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THE INTERPRETATION OF BAND SPECTRA. PARTS 1, Ila, IIb

By ROBERT S. MULLIKEN
University of Chicago

SYMBOLS AND NOTATION

The following table is an index and summary of the symbols and notation used in Part I
of this review. Some of the symbols used here are different from those customary in papers on
band spectra, but are in accordance with an agreement recently arrived at by band spectro-
scopists, and soon to be published in the Physical Review.* Such changes have been made in
order to remove ambiguities inherent in the usual symbols. These ambiguities arose largely
as a result of a revised interpretation, in the new quantum theory, of certain coefficients used
in the old quantum theory. Thus according to the old quantum theory, B, was assumed the
same as By, while according to the new theory, the two quantities are distinct (cf. Eqgs. 3, 3a);
the situation in regard to D., 7. and w, is similar.

TAaBLE 1. Symbols and notation used in Part I.

(Prime)’; (Double Prime)”’. These indices are used to distinguish the upper (') and the lower
(") of two energy levels involved in the production of an absorption or emission line. They may
be attached to any symbol, coefficient, quantum number, or function which can differ for differ-
ent states of a molecule (e.g. ¢/, v/, B, B", U'(r), U"(7), xswe', xo''w.'’, F'v, F''v, etc.).
u=mimy/(mi+ms). (my, m,are masses of nuclei, u is “reduced mass”).
I=moment of inertia =ur?; I, =pur:.
r =distance between nuclei,in general; 7, =equilibrium value of 7.
p=r/re; £=(r/re)—1.
U(r) =potential energy function for nuclear motions.
a*, b* c*=coefficients in U(r), —cf. Eqgs. (1).
D =energy of dissociation.
E =energy (ergs); E"=rotational energy.
F =spectroscopic term=E/hc (cm™).
Fel, Fv, Fr=electronic, vibrational, and rotational term (cf. Eq. 5).
AF(vy, ;) = F?(v) — F*() (cf. Eq. 18).
v =spectroscopic frequency (in cm™) =difference of two terms (F' — F").
yel = Flel— F'lel, yv = F'v— F''v; yr=F'r— F"'r (cf. Eq. 7).
p0=ypel v (cf. Eq. 8); ¥ =pe'+»? for v/ =0, v’ =0 (cf. Eqs. 17, 17a).
B.=h/8n%url.
B=B,=B,—a(v+1/2) =B—av (cf. Eq. 3a).
B=(B"+B")/2; Bo=(By'+By")/2 (cf. Eqgs. 15, 16a).
C=B'—B"; Co=By —By" (cf. Egs. 15, 16a).
D=D,=D+Bw+1/2) =D¢+pv (cf. Eq. 4a); for D,, cf. Eq. 4.
We, XeWe, Yowe, @ =coefficients in expression for F as a function of the quantum numbers (cf.
Egs. 5, 6).
e =w(1—x); b=x.w, (cf. Eq. 17).
4, b=quantities differing slightly from a, b (cf. Eq. 17a).
cw, =frequency of mechanical vibration of nuclei for infinitesimalamplitudesabout 7.
v=vibrational quantum number.
K =rotational quantum number.
K*=[K(K+1)]

t Cf. important note on p. 115 in regard to further recommended changes.

* Also cf. the preliminary account in the Discussion on Molecular Spectra, Faraday
Society Trans., pp. 628-633, 770-772, and Errata (Sept., 1929); also in book form (Gurney
and Jackson, 1930).
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P branch =negative branch (K’ =K' —1).
R branch = positive branch (K’ =K"" +1).
M =ordinal number (M= —K" in P branch; M =K'’ +1 in R branch).

Band; band-line; band-structure; band-system; band-head; electronic bands (cf. p. 68 and 72
for definitions).

Pure rotation bands; vibration-rotation bands (cf. pp. 83-4).

Band sequence; ' and v/ progressions (cf. p. 76).

Perturbations (cf. p. 74).

The following table is a supplement to the above Table I of Part I and is an index and
summary of the symbols and notation introduced in Parts Ila and 115 but not used in Part I.
It also serves to show the relation between the symbols used here—most of which are in
accordance with an agreement recently arrived at by band spectroscopists,—and other symbols
which are or have been in common use (the latter are given in brackets).

TaBLE 11.  Symbols and notation introduced in Parts II1a and 11b.

A. Atoms.

n=nprincipal, ] =azimuthal, s =spin quantum number (individual electrons).

L=resultant orbital, S=resultant spin, J=resultant total angular momentum quantum
number.

My, Mg, M=magnetic or electric quantum numbers associated with L, S, J, respectively;
My, Mg, M=projections of L* S* J* respectively on axis of magnetic or electric
field; My h/2r, etc.,=corresponding angular momenta.

1%, s*, L*, S*, J*=[LI+D], [s(s+1)]V2 etc.; I*h/2x, s*k/2m, etc., are the angular momenta
corresponding to J, s, etc.

s, p,d,f, - -+ electrons: means!=0,1,2,3,-:-

S,P,D, F,..- states: means L=0,1,2,3,--

A =coefficient of magnetic interaction of L* and S* (cf. Egs. (22), (25), (26), and ref. 33).

co=Larmor precession frequency (magnetic field); g=Landé factor.

Weak and strong fields, definition (cf. ref. 30).

cwr=mechanical frequency associated with any quantum number k(k=L, J, M, K, etc.): cf.
Eq. (23).

B. Molecules

A,ou,nl,s L, S, I* s* L* S* and s, p, d, f, * - + , mean the same as for atoms, except that /
and L are usually not good quantum numbers, the corresponding angular momenta be-
ing in general not even nearly constant in magnitude.

Je =same as atomic J; J** =resultant of L* and S* in cases where L* and S* are very strongly
coupled.

A, =, @ lusually called 4 or o) or o1, %, or 05,and 7 or o, respectively] =quantum numbers giving
respectively the component of orbital, spin, and total electronic angular momentum
parallel to the electric axis (cf. p. 93 for exact definitions); Ah/2w, Zh/2w, Qh/27 =cor-
responding angular momenta.

3, 10, A, - - - states [formerly called S, P, D, - - - states] mean A=0,1, 2, .-+ ;2Z, I, ‘Il4,
etc., cf. p. 94.

Lperp (cf. p. 98), Sperp (cf. p. 105) = component of L* or S* perpendicular to electric axis,
about which L* or S* is precessing; Lperp and Sperp are not quantum numbers.

Gh/2n =total instantaneous component of electronic orbital angular momentum perpendicular
to electric axis (cf. p. 98); G is not a quantum number.

Nh/2x =instantaneous angular momentum of nuclei (cf. p. 99); N is not a quantum number.

Oh/2r [formerly often called mh/2x]=total angular momentum perpendicular to electric
axis, exclusive of spin in Hund’s case & (cf. p. 97); O is not a quantum number.

ph/2w [often called e#/27]=mean value of projection of Gk/2m on O axis=mean component
of electronic orbital angular momentum along O.
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R [Hund’s p,]=rotational quantum number in Hund’s case d (cf. p. 101).

K [usually called ji or p; or m]=rotational quantum number, inclusive of electronic orbital
angular momentum, but not of electronic spin (Hund's cases b, d).

J [formerly often called m]=quantum number of total angular momentum in all cases.

R*, K*, J*=[R(R+1)]"2, etc.; R*h/2w, etc.,=angular momenta.

8, €, v =small coefficients (cf. p. 100, and p. 107, Eq. (33)).

B*,,z = (cf. Eq. (46)).

S (K); ¢i(K)(= ¢a(K) or ¢5(K)); ¢:(Z, J); ¢:(K, J): small functions (cf. p. 100 et seq.; p. 105;
p. 106; Eq. (32)).

f(R, K-R); f(K, J-K); w(K, J-K): small functions (cf. Eq. (30); Egs. (32-33)).

Fy, F,, F;, Fia, Fu, etc.=term designations in Hund’s case b (cf. p. 112-13).

Hund’s cases, definitions: Case @, p. 105; case b, p. 106; case b’, pp. 97, 108; case ¢, p. 114;
case d, p. 108; case d’, pp. 101, 108; case ¢, p. 114; summary of Hund’s cases, p. 115.

Core model (cf. p. 85).

Selection rules (cf. pp. 90, 96).

Vectors are denoted by bold-faced type.

INTRODUCTION

THE theory of the spectra of diatomic molecules has undergone very

rapid development in the years since 1925. This has been especially
true in respect to our knowledge (1) of the nature of electronic states and
quantum numbers, and (2) of the connection between the electronic states
of molecules and those of their component atoms on dissociation. Parts
I-I1, and Part I1I, of this review are respectively devoted primarily to the
first and second of these topics, together with their application to the struc-
ture and interpretation of band spectra.

For the sake of simplicity and “Anschaulichkeit,” the treatment in Parts
I-II is in terms of the old quantum theory and repeatedly involves the use
of models which, according to the new quantum theory, must not be taken
too literally. So far as possible, however, the most essential new results of
the new quantum theory,—especially energy relations,—are stated in the text,
although their rigorous derivation is not given. In Part III, the new theory
will be used more directly.

The possible energy values of a diatomic molecule can be expressed as
functions of certain quantum numbers associated with motions of the elec-
trons and nuclei. These quantum numbers usually fall naturally into three
groups (a) a group which defines to a first approximation the energy, de-
pending on the electronic motions, which the molecule would have if the
nuclei could be held stationary (b) a single quantum number » which defines
the state of vibration of the nuclei (¢) a group of quantum numbers associated
with the rotation of the nuclei and with the finer details of the electronic
motions. In the simplest cases,—the so-called 12 states,—the group (¢)
reduces to a single quantum number K belonging to the rotation of the
nuclei’'?, but in general there are interactions between electron motions

1 K is usually called m or j. The reasons for using the symbol K will appear later (cf.
pp. 97-106).

2 Even in !'Z states, K does not represent exclusively nuclear rotation, because there is
always a rapidly varying electronic orbital angular momentum (cf. J. H. Van Vleck and A,
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and nuclear rotation which must be taken into account in the scheme of
quantum numbers. It is toward an understanding of these interactions and
their consequences for the structure of band spectra that Parts I-II are
directed. But we shall begin (Part I) by reviewing the characteristic features,
and their important variations, for the structure of a band spectrum corres-
ponding to a transition from one !Z electronic state® to another. In this way
we shall be better able to appreciate the characteristic mew structural fea-
tures (Part II) which appear in bands involving other kinds of electron states.

PART 1

THEORY OF ENERGY STATES OF MOLECULE REGARDED AS ROTATING
ANHARMONIC OSCILLATOR

Potential energy function. In molecular states of the!Z type, the (average)
angular momentum of the electron system is zero.? The motion of the nuclei
is in this case essentially a pure rotation around their center of gravity,
combined with a vibration along the line joining them. For each electronic
state there is a function U(r) which acts like a potential energy for the nuclear
motions,* and which has a single minimum corresponding to an equilibrium
value, 7., of the distance r between the nuclei. If U(r.) is taken as zero,
U(r) gives the total energy of a molecule whose nuclei are momentarily at
rest at distance 7 apart, and U(«) is equal to the energy of dissociation
D(cf. Fig.1). The following expansion for U(r), expressed in terms of the
quantities p=7/7, and £=p—1=(r—r,)/r., has U(r,) =0 andis convergent
for values of 7 not too far from .5

U(p)=—a*[—(1/2)+(1/p) — (1/2)p2+b*E3+-c*t44 - - - | (1)

Eq. (1) may also be written asa series in £ alone (Eq. 1a). Eq. 1a is readily
obtained from Eq. (1) by expanding 1/p and 1/p? in powers of &.

U(E) =a*[£2/2— (*+ 13— (c*— 3/2)E4+ - - - ] (1a)

Frank, Proc. Nat. Acad. Sci. 15, 539, 1929). Corresponding to this fact, a term B.G ought
to be added to the rotational energy function in Egs. 2a, 2b, or a term B,G? in Eq. 5 (cf.
Part 116, Eq. 29, with A=0). G? represents the mean value of the square of the com-
ponent of electronic orbital angular momentum perpendicular to the line joining the nuclei.
This differs from zero even when the average value of the electronic angular momentum vector
is zero.

3 A molecule is said to be in the same electronic state so long as the group of quantum num-
bers (a) remains constant, no matter how » and K may be varied. But if one or more of the
quantum numbers of group (@) are changed, it is said to be in a different electronic state.

4 Cf. E. C. Kemble, National Research Council Bulletin on Molecular Spectra in Gases,
p. 293, for a discussion of the physical meaning of the function U(r). (Kemble calls it V(r)).

% A. Kratzer, Zeits. f. Physik 3, 289 (1920), but with designations of coefficients as given in
appendix 15 of A. Sommerfeld’s Atombau and Spektrallinien except that a*, b* and c¢* are used
here in place of g, b,and ¢ of Sommerfeld. [In Sommerfeld’s chapter, —5b%/2 appears erroneously
in the expression for x.w. (cf. Eq.. (6) below) where +5b2/2 should be used.] For further
details of the energy expansion Eq. (5), cf. E. C. Kemble, Jour. Opt. Soc. Am. 12, 1 (1926). For
a form of U(r) which is capable in many cases of representing this function for all values of r, cf.
P. M. Morse, Phys. Rev. 34, 57 (1929).
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U (§) of Eq. (1a) is in practise considerably less rapidly convergent than
U(p) of Eq. (1), especially for polar molecules. F(r)=—dU/dr is readily
obtained from either of the above expressions, for example:

—F(§)=(1/r)(dU/dg) = (a*/r) [E=3(*+ 1)~ 4(c* =3/ + - - - |. (18)

Quantization of rotation. Let us review briefly the application of the quan-
tum theory to the determination of the possible energy states corresponding to
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Fi1G. 1. Potential energy and force functions,—U(#) and F(r),—for nuclear motions, for the
normal state of HCI; also a few vibrational energy levels. For » values below 1.8 X1078 cm, the
curves are drawn in accordance with Eqs. 1, 1b; for larger 7 values, they have been approxi-
mately sketched in with the help of Morse’s formula.s

the nuclear motions. First let us consider the (idealized) case where the
motion is one of rotation without vibration. Let¢and P, respectively rep-
resent the angle through which the nuclei have rotated, and the angular
momentum. Then, according to the old quantum theory, $# Pyd¢ =Kh,
where K is any non-negative integer, % is Planck’s constant, and the integ-
ral is taken over a complete revolution. Since Py is a constant for a mole-
cule in a definite state, the integral yields 27 P, =Kk, or P4=Kh/27. In
the new quantum theory, this result is modified to Ps=K*h/2mw, where
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K*=[K(K+1)]'/2. Our problem is now to express the energy of rotation
in terms of K.

The energy of a rotating molecule is mainly kinetic energy, plus a small
amount of potential energy resulting from a slight stretching by centrifugal
force. If ¢ is the angular velocity and I is the moment of inertia, the kinetic
energy is I$?/2. If m, and m, are the masses of the two nuclei and 7, and 7,
are their respective distances from the center of gravity, we have I=m,r?
+mars®. The following treatment is simplified by rewriting I in terms of
r and the “reduced mass” u, defined® by u=mms/(m,+m,;). We then have
I=pur? as is easily shown by using the relations 7,47, =7 and (definition of
center of gravity) mr1=msr,. The potential energy is given to a sufficient
approximation, for moderate speeds of rotation where §K1, by U=a*£?/2
(cf. Eq. 1a). The corresponding force is given to a sufficient approximation
by —F=a*{/r, (cf. Eq. 1b). By setting |F[ equal to the centrifugal force
urd?, an expression for £in terms of ¢ is obtained.$> Thus from a*§/r, =uré?,
putting 7, for » as a sufficient approximation and expressing ¢ in terms of
Py(Py=Ip=urrp~urld), we get £~P,2/a*ur2. For the total energy of
rotation we now have

Er=ur¢?/24a*82/2+ - - - =Py2/2urt 4 Pyt/2a*u?r A+ - - -
=P/ 2ur 2[1=28+ - - -+ Py a*ur 2+ - - |=Py2/2ur 2[1— Py a*ur 2+ - - -]. (2)
Substituting Py =K*h/2,

Er=K*2h2/8n%r 2— K*ht/32mta*pr St - - - (2a)
Adopting the abbreviations (¢ =velocity of light)

Be=h/8n%ucr.?[=27.70X10~4/ ur,?] 3)
D= —h3/32xta*u2cr A[ = — 4B 3/w 2(cf. Egs. 5, 6)], 4

Eq. (2a) can be written in the form
Fr=E'/h¢=B,K**+D K*+ ... =B, K(K+1)+D K}(K+1)*+ - - - (2b)

Stmultaneous quantization of vibration and rotation. When the new quantum
theory is applied toa molecule with zero average electronic angular momentum
which is both vibrating and rotating,” the complete energy expression? is
given by

¢ The correction for the masses of the electrons is too small to need to be included.

¢ The centrifugal force is myn ¢? for nucleus 1, myr, ¢? for nucleus 2. These are equal (since
myr =mgry) and, as is easily shown, each is equal to uré?.

7 Old quantum theory, cf. Kratzer or Kemble, l.c., ref. 5; for relations such as Eq. (6) be-
tween coefficients in Eq. (5) and molecular constants, cf. Kratzer, l.c. New quantum theory,
E. Fues, Ann. der Physik 80, 367 (1926); 81, 281 (1926), and A. Sommerfeld’s Atombau und
Spektrallinien, Wellenmechanischer Erginzungsband, p. 24. It is probable that (K-+1/2)
should be used rather than K(X+1) in Eq. (5) and in similar equations, but the difference
between the two expressions is negligible for practical purposes, and the form K(K+1) gives
simpler formulas for the frequencies of band lines.
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F=F4F+F =Fit (r+-}o.— (4Dt (- Dy oot - -
+B,K(K+1)+D,K*(K+1)*+ - -+ (5)

F in Eq. (5) means merely E/kc; throughout this review, for reasons of
convenience in application to spectroscopic problems, we shall use term
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F1G6. 2. Relation of rotational energy levels to band structure for the case B’=B"" (cf.
Eq. 14); B” is chosen equal to B of normal HCI. The full vertical lines correspond to possible
transitions between the two sets of energy levels. The figure shows the conventional method of
designating band-lines, and its relation to the M numbering. The frequency which would cor-
respond to M =0 (dotted lines in the figure) is not present in the spectrum; this is the so-called,
“missing line.”

values (F) in place of corresponding energy values (E). In Eq. (5), F is,
somewhat arbitrarily, represented as the sum of three terms, namely, a
rotational term Fr which is a function of K (and of v and of the electronic
stated), a vibrational term F* which is a function of v (and of the electronic
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state), and an electronic term which is a function of the electronic state
only. The quantum numbers » and K can each take on positive integral
values, beginning with 0. In Eq. (5), when v=0, F*=(1/2)w,—(1/4)x.w,
+ - - - #0; this represents the “zero-point vibrational energy,” which can-
not be removed from the molecule. It will be noted that Fr is the same in
Eq. (5) as in Eq (2b), except for the substitution of B, and D, for B, and D,
(cf. Eqgs. 3a and 4a below).?

