REVIEWS OF MODERN PHYSICS

VOLUME 20,

NUMBER 1 JANUARY, 19438

Normal Vibrations of a Crystal Lattice
W. V. HousToN

Rice Institute, Houston, Texas

INCE the work of Debye! in 1912, the theory

of the specific heat of solids has often been
regarded as at least qualitatively satisfactory.
This was in spite of the obviously crude ap-
proximations to the more exact treatment indi-
cated by Born and von Karman.? Since, however,
the available measurements did not, in most
cases, extend to extremely low temperatures, and
since the elastic constants were not too precisely
known, the approximations of Debye were
regarded as adequate. Within the last 15 years,
however, more exact measurements of specific
heats at very low temperatures have called
attention to the fact that the Debye approxima-
tion is really very rough, and that it should be
possible to make a more precise calculation in
terms of the known elastic constants. Further-
more, the desire to understand the behavior of
electrons in metals, and, in particular, their
behavior at the superconducting transition point,
had led to a revival of interest in this problem,
and to the attempt to distinguish the specific
heat associated with the lattice from the specific
heat that must be due to the electrons.?

In 1935 Blackman* began a series of papers
analyzing the vibrations of real and idealized
lattices of various kinds. He pointed out that the
Debye approximation can be valid at most in
only a relatively small region. He further showed
that there probably exist frequencies at which
normal vibrations accumulate to such an extent
as to suggest that the original hypothesis of
Einstein,® as extended by Nernst and Linde-
mann,® might be almost as good an approxima-
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tion as that of Debye. Since the general analysis
seemed to be difficult and not too certain, de-
tailed treatments of special cases appeared to
offer a means of further progress, and in 1939
Fine” published calculations of the vibration
frequencies of a body-centered cubic lattice,
using simplified assumptions as to the force
constants. By a laborious numerical procedure,
he was able to calculate the frequency distribu-
tion and the specific heat, and to show moderate
agreement with the experimental values for
tungsten. More recently Leighton® has made a
similar calculation, using a mechanical method
of interpolation, and has determined the fre-
quency spectrum and specific heat for a face-
centered cubic lattice with suitable elastic con-
stants. These results reproduce some of the
major features of the specific heat curve for
silver.

In 1941, Montroll® described a very elegant
method of expanding the frequency distribution
in terms of Legendre polynomials. This method
would, in principle, give the exact frequency dis-
tribution if carried far enough. It appears, how-
ever, that its convergence is not very good
without an almost impossible amount of labor,
so that the attainable results are probably less
accurate than those obtained by the numerical
methods of Fine and Leighton. Since it appears
that progress in this field will be aided by some
detailed knowledge of actual or idealized fre-
quency distributions, it is the purpose of this
paper to describe a numerical procedure which
appears to give valuable results with a reasonable
amount of effort. Furthermore, it can be carried
to any desired degree of precision.

The secular equation for the vibration fre-
quencies of a crystal lattice can always be
reduced to an equation of the 3Nth order in the
square of the frequencies. Here N is the number
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of different atoms in a lattice cell. For .a
monatomic lattice this is a cubic equation,
giving the frequencies of vibration in terms of
the propagation vectors of the standing waves
in question. The different propagation vectors
fill uniformly the space in a Brillouin zone of the
reciprocal lattice. Hence, the problem is to solve
this cubic equation to find the frequency as a
function of the coordinates inside this zone. The
equation can always be solved, at least numeri-
cally, for a specified point. Solving the equation
for enough points to give a frequency distribution
is what requires so much labor.

Along any one radius vector from the center
in the reciprocal lattice the frequency is a func-
tion of the distance only. If the cubic equation is
solved along this particular line, the solution can
be inverted to give the distance from the origin
to the point at which the frequency has any
assigned value. The quantity 72(dv/dv)dv will
then give the number of points, per unit solid
angle in the propagation vector space, whose
vibration frequencies lie between v and v+4dv,
and which are close to the line along which the
equation has been solved. One can imagine a
narrow cone along this line, and a function F(»),
which gives the distribution of frequencies in
this particular direction. If the secular equation
can be solved along a large number of such lines,
the sum of the resulting distributions will be the
desired frequency distribution. The closer to-
gether the lines are taken, the more accurate
will be the result.

