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those of Debye's method of steepest descent'
becomes apparent.

The latter has been extensively considered by
mathematicians. As a general method for approxi-
mating Fourier integrals, it has only one defect:
the spectrum function must be susceptible of
analytic extension into the complex plane. For-
mally, this is a very weak restriction; practically,
it is a forbidding one, but it may be essential to
consider the matter more fully than has been
done here.

The Kelvin-Fresnel methods do not operate in

the complex plane, and hence are more readily
applied to many problems. An excellent summary
of the work in this field prior to 1914 has been
given by T. H. Havelock. ' Since that time,
wave theory has been very actively studied,
under the impetus provided by atomic theory on
the one hand, and by radio and sound on the
other. Recently, there also has been a marked
interest in geophysical wave problems.

One important relationship has become clear

INTRODUCTION

~ 'HE rigorous and general solution of linear
partial diHerential equations with constant

coefficients can be obtained without difFiculty,
in the form of a Fourier integral. ' ' However, the
very generality of the Fourier integral makes it
difficult to interpret in any detail, unless it can
be evaluated in terms of elementary functions.
The need for a simple and systematic method of
approximate evaluation must have been felt very
early. The Fresnel method of zones3 is such an
approximation, although the geometric deriva-
tion usually associated with it obscures its gener-
ality. The abstract reformulation necessary for
its wider application was accomplished by Lord
Kelvin' and has become known as the method of
stationary phase. In this form, the close mathe-
matical relation between Fresnel's ideas and

* This work was supported by Contracts N6-ori-111 and
NObs-2074 with the Once of Naval Research and the
Bureau of Ships, Navy Department.' A. G. Webster, Partial Diff'erential Equations of Mathe
matical Physics (Julius Springer Verlag, Berlin, 1933),p. 44' H. Bateman, Partial DiJt erential Equations (Dove
Publications, New York, 1944), Chapter III.' A. Fresnel, Oeuvres (Paris, 1866), tome I.

4 Lord Kelvin, Proc. Roy. Soc. 42, 80 (1887).

r s P. Debye, Math. Ann. 67, 535 (1908).
6 T. H. Havelock, The PropogaIion of Waves in Dispersive

Media (Cambridge University Press, Teddington, England,
1914).
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in the years since Havelock's summary was
prepared: the method of stationary phase is also
the mathematical foundation for the Hamilton-
Jacobi ray theory. The exposition of this relation-
ship will therefore be the principal subject of the
following pages.

This review is based largely on notes accumu-
lated over a period of years. Some attempt has
been made to give the original sources, but no
systematic search of the literature has been made.
After the major part of the manuscript had
been prepared, an unexpected problem was en-
countered in applying the method of stationary
phase to a dissipative medium. Sections 11, 12,
and 13 are devoted to this problem, without,
however, reaching definite conclusions.

1. EXAMPLES OF PHYSICAL WAVE EQUATIONS

The various kinds of physical phenomena
known as waves are all described by partial
differential equations. The simplest of these are
the linear equations with constant coe%cients,
and it is only these that will be discussed here.
A further simplification results from the exclusion
of equations having more than two independent
variables —the time, t, and one space coordi-
nate, x. This restriction is not basic, however.

Waves on a stretched string, sound waves in a
tube of uniform cross section, water waves in a
shallow uniform canal, and many other phe-
nomena, are governed by an equation of the form

(f)'lt/c)~') —(1/c ') (8'f/r)t') =0, (1.1)

where cp is a constant, while f is the dependent
variable.

The propagation of electric currents along a
uniform wire is governed (1) by the more general
equation

8'll 1 8'f 2a it/———+ (kp' —a') P = 0, (1.2)
Bx2 cp2 852 cp Bt

where cp, a, and kp are constants defined as
follows:

cp' ——1/L, C,
2u/c p RC+I.S, ——

a' —k '=AS,

C=capacity per unit length, I.=inductance per
unit length, R = resistance per unit length,

n = l't/m.

This equation also governs the motion of long
gravitational waves' on a rotating disk; cp'/cr' is
the Coriolis parameter, and cps=gh, where It is
the water depth, and g the acceleration of
gravity.

Schrodinger's equation is

(1.5)

and has a strong formal relationship' to that for
Rexural waves on a rod:

8'lt /Bts = ——,'u'(8+/Bsc4),

although n has a diferent meaning in the two
cases.

All of these equations have special solutions of
the form

lt (x, t) =expi(kx —ttt), (1.7)

for, on substituting this function into any one
of them, the result reduces to

lt W(k, n) = 0,

where 5' is a diferent function in each case;
and this equation will be satisfied for all x and t
if the (real or complex) constants )'p and narc,
roots" of the characteristic equation.

W(k, n) =0.

r P. A. M. Dirac, Quantum Mechanics (The Clarendon
Press, Oxford, England, 1935), p. 253.

H. U. Sverdrup, "Dynamics of tides on the North
Siberian shelf, " Geofys. Publikas. 4 (1927).' E. U. Condon and P. M. Morse, Quantum Mechanics
(McGraw-Hill Book Company, Inc. , New York, 1929),
p. 26.

"H. Bateman, Partial Deferential Equations of Mnthe
matical Physics (Dover Publications, New York, 1944),
p. 10i.

5=1eakance per unit length. This equation, or
special cases of it, also appears in other con-
nections. DiHusion is not usually considered as a
wave phenomenon for reasons that will appear
below, but is governed by

D(r)pit/r)x') = r)p/r)t,

which is a particular case of Eq. (1.2).
The de Broglie equation for electron waves' is

8'it 1 8'lt cg'

Bg2 cp2 Bt2 n2
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t'18 18'
Wf -- —,———]+=0.

(z ax i at)
n = II'(k), a= De(k);
n =H2(k), a = D2(k);

Symbolically, the partial differential equations where k, n, and a are all real numbers. Then, in

may all be written general, there will be several single-valued solu-
tions of Eq. (2.1).

W=~~ —Ik
~
(g+I k2/t),

where p is the density of the Quid. "
(1.11)

In what follows, no particular assumption will be
made concerning the function t/t/', although the
above examples will be used for illustration.

In these examples TV is always a polynomial.
In some generalized forms of wave motion, such
as surface waves in moderately deep water, 8'
may be a transcendental function of its argu-
ments:

W=n& —qk tanht k, (1.10)

~here g is the gravitational acceleration, and k
the water depth. " Ripples of short wave-length
are also inAuenced by the surface tension, 1,
and, approximately,

(2.2)

The real functions III, II2, etc. , are called the
Hamiltonian functions of the wave equation,
while the functions D~, D~, etc. , are called its
logarithmic decrements.

The Eq. (1.6) then becomes

P =exp I i[kx —II(k) t] D(k—) t I, (2.3)

where II and I4 are any pair of associated
functions.

It will be noted that the diffusion equation is
characterized by a Hamiltonian that vanishes
identically. This is perhaps the hrst indication of
the fundamental role of the Hamiltonian in
determining the character of the solutions of
partial differential equations. Figure 1 shows

2. THE HAMILTONIAN FUNCTIONS AND THE
LOGARITHMIC DECREMENTS

Equation (1.7) may be solved for n as a func-
tion of k. Thus, Eq. (1.1) leads to the charac-
teristic equation

—k'+e'/cP = 0,

whence n = +cok. Equation (1.2) leads to

—k'+e'/co2+2ian/co —a'+k02 = 0,
or

+= co( —iaw[k' —k02]'*).