In Eq. (5), w®> x>y, in practise, and w> B> | D, |; for numerical
examples, cf. pp. 67, 71, and 75. The “vibrational energy levels” have
ordinarily a spacing which decreases slowly with » (cf. Fig. 1), while the
“rotational energy levels” have a spacing which increases at first approxi-
mately as K2 (cf. Fig. 2). As a result of w> B,, the members of any set
of rotational levels (fixed F¢ and F?, variable K) are very much more
closely spaced than are the members of a set of vibrational levels (fixed
Fel, Fr=0, variable v); this can be seen by a comparison of Figs. 1 and 2,
with due regard to the scales used in these figures. The “electronic levels”
(variable F¢!, with F* and Fr=0) are as a rule even more widely spaced
than the vibrational levels, except in the case of highly excited electron
orbits which are not very often met with in practise.

In Eq.(5), the coefficients are related theoretically as follows” to B, and
D, of Egs. (3) and (4) and to the molecular constants 7., a*, b*, and c* of
Egs. (1), (1e), and (1b).

B,=B,~a(v+3)+ -+ - =By —av+ - - -, with By=B,—a/2 ; B>>a (3a)
Dy=D.+B(v+3)+ - - - = Dy+Bv ; BS>|D[>B (40)
we=(1/2mc)(a*/ur )% ; a=(6B.2/w.)(20*+1) ;

2 owe=3B (14 5b*+c*+56%2/2) . (6)

In Egs. (5) and (6), w., times c, is the frequency of vibration of the nuclei
for infinitesimal vibrations. Both a and x.w, of Egs. (3a), (5), and (6) are
positive for all molecular states so far known; ordinarily or perhaps always
in practise, *>0 and ¢*<0.

Vibrational levels and U(r) curve. When w,, x.w., Bo, and a have been
determined for any electronic state, as can be done by the analysis of band
spectra connected with that state, the quantities 7,, a*, b*, and ¢* can be
computed, and the F(r) and U(r) curves can then be drawn, for » values
not too far from 7,. If the dissociation energy D is known, the complete
U(r) curve can be approximately sketched in from r<r7, to r=o. As we
shall see later, such U(r) curves are very useful in studying the behavior
of the various electronic states of a molecule. Using the values 7,=1.276X
10-%, a*=82.87, b*=0.173 and c*= —0.316, determined from the experi-
mental coefficients® w,=2989.7, x,w,=51.90, B,=10.58 and a=0.303, and
the value D =4.37 electron-volts, the U(r) and F(r) curves for the normal
state of HCI are sketched, using Eq. (1) and Eq. (15), in Fig. 1. (It should
be remarked that the true form of the F(r) curve for HCl is very uncertain

¢ Cf. W. F. Colby, Phys. Rev. 34, 53 (1929).



68 ROBERT S. MULLIKEN

beyond about 7,=1.8X10~% cm, so that it is probably only qualitatively
correct in Fig. 1.) A few of the vibrational energy levels of HCI are drawn
on the U(r) diagram in Fig. 1 in accordance with F* of Eq. (5), assuming
K =0; the levels v=0, 1, 2, and 3 have been observed, while the others are
merely calculated.

P. M. Morse® has recently given a convenient formula by means of which
a complete U(r) curve can be computed if 7., w,., and either x.w, or D, are
known. This is, applicable only in cases where F* of Eq. (5) can be fairly
accurately represented, as is often but not always true, by Fv=(v+1/2)w.
— (v+1/2)%x.w, without further terms. Morse’s formula has been used in
estimating the form of U(r) for HCl in Fig. 1 for large r values.

ENERGY LEVELS AND SPECTRUM

The wave-number » of any line in the spectrum of a molecule can be
obtained by taking the difference of two terms, one of higher energy (F’)
and one of lower energy (F''):

y=F'—F" = (F'e! —F""el) 4 (F'v— F"' %) (F'r —F''7) = el pv 47, )

Usually, but not always, v*2>»2> p", corresponding to the'relative energy
level spacings of F¢!, F*, and F” (cf. p. 67). All the spectrum lines associated
with a definite pair of electronic states, hence with a definite F’¢!, F’’¢! and
vel, are collectively called a “band system.” This is divided into limited groups
of lines called bands, each band being associated with a definite pair of vi-
brational states and quantum numbers (v’ and v’’) and so with a definite F'?,
F'’», and »*. The lines whose arrangement constitutes the structure of a
band correspond to a variety of values of »" resulting from various possible
pairs of values K/, K'’ of the rotational quantum number. The various
lines are distributed over a limited » region on both sides of the position,
given by »¢'4p? where »*=0.

We proceed now to a consideration of the structure of band systems which
correspond to transitions between 'Z electronic states. We shall divide the
discussion into two stages, first assuming »® =fixed, »"=variable, so as to
obtain an understanding of the structure of individual bands, then later
assuming »* =0, y* = variable so as to determine the arrangement of bands in a
band system.

The bands of a band system with »*!5%0 are “electronic bands.” There
are also two other types of bands, for both of which »¢! =0, and which lie in the
infra-red. These are the “pure rotation bands” and the “vibration-rotation
bands.” They are of relatively minor interest in the present review, but
are considered briefly at the end of Part I.

STRUCTURE OF BAND SPECTRA OF THE SIMPLEST TYPE
(1Z—'Z TRANSITIONS)

Structure of individual electronic bands. In a single band of the electronic
vi€, »¢' and »® are fixed, while »* varies. In order to determine the form
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which »" takes as a function of the quantum numbers, we make use in Eq.
(7) of the detailed expressions for F’ and F'/ given by Eq. (5):

y=y04F'"—F"r =94 B, K'(K'+1)+ Dy K'2(K'+1)?
— B K"(K"4+1) =Dy K" K" +1)24 - - - . (8)

Here »° stands for v**+v* of Eq. (7). Now there is an important selection
rule which greatly limits the possible transitions and v values: (K'—K'’)
= +1 only. This is exactly analogous to the selection rule Al= 41 for the
azimuthal quantum number in line spectra. If in Eq. (8) we put K'=K"'+1
we get a set of frequencies given by the equation

V=V0+(BI+BII)(KII+1)+(BI_BII+DI__DH)<KII+1)2
+2(D'+D") (K" +1)+(D'—D") (K" +1)4. (9)

(For simplicity, the subscripts v’ and »’” of the B’s and D’s have been dropped
here). The series of lines given by Eq. (9) constitutes the so-called R or
positive branch; in Eq. (9), K’ can take on the integral values 0, 1, 2,
3, . ... Similarly, if we substitute K’=K’’—1 in Eq. (8), we get the equa-
tion of the P or megative branch:

V=V°—(B'+B")K"+(B'—B"+D’—-D")K"2—-2(D'+D”)K"3+(D'-—D")K”". (10)

In Eq. (10), K’' can take on the integral values 1, 2, 3,.... (K" =0 is
not possible, because it would imply K’= —1). Egs. (9) and (10) can both
be represented by the following Eq. (11) if we substitute M =K’'+1 in
Eq. (9) and M=—K'" in Eq. (10); in Eq. (11), M=4+1, +2, +3, - - -.
give the lines of the R branch, M= —1, —2, —3, - - - . the lines of the P
branch. Eq. (11) shows that the two branches form a continuous series,
except that a single central line »=»°, corresponding to M =0, is missing.

y=v°+(B’+B")M+(B’—B"’+D’—D”)M2+2(D’+D")M3+(D'-—D”)M‘. (11)

The appearance of a band as recorded, say, on a photographic plate is
governed by two factors (1) the arrangement of the lines as given by Eq.
(11) and (2) the relative intensities of the lines. The first factor is subject
to many variations depending on the relative and absolute values of B’,
B’', D', and D"". The second factor depends on () the initial distribution
of molecules among rotational states and (b) the transition probabilities.
In absorption spectra, and in thermally excited emission spectra, the initial
distribution is that corresponding to thermal equilibrium at some tempera-
ture T\ In practise, the observed intensity distribution, which depends of
course on experimental conditions, is normally approximately of the type
to be expected for thermal equilibrium, even when there is no reason to
expect such equilibrium.® The theoretical intensity expressions, assuming

9 Cf. R. T. Birge, Report on Molecular Spectra in Gases, p. 221; R. S. Mulliken, Phys.
Rev. 29, 401 (1927).
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thermal equilibrium for the rotational energy distribution in the initial elec-
tronic state, are as follows for !Z—!Z transitions:*®

Absorption:

Int. =C(K'+ K"+ 1)eE"" ¥ =2C | M| e~ B"MM-D+ .. .1 (12)
Emission:

Int. =C(K'+K"+1)e E" 14 = 2C | M| e BMMADE L LMK (13)

Egs. (12) and (13) take into account both initial distribution and transition
probabilities. Egs. (12) and (13) show th: , except for the exponential
factor, the Mth line of the P branch should have the same intensity as the
Mth line of the R branch. The exponential factor, however (because it
involves M, not |M|) is for a given |M | somewhat larger in the R than in
the P branch for absorption spectra (Eq. 12) but is somewhat larger in the
P than in the R branch for emission spectra (Eq. 13). All the features just
discussed have been experimentally verified.?

We are now ready to consider how the structure of a !2—!2 band may
look in various actual cases. Let us first consider the simple case B’=B"’,
with D’ and D’’ negligibly small. Eq. (11) here simplifies to

y=1"+2BM. (14)

The connection between the spacings of rotational levels (Fr of Eq. 5) and
the spacings of lines in a band, for the case B’=B’' (Eq. 14), is shown in
Fig. 2. In this figure the scale is so chosen that the spacings of the lower
set of rotational levels agree with those experimentally determined for the
9’’ =0 level of the normal electronic state of HCl. (The upper set of levels
may then be considered to correspond to some imaginary excited state of
HCI). Each band line in Fig. 2 may be regarded as the projection of one of
the long vertical lines which connect pairs of energy levels. These vertical
lines are spaced from left to right just in accordance with their length, corres-
ponding to the fact that each spectrum frequency is proportional to the in-
terval between the two energy levels involved in its production. The regular
progression in the vertical lengths, which is the basis for the regular spacing
of spectrum lines given by Eq. (14), should be apparent from the figure.

Fig. 2 also gives a comparison between the M numbering used here and
the conventional notation which is commonly used for the designation of
band lines. For our present descriptive purposes, the M numbering is more
convenient than the other numbering, but the latter will be needed later,
for more complicated types of bands and in connection with the analysis

10 Cf, E. C. Kemble, Phys. Rev. 25, 1 (1925); D. G. Bourgin, Phys. Rev. 29, 794 (1927);
and Egs. (2) and (4) of Mulliken, Phys. Rev. 29, 391 (1927). In Eqgs. (12) and (13) above, C
varies slightly with K, for large K values (cf. Kemble, l.c.).

To get from the first to the second form of the exponential in Eq. (12), one proceeds as
follows. First one substitutes E"’r=B"K’'(K'+1)+ - - -, then, for the P branch, K" = — M,
for the R branch, K”"4+1=+M. This gives for both branches the same result,
E'"r=B"M(M—1)+ - - - . A similar method applies in Eq. (13).
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of band structure. In the conventional numbering, the value of K’/ is given
in parentheses, e.g. P (2) corresponds to K'=1, K'’=2, while R(4) corres-
ponds to K’'=5, K''=4.

Fig. 3 shows by means of illustrative examples how the band structure
varies with B and T in emission spectra (in absorption spectra, the intensity
relations of the P and R branches would be approximately reversed). For
large B (small moment of inertia) the band has a very open structure, with
few lines widely spaced and with the intensity maxima at small |M | values
but relatively far from »% For small B everything is reversed. For small
T, the number of strong lines, and the distance of the intensity maxima
from »?, are relatively small. For large T there are relatively many lines,

B=05 B=60
T=300 T=300
e T e, T
30 -20 -I0 O 10 20 30 -4 -2 0 2 4
B=2
T=300
-15 -10 -5 0 5 10 15 -5 0 5
B=2 T=1200 P branch R branch
o e
M -20 -15 -10 -5 0 5 10 15 20

Y —————

J

FiG. 3. Effect of numerical values of B and T on structure and intensity distribution (cf.
Egs. 13, 14), for emission bands having B’ =B’ (headless bands). The numbers are M values.
The heights of the lines represent their intensities. For the missing line (M =0), the intensity
is zero. The law of intensity distribution has been emphasized by drawing envelopes of the
individual intensities. All the diagrams are on the same scale, except for the case B=60,
where both horizontal and vertical dimensions have been reduced to one-fourth what they
should be.

and the intensity maxima are relatively far from »° In practise, the largest
B value is that of the normal state of Hy(B;=59.35).1% The various
known states of He, all have Bo~7; in the hydrides, B, varies from 21 in
the normal state of HF to values such as 5.38 for the normal state of HgH
and even lower in some other cases. Molecules like Ny, CO, NO have Bo~2.
The smallest By value yet definitely determined is that of the excited 1=
level of the I, absorption bands (By=0.029). From these data and an ex-

amination of Fig. 3 it is evident that the resolving power needed to analyze -

the structure of a band varies enormously from one molecule to another.
The case B’ =B’/ just discussed is one which is only occasionally approxi-
mated in practise, except in infra-red bands with »¢=0 (cf. below). In

10a Cf, Birge, Hyman, and Jeppesen, Nature, 1930 (private communication from Professor
Birge).
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typical band spectra, B’ > B’ or, somewhat more often, B’<B’’. In either
case Eq. (11) now becomes, still neglecting the D’s,

y=p+2BM+CM2, (15)

where B=(B’+B’’)/2 and C=B’—B’'. Eq. (15) is plotted in Fig. 4 for
several different pairs of values B’, B’’ (all near 2.0), for the case of emission

B=2.00
B%2.50
_DIZD”=O a
-B/C=4.50
-7 -6 -5 -4 -3 -2 - 1234
16 15 4 13 2 11 10 9 87165
B'=1.85
B=2.35
S S e = D
-B/c=4.20
-7 -6 -5 -4 -3 -z -1 1234
16 15 4 13 12 11 10 9 8 T05
B=1.75
_D=p=0 | | = el
-B/c=4.00 -7 \[
-8 -T -0 -5 -4 -3 -z 4 1234
16 15 14 13 12 11 10 9 8 T65
B=2.35
B%1.85
SRS s e e e
-B/C=-4.20
-43-2 2 3 4 5 [ T 8
561-8 -9 -0 -t -2 -13 -4 -15 -16
B=2.35
B=1.85
T s e
-B/C=-4.20 -
432 - 1 2 3 4 5. 6 T 8
56 -T -8 -9 -10 -1 -2 -13 -14

F1G. 4. Band structure types for B’ B’ (bands with heads) for emission bands with B
values near 2 and 7'=300° absolute (cf. Egs. 13, 15). The direction of increasing frequency is
toward the right. The numbers given under the lines are M values. Negative M values corres-
pond to lines of the negative (P) branch, positive M values to lines of the positive (R) branch.
The heights of the lines represent their intensities. In Figs. 4¢ and 4c, where lines of two series
fall together, each height represents the sum of two intensities; but the separate intensities
are also indicated by means of curves which represent the envelopes of the correct intensities
for the separate series. [An error has inadvertently been made in the designation at the left
of Fig. 4e, which should be corrected to read D’ =—0.002 =D"’.]

spectra with an initial distribution corresponding to equilibrium at 7= 300°.
" The way in which the diagrams of Fig. 4 would need to be modified for a
different T or a different order of magnitude of the B’s can be judged from
Fig. 3.

When B’ <B’’ (Fig. 4 a, b, ¢) the band has a “head” on the high frequency
side, and is said to be degraded, or shaded, toward longer wave-lengths
(or, loosely, toward the red); when B’>B’/ (Fig. 4d, e) there isa head on
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the low frequency side, and the band is degraded toward shorter wave-
lengths (or, loosely, toward the violet). The head is usually the most con-
spicuous part of the band under low dispersion, since there is an accumula-
tion of intensity there. The way in which the formation of a head is reldted
to the relative spacings of the upper and lower rotational energy levels, as
determined by B’ and B’’, can be seen by considering how the lengths of
the vertical lines in Fig. 2 would be modified if B’>B’’/, or B'’<B'/, were
assumed.

The approximate position of the head is given by taking dv/dM in Eq.
(15), and then setting dv/dM =0. This gives Muneaa~— B/C; also, sub-
stituting in Eq. (15), we get vpeaq:

Myeaa~—B/C; vheaa~v"— B2/ C (16)

B/C may happen to be an integer (Fig. 4c) and in this case Eq. (16) is exact
for Muesq, but ordinarily, of course, B/C is not integral and the actual Mpeaq is
the whole number nearest to —B/C. When B/C is a half-integer (Fig. 4a)
two lines fall together at the head. Whenever B/C is either an integer
or a half integer, the lines of the series returning from the head coincide
exactly with the series of lines which is composed of the lines of the head-
less branch plus the lines of the head-forming branch before it reaches
the head (cf. Figs. 4a, ¢). But in the ordinary typical case the lines of
the returning series are regularly spaced between the remaining lines (cf.
Figs. 4b, 4d). The relations mentioned in the last two sentences are true
only so long as 2 (D'+D'") M3+ (D' —D'’") M* of Eq. (11) is negligible. This is
always the case for small M values, but when M becomes sufficiently large,
the two series eventually cross, and as M increases further they cross re-
peatedly, as a result of the terms involving the D’s and higher coefficients of
Eq. (5). A comparison between Figs. 4d and 4e illustrates the effect of ap-
preciable D’s in bringing about the crossing of series; but it should be
mentioned that the D’s used in Fig. 4e are many times larger than would
ever actually occur with the given B values.

In the last several paragraphs, we have seen how the structure of a band
depends on the values of B’ and B/, D’ and D'’. Now in a band-system,
the structure is, slightly at least, different for every band, since B’ and B'’
are respectively functions of v’ and v’/ (cf. Egs. 3¢, 8, 11). Using Eq. (3a)
we have

B'=By—a'v’ and B”"=By""—a’'v"’, where o’ < <By and o'’ < <By" .

Hence in Eq. (16) we have

2B=B'+B"=B/+By" —a's'— o'y, and C=B'— B" = By — By’ — o't + "y’
or

Mhead~—B/C=—(Bo— 3a’'v'— 3a"v'") /(Co— a'v'+ o'9'") ;

vhead~10— (Bo— 3a’v' — 3a"'0/")?/(Co— 'y’ +a’"v”’).  (16a)
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Thus — B/C varies from one band to another, so that in different bands of
the same system any or all of the three types illustrated by Figs. 4a, b, ¢ may
occur.

