P that actually occur in nature.

In our case, however, even Eq. (4.13) cannot
be used. The difficulty arises due to the fact that
this equation must hold at all points of space
time. Thus, if BAN'/Bxs' is the operator in Eq.
(4.13) at another point x ', we must also have

(4.14)
and therefore

Lp (r, x4), tls(r', x4)]= Bib p5(r r')—, —

P'.(r, x,), qs(r', x,)j= —aib.,c(r —r');

with all other pairs commuting, where

LA, B'j=AB BA. — —

.(4.12)
ay, +B=O. (4.18)

From Eqs. (4.17) and (4.18) it follows that qr

satis6es the equation

(4»)

Here, however, we run into the second usual dif-
ficulty of quantum electrodynamics. It turns out
that the Lorentz auxiliary condition, BA /Bx =0,
is inconsistent with the commutation rules (4.6).
This well-known difhculty is usually resolved
with the help of a suggestion made by Fermi. "

(1—u' ) q„=0, (4.20)

"This is analogous to the method of E. C. G. Stiickel-
berg, Helv. Phys. Acta 11, 299 (1938).

which replaces the Lorentz condition on A . This
has the form of Eq. (2.15), so that q will satisfy
the same generalized wave equation
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and

A (k) =q (k),

A.(k) = y (k)+iak B(k),

A *(k)= q *(k),

A.*(k)= rp.*(k)—iak B*(k);

(4.21)

k q. (k) =0, iak p (k)+B(k) =0,

k y *(k) =0, —iak g *(k)+B*(k)=0.

as do all the other field quantities. This equation
can also be derived directly from the corre-
sponding equation for A, together with Eqs.
(4.16) and (4.17).

In terms of the Fourier amplitudes Eqs. (4.16)
and (4.18), respectively, can now be written as
follows:

quantum electrodyiiamics, and then verify that
Eq. (4.25) is satisfied. We thus obtain the fol-
lowing:

ck
L~-*(k) ~p(k') j= ——&-p&(k-k')

2k

Ck

C.--*( ) ~p( ')j==&«p~( —k'), (426)
2jb

ck
LB'(I ), B(k') g =—S(k —k').

2k

All other pairs commute.
Operators occurring in Eq. (4.24) commute

among themselves so that these four conditions
are consistent with each other. For example,

k' I v -*(k)v -(k)+ v -(k) ~-*(k) }dk

S b tit tipg f om Eq. (4.21)
'

to Eq. (4.») ~'"-&-(k)+ (") '"p'&p*(k')-B*(k')j
and simplifying with the help of Eq. (4.22), we = a2k, kp'$—p„(k), pp+(k')$ —LB(k), B*(k')$
obtain:

2 ck
k kp'8 p8(k —k')+—b(k —k')

2k 2k

k' I ~-*(k)p.(k)+ p-(k) v-'(k)

+8~(k) B(k)+B(k)B*(k)}dk, (4.23)

Ck=—(a'k '+1)5(k —k') =0,
2k

where we have rearranged factors and made use
of the fact that a'k '= —1. We take this ex-
pression to be the quantum-mechanical Hamil-
tonian of the field. " Equations (4.18) can be
regarded as our new auxiliary condition, or Eqs.
(4.22) in k-space. Quantum mechanically we
must again take them as conditions on P, namely:

These operators however, do not commute
with the Hamiltonian' B'f, but the equations

PHg, k p (k) jr=0, [H~, iakpgp(k)+B(k) jr=0,
etc. , are merely Eqs. (4.24) again, and thus do
not imply new conditions on P. Thus, using
Eqs. (4.26),k y (k)/=0,

k & *(k)y=O,

The commutation rules for the Fourier am-
plitudes can be derived either by means of Eqs.
(4.12), or making use of the fact that for con-
sistent application of quantum mechanical ideas
it is only necessary to have the relation

—2 t k"LB*(k'), B(k)18(k')dk'f
aJ

(iak-~-(k)+B(k))4 =0

(za/j p *(k) B*(k))y 0 pay, ialcppp(k)+B(k))ip
(4.24)

