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SECTION 5. THE INTERACTION OF MATTER AND RADIATION

1. GENERAL INTRODUCTION

N THE primary source of experimental evidence regarding the struc-
ture of the atom is the spectroscope, much of the mathematical struc-
ture developed in the preceding sections must hang in the air until we have
constructed a quantum theory of the emission, absorption, and scattering
of radiation by atoms. The desired theory should have a formal similarity
to the elementary wave mechanics of Part I and should degenerate in the
limit when % is made negligibly small into the classical electromagnetic
theory of the emission and absorption of light. It must take into account
the forces acting on the electrons due to the external radiation field, the
modification of the radiation field due to the motion of the system, and
finally, the damping influence of “radiation resistance.” To be completely
satisfactory the theory should also take into account the effect of the finite
velocity of electromagnetic waves on the interaction of the different elec-
trons in the atomic system and should satisfy the demands of the theory of
relativity. The newly formulated Heisenberg-Pauli field theory goes a long
way toward the solution of this great problem! but it would be quite impossi-
ble to introduce the reader to the mysteries of this theory with the mathe-
matical tools developed in Part I of this report. Progress toward carrying
out the above program has been made by successive approximations and
we here content ourselves with reporting the initial steps in the investiga-
tion. :

In the usual classical discussion of absorption, dispersion, and scattering,
the forces acting on the electrons are somewhat arbitrarily divided into
three classes. First, there are the forces internal to the atom, whose opera-
tion determines its unperturbed state. According to our present ideas of

* National Research Fellow.
! W. Heisenberg and W. Pauli, Zeits. f. Physik 56, 1 (1929).
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2 E. C. KEMBLE AND E. L. HILL

atomic structure these forces are to be identified with the electrostatic forces
which act between electron and nucleus and between electron and electron.
Second, there are the forces due to the external radiation field, and third,
the retarding force on each electron due to its own radiation.? The elementary
quantum theory of Part I takes cognizance only of the first class of forces.
It can be extended without difficulty to include forces of the second class,
but the forces of the third class, difficult to deal with even classically, are
particularly intractable from the standpoint of wave mechanics. Radiation
resistance forces are small, however, in the case of an atom near to its normal
state and by neglecting them we may still hope to obtain a description of
the early stages of the absorption process. The problem of dispersion can
also be treated without considering radiation resistance if means are at hand
for calculating the electromagnetic field due to a given electronic motion.

As a first step toward the formulation of an approximate quantum theory
of absorption and dispersion a wave equation analogous to Egs. (I,18) and
(I, 38) must be set up to describe the behavior of the electrons in an arbi-
trary external electromagnetic field.

In view of the success of the strictly corpuscular theory of the Compton effect, it might
seem that any attempt to account for the interaction of matter and radiation in terms of a
continuous electromagnetic field is foredoomed to failure. We have already seen, however,
that the field theory of diffraction can be interpreted as a statistical description of the scattering
of photons and electrons by apertures. It is such a statistical description of the interaction of
matter and radiation that we seek. Moreover, the continuous potential energy function V of
the Schrodinger Eqgs. (I, 18) and (I, 38) is in practice (Cf. Kepler problem, Section 2, 6) of
electrostatic origin and if we admit such a continuous field to our theory we can hardly stop
short of admitting the whole machinery of Maxwell. The Heisenberg-Pauli field theory pro-
vides a scheme for the modification of this theory, but we shall provisionally content ourselves
with an attempt to graft the electromagnetic field of Maxwell unchanged to the matter waves
of Schrodinger.

2. THE WAVE EQUATION FOR SYSTEMS OF ELECTRONS IN AN
EXTERNAL RADIATION FIELD

The principle of least action in the Newtonian dynamics is restricted to
cases in which the energy is conserved.? Hence the simple method of setting
up the wave equation sketched in Part I, Section 1 cannot be used for a
system of electrons in a variable external field. Schrédinger himself, however,
based his “derivation” of the wave equation (I, 18) on the Hamilton-Jacobi
partial differential equation which is not subject to the above restriction.*
His point of view permits us to set up and justify a generalization of Egs.
(I, 18) and (I, 38) appropriate to the problem in hand.

We have already shown that in the case of a constant electrostatic field
the wave equation [(18) or (38), Part I] is obtained from the classical

2 With these we may include the damping effects of collisions which play such an important
part in the production of absorption in gases.

3 That is, cases in which there is a Hamiltonian function H(g, $) which does not contain
the time explicitly.

4 E. Schrodinger, Ann. d. Physik (4) 79, 361 and 489 (1926).
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Hamiltonian function H(g, p) if we first form the operator H(q,—d/dq) by
the substitution pr— — (B/27Z) 3/dq, and then use it to set up the relation

P by
V= F, 1
H(q"’ aqk)'p 2mi 0t ®

The parallelism between this second order first degree equation for ¢ and the
first order second degree Hamilton-Jacobi equation for the action function

H<Qk, ﬂV—>= “ﬁ (2
aqk ot

W is obvious. A complete solution of the latter equation is a function of the

coordinates, say ¢i, s, - * * gan, of the time, and of 3 # constants of integration

oy, - -+, oz, which represents a moving family of surfaces in configuration

space (g1, - * *, ¢sn) related to the possible mechanical orbits of the classical

dynamics as the wave-fronts of geometrical optics are related to light rays.
As wave fronts are surfaces of constant phase it is therefore not suprising to
find that the classical action function is simply related to the phase of the ¢
waves. If we change the independent variable in Eq. (I, 38) by means of the
substitution

Y= 2miW’ I (3)
we obtain the differential equation,
1 /0W'\? oW’ h 1 oW’
—(——) +V+ = — . 4
; Zﬂk( axk) ot 4mi Zk Le Oxi? )

If the second derivatives on the right hand side of Eq. (4) are neglected, it be-
comes identical with the Hamilton-Jacobi equation (2) for the problem in
hand. This approximation is equivalent to setting Planck’s constant % equal
to zero, and is valid in the region for which the classical mechanics is valid.
Thus the classical action function Wis an approximation for — (k/2%) log ¥.
This fact maybe used as the basis for a new proof of the basic proposition that
suitable wave packet solutions of Eq. (I, 38) obey the laws of classical me-
chanics and this gives a justification of Eq. (I, 38) independent of that given
in Section 1, Part [ .42

Turning now to the problem of the variable external field we see that a
rational method of setting up the new wave equation is to construct the
corresponding Hamiltonian function in Cartesian coordinates, convert it
into an operator as before and finally use the operator as in Eq. (1) above.

Let 4.9, 4,™, 4, denote the components of the vector potential
evaluated at the point x;, y;, z; where the jth electron is located. Let the
algebraic value of the electronic charge be e. Then the classical Hamiltonian
for a system of = electrons is’

“ For a direct and comprehensive proof of this proposition see also Sect. 6, 5 and Sect. 7, 1.

¢ Cf. M. Born, “Atommechanik” Sec. 34, p. 239. Many authors, including Born, use ¢ for
the absolute value of the electronic charge and so reverse the sign of the terms linear in e and 4
both in the Hamiltonian and the wave equation.
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T 1 e . 2 e ) 2
H(g,p)= Z '_{(?z,'—"—Az(’)) +<Pv,'_""Au(')>
je=1 2[1. 4 c

(o 249) Vv w0, ®

Making the substitution p,— —(k/214)d/dqr we obtain as the desired
wave equation

t {( ] +21reiA (j)>2+< ] +27reiA m>2+( ] +21reiA ("))2}\0
=1 \\dx; ke : dy; ke Y dz; ke ’

Vi ——— —=0. 6)

If we make {the substitution Y =¢2*¥'/% multiply by A2, and allow % to
approach zero, Eq. (6) yields the Hamilton-Jacobi equation for W’ as in the
case of a steady electrostatic field. From this fact we infer that Eq. (6) is in
satisfactory agreement with classical mechanics in the limit wben % is zero.

Expansion of the squared operators throws the differential equation into
the form

S [ 0 a0 a0 2)
ke 0x;

i=1 0y; 9z
2meifdA D aA,(')+aA,(f))¢:| N
kC \ ax,- ay, az,-
87u ,,  Amui oY
n Boat

where ¢ V' = V4 (e2/2uc?)y 5y |40 |2

Referring to Eq. (I, 102) and to the discussion of Eq. (I, 149) on p. 207
Part 1, we observe that to retain our fundamental physical interpretation of
¥ Y*dv it is necessary that

9 .
ug(w )=—divF, (®)

where F is a function which vanishes at infinity;with ¢ and which plays theroéle
of mass current density. Using the modified wave equation (7) for a single
particle (three dimensional case) we find that Eq. (8) is satisfied with?

h
F=—_[y grad y*—¢* grad y|——Apy*. )
471 ' c

T
¢ The correction term (e?/ 2;«:2)2 |49 |2 is usually negligible.
EE ]
7 In Eq. (I, 102) which defines the vector current density, the sign of the right hand mem-
ber should be reversed,
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This is in agreement with the fact that classically the momentum p of a par-
ticle in a field with vector potential A is not uv,but uv+eA/c. Hence the oper-
ator associated with uv should be

3 e
———grad——A.
2w c
From Egs. (8) and (I, 78) we may deduce the validity of Eq. (I, 171)
for the modified operator H(q,—3/dq) and hence the Hermitian character of
the modified matrix H(n, m). Moreover, the whole discussion carries over
without difficulty to the case of a system of 7 particles.?

