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A Genera. .izei '. .'.xeory oI Gravitation
ALBERT EINSTEIN

Institute for Advanced Study, Princeton, New Jersey

' 'N the following we shall give a new presenta-
tion of the generalized theory of gravitation,

which constitutes a certain progress in clarity as
compared to the previous presentations. * It is
our aim to achieve a theory of the total field by
a generalization of the concepts and methods of
the relativistic theory of gravitation.

i. THE FIELD STRUCTURE

The theory of gravitation represents the field

by a symmetric tensor g;~, i.e. , g;q=gq;(i, k=&,
~ ~, 4), where the g,t ar e real functions of

Xgp ' ' ' X4

In the generalized theory the total field is
represented by a Hermitian tensor. The sym-
metry property of the (complex) g;& is

gik gki ~

If we decompose g,& into its real and imaginary
components, then the former is a symmetric
tensor (g;&), the latter an antisymmetric tensor

(gp). The g;s are still functions of the real
variables x~, . ~, x4.

The formally natural character of this general-
ization of the symmetric tensor becomes par-
ticularly noticeable by the following considera-
tion: From the covariant vector A; one can form
through multiplication the particular symmetric
covariant tensor A&s. From such tensors every
symmetric tensor of rank 2 can be obtained
through summation with real coefficients:

g;a=& cAAa

In an analogous manner we form from a com-
plex vector A; the special Hermitian tensor
A;As (remains fixed if we interchange i and k

and take the complex conjuga, te). We then get
the representation of a general Hermitian tensor

*A. Einstein, "A generalization of the relativistic theory
of gravitation, " Ann. Math. 46 (1945); A. Einstein and
E. G. Straus, "A generalization of the relativistic theory
of gravitation II,"Ann. Math. 4'7 (1946).

of rank 2,
gg, ——Q cA„Ai„

where the c are again real constants.

The determinant g=
I g,s I (WO) is real.

Proof:

la'. I
= la" I

= la'. I
= li'~l

We can associate a contravariant g' to the
covariant g;k just as in the case of real fields by
setting

a.a'=&" (or a. r"=~')

where b is the Kronecker tensor. Here the order
of indices is important and, for example, g;,g"
does not equal 8 . In the following the tensor
density g'" =g's(g) & plays an important role.

From a group theoretical point of view the
introduction of a Hermitian tensor is somewhat
arbitrary, since both individual additive com-
ponents gk and g@ have tensor character.
However, this flaw is somewhat ameliorated by
the fact that, just as in the case of real fields,
there is a natural way of associating parallel
translations to the Hermitian gg„ this is the main
basis for the c1aim that the introduction of a
Hermitian gg, is natural.

2. INFINITESIMAL PARALLEL TRANSLATIONS,
ABSOLUTE DIFFERENTIATION

AND CURVATURE

In the theory of real fields we give the in-
hnitesimal parallel translation of a vector A' or
A, by

8A'= —I',Q'dx'~

sA, = r,&,dh, l

with a corresponding introduction of infinitesimal
parallel translations for tensors of higher rank.

The second equation of (I) is connected with
the first by the demand that

() g(gL.) (ga Pk gk 'Ps, )d&l
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From (1) we get in the well-known manner where the I" will, in general, also be complex, aiid
the tensor character of pass to the complex conjugate of this equation

I'BA '
+A r'„~d~,

I ax,

BA, —A,I",gA, ,
.] ——

Oxg

which yields the concept of covariant differ-
entiation

8A'
A', i

——— +A'I", i
Bx~

bA, = r', iA,dx',

and

SA' = —r', A'dx'

r „A,dx

bA' = —I',gA'dx'

then we see that we have there an equation
which also dehnes a parallel translation, but this
parallel translation may dier from the first. We
define then two kinds of parallel translation

In order to obtain the covariant derivative of
g,;, we write

8A; = I"';]A,dx'
(1b)

A, z
—— ——A, I"';z,

BAk
Ar;;z =- — —A.~'kz,

Bxz

and, correspondingly, two kinds of covariant
diB'erentiation A+., i, A, , i, and A-'.

, i, A, , i as in (2).
From (1a) and (1b) we get

Az and SAN gAi

multiplying the first equation by Ak, the second
by A; and adding we get

A Aa;i+A~A, ;i= (A,»);i
= (A;Ai), i (A,Ai)I";i —(A;A, )1"i,i,

and since g;k can be constructed as the sum of
such special tensors we get

gik l gik Z gs/ I iZ =gis~ kZ ~

In order that conjugate vectors have conjugate
translations and derioatkies it is necessary upon
passage to the conjugate to change the character of
translationor of diff'e, rentiation, i.e. , to pass to tke

conjugate F. In order to obtain the covariant
derivative of a Hermitian tensor we write in

analogy to the real case:

8A,
A;. z

—— —A, I.",z,

The I ale now deteinlliled frolil the g and
their 6rst derivatives by the demand that the
absolute derivative of the g;k vanish

dAkk

A k;z A 81 kz.
BXz

0 = g~k. z
—g.kI "z—gi.l 'kz. 3

From this we get as before

However, since the g,k are symmetric, these
are only 40 equations for the 64 F. In order to
complete the determination of the j.' one uses
the only possible invariant algebraic condition,
namely, the condition of symmetry

I"z,-k = &zk, .