Equation (1.3) yields n=iDk'. Equation (1.4)
leads to n=a[k'+k02j'* where ko ——co/n, while

Eq. (1.5) results in the single-valued function
n = -', nk' and Eq. (1.6) results in n = +-,'ak'.

These examples serve to illustrate two facts:
for a given real value of k, there will, in general,
be several values of n, and these generally will be
complex.

For this reason, it is convenient to replace n

by n —iu in all the above formulae, and to write
the characteristic equation in the form

"H

EQ. (I.I)
SIMPLE WAVE EQUATION

EQ. (I.4)
DE BROGLIE WAVES

EQ. (I.IO)
WATER WAVES

EQ. (I.23
TRANSMISSION LINE

EQ (l.5)
SCHRODINGER WAVES

FQ. (I.Il)
RIPPLES

W(k, e —ia) =0, (2.1)

"L. M. Milne- Thomson, T/zeoretica/ Hydrodynamics
(MacMillan and Company, Ltd. , London, 1938},p. 376.

FtG. 1. Graphs of the Hamiltonian function and the
related logarithmic decrement for some kinds' of grave
motion. In general, there wi11 be several pairs of such
functions, corresponding to different roots of the equation
W(k, n ia) =0. —.
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C, V

EQ. {I.I)
SIMPLE WAVE EQUATION

$ +C

EQ. {I.4)
OE BROGLIE WAVES

--co

c
I

CsV

EQ. (1.2)
TRANSMISSION I INE

EQ. (I.5)
SCHROOINGER WAVES

where the sum is to be extended over all of the
Hamiltonian functions. The integrands are clearly
solutions of the wave equation. If, moreover, the
functions F~, Ji 2, etc. , which appear in the
integrands are such that it is permissible to
differentiate under the integral sign a sufficient
number of times, P itself will satisfy the wave
Eq. (1.9).

In the following sections, the multiplicity of
Hamiltonians will be ignored as a non-essential
complication. For the same reason, the loga-
rithmic decrement will be set equal to zero; both
of these complicating features of the Eq. (3.1)
can readily be reintroduced at any stage. The
further development of the theory will therefore
be based on the single integral

1 f
p(~ t) =— F(k)

J2X Qo

&& exp I i[kx —SS(k)i] I dk. (3.2)

EQ. (I.IO)

WATER WAVES
EQ. (I.II)
RIPPLES

If the time, t, is set equal to zero, Eq. (3.2)
becomes

FIG. 2. Graphs of the phase and group velocities for some
kinds of wave motion. In general, there will be one pair of
these graphs for each Hamiltonian.

one set of II and D funct1ons fol sollle of the
wave equations given above.

Thc Ical pal"t of thc cxplcssloil oil the 11gllt of
Eq. (2.3) is

exp I
—D(k) t } cos I kx —IS(k)t I .

The roots of this quantity are given by

kx —H(k)t=(re+ ', )s., no=0-, &1,
OI"

P(x, 0) =Ps(x) =— F(k) exp(ikx)dk. (3.3)
ao

F(k) = J" iis(x) exp( ikx)dx— (3 4)

Thus, F is determined by the initial value of p,
and conversely. **

In general, F(k) will be a complex number,
and may be written

An application of Fourier's theorem to th is
equation resl. llts in

whe1 e
x —c(k) t =constant, F(k) =y(k) exp[i&(k)$, (3 5)

c(k) =H(k)/k.

3. THE FOVRIER SOLUTION OF THE INITIAL
VALUE PROBLEM

Consider the function
00

2x ~no

&&exp Ii[kx —H(k)tl —D(k)tIdk, (3.1)

(2.4)

The roots, therefore, move with the velocity,
c(k), which is called the phase velocity of the
waves. Figure 2 shows graphs of c(k) for some of
the wave equations given above.

where $ and 0 are real. The function Q is called
the (amplitude) spectrum of the wave, and 8 its
eikonal. ""The further abbreviation

0(k, x, t) = e(k)+ kx —H(k) i (3 6)
**In deriving Eq. (3.4), it has been explicitely assumed

that there is only one Hamiltonian. If there are several, it
becomes necessary to complicate the derivation by con-
sidering a certain number of the quantities 8&/85, 8'g/St',

~ - ~, the functions Ii~, I'& - ~ are then determined by the
initial values of these time derivatives in addition to the
initial value of P itself.

"M. Born, Optik (Juhus Springer Verlag, Berlin, 1933),
Chapter II."C. Manneback, Traeaux de l'Assemblee Generale de
I'Union Radio Srientijiqle Internationale (London, 1934,
published Brussels, 1935).
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is convenient, and reduces Eq. (3.2) to the form

~ Qo

P(x, t) =— @(k) exp[iO(k, x, ])$Jk. (3.7)

It will be noted that if Ps(x) =Ps*(x) (where
the asterisk indicates the complex conjugate)
Eq. (3.4) shows that F is real, arid therefore that
the eikonal vanishes identically. Solutions char-
acterized by an eikonal which is constant, or at
most a linear function of k, are of special im-

portance in many applications; they are called
centered waves. Waves whose initial form is
characterized by the above type of symmetry
are common in practical problems. It should be
noted that centered waves do not necessarily
originate from an instantaneous point source,
although it will be shown that they have some
properties in common with this hctional type.

4. THE METHOD OF STATIONARY PHASE,
AND THE EIKONAL

The function 0 is called the phase of the
integrand of Eq. (3.7). It should be noted that
x and I are constant during the integration,
while k is the variable. As k (and 0') varies, the
exponential factor will oscillate, with the period
2' in 0~. If, in any interval on the k axis, 0~ in-

creases by many times 2tr, while P remains
sensibly constant, the contribution of this in-

terval to the value of P will be disproportionately
small compared to its length. In fact, it can be
shown that under certain conditions, the value
of the integral is determined almost entirely by
the values of the integrand near the stationary
points of the phase . (See Section 15.)

These are the values of k that satisfy the

FIG, 4. The x—t diagram for a centered wave, showing
the front associated with a Inaximtlm of the group
velocity.

equation

(d/ak)0(k, x, &) =P.

In general, there will be several such values of k:

k = »t(x, I), k = »s(x, t), (4.2)

but for the present, it will be supposed that there
is only one: k = »(x, I) Near . this point, the
approximate value of 0' is

0(k, x, t) =S(x, I) —;R(x,&) (k —»)', (4.3)

where

8(x, I) = 0[»(x, I), x, &j,
R(x I) = —rI'0(», x, I)/d»' (4 4)

To a certain approximation, it is permissible
to set

0(k) =4(»).

Hence, Eq. (3.7) becomes, approximately

P(x, t) = Q(») exp[iS(x, t) ]
~Qo

exp[ ——.', iR(k —»)
' jdk. (4.5)-

2x ~

UNOiSTuReED
REGiON

xo(k)
x,t slope = v(k)

FIG. 3. The rays in the x—t diagram. This diagram is the
basis for the graphical method of finding the function
»(x, t), described in the text.