3. THE PERTURBATION OF AN ATOMIC SYSTEM BY A RADIATION
FIELD: ABSORPTION

Consider next the application of the wave equation (7) to the problem of
the perturbation of an atomic system by an external radiation field.® The
general solutiony of (7) can be described in terms of the unperturbed char-
acteristic functions by the aid of an expansion of the form

V=D Comlhnm (%) €27 Enmt/h 4 f > em(E)ttm(x, E)e?wiEtIME, (10)

(Here wave functions carry a double subscript to indicate degeneracy. In
practice a more complicated notation may be necessary.) The coefficients
Cam and ¢,,(E) become functions of the time during the period of application of
the radiation field but settle down to a new set of permanent values different
from the initial set when the field is removed. Our first problem is to correlate
this change in the ¢’s with the experimental absorption of light and to use the
theory to derive theoretical values of Einstein’s “transition probabilities.”
Due to the variation of the ¢’s with time, we shall also find that the wave
function executes oscillations which contain the frequencies characteristic of
the radiation field, the natural frequencies of the atom, and combinations of
the two. Our second problem is to use these three types of frequency to
account for dispersion, normal scattering, emission, and Raman scattering.

As previously explained (Sect. 4, 3), Born interpets the ¥ functions as
descriptions of the behaviour of ensembles of atomic systems subjected to
identical external influences. He assumes that the energy of an arbitrary
system taken from the ensemble must in every case have an unique value iden-
tical with one of the familiar energy levels which play such an important part
in the Bohr theory. Finally in the case of a non-degenerate system with a

8 A wave equation for a single electron in a variable electromagnetic field was first derived
by Gordon, Zeits. f. Physik 40, 117 (1926), and independently by Klein, Zeits. f. Physik 41,
407 (1927) in connection with their relativistic generalizations of the Schrédinger theory.
Although the Gordon-Klein theory does not satisfy the requirements of Eq. (8) and hence
involves a new definition of number density to take the place of y¢*, Eq. (6) in three dimensions
can be derived from it by a suitable limiting process.

9 The reader is referred to the article’by K. L. Wolf and K. F. Herzfeld, “Absorption and
Dispersion,” Handbuch der Physik, XX, J. Springer, Berlin, 1928, for a review of this subject
from both the experimental and theoretical standpoints,
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discrete spectrum only, he identifies the probability of the energy E, with the
corresponding product c,¢,*.}° This interpretation is based on the theorem
that in the absence of a continuous spectrum

D eata*=1
n

(Cf. Part I, Eqs. (81, 137, 172)). The generalization required to take into
account a continuous spectrum will be evident from Eq. (I, 81).

These assumptions are in comformity with the discussion of Part I,
Sect. 1,8 and seem to the authors quite reasonable.

A complete analysis of Born’s assumptions cannot be given here, but the following sug-
gestions may be helpful to the reader:

(a) Born supposes that an exact measurement of E for a single system is conceivable and
would give a definite result. In support of this assumption we observe that photoelectric
measurements with different wave-lengths indicate that we may determine the energies of
photons by spectrum analysis, attributing to each photon a definite energy corresponding to
the place at which it impinges on the photographic plate in an ideal spectroscopic experiment.
In the same way a magnetic deflection experiment yields an energy spectrum for free electrons
with a definite energy for each particle.

(b) In Part I, Sect. 1, 8 we have shown that if we perform a Fourier analysis of the wave
function for a free particle into terms harmonic in the independent variables x, y, z the
amplitudes give the probabilities of the conjugate dynamical variables pz, py, ps. Furthermore,
from the wave standpoint a spectrometer is a mechanical device for analyzing a beam of radia-
tion into a sum of terms which are harmonic in the time. The probability of each elementary
energy range for an arbitrary photon is then fixed by the intensity of the corresponding com-
ponent in the Fourier analysis with respect to time. Hence in the case of a system whose
Hamiltonian function does not-contain the time explicitly and in which an expansion of the type

¥ = 2 catin(x) €¥FiBntlh ©

is possible, a plausible extrapolation from the above special cases suggests that we identify
CnCn*tn(%)ta* (x)dr with the probability that the system has the energy E, and also a configura-
tion in the element dr of configuration space. If the functions #, are normalized, integration
over all of configuration space gives cac,* as the probability of the energy E, independent of the
configuration. This is perhaps sufficient justification for Born’s assumption in the case under
consideration.

(c) On the other hand, in the case of a system whose Hamiltonian does contain the time
explicitly so that an expansion of the type (a) is valid only if the ca's vary with the time, it is
evident that Eq. () does not describe an exact Fourier analysis of the wave function. More-
over, energy and time are conjugate dynamical variables subject to the Heisenberg un-
certainty principle, 8Est~h, and so the measurement of either the energy of a system or its
energy distribution function must take an infinitely long time. Thus a rigorous non-arbitrary
meaning cannot be attached to the phrase “instantaneous probability of the energy E..” In
practice, however, we do not expose photographic plates for an infinitely long time in spectro-
scopic measurements, and in the case of a fluctuating light source we understand by the fre-
quency distribution at a given time the distribution obtained on a photographic plate exposed
for a short time before and after the instant in question. This distribution depends on the dura-
tion of exposure as well as the time at which it is started, but is sufficiently definite for practical
purposes. This practical procedure of exposing a plate for a finite time, say boS¢=h is equiva-
lent to the mathematical process of replacing a given function f(¢) by a second function ()
defined by

10 This statement assumes that the expansion is made in terms of normalized wave
functions.
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t <t

= i o < . =0, i
([)(l) f(t), f =t t; ¢(l) 0, if L>h,

and performing a Fourier analysis on ¢(¢). For every pair of values of i—to and £ = (t1+£0)/2
we get a definite distribution function which has a certain claim toward the title “distribution
function for t=£.” Applying this idea to the case of an expansion of the type (¢) where the ¢'s
vary slowly with time, we see that the instantaneous energy distribution function will neces-
sarily be continuous but will have sharp maxima and minima near the energies E, of the un-
perturbed system and will, in fact, be an approximation to the discontinuous spectrum postu-
lated by Born's hypothesis. It can also be proved that if the ¢’s are suddenly stabilized at any
given instant by removing the perturbations which cause the ¢'s to vary and if we determine by
Fourier analysis the energy distribution function for all future time, we shall get exactly Born's
result. In other words, Born’s identification of c.c,* at the instant ¢ with the instantaneous
probability of the energy E. is mathematically sound if we define the latter quantity as the
probability of E.,, for all future time, which would be created by removal of the perturbation at the
instant in question.

(d) It should be emphasized that the adoption of Born's statistical interpretation means
that the wave functions have meaning only in connection with ensembles of atoms. It seems
clear that if a wave function did exist for an individual atom, it would still be impossible to
measure it, although in the case of an ensemble of similar atoms the observation of yy* is at
least conceivable. If we adopt Bridgman’s operational point of view we must then refuse to
attribute objective reality to the wave functions except in connection with ensembles of
identical systems. This view becomes even more inescapable when one considers the relation
between the observed orbits of large scale bodies or of electrons and the associated wave packets.
The wave packets must in all cases increase steadily in volume with time just as a blob of
radiation emerging from a small aperture increases in volume with time. If, however, we ob-
serve that at any instant a particle is in the neighborhood of some particular point this observa-
tion modifies our expectation for the future and makes it necessary to discard our original wave-
packet and substitute, as a basis for prediction, a new one based on our observation. This
substitution of a new wave function for the old makes sense only if we adhere strictly to the
view that wave functions are simply tools for the description of the statistical behavior of
ensembles of identical mechanical systems.

The reader is referred to a recent paper of Lewis and Mayer, Proc. Nat. Acad. Sci. 15,
127 (1929) for other very interesting considerations in this line.

On this basis the change in the value of c.c,* produced by any given per-
turbation measures the fraction of the whole number of systems in the en-
semble which pass into the corresponding energy level as a result of the per-
turbation. We proceed to outline a scheme for computing this change in the
case of a radiation field.

For simplicity let us assume that the radiation consists of a system of plane
waves moving in the direction of the x-axis and polarized with the electric
vector parallel to the y-axis. In conformity with the perturbation theory of
Section 4, 3 we assume a finite wave train described for convenience by a com-
plex Fourier integral. Let the vector potential and electric force be

+0
Ay=—af(t—x/c)= -l—acf ¢———-——”(l_,>e2”"'(‘“"/°)du,
o 2Tty
(11)
1 04, o .
E"= e = —q ¢”(V)e21rw(t-—:c/0)dy.

¢ Ot —
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Here « is a real parameter which determines the amplitude of the wave
system, while the complex function ¢,(v) fixes the wave form and may be sub-
jected to the condition

+00
byby dv=1. (12)

In the case of a radiation field the divergence of the vector potential
vanishes. Using this fact and multiplying Eq. (7) by —#?/8w%u we reduce it
to the form (neglecting the term (e2/2uc?) Y, |A("> I’),

ot § e

2wt uc o1

+4, (“——{—A (y)i):l‘p:i 4 (13)
dx; oy; 0z 2wi ot

where H, is the unperturbed Hamiltonian operator. Introducing the first of
Eqgs. (11) and identifying the parameter A of Section 4, 3 with a we obtain the
following expression for the perturbing operator F(¢):

h
— ~—[ > - x/c)——] (14
2wt uc
The first step in carrying through the perturbation scheme of Section 4, 3
is to evaluate the matrix elements

Foun(®) = f[u,.*Fumdv.