When Cy is small (Co=B,’'—B,’'’), the variation of the B’s with the s
is frequently enough to cause C to occur with opposite sign for different
bands. Bands degraded toward long wave-lengths, headless bands, and
bands degraded toward short wave-lengths may then alloccur in a single band-
system (example, violet CN bands).!

In addition to the variations already mentioned, there are sometimes
irregularities of various kinds. Frequently there are “perturbations” in some
of the lines of a band, i.e. displacements from expected position (and in-
tensity). These are explained by the supposition that sometimes in a series
of rotational levels, certain levels fail to obey the regular relation expressed
by Eq. (5). Another type of irregularity, associated with certain forms of
instability of the molecule, is a sudden breaking off of a series of lines, or
a progressive broadening of successive lines and gradual fading out, beyond
some value of M.

Another kind of departure from the relations discussed above can be
expressed by introducing a small linear correction term!? ¢K in Eq. (5).
This disturbs Egs. (9) and (10) in such a way that the P and R branches
have a slight bodily relative shift, so that they can no longer be accurately
represented by the single formula of Eq. (11). In Fig. 2 this shift would be
equivalent to the use of a slightly different »° (cf. Eq. 14) for the two branches.

Vibrational structure of band systems. Going back to Egs. (5), (7) and
(8), we now assume F'7, F'' and v" equal to zero in order to study the arrange-
ment of bands in a system, taking the position »®=p¢*4p? in each band as
representative of the band. Neglecting terms in (v+1/2)3, we have from
Egs. (5) and (7),

weritdyr= it o/ —do/ —ae) +15. 0. ]
+v’we,(1 —_ xe,) — vlzxelwel__ vllwell(l —_ xell)+v’12x3’,0-’g,, (17)

=V0°+d,1)"— b’7)12"‘ a"v"+b”7)"2.

Usually this equation,— if necessary with additional terms in #* and so
on,— is adequate to represent accurately the »°values of the bands of a sys-
tem. Occasionally, however, there are perturbations of some of the vibra-
tional energy levels, so that the »® values for some of the bands show irregular
deviations from Eq. (17).

Just as the scale of the structure of individual bands varies with B,
which depends on u and 72, so the scale of the spacing of bands in a band
system varies with w,, which depends on ur? and a¢* (cf. Eq. 6). Small w,
results from small a*, or from large u or 7.; and conversely. Isotopic mole-
cules are alike in respect to 7, and a*, but differ in g and so in w,. The largest

1 Cf, F. A. Jenkins, Phys. Rev. 31, 539 (1928).
12 Cf, R. T. Birge, Report on Molecular Spectra in Gases, p. 171, etc. (CuH Bands). Fora
theoretical explanation, cf. Part II below, paragraph following Eq. (29).
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w. known is 4371, for the normal state of Hy; next in size is 4037 for normal
HF. Molecules like N, and CO have for their stable states values in the
neighborhood of 1500-2300. Normal K, has w,=92; normal I; has w,=128.

In the analysis of a band system, the position vhea (cf. Eq. 16a) is
ordinarily measured, rather than the theoretically more important »° of
Eq. (17). In fact, it is usually not possible to determine the »° positions
without detailed analysis of the structure of a number of the bands. We
need therefore a vheaq equation. Unless C is unusually small, the distance

\\v“ 0 { 2 ) 4 5 (6] T A AFY
v
0 | 20640 %4 19682 950 18T 32 929 17803
862 802 862 857 801
1| 21508 904 20544 9% 19594 934 18600 916 17742
855 854 857 853 851 854
2122303 90521398 947 20451 938 19513 920 185973 904 1 TGS
845 848 844 850 840 845 840
3 | 23208 902 22240 951 £1295 932 20302 924 19439 905 18534 890 17644
832 840 841 838 837 &1 838
4 | 24040 954 23086 950 221306 935 21201 19371 890 18481 8731 7608
825 833 831 829 828 829
5 23911 942 22909 931 22032 921 21111 19310 874 {8430
821 820 a5 820 823
6 2379093 22858 922 21936908 21028 19256
818 817 818 818
T 23070 923 22755901 21846 894 20952
a1t 811 810 811
8 23564 %01 22657 895 21TH2 883 20879
803 804 80T 805
9 2340089 22500 880 21686
Ave. AF"V 962 948 934 921 906 893 818

AF* (0", v +1) =962.6—14.03 v'’ =(a"_—3")_— 2" 3" =969.6, ''=17.01
AF* (v, v'+1) =860.9—7.36 v’ = (G'—D') —2b'v"; &' =864.6, B’ =3.68
Vhead =20646.4 + [864.6 v'—3.68 v'2] — [969.6 v'' —7.01 v'"2]

F1G6. 5. Most important part of ¥ v matrix diagram for frequencies of heads of AlO
system, showing how the AF"'s (cf. Egs. 18) can be determined, and from them the a's, b's, and
the vhead equation (cf. Eq. 17a). (The complete observed spectrum contains heads with o’
up to 15 and v’ up to 12: cf. W. Mérikofer, Dissertation Basel, 1925). The frequencies given
are experimental values, and for the weaker bands (especially the bands of the sequence
v’ —v" =4) are probably not very accurate, and so give rather irregular AF*’s. The AF* and
Vhead €Quations given do not correspond to a critical analysis of the data; Fig. 5 is intended to
be illustrative rather than complete or exact.

Vheada —»° does not vary much from band to band (cf. Eq. 16a). Hence the
interval vpeaa—»° can be conveniently represented by an expansion of Eq.
16a in powers of v"and »’’. This contains a constant term — Bg?/Co and small
terms in v/, 9’3, v/, v'’%, v’y’’, etc.?* Approximately, then, the heads of a
band system should be given by an equation of the form

" _ _
Vhead =» head+-a’0" —b'v/2— @'y +b'"o/ 24 - . ., (17a)

22 Cf. R. S. Mulliken, Phys. Rev. 25, 131 (1925), footnote 29.
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Here »",0,q Means Vheaa for the band v’ =0, v’/ =0, while the é's and b’s are
constants differing just slightly from the a’s and b's.

The »° or ¥heaa values for the bands of a band system form according to
Egs. (17) and (17a) a two-dimensional array, and can be arranged in the
form of a matrix. Fig. 5 shows such a matrix for a typical band system
(AlO bands), using Vneaa data as determined by experiment. Each band is
characterized -by two indices (v’, v’’); when one speaks of for instance the
(3, 1) band, the numbers refer to these indices. There is no strict selection
rule which limits the relative values of v’ and v’’/, but the intense bands are
limited in a way which depends largely on the relative values of w,” and w,’’
(cf. discussion below).

Fig. 6 shows a reproduction of a photograph of the AlO bands, with the
heads numbered according to »’ and »’’. The photograph shows well the
grouping of the bands in “sequences,” i.e. series of bands of constant (v’ —v'’).
It also shows well the v'’ =0 “v’ progression” and the v’ =0 “v’’ progression.”
(In a v’ progression, v’ is fixed, »’ variable; in a v’/ progression, v’ is
fixed, »'’ variable). Fig. 6 shows also the relations,—neglecting the error
introduced by using vhesa instead of »® data,—between the positions of the
various bands and the energy levels of the molecule. A careful study of the
energy level diagram in connection with Fig. 5 and the photograph will
make these relations clear.

From the vne.q data in Fig. 5, it is possible to determine the constants
¥0ueaa, &, b, @', b’ of Eq. (17a), hence approximately the corresponding
constants of Eq. (17). One begins by taking differences of adjacent vneaa
values (cf. Fig. 5). Such differences, which can be read off directly from the
spectrum, must according to the theory be equal, except for the slight error
caused by the variability of ¥pead —»° from band to band, to differences of
the term values of adjacent vibrational energy levels of the molecule. For
instance, except for the slight error caused by using vne.q data, »(0, 0) —»(0, 1)
=F'"*(1)—F""*(0)=AF""*(0, 1). If the bands are correctly arranged in the
matrix diagram, »(1, 0) —»(1, 1) also should be equal to AF’’*(0, 1), and we
may therefore expect »(0, 0) —»(0, 1) =»(1, 0) —»(1, 1) within experimental
error. The weighted mean of these and other similar intervals »(v;/, 0)
—»(vi/, 1) may be taken as the best experimental value of AF’'*(0, 1). Simi-
larly AF’’*(1, 2) can be obtained from the differences »(v;’, 1) —»(:/, 2). The
above relations are exemplified in Fig. 5. In an analogous manner, we deter-
mine the AF’V’s: e.g. AF'*(0, 1) =»(1,9;"")—»(0, v.”"), where v;''=0,1,2, - - - .
The various AF’* and AF’’* values from the AlO heads are given in Fig. 5.
From Eq. (5) with F"=0 we find that the AF*'s as obtained from »° data
should be quantities of the form

AFI”(Y),, .Ul+ 1) =w¢,(1 _ le) _zlee/wel___ (al~bl) —2by
AF'" (3", V1) =0, (1— 22" = 20", w0, = (o — by — 25"y } (18)
The corresponding intervals from vyeaq data are related in the same manner

to the a's and b’s. Thus the averaged intervals of Fig. § yield a’, b, a"’, b,
and, finally, a complete equation of the form of Eq. (17a).
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F1G. 6. Relation between vibrational energy levels and spectrum for the AlO band-system.
At the bottom of the figure is a reproduction of a photograph showing the actual appearance of
these bands as obtained with a prism spectrograph. Above this isa theoretical diagramon a
uniform » scale, with the ¢’ and v"* values of each band. The observed spectrum consists mainly
of five sequences of bands (v’ —v"'=0, 1, +2). Various v’ and v’ progressions can be readily
picked out from the reproduction or the theoretical » diagram, e.g. the " progression with
v'=0 and the o' progression with #=0. The upper part of Fig. 6 shows a part of the
vibrational energy levels of AlQ,for each of the two electronic states involved in the AlO bands
here considered. The spacings in each set of levels are given by a wave-number scale at the
left. The long vertical lines in the figure show how the bands correspond to transitions between
vibrational levels (to avoid crowding, these vertical lines have been drawn here for only part
of the bands shown in the lower portion of the figure).
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The arrangement of bands in Fig. 5 serves to bring out certain criteria
which must be fulfilled when a correct assignment of v’ and v’/ values has
been made for a band system. These are: (1), if 5>0 in Eq. (18), as is true
in all cases yet known in practise,'® the experimental quantities corresponding
to AF*,—both AF’* and AF’’*,—must fulfill the inequalities AF® (0,1) >AF*
(1, 2)>AF» (2, 3) - - - ; (2), the matrix diagram (Fig. 5) should, in well
developed band systems, be sharply bounded on two sides by two progressions

BT
a | , v" progression  Resonance

(v'=0)
b I v'"progression  Resonance

0,0
Ol 1,0
02 20

S T T
< i ,IHI I.d” || .nil”..lll”“.n,n[l_l_l_lm_lﬁuJJJ_LﬁQE"”””"
Hot
Absorption
d | | | .I‘ Ll T-1000°K
Cold
e l | Absorption

F1c. 7. Effect of initial distribution of molecules among vibrational states on vibrational
intensity distribution, for a typical molecule. Each vertical line in the figure represents a band-
head; its height is roughly proportional to the intensity of the band. In each band, the band-
structure extends from the head toward longer wave-lengths, as in the reproduction in Fig. 6;
the extent of this structure would vary, however, with the temperature (cf. Figs. 3, 4). All the
diagrams are drawn in accordance with the known vibrational energy levels of the AlO molecule
(cf. Fig. 5 for frequency data and Fig. 6 for energy levels and »’ and v’ assignments). Absorp-
tion and resonance spectra have not yet been obtained experimentally for this molecule, so that
the intensities in Figs. 7a, 7b, 7d,and 7¢ have been estimated largely from theoretical considera-
tions; Fig. 7¢, however, corresponds to the reproduced photograph in Fig. 6. It is of interest to
compare the v"/=0 and v"’=1, v’ progressions in the high-temperature absorption spectrum;
the v'=0 band is strongest in the v’’=0 progression, but the »'=2 band in the v"’=1 progres-
sion. This difference, which is entirely one of transition probabilities, can be understood by a
study of the Type III curves in Fig. 8.

of strong bands, namely the v =0 progression and the »"’ =0 progression.
In case the emitting or absorbing molecule has isotopes, there is also a third
valuable criterion for the assignment of v values: isotopic molecules give
band systems of identical structure but somewhat different scale, with the
bands of all isotopes approximately coinciding near y =p00.13

12b An exception appears to have been found in LiH (S, Nakamura, Zeits, f. Physik, 59, 238,
1930.) »

13 Cf. R. S. Mulliken, Phys. Rev. 25, 119 (1925), or F. W. Loomis, Report on Molecular
Spectra in Gases, Chap. V.
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We pass now to the question of the relative intensities of bands in a band
system. In an emission spectrum, the bands which are developed depend
very much on the conditions of excitation, since these govern the initial
distribution of the molecules among vibrational levels. Fig. 7¢ represents
diagrammatically the intensities of the AlO bands as obtained in emission
by running an Al arc in air (cf. reproduction given in Fig. 6). A large range
of v’ values is present. So far as can be estimated by summation of the
photographic intensities of bands originating from each v’ value, there are
in the arc more molecules with »'=0 than with »’=1, more with v»'=1
than with =2, and so on. This is essentially a high-temperature thermal
distribution, and is fairly typical for arc spectra.’* With other types of ex-
citation (electron impact, chemical reactions, excited atoms, etc.) other
v’ distributions often occur, e.g. the molecules may be confined to one or
more, more or less sharply limited, low values of v”; or moderately high values
of v’ may be favored rather than low values; and so on.'* In fluorescent
spectra (emission spectra of molecules excited by light absorption) various
v’ distributions are possible, depending on the exciting wave-lengths and on
the molecular constants. An interesting special case is that of “resonance
spectra,” that is, fluorescent spectra resulting from excitation by mono-
chromatic light. Here we have a single value of v’ (and of K’), and the emis-
sion spectrum consists of a series of bands (or rather, of particular lines of
a series of bands) forming a v’ progression (cf. Fig. 7, a and b).

In absorption spectra, as in emission spectra, one has to consider the
initial distribution among vibrational levels, but now this is a v’/ distri-
bution instead of a »” distribution. In a typical gas, such as CO, at room
temperature, practically all the molecules have v’/ =0, and the absorption
spectrum consists of a single v’ progression with 2’/ =0, as in Fig. 7e. This
progression consists of bands all,—except the (0, 0) band itself,—on the high
frequency side of the (0, 0) band. If the temperature is raised sufficiently,
or (even at room temperature) if the molecule has a very small w,’’ value
(e.g., Kz or I,), the distribution is shifted so that an appreciable fraction of
the molecules has '/ >0. Additional v’ progressions then appear (cf. Fig.
7d), so that the spectrum extends toward longer wave-lengths.

The relative intensities of the bands in a system are determined jointly
by the initial distribution, as already considered, and by the relative transition
probabilities as a function of (»'—v’’) and of »’ or '/, Franck proposed a
simple theory for approximately determining the transition probabilities;
this was further developed by Condon, and has found many interesting
applications in the hands of Franck, Birge and Sponer, and others.15:16

14 Cf, R. S. Mulliken, Phys. Rev. 25, 259; 26, 1 (1925); R. T. Birge, Molecular Spectra in
Gases, pp. 135-142; 221, 248-9; G. Herzberg, Ann. der Physik, 86, 189 (1928); Zeits. f. Physik
49, 512, 761 (1928); 52, 815 (1929).

18 For a review of this work, cf. H. Sponer, Ergebnisse der exakten Naturwissenschaften,
Vol. VI, p. 75 (1927); also K. K. Darrow, Chem. Reviews, 5, 451 (1928).

16 Intensity distributions and Franck theory, cf. E. U. Condon, Phys. Rev. 28, 1182 (1926).
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Each electronic state of a molecule has, in general, a different U(r) curve,
and a different value of w, and of 7,. Suppose we consider the transfer of a
molecule from one electronic state to a higher one by light absorption. The
molecule is assumed initially in some definite vibrational state »’’; the rota-
tion of the molecule need not be considered. Franck argued that, to a first
approximation, the light quantum acts directly only on the electron system
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F1c. 8. U(r) curves drawn according to Morse's formula,® and in accordance with the
relation 7 fw,=3000 X102, for four typical cases. The curves are not those of any actual mole-
cules, but the constants chosen are of approximately the same magnitude as is found for such
molecules as O,. Vertical lines drawn to the U’(r) curves, from #mi, and 7max of v’ =0 of the
various U"'(r) curves, serve to indicate the most probable »’ values resulting from light ab-
sorption from v”’ =0. In Case IV, for rnia of "’ =0, light absorption results in dissociation.

of the molecule, the inertia of the nuclei being too great for them to be directly
affected. Thus the distance 7 between the nuclei, also the kinetic energy
of the nuclei, should at the first instant be practically unchanged. This
condition, in connection with the two U(r) curves involved, suffices to
determine the vibrational state after absorption.

Suppose we start with a molecule having »’'=0. Its nuclear separation
r may be thought of as oscillating between a maximum and a minimum
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value (#max and 7min). If it happens that #~7mp.x Or 7min when the light quan-
tum is absorbed,—as is very probable, since the molecule spends most of
its time near these values of 7,—the correct state of vibration in the upper
electronic state is obtained approximately by vertical projection from the
U’ (r) curve to the U’ () curve. Thus in case II of Fig. 8, the molecule
initially at #mia of " =0 would find itself, after absorption of the quantum,
at 7min of =0, and would go on with its vibration almost undisturbed by
the electron jump. In case III, however, 7min of v"/ =0 is approximately the
same as ”min Of »'=2, and the molecule would probably vibrate with v’ =2.
In case IV, #mia of v =0 corresponds to a point on the U’ (r) curve where
U’ (r)> U’ (o), and instead of a vibration, we should expect a flying apart
of the nuclei (dissociation).

The procedure we have just been using is of course applicable for 7max
as well as for #min, for all values of v/, and for all types of U(r) curves,
in absorption spectra. It holds equally for emission spectra; in this case we
project downward from the U’(r) curve. In general, for any given initial
v"’ (or v’) value there are fwo most probable values of v’ (or v'’), corresponding
to the initial positions #min and 7msx. Hence for any given v"’ (or v'), (v’ —v"’)
has two most probable values. Of course, other values of ' —v’’ also occur,
since the molecule spends part of its time between #min and 7max,'” and also
because the theory is only an approximate one. (That it is necessarily
only approximate is evident for instance from the fact that vertical pro-
jection from #nin OF 7max of a U’/ (7) curve does not unless by chance hit the
U'(r) curve exactly at an energy corresponding to a permitted state of
vibration.)