FIG. 5. The x —t diagram for a general wave, showing the
front and the two roots, »& and»g, of theequation De/8»=0,
which are associated with an envelope of the family of rays.
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The integral in Eq. (4.5) is the complete"
Fresnel integral:

exp[ ——,iRu']du = (2miR) '. (4.6)
1 t'

2'

5. GROUP VELOCITY AND THE HAMILTON-
JACOBI FUNCTION

Using Eq. (3.6), one finds that the condition
for stationary phase (Eq. (4.1)) becomes

x= xo(k)+v(k)t, (5.1)

xo ———d8/dk (5.2)

v =dII/dk. (5 3)

Equation (5.1) suggests that something starts at
xo(k) at time t=0, and travels to x with the
velocity v(k). Obviously, this "something" is
characterized by the wave number k; it is called,
for reasons that will not become clearer below,
the "group of waves" having that wave number.
The initial coordinate„xo, is called the origin of
the group, and v the group velocity. Equations
(5.2) and (5.3) relate these two quantities to
the eikonal and the Hamiltonian, respectively.
Figure 2 shows graphs of phase and group
velocity for the various examples.

The Eq. (5.1) can be made the basis of a
graphic solution for «(x, 1), as is indicatecl in

Fig. 3. It represents a family of straight lines-
the rays —in the x, t plane. Each of these rays

"E. Jahnke and F. Emde, Funktionentafeln mit Formeln
und Eurven (B. G. Teubner, Leipzig and Berlin, 1938;
Dover Publications, New Yorl-, 1943), p. 33.

Herice, the approximate value of P is

P(x, 1) = [2miR7 1$(«) exp[iS7. (4.7)

The calculations necessary to estimate the error
in this approximation are outlined in Section j.5.

If there is more than one root of Eq. (4.1)—
i.e. , more than one point of stationary phase —the
single term on the right of Eq. (4.7) must be
replaced by a sum of terms of the same structure.
Other methods of treating the case of two sta-
tionary points are discussed in Section 7.

If the logarithmic decrement is not zero,
Eq. (4.7) is only slightly more complicated:

P(x, 1) = [2miR] 'P(«) exp[ D(«)t—+iS] (4.8).

is characterized by a particular value of k, and
intersects the x axis at xo(k). Its slope is v(k).
To determine «(x, t), one has only to note the
value of k for the ray that passes through the
point x, t of the diagram.

In the case of a centered wave, xo is inde-
pendent of k—say equal to zero—and the rays
all emanate from the origin of the x, t diagram',
as shown in Fig. 4. In this case, ~ is obtained by
solving the equation

v(«) =x/1

and « is thus a function of the ratio x/t only.
In those cases where v has a maximum and

the wave is centered, there will be a region into
which rays penetrate. The ray of greatest speed
is called the advancing front. In the same way,
the case of a minimum of group velocity results
in a receding front.

It is also possible that v(k) has several extrema,
in which case even centered waves will have a
rather complicated ray diagram and there will be
several fronts, some advancing and others re-
ceding. An interesting case of this sort has been
discussed in detail by C. L. Pekeris. " In the
following, the discussion will be much simplihed
by assuming that v has only one extremum and
that there is only one frorit,

Figure 5 also shows a region of the x, t plane
that is not reached by any rays. Since there are no
real roots of Eq. (5.1) for values of x, t in this
region, there will be no points of' stationary
phase, and the integral of Eq. (3.7) is zero to the
present approximation. (See Section 15.) This
approximate result is not valid too near the
boundary of the undisturbed region, as will be
shown in Sections 7 and 8.

It may also happeri that even if v has no
extremum, several rays pass through a single point
of the diagram, as shown in Fig. 5. In this case,
Eq. (5.1) will have several roots, k = «&(x, 1),
and Eq. (4.7) will have several terms, as already
noted. As is evident from an inspection of Fig. 5,
multiple roots of Eq. (5.1) are accompanied by an
envelope of the family of rays, and an undis-
turbed region beyond the envelope. Such fronts

"C. L. Pekeris, "Theory of propagation of explosive
sound in shallow water, " Report of the Columbia Univer-
sity Division. of War Research, No. 6.1-sr1131-1891, Jan-
uary 1943. (PB 31063).
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(BS/Bt) +FI(AS/itx) =0. (5.6)

This is also variously known as the geometric
wave equation, and as the "equation of the
characteristics"" (not to be confused with the
characteristic equation, Eq. (1.8)).

The Hamilton-Jacobi function enters into Eq.
(4.7) in the factor

exp(iS) .

Equation (5.5) thus shows that, near x, t, the
disturbance is approximately a sinusoidal wave
of frequency i =FI(ir), and wave number ~. The
individual wave crest thus moves with the phase
velocity

(»/Bt) S V/K FI(K)/K = C(K) (5.7)

as it passes through the point x, t. The crests are
not constantly associated with the same wave
number; rather, the wave number is associated
with the ray as has already been seen.

Since c is thus expressed as a function of x and
t, the space-time locus of an individual wave crest
can be obtained by solving the differential
equation:

dx/dt = CLn(x, t) j. (5 8)

It follows from the above that the solution of this
equation will be a curve in the x, t plane, whose
equation is S(x, t) =const. In general, this curve
cuts across many rays. This result has a simple
physical interpretation: the individual crest does

"N. Born, Atomrnechanite (Julius Springer Verlag,
Leipzig, 1925).

may be either advancing or receding, but do not
have a constant velocity; they will also be dis-
cussed further in Section 7.

Turning now to the function

S(x, t) = O(~, x, t)
= 8(~) + nx FI(n—)t, (5.4)

which is known as the Hamilton-Jacobi function:
for, on differentiating Eq. (5.4), one obtains

BS/» = K+ [x—xs(K) —v(K)t]rJK/»,
aS/at = II(~)+—[x xs(~) —v(n) t)—8ir/Bt.

Because s is a root of Eq. (5.1), it follows that

rlS/» = ~, BS/Bt = FI(ir), — (5.5)

whence elimination of K results in the Hamilton-
Jacobi" equation

not move with a constant velocity, nor does the
separation between successive crests remain con-
stant during their motion. This separation be-
tween successive crests is appropriately called the
wave-length, ), and varies from place to place
and from time to time. For any given pair of
crests, it is given approximately (but only ap-
proximately) by the equation

X = 2n/~(x, t), (5.9)

hence,

(3K 8 5 6K
= ——FI(s) = —v(~)—;

Oxcart Bx Bx

(Bx/rtt) e = v(s). (5.10)

The solution of this equation is a straight line in
the x, t diagram, as is obvious from Figs. 2 to 4:
n is constant along any ray, and therefore also it.
Moreover, the slope of the ray passing through
x, t is v(s).

These considerations lead to the following de-
scription of the disturbance: the individual crests
move with a variable velocity and amplitude.
Both are determined by the ray which the crest is
momentarily crossing; the wave-length and one
factor, p, in the expression for the amplitude are
the same at all points of a given ray. The motion
of the individual crests is along the curves
S=const. The slope of any member of this
family, at. the point where it crosses the ray
characterized by the wave number ~, is c(n).
There are thus two families of curves in the x, t
diagram: the rays, which are straight lines, and
the crest paths, all of which intersect a given ray
at the same angle.

and thus varies as they move across the rays.
This approximation is valid only when the value
of K does not change appreciably from one crest to
the next.

The amplitude of the wave crests is (at least
partially) determined by the spectrum amplitude
p(n). If the attention be focused not on the
motion of the individual wave crests, but on the
motion of the point where the amplitude p, or
what is the same thing, the wave number K, has a
given value, another velocity will be obtained.
This is

(»/~t) e = (~&—/~t)/(~4/»),
= —(8n/elt) /(rl ii/»)
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If several rays pass through a given point of the
x, I, diagram, there will be several trains of waves
passing through it simultaneously, each moving
according to its own appropriate laws. The
interference of these various trains may result in
complicated patterns. This will be considered in
more detail in Section 7.

