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lines. The method of approximation which takes
this distribution Ii j as typical of much of the dis-
tribution is not far in error.

The peaks in the other functions are less satis-
factory. Function I"2 is along a line ending at an
edge. For other lines ending at the same edge the
same peaks are to be expected, but for lines
ending away from the edge the peaks will be
displaced. In the case of function I"'3 the peaks
are probably not justified at all, since the line
x=y=s ends at a corner, and the decrease in

solid angle around the line will more than com-
pensate the infinity in the function I'3.

Most methods of approximation previously
used have tended to obscure and smooth out the
actually existing peaks. This method overem-
phasizes them and adds some extra ones, without,
however, diminishing the accuracy of representa-
tion of the low frequencies. It must be further
emphasized that the use of additional terms in
the expansion will reduce the overemphasis and
the spurious peaks, and mill tend to approach
the correct distribution.

The simple cubic lattice is particularly ill-

adapted to this method because of the shape of
the Brillouin zone. For a body-centered or a face-
centered lattice the zones will have less acute
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FK;. 4. The equivalent Debye characteristic temperature
as a function of temperature for the distributions obtained
by the present method and that of Blackman.

angles and corners, and the method will be cor-
respondingly more rapidly convergent.

Figure 4 indicates the Debye characteristic
temperature, as a function of temperature,
derived from the frequency distribution of Fig. 3.
The force constants are adjusted to make 8

approach 142' at high temperature. The cor-
responding values obtained by Blackman are
also shown in this curve, and the effect of the
sharper peaks in making a deeper dip is evident.

It is proposed to apply this method to the
model of Fine for a body-centered lattice and of
Leighton for a face-centered lattice, as well as
to investigate the effect of solving the secular
equation along several other directions.
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The frequency spectrum of a face-centered cubic crystal lattice is found by actually modeling
the constant-frequency surfaces of the secular determinant in plaster of Paris and measuring
the volume enclosed between successive surfaces. The frequency spectrum so obtained is used
in the evaluation of the specific heat of a general crystal of the type treated, and numerical
values are presented for the element silver. The present theory (that of Born and v. Karman)
is in much better agreement with experimental values for temperatures below 100'K than is
the Debye theory. Certain anomalies in the specific heat curves of silver and potassium
chloride at temperatures below 10'K are not explicable in terms of the atomic model that is
used.

'ANY of the thermal properties of solids
can be explained semiquantitatively by in-

terpretation in terms of thermal vibrations of the

atoms about their mean rest positions. Some of
these properties can be treated satisfactorily by
using only the qualitative features of the atomic



vibrations, but in certain cases the experimental
data indicate that a more refined treatment is
necessary. In particular, the latter is true of the
specific heat; the measured specific heats of
silver and of potassium chloride disagree seri-
ously (and in the same way) with the Debye
theory' in the temperature range up to 50'K,
and there is reason to believe that the agreement
between theory and experiment can be improved
by using the Born-von Karman theory' of specific
heats. The greatest deterrent to the use of the.
Born-von Karman theory has been the difficulty
encountered in solving the secular determinant
to obtatn the f1 equency spectrum of the vlbratlng
lattice. Blackman' has discussed qu;ilitat&vely
the differences to be expected between the two
theories in the low temperature range. He has
treated the two-dimensional case and the sodium
chloride lattice. (assumed to be a monatomic,
simple cubic lattice) numerically. No such calcu-
lation has been made for a crystal type actually
occurring in nature, however. Fine" obtained the
frequency spectrum of the body-centered cubic
element tungsten by numerical integration, but

no special application to specific heats at low
temperatures was made. Montroll' and his co-
workers have obtained approximate analytical
expressions for the frequency spectrum of a
general monatomic, body-centered cubic lattice,
but these expressions cannot be applied to the
calculation of specific heat in the low temperature
region because they do not behave properly in
the low frequency range.

It is the purpose of this paper to determine
the frequency spectrum of a monatomic, face-
centered cubic crystal lattice, and to attempt to
improve the agreement between theoretical and
experimental values of specific heats.