There are various empirical types of intensity distribution for the bands
of a band system and, as Condon has shown,! these depend, in just the way
given by Franck’s theory, on the relative forms of the U’(r) and U"(r)
curves. Each such type differs characteristically from the others not only
in the intensity distribution with respect to v’ and v/, but also in the arrange-
ment of the bands, and in the appearance of the band structure. This three-
fold relationship can best be understood after an empirical relation which
exists between the 7, and w, values has been stated. This is as follows: with
only a few minor exceptions,!® there is always, for the different electronic
states of a single molecule, a qualitatively inverse relation between 7, and w,.
Quantitatively, this has been expressed in the forms!®

7.2 w, = const.; and, 7,% w, ~ Const. (19)

17 Suppose for example 7"/ =7,”” when the light quantum is absorbed. Here the molecule
has kinetic energy equal to E”»— U"'(r,””) before the jump, and the projection must be made to
a point above the U’(r) curve by just this amount.

18 In the case of two states with nearly equal 7., the w, values are also nearly equal. Here
it may happen that the larger w, goes with the larger 7., contrary to the qualitative rule above
stated. This is, however, obviously only a minor violation of the rule, and corresponds to the
fact that no exact quantitative formulation of the rule can be given. It should also be em-
phasized that the rule is purely empirical; no theoretical reason for its validity is obvious.

19 First form, cf. R. T. Birge, Phys. Rev. 25, 240 (1925); R. Mecke, Zeits, {. Physik 32,
823 (1925); second form, P. M, Morse, Phys. Rev. 34, 57 (1929).
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Both forms, especially the first, hold fairly well for different states of a single
molecule. The second form, with Const.=3000X 10~ cm?, holds fairly well
for a wide variety of states, even of different molecules, provided the masses
of the two atoms are not too unequal (for unequal masses, Const. is larger;
the largest values are for hydrides, where Const.~6000).

The statements of the previous paragraph can best be elucidated by
considering the four typical pairs of U(r) curves depicted in Fig. 8. In
Type 1I of Fig. 8, where r./=7,”", we expect w,/~w,” according to Eq. (19).
Because of 7,/ =7,”, we have By'~B,"’ (cf. Eqgs. 3, 3a); but since B'’=B, —
a'v'and B =By’ —a'"v"’, we may have B'~B’"’, B'> B’ or B’ < B" in different
bands, depending on the values of &, &'/, v, and v’’. Thus in the same band
system we may find headless or practically headless bands, bands degraded
toward long wave-lengths, and bands degraded toward short wave-lengths.—
Because of w,/~w,”, the bands of each sequence are very crowded together
or even almost superposed.’*—Because r,/=r,””, the sequence Av=0
should according to the theory of Franck and Condon be very much stronger
than any other sequence, with the sequences Ay =+ 1 next in intensity, and
so on. (A comparison with the typical band system shown in Fig. 6 will
be helpful to the reader in considering the case here under discussion.)—
The complete band system should then consist essentially of a strong central
group of nearly superposed, headless or practically headless, bands comprising
the sequence (v, ") =(0,0), (1, 1), (2, 2), etc., flanked by two much weaker
sequences, likewise composed of nearly superposed bands, the shorter
wave-length sequence comprising the bands (1, 0), (2, 1), (3, 2),....,
all degraded toward longer wave-lengths, and the longer wave-length
sequence composed of bands (0, 1), (1, 2), (2, 3), - - - all degraded toward
shorter wave-lengths.?

For U(r) curves with 7, >7,”" by a good margin (cf. Type III of Fig. 8)
we have B’ <B’’ for all bands of measurable intensity, so that these are all
definitely degraded toward longer wave-lengths, like the AlO bands of Fig.
6. Accompanying 7.’ >7,”” we have v,/ <w,”, and the members of each band
sequence are now well spread out. At the same time, there are several strong
sequences in the band system; the intensity distribution is of a type similar
to that of the AlO bands in Fig. 6.

20 If we had @' =a", ¥’ =0=0" in Eq. (17), all the bands of a sequence would have their
»’s precisely superposed. Actually, aside from the usual slight difference between @’ and a”/,
the influence of b’ and b’ causes successive members of a sequence to be separated. Usually
b’ and b” differ greatly even if a’~a’’. An interesting case sometimes occurs in which (the
series of »”'s of) a sequence turns back on itself,—just like the lines of a band in the series
which forms a head. This happens when, say, w.’ is slightly greater than w.” and %' is decidedly
greater than x./’, as is true in the violet CN bands (cf. F. A. Jenkins, l.c., ref. 11).

2 If the sequences are Jong, as happens if w, is small or if the light source is such as to give
large v’ values, then the transition from bands degraded toward violet to headless bands and to
bands degraded toward red may occur in a single sequence; this actually happens in the violet
CN bands (cf. Jenkins, l.c., ref. 11). This is correlated (cf. Eq. 19) with the turning back of the
sequences on themselves (ref. 20).
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As the difference between w.,” and w,”’ increases (passage toward type
IV of Fig. 8), each band sequence becomes more and more spread out and
more and more overlaps neighboring sequences, until finally the classification
into sequences loses its usefulness. At the same time, the intensity becomes
distributed over a wider and wider range of v values. The arrangement of
bands in the system becomes less obviously regular and the assignment of
v’ and v values more difficult.?? With U(r) curves as in type IV of Fig.
8, the band system includes bands of very large Av, and is accompanied
by a continuous spectrum corresponding in absorption bands to dissociation
by light, or in emission bands to a union of atoms with light emission (ex-
amples: visible absorption and recombination spectra of the halogens).
Finally, when #,” and #.”’, and so w,’ and w,’’, are very different, we have
only a continuous spectrum (examples, ultra-violet absorption spectra of the
hydrogen and alkali halides).

When 7,/ <7, as in Type I of Fig. 8, we have a case very similar to that
of Type III, except that now all the bands are degraded toward the violet.
When the inequality of 7,/ and 7./’ is larger, we have cases analogous to
Type IV, except that here one has dissociation of a molecule accompanying
light emission (example, continuous spectrum of H;), and combination of
atoms accompanying light absorption.

A more detailed treatment of the various types of intensity distribution
among the bands of a system can be found elsewhere.!:18

Structure of *Z—'Z bands: non-electronic bands.®® In Eq. (11),v%=pel4p?.
If v¢¢=0, we have infra-red bands of two types, (a) if »*5£0, vibration-rota-
tion bands; (), if »* =0, pure rotation bands.

The vibration-rotation bands have the same type of structure as elec-
tronic bands (cf. Egs. 11 and 15). The relative intensities of the band lines
obey the same relations as electronic bands (cf. Egs. 12 and 13.) But since
ve!=0, we have B’ =B,—av’, B =B,—av'’, with the same B, and « for both
vibrational levels involved ; hence, since « is small, we have B'~B’’, approx-
imating the cases shown in Fig. 3. But since B’ here is always (slightly)
less than B’/, there is always a slight tendency to form a head on the R
branch (cf. Eq. 16).

In vibration-rotation bands we have x,/=x,", 0w,/ = w,”, so that Eq.
(17) becomes

W=("—v"N)w,(1—x,)— (v2— "2 x w,. (20)

The relative intensities of different vibration-rotation bands are determined
by entirely different factors (cf. helow) than in the case of electronic bands.
The strongest bands are those for which»’ ="' 41 (“fundamental” bands). The
“first harmonic” bands (v’ =2’ 4+2)are very much weaker, the second harmonic
(v =v""+3) very much weaker still, and so on. Since the infra-red bands

2 Criterion (2) of page 78 now fails, since when the inequality of 7,/ and 7./, hence of w,’
and «,”, is large, bands involving low values of both »’ and v, such as (0, 0), (0, 1), (0, 2),
(1,0), (2, 0), (1, 1), etc., are very weak or practically missing.

% Cf, W. F. Colby, Report on Molecular Spectra, Chap. III.
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are ordinarily observed in absorption at room temperature, we usually have
all the molecules in their normal electronic state and so have only a v’
progression with " =0. But at high temperatures something like a band-
system would be possible, and in emission spectra we should expect to
have one such system for each different electronic state.

The band intensities in vibration-rotation bands depend, according to
the correspondence principle, on the variable part of the electric moment
of the molecule. Homopolar molecules (H;, N;, O, etc.), on account of
their zero dipole moment, have no vibration-rotation bands (electronic
bands they do have).

In the pure rotation bands, B'=B’/, D'=D", and Eq. (11) reduces to

y=2BM~+4DM? (21)

M has only positive values here. Each band consists of a single series of
nearly equally spaced lines. Such bands are best known for (v''=0 of the
normal states of) the hydrogen halides. We shall not discuss here the re-
lations which govern the intensities of the lines within a band, except to
note that Eqs. (12) and (13) no longer apply. The intensity of any pure
rotation band, faken as a whole, depends on the average dipole moment.
Homopolar molecules, with zero dipole moment, have no pure rotation bands.

PART II

INTRODUCTION

In Part I we have considered, in summary, the important variations
which can occur in the structure of a band spectrum associated with a
transition between two 2 electronic states. We shall now consider, in some
detail, what new variations are possible when we have to deal with other
than 12 states. To begin with, it is important to note that these new varia-
tions do not directly touch »*, but only »¢* and »", of Eq. (7). They consist
mainly in new complications in the structure of individual bands, often
accompanied by multiple values of »¢! analogous to atomic multiplets. It is
convenient to approach this problem, following the method used by Hund
in his fundamental paper on the subject, by a study of a reasonable molec-
ular model in terms of the old quantum theory. The immediate object,
which will be followed in Part II, is to learn enough regarding energy rela-
tions and electronic quantum numbers to understand and interpret the vari-
ous types of individual-band structure which occur in practise. Later, in
Part III, we shall seek a more complete understanding of electronic quantum
numbers and electronic states in molecules, and of their relation to the quan-
tum numbers and states of their atomic dissociation products.

The discussion in Part II falls naturally into three stages: (a) a treat-
ment of the problem of the electronic states of an imaginary limiting case
which differs from real molecules in that the nuclei are assumed held station-
ary; (b) a consideration of the modifications required in part (a) in order

% F. Hund, Zeits. f. Physik 36, 657 (1926).
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to take into account the effect of the vibrations and rotations of the nuclei;
(c) a study of the various types of bands resulting from transitions between
electronic states of various types. Parts Ila and IIb are given below,
while Part IIc will appear at a later date.

Ila. THEORY OF MOLECULAR ELECTRONIC STATES FOR
THE CASE oF F1xED NUCLEI

Comparison of molecule with atom in strong electric field. A molecule with
nuclei assumed held fixed (“frozen molecule”) can be regarded (1) as formed
from two atoms or ions, each of which, when they come near, acts on the
other with a large electric field; or (2) as obtained by dividing the nucleus
of an atom into two parts and separating these somewhat, thus producing a
modification of the original electric field of the single nucleus, equivalent
to the superposition of a suitable correction field upon the original field.
We shall here adopt the second point of view as the best means of reaching
an understanding of the nature of the electronic states of molecules with
nuclei held fixed. In an atom, the motion of any one electron can be treated
as a motion in a spherically symmetrical but in general non-Coulombian
electric field. The electrons, other than the one under consideration, are
regarded as equivalent to a continuous spherically symmetrical cloud of nega-
tive electricity. (This assumption finds a large measure of justification in the
new quantum theory.) This is the so-called core model (atom = core+chosen
electron).

The corresponding model for the molecule with fixed nuclei consists in
the nuclei plus an electron cloud having axial symmetry around a straight
line passing through the nuclei. This molecular core-model can be imagined
as built up from a suitably chosen atomic core-model by superposing on the
central field of the latter a suitable, usually large, axially symmetrical cor-
rection field. This correction field must obviously change rather rapidly in
both direction and magnitude, both along and at right angles to the axis.
Such a correction field is of course quite different from the uniform unidirec-
tional imposed field in the ordinary Stark effect for atoms. Nevertheless the
existence of an axial symmetry in both cases is sufficient to make them
qualitatively the same, so that the theory of the electronic states of a mole-
cule with fixed nuclei is qualitatively identical with that of an atom in a
strong electric field (Stark effect).

We therefore begin by a review of the results of the quantum theory for
an atom in the absence of external fields, then, as a useful introduction to a
study of the effect of electric fields, we consider briefly the effect of a uni-
form magnetic field on an atom (Zeeman effect). After that we pass to a
more detailed consideration of atoms in axially symmetrical electric fields.

Quantum numbers and electron states of atoms.® 1In the absence of an ex-
ternal electric or magnetic field, the state of an atom can usually be de-

2 For a detailed treatment of the theory of atomic spectra, reference may be made to F,

Hund, Linienspektren und Periodisches System der Elemente (J. Springer, Berlin, 1927),
or to the forthcoming book of L. Pauling and S. Goudsmit (McGraw Hill and Co., 1930).
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scribed by giving quantum numbers #, /, and s for each extranuclear electron,
and quantum numbers L, .S, and J for the atom as a whole.?® The principal
quantum number # can take on values 1, 2, 3, - - -, the azimuthal quantum
number ! can have values 0, 1, 2, 3, - - - (s, p, &, f, - - - electrons), while
the electron spin quantum number s always has the value 1/2. In the old
quantum theory, ! for each electron is obtained by the quantization of the
angular momentum P; of the orbital motion of the electron in the field of
the atom core (cf. above), all detailed interactions of the chosen electron
with the core electrons being neglected, so that P; can be treated as a con-
stant. The quantum condition is f;'Pzd\0=lh, which gives P;=I1h/2w.
This last relation is replaced, according to the new quantum mechanics, by
P,=1*h/2w, where I*=[l(I+1)]¥2. Similarly the angular momentum P,
of spin is given by P,=s*k/2m = [s(s+1)]|¥2h/27 =+/3h/4x.

The quantum number L corresponds to an angular momentum P,
=L*h/2r, where L*=[L(L+1)]*2. [Bold-face type will be used through-
out to indicate vectors.] P is the resultant of the individual Pj's.
Similarly Ps=S*h/2r, where S*=[S(S+1)]2, is the resultant of the P,’s.
Most atoms contain a number of “closed shells.” Each closed shell has
L=0 and S=0 and therefore contributes nothing to the final resultant
L and S of the atom.  The latter are therefore determined solely by those
electrons which are not in closed shells. If there is just one such electron,
as in the alkali metals, then we have simply L=/ and S=s, where / and s
refer to the valence electron.

If there are two electrons (1 and 2), not in closed shells, as in the excited
states of the alkaline earth metals, the possible values of L are determined
from I, and I, by the condition L =1+, i+l—1 - - - |li—I; |. Corresponding
to each such L value, a vector diagram can be drawn representing L*(or
Pr) as a resultant of I;* and L* (or of P, and P;). For Swehave S=s5,+5,=0
or 1; these two possibilities occur for each of the possible L values. In each
case S* can be represented as a resultant of s;* and s,*.—In case the two
electrons are equivalent (ny=mn, and I, =1Iy), only part of the L, .S combinations
given by the rules just stated are possible; the allowed pairs of L and S
values can always be determined by means of the Pauli exclusion principle.?

In an atom with three electrons (1, 2, 3) not in closed shells, the possible
L and S values can best be obtained as follows. First we determine as before
the possible L and S values for electrons 1 and 2, neglecting 3. In this way
we get a variety of possible resultants L;» and two possible resultants S;z=0
or 1. Now we add the third electron and get as possible values of the final
L, L=Ly+1;, Lio+5—1, - - |L12—l3 l, there being one such set of resul-
tants for each Lj;. In many cases this gives two or more equal L values which
nevertheless correspond to physically different states. Since s3=1/2, we
have S=1/2, from Si2=0, and S=1/2, 3/2 from S;z=1. The two resultants
S=1/2 are physically different.—In case two, or all three, of the electrons
are equivalent, the possible L, S combinations are fewer.

2 The atomic notation used here follows the recommendations in the recent report by
H. N. Russell, A. G. Shenstone, and L. A, Turner (Phys. Rev. 33, 900, (1929)).
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Atomic states are commonly classified according to their L values:
S, P, D, F, - - states respectively have L =0, 1,2, 3, . - The value of the spin
S is also indicated, by means of a superscript number placed before the term
symbol S, P, or D, etc. This number gives explicitly the “multiplicity”
m and implicitly the value of S(m=2S+1). Thus 2S (to be read “doublet
S”, not “two S”) means L=0, S=1/2, while *P(“singlet P”) means L=1,
S=0; and so on.

For any given pair of values L, S, there are in general several values of the
“inner” quantum number J, given by J=L+S, L+S-1,- .- !L—S].
J*=[J(J+1)]*2 is proportional to the resultant angular momentum P; of
the atom (Py=J*h/27); each J* may be considered as a resultant of the vec-
tors L* and S*. When L=0, J=35; when S=0, J=L;in these cases it is not
necessary to give J explicitly in the term symbol (examples,2S,'P); in other
cases the value of J is given as a subscript, as for example in *P;(L=1,
S=1}, J=3} orinPy (L=1,S=1%, J=15).7"

The energy of an atom usually depends in first approximation on the
n and ! values of the individual electrons, next on L and S, and finally on
J. In an atomic multiplet level (fixed #’s, I's, L, and S, variable J), different
values of J correspond to different angles between the vectors L* and S*.
Between L* and S* there is a magnetic interaction whose energy is propor-
tional to the cosine of the angle between them. The torque exerted by L*
and S* on each other causes them to precess (cf. Eq. (23)) around their
resultant J* which, since it represents the total angular momentum of the
atom, maintains a fixed direction in space. Their mutual energy is given
approximately?® (F=term =E/hc) by

F—Fo=AL*S* cos (L*,8%) = (})A[JU+1)—LEL+1)-SES+1)] (22

F, is the “center of gravity” of the multiplet.2s> Eq. (22) gives quantitative
expression to the Landé interval rule, according to which, in a multiplet level,
the spacing of any two sub-levels is proportional to the larger of the two J
values concerned; e.g. in a D level, the spacings of the intervals (D3 —*Dyy),
(D9 —*Dy), and (*Dy—*D,) are in the ratio 33: 23: 13.

It will be helpful to consider the application of Eq. (22) to ?P and 3P
states. In 2P states (L=1, S=3%) we have F—F; equal to (3)4 for the 2Py
level (J=13),and equal to —4 for the 2P;level; thisgivesAF =1} A for the
interval between the two levels. In 3P (triplet P) states we have F— F;=A4

27 The above quantum numbers and Eq. (22) are applicable to the so-called Russell-
Saunders or normal type of coupling of the quantum vectors I and S. In some cases there is
another type of coupling (reference 25) in which, instead of a resultant L*=)_I*(vector) and a
resultant S* =)_s* which then form a resultant J*, we have a j and a j*(resultant of I* and s*)
for each electron (or at least for some electrons), and then 2, J*=J*

28 For further details, cf. Hund’s Linienspektren (reference 25), Chaps. I1I-1V; S. Goud-
smit, Phys. Rev. 31, 946, (1928);S. Goudsmit and C. J. Humphreys, Phys. Rev. 31, 960 (1928).