= —2 "k"t p~*(k'), iakppp(k)$ip (k')dk'P

(Hf, F(r, t)j= —i7il(r, t),

for every F. The calculation involved is very
lengthy. It is therefore simpler to assume com-
mutation rules by analogy with the usual

"In reference 2, the terms in 8 were inadvertently
omitted.

ch k' fiakpyp(k—')+B(k') }h(k—k')dk'f

= —ckk ( iakp happ(k) +B(k) }P =0

by Eq. (4.24).
4 In reference 2, it was erroneously stated that they do

commute with the Hamiltonian.
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In what follows we shall have no occasion to together, and putting all t, =t. For, -if we put
refer to equations preceding Eq. (4.23). It will

therefore introduce no confusion to put then

q = (A„A„,2„iy) = (A, i rp); (4.27)
8$'/f)t = P, (8%'/f)t, ) ~, =r, (5.6)

thus using for the components of q the symbols
we previously used for the components of A .

S. FIELD IN THE PRESENCE OF PARTICLES

When particles are present, we introduce a
separate time for each particle. This procedure,
suggested by Dirac, " preserves relativistic
invariance of equations. We assume that for each
particie we have the Dirac wave equation,

(R, t',Ilf)/—f)t,)+=0, (5.1)

where s=1, 2, n, n=number of particles,

R, =cn, (p, —e,A(r„t,)/c)

+m, c'P, + e, y(r„ t,), (5.2)

and + is a function of all r, and I, as well as the
variables A(k), p(k), A*(k), p*(k), A(k), A*(k),
to(k), p*(k) describing the field.

On the other hand, the Heisenberg-Pauli
equation for the system partt'cles+field is

k A(k)
Q(k)=, Q(k) =

k
and

ak A(k) —iB(k)
(5.7)

and Eq. (5.5) follows immediately. In order that
Eq. (5.1) be consistent with each other it is

necessary and sufficient that all R, commute
among themselves. Dirac's investigation showed
that such is the case when for every pair of
values of s, say n and v,

(l„—f„)((r„—r.) '.

This condition is certainly satisfied when
t„=t,=t, the only case of physical interest.

The presence of particles requires another
modification of our auxiliary conditions. Equa-
tions (4.24), with P replaced by 4' are incon-
sistent with Eq. (5.1). As was done by Dirac,
Fock, and Podolsky, '~ the situation is remedied

by adding certain terms to the operators in Eqs.
(4.24) to secure the desired consistence. The addi-
tional terms are completely defined .by this
requirement. If we introduce

(8g+ g, R,)P = ill&/f)t,
n

(5 3) f(r„ t,) = (2s) & Q e, exp(fq, ),

where 5 is the common time of the systeni. Hf can
be eliminated from this equation, when we wish

to consider merely the behavior of particles, by
a transformation due to Rosenfeld, "namely:

q, —=ckt, —k r,
(5 8)

f(r„ t,) =(2s-)—l Q e, exp(iso, ),

which gives
0"= exp(sIIff/@) 0,

g, R,P' = i7i8$'/Bt;

(5.4)

(5.5)

g=—ckt —k r„.

the modified auxiliary conditions become

I:Q(k) —~(k) +f/2&'j+ = 0,

the quantities A(r„ t) and y(r„ t) occurring in.

8, are the potentials at points r, . They satisfy,
except for auxiliary conditions, the equations for
the iield without the particles.

It can be shown'7 that, provided Eqs. (5.1)
are consistent with each other, one can obtain
Eq. (5.5) as their consequence, by adding them

"P.A. M. Dirac, Proc. Roy. Soc. 136, 453 (1932)."L.Rosenfeld, Zeits. f. Physik 76, 729 (1932).
» P. A. M. Dirac, V. A. Fock, and B.Podolsky, .Physik.

Zeits Sowjetnnion . 2, 473 (1932), or P. A. M. Dirac, The
Prsncsp1es of Qgnn sum Mechgnics (Oxford University
Press, 1933), Chapter XIII.