In order to approximate the desired result
without an indefinite amount of labor, use may
be made of the symmetry of the problem. The
frequency as a function of the distance from the
center, as well as the function F(»), will be
invariant to those rotations under which the
crystal lattice itself is invariant. Hence, it is
necessary to study the distribution in only a
small portion of the whole solid angle, and in the
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case of the cubic lattice only 1/48 of the solid
angle need be covered.

The function F(») along a line defined by the
angles ¢ and ¢ may be expressed as a series
of functions, each multiplied by a spherical
harmonic.

F(v, 9, 9) =2 fi(n) Vi(3, ¢). )

The only harmonics V; that need be used are
those with the symmetry of the lattice, that is,
those which are invariant under the group of
transformations to which the crystal lattice is
invariant. The series in Eq. (1) can be carried as
far as is desired, but it would appear that by a
proper selection of the lines used to determine
the functions fi(»), a small number, such as
three or six, will already give a good approxima-
tion.

If the different directions along which the
secular equation is solved are designated by the
subscripts s, and if s has R different values, the
R linear equations

R—1
Fs(V, Iy, ‘PS) = g()fl(u) Yi(asv @s) (2)

can be solved for the R functions f;(»). The larger
the value of R, the closer will the expansion (1)
represent the actual distribution.

The total distribution function is then

N(») = f f Fv, 9, o) sindddde
' —4xVofo(»), (3)

where fo(v) is the coefficient of the constant, ¥,.

As an illustration of the application of this
method it is instructive to consider the ideal case
of a simple cubic and monatomic lattice. This
case has been considered by Blackman,!® and so
it is possible to compare the results obtained
from the first three terms of Eq. (2) with those
obtained by his more laborious method.

The secular equation for this case reduces to
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x, 3, and z are the components of the propagation
vectors of the normal vibrations. In this case the
allowed values of x, ¥, and z fill a cube of edge 2.
a is the restoring force constant acting between
adjacent atoms when the motion is in the line
connecting them. v is the restoring force con-
stant between adjacent atoms when the motion
is perpendicular to the line connecting them. For
comparison with Blackman’s results v/« is taken
to be 0.05.

Figure 1 shows the cones along whose axes the
secular equation is solved. For x=y=0, the
distance 7 from the origin is just z. Hence the
three solutions, in terms of 7, are

mwi?= (2a+8v) (1 —cos3z)
=(12/5)a(1—cosr), . (5)
Mws, 32 =4v(1 —cosz) = ta(1 —cosr). -
From these it follows that

dr  8{sin—1(5/24)}q1}? _
L B

dql (24/5—912)%
and dr 8{sin=1(5/2)igss}?
7 sin™ i,
P = L o)
dqs s (2/5—¢q2 %)

where ¢;= (m/a)w;.

The sum of these expressions gives the dis-
tribution of vibrations within the cone around
the z axis. If it is denoted by Fy,

8{sin—1(5/24)%q}? ‘ 16 {sin~1(5/2)%q}?
(45—t 2/5—¢)t

Figure 2 shows F; as a function of g.
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F16. 1. First Brillouin zone of a simple cubic lattice showing
elementary cones in three typical directions.
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F1c. 2. Distribution of frequencies within the three cones
shown in Fig. 1. F, is shown as a function of g.

In a similar fashion let F; be the distribution
in the cone about the line x =0, y=3. In this case
r=V2g, and

B 16V2 {sin—1(5/4)3q)?
S @/5—g)t
1 16V2 {sin—1(5/22)%q}2
(4/5—q%*
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where Q=[1—(8/45)¢*]*.
The distribution along the line x=y=3is
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where

R=[1-(20/81)¢*?]* and S=[1-(5/36)¢*].

These functions also are shown in Fig. 2. The
cones in Fig. 1 are in directions along which the
functions Fy, Fs, and F; are also valid because of
symmetry.

To express the distribution in other directions,
the appropriate interpolation- between - these
three functions must be made. Since the crystal
has cubic symmetry, the three Kubic Harmonics!!

1F, C. Von der Lage and H. A. Bethe, Phys. Rev. 71,
612 (1947).
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of lowest order are needed. These may be taken
to be

KQ=

1
Py(cosd),
)t
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where the P,™(cos) are the associated Legendre
polynomials.