If the wave-lengths of the radiation field are all large compared with the
atomic dimensions we may regard 4 as constant over the atom and may
replace f(t—x;/c) by the value of f(t—x/c) at the nucleus of the atom in com-
puting F.., (¢). If the origin is at the nucleus

Foa(t) ——f(t) u,. Z (—— _a_> Umdv. (15)
=1 271 ay,

> i(—h/215)d/dy; will be recognized as the operator associated with the y

component of the linear momentum (Cf. Section 3, 2 pp. 192-3). The integral

in the right hand member is therefore the matrix element of p,(m;n) of the ma-

trix defined by the expansion

Dyhm= ZPﬂ(m M) Un. (16)

py(m,m) in turn is the amplitude of the corresponding element p,(m,n/t) of the
matrix function of ¢ associated with p, in the theory of Heisenberg, Born, and
Jordan. The latter matrix is defined by an expansion similar to (16) with %,
and u, replaced by ., and y,, respectively. Thus

T h
i mpecesv ewsoiz /= [t 5 (=5 é—y—)wmdv (an
© j=1 ml
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Classically the linear momentum is u/e times the time derivative of the
electric moment and a similar theorem holds for the corresponding matrices.
Let P, denote the y component of the electric moment, i.e., D _;e;y;and let
P,(m,n/t) and P,(m,n) denote elements of the matrices of P, based on the
functions ¢ and « respectively. Then

(/) pu(m,n/8) = Py(m, n/t) = (2xi/ h)(En— En) Py(m ,n/t) (18a)
and consequently
(¢/w) po(m ) = (2wi/ h)(Em— En) Py(m,n). (18b)

With the aid of Eq. (18b) the expression for F,,.(f) can be thrown into the
form

2w
Fun(®) =_]:61(Em_En)Pv(m:n)f(t) . (19

The first order perturbations of the wave functions are now determined
from Eq. (I, 179) which, with p set equal to unity, should read™

(63}

T
Fon(T)=Q2wi/ k) f F ot €2 mnt' dt! (20)
0
where v, is defined by
Won=En—E,=—hvom.

By combining Egs. (19) and (20) and introducing the complex Fourier coeffi-
cient ¢, of Eq. (11) we obtain!?

oY) 271
1A= = (52) Pt (21)
and finally in first approximation
271
Cn=Cd—a 3 Cd (——:—) Py (mn)py(vam)+ -+ « - . (22)

11 Unfortunately the factor e3™%,*’ was accidentally omitted in preparing the manuscript
of Part I.

12 To elucidate this result we find first by substituting from Egs. (11) and (19) for f(¢)
and Fna(f) respectively into Eq. (20),

) 472 T .
fmxn(T) = - (;—)va,(mn)fo f(l’)e”'vmn‘ ’dt’.
But from the definition of the Fourier Integral and Eq. (11),

cby(Vam) = f te f(t')e"'-'mn”dt’.
27iVam —
The replacement of the integral with respect to ¢’ over the region 0 to T by an integral from

—  to 4 « is valid because we have assumed explicitly f(#') =0 unless 0S¢’ S T.
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The same result is obtained somewhat more directly, but less rigorously, if
one treats the product E,P, as a perturbing potential function depending

explicitly on the time.
In case the radition field is not plane polarized, Eq. (22) is to be replaced by

2mi
=0yl —a Z 6m0<7) (P(m”)¢'(l’nm))+ s (23)
m
where P(mn) and ¢(v.n) are vectors derived from the vector electric moment
and vector electric force respectively.t?
It is convenient at this stage of the argument to introduce the quantity
... defined by the equation

q:'mn:fmn(T)fmn*(T) . (24)

In case all the atoms are initially in the same state m Eq. (I, 180) shows that
®,,. measures the fraction of the atoms transferred from the state m to the
state z by the perturbing field. Hence we may call ®,., a transition probabil-
ity for jumps from the state m to the state n. Some analysis is required, how-
ever, before we can make the connection between ®,,,» and the corresponding
transition probability as defined by Einstein. The derivation of the black-
body radiation formula by the latter author is based on the assumption that
the rate of increase of the number of atoms, NV, in the state #» due to absorp-
tion in a natural radiation field is given by an expression of the form

an,
d*

= Z(NmBm-»n—Nan-»M)u(V"m) (25)

where #(v,») is the monochromatic energy density of the field, and the B's
are the probabilities of jumps from the state m to the state #» and from » to m
respectively, per atom per unit time when #(v,.) is unity. It is evident that
if the present theory is to harmonize with Einstein’s it must be possible to
derive Eq. (25) from Eq. (23). Since Einstein’s theory ignores fluctuations
from thermodynamic equilibrium we can identify N, in Eq. (25) with the prod-
uct of the number of atoms per unit volume, N, by the mean value of cnc,*
obtained by averaging over all the atoms and also over an interval of time
long enough to eliminate all high frequency terms.* (1/N)dN./d: then be-
comes identical with the average “secular” rate of increase of ¢,¢,*, and we
have to prove that
d d

_Cncn*=_"cncn = Cmcm*Bm»n"cncn*Bn-om U\Vnm) . 26
py 7 ' 2";[ Ju(vam) (26)

18 The large round brackets indicate a scalar product.

14 We here treat each individual atom in any small volume element of a gas by the wave
mechanics, neglecting all interactions. Each individual atom in the element then has its own
¢ function correlated with an imaginary ensemble of similar independent atoms. Although the
different atoms in the volume element are physically indistinguishable, a confusion of the
group actually present in the element with the ensemble which defines the y function of any
one of them is undesirable. Cf. the discussion on p. 15.
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It is also permissible to restrict the proof to the case where the perturbing ra-
diation field is “natural.” This restriction is interpreted to mean that the
field consists of many superposed short wave trains whose phases are distrib-
uted at random.

By Eq. (I, 180) there are terms of the form ¢,°%,*f1.(T")f1.*(T) in the ex-
pression for ¢.(T)c.*(T"), but these average to zero for the special conditions
under consideration and it is possible to prove!® that Eq. (26) holds in first
approximation with

B nttrum) == 27| P} | (o), (27)
T 3K
or
Bm,,.=B,.,m=8i] P(mm) | 2. (28)
30

In virtue of Eq. (18) the above theoretical expression for the Einstein transi-
tion probability B, .. can be expressed in the alternative form

2re? lp(m,n)l 2
3u? (Em_En)2

provided that E, is not equal to E,,.

The theory is applicable to degenerate systems if we interpret B,,., as the
transition probability from one elementary state to another and not from one
energy level to another. For such systems it is desirable to introduce a more
complete notation in which each of the symbols 7 and # is replaced by a pair
of symbols one of which designates the energy level while the other indicates
the particular sub-state under consideration. Bn.. then goes over into B(m,
l—n, k) with m and » designating the energy levels. Eq. (25) becomes

d
ENM = Y [NpiB(m,l—n, k) — NuB(n, b—m,0) |u@nm) . (30)
m,l

(29)

Bpan=

Summing both sides over all values of % (i.e., over all sub-states of the nth
energy level) we obtain

dN, d — -
=— ( ZNnk) = Z [NmBm-m_Nan-om]u(Vnm) (31)
dt d 14 k m

with

- N, 1
Buan= 2 —-—lB(m,l—m,k)=~—~ > B(m,l—n,k) ]
1,k Nm glm 1k (32)
Bin= 2, —]—éch(n,k—m,l)=— > B(n,k—m,l). l
i,k

Lk n n

8 M. Born, Zeits. f. Physik 40, 147 (1926); J. C. Slater, Proc. Nat. Acad. Sci. 13, 7 (1927).
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Here g, denotes the statistical weight of the energy level E,, and is equal to
the number of degenerate levels associated with symbol m, thus being equal
to Num/Nmi. Eq. (31) agrees with the Einstein form for degenerate systems,
and Eqgs. (32) are in conformity with the familiar relation

Bn..m = (gm/gn)_B-mon .

Eq. (19) shows that a radiation field has no tendency to produce transi-
tions from one member of a degenerate group of states to another member of
the same group.

Eq. (27) shows that to a first approximation the intensity of any absorp-
tion line is proportional to the square of the absolute value of the correspond-
ing matrix element of the dipole moment of the atomic system. To get the
absorption (and hence emisson) due to the quadrupole moment which is im-
portant in connection with the appearance of “forbidden” lines in nebular
spectral® one must take into account the variation in the vector potential A
over the volume of the atom, which was neglected in deriving Eq. (15).

Evaluation of the matrix elements P(mn) or p(mn) yields the familiar
selection principles for the magnetic and azimuthal quantum numbers of
atomic systems.!” In the case of the two-body problem, for example, using the
wave functions of Sect. 2, 6 we obtain

Pl(n’)llym,; n’lyl”)m”) =e|: f Rn' .l’Rn"l”rSdr][ f ®l' ,m’®l"m” sin @ cos 0d0]
0 0

2r © N
X [f CI)m/Q):ud(ﬁ:I =e[f R,,r;:R,,np,r"‘dr:lap,;uilém',mu, (33)
0 0

with similar expressions for the matrix components of P, and P,.

The theory can be extended to include the continuous part of the absorp-
tion spectrum as well as the discontinuous part. To this end the perturbation
theory of Section 4, 3 must be completed by the inclusion of the continuous
characteristic functions in the expansion of the perturbed function [Eq. (68)].
For details the reader is referred to the original papers of Wentzel and others.!®

4. EMissioN, DISPERSION, AND SCATTERING

Einstein’s derivation of the black body radiation formula is based on the
assumption that the mean rate of emission per unit volume of the frequency
¥ mn associated with the quantum jump m—# in a gas in thermal equilibrium
is given by an expression of the form

S(an) = NmA m-—nthn (34)

where N, is the average number of atoms or molecules per unit volume in the
state m, and A ., is a constant dependent only on the nature of the gas.

16 Cf, James H. Bartlett, Phys. Rev. 34, 1247 (1929).

7 For details see L. Brillouin, Journ. de Physique 8, 74 (1927).

18 G, Wentzel, Zeits. f. Physik 40, 574 (1926). J. R. Oppenheimer, Zeits. f. Physik 41,
268 (1927); Phys. Rev. 31, 66 (1928). P. A. M, Dirac, Proc. Roy. Soc. A113, 621 (1927).
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The coefficients An., are called “transition probabilities for spontaneous
emission” and are related to the corresponding absorption probabilities by
the equation

Aman=8T"m23/¢*) Buman. (35)

Combining Einstein's well-grounded and widely accepted theory with the
wave-mechanics formula for B,,.. developed in the preceding article we ar-
rive at an indirect method for computing S(=.), and hence the intensities of
emission lines in gaseous spectra, applicable to all cases in which Eq. (34) is
valid and values of N,, are obtainable. In the case of purely thermal radia-
tion where the departure from thermodynamic equilibrium is small, the “pop-
ulation numbers” N,, can be estimated from the Maxwell-Boltzman law. In
other cases these numbers are uncertain, but it is reasonable to assume in the
case of an electric discharge that the populations of states whose energies are
nearly the same are proportional to the statistical weights, as they are for
thermal equilibrium. This assumption seems to be in accordance with the
experimental facts. At the worst we can test the theory under conditions in
which the population numbers are unknown by measuring and computing the
relative intensities of the different spectrum lines originating in a common up-
per energy level.