282 The terms “multiplet” and ¢ multiplet level” are here used, interchangeably, to designate
a group of energy levels differing only in J (atoms), or in Z (molecules). The term “multiplet”
is also (more appropriately) used to designate a group of spectrum lines derived from a pair of
multiplet levels.



88 ROBERT S. MULLIKEN

for 3P;, —A for 3P, and —24 for 3P,; this gives AF=34 for the over-all
width (*P,—3P,), and also fulfills the Landé rule for the separate intervals.

Mechanical frequency equation. There is in the classical mechanics an
important theorem regarding frequencies of motion. This theorem yields in
the old quantum theory the following relation for the frequency cw; asso-
ciated with any quantum number k (we use cwy, rather than wy, for frequency,
because throughout this review the symbol w is used to represent a quan-
tity measured in cm™!).

cwr=(1/k)(| 0E/ok|)=c| aF/ak| (23)

For example, the frequency of precession associated with Jis that of L* and
S* around their resultant J*; this is obtained by taking ¢(d F/dJ) in Eq. (22),
which gives ¢4 (J+1).

The reader should be cautioned not to attach too exact a meaning to Eq.
(23), especially for low quantum numbers. A quantitative use of Eq. (23)
is not permissible in the new quantum mechanics. Qualitatively, however,
Eq. (23) is very useful in studying the behavior of vector models such as
are used here.

Atoms in magnetic fields. When a uniform external magnetic field is im-
posed on an atom, J*, instead of remaining fixed in space, precesses around
the direction of the field, making with the latter a constant angle . This
angle is limited to certain values given by cos § = M/J*, where M is a “mag-
netic” quantum number, which can take on the values J, J—1, ..., —J.
Mh/2n—not M*h/2r—represents the component, parallel to the field, of
the angular momentum J*#/2x. (An analogous relation holds for all angular
momenta which are obtained by projection on a relatively fixed axis.)

The precession of J* around the field results from the fact that the latter
exerts a torque on L* and on S*. The effect of the field is, however, different
for L* and S*. In a field of strength H, L* tends to precess with the Larmor
frequency co=eh/4wm, but S* with a frequency 2co(e and m are the charge
and mass of the electron). The actual precession of J* occurs with a compro-
mise frequency gco(cf. below, after Eq. (24)), where g is a factor depending
on the values of L, S, and J. When S=0 and L >0 as in the singlet states
1P, 1D, etc., g=1; when L=0 and S>0 as in the S states 2§, 3§, etc., g=2;
in a multiplet state with L >0, g is in general different for each value of J.
The energy of the atom is now given? by

F—Fo=3A[JJ+1)—L{ZL+1)—-SS+1) ]+ Mgo. (29

Taking ¢ |0F/dM | in Eq. (24), in accordance with Eq. (23), we get for the
frequency associated with M the value cgo; this represents the frequency
around the field.

The compromise precession of J* around the field exists only so long as
the magnetic interaction between L* and S* is strong enough to preserve
their resultant J* from the disruptive influence resulting from the tendency

# Cf, Hund’s Linienspektren (reference 25), Chaps. III-IV.
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of the external field to make L* and S* precess at different rates. This is
true so long as the frequency cA4(J+3%) of precession of L* and S* about
J* is large compared with the frequency gco of J* around the external field
(it should be remembered that o is proportional to the field strength).
If the field is sufficiently strong, J* is no longer constant and has no quan-
tum significance,?** while L* and S* precess separately around the field,
giving magnetic quantum numbers M and Mg (My=L,L—1,--+ —L, My
=S5,5—1, - - - —8). The corresponding angular momenta are My %/2w and
Msh /2w (not M *h /27w and Ms*h/2mw,—cf.above). The total energy is given by
F, of Egs. (22) and (24), plus the magnetic energy oM 1 of L* in the field, the

WEAK STRONG
ZERO T MAGNETIC
FIELD M'}G]EEDK FIELD

) 1.1 30 +A

-Jo+A

-1,-1

F-F, J $ M M M; F-E

Fig. 9. Energy levels and quantum numbers for a 3P atom in weak and strong magnetic
fields. Energies are expressed by term values F measured from Fy; F— F, is expressed in terms
of 4, 0, g, M, My, and Mg of Eqgs. (24) and (25).

magnetic energy 20M s of S* in the field, and the mutual energy 4 M Mg of
S* and L* (the explanation of this mutual energy term will be clear from the
discussion, preceding Eq. (26), of the analogous term in that equation; the
“energies” mentioned are of course really all E/kc values):

F—FO=OML+20M5+AMLM5. (25)

It will be noted that the frequencies of L* and S* around the field are correctly
given as co and 2co respectively, by the application of Eq. (23) to Eq. (25).

2% On account of the different rates of precession of L* and S*in this case, their resultant
J* varies rapidly in direction and magnitude, and J is no longer a quantum number.
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In the passage from a “weak” to a “strong” field®® (Paschen-Back effect),
the number of magnetic levels remains unchanged; for each M value in a
weak field, there is a corresponding M value (here M =M+ M) in a strong
field. Fig. 9 shows the transition from weak to strong field *® for a normal
3P state (4 >0 in Egs. (22), (25)). For weak fields the spacings of the levels
are governed by Eqs. (22) and (24), for strong fields by Eq. (25); the proper
connections between weak and strong fields are qualitatively established by
means of the two rules? (a) M remains constant during the transition;
(b) in case there are several levels with the same M, the connections are drawn
in such a way that no two levels with the same M cross in the passage from
a weak to a strong field.

Selection rules for atoms. In transitions between different states of an
atom, changes in some of the quantum numbers are limited by selection
rules. In the absence of an external field these are: Al= +1 for one electron,
Al=0o0r *2 for a second electron (but usually the quantum numbers change
for only one electron at a time); AL=0, +1; AJ=0, +1.

In a weak magnetic field, the same selection rules hold, and in ad-
dition there is AM =0, +1. In the passage to a strong field, the selection
rule for J loses its strictness in proportion as J loses its significance. In a
strong field, the selection rules for / and L remain strictly applicable, and
in addition AM =0, +1, AMsg=0 hold.

Atoms in electric fields. The effects of an axially symmetrical electric
field®! are similar to those of a uniform magnetic field, but differ considerably
in some respects. Such a field,—whether or not it is uniform,—tends to
make L* precess®? around it with a frequency whose magnitude for a given

30 The terms “weak” and “strong” field are ordinarily used in a purely relative sense
A field is strong or weak according as it is or is not able to break down the coupling of L*and
S* which gives J*. Of course the ideal weak or strong field is only approximated in practice.
The energy levels under the respective headings “weak” and “strong” fields in Figs. 9 and 10
are drawn as if for ideal weak and strong fields, although because of space limitations the 4
values and field strengths assumed in the figures would actually correspond to very poor
approximations to these limiting cases.

30 In the strong electric field case with My, =0, or with 4 =0 in Eq. (27), there is no mag-
netic field to orient the spin S* The latter therefore acts completely independently of the
rest of the molecule so that, if external influences are absent, the orientation of its axis (which
maintains a fixed direction in space) is purely random. Thus there is no sense in defining
Mg, and it is at any rate not a quantum number. (One can define Mg if one wishes, although
in a real molecule this quantity varies very rapidly in direction and magnitude because of the
fact that the molecular electric axis rotates, while the spin axis stands still). It should, how-
ever, be pointed out that in passing from the ideal case of a strong electric field, with My =0,
to the corresponding energy level in a weak electric field, the spin becomes coupled to the
electric axis provided L>0 (cf. text, p. 95 and ref. 35).

3 Cf. Reference 25, Hund's Spektrallinien, p. 76-8 and references there given; also R. S.
Mulliken, Phys. Rev. 33, 746 (1929).

3 Commonly in molecules the action of the field is even stronger, so that it breaks down
the coupling of the I*sto give L*. In this case, each I* precesses separately around the field
axis. This does not, however, alter the essential qualitative features which exist when L*
precesses around the electric axis. The theory of the latter case is therefore adequate, even
if not entirely appropriate, for the present treatment of molecular electron states. In Part
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field depends very much on the character of the electron orbits associated
with L*. An electric field exerts no direct influence whatever on S*, since
S* corresponds to a so-to-speak disembodied magnetic moment. If the cou-
pling between L* and S* is strong, however, (“weak” electric field), their
resultant J* orients itself, as in a weak magnetic field, with cos § = M/ J*,
where M takes any one of the values J, J—1, -, —J. M measures the
component of angular momentum parallel to the electric axis.

If the action of the external electric field on L* is strong compared with
the interaction of L* and S*, L* precesses independently of S* around the
field axis,?? giving M =L, L—1, - .-, —L. Although S* is not acted on by
the electric field, it s acted on by the magnetic field of L*, even though it
is no longer coupled with L* to give a constant resultant J*. The mag-
netic field of L* may be resolved into a fixed component directed along the
electric axis, and a precessing component perpendicular to the axis but
having an average value zero because of its precession. S* precesses around
the direction of the average magnetic field of L*; but since the latter is
parallel to the electric axis, S* itself precesses, like L* but for a different
reason, about that axis; it gives thus a quantum number Mg whose
values range from S to —S. The total angular momentum parallel to
the electric axis is Mhk/2mw, where the quantum number M is given by
M=M,+Ms.

The energy of S* in the field of L* is equal, as in Eq. (22), and with the
same value of 4, to 4AL*S*cos(L*, S*), except that here one must take the
average cosine, cos (L*, S*); this is equal® to M Mg/L*S*. That is?

F—Foy=F(Mp)+AL*S* cos (L¥,8*) =F(M ) +AM_ Ms. (26)

In the special case M1 =0, the energy of interaction of L* and S* is zero;
here S* has nothing to orient it and is entirely free, so that M s has no quan-
tum significance.?%®

In Eq. (26), F(ML) corresponds to the energy of L* in the electric field,
expressed as a function of M. F(M.) has the important property that
F(Myp)=F(—M}), i.e. the energy of orientation of L*in an axially symmet-
rical electric field depends only on the magnitude of M. Why this is true can
best be understood by thinking of the simple case of an atom with one valence
electron, all other electrons being in closed shells. Here L* is merely I*
of the valence electron, and M becomes m;. Neglecting the spin, whose
energy is taken care of by A M Mg of Eq. (26), the forces acting on the elec-
tron in its orbital motion are purely electrostatic. Hence the energy asso-

111 we shall consider the various coupling cases more thoroughly, including the case of fields
so strong as to break down even the quantization of the individual /'s, as in the Stark effect of
the H atom (Jinear Stark effect). (Cases in which J*, L*, or the I*’s precess all fall under the
heading of quadratic Stark effects.)

3 That L*S*cos (L*, S*) = M1, Mg is most easily seen by writing L*S*cos (L*, S*) =L*-S*,
that is, as the mean value of the scalar product of the vectors L* and S*. Resolving each of
these vectors into components perpendicular and parallel to the electric axis, and noting that
each perpendicular component averages zero, the stated result is readily obtained.
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Fig. 10. Energy levels and quantum numbers for 1P, 2P, 3P, and 4P atoms in weak and
strong electric fields.? Energies are expressed by giving F— F, values in accordance with
Eq. (27). For zero field, we have L =1, with various S and J values. For weak fields, there is
also Q. In strong fields, there is A, which in the present examples has the two values 0 and 1
with corresponding F(A) values,—cf. Eq. (27),—F(0) and F(1). In strong fields, if A >0, there
is also a Z; if A=0, = does not exist, but certain virtual values of = can be assigned (these
are given in brackets in the figure); there is also 2= ]A—I-Z ] The quantities F(0) and F(1)
have been calculated according to the equation F(A) =a[3A2—L(L+1)]. The functions F(Q)
for weak fields have been calculated according to F(Q)=by[302—J(J+1)], with a different
value of by for each J. These equations (cf. W. Pauli, reference 34, p. 252) have no quantita-
tive significance, but are of a form qualitatively suited to represent the effect produced on the
terms of an atom by dividing its nucleus into two parts and separating these somewhat (cf.
calculations of Morse and Stueckelberg, Phys. Rev. 33, 932, 1929, in regard to the effect on the
Het terms of splitting the He nucleus). In the equations given, @ and by increase with the
applied field, or with the degree of separation of the nucleus. Because F(Q), like F(A), depends
really on the energy of L* in the field, by, if a is positive, should have a positive value when L*
and J* make an angle near 0 or = but a negative value when the angle between L* and J* is
near /2. In Fig. 10, a negative value of by has accordingly been assumed for 3P; and 4Py; but a
positive value in other cases.
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ciated with the valence electron, in an orbit of given # and I, depends only
on the inclination of the plane of the orbit with reference to the electric axis,
and not on the direction of rotation of the electron in its orbit. Now +m;,
correspond to the same inclination of the orbital plane although they differ
in respect to the direction of rotation. Hence the energy is the same for
+m;. (In a magnetic field, where the magnetic energy depends on the vec-
tor velocity, the relations are entirely different: the change from —+m; to
—m,; reverses the sign of the energy.) It iseasy to see that the same results
hold for M in the case where L* is the resultant of several 1*’s,

Further, we have F(M)=F(— M), for both strong and weak fields.
For strong fields, this is clear from Eq. (26), since F— F, is unchanged in the
latter if we simultaneously change the signs of M, and Mg, as is necessary
to reverse the sign of M. For weak fields also, where L* and S* are coupled
to give J* a little consideration shows that the energy of orientation of J*
in the field, depending entirely on the L* part of J*, is the same for + M as
for — M.

Fig. 10 shows qualitatively the energy levels for 'P, 2P, 3P, and 4P
atomic states in axially symmetrical electric fields of various intensities.?
The correlation between the levels in strong and weak fields is effected by
means of the M rules stated above in connection with Fig. 9, applied with
due regard for the fact that each level with |} |>0 is a level of double sta-
tistical weight, corresponding to + M. It is also important to note that for
the strong field cases with M, =0, M gand M have no quantum significance,°®
but that each level with M1 =0 has a statistical weight 2541, equal to the
number of Mg values which would exist if there were a magnetic field paral-
lel to the electric axis (the possible Mg values for this hypothetical case are
indicated in brackets in Fig. 10). The diagrams are drawn, making use of
Egs. (22) and (27), for the case of so-called normal multiplets (4 >0 in Eqgs.
(22) and (27).3* The various energy intervals shown in Fig. 10 are, in sign
and in relative magnitude, in qualitative agreement with what would be
expected if the applied field were obtained by dividing the nucleus of an
atom into two parts and separating these somewhat.

Quantum numbers for electron states of molecules (with fixed nucles).
Because of the fact that the energy in an axially symmetrical electric field
depends on |My| and |M | rather than on M and M, and because of the
importance of |M.| and |M| in molecules, it is desirable to replace M7,
Mg, and M for the case of an atom in an electric field by new symbols. For
a strong electric field we shall use A in place of |M|. At the same time we
shall use 2 to represent + My, in such a way that when Mg and M, have
the same sign, 2 is positive, and that when they have opposite signs, Z is
negative. Also, we shall use = |[A+2|=|M]|. (If A=0, = and € do

% Cf, O. Stern, Zeits. f. Physik 23, 476 (1922), and W. Pauli, Handbuch der Physik, Vol.
23, p. 251-2. The corresponding diagrams for inverted multiplets,—A <0, resulting in reversal
of the energy order of the components of each multiplet,—are easily constructed. For inverted
multiplets, the energy F(0) in the strong field case would also usually lie above the energy F(1),
the relations of Fig. 10 being reversed.
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net exist as quantum numbers.)?* According to these definitions A=0
always, while Q takes on values A+S, A+S—1, .- [A=S|. Usually
A+2Z2=0, but if S>A, A4+2 has one or more negative values so that for
a given value of A, Q may take on the same value twice (cf. the case A =1,
S=1% in Table III and Fig. 10). In a weak electric field, A and Z do not
exist as quantum numbers, but Q= | M | remains.

The way in which A, 2, and Q are related to M, Mg, and M is shown in
Table III for the case L=1, S=1}(II state, cf. next paragraph and Fig.
10).

TasLg III.

My, Mg M A b)) A2 Q State
+1 +13 +2} 1 14 2 24 “Tlay
-1 —11 —21

+1 + 3 +13 1 1 13 1y

-1 -} ~1}

+1 -1 +3 1| -4 3 ; my

~1 + 4 -3

+1 -1 ~ 3 1 —13 -3 3 1y
-1 +13 }

Molecular multiplets?® (fixed nucles). Fig. 10 shows several interesting fea-
tures which are of importance for the theory of molecular electronic states,
since the latter (for fixed nuclei) are of the same nature as the states of atoms
in a strong axially symmetrical electric field. First we may note how the
strong field atomic levels group themselves in what we may reasonably classify
as multiplets,?8s and which we may correctly take as prototypes of the multi-
plets which are actually observed in molecular spectra. Each such multi-
plet has a definite A, which has a réle very similar to that of L in an atomic
multiplet; various different orientations of the spin S, each characterized
by a definite £ and giving a definite €, comprise the different sublevels of
the multiplet;  plays a roéle similar to that of J in atomic multiplets. It is
therefore natural to designate these multiplets in a manner similar to atomic
multiplets, by symbols such as I, 23, 3II,, 311, 3II,, etc. In these the super-
script gives the multiplicity m(m =2541) exactly as for an atomic state,
the main letter gives the value of A (with Z, II, A, &, T, - - - standing re-
spectively for A=0, 1, 2, 3, 4, - - - ), and the subscript gives the value of
A+Z (cf. Fig. 10 for examples). The value of A+Z rather than that of
Q is chosen for the subscript because it permits one to distinguish readily
between physically different levels which have the same value of @, such as
II; and *II_; of Fig. 10 and Table III. When A+Z2 =0, as usually,  is ident-
ical with A+Z. For Z levels we do not use a subscript, since £ does not
exist as a quantum number. For singlet levels subscripts are unnecessary,
since 2 has only the one value 0.
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Only the following types of electron levels have as yet been identified
in practise; these have been found in the analysis of band spectra: !Z, *Z,
33, U1, o1, °I0, 1A, 2A, A,

As should be clear from the discussion preceding Eq. (26), the behavior
of the spin S in multiplets of the molecular type is very different than in
atomic multiplets. As a consequence, the components of each such multi-
plet (F, and A fixed) are equally spaced (cf. Eq. (26) and definitions of A
and Z) according to the law

F—Fo=F(A)+A4A 3. (27

This relation is different from the Landé interval rule which holds for ordin-
ary atomic multiplets (cf. Eq. (22)). Nevertheless the order of magnitude of
the spacings of the component levels, determined by 4 of Eq. (22) or (27),
is of the same order of magnitude in both cases. Examples of atomic and
molecular multiplets may be compared in Fig. 10.