Another consequence of Eq. (5.5) is that

when the differing velocity of the Fourier com-
ponents has dispersed the disturbance into a we11-

resolved spectrum wi11 the above approximation
be an accurate one.

The mathematics of this physical argument is
best approached by a study of the function R.
Using Eqs. (3.6), (4.4), (5.2), and (5.3), it follows
that

oJ

Bn/Bt = O'S/BxBt = —(8/Bx)II(n) = —8v/ax

(Bn/Bt) + (Bv/Bx) = 0, (5.11)

R = o—'0/8~'
= (dx p/dn) + t(dv/dn), (6.1)

which is an equation derived by Rossby'~ and
Munk" from elementary considerations con-
cerning ihe motion of wave crests.

Finally, it should be noted that S(x, t) satisfies
the Hamilton-Jacobi partial differential equa-
tion, no matter what form the eikonal 8(k) may
be given, provided only that ~ is a root of
Eq. (5.1). fhus, a by-product of these considera-
tions is a graphical method of solving partial
differential equations of the first-order and con-
stant coefficients.

e. THE RESOLUTION OF THE WAVES INTO
A SPECTRUM

Equation (4.7) shows that the amplitude of the
waves at x and t is determined directly by the
spectrum p and by the function R, but only
indirectly by the initial value of the wave func-
tion P. Obviously, this cannot be true for all
values of the time. At instants immediately
following t=0, the function f(x, t) must differ
only slightly from its initial value Pp(x). This
immediately suggests that the approximate value
of P yielded by the method of stationary phase
will be accurate only for large values of t.

Physically, the reason for this is to be found in
the different velocity v(k) with which the various
Fourier components are propagated. When it is
necessary to consider many components as being
present at a given time and place, the extremum
of the phase function O~ will be very shallow and
the above approximation will not be good. Only

'7 C. G. Rossby, On the Propagation of Frequencies and
Energy in Certain Types of Oceanic and Atmospheric 8'aves,
J. Meteorol. 2, No. 4, 187 (1945).

s' W. H. Monk, Increase in She Penod of Waves Traveling
Over L,arge Distances, mith Applications to Tsunamis, Smell
and Seismic Surface 8'aves, Trans. Am. Geophys. Union,
Apri1 1947.

(6.3)

Of these three alternative forms, Eq. (6.2) is
the most enlightening. Referring to Fig. 4, it is
easily seen that 8x/Blc will be large where the rays
are widely spaced (for given increments of k or n)

and small where they are poorly resolved. Since
the amplitude is inversely proportional to R', it
follows that the wave disturbance is "spread
thin" and has a small amplitude at those places
where the space occupied by a given spectral
interval is large. The function R may be appro-
priately called the resolution of the wave
spectrum.

Equation (6.1) may also be written

&=&p+cd, (6.4)

n= d(v)n/ nd

'dJ(I)n/ d'n (6.5)

'7. WAVE FRONTS

Since n and Ro may have opposite signs, there
may come a time when R=O for a given ray.
Reference to Fig. 5 and the interpretation
R=Bx/c3~, shows that this will occur at the
envelope of the family of rays, if there is such an
envelope. Equation (4.7) is clearly not a good

will be recognized as the coefficient of dispersion
of the medium. Since n and Ro are functions of x

only, they will both be constant along a given
ray. Thus, the resolution of a given part of the
spectrum increases linearly with time from an
initial value, at the rate n. For sufficiently large
values of t, therefore,

~

R
~

must always be great;
for small values of t, its magnitude will depend on
Ro. These considerations are also obvious from a
consideration of the rays in the x, t diagram.
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Fro. 6. Notation for the extrema and the point of inBec-
tion of O~, which are associated with an envelope (cf.
Figs. 5 and 7).

approximation to P at the wave front, since it
yields the absurd value f= ~ when R =0. It
thus becomes necessary to develop a more
suitable approximation for this region.

The front is a curve in the x, t plane which
separates it into two regions: one is the disturbed
region, in which at least two rays pass through
each point, the other is the undisturbed region, in
which there are no rays. This is the typical
description, but more elaborate cases are possi-
ble. Only this typical case will be treated here;
for the moment it will also be supposed that, at
the wave front, ~ is not in6nite.

The details of the situation are illustrated in

Figs. 6 and 7. Let 6 be the distance from the
momentary position of the front to the point
x, t, counted positive when x is in the undisturbed
region-. Figure 7 shows schematic graphs of the
phase function 0 for 6)0, 6 =0, and 6 (0.When
5&0, no ray passes through x, t, and corre-
spondingly, the graph of 0~ has no stationary
point. When 6 &0, two rays pass through x, I,, and
0', correspondingly, has one maximum and one
minimum at k = «t and k = Ks. For 6 =0, 0' has a
minimax for k=E.

In the previous sections, 0' has been approxi-
mated by a quadratic in k, in the neighborhood of
its stationary point. Figure 7 makes it obvious
that for small values of 6 it will be better to
approximate it as a cubic in k.

Let X be the value of k for which O~ has a point
of inHection, so that X is a root of

—(as0~/aks) =Rs(k)+rs(k)t = O. (7.I)

t——-0 ~ 0
Ks

Fsc. 7. Schematic graphs of as a function of k for various
values of D.

to 0 is then

0(k, x, t) = 0(z, x, t)+(k z) (a—O/az)
+-,'!(k —z)'(a'0/az'),

= a(z)+ zx II(z)t-
+ (k —z) [x—x.(z) —v(z) tj

——', !(k—z)[R,'(z)+ '(z)t3

=S,(x, t) p (k —z)a(x, t)
+-', (k —z)'a'(t), (7.2)

where Ss, 6, and a are obvious abbreviations. It
will be noted that h(x, t) is the distance of x from
the momentary position of the wave front as
already defined. Ss is formally simila. r to the
Hamilton-Jacobi function, but does not satisfy
the same partial din'erential equation. The real
quantity

a(t) = —I-', [R,'(z)+~'(z)tj}t (7.3)

is a scale factor which, it will be seen, determines
the steepness of the front.

Arguments similar to those which lead to Eq.
(4.5) now lead to the approximate expression

p(x, t) =y(Z) exp[i5sj

exp I i[(k —z)6+-'s (k —z) 'a'] }dk. (7.4)

The integral which appears in this equation is
essentially Airy's integral:

Ai(x) =— exp[i(xu+-,'u') jdu, (7.5)
2T ~QQ

lt {x,t) = (y/a)Ai(a/a) exp(iS, ).

so that Eq. (7.4) becomes
From this equation, or from Fig. 6, it is clear tha, t
E is a function of t only. The cubic approximation
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The Airy function can be evaluated" in terms
of Hessel functions of order —', . Another definition.
of the function has been discussed by Kramers'"
in connection with the "WKB method" without
apparently noting the identity of the function
with Airy's. For suAiciently large positive values
of $, the approximations

exp( —st")
Ai(g) = —,'sr'

$1

(7 8)

the velocity of the wave front will not be con-
stant. There is one limiting case, however, in
which the envelope becomes a straight line and
the wave front moves with constant velocity.
This arises when the group velocity has an
extremum for some Rnite value of k—say kp—and
the wave is centered. In the case of water waves
governed by Eq. (1.10), the velocity is a maxi-
mum for kp ——0. Ripples governed by Eq. (1.11)
have a minimum group velocity for kp given by
Eq. (8.9) below.