A more direct method of computing emission intensities is highly desir-
able, however, and in the last analysis necessary. Eq. (34) asserts in effect the
incoherence of the radiation fields of neighboring atoms and is therefore
inapplicable when the electromagnetic waves sent out by neighboring atoms
have definite phase relationships. Consider, for example, the metallic reflec-
tion of resonance radiation observed by Wood at the surface of a resonance
bulb of mercury vapor.!? The regularity of the reflection and the polarization
of the reflected light show clearly thatin this case the emission of the surface
atoms is coherent so that amplitudes add, rather than intensities. By lower-
ing the pressure, however, there is a continuous transition between this regu-
lar reflection and the emission of diffuse incoherent fluorescence light by the
irradiated vapor. Similarly in the case of ordinary dispersion we have to do
with elementary wavelets emitted by adjacent atoms with definitely related
phases although the frequency emitted is a frequency of forced vibration
which does not happen to coincide with any of the transition frequencies of
the atoms.

As a first step toward the development of a theory of emission applicable
to coherent as well as incoherent conditions we observe that since the ¢
functions give a statistical description of the atomic motions while the elec-
tric and magnetic vectors give a corresponding statistical description of the
emitted streams of photons, it is to be expected a priori that E and H for the
emitted radiation shall be determined by the ¢ functions just as in the classi-
cal theory E and H were determined by the motion of the electrical charges.
Schrédinger’s original suggestion was that the charge density p to be used in

19 R, W. Wood, Phil. Mag. (6) 18, 187 (1909); (6) 23, 689 (1912); R. W Wood and M.
Kimura, Phil. Mag. (6) 32, 329 (1916).



14 E. C. KEMBLE AND E. L. HILL

Maxwell’s equations should be identified, in the case of a single electron, with
epy*. From our present point of view this means that p is to be identified with
the statistical average charge per unit volume at the point in question. If the
vector current density for a single electron is identified with

eh
——[¥ grad ¢*—y* grad y] (36)
4t

[Cf. Part I, Section 3, 2] the law of continuity is satisfied, as well as the law
of the conservation of electricity. In the case of a system of many electrons
p(x, v, 2) and the current density are to be obtained by summing up the con-
tributions of all the individual charges. The formulas are cumbersome but need
not be introduced explicitly here since in practice the radiation field of a
microscopic emitter is sufficiently determined by its dipole moment. In con-
formity with the above definition of p one may compute the statistical mean
value of the electric moment P from the formula

P—(t)=ffftp(x,y,z)dxdydz

= f }n:"ﬂl'\l/*dT

N =1
all coordinate space

(37)

where r is the radius vector from the origin to the point (x, ¥, 2).
Expanding ¢ in terms of the characteristic functions and neglecting the
continuous spectrum as usual, we obtain

Pl)= 2. Doca*caPm,n/t) = 3 D ca*cnP(m,m)errirmnt, (38)

where P(m, n/t) and P(m,n) are elements of the vector matrices of P based
on the functions Y(x, ) and u(x) respectively. (Cf. p. 8.) The matrix
P(m, n/t) is Hermitian so that each term in the above sum is the complex
conjugate of the term obtained by interchanging the values of m and =.
Hence P(?) is real, as it should be. Eq. (38) shows that the frequencies of the
electric moment as defined are identical with those given by the Bohr frequency
condition and hence gives initial assurance that we are on the right track.

To determine the mean rate of emission of energy per atom in an ensemble
with wave function ¥ we insert P(¢) for the electric moment in the classical
electrodynamic formula

(39)

= [(Pz)2+(Py)2+ (Pz )2]
3c
Using the series of Eq. (38) and reducing, we obtain

- 4
I=— 2 2l | 2| om| 22mvmn)*| P(mm) | 2.
3¢

vmn >0
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Defining 4 ... by Egs. (35) and (28), this becomes
f=: E Z[ Cﬂ! 2| cml 2Am-»ﬂ]'”’mn- (40)
vmn>0

Thus we find the emitted stream of energy made up of a sum of terms each
having one of the frequencies of the actual spectrum and proportional to the
corresponding transition probability A ,... The theory is in harmony with
the classical electromagnetic theory in the limiting case of a macroscopic
system whose configuration can be sharply defined by a suitable wave packet
since in this case P(¢) reduces to the classical electric moment.

When, however, we apply our equation to the emission of radiation by a
gas we strike a snag. Strictly speaking, we should treat the entire sample of
gas as a single electro-mechanical system and compute the emission from a
single function describing an ensemble of such systems. As this method of at-
tack is too difficult, we content ourselveswith a short cut suggested by classical
considerations. Let us assume that the radiation from any element of volume
can be obtained by compounding the electric moments of a set of independ-
ent atoms each of which is a member of a separate ensemble with a separate
¥ function. The electric moment of the volume element dxdydz is then the
sum of the values of P(¢) for all atoms in the element. If the phases of the
P’s are haphazard, the intensities of emission add and the mean rate of emis-
sion of frequency v, is?

Z l Cn] 2| cml 24 psn Ve
All atoms
Let NV denote the number of atoms per unit volume. Then the rate of emission
of the frequency v, per unit volume is

S(an) =N | €m | 2 I—C;]— 4 m-nthn; (41)

where the bar denotes an average over theatoms in the element. Clearly
N ¢, may be identified with the number of atoms per unit volume in the
state m. Were it not for the factor |c,. |2 in the right hand member, Eq. (41)
would be in satisfactory agreement with Eq. (34). This factor, however,
makes the emission of energy of any frequency depend on the number of
atoms in the corresponding lower energy level as well as on the number in the
upper energy level, and is in violent conflict with Einstein’s theory and with
experience.

The difficulty here encountered is fundamental and apparently can be
met only by a modification of our conception of the electromagnetic field.
The necessity for such modification was foreshadowed in early papers on the
matrix mechanics by Born and Jordan, and by Born, Heisenberg, and Jor-
dan? who assumed from the beginning that the kinematics of the electric and

0 In order to take into account the effect of collisions between atoms, the perturbations
by the ever present radiation field, or the damping effect of radiation resistance, one must
regard the ¢.’s and ¢,’s as functions of the time. In that case it would be necessary to average
the product with respect to time as well as over all the atoms in the volume element.

* M. Born and P. Jordan, Zeits. f. Physik 34, 858 (1925); M. Born, W. Heisenberg, and
P. Jordan, Zeits. {. Physik 35, 557 (1926),
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magnetic vectors must be the same as that of the coordinates and momenta
of matter particles. To be specific, they assumed the validity of Maxwell's
equations for the electromagnetic field but re-interpreted the dependent vari-
ables E and H in these equations as matrix functions of the coordinates
instead of ordinary vector point functions. From the point of view of this
review, this means that they regard E and H as quantities which are only
partially determindte like the p’s and ¢’s in the wave mechanics of a system
of material particles.

The plausibility of this procedure is perhaps most evident in the case of a
radiation field in an evacuated rectangular box with perfectly reflecting
walls. It is well known?? that in the case of such a box the classical electro-
magnetic theory permits the resolution of the most general radiation field
into the sum of an infinite series of discrete simple harmonic normal modes of
vibration. The instantaneous amplitude of one of these vibrations may be
regarded as a normal coordinate of the system and the equations of motion
may be thrown into Lagrangian or Hamiltonian form. If g, is any normal
coordinate and p, is the conjugate momentum, the expressions for the elec-
tric force E and vector potential A are of the form

E= 3 .q.fu(%,y,2)= 2B ;
A= Zp,,anf,,(x, Y,2) = ,ZA,..

The analogy between the equations of motion of the normal coordinates of
this electromagnetic field and the equations of motion of the coordinates of a
system of particles suggests at once that we treat the former like the latter
and set up a wave equation based on the Hamiltonian function similar to that
used in the treatment of a system of particles. The Heisenberg uncertainty
principle then applies to the conjugate variables p, and q, and hence in a
slightly modified form to the corresponding values of E, and A,.

Lorentz?? has further shown that classically the same normal coordinates
for the radiation field can be used to describe an interaction between matter
and radiation in a box with perfectly reflecting walls, and Dirac® has been
notably successful in dealing with the problem of the emission and absorp-
tion of radiation on the basis of quantum mechanics applied to matter and
electromagnetic field together, using the device of the perfectly reflecting box
to reduce the equations of motion to Hamiltonian form. In this way he
derives the above formulas for the transition probabilities 4 pm.n and Bu.n,
and a theory of dispersion in a single self-consistent theory. The authors will
not attempt, however, to review here these most important, but somewhat
abstruse, papers of Dirac, primarily because up to this point we have not
developed the necessary mathematical machinery.

22 Cf. H. A. Lorentz in the report of the Solvay Conference of 1911: “La Theorie du
Rayonnement et les Quanta,” p. 12, Paris, 1912. The discussion by Lorentz is not limited to
the case where the box is completely evacuated.