[Q(k) p(k)—f/2k—&je 0, =

I:Q*(k) ~*(k)+—f*/2&' j+= o

t Q*(k) —1o*(k) f*/2rc'$+ =—0,

(5 '9)

H=VXA (5.10)

which differ from Eqs. (4.24) only by terms in

f and f The opera. tors in brackets commute
among themselves and with the operators
R, ih8/f)t of Eq. (5.1),

If E and H are defined by equations

BA/f)t
E
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then, of course, multiplication by y(k), while

BH/Bt
VXE+ =0 and V H=O; (5.11)

cubi

v *(k)———
2k B(p(k)

(6.1)

and

L(1 —~' )~ E34 = (Z. "B(r—'))iL (5»)

this pair of AIaxwell-Lorentz equations remaining
valid operator equations. It can now be shown,
with the help of Eqs. (5.9), that the analogs of
the other pair of Maxwell-Lorentz equations are'

This is analogous to interpreting P, as —hiB/Bx.
Making use of this idea, we observe that since

ck
[~*(k), ~(k') j= —=&(k—k'),

2k

we can put

BE/Bt)

c )

ck
q *(k)———

2k Bk Bp(k)
(6.2)

These equations sho p
the field, and are natural generalizations of the
usual equations. ck

LQ(k), Q*(k') j=—B(k —k'),
2k

Further, since the commutation rules between
Q's of Eq. (5.7) and their conjugates, obtained

w the effect of articles on by the use of Eqs. (4.26), are

6. INTERACTION BET%'EEN PARTICLES

Interaction between particles arises in this
theory as a result of interaction between the
field and particles. The field is affected by par-
ticles only through the auxiliary conditions (5.9),
while particles are affected by the field through
the entry of potentials in Eq. (5.1). Thus, if the
auxiliary conditions were solved for +, and the
result be substituted into Eq. (5.1), we would
obtain equations containing interactions between
particles, and in these equations one would no
longer need consider the effect of particles on
the field. The way to perform this elimination of
auxiliary conditions was shown by Fock."

Fock makes a natural assumption that + is a
functionaL of the field variables y (k). Then from
the commutation rules for the Fourier ampli-
tudes he can infer the way in which these ampli-
tudes, as operators, operate on the functional.
Thus, for the amplitudes of the scalar potential
we have

ck
L~*(k) v (k') 7 =—B(k-k')

2k

ck
LQ(k), Q*(k') j= =—B(k—k');

2I

(6.3)

we may assume that

cubi

Q(k) ——,Q(k)
2k BQ*(k)

ck
6.4

2k BQ*(k)

Further, we observe that Q(k) is merely the
longitudinal part of A(k); the transverse part
may be called D(k), and

D(k) = A(k) —kQ(k)/k.

Analogously, we can define D(k) as

D(k) = A(k) —kQ(k)/Lt',

(6.5)

(6.6)

which is not the transverse part of A(k), but
merely an analog of Eq. (6.5).

With the help of Eqs. (6.1), (6.2), and (6.4)
we can now solve Eqs. (5.9). It rurns out that 4'

must have the form 3

and one can consider operation with y(k) as a
e =exp(x —X)0, (6.7)

where 0 is a functional of D(k), D*(k), D(k),
"V A. Fock, Physik. Zeits. Sowjctunion 6, 449 (1934), and D*(k) only (it is, of course, a function of
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coordinates and times of particles), while

2 f

Q*(k) (p(k) kdk+ — p(k) —dk
cb~ ch~ k

1 t f
Q~(k) —dk+ x',

ck" k

f*
x=— Q*(k)~(k)&dk ——

~ 0(k)=dk
ck ~ ck~ k

(6.8)

+—
~~ Q*(k)=dk+x',

cA~ A;

x' and x' being arbitrary functions of the space-
time coordinates of the particles.

As we wish to obtain wave equations for Q

corresponding to Eqs. (5.1) for @, we must
replace each operator F in (5.1) and (5.2) by

(6.9)

This amounts to substitution of 4' from Eq. (6.7)
into Eqs. (5.1) and multiplication on the left by
exp( —x+x). After the transformation (6.9) is
carried out, terms containing Q(k), Q(k), p~(k),
or p*(k) can be omitted, since

Q(k) Q = Q (k) Q = p*(k) Q = p~ (k) Q = 0.

Finally, the quantities p' and p' are determined
by the requirement that the transformed operator
R, should be Hermitian. This gives'

f*f
dk. (6.10)

4ck ~ k'

In this way we obtain, instead of Eqs. (5.1), the
set

the prime after the summation indicating that
the term u = s is to be omitted.