For a centered wave

are valid. Figure 8 has been prepared using these
equations to supplement a recently published
table" of this function for small absolute values
of the argument; ordinates for values of x (—2.4
may be considerably in error because of the
approximate nature of Eq. (7.8). Eight-place
tables have been prepared by the BAAS and are
being published as this is written. "

and, therefore,
0 = kx —11(k)f,

R=u(k)f,

(8 1)

(8.2)

so that R =0 only at t = 0, or at some value of k

for which the dispersion os= dv/dk =0.The former
case is to be considered in Section 10, so that only
the latter will be treated here. Letting cp ——c(kp),
vp ——v(kp), etc. , it is seen that

8. %'AVE FRONTS OF CONSTANT VELOCITY)
FIRST KIND

It is clear from Fig. 5 that the envelope of the
family of rays will be, in general, a curve, so that

Sp ——kp(x —cpf),

6 =X—Vpt,

3 = —I-,'~, 'f }l.

(8.4)

6

Fto. 8. Graph of the Airy function, Ai(x), defined by Eq. (7.5).

» G. N. Watson, 2 Treatise on tke Theory of Besse/ Functions (Cambridge University Press, New York, 1944),
pp. 188, 201, 659.

"H. A. Kramers, Zeits. f. Physik 39, 828 (1926)."P.M. Woodward, A. M. Woodward, R. Hensman, H. Davies, and N. Gamble, Phil. Mag. 3'7, 236 (1946).
22 Matlzematical TaMes, Volume B (to be published for the British Association for the Advancement of Science at the

University Press, Cambridge)v;
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Hence the disturbance in the neighborhood of
the wave front will be given by

f= (4p/b)»[(x —vpt)/53 exp[ikp(x —cpt) g (8.6)

The significant point to be noted is that the scale
factor 5 increases as the cube root of the time.

This is of special significance in case k0 =0: for
then the "wave-length" of the disturbance will be
determined by the oscillations of the Airy inte-
gral, and will be determined empirically by
measuring the interval between its maxima. The
first two of these intervals are

I.g
=3.88,

I.,=2.6S.

the carrier. However, for small values of t the
situation is similar to that of the gravitational
waves. The question of the extent to which these
formulae are applicable for small t will be con-
sidered in Section 10.

9. WAVE FRONTS OF CONSTANT VELOCITY,
SECOND KIND

While the ray diagram of Fig. 4 for centered
waves applies to the Eqs. (1.2) and (1.4), the
previous analytical procedures do not. This is
because the limiting value of the group velocity
is reached for k = ~, and it is not possible to use
Taylor's series in this neighborhood. Instead of a
cubic approximation to 0, the expansion

(9.1)

so that F00

(8.7) ~t (» t) =— 0(k)
2m~ „

liar. Xexp[ik(x cpt) i—bt/k jd—k (9.2)

"p=
I ,'k'vptI&&-0, for t)0.

The situation near this front is very pecu
It may be described as a carrier wave which is
amplitude-modulated. However, contrary to the
customary case, the carrier has a longer (infi-
nitely longer!) wave-length than the modulation.
Consequently, the empirically determined "wave-
length" bears no relation whatever to the spec-
trum of the disturbance. Such wave fronts are of
considerable importance as they constitute the
seismic sea waves, commonly called "tidal
waves. "Observations of these are in qualitative, "
and possibly quantitative, agreement with the
present calculations.

The case of ripples governed by Eq. (1.11) is
somewhat more normal. For these, the minimum
of the group velocity is at

when
~

x cpt
~

is suff—iciently small.
The value of this integral depends strongly on

the behavior of p for large values of k. Only the
special case

y(k) ~(ik)-"-' (9.3)

will be considered. Then the approximation

P(x, t) =— (ik) "—'
2x' ~

&& exp [ik(x —cpt) —ibt/k jdk (9.4)

will be valid. However, because (ik) " ' becomes
infinite for k =0, the path of integration must be
deformed into the complex k plane, so as to pass
above the origin.

The integral of Eq. (9.4) can then be evaluated
in terms of Bessel functions. The substitution

kp 0.393(gp/T) &——. (8.8)

The corresponding velocities are

vp
——1.086(g T/p)i,

cp ——1.713(gT/p)I,

while 8 &0 (receding front), where

—k pb =0.768 (gt/vp)'.

(8.9)
u = k/bt,

g = bt(x —c,t)(8.10)

reduces Eq. (9.4) to

(8.11) (9.5)P = (bt) "J(&),

Thus the "wave-length" near the front will II(k) =cpk+b/k+
increase as the cube root of t. In the case of long
surface waves, Eq. (1.9) yields is valid in this neighborhood. In the case of a

centered wave, 8=0, so that approximately« =-&:»5I =-.,»,

When t is much greater than vp/g, the wave-
length I.~ will be greater than 2pr/kp, and the
modulation will have a greater wave-length than

where

f(g) =— (iu) " ' exp[i(u& —1/u)(du. (9.6)
2x ~
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The rigorous formula

f(() =0, where $& 0 (9.7)

H(k) = II(kp) +II'(ko) (k —kp)

+pII" (ko) (k —ko)'+
= cpkp+vp(k —kp) +-'o p(k —kp)'+ (10.1)

can be proven readily. For negative values of the
argument it can be shown that

f(—~) = &."J.L2 (&) ':l,

where J„is Bessel 's function of order n. Graphs of
these functions for e =0 and i are shown in
Figs. 9 and i0.

it (x, t) = exp[ikot(vp —co)j

where cp, vo, and o p have meanings that is obvious
from the previous discussions. For the first, it is

(9 g) convenient to neglect the quadratic term; doing
this and substituting in Eq. (3.2),

io. UNRESOLVED WAVES

There are circumstances under which none of
the methods described above will lead to a
suitable approximation. The precise delineation
of these conditions will be omitted, but by now
their general nature should be fairly clear. In
each of the three approximate methods, it has
been assumed that p(k) may be treated as a con-
stant, while O~(k, x, t) is approximated by a
polynomial in k. In other words, it has been
assumed that the principal variations in the
integrand are caused by 0, those caused by
being either non-existent or else canceling out in
the end result, so that they may be ignored from
the beginning.

In the present section, it. will be assumed that
@(k) has a sharp maximum at k = kp. In this case,
it is fairly certain that its variation will dominate
over that of O~.

It is convenient to return to Eq. (3.2),

Comparing this with Eq. (3.3),

Pp(x) = —,'or F(k) exp(ikx)dk,

it is seen that

P(x, t) = IPp(x —vpt) expLikpt(vo —cp) $. (10.3)

This remarkably simple result can be put in a
more familiar form, if we write

it o(x) = %(x) expikox, (10.4)

where, by definition, + is the modulation, and
expikpx is the carrier wave. It can be shown that
(when the maximum of @ is sufficiently sharp) +

0

f(x, t) = -', vr) F(k) expLikx —i'(k)t jdk,
-80

or the following calculation: since @=
~
F~ has a

maximum at k =k 0, the Hamil ton ian may profit-
ably be expanded by Taylor's theorem near this
point:

- - I.0

FIG. 10. Graph of the function gJ&(2$).
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f(x, t) =expPikp(x —cpt) ] ipse F(k)

Xexp I i(k —kp) P

—(io.p/2) t (k —kp) '
I dk

=+((, t) expLikp(x —cpt) ]. (10.6)

The function +(P, t) remains to be studied more
carefully; clearly

~(&, o) =o.(&), (10.'I)

but its changes with time must be investigated.
A change of variable reduces + to the form

e(g, t) =-,'~ F(k+k,)

&& exp[~k ] (iop/—2) tk' jdk, (10.8)

and the general principles of Section 3 then show
that it satisfies a wave equation in P and t, with
the Hamiltonian —,O.ok'. This uniquely determines
the diGerential equation

B@/Bt= (imp/2) (B @/BP) (10.9)

which is, except for the replacement of x by P

and a by 0,0, identical with Schrodinger's equation
(Eq (15)).