# P. A. M. Dirac, Proc. Roy. Soc. A114, 243 and 710 (1927).
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It will be worth while, however, to examine briefly a less radical procedure
recently suggested by Frenkel which is based on the early discussion of the
electromagnetic field from the matrix point of view by Born and Jordan.2!
The fundamental idea is that since P(f) [Cf. Egs. (37) and (38)] is the statis-
tical mean value of the electric moment of the emitting system, the electric
and magnetic forces computed from it by classical formulas may be expected
to be statistical mean values of the actual electric and magnetic forces for
individual systems in the ensemble. To determine the corresponding rate of
emission we have to compute the statistical mean value of the Poynting
vector and then integrate over all directions of emission. If we now use the
classical formula

c
©=—EXH (42)
g
for the computation of & from E and H we obtain the incorrect expression
(40) for the mean rate of emission. On the other hand we may proceed as
follows. First we use the classical electromagnetic formulas?

E<H— r) 1 [ ( d2P> dzP:I H(¢+ r> 1 [ ><d?P:l (4‘3)
¢ _c2r T\r di? e’ c —c%' o dt?

to compute from each matrix component P(m, n/t) of P corresponding ma-
trix elements of E and H. Although these elements are functions of time we
indicate them by simple subscripts as E,, and H,, repectively. From the
definitions of P and of matrix elements it follows that

E= E ZCn*CmEmn; I—?= Z ZC,.*C,,,HWL (44)

in analogy with Eq. (38). We now compute the Poynting vector & from the
modified formulas

S= 2.2 tn*cnSmn (45)
and %
2
@mnz’g— Z(EanHmk—Hkanmk) . (453)
L

Forming the time average of the statistical average &, we find that
= 4
8= 2lal@m=r Ll al+]al)(EnxHuy). (46)
n ™ n ok

% J. Frenkel, “Einfiihrung in die Wellenmechanik,” Berlin, 1929, Chap. III, §5. Frenkel’s
volume reached us after the completion of Part I of this review.

% Here ro denotes an unit vector along the radius drawn from the atomic center to the
point for which E and H are to be calculated.

# By definition (Eun X Hmi) @ = (Ein @ Hpi® = Egn @ H i) where Epn @) is the yth com-
ponent of the vector matrix E;,, etc. Cf. also footnote 28.
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At this point Frenkel proceeds to take the unjustified step of replacing
(|ea |2+ lx |2) by 2 |ca . With this arbitrary alteration one gets

_j= Z ZI Cn’ 2An~»khyﬂk (47)

nk>0

for the mean rate of emission in agreement with Eq. (34).

The above method of computing & up to Eq. (47) is exactly what we
should expect to employ if the vectors E, H, and © for the field of the atom
are, like the electric moment P itself, definite functions of the p’s and ¢’s of
the atom. Then the classical formulas for E, H, and & in terms of the p’s and
¢’s determine operators Ox(x, ¥, 2, £), On(x, ¥, 3, £), and Og(x, ¥, 2, £) which
may be used to compute E, H, and & from the ¢ function of the emitting
ensemble of atoms. Defining the desired mean values by means of the
operators as in Part I, Sect. 3 and expanding ¢ in terms of the characteristic
functions we obtain '

E=fz/x*0ml/d'r= ch*cmEmn
H= f V*Ompdr= D ca*cnHmn (48)

G= f Y Oetdr= 2 cn*cnSmn.

The matrix elements E,,, Hn» as defined by Egs. (48) may readily be proved
to be identical with the elements En., Hnn previously defined in terms of
P(m,n/t) (at least to the approximation to which Egs. (43) are valid classi-
cally).?” It remains to show that &, is properly defined by Eq. (45a). The
desired proof is a corollary on a general theorem of fundamental importance
for the matrix formulation of the quantum mechanics (cf. the next section).

Theorem: Let O, and O, denote two operators associated with the dynam-
ical variables @ and 8. Let @n» be the matrix element defined by the equiva-
lent equations

% Classically in the case of a system of electrons of equal mass and charge

d*P e . [
—— == Xhi=—— X grad;V
ar w5 B
where grad; V denotes the gradient with respect to the coordinates of the j* particle. We may
then use —(e/u)Y_igrad; V as an operator for d2P/d#* and by combination with Eqgs. (43) work
out the operators Og and Og. With the aid of the vector equivalent of Eq. (18a) and a
generalization for Eq. (I, 92) it is then possible to show that
4P P —
—_— e — rad; V
il Z, grad;

and thus establish the equivalence of the two definitions of the matrices for Enn and Hpa.
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Omn = f Vi *Oul mdr (49)
Oalpm = Zamn\bn . (50)

Let B.ma be defined in the same way. Finally, let O, denote the operator prod-
uct 0,0,. Then

Ymn = Zﬁmkakn= Zaknﬁmlc- (51)
k k

The right hand member of Eq. (51) is by definition the element (m#n) of the
matrix product {Bmn} {@mn} so that the theorem states that the matrix of
the product of two operators is the product of the matrices of the operators
taken separately, the two products being formed in inverse order.?®

Proof: 1t is only necessary to expand O, in accordance with Eq. (50)
and then apply the operator O, to each term in the expansion. Then

OWmn=00 2 Bribi= D Bmk D Ckntn= Z( Zﬁmkak,.) V. (52)
k k n k

n

This proves the theorem subject to the condition that is legitimate to apply
the operator O, term by term to the series Y iBmi¥s.

Returning now to the Poynting vector, we observe that in view of the
classical formula (42) we may define Og by an equation of the form

c
o@=4—1rogxo,,. (53)

Here we may identify Or and Oy with the vector operators

Or=10x+jOy+ kOz
O = i0u-+jO+ O,

where X, Y, Z, «, $3, 7, are the components of E and H respectively. Ex-
panding (53) in terms of the corresponding scalar components we find an

% It is well known that the commutative law of ordinary multiplication does not apply to
matrix multiplication and obviously it cannot apply to the multiplication of such operators as
g and 9/d8g. For a presentation of the elements of matrix algebra the reader is referred to
Bocher’s “Higher Algebra” or to any of the current introductions to the matrix mechanics.
Cf. also p. 25 ahead.

The inversion of order between the operator products and matrix products is an unhappy
peculiarity of the present presentation of the subject, traceable in the first instance to the con-
vention regarding the order of the subscripts in the equations which define the matrices in
terms of the operators ((I, 131) and (49) and (50) above). Due to our original unfortunate
choice of the sign of the exponent of the time factor of y, it was necessary to arrange the sub-
scripts as we have done in order to get the same matrix elements (Hermitian case only) as
those used by Born, Heisenberg, and Jordan in the matrix mechanics. The reader should take
warning from this horrible example of the results of unconventionality!
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ambiguity regard ing the order of the factors in the individual terms. We
resolve this ambiguity by using in each case the mean value of the two
products in direct and reverse order. This method of defining Og gives the
corresponding matrix Hermitian form, and Eq. (45a) now follows as a
corollary.

This completes the justification of Eq. (46) and indicates that one can
make a certain amount of progress by the comparatively simple ‘‘quanti-
zation of the field” used in Egs. (43) and (45a). The result is still in-
correct, to be sure, since Eq. (47) cannot be derived from Eq. (46) by
any legitimate procedure, but Frenkel’s method does represent an advance
over that employed on p. 14.

Consider next the phenomena of dispersion and scattering. Classically we
account for them as due to the emission of secondary wavelets by atoms and
molecules executing forced vibrations under the influence of the primary light
waves. The first step in the theory is to compute the electric moment of the
atom from the equations of motion of the electrons treated as oscillators held
to fixed positions of equilibrium by elastic forces. Egs. (43) are then used to
compute the electric forces of the wavelets due to the individual atoms, and
these are combined with due regard to amplitude and phase to give the
scattered radiation and the coherently emitted beam which produces dis-
persion and reflection. In the quantum theory we may follow the same
general program, the first step being the computation of the perturbed value
of the mean electric moment of an individual atom under the influence of a
monochromatic radiation field.

Let the field consist of a sinusoidal train moving along the x-axis with its
initial wave-front at x=ct. We assume that the waves are polarized with the
electric vector parallel to the y-axis, and define the vector potential by the
equation

Ay=—af(t—x/c)=—asin 2mv(t—x/c), t—x/c>0; (54)
=0, t—x/¢<0.

We may use the machinery of Section 4, 3 and Section 5, 3, neglecting as
before the variation in the phase of the radiation field over the volume of the
individual atom. Let £ denote the x coordinate of the center of gravity of the
atom or molecule under consideration. Replacing the fixed time T of Section
5, 3 by the variable time ¢ of Egs. (I, 178-179) we have in first approxima-
tion

)

cm(t) =cn'ta ch“fk,,,(t) (55)
%

where

(1) 42 t=t ) ,
fem(t) = —'TVkay(km) (' —&/c)erminmt' gy’ (56)
C t'=¢/c
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Expressing f(¢' —£/c) in terms of exponentials and carrying out the integra-
tion, the latter equation becomes
e?ﬂ'[(vk,,.-{-vo)l-—voElc]__e2rivkmtlc

™
flcm(t) =E”kav(km) {

Vim0
e2ni [ Okm—~vo) t+k/c] —e27mivkméle }

(87)

Vim=— V0
provided that the radiation frequency v, is not equal to the characteristic
frequency vxm, a condition which we shall suppose satisfied. Using the per-
turbed values of the ¢'s given by Egs. (55) and (57) in the general expression
(38) for the mean electric moment of the atom, multiplying out, neglecting
terms in the square of the amplitude of the light wave, and reducing, we
obtain

Pit)= Ec,.”*cm" {P(Mn)e“""m"‘

27 i [(mntw) t—wkle] — p27i(Vknt+rmik/c)

+17c Zk:P(kn)P,,(mk)vmk[

27 i[(rmn—vo) t+wok/e] e2ri(vknt+vmkE/c)]

Vmk+ o

Vmk = Vo

+ 2 S PH(km) Py (nk)vus
hG k

ez“"‘i [(vmntvo) t—wok/c] ez"l'f("mkH‘anE/w] }

[lei[(an~Vo) ttwélel — g27i(vmkt+vink/c)

Var+vo

(58)
Vak— Vo

The coefficients of the initial amplitude products ¢, ¢’ make up what
we may call the perturbed value of the electric moment matrix P(m, n/f)
to be used in computing En, and Hn.. The terms having the frequencies
vmi and vy, indicate a slight modification of the emission intensities due to
the incidence of the perturbing light wave. In practice they would be quickly
damped out by the radiation resistance which is always present, though we
cannot include it in our theory, and we therefore neglect them.