A,Ak, i+AgA;, i
——(A;Ai, ), i

= (A,A„),-(A,A.)r, , -(A,A, )r .„
and since g k can be constructed as the sum of
such special tensors we get

We now transfer this development to the com-
plex case by defining parallel translation as in (1).
However, this gives rise to a. certain complication,
since if we start from the translation of a complex
vector,

5A'=I s, jA dx'

. 'As
gi k;Z gik, Z gsk~ iZ gis& kl.

O=g'k;Z=g'k, Z
—

gskI "Z —g~s~'kZ (3a.)

The analog to (3) is the requirement that this
absolute derivative vanish



These equations are Hermitian in the indices
i, k (go into themselves if we interchange i, k and
pass to the conjugate complex) and therefore
again do not suKce to determine the complex r.
In analogy to (4) we have as the only possible
invariant algebraic determination the condition
of Hermiticity

(4a)

Instead of (3a) we can then write

0 —gs k;l —gilc, l gsk~ 0 gas~ lb'

which implies both (3a) and (4a).
Absolute digerenticttion of vector densities. If we

multiply (3b) by —,'g'" and sum over i and k, then
we get the vector equation

~(g) ~

g (r gi+ r /g) —0
(g)' ~«

or shorter

(3c)

(g)'* is a scalar density, the left side of (3c) is a
vector density. The latter will also hold if (g) & is
replaced by an arbitrary scalar density p. We
may therefore introduce as the absolute deriva-
tive of a scalar density p.'

P;i=P, t
—PI' ia

This permits us to introduce absolute diEerentia-
tion of tensor densities.

Example: If we multiply the right side of the
equation

A i .
, i ——A ', i+A'I", i

by a scalar density p, then we get the tensor
density

(pA'), +(pA')r'. —A'p,

or, after introducing the vector density 5'= pA'

define as the absolute derivative Sl', i of a
vector density ~A':

In an analogous manner we may define the abso-
lute derivatives of arbitrary tensor densities.
They diGer from the absolute derivative of the
tensor by a last term like —5'r i,.

Just as in the case of real fields we can bring
(3a) into a contravariant form; however, we have
to be careful about the order of indices. We ob-
tain the equivalent equations

0 —gi k —g'k +g kr' +g' rk (3d)

The Eqs. (3a), (3d), and (3e) are equivalent.
Curvature: The change which a vector under-

goes upon parallel translation around the bound-
ary curve of an infinitesimal element of area has
vector character. This leads to the formation of
a curvature tensor also in the case of our general-
ized field. We have here the choice whether to
use a "+"translation or a "—"translation; how-

ever, the results of the two translations are con-
jugate complex, so that it suffices to consider
one form.

We obtain ihe tensor

R klan r kt, na r km, i r air k~n+r amr kit (~)

and the corresponding contracted tensor (con-
traction with respect to i and in)

R*ki = r'ki, rk. , i r—kkr'. i+—r kir'u (8)

There also exists a non-vanishing contraction
with respect to i and k which yields the tensor

I al m I am l.

or, after introducing the contravariant tensor
ensity, haik =gik(g

0 gi k gik +gskri yea rk gikrs (3e)

or according to. (5)

(I.", &+9I'r', i —8'r &.) —8'p;i.

Since the last term is a tensor density, the term
in brackets is also a tensor density which we may

However, we sha11 not use this tensor as we sha11

justify later. The tensor R && is not Hermitian. We
form the Hermitian tensor R;k ——2(R*;k+R*k;).
We thus get

R,,=r' .—-,'(r..., ,+r...„)
—r ark~+r 'krk~. (»)



3. HAMILTONIAN PMNCIPI. E.
FIELD EQUATIONS

In the case of the real symmetric 6eld one
obtains the field equations most simply in the
following manner. We use as Hamilton function
the scalar density

,Q =g~R k.

If we vary the volume integral of @ independ-
ently with respect to I" and g, then (in the case
of real. fields) variation with respect to I' yields
Eq. (3), and variation with respect to g yields the
equations ~;~=0. If we apply the same method
to our case of a complex field (where @ is still
real) then we see a complication, since the varia-
tion with respect to I' does not immediately yield
Eq. (3a), which we wish to keep in any case. The
variation with respect to F yields

satisfy this t'dentscal/y'lt suffices to assume

g
584 (12)

where g'" is a tensor density which is antisym-
metric in all three indices. That is, we require
that g'-' be derived from a "vector potential. "
We therefore substitute in the Hamilton function

gik gfk } giki (13)

R,k, !+Rki, ;+Ri;, k =0.

and vary independently with respect to the 1',
A'- and g'~'. The variation with respect to the
I' then yields (3a), as we have shown. The varia-
tion with respect to. the other quantities yields
the equations

{gik +gskpi +gispk gikpk

+i {gie +gstpi gispu Ig k

& {gsk +.getPk +gskPN }S i

In addition, we have the equations

A'~) ——0 or giI )
——0, (3a)

(16)

+i {gispa g k gskpa g i} (11) g",=0 or qiS 0i'85 (17)

The first bracket is g+ —:;the second and
third brackets are contractions of this quantity.
If there were no fourth bracket then (11) would

imply the vanishing of g+-',„ that is, (Ba).
However, this would require the vanishing of
I'

& to which demand we have no right for the
time being.