1, THE SECULAR DETERMINANT FOR THE
LATTICE

The secular determinant for the lattice being
considered can be obtained from the equations
of motion by a method that has been used so
frequently in the literature' ' and in textbooks7
for various one-, two-, and three-dimensional
lattices that it need not be repeated here. The
secular determinant is

2+2 (y/n) sin'x
—cosx (cosy+ coss) —X'

slnx sing

sinx sins

sinx siny

2+2(p/n) sin'y
—cosy (coss+ cosx) —X'

siny sins

sinx sins

siny sins

2+2(y/u) sin's
—coss(cosx+ cosy) —X'

=0.

The quantities appearing in this determinant
have the following meanings:

The quantities 0. and y are the force constants
for central, Hooke's law forces which are assumed
to act between an atom and its nearest and next
nearest neighbors, respectively.

The quantity X is a dimensionless parameter
which is proportional to the frequency v. Ex-
plicitly, )I,'=2s'mp'/o, , where m is the mass of
each particle.

The quantities x, y, and s' are dimensionless
variables which take on discrete values defined

' %V. H. Keesom and C. W. Clark, Physics 2, 698 (1935).' P. Debye, Ann. d. Physik 39, 789 (1912).' M. Born and T. von Karman, Physik. Zeits. 13, 297
(1912); 14, 15 (1913).' M. Blackman, Proc. Roy. Soc. 148, 384 (1935); 159,
416 (1937); Proc. Camb. Phil. Soc. 33, 94 (1937). '

' P. C. Fine, Phys. Rev. 55, 355 (1939).

x = s-( l/N, +m/Ns—+n./Ns),
y = z(t/N, m/Ns+n. /Ns), —
s = ~(l/N, +m/Ns m/N, ). —

(2)

6 E. W. Montroll, J. Chem. Phys. 10, 218 {1942); 11,
481 (1943); 12, 98 (1944).

L. Brillouin, 8'am' ProPagation in Periodic .S'tructures
(McGraw-Hill Book Company, Inc. , New York, 1946).

Here, (Lmm) are integers, and the crystal is
assumed to be a parallelopiped that contains
Ni, A~, and X~ atoms along its three principal
edges, respectively. The range of variation of
the integers (lme) is such that, if the quantities
(x, y, s) are interpreted as being Cartesian co-
ordinates, the points corresponding to the inte-
gers (lmn) all lie inside a region having the shape
of the first Brillouin zone of the crystal lattice.
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These points, which will henceforth be called the
"permissible points" of the determinant, are
uniformly distributed in (x, y, s) space. The total
number of permissible points inside the zone is
N&N&N p (i.e. , the number of atoms in the crystal
lattice).

The significance of the secular determinant
itself may be stated as follows: a vector drawn
from the origin to a permissible point (x, y, s)
represents the propagation vector of a plane
wave traveling through the crystal; its direction
gives the direction of propagation, while its
length is proportional to the wave number of
the plane wave. The insertion of the quantities
(x, y, s) into the secular determinant and the
solution of the resulting cubic equation in X' will

yield three values of X', that is, three frequencies
corresponding to such a wave. One can thus
solve for the velocities of propagation of elastic
waves through the crystal, as functions of the
direction of propagation and frequency. In addi-
tion, the successive substitution of these three
frequencies into the set of equations from which
the determinant was derived, will yield the
relative amplitudes of the coordinates of which
each normal mode is composed. In short, the
secular determinant, together with the transfor-
mation equations connecting the atomic dis-
placements with the coordinates for which the
determinant was written, constitute a complete
solution of the dynamical problem.

For the purposes of this discussion the normal
coordinates themselves need not be known; how-
ever, a knowledge of the distribution of fre-
quencies of the various normal vibrations is
required, since the statistical treatment leading
to the specific heat depends upon the distribution
function G(X), where

dn = N&NpNpG(X)dX, (3)

dn being the number of normal frequencies
lying between the limits X and X+dX. G(X) can
be regarded as being a continuous function of )
if the above expression is always understood to
apply to a range dP that contains a large number
of frequencies.