There are three sorts of terms in the matrix, viz., those having the char-
acteristic frequencies v, of the unperturbed atom and giving rise to spon-
taneous incoherent emission; those having the frequency of the exciting
light and producing réflection, dispersion, and normal Rayleigh scattering;
and finally those having combination frequencies and producing Raman
scattering. The Compton modified type of scattering is not represented in
the above formula, as it does not take into account the continuous spectrum
of characteristic functions of the atom. Compton scattering is entirely
analogous to Raman scattering except that it is accompanied by atomic
transitions from discrete energy levels to levels in the continuous spectrum.?®

% In other words, the energy given up by a photon which experiences Compton scattering

produces ionization of the atom struck, while the energy given up by a photon which experi-
ences Raman scattering merely produces excitation of the atom struck.
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The diagonal terms obtained by setting m equal to # are responsible
for normal scattering and dispersion. If D(¢) is used to denote the part of
the mean electric moment coming from these diagonal terms, we have, after
some juggling of terms,

— 2o 2mivgd —2mivgd
D(t) =— jc,,o[ 2R{ > vuiP(kn) P, (nk)[ ‘ _e ]} (59)
he

Vaktro  var—wp

where the symbol R indicates that only the real part of the expression which
follows it is to be considered, and where { stands for (¢—£/c).%0

Although we have assumed a light wave polarized with the electric vector
parallel to the y-axis, the above formula shows that the part of the induced
electric moment having the frequency », is not rigorously parallel to the
y-axis. In consequence the scattered light is not completely polarized.
The high degree of polarization observed experimentally is accounted for
by the fact that while P,(m, n) P, (r, m)isequal to |P,,(n, m) [2 and hence is
essentially positive, such products as P,(m, n) P,(n, m) may be either positive
or negative, and will on the average tend to cancel each other when one
carries out the summation indicated in Eq. (59).

The important y-component of D which is alone responsible for ordinary
dispersion is readily reduced to the form

Vo

By =~ cos twivg T et *{ e 2o (- ——)} @

To get the electric moment per unit volume we average D, ovsr all the atoms
in a unit volume. Denoting the number of atoms per unit volume by N,
we have

Electric moment per unit volume

n:—1=4n N .
Primary electric force

8T N

_ 8N 2:[6 of 2 }:umnl.PyO”n)|2< y3>

_@_ = 2| latli=latls] P+

»,,>0 nm T

(61)

This is Kramer’s dispersion formula. The appearance of ]cm" Iz with a nega-
tive sign shows that the atoms in the lower energy levels make contribu-
tions to dispersion opposite in sign to those in the upper energy levels.

Eq. (61) can be put in more conventional form by using our previous considerations
(Section 5, 3) on degenerate systems. We replace the indices (n, m) by (», }; m, k) where land %
are the quantum numbers which determine the orientation of the atom in space; i.e., } and &

3 In deriving the above formula one makes use of the fact that since the operator for P or
for any one of its components is a real function of the coordinates, the matrix P(m, n) is
Hermitian. The reader will observe that the matrix elements of P and P, which appear ex-
plicitly in (59) are the unperturbed elements.
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are the magnetic quantum numbers associated with the elementary states » and m. In the
absence of any constant external fields we may write

1
%, el Tl Pitntim ] (5757)
n,l m, k

Vnm‘—l'oz
== Z—lc.."lz v,,.,.{r(nzmk)l( ) (62)

as the vum's do not depend on the quantum numbers / and &, and also as%

Z|P,,(n1mk>12 ngP(nlmk)]’ (63)

by symmetry. But by Eqs (28) and (32)
3nt 3c%h

— Pn,bim,k)|2= ——-—B,.,m e

o Zl (nbim D] =25 b (64)
Combining Egs. (61), (62), and (64) we get
2] = —— o] 2 ___._":"‘
" ! Z | on I zm: ”nmz("nm - ,,02)
An-om
— 02 [ I (A S

3 Vznmgo [ | o l | Gm l ] l’n'mz(l'nm2 - VUZ) (65)

The Rayleigh scattering for a gas can be computed from the induced
electric moment per atom D as in the classical theory by adding the intensi-
ties of the waves scattered by the different atoms. The justification for this
procedure depends on the haphazard location of gas molecules, or on the
fluctuations in gas density, according to one’s point of view.

The Raman scattering comes from the non-diagonal terms in Eq. (58).
Neglecting the terms involving only the characteristic frequencies of the
atom, and the terms which produce normal scattering and dispersion, we
may lump the others together and call the resultant the “Raman moment”
R(t) of the atom. This gives

* *
Roun() =<;;_1£{[ 7 P(kn)Py(mk)vmi . P*(km)P, (nk)l’lm] p2riGotomn) ¢
c

% Vit 7o N Vnk— Vo
* *
_[ 5 P(kn)Pu(mk)mG%P (km) P, (nk)v:m] eum(yu_w”}. (66)
% Vmk— Vo Vnetvo

This is substantially the expression for a typical element of the Raman
moment matrix of the atomic system as used elsewhere by the authors in
discussing the Raman effect.’

If we compute the intensities of the various Raman lines by means of
Eq. (66) we meet with the same difficulty as in dealing with spontaneous

3t This formula is of considerable generality, and is intimately connected with the question
of “spectroscopic stability.” Eqgs. (62) and (63) can be shown to be correct to a very high degree
of approximation even in case one or more constant external fields are present. Cf. J. H. Van
Vleck, Phys. Rev. 29, 727 (1927); 30, 31 (1927).

2 E, L. Hill and E. C. Kemble, Proc. Nat. Acad. Sci. 15, 387 (1929). In the equation used
in this paper the anti-Stokes terms of the Raman moment (i.e. those with frequencies greater
than that of the exciting light) were omitted, as were the frequency factors v, and »is in the
numerators of the fractions in Eq. (66).
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emission. The theory makes the intensities depend in a symmetrical way on
the populations of the initial and final energy levels. To get an empirically
correct formula orfe must first resolve the matrix {Rnma(f)} into two parts
{Rn."} and {R..} associated with the anti-Stokes frequencies (¥o+7ma)
and the Stokes frequencies (¥o—vmn) respectively. The emission from
{Rna™P} is then computed using the populations of the upper energy levels,
and from {Rmn(*)} using the populations of the lower levels.

SECTION 6. MATRIX THEORY

I. MATRIX ALGEBRA AND THE CHARACTERISTIC VALUE PROBLEM

In Part I, Section 3, and in subsequent sections we have made use of
certain quantities which we called “matrix elements” because they appear
in sets, each of which can be arranged in a two-dimensional array, or “ma-
trix.” Each such set is derived from some “dynamical variable” a (a func-
tion of the coordinates and momenta of the problem) and from a complete
normalized orthogonal set of functions of the ¢’s,say fi, fe, ** -, fa, - - . Inorder
to find the matrix® of o one must first set up a corresponding operator O,
(in simple cases by the substitution of — (h/2w%) 8/dgx for pr in the classical
formula for «) and then expand the function O, f, in terms of the complete
set of f’'s. The matrix element a(m, n) is then defined by the expansion

Oufm= 2 a(m,m)fn, (67)
or by the corresponding explicit formula
alm,n)= ff,.*O,,fmdr. (68)

We usually identify the f’s with the characteristic functions which de-
scribe monochromatic solutions of Schrodinger’s wave equation. We assume
for the present that this equation has no continuous spectrum.** The above
notation for the matrix elements will be used when f, is set equal to the space
factor u,(g), but if the complete characteristic function

¥a(g,t) = un(g)e?miEnt/h
is to be used for f, the symbol a(m,n) will be replaced by a(m, n/f).

3 The matrix of « is said to be a “representation” of the operator Oa. It may be proved
that the operator and the matrix are equivalent in the sense that either one determines the
other. This is true despite the fact that the form of the matrix depends on the particular set
of wave functions which is used. The equivalence depends on the invariant properties of the
elements a(m, n/t) under a linear substitution of the functions y», a complete study of which
would lead us far afield into the theory of linear substitutions which constitutes part of the
mathematical theory of groups. Cf. A. Landé, “Optik, Mechanik, und Wellenmechanik,”
Sect. VII, Handbuch der Physik XX, Berlin, 1928,

# Every problem involving a continuous spectrum may be approximated by means of a
modified problem in which the wave function is artificially required to vanish on some hyper-
sphere of large radius in configuration space.
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The matrices based on the characteristic functions may be used to deter-
mine the mean values of various dynamical variables in the case of an ensem-
ble of systems whose ¢ function is analysed into a sum of orthogonal charac-
teristic functions. Several examples of this use have been given in the pre-
ceding section. It is also possible with the aid of matrices to reduce to a
purely algebraic form much of the computation involved in solving problems
in quantum mechanics. We have, in fact, shown (Part I, Sect. 4, 1) that if
the matrix of the Hamiltonian operator is known for a complete set of nor-
malized orthogonal functions of the coordinates, the location of the correct
energy levels may be reduced to the algebraic problem of solving an infinite
series of simultaneous linear equations in an infinite number of unknowns.
(Cf. Eq. (I, 135)). A further study of this problem forms a natural method
of approach to the matrix mechanics of Heisenberg, Born, and Jordan.