The vector D(r„t,) is the value of D(r, t) at
the point r = r, and t = t, . D(r, t) is obtained from
D(k) and D(k) by the formula (4.7).

To obtain a physical interpretation we must
pass from the set (6.11) to an equation analogous
to Eq. (5.5). This is done by adding together the
equations for individual particles and setting all
t. =t, the common time. In fact, to consider
several particles as interacting parts of one
physical system is possible only when all of
them are referred to a common time of the
system. When this is done, the resulting equation
is4

—ck ( k;k;q
[D,(k), a,*(k'))=

~
~, — ~~( -k),

2k ( k')
ck ( kk;)

[D,( ), D,*(k')]=—
~

a,,— '
IS( —k).

2k& k')

(6.16)

I p, (o, [c14—e,D(r„t)j+m, c'p, + e, '/Smo)

+~' ~."-[I—e~p( —
I r.—r. l/~) j/8~ 1

r.—r-I I Q
$, 8

=ikBQ/Bt. (6.15)

We can now recognize e,'/Sea as the electro-
static self-energy of sth particle, and the double
summation as the electrostatic interaction energy
among the particles, which thus turn out to be
the same as in non-quantum theory. The field
enters this wave equation only through D(r, t),
which can be thought of as independent of the
presence of particles. In fact, the properties of D
are suf6ciently defined by the following com-
mutation rules, which can be easily derived from
definitions and the Eqs. (4.26).

(ce, P,+m, c'P,)Q = T,Q;

P, =p. —(e,/c) D(r„ t.) —(e./2c) 7, U„

T.=ih8/Bt, (e,/2c) 8 U,/Bt—, (e, '/Sm a), —

(6.11)

(6.12)

(6.13)

These commutation rules are however incon-
venient for interpretation of D;(k), etc. , as func-
tional operators. Montgomery' therefore intro-
duces another set of operators b(k) and b(k),
whose components have more convenient com-
mutation rules,

U, =g' (e /Ss') ) [—(1/k') sin(y, —y„)

—(1/k') sin(g, —p„)fdk, (6,14)

L»(k)»" (k') j= »vb(k —k')

L»(k)»'*(k') 7 = —~ v~(k —k'),

with other combinations commuting. One can
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then put

and

The energy of the two kinds of photon' appears
as the integral operator on the left side. The
effect of photons on the particles appears on the

~ ~

D(k) = (clt/2k') &[kXb(k)+b(k)/a], (6.19)

which, together with Kqs. (6.17), again give
Eqs. (6.16).

Equation (6.15) can now be put into a more
convenient form

7. APPLICATIONS OF PERTURBATION
METHOD

As was done by Fock," the functional 0 may
be expanded in series of simple functionals

(FIp i7iB/—dt) Q Q=Q Q„, (7.1)

IG*(l ) b(k)+G(k) b*(k)

where

+G*(k) b(k)+G(k) b(k) }dkQ,

where 0„, is an eigenfunctiona1 of the numbers of
photons of the two kinds, corresponding to r
ordinary and s tilde photons. It can be written

(6 2o) in the form

IIo = Q, (n, cp, +m, c'P, + o, '/87ra) 't1"''tr )1"')s ~
~ dkgdk2

+g' o, o„[1—exp (—I r, —r„
I /~) 3/

S& 'tt

(6.21)

G(k) = (1/2mk)-**(cIt/2) '* Q, o, n&

x dk„dk~' dk, 'P„(k»a 4'j.)
Xb;,'(ki) b'.'(k.)

X5&g'(kg') bt. '(k, '), (7.2)

and

~ f
with i's and j's being 1, 2, 3; or in particular

G (k) = (1/2 hark) &(ck/2) & Q, o.(n. Xk+ n, /u)

Xexp[i(cIot —k r,)). (6.23)

Finally, the time dependence of 6's can be
eliminated, and we obtain"

(FIo i7iB/Bt) Q+—hc [kb*(k) b(k)
f

Qoo =goo,

Qgp
——Q; dkggp(k, i)b (k),

Qoi=Z dk4oi(k, j)b (k)

(7.3)

—kb~(k) b(k)gdkQ

IGp~(k) b(k)+Gp(k) b~(k)

This can be carried out as far as desired, but
if one wishes to limit oneself in terms quadratic
in particle charges, one may drop higher terms
and put

Q = Qpp+ Qgp+ Qpg. (7.4)
+Go*(k).b(k)+Gp(k) b*(k) }dkQ, (6.24)

in which

Gp(k) =G(k)e ""' etc.