2. THE SURFACES OF CONSTANT FREQUENCY

Rearrangement of Eq. (3) yields

G(X) = (1/Np) dn/dX,

where %0=%~%2%3, and since the permissible
points are uniformly distributed in (x, y, s) space,

G(X) = (1/Npvp)d V/dX,

where vp is the volume of (x, y, s) space associated
with one permissible point and V is the total
volume of (x, y, s) space enclosed by a surface
defined by a constant value of X. Finally,

G(X) = (1/Vo)d V/dX,

where Vp is the volume of (x, y, s) space associ-
ated with Np permissible points. It is clear from
Eq. (4) that the function G(X) can be found by
computing the volume enclosed by successive
surfaces defined by A=const. and then diA'er-

entiating the volume with respect to the param-
eter X. This method was used to find the fre-
quency spectrum of the face-centered cubic
lattice.

Three constant-frequency surfaces pass
through each permissible point in (x, y, s) space,
one for each of the three roots of the secular
determinant. That these surfaces possess the
symmetry properties of a cubic lattice can easily
be seen by observing that the secular determi-
nant is invariant to all of the rotations and
rejections of the cubic system. The surfaces
need therefore be studied only inside a suitably
defined solid angle amounting to 1/48 of the
total solid angle surrounding the origin. This
region was taken to be that lying in the positive
octant between the planes y =0, x =y, and x =s.
The outer boundary of this region of interest
was not taken to be the boundary of the Bril-
louin zone but was modified so as to have the
same volume and to contain points defining the
same frequencies. This was done to facilitate the
construction of the surfaces and has no effect
upon the final result. The outer'boundary was
taken to be the planes s= n. and x= m/2.

The secular determinant leads to a cubic
equation in X for a general permissible point,
but in the symmetry planes of the constant
frequency surfaces the determinant can be fac-
tored into a quadratic and linear factor. The
quadratic equation can then easily be solved.
The three families of surfaces corresponding to
the three roots of the secular determinant are
commonly called the three branches of the solu-
tion, and are here identified by the arbitrary
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various planes for branches II and III, it is
necessary to interchange these two solutions in
the plane s=x for X')3

One more property of the constant-frequency
surfaces, in addition to their cubic symmetry,
ran be derived from the secular determinant. By
evaluating the first and second directional de-
rivatives of t with respect to coordinates at right
angles to the symmetry planes, it can be shown
that the curvature of each surface at a symmetry
plane is finite, so that the surfaces intersect
these symmetry planes at right angles. This fact
greatly simplifies the construction of the surfaces.

The contours of constant frequency were
evaluated numerically from the above expres-
sions by inserting uniformly spaced points into
these equations and interpolating graphically to
find the points corresponding to prescribed
values of P.

3. THE FREQUENCY SPECTRUM

The volumes contained between successive
surfaces were found by actually modeling the
surfaces in plaster of Paris. A mold was con-
structed of sheet brass, and blocks of plaster
were cast in the shape of the region enclosed by
the planes y=0, x=y, x=s, s=s., and x=s./2.
The contours of constant frequency were care-
fully plotted on coordinate paper to the same
scale as the plaster blocks, and were transferred
to the blocks by wrapping the paper around the
blocks and pricking through the paper with a
sharp pin along each contour. One set of contours
was thus transferred to each block. The blocks
were then sawed into a number of pieces between
alternate pairs of contours, and the pieces were
carved along each contour. The extrapolation of
the contours into surfaces with the required
accuracy was possible because of the known

orthogonality of the surfaces with the symmetry
planes and the small solid angle included between
the symmetry planes. The intercepts of the
surfaces with the line x=y/2=s/4 were also
computed. This line passes through the origin
and makes almost equal angles with the three
symmetry planes. Errors were reduced further

by carving each set of surfaces twice. The saw
cuts for one such set were halfway between those
for the other set, so that each surface was carved

TABLE I. Elastic constants, * atomic force constants, and
cell dimensions of some face-centered metals. (cqq, cps, and
c44 in units of 10' dynes/cm .)

Metal d (A)

Cu 3.61
Ag 408
i ill 4.07
Al 4.04

C11

17.0
12.2
18.7
11.9

C12 c44 c11 c1,2 a X10 I

12.3 7.5 4.7- 27.1
9.1 4.4 3.1. 18.0

15.7 4.4 3.0 17.9
6.2 2.9 5.7 1 1.7

y/a

—0.09
—0.08
—0.08
+0.25

*See reference 10.

once from the side farthest from the origin, and
once from the side nearest the origin.