A consideration of the transition from strong to weak fields in Fig. 10
shows some points of interest. Although we may expect molecules to corres-
pond pretty closely to the strong field case of Fig. 10, nevertheless this
cannot be strictly true, and we may expect in practice to find some indica-
tions of a departure toward the weak field case. For the weak field case,
each level with >0 has double statistical weight, because { represents
+ M; levels with =0, however, have unit statistical weight. For the strong
field case, all levels with A>0 have double statistical weight (even if 2=0),
because A represents + M. This double weight does not result [in the fixed
center problem] in any doubling of the levels, except that in cases with =0,
A >0, as %I, the level of double weight does split in the transition toward
the weak field case (cf. Fig. 10).3° In certain 3II, levels of N (second positive
nitrogen bands) and C, (Swan bands), a very small splitting of this kind is
actually found, indicating just a slight departure from the strong field case.
In the corresponding 3II; and 311, levels there is [for zero rotation |, as expec-
ted, no splitting.

A somewhat similar state of affairs exists in certain 2 levels. In 22
levels, no splitting occurs in the passage toward weak fields, but there is
another interesting effect: Fig. 10 shows that although Q is non-existent for
the strict®® strong-field case, an  should come into existence as soon as there
is a departure toward weak fields.® In3Z levels, passage toward weak fields
gives a splitting into a level of double weight with =1 and a level of unit
weight with @=0; something similar happens with = levels.*> The °Z levels
of O, give evidence of a small splitting of the kind just described.

3 Tt should be pointed out that the splittings just discussed for 2 levels depend on their
being derived from atomic levels with L>0, like the P levels of Fig. 10. (Z levels are de-
rivable from every kind of atomic level, since for any L value one obtains A values equal to
L,L—1,.+-,0) For 2 levels derived from S levels, no splitting would occur [for zero rota-
tion], since each S level would give just one = level, both the S and the Z level being single,
although of weight 25 +41(S=spin); also, ¢ would be non-existent in such cases even for weak
fields.
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Selection rules and electron quantum numbers of molecules. The selection
rules for an atom in a weak electric field are the same as those for an atom in
a weak magnetic field. In a sirong electric field the restriction on AJ is of
course lost in proportion as J loses its significance as a quantum number. Just
as in the case of strong magnetic fields, the rulesAM =0, +1,AMg=0 should
apply. (AM =0, + 1 also holds, but involves no restrictions beyond those
already given by the rules for AM and AMs.) In terms of A and Z, these
selection rules become AA=0, +1 and AZ =0 (also, A2=0, +1); butif A=0
for one or both of two states between which a transition occurs, only AA =0,
+1 applies.®® For the spin .S we have the rule that intersystem transitions
(AS>0) occur only with low intensity; for molecules with nuclei of small
charge (H;, He, He;), AS=0 is almost a strict selection rule, but when a
nucleus of high atomic number is present (e.g., Hg), transitions with AS= +1
are fairly intense. There are also other restrictions, especially in the case of
symmetrical molecules (e.g., H;) which will be considered later.

There is an important change in respect to /- and L in strong electric
fields: the selection rules Al=+1 and AL=0, *1 lose their strictness,
corresponding to the fact that a strong electric field has a tendency to
break down the quantization of L and even of the /’'s3? In molecules J
(in the sense in which it is used for atoms, as a resultant of L and S) and L
are seldom of importance. A and S in molecules take the places which L
and S have in atoms as the quantum numbers most characteristic of any
multiplet electron level.

IIb. THEORY OF MOLECULAR ENERGY LEVELS; EFFECTS OF
MOLECULAR RoTATION

In Part I, we treated the total energy term F of a molecule as the sum
of three parts, F¢, F?, and F' (cf. Eq. (5)), and determined how the spec-
trum depends upon the form of F’*, F'’*, F'r, and F’’*. The discussion was
based on the assumption of a rotational energy of the simple form Fr=
B,K(K+1)4+ - - -. Actually, this is not quite correct even in the simplest
case A=0, S=0(!Z states); and in general, F" has a variety of more compli-
cated forms which we have now to consider. F*, however, is fortunately of
the same form F*=(v+1/2)w.+ - - - for all types of electronic states, so
that practically nothing new needs to be said about it in the following.

In Part Ila, we have been considering the problem of the states of an
atom in a strong axially symmetrical electric field. This problem is qualita-
tively the same as the problem of two fixed centers (cf. p. 85 above).
In the transition to the real molecule we have, so far as nuclear vibration
is concerned, only to add the proper expression for F* to the F¢ expression
of the two-center problem. To take into consideration the rotation of the
molecule, however, we have in general to take account of the fact that the
latter often disturbs the characteristic angular momentum vectors and quan-

# The selection rules AA=0, +1, AZ =0 are formally more inclusive than AM[ =0, +1,
AMg=0,since A = + My,and they apparently allow large changes in My, (and in Mg and in M).
There is, however, no real inconsistency, since levels + M, are indistinguishable.
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tum numbers of the fixed-center problem. There is in general an interaction
between the various electronic angular momenta and the nuclear angular
momentum, so that we must consider F¢! and Fr, and the associated quantum
numbers, simultaneously. For sufficiently slow rotations, however, (Hund's
case a), the quantum numbers A, 2, and Q of the fixed center problem are
valid.

Before going into the problem of the interaction of rotation and electronic
motions, a few remarks should be of interest in regard to the relative mag-
nitude of the spacings of the component levels in a molecular multiplet as
compared with the spacings of the associated vibrational and rotational
levels. For most known band spectra, the spacings of the multiplet levels
are much smaller than those of the vibrational levels, and often are compar-
able with those of the rotational levels. A typical example is that of the
2II normal state of NO. Here 4 =124, A=1, 2= +1/2 (cf. Eq. (27)), giving
a doublet (?II; and 2IIy;) of width Av=4A =124, The vibrational levels
have a much larger spacing (w.=1906). Hence if one plots the energy levels,
neglecting the rotation of the molecule, they appear as a series of vibrational
levels each of which is double, and in band spectra involving this 2II state
one finds double-headed bands. The most widely-spaced molecular multi-
plet yet known is a %I state of HgH(Av~3700). Here the spacing of the
two components I, and 2[I;; much exceeds the spacing of the vibrational
levels (w,~1980), so that in the energy level diagram there appear to be two
separate sets of vibrational levels, one for 2II,, one for 2II;. Likewise in
the spectrum, the bands associated with the I, and ?2II,; levels appear
like independent systems.

Singlet electron states: (Hund's case b').3* The simplest types of F* func-
tions and of band structure are those for singlet electronic states (S=0). Here
2=0and A= always. So long as the effect of the nuclear rotation is not
too great, A is a good quantum number and we have Hund’s “case b'.”
Case b’ is defined in general (cf. p. 108 below) as a case in which the energy
of interaction of S$* with the rest of the molecule is practically zero, but in
which the energy of orientation of L* with reference to the electric axis is
large enough so that A is a good quantum number. When S=0, the first
condition for case b’ is automatically fulfilled.

The simplest relations exist in the case of = states (A=0, S=0); these
have been fully discussed in Part I. In such states the motion of the nuclei
is practically one of pure rotation (but see below) with an angular momentum
which we shall designate by K*i/2w. For A>0, however, the motion is
obviously gyroscopic, since we have both angular momentum of nuclear
rotation (which we shall call O%/2r)and electronic orbital angular momen-
tum Ak/2mw. The two last-mentioned angular momentum vectors are per-
pendicular to each other and precess around their resultant K*4/27, whose
direction is fixed in space, since it represents the resultant angular momen-

3 Hund distinguished four important coupling cases which he called q, b, ¢, d; the names
b" and d’ given here are applied to certain variants of Hund’s b and d; case ¢ is a new case not
discussed by Hund.
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tum of the entire molecule. The precession frequency is the frequency of the
nuclear rotation, since A is parallel to the line joining the nuclei and is there-
fore carried around with them in their rotation (cf. Fig. 11).

Now the resultant angular momentum P of any molecule is always sub-
ject to a quantum condition of the form [i**Pd¢=2nP, =k*h, where k
is a quantum number which has either integral or half-integral values accord-
ing as .S is integral or half-integral. In the case now under discussion, we
identify k* with our K* and since S=0=integral, we conclude that K
is a quantum number which has integral values. As we have already seen
for the case of fixed nuclei, A is a quantum number whose possible values
are the integers 0, 1, 2, - - - -

For any definite electronic state, A is a constant, while O, which is not
a quantum number, takes on various values, given by (K**—A?)!/2, such
that K can have the values A, A+1, A+2, ... For A=0, O=K*. Fig. 11

Fig. 11. Vector diagram and nuclear orbits (Hund's case b') for the case A =2, K=3, S=0
with two unequal nuclear masses (#; >m,). The figure shows the vector diagram at a moment
when the nuclei are in the plane of the paper. During the motion, K* remains in the plane of
the paper, while A always remains parallel and O perpendicular to the electric axis, i.e. to the
line my<——ms.

shows the motion of the nuclei, and the arrangement of the angular momen-
tum vectors, for the case A=2, K=3. From the figure it is obvious that the
minimum possible value of K is A; it may be remarked that, because of the
fact that K*= [K(K+1)]'/2, 0>0 even when K=A (unless A =0).

The motion of the nuclei is really somewhat more complicated than has
been represented in the preceding paragraphs. This is because of the fact that
there is a component of electronic angular momentum, which we shall call G,
perpendicular to the electric axis.3” G may be thought of as consisting prima-
rily of the rapidly precessing component Lyerp of L* perpendicular to the elec-
tric axis, given by the vector equation Lyer, =L*—A (bold-face type will be

37 J. H. Van Vleck, Phys. Rev. 31, 600 (1928); J. H. Van Vleck and A. Frank, Proc. Nat.
Acad. Sci. 18, 539 (1929). Cf. also Hill and Van Vleck (reference 39, especially footnote 24),
and Van Vleck (reference 43).
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used throughout to indicate vectors) and by the scalar equation L2%,,,=
L*2— A2, But strictly, L* and so Ly, cannot in general be regarded as having
even approximately a constant magnitude. In general, G then represents
a quantity which varies rapidly in magnitude as well as in direction, corres-
ponding to high frequency interchanges of angular momentum between the
electron system and the nuclei, #,37 but whose average magnitude is equal to
that of Lyerp. The vector which we have called O includes G as a component,
although when K is large, as is commonly true, G is small compared with
0. O lies always in the plane determined by K* and A. O has to satisfy
the vector equation O=N+ G, where we use Nh/2mr to designate the (in-
stantaneous) angular momentum of the nuclei alone. N is a quantity whose
magnitude varies very rapidly, but always in the neighborhood of its mean
value, and whose direction also varies equally rapidly, generally within a
moderate range, and in such a way as to keep O always in the proper plane
and constant in magnitude. N is not a quantum number.

In Part I it was shown (cf. Eq. (12)) that the kinetic energy of rotation,
plus potential energy of centrifugal expansion, of a non-vibrating molecule,
is given by

Er= P,/ 2ur 2— P4/ 2uta*r A4 - - -

P is the angular momentum of the nuclei alone. If in this equation we make
the substitution P 4= Nh/2r, and also introduce B, and D, in accordance
with Egs. (3) and (4) of Part I, we get

Fr=E"/hc=B£N+D,N'+ - - -

This is an accurate expression for the instantaneous energy of rotation
even if, as in the case now under consideration, the nuclear angular momen-
tum Nk/2m is not a constant. For a vibrating molecule, this becomes (cf.
Egs. (3a), (4a), (5), (6))*®

Fr=B,N*4+D,N4+ - - - . (28)

We wish now to re-express F’ in terms of quantum numbers. To do this,
we first make use of the vector equation N= O— G. Taking the scalar pro-
duct of each side of this equation with itself, we get N?=02+G2—2 O- G,
where O°*G is the scalar product of O and G. Since N varies rapidly
during each rotation, we need in the F* equation the mean values N2 of
N*and Niof N*. We have Nt =0*+G?+¢(K) where $(K) = —20° G = —20p,
if p is the mean value of the projection of G on 0.3%* (It should be noted
that O is here constant.) For a given ‘G [, the projection of G on O is ob-
viously equally likely to be positive or negative, except in so far as the
motion of G is disturbed by the rotation of the molecule; hence we expect
p=0 for a rotationless molecule. When the molecule rotates, however, the

38 Strictly speaking, there is a continual interchange of energy between vibration and
rotation. The expression E'/hc=B,N?*—D,N*+ - .- corresponds to the rotational energy
averaged over a complete vibration (cf. Birge, Molecuiar Spectra in Gases, p. 112).

% As used here, p has of course an entirely different meaning than in Part I.
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symmetry of the motion of the vector G is disturbed so that we may expect
a p, positive or negative, to develop. If the rotation is not too fast, we may
reasonably assume p~80/2, where § is a small constant; then ¢(K)~ —§02.
For the present, however, we shall use the expression ¢(K) without speci-
fying its form.—For N* one readily obtains an expression V4 = 0*+terms of
negligible importance.

Now substituting 0*=K*?—A? (cf. Fig. 11), and K**=K(K+1), we get
N =K(K+1)—A+G*+¢(K), and Ni=K2(K+1)*+ - - .. Substituting in
the F expression, and adding F¢* and F*, we get 38

F=F4F+B,[K(K+1)—~ A+ G|+ K) +Du[KAK+1)2+ - - - ] + - - - (29)

F* has the same meaning as previously (cf. Part I, Eq. (5)). The small terms
given by B,(G?—A?) are of no practical importance, since for any electronic
state and v value, they enter as additive constants, which are not separable,
in the analysis of band spectra, from the large terms Fel-- F»,

The “uncoupling term” ¢(K) in Eq. (29) has been written ¢;(KX), because
if A>0 it is double valued [¢.(K) and ¢5(K)], as discussed in the next para-
graph. This term often takes the form (cf. second preceding paragraph) ¢:(X)
= —30%= —§[K(K+1)—A?], so that the coefficient of K(K+1) in Eq.
(29) becomes B,—8=B,* instead of B,; usually 6<B,, but sometimes &
is large enough so that it needs to be considered if one wishes to determine
B,, B., and r, accurately. Sometimes ¢;(K) takes the form ¢;(K)~eK,
corresponding to a constant p (cf. second preceding paragraph), or ¢:(K)
~eK—8K(K+1)+ - - - ; when such a term is added to B,K(K+1), the sum
may be expressed in the form B,*K*(K*+1), where B,*and K= differ slightly
from B, and K. Thus one gets apparent K values (K?) differing slightly
from integers. Slight deviations of this sort, and probably from this cause,
are very commonly found in the analysis of band spectra.?

From the discussion on the states of an atom in a strong electric field
(cf. pp. 91-3) it may be recalled that each state with A>0 has a double sta-
tistical weight, because A really represents two states + M which happen
to have the same energy. In molecules, however, the rotation disturbs this
exact coincidence of energies, so that a small splitting occurs,® each rotational
level becoming a (usually narrow) doublet, whose components may be clas-
sified as sub-levels @ and . (In practise, the decision as to which doublet
component shall be called ¢ and which b is essentially arbitrary (cf.Part
III),i. e. there is no one to one correspondence between the respective letters
a and b and any theoretically specifiable properties of the two sub-levels.)
The energies involved are given by the two values ¢4(X) and ¢:(K) of the
small function ¢;(K). For A=0, ¢(K) has only a single value. When A=1,
each ¢;(K), provided the influence of the rotation is not too large, is given by
¢:(K)=—08,K(K+1); hence the sub-levels ¢ and b differ in respect to the ap-
parent value of B,*(B,, ,*=B,—38,; B, *=B,—8&). This case is illustrated

3 Cf. R. S. Mulliken, Phys. Rev. 28, 1202 (1926); E. Hulthén, Zeits. f. Physik 46, 349
(1927); R. de L. Kronig, Zeits. f. Physik 46, 814 (1927); 50, 347 (1928); E. L. Hill and J. H.
Van Vleck, Phys. Rev. 32, 267-272 (1928); J. H Van Vleck, Phys. Rev. 33, 484-489 (1929).
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in the NI levelsin Fig. 13. For A> 1 the splitting ¢.(K) —¢»(K) is very small.3®
No quantum numbers can be assigned to the sub-levels ¢ and b, but it is
important to emphasize that they do nof correspond to +My and —My;
each is really a mixture of + M and — M in a way which can only be under-
stood and explained in terms of the new quantum mechanics.?® This kind
of doubling of rotational levels we shall designate as A-type doubling
(formerly called o-type doubling), because it occurs (for any value of S)
in all rotational states where A >0.

Singlet electron states: Hund's case d’. For the limiting case of fixed
nuclei the “uncoupling term” ¢(K) in Eq. (29) vanishes, and with it the
A-type doubling,—except when A=—20,—cf. 3Il, in Fig. 10. In singlet
states of ordinary molecules, the relations which hold for fixed nuclei are
only slightly modified by the nuclear rotation, giving small terms ¢;(K)
and a narrow A-type doubling (case b’). The nature of the term ¢(XK), and
the reason why it is double-valued when A >0, can be better understood by a
comparison of case b’ with a condition (case d’)** which is close to the op-
posite limiting case in which the effect of the nuclear rotation is all-important.

For simplicity let us consider the case of a molecule composed of a core
with A =0 and a single outer electron, and let us consider as an example the
case in which this outer electron has /=1 and also has some definite value of
the principal quantum number #. Then for the molecule in case b’ we have a
13 and a I state (A=0 and 1). If the effect of the electric axis is large, I*
precesses very rapidly, the ' and I states are far apart in energy, each with
its own set of (vibrational and) rotational energy levels. Now suppose we
consider a series of orbits of increasing principal quantum number #, but ali
having /=1. As the orbit gets larger, the influence of the electric axis on its
energy rapidly gets less; this decreasing relative importance of the electric
axis is of the same nature as if, with a fixed orbit size, the nuclei were gradu-
ally brought together. The rate of precession of I* and the energy interval
beween 'Z and 'II diminish rapidly as the size of the orbit increases. Finally,
the rate at which I* tends to precess around the electric axis becomes small
compared with the rate at which the latter is carried around in space by the
rotation of the nuclei. The precession of I* around the electric axis breaks
down, and A ceases to have any significance as a quantum number.

From the point of view of the electron in its large orbit, the two nuclei
are now close together and (with the inner electrons) form a whirling mass
whose only distinguishable axis is the axis of rotation of the nuclei (perpen-
dicular to the electric axis). The nuclei rotate (and vibrate) almost as if the
outer electron had been removed completely, their rotation being char-
acterized in first approximation by a rotational quantum number R whose
possible values are 0, 1, 2, - - -, and by a rotational energy (cf. below, fol-
lowing Eq. (30))

Fr=B,[RR+D+G]+D,[RA(R+ 1)+ -+ - |+ - - -

38 The designations a and b as used for sub-levels have no connection with the same desig-
nations in Hund's cases a and b.