It will be convenient to begin with a brief review of the elements of ma-
trix algebra. For this purpose we introduce the single symbol® A or {4 (m, n)}
for the matrix

A1) A(12) - - -
AQ21) A(22) - -

Two matrices A and B are said to be equalif, and only if, corresponding
elements are equal; 4. e., if

A(m,n)=B(m,n). mmn=1,2, -, o,

To add or subtract two matrices A and B we add or subtract corre-
sponding elements.
Thus

(AL B)(m,n)=A(m,n) % B(m,n).
To multiply two matrices we ‘use the rule?s
(AB)(m,m)= 2 A(m,k)B(k,m). (69)
k
On the basis of the above rule it can readily be shown that the associative

law of ordinary algebra applies to the multiplication of matrices, although
the commutative law does not. Thus in general

AB#BA.

The product of a matrix A and an ordinary number ¢ is the matrix whose
typical element is ¢4 (m, n).

% In the preceding sections we used bold face type to distinguish three-dimensional vectors
from scalars. In the remainder of the article, however, we shall have no need for vectors and
shall reserve the bold face type notation for matrices.
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The unit matrix is defined by

It follows at once that
AlI=1IA=A.

The inverse or reciprocal of a matrix 4 is defined, in case it exists, by the
relation

AA-'=A"A=]. (70)
Positive and negative integral powers of A can now be defined by the rules

AP=AAAAAA - - - to p factors
A~ P=(A"Y)?
A'=1.

With the aid of these definitions we may finally establish the usual expo-
nential rules

ArAr= At (AF)r =AW

for all positive and negative integral powers of A.

Consider now the problem of determining the energy levels of an atomic
system. Let a set of approximate wave functions ¢¥,°% ¥2° -, ¥.% - be
given, and let the corresponding matrix for the Hamiltonian operator be
{H(m, n/t)}. From the Schrédinger point of view the problem is to replace
the approximate wave functions by exact wave functions ¥y, s, -+, ¥, « * -
which satisfy the differential equation,

Hy,=E b o 71

‘l/n ‘ﬂlpﬂ 27r1, az ) ( )
and to locate the corresponding characteristic values of E. If, however, the
original set of ¥'s forms a complete orthogonal set, any new set is expressible
in terms of the old by means of a suitable linear expansion. Hence the re-
placement of the initial functions by the actual characteristic functions of
the problem may be described as a linear transformation of the initial set
of functions. This transformation has the form

Yo = EkZS(m,k/tw. (72)

the coefficients forming a matrix {S(m, n/t)} which completely determines
the transformation. If the new functions, like the old, form a normalized
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orthogonal set, such as can always be picked out from the complete mani-
fold of the solutions of Eq. (71), the elements of the transformation matrix
satisfy the relation?®

D S(n, k/1)S*(m, b)) =bum. (73)

Eq. (73) is a generalization of the relations between the direction cosines in
a rotation of axes in three-dimensional space. A linear transformation which
satisfies (73) is said to be an unitary transformation.?’

If we introduce the symbol S for the matrix obtained from S by inter-
changing rows and columns, we see that the condition (73) is equivalent to
the matrix equation

$*S=85*=1. (74)

But by the definition of the inverse matrix S~ given in Eq. (70) this is equiv-
alent to writing

S*=8-1, (75)

Turning now to the matrix of the Hamiltonian operator, we readily
prove that the application of the transformation whose matrix is S to the
¥ functions leads to a similar linear transformation of the elements of the
matrix of H. Thus

H(m,n/t)—H(m,n/i) = f\[/n*H\l/mdr

- [ Zseonvnon*|a| Ssonpmue]ar o
= 2S*(n, )/ OH (/DS (m, 1/1).

In the language of matrix algebra, Eq. (76) takes the form
H'—H=SHS*=SH’S"1, (77)

Equation (77) describes the transformation of the Hamiltonian matrix
due to the substitution of any new complete orthogonal set of functions for
the initial set. We wish to demand, however, that the new set shall be the
actual characteristic functions of the problem in hand. In that case we have
directly by Eq. (71) that

H(m,n/t)= f Vo *Eny m@7 = Emnbum. (78)

In other words, we require the transformation to carry the matrix of H
over into what is called diagonal form, all terms dropping out except those

% Cf. section in fine print at top of p. 211, Part I; also Eq. (I, 182).
37 This is a slight generalization of the orthogonal transformation adapted to the algebra

of complex quantities. Cf. H. Weyl, “Gruppentheorie und Quantenmechanik,” p. 16, Leipzig,
1928.
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for which m=mn. The diagonal terms are then the desired energy values.
The problem of locating the exact energy levels and exact wave functions
is thus reduced to the problem of finding a matrix S which will carry H
over into diagonal form when applied according to the rule of Eq. (77). If
we now equate the right hand member of Eq. (77) to the matrix {E,0ma},
and multiply both sides of the equation behind by the matrix S, we obtain38

SH'={ Epbma)S. (79)

Equating the two members of this equation element by element, we obtain
a double infinity of simultaneous equations with the elements of the matrix
S and the E values as unknowns; i.e.,

ZS(m’k/t) lIIO(k/n/t)_Emakn]:O: man=1,27 T, (80)

If the initial set of approximate wave functions are of the form
Ynl= umoezwwm" t/h (81)
where the #%s are independent of the time, we can simplify the set of Eqs.
(80). By Eq. (71) ymisof the form u,e2mEmt/h HenceEq. (72) is equivalent to

Upe2TiEmtlh = Zs<m, k/t)ukoehriEkotlh'
k

It follows that
U = ZS(m,k)ukO
k

where S(m, k) is independent of ¢ and
S(m, k/t) =S (m, k)erriEn=Ed)t/h (82
Similarly
H(m, k/t) =H(m, k)e2iEn"~E)tik, (83)

By means of Eqs. (82) and (83), Egs. (80) are readily reduced to the time-
free form

> S(m, k) [HO(kn) = Emdin| =0, m,m=1,2, -+, 0, (84)
k

The set of equations obtained from the above by picking out all cases in
which m has a given value is identical with the set (I, 135) except for the
detail of notation. As explained in Part I, the solution of these equations
can be carried through in general only by the successive approximations of
perturbation theory.

So far we have used matrices only to re-state, in a different language,
conclusions already reached in Part I by formally different methods. We
can go much further than this, however, with the aid of the theorem of page
18 which states that the matrix of the product of two operators in terms of

# Cf. Born, Heisenberg, and Jordan, Zeits. f. Physik 35, 557 (1926), Eq. (20).
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any given set of orthogonal functions is equal to the product in inverse or-
der of the matrices of the two operators taken independently. Since the
H operator is built up from the operators for the p’s and ¢’s, it follows at
once that the H matrix can be built up from the matrices of the p’s and ¢’s.
Similarly we can build up the matrix of the electric moment from the matrices
of the p’s and ¢’s. Thus the solution of both the energy level problem and
the intensity problem can be made to turn on the determination of
the matrices for the p’s and ¢'s. In what follows we shall see that in some
cases, at least, the matrices in question can be found and the whole problem
solved without the specific introduction of the initial orthogonal function
system Y%, ¥,0, -+ - .

2. THE PROPERTIES OF THE p AND ¢ MATRICES

The matrices for the coordinates g; and the momenta p; for a Cartesian
coordinate system are derived from the operators q; and — (k/2w%)d/9¢s
respectively. In conformity with the last paragraph of Section 3, 4 of Part I
we provisionally define the operator for the momentum conjugate to the
generalized coordinate g to be — (h/271)0/dgi.3% Hence for any conjugate
variables g and p;?®

[psqr—qupi|(m,n) = f%*[qk(——h—_ —9-> + . -a—qk:| Ymdr

2wt dq« 2w dqy
f‘l/n __‘pde—l— Smn - (85)
7I"L

This is equivalent to the matrix equation

peqr—qrpr=(h/2wi)I. (86)
By a similar argument we can prove that

pi—qipr=0, I#k (87)
and

PP1— PP =1 — i =0. (88)

In other words, the matrices for coordinates do not “commute” with the
matrices for the conjugate momenta, though they do commute with the
matrices for the other momenta. Also any momentum matrix commutes
with any other, and any coordinate matrix with any other.

The fundamental relation of Eq. (86) between the matrices of the coor-
dinates and of the conjugate momenta is the quantum mechanical equivalent
of the Wilson-Sommerfeld quantum conditions of the Bohr theory?®

38 Cf, pp. 36 and 42. The differential operator does not apply however when the coordi-
nates assume discrete values as for instance in the use of a component of angular momentum
as a matrix. Cf. also Sect. 7, 2 below.

3 M. Born and P. Jordan, Zeits. f. Physik 34, 858 (1925). Cf. also L. Brillouin, Journ.
de Physique 7, 135 (1926); reprinted in English in the volume “Selected Papers on Wave
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fpkqu=nh n=0,1,2, ...

The Eqgs. (86), (87), (88) are called the “commutation rules.” Dirac
introduces the Poisson bracket symbol [y, x] for the matrix function (2mi/k)
(xy —yx), and writes the commutation rules in the form*°

lge,pi] =16k, [qi,q:]=[pi,p:1]=0. (89)

Another fundamental characteristic of the matrices of the p's and ¢'s
in Cartesian coordinates is their Hermsitian character (Cf. Part I, p. 201)
which is a consequence of the fact that the corresponding operators are
self-adjoint. An operator O, is by definition self-adjoint with respect to a
coordinate system qi, . . . , Q3n, if

3n afk

20,0 —uO,*v= ,
k=1 GQk

(90)
where » and v are arbitrary continuous functions of the coordinates gy, - - -,
@sn, and fi, - -+, fsa are functions of the-same coordinates, any or all of which
may vanish in special cases.4%2 (The right hand member of the above equation
is simply the divergence of the 3n-dimensional vector F whose components
are fi, -+, fsn). If we now take the volume integral of both sides of Eq.
(90) over a hyper-sphere G surrounded by a surface S, we can convert the
right hand member into a surface integral over .S. If the functions # and v
vanish rapidly at infinity, the vector F approaches zero with corresponding
rapidity, and the surface integral vanishes in the limit as the radiusof the
sphere increases indefinitely. Under these circumstances

f(vOau~an*v)dq1 t dq3n=0- (91)

If 4 and v are identified respectively with the wave function ¥ and its
conjugate ¢* for a suitable problem in wave mechanics we have

a= f¢*0a¢d7=f¢0a*¢*dr=&*. (92)

Thus the mean value of a quantity a with a self-adjoint operator O, is neces-
sarily real provided that the y function for the problem in hand vanishes

Mechanics” by de Broglie and Brillouin, London, 1928. It may be remarked incidentally that
Egs. (86) can only be satisfied if gx and py are infinite matrices. Cf. e.g., H. Turnbull, Mathe-
matical Gazette 14, 12 (1928).