The alternate pieces of plaster of each set
(those that were destroyed by the saw cuts) were
obtained by placing the carved pieces in the
brass mold and pouring a thin mixture of plaster
between them. In this way, two complete sets
of plaster models of the surfaces were obtained
for each branch. The volumes of the various
pieces were then measured by weighing each
piece twice, once while submerged in water and
once while suspended in air. The water absorbed

by the plaster does not affect the measurements
if the pieces are known to contain the same
amount of water for both weighings.

The total volume occupied by each set, as
calculated from the dimensions of the mold,
should have been 486.0 cc. Inasmuch as the
measurements agreed among themselves and
with this value to within one or two percent,
the method used to determine the volume of the
plaster pieces is probably sufficiently accurate.
It was found that the volumes of the pieces of a
given set were generally alternately higher and
then lower than the volumes of the corresponding
pieces of the duplicate set. This reHects a ten-
dency to carve away too little material in the
modeling process. The differences were not large,
and were furthermore quite regular, so that the
mean of the two measured volumes for each
piece is probably much closer to the true value
than either of the measured values.

Figure 1 contains the (smoothed) results of
these measurements for the case y/ct =0, plotted
for each branch, and the function G(X), which is

the sum of the three curves. Plotted also are the
results of a similar treatment of the case

y/n = —0.1.
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4. SERIES EXPANSION OF G()) FOR -LOW
FREQUENCIES

In the neighborhood of the origin, where the
approximations sinx =x, cosx =1—x'/2, etc. , are
valid, the secular determinant has solutions of
the form, 2/r'=F(0, Q), where r, 0, and Q are
spherical polar coordinates. The volume enclosed
by a surface in this region therefore is propor-
tional to X' so that G(X) is proportional to X'.

For application to the speci6c heat of a face-
centered lattice in the region of very low temper-
atures, it is desirable to possess a power series
expansion of G(X) in ascending powers of X, valid
for small values of A, . This can be found approxi-
mately for two or three terms by studying the
deviations of the function G(X) from the para-
bolic law that is valid for very small values of ).
This was done by evaluating the fractional
volume enclosed by each constant-frequency
surface in the form

U(X)/Us= k(X)V,

where k() ) =ks+ksX'+k4)'4+, and U()) rep-
resents the sum of the volumes for the three
branches. From Eq. (4) and the above expres-
sion, we see that

G() ) =3ks) '+5ks) '+yk4), s+

The derivatives of k with respect to X were
obtained graphically. Evaluation of these deriva-
tives at X =0 yielded the following expression

for G(X):

G(X) = 0.99K'+0 35X4+0.42K'+
(v/~=O),

G(X) =1.32V+0.4ok'+0. 3(iX'+
(y/u = —0.1).

5. ATOMIC FORCE CONSTANTS

The elastic constants of some typical mono-
valent, cubic metals were calculated by Fuchs, '
who obtained good agreement with experiment.
in all cases by regarding the conduction electrons
as a gas of perfectly free, non-interacting Fermi
particles. The energy of such a gas depends upon
its volume, so that the conduction electrons
contribute to the deformation energy if the
volume -of the crystal changes. By considering
two types of deformation that leave the volume
of the crystal unchanged, Fuchs found that the
quantities (c» —c») and c44 are independent of
the presence of the Fermi gas. Fuchs' result was
used in the evaluation of the atomic force con-
stants o and y, because the Born-von Karman
boundary condition, which was used in the
derivation of the secular determinant, requires
that the volume of the crystal remain constant
so that the conduction electrons have no effect
upon the motion of the lattice.

When the potential energy of the lattice for an

TABLE III. Values of G(X) for y/a=0. 0 and '/n= —0.l.