Equation (6.24) may be regarded as the fun-
damental wave equation of our theory for a
system of particles in the presence of photons.

"See reference 4. Eq. (2.19) of that article should have
( —i7i8 j0t) in the left-hand member.

In all of the above equations P„are, of course,
functions of t and the positions of the particles
r&, x'2, . r„, but for brevity these variables have
been suppressed.

The operators b(k), b*(k), b(k), and b*(k)
may now be related to operations on 0 as follows:

b,*(k)-b,'(k), 5,'(k) -b (k),
(7.5)

b;(k) 5/bb (k), b, (k) —5/8b (k).
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With these assumptions and neglect of terms
in 0 corresponding to more than one photon,
one then obtains"

&u&v

6 '0!
u, v 16~

1 —exp( —R/a)

(Hp= iAB/Bf)lI'pp
n„Rn„R 1 —exp( —R/a)

+

= 2;) &k[Gp, *(k)lt ip(k, i).
—~« '(k)Ar(»j) I (7 6)

(FFp+bck —shB/Bt)lf'ip(k, j ) =Gp (k)happ,

(Hp+kcrp —CAB/Bk)/pe(k, j) = 6'pj(k)lapp.

(7.7)

(7.8)

From this point two procedures have been
used. Both assume an unperturbed value of lapp.

This is substituted into Eqs. (7.7) and (7.8),
which are then solved for &M and its~. If, with
these quantities substituted into Eq. (7.6), the
latter is written in the form

exp( —R/a)
(7.12)

where R=r —r„, and R=
( R~.

There are no infinities in this result. The elec-
tromagnetic self-energy is obtained by taking
terms for which u=v, and letting R—&0. This
gives —3/4s, s/4vra for each particle. The electro-
magnetic interaction thus obtained is a gener-
alization of Breit's formula, which can be ob-
tained by letting a—+0.

8. CONCLUDING REMARKS

(Hp+ U)lf pp
= sflBlP pp/Bf; (7.9)

It is interesting to note that although the tilde
photon energy of Eq. (6.24),

then U may be regarded as the contribution to
the energy of the particles due to the possibility
of emission and absorption of photons.

Montgomery' assumes the unperturbed Ppp to
correspond to plane waves. Then, working in
the momentum space, he obtains a generalization
of Moiler's formula.

More revealing is the result of the procedure
of Green 'Assumin. g that (Hp —ihB/Bt)lttp and
(Hp ikB/Bt)fpt ca—n be neglected compared with
Acklggp and kcrplf pl respectively, he at once
obtains from Eqs. (7.7) and (7.8)

lf'yp= Gpzppp/kck, /pe = Gp~tppp/Ack. (7.10)

Thus,

U= — t [G,*(k) Gp(k)/Ace

—Gp*(k) Gp(k)/kcIp]dk, (7.11)

"Reference 4. A slightly different choice in Eq. (7.5)
is responsible for a sign in Eq. (7.8) being different from
that of Montgomery's Eq. (2.27), but results are unaffected
since there is a compensatory change of sign in Eq. (7.6).

—fickb*(k) b(k),

is apparently negative, it gives a positive con-
tribution hack to the energy in Eq. (7.8). This is
due to the occurrence of the minus sign in the
commutation rules of the tilde quantities, Eq.
(6.17). If one should put

then the above energy expression becomes

+kckb'*(k) b'(k).

and, since the commutation rules for these 6's are
the same as for b's, the eigenvalues of this ex-
pression will be positive, just as for ordinary
photons.

Recently, Green' has extended the theory to
a meson type field, leaving out all considerations
of isotopic spin and spin dependent interaction.
Since no infinities occur in that case also, we are
at present considering the case when spin de-
pendence is explicitly taken into account.