Equations (10.7) and (10.9) serve to determine
4 completely, but the present assumptions con-
cerning F make it necessary to find a new method
of calculating it approximately. In case 4 is an
analytic function of t, the Taylor expansion,

e(g, t) = e(~, 0)yt(Be/Bt), ,
,'tp(B' e/Btp), p+-

may be used. But, because of Eq. (10.9),
(B"4/Bt") i p = (iap/2) "(O'"Il'p/BP")

is a slowly varying function of x in comparison to
expikpx. Then Eq. (10.3) becomes

p(x, t) = 0'(x tpp—t) expLikp(x —cpt) ). (10.5)

Thus, under these conditions, we recover the
well-known result that the carrier is propagated
with the phase velocity, while the modulation is
propagated with the group velocity and without
distortion.

Equation (10.5) obviously results because the
dispersion, ap, has been neglected in this calcula-
tion. If the quadratic terms are included in

Eq. (10.1), Eq. (3.2) becomes ((=x—vpt)

11. THE BOUNDARY VALUE PROBLEM

In the general wave equation

(1 B 1B)
W~ ——,——~y=o,

Ei Bx i Btl

the variables x and —t enter in a symmetric
manner. This symmetry is lost in Fourier's solu-
tion of the initial value problem:

P(x, t) = —,'m F(k) expLi(kx —H(k)t) )dk, (3.2)

F(k) = Pp(x) exp( —ikx)dx. (3.3)

This problem can be formulated as follows:
Initial Value Problem: Given that at the initial

instant t =0, f=Pp(x), and that it satisfies Zq. (1.8)
for all later times, find f(x, t) for all t) 0.

Hence, the expansion

~(q, t) =V (&)+(i ot/2)(dVo/dP)
+ l(i ot/2)'(d'It o/de)+ . (10 10)

is obtained. For sufficiently small values of npt, it
often converges very rapidly; for large values of
O.pt, the approximations on which it is based fail,
and it is useless to attempt to transform it into a
more rapidly convergent series. Fortunately, it is
clear that for very large values of aot the variation
of 0 will again dominate over that of P, and one
of the previous approximations can be used.

Consequently, Eq. (10.10) should be considered
merely as indicating how the process of distortion
begins. The diferent phase velocities of the
Fourier components do not have appreciable
eR'ect until the ratio

tx pt (AP p/d P) /f p

becomes a.ppreciable. When it is comparable to
unity, the original modulation will have been
distorted, probably beyond recognition. When
this ratio is much greater than unity, the
divergence of the rays in the x, t diagram will
have produced a complete resolution of the wave
into its periodic components.

The considerations of this section have neg-
lected the possible effects of dissipation. These
can be included approximately by multiplying
Eq. (10.6) by the factor expL —D(kp)tf.
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Because of the symmetry of Eq. (1.8), there is
a second problem, which is of fundamental im-
portance in transmission line theory. It reads:

Boundary Value ProMem: Given that at the
boundary point x=0, p =p&(t), and that it satisfies
Zg. (1.8) for alt points to the right of the boundary,
f'ind P(x, t) for all x)0.

Having solved the initial value problem, the
boundary value problem presents no new mathe-
matical difficulties. Its approximate solutions can
be obtained from the foregoing pages by replacing
x by —t and conversely.

However, there are certain consequences of
this procedure that do not appear to have been
noticed, ***so that it is profitable to examine the
first stages of the boundary value problem in
some detail. The symmetry of x and —t has not
yet been lost in Eq. (1.6): the special solutions

P =exp(ikx —int),

W(k, n) =0,

(1.6)

are equally useful in the boundary value problem.
The next step in the initial value problem was

the solution of this last equation for n as a
function of k. In the boundary value problem,
this is reversed, and k is expressed as a function
of n. If there are no dissipative terms, it follows
that

k =G(n) (11.1)

W(k+ib, n) =0, (11.2)

and solving for the real quantities k and 6 as
functions of the real variable n:

k = G(n), b =A(n).

The function A(n) is the attenuation and is
analogous to the logarithmic decrement D(k) of
the initial value problem.

The case A(n) =0, D(k) =0 is of such funda-
mental importance that physicists have studied
it almost to the exclusion of the more general one.

***They were called to the writer's attention by Dr. R.
W. Raitt, after the preceding sections had been written.

and that G will have the same central importance
as the Hamiltonian function had.

When there is dissipation, this step would be
preceded by replacing

W(k, n ia) =0—
by the equation

This case may be illustrated by

or
W(k, n) = —k'+n'/cs'

H(k) = csk, G(n) = n/cs.

l2. FORMAL THEORY OF MULTIPLE
HAMILTONIANSt

The difficulty just discussed is partly inherent
in the differential equations, but results mainly
from the use of the approximate method of
stationary phase, as will be shown in the next
section. The formal aspects of the problem are
related to the multiplicity of Hamiltonians
encountered in solving a general partial differ-

t' This section contains unpublished material supplied by
Professor Marcel Riesr of the University of Lund; it is a
pleasure to acknowledge his kind permission to use it in this
review.

Then G is the inverse function to H, and G and H
have the same graph in the k, n plane. In this
(and in more general cases of the same sort)

c=H(k)/k =n/G(n),

v = dH/dk = 1/(d G/dn),

always provided that W(k, n) = 0.
Physically, these last two results mean that the

same phase and group velocities govern the prop-
agation of the waves, regardless of whether one
solves the initial or the boundary value problems.
This numerical equality of two quantities with
mathematically different definitions is the justifi-
cation for ascribing a physical reality to them and
calling them "it" rather than "they. "Moreover,
it follows that the family of rays is the same for
the two problems. In the one, the rays are
specified by their intercept on the x axis, in the
other, by their intercept on the t axis, but the ray
passing through a given point has the same slope.

All of this is altered when there are dissipative
terms. In the k, n diagram, the equations
n=H(k) and k=G(n) have different graphs; in
the x, t diagram there are two families of rays. .
This casts serious doubt on the validity of the
previous results in this case, for a given solution
of the wave equation may be uniquely specified
either by its initial or by its boundary values. The
method of stationary phase will yield difFerent
approximations in the two cases; in general, at
least one of these will be poor.
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ential equation. This multiplicity was noted
explicitly by Dirac s' and led to the prediction of
the positron. In terms of the ray diagram, it leads
to several families of rays in the x, I, diagram,
each given by Eqs. (5.1) to (5.3) with their ap-
propriate Hamiltonians. Physically, it leads to the
appearance of several superposed trains of waves,
although the converse is not true. A single
Hamiltonian can also give rise to several trains if
several .rays pass through a single point (cf.
Fig. 5).