X 0.10 0.15 0.20 0.25
r/p
0.30 0.35 0.40 0.50 1.00

0.0 1.000 1.000
0.1 0.922 0.964
0.2 0.723 0.864
0.3 0.495 0.723
0.4 0.304 0.569
0.5 0.171 0.423
0.6 0.090 0.304
0.7 0.045 0.207
0.8 0.021 0.137
0.9 0.010 0.090
1.0 0.004 0.056
1 ~ 1 0.002 0.035
1.2 0.001 0.021
1.3 0.000 0.013
1.4 0.000 0.006
1.5 0.000 0.004
1.6 0.000 0.003
1.7 0.000 0.002
1.8 0.000 0.001
1.9 0.000 0.000
2.0 0.000 0.000

1.000
0.980
0.922
0.831
0.723
0.607
0.495
0.392
0.304
0.228
0.171
0.125
0.090
0.064
0.045
0.031
0.021
0.015
0.010
0.008
0.004

1.000
0.987
0.950
0.889
0.812
0.723
0.629
0.539
0.454
0.374
0,304
0.242
0.193
0.150
0.11-8
0.089
0.067
0.050
0.037
0.028
0.020

1.000
0.990
0.964
0.922
0.864
0.798
0.723
0.648
0.569
0.495
0.423
0.357
0.304
0.250
0.207
0.171
0.137
0.110
0.090
0.070
0.056

1.000
0.993
0.974
0.942
0.898
0.843
0.786
0.723
0.657
0.590
0,525
0.463
0.405
0.350
0.302
0.259
0.222
0.186
0.155
0,130
0.108

1.000
0.998
0.980
0.955
0.922
0.878
0.832
0.779
0.723
0.666
0.608
0.550
0.495
0.442
0.392
0.346
0.304
0.263
0.228
0.196
0.171

1.000
0.998
0.987
0.972
0.950
0.922
0.889
0.852
0.812
0.769
0.723
0.677
0.629
0.585
0.539
0.495
0.454
0.413
0.374
0.338
0.304

1.000
1.000
0,998
0.993
0.987
0.980
0.972
0.961
0.950
0.935
0.922
0.904
0.889
0.871
0.852
0.831
0.812
0.790
0.769
0.7.46
0.723

TAHLF II. 1he function

f(f"/') =(f"/')'«""/(""' I)'- 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
09
1.0
1.1
1.2
1..3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

y/a =0.0

0.000
0.011
0.039
0.092
0.170
0.28
0.42
0.62
0.89
1.29
2.19
2.80
2.97
3.18
2.74
1.92
1.80
1 ~ 53
3.42
2.92
0.53

G(x)
y/n = -0.1

0.000
0.013
0.052
0.122
0.224
0.39
0.58
0.84
1.20
1.75
2.37
2.64
2.84
2.94
2.22
1.90
1.80
1.70
3.66
2.37
0.18

' l4. I'uchs, Proc. Roy. Soc. 153A, 622 (1936).
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TABLE IV; C, in cal. /mole deg. for face-centered cubic TABLE V. e/p as a function of T/p for face-centered cubic
elements. elements.

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.50
1.00

C~ (Cal. /mole
p/a =0.0

0.0594
0.236
0.585
1.050
1.565
2.075
2.548
2.335
5.07

deg. )
y/a = -O.i

0.0792
0.294
0.681
1.170
1.692
2.200
2.670
3.438
5.11

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.50
1.00

y/a =0,0

1.985
1.875
1.824
1.812
1.810
1.813
1.812
1.814
1.825

y/a = -0.1
1.805
1.741
1.722
1.728
1.741
1.750
1.751
1.760
1.780

homogeneous deformation, written in terms of
the unit strains and the atomic force constants
a and y, is compared with the usual expression
involving the elastic constants„ the following
correlations can be made;

C11 = (2n+4y)/d, Ctq' =n/d, C44' =n/d. (9)

The primes indicate that these are the contri-
butions of the lattice ions to the elastic constants,
exclusive of the compressibility of the electron
gas.

To evalua. te n and y, Fuchs' result is taken
into account by writing

Cll C12 Cll C12 (n+O'Y)/d)

C44 = C44 =n/d,

where the actual values for the elastic constants
of a face-centered cubic crystal may now be used.

In Table I are given the elastic constants at
room temperature, together with the values of
n and y/n, computed from Eq. (10) for some
typical face-centered elements.