Substituting the values of the angles & and ¢
corresponding to the three directions of Egs. (7),
(8), and (9) leads to the three equations
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From these it follows that
N(v) = (4m) fo(v)
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This is plotted as a function of ¢ in Fig. 3. In
the same figure is plotted the distribution ob-
tained by Blackman and taken from his pub-
lished curve.

The striking feature of the curves obtained by
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this method is the presence of very sharp peaks
at several frequencies. The ordinates at these
points actually approach infinity, although the
area under the curve is finite. The method cer-
tainly exaggerates the importance of these peaks,
and taking additional terms in the expansion
would increase their number but decrease their
individual importance. Nevertheless, the peaks
do have some significance. The peaks in the
function F; are probably correct because the line
along which this distribution is taken intersects
the bounding plane normally. Group theory
considerations applied to the vibration near this
line indicate one longitudinal vibration and two
transverse vibrations. The two transverse vibra-
tions will have the same frequency, and the
longitudinal vibration will have a higher fre-
quency for the ratio of force constants adopted
in this illustration.

The longitudinal -vibrations represent the
motion of whole planes of atoms in phase with
each other, and with a frequency determined by
the constant «. For propagation vectors only
slightly off the line x=y=0 the atoms of the
plane will not be exactly in phase, but the wave-
lengths in the planes will be long and will have
a negligible effect on the frequency. It then seems
quite reasonable that the peaks in the distribu-
tion, which Eq. (7) shows to exist along the line
x=y=0, should also exist along neighboring
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Fic. 3. Total distribution function compared with the
step function obtained numerically by Blackman. n(») is
plotted as a function of g. The broken curve shows the
values obtained by Blackman,



VIBRATIONAL SPECTRUM

lines. The method of approximation which takes
this distribution F; as typical of much of the dis-
tribution is not far in error.

The peaks in the other functions are less satis-
factory. Function F, is along a line ending at an
edge. For other lines ending at the same edge the
same peaks are to be expected, but for lines
ending away from the edge the peaks will be
displaced. In the case of function F3 the peaks
are probably not justified at all, since the line
x=y=z ends at a corner, and the decrease in
solid angle around the line will more than com-
pensate the infinity in the function Fs.

‘Most methods of approximation previously
used have tended to obscure and smooth out the
actually existing peaks. This method overem-
phasizes them and adds some extra ones, without,
however, diminishing the accuracy of representa-
tion of the low frequencies. It must be further
emphasized that the use of additional terms in
the expansion will reduce the overemphasis and
the spurious peaks, and will tend to approach
the correct distribution.

- The simple cubic lattice is particularly ill-
adapted to this method because of the shape of
the Brillouin zone. For a body-centered or a face-
centered lattice the zones will have less acute
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FIG. 4. The equivalent Debye characteristic temperature
as a function of temperature for the distributions obtained
by the present method and that of Blackman.

angles and corners, and the method will be cor-
respondingly more rapidly convergent.

Figure 4 indicates the Debye characteristic
temperature, as a function of temperature,
derived from the frequency distribution of Fig. 3.
The force constants are adjusted to make 6
approach 142° at high temperature. The cor-
responding values obtained by Blackman are
also shown in this curve, and the effect of the
sharper peaks in making a deeper dip is evident.

It is proposed to apply this method to the
model of Fine for a body-centered lattice and of
Leighton for a face-centered lattice, as well as
to investigate the effect of solving the secular
equation along several other directions.
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of a Face-Centered Cubic Crystal
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The frequency spectrum of a face-centered cubic crystal lattice is found by actually modeling
the constant-frequency surfaces of the secular determinant in plaster of Paris and measuring
the volume enclosed between successive surfaces. The frequency spectrum so obtained is used
in the evaluation of the specific heat of a general crystal of the type treated, and numerical
values are presented for the element silver. The present theory (that of Born and v. Karman)
is in much better agreement with experimental values for temperatures below 100°K than is
the Debye theory. Certain anomalies in the specific heat curves of silver and potassium
chloride at temperatures below 10°K are not explicable in terms of the atomic model that is
used.

atoms about their mean rest positions. Some of
these properties can be treated satisfactorily by
using only the qualitative features of the atomic

ANY of the thermal properties of solids
can be explained semiquantitatively by in-
terpretation in terms of thermal vibrations of the



F16. 1. First Brillouin zone of a simple cubic lattice showing
elementary cones in three typical directions.