The mathematical theory of these matters is
radically different in the cases of conservative
and dissipative media. The former will be con-
sidered first. Then the characteristic equation,
Eq. (1.8), may be factored into

where

a=1

a=1

I'
Bk

+ay

(12.4)

P (kn) = W(k, n)/[H (k, n) nj—(1.2.5)

When Eq. (12.1) is satisfied, one and only one of
the factors H —n will vanish; if this is the one
for n =P, all of the P except Pp will vanish, and
Eqs. (12.4) reduce to

that the family of null lines consists of all X
families of rays, and no others.

The first and last of the Eqs. (12.3) may be
written

dx & BH

W(k, n) =P g [H (k) nj, —(12.1)
a=1

dx/dr =Pp(itHe/Bk),
dt/dr =Pp,' (12.6)

where the Hamiltonians II are distinct real
functions of k. The quantity I' may be a function
of k and/or n, but, by definition, has no roots
other than trivial ones. Often S' will be a poly-
nomial, of degree N in n and degree X in k; then
I' will be a constant. Only this case will be dis-
cussed here.

There will then be N sets of equations similar
to Eqs. (5.1) to (5.3), and any one of them may be
written

eliminating the parameter v, these reduce exactly
to Eq. (12.2).

Thus far, the discussion has been directed
toward the ray theory appropriate to the initial
value problem. Turning now to the boundary
value problem in a conservative medium, Eq.
(11.1) implies that Eq. (1.8) can also be factored
into

K
W(k, n) = Q Q [G.(n) —k j, (12.7)

a 1

dx itHp(k) dk itHtt(k)

dt Bk dt Bx'
(12.2)

where X is not necessarily equal to JV', and Q
will again be constant. Proceeding as before, the
quantities

Each of these sets gives rise to a family of rays, so
that there are N of these.

Now consider the canonical equations

dx/d =ctW/cik, dk/d = —BW/c1x=0,
dn/dr = BW/itt =0, dt/dr = —tt W/tin,

(12.3)

whose interpretation will shortly appear. The
function W will be called the comprehensive
Hamiltonian. They have the integral W(k, n)
=constant, and this constant may have any real
value whatever; comparing this with Eq. (12.1)
it is seen that only those solutions for which
it is zero (the null lines of the comprehensive
Hamiltonian) will be of interest. It will be shown

"P.A. M. Dirac, Quantunt Mechanics (C1arendon Press,
Oxford, 1935), second edition, p. 252.

Qp
——W(k, n)/[Gp(n) —k) (12.8)

are defined. Because of Eq. (12.1), all but one
of them vanish, and hence Eqs. (12.3) reduce to

dx/dr = Qtt(k, n),
dt/dr =Qp(k, n)(itGp/itn),

or, finally to
dt/dx = 8Gtt/Bn,

(12.9)

(12.10)

in keeping with the alternative formula for the
group velocity.

It has thus been shown that the multiplicity of
ray families introduced in connection with the
Fourier solutions are all determined by a single
set of Hamiltonian equations, Eqs. (12.1) and

(12.3). But this is the case only for a conservative
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medium; for a dissipative medium, W(k, n)
assumes complex values for real values of k, n,
and cannot be resolved into real factors. t'f
Formally, Eqs. (12.1), (12.3), and (12.10) may
still be set up, but their solutions will lead to
complex values of x and t. It is not clear that
their solutions have any relevance to the Fourier
solution of the wave equation.

Rather, this solution leads to the separation
of the complex Hamiltonian into H and D or
into G and A as discussed in Sections 2 and 11.
While this is decidedly relevant to the Fourier
solution, it makes Eqs. (12.2), (12.3), and (12.10)
entirely distinct and unrelated. The curves (in
the x tdiag—ram) determined by each set of
equations are different, and those determined by
Eq. (12.3) have complex values of the coordinates.

exp Lw(s) ]ds, (13.1)

where tv is a function of the complex variable
z=x+iy, analytic at all points of a region, F,

13. ARBITRARINESS OF THE METHOD OF
STATIONARY PHASE

Apart from the formal difficulties of treating
dissipative media in the same manner as con-
servative, there are certain difhculties common
to the two cases, which are inherent in the
method of stationary phase. The mathematical
discussion can best be based on the integral

that includes the segment ab of the x axis.
Setting tv(z) =u(x, y) +iv(x, y) where u and v are
real, the function w may be graphically repre-
sented by plotting the contours v=const. as
shown by the light curves on Fig. 11. The
contours u=const. intersect the plotted curves
orthogonally.

In Eq. (13.1), the path of integration may be
along the real axis, but the value of I is the same
for any path that runs from a to b and'remains
entirely within the region I'. The method of
stationary phase can be applied to any one of
these paths, and will ordinarily result in a
diferent upproxiniate expression for I in each
case, despite the fact that the exact value of I is
independent of the path.

The reason why the difficulty did not obtrude
itself in the case of waves in a non-dissipative
medium now becomes clear: then the initial value
and boundary value problems lead to integrals
that can be transformed into each other by a
real change of variable. In the dissipative case,
the necessary change of variable becomes com-
plex, and must be accompanied by a deformation
of the path of integration.

It is of interest to investigate these various
approximate values of I more closely. Let a
general path of integration be specified by giving
x and y as functions of s, the distance along the
curve. Then the angle, n(s), between the tangent
to the curve and the x axis is given by

V = CONST
dx/ds =cosn, dy/ds = sinn,

dz/ds =exp(in), (13.2)

and hence

I=, exp[u+i(v+n)]ds. (13.3)

FrG. 11.Contours for the methods of stationary phase and
steepest descent.

t1' Something similar may occur even for a non-dissipative
medium. It may happen that one or more of the functions
H or G becomes imaginary or complex for certain real
values of its variable.

The phase of the integrand is v+n, and its
stationary point (if ariy) is determined by the
equation

Bv/Bx cosn+Bv/By sinn+dn/ds = 0. (13.4)

The geometric interpretation of this equation is
simplest if, at the stationary point, the path is a
straight li.ne: then it states that the path is
tangent to that e-contour which passes through
the stationary point. This is shown by the path 1
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in Fig. 11; the result could also have been ob-
tained by inspection.

Let x= $, y= iI, s=sp be the stationary point
in this path; then the expression of the phase
near this point will be

v =v(t, ii) +np —(s—sp)'/2r'+ . , (13.5)

where, as a consequence of the Cauchy-Riemann
I

equations,

r(P, rl) = t'(B'u/B&Bri) cos20.p

—(B'v/B(Bv) sin2upj &. (13.6)

Hence, the method of stationary phase yields the
appf oximation

I= (2~)Ir(~, ~)
Xexp[w(P+ig)+ i(np ~/4) 5 (1.3.7)

The disconcerting fact is that the point g, g

may be chosen arbitrarily in I', and the path of
integration then deformed so that $, ii becomes
the point of stationary phase. Thus, one is left
with a double infinity of approximate values of I,
each of which usually divers from every other.
Under such conditions an investigation is indi-
cated to determine which of the many approxi-
mate values is most accurate. Such an investi-
gation is beyond the scope of this review, but
even if it were carried out, it would still leave
the physicist with an awkward but interesting
problem.

It has been shown above that the Hamilton-
Jacobi theory of waves, inclusive of the concept
of group velocityis ,based on a single one of
these approximations. It is unlikely that this one
will always be the best. Can the Hamilton-
Jacobi theory be extended so as to yield a better
approximation to the solutions of the wave
equation? It appears likely that this can be
done, but if so, it will modify the concept of
group velocity in a peculiar manner. It has been
customary to consider it to be a property of the
medium, and the same for all disturbances in

that medium. In such an extended Hamilton-
Jacobi theory, the group velocity will be strongly
dependent on the nature of the disturbance.