The case of silver is treated numerically in the
next section. It is in the region near absolute
zero that the results of the theory are to be
compared with experiment, so that the values
of the atomic force constants near absolute zero
must be used. Eucken' in 1913 used a value for
the shear modulus of silver at absolute zero that
was derived from Griineisen's theory. This value
also agreed with the experimental data existing
at that time. The ratio of the shear modulus at
absolute zero to the same at room temperature
(for a polycrystal) is assumed to be the same as
the corresponding ratio of the values of c44, upon
which the basic constant n depends. Thus, at
absolute zero the constant I for silver would

FIG. 2. The variation of
Debye characteristic tem-
perature, 8, with absolute
temperature, T, for face-
centered cubic crystals. The
parameter P depends upon
the elastic properties of the
crystal, and must be evalu-
ated for each individual
case.

= 0.0

O. I O.P O.g 4.5. ,T&
/p

0.7 0.8
k

0.9

' A. Eucken, Verb. deut. physik. Ges. 15, 571 (1913).
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with the secular dar eterminant (1),

) =7rv(2m/o/)&, (13)
and from (3)

(14)

hv/kT = pX/T,

dn = N(v) d v = NOG(X) dX,

where No mill now be takene ta en as Avogadro's

Using (13) one may write

0.00
0.02
0.04
0.06
0.08
0.10

y/a =0.0

2.090
2.083
2.076
2.056
2.025
1.985

~/P
y/a = —0.1

1.898
1.895
1.888
1.872
1.850
1.805

TABLE VI. Values of 8/P calcP calculated from Eqs. (23) p' = h'o//27r'mk'

Thus (12) takes the form

/, xm (pg/T)2g x T///

ok) (X)d)

)2 (Pg/ T)2sPx/ r
=R) G(lb)dlh. ,

(16)
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since Nok=R, the gas constant per mole, and
= 2.0.
The expression (16) can now be used to

evaluate the specific heats of face-centered cubic
elements. The quantities appearing in the inte-
grand must first be evaluated numerically.

Table II contains values of

(p) /T)oeph/T/(ppxlT 1)o

as a function T/P and X.

The values given by Table I I are to be multi-
plied by the corresponding average values of
G(X)AX and summed over the range of X. Values
of G('A) obtained from Fig. 1 and Eq. (8) are
given in Table III. These values do not corre-
spond to the ordinates of the distribution func-
tion, but rather to averages over the intervals of
width AX =0.1 centered about the given values
of ) . Multiplication of corresponding ordinates
and summation over ) yielded the values of C„
given in Table IV.

The specific heats obtained by this process
were then compared with a table of Debye
specific heats. "The values of the Debye param-
eter f)/T which yield specific heats equal to those
in Table II were determined. These values of
f)/T, when multiplied by T/P, yielded the values
of e/P that appear in Table V.

The integral (16) is not in a convenient form
for the evaluation of specific heats and character-
istic temperatures at very low temperatures.
Inasmuch as the function of Table II decreases
exponentially for large values of PX/T, and is
negligible outside the range of validity of the
series expressions (8) when T/P &O.OS, no appre-
ciable error will be made if the integral (16) is
evaluated from X=O to X= ~, using the series
expressions for G(X) over the entire inFinite range.
Thus (16) would become, using a previous nota-
tion,

ao pop p), l r
c„=z t'

To(ePx/o' 1)o

X(3k''+SkoÃ+7k4Xo+ )dX

= &L3ko(TIP)oD(4) +Sks(TIP)'D(6)

+7k4(T/P)'D(8)+ ~ ], (17)

' Landolt-Bornstein, Physicalish —Chemische Tubellen
(Julius Springer, Verlag, Berlin, 1927), fifth edition.

where

D(n) =
"o (e' —1)'

(17a)

In this nota, tion, the Debye specific hea, t, is

C.=9R(T/i7)'D(4). (18)

To find the Debye characteristic temperature
8 as a function of T/P, the expressions (17) and
(18) may be equated, with the result

D(n) =
(ge 1)2

x,n—id
—n

-~ o (e —1)
~ gn —lg—zd

(rt —1)!
gs is ep red' ——tt +- —

~=0 Jo r=o,(r+1)"

= tt! Q 1/S" = (2or) "/2B„ts (rt even), (21)
S=1

where B„to is the n/2th Bernou!li number as
tabulated by Dwight. "Dwight gives

Bo——1/30, Bo= 1/42, B4= 1/30
so that

D(6)/D(4) = 20m'/7 and D(8)/D(4) = 16ir4. (22)

Insertion of (22) into (20) yields

e/p =91pko+ 100k,~sTs/7po

+112kssr4T4/P4+ . ] &. (23)

"H. B. Dwight, Tables of Iistegrals arid Other IrIathemati
cat Data (The Macmii!an Company, New York, 1934).