102 ROBERT S. MULLIKEN

At the same time the outer electron moves in its orbit in almost the same way
as if the nuclei were united. The total energy does, however, usually
depend somewhat on the orientation of the plane of rotation of the electron
with reference to that of the nuclei; in other words, it depends slightly on the
angle between R* and I*. Hence R* and I* give a quantized resultant
K*, which, since it represents the resultant angular momentum of the mole-
cule, is fixed in space. K has the values R+, R+I1—1, - - - [R—-l | R*and I*,
exerting a torque on each other, slowly precess about K*. The relations just

Fig. 12. Vector and orbit diagram for Hund’s case d’, with S=0. The large and the small
ellipse respectively represent the orbit of the outer electron and of the nuclei. The vectors I*
and R*, which are intended to be respectively perpendicular to the planes of the large and small
ellipses, represent the electronic and nuclear angular momenta. R* and I*, and with them the
corresponding orbit planes, are supposed to be precessing slowly around their resultant K*,
which has a fixed direction and magnitude. The figure is drawn for the case of two equal nuclei
(my=m.), and is directly applicable to the high-quantum singlet states of H; and He,.

described are depicted in Fig. 12. Examples of this situation, (case d’ of
Hund) are found in the higher-quantum singlet [and triplet] electron states
of H; and He,.4® The total energy for Hund’s case d’ is

F=F+F'+B,[R(R+1)+G*]|+f(R, K~ R)+D,[R¥(R+1)*+ - - - ]+ - - - (30)

Here the “coupling term” f(R, K— R) is a small term depending on R and on
the relative orientation of I* and R*. The term B,G? is needed to take account
of the varying perpendicular component of orbital angular momentum of
the inner electrons. In general, the inner electrons might also have a
A, giving B, [R(R+1) —A2+G?] in Eq. (30).

The fine structure, corresponding to f(R, K —R) in Eq. (30), in the rota-
tional levels in Hund’s case d’, is all that remains of the division into states
with differents A values which exists in Hund’s case #’. In the limiting case
where the coupling of I* to the electric axis is negligible, even this would
disappear and there would be, for each value of /, a single set of rotational
levels determined by R alone. Figs. 13 and 14 show, for /=1 and =2
respectively, how the energy levels for case b’ and case d’ are related.
The method of correlation is based on two rules analogous to those used in
connection with Figs. 9 and 10. These are, (1) K, representing total angular

4 W. Weizel, He, bands: Zeits. f. Physik 52, 175 (1928); 54, 329 (1929); H, bands, Zeits. f.
Physik 55, 483 (1929). He,; bands, review by W. E. Curtis, in the discussion on Molecular
Spectra and Molecular Structure in the Faraday Society Transactions (Sept., 1929).

4 For a discussion of the energy levels in Hund's case d and their relation to A-type
doubling through the transition to case b, cf, Hill and Van Vieck, reference 39, pp. 267-272,
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I

Fig. 13. Relation between case b’ and case d’ energy levels for L=I=1, S=0. In case b’
we have A=0 (12 levels) and A =1 (I levels), with K =A, A+1, - « + , and with A-type doubling
in the 11 state; the doublet widths have been assumed proportional to K(K +1), in agreement
with both theory and experiment.# The != and I sets of levels should be imagined as much
more widely separated than in the figure. In case d’ we have R=0,1,-::, K=R, R+1; the
positions of the three levels K=R, R+1 have been calculated® in accordance with certain
equationsof Hill and Van Vleck (Phys. Rev.32,269, 1928, Eqs. (42) with2 =1) which are based on
the reasonable assumption that the energy of interaction of R* and I* is given by (AP par
+const.), where Ppq, is the average value of the square of the projection of I* on the electric
axis; the levels have been calculated for the case 4 = B,/2, i.e. 4 =B/2 was substituted in Hill
and Van Vleck's formula before making the calculation. The case b’ levels (here 2y, = A2)
correspond to A>> B,. If A were negative, as it might be, the order of the 1= and I levels would
be reversed in case b’, and the correlations with case d’ would be different. In Fig. 13, except
for the level K =0, the correlations may be expressed as follows: the 1= levels of case b’ go
over into levels with K = R41 in case d’, the 111, levels into levels with K =R, and the I, levels
into levels with K = R—1. (It should be remarked that the designations a and b in Fig. 13 are,
as always in the last analysis, arbitrary.)
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momentum, remains constant for any level; (2) the members of any group
of levels having the same K value never cross one another.—For I=0,
cases b’ and d’ would be identical; for />2, correlations similar to those of
Figs. 13 and 14 would hold.

65,

Fig. 14. Relation between case b’ and case d’ energy levels for I=2, §=0. This is similar
to Fig. 13, except that the uniform spacings of the levels shown here, for fixed R and variable
K in case d’, have no significance; Hill and Van Vleck give no theoretical formula for the case
1=2. In agreement with theory and experiment, the A-type doublet widths are shown much
narrower for the A than for the II levels. If the order of the energy levels 'Z, !II, and *A were
inverted in case b’, as is possible, the correlations with case d’ would be different. In Fig. 14,
except for the levels with K =0 and 1, the correlation is as follows: 'Z goes into K=R+2,
11, into K =R+1, I, into K =R, A, into K =R—1, and !A; into K =R—2. (Asin Fig. 13, the
designations @ and b are essentially arbitrary.) Just such a correlation as this appears actually
to exist in the states of the He, moleculef® having /=2 for the series electron.

Figs. 13 and 14 show how it is that in A-type doubling the a and b sub-
levels, which would exactly coincide (¢:(K) =0) for the limiting case of fixed
nuclei, must needs separate more and more widely as the disturbance of
A by the molecular rotation increases,* in order to enter into new groupings
in case d’.
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Multiplet electron states: Hund's case a. In multiplet electronic states
(S>0) the presence of a spin gives rise to two important coupling cases,
Hund’s cases ¢ and b;* these both degenerate for singlet states into what
we have called case b’. In Hund's case a* the spin S is quantized with refer-
ence to the electric axis, because of the magnetic field along this axis pro-
duced by A. This quantization gives 2, as discussed in the previous section
on the atom in a strong electric field. Case a is possible only if A >0, for rea-
sons previously discussed (cf. ref. 30a). Next we have Q= IA—{-E I; Q and O
then form a resultant J* exactly as A and O formed a resultant K* in the case
of singlet states (cf. Fig. 11 and accompanying discussion).#* J is a quantum
number, since it corresponds to the resultant angular momentum of the
molecule. It has values Q, Q+1, @42, - - -, which are integral or half-
integral according as S(and therefore £ and ) are integral or half-integral.
(The molecular J is not the same as J for an atom except in the fact that
each represents a total angular momentum). In complete analogy to Eq.
(29), except for the addition of the energy of interaction of A and 2 (cf. Eq.
(27)) and the occurrence of a term in Spep? (Sperp =S*? —22),% the energy is
given by

F=F'+F'+AAZ+B,[J(J+1) -2 +G?
+Spers ]+ (2, ) +DJAT+1)24 - - - (31)

Fyg'4AAZ may be considered to represent electronic energy, different values
of Z, for fixed F¢** and A, giving different components of a molecular mul-
tiplet. For each such value of Z there is a set of vibrational and rotational
levels. The rotational levels in each set are all double ‘(A-type doubling),
with two values of ¢;(Z, J) for each value of £ and J [¢.(Z, J) and ¢s(Z, J)].
The function F’ is found empirically to be practically independent of the
value of 2 in a multiplet unless 4 is very large. Similarly, the coefficients
B, (and presumably also D,) are almost independent of Z. (When the con-
ditions of case a are not well fulfilled there is, however, an apparent depend-
ence of B,on Z,— (cf. (Eq.46)). The small functions ¢; (£, J), unlike the B,
terms, differ greatly according to the value of =, the more so the larger 4 is.#3

 Multiplet states: case b. In Hund’s case @, we think of S* as precessing
around the electric axis with a frequency cws=claF/62|=cAA (cf. Eq.
(23)), making with that axis a constant angle 8 such that cos 0=32/S*.
The conditions necessary for Hund’s case a are well fulfilled so long as

4= But in Hund's case a O includes Sperp as well as G as a component (cf. Ref. 42).

4 Cf. Hill and Van Vleck, reference 39. If Ni/2x is the nuclear angular momentum, we
have the vector equation N =0 —G —Sperp. Taking the scalar product of each side with itself,
N2=0+G?+S%up—20 - G—20 -Sperp +2G Sperp. Each of the last two terms has zero asits
average value. Therefore for the average value N?, using also the relation 0= J*2 — Q2 we have
N =J(J+1) =@+ +Stperp—20 - G. Now we write Stperp 28 Stperp, since the latter is con-
stant. Proceeding as in the case of Eq. (28), and putting —2B,0 - G =¢:(Z, J), we get Eq. (31).

4 Theory, J. H. Van Vleck, Phys. Rev. 33, 467 (1929); compilation of empirical data,
R. S. Mulliken, Phys. Rev. 33, 507 (1929).
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wsDwy, where cw; is the frequency of rotation of the nuclei and therefore
of the electric axis. [cws is obtained by taking ¢ léF/&J] in Eq. (31): cws~
¢B,(27+1).] But if B, or J is sufficiently large or A sufficiently small, so
that wg<X (the calculated) wys, then the precession of S* breaks down, and
> ceases to exist as a quantum number. [This is similar to the failure of
A in Hund's case d’,—cf. discussion preceding Eq. (30).] A, however,
still remains quantized, and A and O now form a resultant K*, around which
they precess, in exactly the same manner as for case b’ with S=0 (cf. Fig.
10, Eq. (29), and accompanying discussion). For the spin, which is here
unable to keep up with the (relatively) very rapid precession of A, the
only axis now distinguishable is that of K*. Parallel to this axis there is
usually a small magnetic field (in regard to the cause of this, cf. p. 107 below),
and S* therefore precesses around K*. The resultant J* of K* and S* isa
vector fixed in space, since J*k/2r is the resultant angular momentum of
the molecule. J is a quantum number, whose possible values are given by
J=K+S, K+S—-1, - - [K—S |. K, S, and J here are respectively closely
analogous to L, .S, and J in an atom (cf. discussion preceding Eq. (22)).
For each K value, the group of energy levels associated with it, correspon-
ding to different J values, forms a sort of tiny multiplet. The state of affairs
just described is typical of Hund’s case b.

The energy equation for Hund’s case b in multiplet states can be readily
obtained by a slight generalization of the Eq. (29) which holds for case
b’ singlet states. It is only necessary to add to Eq. (29) a small term f(X,
J—K) to take account of the energy of interaction of K* and S*, and to re-
place ¢;(K) of Eq. (29) by a similar function ¢:(X, J) which, for any specified
K and J, is double-valued [¢.(K, J) and ¢5(K, J)] except for A =0, where it
is single-valued. The values of ¢;(K, J), where < is either a or b, in general
differ slightly (but only slightly,” in marked contrast to the large depend-
ence of ¢;(Z, J) in case a on the value of Z) for the (25+1) different J values
associated with a given K value. Thus we have

F=Fy'+F'+ B,[K(K+1) —A+G?]

Since for any value of K there are in general 2541 components in the
spin fine structure, there are in general altogether either 2541 or 2(25+41)
fine structure components for each value of K, according as A=0 or A >0.
(When K <SS, however, there are fewer components.) The relative scales of
the two types of fine structure which exist when A >0 differ from one mole-
cule and electron state to another; sometimes the A-type doubling (given
by ¢«—¢s) is coarser than the spin fine structure, sometimes the reverse.

The small term f(K, J—K) in Eq. (32) consists in general of several parts.
(1) First we have the energy of interaction of L* and S* which is given, as in
Eqgs. (22) and (26), by AL*S* cos (L* S*). This can be written in the form
AL* S*, where L*. S* is the scalar product of the vectors L* and S*. By taking
components of L* and S* along K*, this expression reduces to 4 A2(J*?—K*?
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—S$*2) /2K*244 This drops out if A=0. (2) Next we have a small term result-
ing from the interaction of S* with the small magnetic field, parallel to K*,
which is developed by the rotation of the molecule. This field is that resulting
from the forced rotation of the whole electron system of the molecule around
K*, modified (but probably usually only to a slight extent) by the field of
the rotating nuclei themselves. Assuming that the field is parallel and
proportional*® to K*, the energy of interaction of S* with it is given by an
expression of the form y(K*-S*). This reduces to ((y/2) (J*—K*2—S5*2),
This expression should hold provided K is not too large.#* (3) Finally, as
Kramers has shown,* there is for .S>1/2 an energy of interaction w(K, J-K)
of the individual spins which make up the resultant S. For Z states at
least, this energy is proportional to 3cos? —1, where 0 is the angle between
S* and the electric axis. For 3% states, where there are two individual spins,
Kramers finds

w(K,+1)=—¢[1—3/2K+3)] ;w(K,0) = +2¢;w(K,—1) = —¢[1+3/2K-1)];

the states with J=K +1 form a narrow doublet whose center is separated
from the state J=K by an approximately constant energy interval 3e.
(The energy yK*- S* must also be added, but usually ¥ <e). This case is found
experimentally in the *Z normal state of 0246 (It may be recalled that just
such a splitting of 32 levels into two components, independently of any
rotation of the molecule, was predicted above by a consideration of the
states of a 3P atom in an electric field: cf. Fig. 10 and p. 95).
From the above, we have

f(K,J—K)=® { [AAYKE+D) ]+ } {TU+1)
—K(K+1)—-SE+1)}+w(K,J—K). (33)

The last term vanishes (or at least becomes independent of J—K) unless
S>1/2.

4 L* is composed of A+Lyperp, but Lyep-S*=0; A has a component A2/K* parallel to K*
(the component perpendicular to K* gives aperp 'S*=0). (The result is the same even if we
recognize that L* is not a constant, since in any case G -S*~0, if G represents the component
of electronic orbital angular momentum perpendicular to the electric axis; thus only the
parallel component A needs to be considered.) S* has a component (J*2—K*2—S5*)/2K*
parallel to K*,

#» Assuming (a) that the field is proportional to the component p (cf. pp. 99-100) of elec-
tronic orbital angular momentum parallel to O developed by the rotation, and (b) that p is
proportional to O for not too large K values (cf. p. 100), we should have, for not too large K
values, a field parallel and proportional to O. This may be replaced without serious error by
the assumption of a field parallel and proportional to K* since, except for the smallest K values
where the term y(K* - S*)is of negligible importance anyway, O and K* are practically the same.
The results obtained from these assumptions are in harmony with the known experimenta
data, at least for = states (where O=K*).

% Cf. E. C. Kemble, Molecular Spectra in Gases, pp. 345-7; R. S. Mulliken, Phys. Rev.
30, 149 (1927); F. Hund, Zeits. f. Physik 42, 96 (1927); E. Hulthén, Zeits. f. Physik 50, 319
(1928); and especially J. H. Van Vleck, Phys. Rev. 33, 498-500 (1929).

“ H. A, Kramers, Zeits. f. Physik 53, 422 (1929). Interpretation of O; bands, R. S.
Mulliken, Phys. Rev. 32, 880 (1928).
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In the important special case of case b doublet spectra (S=1/2), we have
J=K+1/2. Substitution in Eq. (33) with the w(X, J—K) term omitted
gives

(K, =3)=—ANY2K —v(K+1)/2=—ANY/ 2T +1)—v(2T +3)/4  (34)
K, +3)=AAY2(K+1)+v K/2=AN/ (2T +1)++(2] - 1)/4. (35)

The doublet separation, f(K, +1/2) —f(K, —1/2), associated with any value
of K is then

Af(K) = [ANY/K(K+1)+v](K+3). (36)

Multiplet states: case b’. 1t frequently happens that the spin fine structure
given by f(K,J—K) is extremely narrow or even quite undetectable.
This often occurs in 22 states, especially for small K values. It is also typical
of the triplet states (S=1) of H; and He,;, where 4 and v are very small
because of the small charges of the nuclei. (Asis well known from theory and
from experimental data on atomic spectra, especially for H and He, 4 is
always very small for the lightest elements; while, as Van Vleck has shown,*
the magnitude of v is proportional to that of 4). When f(K,J—K)~O0,
Eq. (32) becomes practically identical with the equation for singlet states
(Eq. (29)) and there is no way of telling empirically whether .S is zero or
greater; K can then be determined, but not J. Insuch a case the precession of
S* about K* is so slow (frequency=c{6/6][f(K, J—-K)]}) that S* may be
regarded as practically free, while J becomes practically meaningless as a
quantum number. It seems desirable to distinguish this situation as case b’.36s
Case b’ is merely a form of case b in which the interaction of S* with the rest
of the molecule is negligibly small. This condition is automatically fulfilled
when S=0, as already noted in the discussion of singlet states.

Multiplet states: cases d and d’. In spite of the absence of spin fine struc-
ture, the case b’ states of H; and He; often show a rather coarse A-type
doubling (¢.(K) —¢s(K) large). This increases with increase in the prin-
cipal quantum number of the orbit of the outer electron, until finally we pass
for very large orbits to Hund's case d' as described above in connection with
Eq. (30). This happens for both singlet and triplet states (S=0 and 1),
but there is no practical difference between these cases, since the spin, when
present, is essentially free. If there were a slight interaction of S with the
rest of the molecule, we should expect S* to orient itself with reference to
the resultant K* of L* and R* to give a final resultant J*. We call this last
case d, and the case in which J does not exist as a quantum number, case
d’. We return now to cases a and b.

Doublet states: transition cases between a and b. When A=0 (2 states)
or S=0 (singlet states), Hund’s case a is impossible, and case b (or ’, d, or d’)
is found; when A >0, either a or b is possible, but one also very frequently
finds intermediate cases which do not closely approximate either a or b.
Very often case a is approximated for the lowest J values, but case b for high
J values. For S=1/2 (doublet states), Hill and Van Vleck* have obtained an
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equation which gives the main term of F’, plus the interaction term of A and
S*, exactly for the whole range of intermediate cases. This is
F=Fo'+F"+B,{(J+4)*— A+ 3 [4(/+3)

—44AY B4 AAY/ B2 124G} +¢i(J)+ - - - (37)
(In Eq. (37), no account has been taken of the energy which corresponds
to the small term proportional to v in Eq. (33). Allowance must therefore
be made for this omission when Eq. (37) is applied.) The +.and — signs in
Eq. (37) give the energy values corresponding to the two orientations of the
spin which exist in cases ¢ and b and in all intermediate cases as well. Neglect-
ing A-type doubling, which exists for all levels if A >0, there are thus just
two energy levels for each value of J, except for the lowest value J=A—1/2,
where there is only a single level. We shall now consider the forms which
Eq. (37) takes for various values of 4/B, and of J. First we shall consider
the special J value J=A—1/2; then we shall consider the expansion of Eq.
(37) for large values of ]A I, corresponding to case @, and after that we
shall see what forms it takes for small values of 4/B, (case b).