We can resolve this difficulty in the following
manner. We form the imaginary part of (11):

g4k gSkp j gSkps

nisi k
ging

k +.gikgb

gi Sk+ gk g
' —O

If we contract this equation with respect to k

and a we get

jg'-'. e+g'-'I"ss =0.

From this we can deduce that the necessary
and sufficient** condition for the vanishing of
the I" is the vanishing of the g'"', , In order to

**This holds for a11 points if we demand that the I' be
continuous and determined uniquely by the equations (3b);
because then the determinant (g"'[ can vanish nowhere.

Considering (3a), each of the systems (16), (17)
implies the other; this is proven by showing that
(3a) implies the equation

giS giSPt —0

The system of 6eld equations is therefore not
weakened if we omit (17).

This is worth mentioning also for the following
reason. While in the given derivation of the equa-
tions, special emphasis is given to the density g"
rather than to the tensor g,k (or g'k), the resulting-

system itself is free of such discrimination.
We now see that because of (16) the tensor (9)

reduces to I'
~,

—I"',
, ~, which vanishes because

of Eq. (3c).
The derivation used here has the advantage, as

compared to the previous one, that the Hamil-
tonian principle used is one without side condi-
tions. This behavior is the same as that en-
countered in a (specially relativistic) derivation
of Maxwell's equations from a variational prin-
ciple. There (for imaginary time coordinate) the
Hamiltonian function is 9= p@q @. If we

set here yq=y;, g
—qp, ; and. vary with respect
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to the q, , then we get the one system of equations

(y@,i, =0) directly, the other through elimina-
tion of the y;. This method corresponds to the
one used above. One may, however, avoid the
introduction of the potentials p; and instead
adjoin the system of equations

0'0, i+ pkl, '+ Pi', i= 0

as side conditions for the y@ in the variation.
This corresponds to the treatment of g",,=0
as side condition for the variation in the previous
paper. The side condition I"&——0 which was in-

troduced there could have been omitted.

REMARKS

In order to preserve the special character of
locally space-like and time-like directions it is
essential that the index of inertia of gikdx'dxk

be the same everywhere, i.e. , that the determi-
nant (gg, ~

vanish nowhere. This can indeed be

deduced from the requirement that the I'-field

be finite and determined everywhere by Eq. (3a).
My assistant has given the following simple proof
of this:

If the determinant ~gg, ~
should vanish in a

point P then there would exist a vector P differ-
ent from 0, such that g;.P =0. We now consider
the real part of Eq. (3a):

gik, l gskI i? gisI lk gskl il gisl lk

If we multiply this equation (at the point P) by
P$"$' and sum over i, k, I, then the second and
third terms vanish by definition of P, and the
fourth and fifth because of the antisymmetry of
the I'. There exists, therefore, a linear combina-
tion of Eq. (Ba) which does not contain the I'.
Hence at such a point the I' either become infinite
or not completely determined, in contradiction
to our requirement.

Concerning the physical interpretation we re-

mark that the antisymmetric density g'k' plays
the role of an electromagnetic vector potential,
the tensor g@,i+g~, i+g@,i, the role of cur-
rent density. The latter quantity 'is the "com-
plement" of a contravariant vector density with
(identically) vanishing divergence.

Above we have used complex fields. However,
there exists a theoretical possibility in which the
g;i,. and I',q are real though not symmetric. Thus
one can obtain a theory which in its final formulas
corresponds, except for certain signs, to the one
developed above. E. Schrodinger, too, has based
his affine theory (i.e., based on the I" as funda-
mental field quantities) on real fields. I therefore
wish to give here some formal reasons for the
preferability of complex 6elds.

A Hermitian tensor g;i, can be constructed
additively from vectors according to the scheme

g,~= g e A;&~. The essential fact here is
a a a a

that with the use of one complex vector A;
one can construct the Hermitian tensor A;Ak
through multiplication, which is a close analogy
to the case of symmetric real fields. A non-
symmetric real tensor cannot be constructed
from vectors in such close analogy.

We now consider translation quantities F';i,.
which are not symmetric in the lower indices. To
them we have in both the real and the complex
cases the adjoined ("conjugate" ) translation
quantities I';k = I'k;. In the complex case we have
associated with the parallel translation of a
vector

the parallel translation of its conjugate complex
vector

bA'= -I"gA'dx'.

Hence in the case of complex fields the adjoined
translation corresponds to adjoined objects, while

in the case of real fields there is no such adjoined
object.