9~(T/t))oD(4)
D(6) (T i '

=~(T/f3)'D(4) 3ko+Sko—-) —
~

D(4) & p)
D(8) fTq,

+7ks-
D(4) &Pi

'I his equation may now be solved for t)/p:

t)/P =91L3ko+Sks(T/P)'D(6)/D(4)
+7kt(T/P)'D(8)/D(4)+ . . ]-1. (2())

To evaluate the D(rt) function appearing in
(20), integration of (17a) by parts and subse-
quent expansion of the denominator in a series
yields
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Table VI contains values of 8/P calculated from
Eqs. (23) and (8).

The data of Tables V and VI are shown in

Fig. 2. For the basic case (central forces between
nearest neighbors only) the characteristic te1n-
perature drops abruptly from its value at abso-
lute zero to a value approximately fifteen percent
below the initial value, where it remains sensibly
constant over a large temperature range. In the
case of weak coupling between next nearest
neighbors of the type that is apparently char-
acteristic of the noble metals, the characteristic
temperature falls abruptly as for the basic case
but instead of remaining nearly constant it passes
through a definite minimum, and at the higher
temperatures seems to be approaching the curve
of the basic case. The difference between the
maximum and minimum values of the character-
istic temperature is in this case only about ten
percent.

These results will now be compared numeri-

cally with the observed specific heat of silver.
Hy use of the numerical value of o. at absolute
zero, as given by (11), P may be evaluated:

P' = Ii'no/2ir'mk' = 1.39X 10'

P = 118 deg.

The experimental values for the Debye char-
acteristic temperature of silver were taken from
the work of Keesom and Clark' and Eucken,
Clusius, and Woitinek. "

Figure 3 shows the theoretical curve for
p/a = —0.08 (obtained by linear interpolation
between the two curves of Fig. 2) and the
experimental values as given by the above
authors. The values given by Keesom and Clark

'~A. Eucken, K. Clusius, and H. Woitinek, Zeits. . f.
anorg. Chem. 203, 47 (1931).

are smoothed values, whereas the others are not.
There is fair agreement between the two curves
with regard to the rise of the characteristic
temperature with decreasing absolute tempera-
ture below T//=0. 2, and the existence of a
minimum characteristic temperature at about
this value of T/P. It is also evident that there is
a great difference in behavior between the two
in the very low temperature range. Here, the
theoretical curve attains a relatively smooth
maximum at absolute zero, while the experi-
mental curve shows a very sharp maximum at
about 5'K, with a second minimum at about
3.5'K. This behavior is also shown by the
characteristic temperature of potassium chloride.
This matter has been discussed for both silver
and potassium chloride by Keesom and Clark. '

Blackman' deduced that the frequency spec-
trum of the sodium-chloride lattice increased
more rapidly than a Debye spectrum in the low
frequency region, and hence concluded that the
characteristic temperature of this lattice should
decrease from a maximum at absolute zero. This
conclusion can also be drawn for the face-
centered lattice, both from the actual curves of
Fig. 2 and from the positive values of the
coefficients in the series expansions (8). For this
reason, it seems quite clear that the very low
temperature behavior of the characteristic tem-
perature 0 cannot be explained in terms of the
differences between the frequency spectrum of a
Debye continuum and that of an atomic lattice.

On the other hand, it seems reasonable to
suppose that the agreement between the experi-
mental and theoretical curves in the range from
7'K to 50'K is not purely fortuitous, especially
as the theoretical results were obtained by direct
calculation, without attempting to fit the experi-
mental data as is often done in the Debye theory.