For J=A—1/2 there is only one energy level (when A-type doubling is
neglected), as can be seen by consideration of the limiting cases a and b.
For example, in case a with A=1, the value J=1/2 occurs only in the
2[I, series of levels (2= —3, ©=3), and not in the 2II; series (Z=+3%,
Q=11), because of the restriction J = @; for all other J values, however, there
is obviously one level in each of the two series. Corresponding results hold
for case b with A=1: first, we have K= A; then we have J=K+%; K=A=1
then yields J=%, 1%, while K=2 yields J=1%, 2%, and so on; thus J=1
occurs only once, but all other J values twice.—For J=A—1} the correct
energy value is obtained from Eq. (37) by using the upper (+4) sign when
— o <A/B,<2, and the lower (—) sign when 2<4/B,<+x. Eq. (37)
then simplifies in both cases to the following form:

F(J=A—3)=F"4+F"—AA/24+B,(A+G)+¢:(A—3)+ - - - . (38)
This expression is identical with that which is obtained for J=A—} from
the energy formulas for either case a (Eq. (31)) or case b (Egs. (32) and (33),
neglecting v and w in Eq. (33)); this can readily be verified by making the
proper substitutions for J, K, S, and 2 in Egs. (31)-(33).
For large positive values of 4 (normal case a) expansion of Eq. (37) gives*’
F=Fo'+F + ()AA+B.{JU+1)— (A£3)?
+@)+CE [T+ =A]B/AA+ - f oD+ - (39)
For large negative values of 4 (inverted case a) expansion gives?’
F=F'+F'F (3)AA+B,{J(J+1)— (A F})?
+OHCF [T+ —A2]B/AA+ - i)+ - . (40)

47 E, L. Hill and J. H. Van Vleck, Phys. Rev. 32, 261-2 (1928). Eq. (37) as given above
differs from the equation given by Hill and Van \:lgck in the substitution of B, for B, and in
the addition of the unimportant additive term B,G? which was dropped by them.
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In Egs. (39) and (40), the upper sign, in each case of a double sign, cor-
responds to the upper (+4) sign in Eq. (37). Bearing in mind that Egs. (39)
and (40) apply only to doublet levels (S=3%), comparison with the equation
for case @ (Eq. 31) shows that the quantities +(3) or ¥ (3) in Egs. (39) and
(40),—e.g., £(3) in +(3)4A and in (A +%)? of Eq. (39),—are to be identified
with = of Eq. (31), while +(3)B, is identified as B,S?%,.-, of Eq. (31).

It should be mentioned that equations for triplet states, analogous to
Egs. (39) and (40) for doublet states, are given by Hill and Van Vleck.®

The following expansion of Eq. (37) represents a good approximation
for a range of values of 4/B, corresponding fairly well to case b and extend-
ing, roughly, from —2 to -+6.

F=Fo"'+F'+B,[(J+1)*+ U+3) — A+ ]
F[AAY2(J+3)][1—A4/4B,4-ANY/4B,(J+3)*— A°AY/8BAJT+3)*+ - - - |
+¢:iN+ (/D [TT+)—KE+D)=SE+D]+ - - - . (41)

The last term in Eq. (41) does not come from the expansion, but has been
added (cf. Eq. (33)) in accordance with a remark made above immediately
after Eq. (37).

If we neglect the terms in 42 and 43, Eq. (41) reduces to the following
form which agrees with the case b equations (Eqgs. (32), (33)), provided, in
the case of the upper and lower signs respectively in Eq. (41), we put J
=(K—%) and J=K+1.

F=F¢'+F+B,[K(K+1)—A*+G?]
+(4A%/2) [times—1/K (for J=K—1%), or times +1/(K+1) )
42
(for J= K+ 46K, N+ (/D JU+D) - KEK+)=SE+D]+ - - -

In order to see that this agrees with Egs. (32, 33) it is necessary to complete

the substitutions J=KF % and to put S=3. This gives

(J=K—1):F=Fy'+F*+B,[K(K+1) — A*+G?]
—AAY 2K —y(K+1)/2+¢:(K,—3)+ -+ (43)

(J = K+1):F=Fy¢!4F°+ B, K(K+1) — A*+G?]
+ALAY 2K +1)+vK/2+¢:(K,+3)+ - - - (44)

Egs. (43) and (44) now respectively agree with Egs. (32, 34) and (32, 35).

For A =0, Eq. (37) takes the form which can be obtained by setting
A=0 in Egs. (41) or (42). Rather surprisingly, Eq. (37) takes the same
form when A4 /4B, = +4, as can be verified by direct substitution in Eq. (37).
For this reason the relations of case b are closely approximated whenh 4/B,~4
as well as when 4/B,~0. The arrangement of the rotational energy levels
is exactly the same for A/B,=+4 as for A/B,=0 except for the two lowest
levels. When A/B,=0 these form a close pair [Fi(A+3) and F(A—3)],
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but when 4/B,=-+4 the two lowest levels [Fi(A—3%) and Fi(A+3)] are
entirely separate, and behave like case a levels (cf. Eq. (38) in regard to the
state having J=A—%). The difference between the two cases can best be
seen by reference to Fig. 15, where the BeH levels correspond to 4 /4B,~0,
while the arrangement of the MgH levels (4 /4B, = +5.7) is not very far from
that characteristic of 4/B,=+4.

F. Fy F: B F. F,
FZZ_F‘ F. F
F: F
= N
lyZ —
— N
by Y — e
&3 e —  —— li
1%:“’
%Q
P 11 ek o
1% 1% ! 2k
— ot w T =
BO OH BeH CH MgH CaH NO
A -126 -137.9 1.7? 284 o) T9.6 123.7
B 1.40 1647 1.82 14.19 (o} 4.3 1.62

Fig. 15. Rotational energy levels, neglecting A-type doubling, for a series of *II states with
a variety of values of By and 4/B, (cf. R. S. Mulliken, Phys. Rev. 32, 391 (1928)). The 4
values given have been recalculated (cf. R. S. Mulliken, Phys. Rev. 33, 744 and 747 (1929)).
The B values and rotational levels all correspond to =0, except that in the case of NO they
are for v=4. All the levels are on a uniform scale, with the lowest level placed at zero in each
case. The numbers given opposite some of the levels are J values. Pairs of levels (F; and Fy)
which would in case b correspond to the same value of K are indicated by slanting connecting
lines. In such pairs, F;> F; when A/B,<0 or > +4, but F;>F, for A/B, values between 0
and +4 (cf. CH in Fig. 15); corresponding F; and F, levels fall together when 4 /B, is either ~0
or ~+4 (cf. BeH for 4/By,~0 and MgH for A/B, near +4).—The level F(3) is classified as
F, for A/B,<+2, and as F, for A/B,>+2. [CI. text below, p. 112, for definition of F; and F;
levels. ]

Midway between the cases 4/B,=0 and +4 is the characteristic case
A/B,=+2. Here Eq. (37) reduces to

F=Fy'+F+B,{(J+3)?— A% [+ =AY 2+ G o)+ - -+ (45)

This case is exemplified in the 2IT normal state of CH (cf. Fig. 15). Eq. (45) is,
accidentally, of practically the same form as, although of different significance
than, the Kramers and Pauli equation which formerly was much used in
representing the rotational energy functions of molecules.
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Multiplet states: correlation of case a with. case b energy levels. In case a
doublet states we have two distinct sets of rotational levels, corresponding
to different orientations of the spin; in the one set, Z=+3 and Q=A+1, in
the other 2= —1 and @=A—2%. In case b, however, the two orientations of
the spin, which give rise to J=K + 3, correspond only to narrow doublets.
The way in which the orientation of the spin would change in passing from
normal case @ (A>>0) through case b (4~0) to inverted case a(4<<0) can
be followed by a comparison of Eq. (37) with Eqgs. (39)-(40) and (41)-(44).
For A>0, the upper (+4) sign of Eq. (37) gives Eq. (39), with Z=+1,
corresponding to =A+1%; for A~0, it gives Eqs. (41)-(42), and (43), with
J=K—%, and for 4K0, it gives Eq. (40), with == — 3, corresponding to
Q=A—%. Similarly, the lower (—) sign of Eq. (37) corresponds to 2=A— 3
for A>0 (Eq. 39), to J=K+% (Eqgs. 41, 42, 44) for A~0, and to Q=A+1%
for A0 (Eq. 40). Thus if, for any specified J value, the spin is roughly
speaking parallel (antiparallel) to A in inverted case a, it becomes parallel
(antiparallel) to K in an imagined gradual change to case b, but then becomes
antiparallel (parallel) to A when one passes on to normal case a.*® [In saying
that the spin is roughly speaking parallel (or antiparallel) to A, we mean
merely that 2=+4S=+43 (or = —S= —3); actually S* precesses around A
with an angle given by cos 8=2/S*=(+3)/(+/3/2). Likewise in saying that
the spin is parallel, or antiparallel, to K we mean merely that J=K+4S, or
J=K—S.] The single rotational state /=A— % behaves in an exceptional
manner, however (cf. Eq. (38)): the spin is antiparallel to A in both normal
and inverted case a, and to K in case b. All these relations are indicated in
Fig. 16 (cf. also Fig. 15). Fig. 16 also shows the relations between the A-type
doublets of cases a and b.

In triplet and other states the correlation of energy levels between
normal case @, case b, and inverted case a is analogous to that which holds
for doublet states. In triplet states, for example, (S=1, £=0,+1), states
with @=A+1 in inverted case a correspond to case b states with J=K 41,
and these in turn to states with @=AF1 in normal case a; while Q=A in
inverted case a corresponds to J =K in case b and to =A in normal case a.

Classification of rotational levels in multiplet states. The above correlations
serve as a convenient basis of classification. The writer has earlier proposed
to designate as F; levels those levels which correspond to J =K 4.5 in case b,
as F, levels those corresponding to J=K+.S—1, and so on.*® Thus for doub-
lets one has F; and F, levels (J=K + }), for triplets F;, F,, and F; levels
(J=K+1, K, K—1, respectively), and so on. The classification suggested
is useful not only for case b but also for intermediate cases between a and b
and even for case a. Taking *II states asan example, the %I, and 1, states,
respectively, of normal case @, and the 2II;; and ?II, states, respectively, of
inverted case a would be classified, the former as Fj, the latter as F, states?®

4 Cf, R. S. Mulliken, Phys. Rev. 30, 793-6 and Fig. 1 (1927) for a further discussion.

4 In doublet states, the lgvel having the special J value J=A—1} (e.g. J=1} in I states)
is classified as an F; level for 4 <2B, and as an F, level for A >2B,, corresponding to the fact

of its obvious association with the [Ty, levels in both normal and inverted case a (cf. Eq. (38)
and Fig. 15).
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(cf. Figs. 15, 16). Similarly, normal case a *II,, 311, 3II, states, and inverted
case a 31y, *II;, 311, states, would be respectively classified as Fy, Fy, F;. Fig.
15 shows the application of the above classification to a series of typical
]I molecular states.

In addition to the classification Fy, F:, - - - , which indicates the orienta-
tion of the spin, the two sub-levels ¢ and b which occur (A-type doubling)
for each such orientation and for each J value, may be designated by ad-
ditional subscripts, thus, Fis, Fiv, Foa, Fop, * * -

N o (F)) B 1 1/2(F 2)
Vo
=Y e 2R 3 Ve Zh ¢
Ik oy @ % (n‘éi;‘n‘:n
2l

Case b
:5::\\\:\
i ca
© . o (inverted)
J=12 2 3 Yo 1 2
2
211, (F) 10, (F,)

Fig. 16. Correlation of rotational energy levels between Hund’s cases ¢ and b (cf. Van
Vleck, p. 496 of reference 43). F, levels are connected by means of full lines, F, levels by means
of dotted lines. A-type doublets are shown by the use of full and empty circles (@ and Q). In
both normal and inverted case @, the A-type doublets are, according to theory and experiment
(reference 43), much wider for Iy than for 2II;; states; this is shown in a gualitatively correct
way in the figure. The crossings of levels belonging to A-type doublets, between cases a and b,
are as given by Van Vleck.®® In case b, the A-type doublets are of the same width for F, and F,
states; both these and the spin doublets are shown, with exaggerated spacings, in the figure; the
spin doublets are drawn in qualitative agreement with the usual relation that the energy is
higher for the F; than for the F, component; the relative spacings of the spin and A-type
doublets as given for case b in the figure are, however, not significant. The various indicated
crossings of corresponding Fy and F, levels (same K, different J) are in agreement with theory
and experiment (cf. Fig. 15). [Cf. text, p. 112, for definition of F, and F, levels.]

Doublet states: comparison of theoretical equations with experimental data
for *11 states. For a comparison between Hill and Van Vleck’s doublet formula
(Eq. (37)) and experiment, extensive data are available only for 2II states.
Fig. 15 shows the observed energy levels for a number of such states, cor-
responding to a wide range of A values. In most of the examples in this
figure, 4 is large enough so that the approximations given by Egs. (39) and
(40) hold, at least for small J values. If we let Cy represent a suitable (very
small) constant whose value depends on 2, and if we set

B, z*=B,(1+B,/AA), (46)

with +B,/AA according as ==+ 3, and if we substitute @=A+Z, we get
from both Eqgs. (39) and (40)
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F=F'+F+AAS+Cs+B, s *[JU+1) =2+ G) +G2|+¢:42,T)+ - - - . (47)

As B,/A becomes smaller, the two values of B, 3* both approach B,,
while Cz vanishes, and Eq. (47) goes over into Eq. (31). Egs. (46) and (47)
give a satisfactory explanation of the experimental fact®® (cf. Fig. 15) that
in 21 states, if IA [ /B, is fairly large, the rotational levels obey a relation
of the form of Eq. (31) but with a larger coefficient B,* for the F, than for
the F, levels. In agreement with the theory, the difference between the
B,* values for the F, and F; sets of levels is large for the smaller values of
IA [/Bv and conversely. Also in agreement with the theory is the fact that
B,* is always greater for the F levels, whether 4 <0, even though these
correspond to 2II; levels if 4 <0 but to 2IIy; levels if 4 <O0.

According to Hill and Van Vleck’s equation (Eq. (37)) the region of 4/B,
values from 0 to +4 should show some peculiarities. In this.region Fi(K)
> Fy(K), whereas elsewhere Fy(K)> Fi;(K). The relation Fi(K)> F.(K) is
actually found in the 2II state of CH (cf. Fig. 15 and refs. 48 and 50), for which
A/B,=+2 (cf. discussion following Eq. (45)).

Other coupling cases. Besides Hund’s cases a, b and d, there are other con-
ceivable modes of coupling of the electronic and nuclear angular momentum
vectors. In Hund’s case ¢** we have L* and S* coupled to give a resultant
J&*, which then gives a projection Q on the electric axis, exactly as in the
case of an atom in a weak electric field (cf. Fig. 10). We use J* instead of J
here for the quantum number corresponding to the resultant of L* and S,
reserving J as usual for the quantum number corresponding to the resultant
angular momentum of the molecule. For the rotating molecule,  and O form
a resultant J*, just as in case a (cf. p. 105), and the energy is given by an
expression of the form

F={Fy 4@ A[JoT+1)—L{LA1) —SS+1) | +F (@) } +F
+B,[J(T+1) = Q2+ H2]+¢:(J) +DJ2AJT+1)2+ - - - . (48)

Here H represents the component of electronic angular momentum (in-
cluding both orbital momentum and spin) perpendicular to the electric
axis; H? replaces G2+S,.,? of Eq. (31). Hund’s case ¢ is not yet known in
practise. This is because the effect of the electric axis in the case of known
molecular states is strong enough to break down the coupling of L* and S*
practically completely. We may, however, expect to find examples of Hund’s
case ¢ among the less stable states of molecules containing heavy atoms
(for heavy atoms, the coupling of L* and S* is relatively large).

For very rapid rotations, case ¢ should pass continuously into another
case, which we may call case e, in a manner analogous to the passage of case b
into case d.3* In case e we assume that L* and S* give J** as in case ¢, but
that the rotation of the nuclei is so rapid, or the coupling of J® to the electric
axis so small, that Q no longer exists. Instead we have the nuclei rotating
with a quantum number R as in case d, then J** and R* forming a resultant
J* around which they precess. Case e has not yet been found in practise.

80 Cf. R. S. Mulliken, Phys. Rev. 32, 389-392 (1928).
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Summary of Hund’s cases. The various types of coupling which have
been discussed above are summarized in Table IV. Under ‘‘Projection and
composition of vectors’’ are given first, under ‘‘Elements,’”’ the symbols cor-
responding to those quantum vectors or projections of quantum vectors
which serve as elements in the building up of the total angular momentum

‘TaBLE IV. Summary of Hund's Coupling Cases

Coupling of | Coupling of | Effect of ro- Projection and composi-
Case | L* to elec- S*toL* tation (on tion of vectors Limitations
tric axis S* or L* or
both) Elements Composition
a large moderate small L* A; S*, 2, with Q+O0(=L*+S*+N)= A>0,5>0
2= A+Z | J*
b large small moderate L* A; S* A+O(=L*+N)=K*;
K*4-S*=J*
d moderate small large L*; S*; R* R‘J—};L‘ =K* K*+4S*=
¢ moderate large small L‘;‘.‘S‘ =Jo*; Q+0(=Je*+N)=J* L>0,5>0
a*

e small moderate large L4S=Ja% R* Jo*4+R*=]J* L>0,5>0

b, d’ Same as b. d, but $=0, or coupling of S* to K* negligibly small.

for the case under consideration; when the projection of a vector on the
electric axis is important, the vector and its projection are both given, as in
the example L* A. Under ‘‘Composition”, equations are given, which are to
be understood as vector equations, showing how the electronic and nuclear
angular momentum vectors are compounded.

As a result of a careful study, made since this review was written, the
writer recommends the following changes of notation as compared with
the present text; E,, E,, and E, instead of E¢, E*, and E"; T, T*, G, and
F instead of F, F*, F*, and Fr; AG(v), defined as G(v+3) —G(v—3), instead
of AF*(vy, vy).

The substance of these articles, revised and with additional material,
will be subsequently published in book form. The writer will be very grate-
ful to anyone who will call his attention to errors and obscure passages
in the present treatment.

The reader will find in Ruark and Urey’s new book ‘‘Atoms, Molecules,
and Quanta’ (McGraw-Hill, 1930) an extremely valuable treatment of the
subject of molecular spectra.