14. THE METHOD OF STEEPEST DESCENT

There is yet another approximate value of I,
which is obtained by choosing the path of

integratiori so that it passes through the saddle
point 5, Fig. 11, if such a saddle point exists.
The coordinates of this point are the mots of

Bv/Bx =0, Bv/By =0 (14.1)

The value of np can be chosen so as to simplify
the remaining calculations. If it is chosen so that
1/r =0, the value of ri, becomes

r, =r, = I LB'v/B(Bg5'+LB'u/B)BgjPI & (14..5)

This is equivalent to requiring that np be chosen
so as to make (1/ri) a maximum. Hence this
procedure is usually called the method of steepest
descent' since it makes the maximum of u as
sharp as possible.

The corresponding approximate value of I is

I= (2s) &rp($ii) expLnr($+iii)+iopg. (14.6)

The value of ap may also be chosen so that
1/ri=0; this value divers from the previous by
v/4, and makes r = rp, so that Eq. (12.7) becomes
identical with Eq. (13.6). The method of steepest
descent thus appears as a singular case of the
method of stationary phase. It is likely that this
singular case will often yield a better approxi-
mation than any of the others, but, it cannot
be used as the basis for the Hamilton-Jacobi
theory unless the saddle point happens to be on
the real axis.

15. THE REMAINDER IN THE METHOD OF
STATIONARY PHASE

The earliest work on this problem is again
Fresnel's justi6cation of his method of zones.
Unfortunately, the widely current accounts of

If the path is straight at S, then Eq. (13.4) will
be satisfied for all values of n. Moreover, because
of the Cauchy-Riemann equations, one will also
have

(14.2)

at S. Hence, in addition to Eqs. (13.5) and
(13.6), one will also have

u = u($, rl) —(s—sp)'/2rP+, (14.3)

where

ri ——
L
—( B' v/Bg Bg) cos2ap

—(B'u/B)Brl) sin2np)-&. (14.4)
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his argument leave much to be desired. They
almost invariably involve the same reasoning by
which it was "proven" that the hare cannot over-
take the tortoise. There are more recent studies
of the problem" "which are more satisfactory.

In order to reduce the problem to its simplest
mathematical terms, consider the integral

~b

I(P) =
) &f (k) exp[~P8(k)]dk,

a

(15.1)

where P and 8 are real functions of k, and P is a
real parameter. In the foregoing applications the
phase of the integrand was a linear function of
the two' parameters x and t, and it was seen
that the approximations resulting from the
method of stationary phase were valid only when
these parameters were such as to make the phase
a rapidly varying function of k. This last phrase
is not very precise, nor is it easy to reword it
precisely. Therefore, the parameter P has been
introduced 'to simplify the problem: it is re-
quired to find an expansion for I in descending
powers of P, and to investigate the remainder of
this series after n terms, assuming that P and 8

are finite, continuous and adequately diAerenti-
able in the interval u, b

The simplest case arises when 0 has no extrema
in a, b. Then a change of variable reduces the
integral to

I(P) = f(8) exp(zP8)d8, (15.2)

where n = 8(a), P = 8 (b), and

f(8) =~(k)/8'(k) (15.3)

pP
f'(8) exp [iP8]d8. (15.5)

'4 L. Brillouin, Ann. Ecole Normale 2, 33 (1916).
'I Van der Corput, Compositio Mathematica

(1934); 3, 328 (1936)."J.Bijl, Dissertation, Groningen, 1937.
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Because of our assumption, f(8) will also be
sufficiently regular for the following procedures,
whereas it would become infinite if 8'(k) were to
manish somewhere in the interval of integration.

An integration by parts reduces Eq. (14.2) to

I(P)=(1/P)[f(P) "—f( ) ' j+'&/P (154)

where

An iteration of this process leads to

where

pP

(Rs = f"(8) exp[iP8]d8.

Thus, the problem of expansion is solved, except
for the trouble involved in diA'erentiating Eq.
(15.3) with respect to 8. In particular, it is seen
that the series begins with a term proportional
to 1/P.

In order to discuss the remainders, it will be
sufficient for the present purposes to deal only
with R~, since it is quite typical. The definition
of an integral results in the inequality

l&il ~& ~ If'(8)ld8
a

(15.6)

which shows that the extrema of the function f
are again the central elements of the problem.
If f(8) has no extrema in the interval of in-
tegration, the value of the integral is simply

I f(P) f(u) I. H—owever, if f has one extremum,
at 0=0~, the value of the integral increases to

I f(p) —f(8t) I+ I f(8i) f(a) I, —and if it has m
extrema, there will be m+1 such terms.

In fact, the integral in Eq. (14.6) is essentially
a measure of the extent to which the function f
varies or oscillates in the interval n to P. This
concept is adumbrated by such phrases as "fis a
slowly varying function, " etc. In order to be
able to use it conveniently, the notation

~" If'(8) ld8=»[f(8), , P]
a

(15.7)

will be introduced. Hence the remainder after e
terms satisfies the inequality

I&-I/P" ~(1/P")o [f'" "(8), , P] (15.8)

The situation is materially altered if the phase
has a stationary point in the interval of integra-
tion, for then the oscillation of f(8) becomes
infinite. . Let k=c, 8(c) =y be an extremum of
8(k) and the only stationary point in the interval
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a, b; then Eq. (15.1) can be written

pb

I(p) =@(c) exp Lip8(k) jdk

for k=c, )=0 and d$/dk=i, so that

Io(p) = pL p8()3

X expL(iP/2)8" (c) &'jdg

+ f(8) expLip8/d8

+expLip8(c) ) ((dpldk) —1)

+ f(8) expLip83d8, (15.9)
"a

where it is to be remembered that k is a two-
valued function of 8, and where now

f(8) = Le(k) —e(c)3/8'(k) (15.«)

Xexpk(iP/2)8" (c)$'$d$. (15.13)

The first integral is the incomplete Fresnel
integral, " and requires no further discussion
here. For large values of gq and —(, it approaches
the complete Fresnel integral in a known manner:

The integrands of the second and third integrals
are then sufficiently regular so that the preceding
results can be applied to them at once: each has
an expansion whose 6rst term is proportional to
1/p, and the remainder after n terms is subject
to Eq. (15.8). It is, therefore, only necessary to
discuss the integral

expL(ip/2)8" (c) g'$d&

—+$2~i/p8" (c)]:(15-..14)

Hence, the expansion of this integral will have
its first term proportional to 1/p: rather than to
1/p, as has been the case with the others.
The second integral is conveniently treated by
changing to the variable

Io(p) = exp Lip8(k) ]dk (15.11)
~ = -', 8"(c)P, (15.15)

A new variable g, which is a single-valued func-
tion of k, is defined by the equation

8(k) = 8(c) +-,'8"(c) t2. (15.12)

(If c were a minimax, 8"(c) would be zero, and
this and the following equations would have to
be altered in a manner analogous to the con-
siderations of Section 7.) It is easily seen that,

which reduces it to two integrals of the same
type as the last two in Eq. (15.9). Its expansion
therefore begins with a term proportional to 1/p.

In principle, the results of this section should
make it possible to find the answers to the
mathematical questions raised in Section 13.
However, the analytical complications are so
great that it is to be hoped that some more
elegant treatment can be found.