40 Dirac’s notation is dictated by the fact that in the limiting case of large quantum
numbers the matrix quantity (2xi/k) (Xy —yx) corresponds to the classical Poisson bracket
[y,2] just as the matrix p corresponds to the classical value of the momentum p. Cf. P.
A. M. Dirac, Proc. Roy. Soc. A109, 642 (1925).

408 Ap alternative definition of the self-adjoint operator equivalent to Eq. (90) is given by
Jordan [Zeits. f. Physik 40, 809 (1927)]. Eq. (91) can also be used to define the self-adjoint
property.
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with sufficient rapidity at infinity.4* The latter restriction is of greater im-
portance from the mathematical than from the physical point of view.

We can also identify # and v* respectively with two characteristic func-
tions ¥, and ¥, belonging to the discrete spectrum of the problem in hand.
Then

f (‘pm*oa‘pn“//noa*‘pm*)dT: 0

or
a(n,m/t)=a*(m,n/1), (93)

which is the condition that the matrix of « shall be Hermitian.

In classical mechanics and electrodynamics complex values of the dynam-
ical variables have no meaning, and in quantum mechanics we may reason-
ably exclude complex values of measurable quantities as meaningless. This
is equivalent to requiring that the operators correlated with all measurable
quantities shall be self-adjoint, and that the corresponding matrices shall
all be Hermitian. We have already proved that these conditions are satis-
fied by the energy operator and energy matrix. They are also satisfied for all
functions of the coordinates only, and for the components of linear and
angular momentum, as the reader can prove for himself without difficulty.
Hereafter we shall assume that only self-adjoint operators and Hermltlan
matrices are to be used in building up the theory.

We have now proved that in order to solve the characteristic value prob-
lem for a given Hamiltonian operator H we can adopt as a starting point
any complete orthogonal function system spread out over the whole of the
configuration space for the problem, develop from it matrices for the p’s
and ¢'s, compound them to form a matrix for H, and then apply a transfor-
mation of the canonical type*

pk°—>pk=5pk[’s—l
Te: { qi'—qi=Sg,’S~! p S-1=8§* (94)
H'—H =SH"S™!

which reduces the Hamiltonian matrix to diagonal form. The initial matrices
(p+% qx") must be Hermitian and must satisfy the commutation rules. With-

out appreciable loss of generality we may assume that they have the stand-
ard form

§m, /1) = pO(m, m) i BBt 11k (95)

4 It seems probable that the existence of the integral which defines @ is a sufficient practical
criterion for the validity of Eq. (92).

% The term “canonical” is applied to this type of transformation because it preserves
the commutation rules and hence the quantum mechanical form of Hamilton’s equations of
motion (to be derived below). The connection between this form of canonical transformation
and the form used in the classical Hamiltonian theory has been traced by Jordan. Cf. P.
Jordan, Zeits. f. Physik 38, 513 (1926).
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For the rest, it is clear that a wide variety of forms must be possible in any
given case, and one surmises that any choice consistent with the above re-
strictions is permissible. In other words, it would not be unreasonable to
assume—and in fact it has been commonly assumed—that the problem of
finding a set of Hermitian matrices for the p’s and ¢'s which obey the com-
mutation rules and reduce H(p, q) to diagonal form has no other solutions
than those obtainable from the Schrédinger equation. In the case of a non-
degenerate system this would mean that the solutions of the matrix problem
are unique.

In practice the solution of problems in quantum mechanics by starting
from an arbitrary initial set of Hermitian matrices which satisfy the com-
mutation rules, and applying to them a canonical transformation which
reduces H(p, q) to diagonal form is confined to cases in which the Hamil-
tonian function can be approximated by that of a slightly different problem
which has been exactly solved and whose matrices form the starting point
of a genuine perturbation method calculation.

3. THE EQUATIONS OF MOTION IN THE MATRIX THEORY

The original formulation of the matrix mechanics of Born, Heisenberg,
and Jordan was based on an attempt to use, so far as possible, the formal
machinery of the classical dynamics, but with a reinterpretation of the nature
and the meaning of the symbols introduced. They assumed that the coor-
dinates and momenta of every dynamical system were to be represented
by matrices, that the Hamiltonian function was a function of the coordinate
and momentum matrices, and that the canonical equations of Hamilton
were applicable to these matrices. On the basis of these assumptions they
were able to prove that the energy matrix H(p, q) was constant in time (law
of the conservation of energy),*:4* which they showed to be equivalent to
the statement that the energy matrix was of diagonal form if the system was
non-degenerate. Otherwise they found it necessary to assume explicitly the
¢diagonal form of H.

According to our present point of view, the matrices of p, ¢, and H can
have a great variety of equally legitimate forms since the y functions can be
described in terms of many different orthogonal function systems. The so-
lution of the characteristic value problem is obtained, however, by reducing
the matrices to the form which corresponds to an expansion in terms of
a complete orthogonal system of characteristic functions. We may call
this the normal matrix form. By definition H(p, q) is constant in time and
diagonal if the matrices of the p’s and ¢'s are in normal form. We may now
reverse the argument of Born and Heisenberg to prove that normal matrices
satisfy equations formally identical with the Hamiltonian equations of class-
ical theory. As a first step we must define the operation of differentiation of
a matrix function.

4 Cf. M: Born and P. Jordan, Zeits. f. Physik 34, 858 (1925).
# M. Born, W. Heisenberg, and P. Jordan, Zeits. f. Physik 35, 557 (1926).
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Born, Heisenberg, and Jordan give two definitions of the derivative of

a matrix function with respect to a matrix argument.** We shall use here

what they call “derivatives of the first kind,” which are defined by the equa-
tion

df  f(x+a)—f£(x)

—=llm
dx 90 a

(96)

where a is the diagonal matrix obtained by multiplying the unit matrix I
by an ordinary number a. It is readily proved that on the basis of this def-
inition all the ordinary rules of differentiation apply to the differentiation
of matrix functions except that one must have due regard for the order in
dealing with product functions. Thus
dG dF
—(FG) F—+-—G,

where the order of the products cannot be altered in either member unless
it is reversed throughout the equation.

It follows from this definition that if f(p, q) is any function of a set of
matrices (gx, pr) which satisfy the commutation rules

of
—= 2wt/ h)(fqr—q.if) = [qu, f]
opx
97
= (27i/h) (pif—fpi) = [f, ps].

Differentiation of a matrix f with respect to an ordinary number a is

defined by the rule
m,n f(m,n). 98

Applying the first of equations (97) to the Hamiltonian matrix H(px, qx)
we have

0H 2ri
—=""(Hg\~qH). (99)
ka h
If the p’s and q's are normal matrices, H is a diagonal matrix whose non-
vanishing elements are the energy levels E,, Es, - -- . Hence
< H)(m n= 3, { Enbmiqi(G,n/t) — qi(m, j/4) Enbo;}

4 The proof of this theorem rests on the observatxon that it is true if we identify f with
any one of the basic matrices q1,Q3, * * + ,p1, Py, * + + . It is easy to show that if the theorem is
true for any pair of functions F and G it is true for their sum and for their product. If we
restrict ourselves to matrix functions which can be expressed as the sums of products of integral
powers of thep’s and q’s, the rest follows by induction.



34 E. C. KEMBLE AND E. L. HILL
2w

_i ( {
—dtqk ms”’/)

It follows from Eq. (98) that

dqr OoH
—_= . (101)
dt 6pk
The second Hamiltonian equation
dp oH
—f= e (102)
dt oq

is proved in exactly the same way.

Once Eqgs. (101) and (102) have been established for normal matrices
there is no difficulty in showing that they remain valid for any set of matrices
obtained from normal ones by a canonical transformation with a constant
matrix S.46

The equations of motion (101) and (102) were of considerable importance
in the initial development of the matrix theory, since their direct integration
in a few special cases gave clean solutions of simple problems which could
then be used as the basis for an attack on more difficult problems by per-
turbation methods.*”

4. ExaMPLE: THE LINEAR OSCILLATOR

Consider the case of the linear oscillator whose Hamiltonian function
has the form

H(p,q)=p%/2u+kq%/2. (103)
The Hamiltonian equations of motion reduce to
G=p/u; p=—ka. (104)

4 The proof rests on the theorem that if
Py = Sp¥S71; g = Sq;057!
then
f(pr, ar) = Sf(py®, qx")S™!
and on the additional fact that if s is a constant matrix
dpi/dt = S(dpi?/dt)S™1.

The transformed matrices obtained from normal matrices by means of a constant canonical
transformation do not have the form of Eq. (95).

47 For examples of papers dealing with problems on the matrix (or g-number) theory which
use the equations of motion, the following references can be consulted. In the papers of
Mensing and Oppenheimer a certain amount of perturbation theory is used. P. A. M. Dirac,
Proc. Roy. Soc. A110, 561 (1926), W. Pauli, Jr., Zeits. f. Physik 36, 336 (1926), L. Mensing,
Zeits. f. Physik 36, 814 (1926), J. R. Oppenheimer, Proc. Cam. Phil. Soc. 23, 327 (1926),
I. Tamm, Zeits, f. Physik 37, 685 (1926), D. M. Dennison, Phys. Rev. 28, 318 (1926).
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Eliminating p and introducing the classical frequency v, = (1/27) (k/u)! 2]
we have

4= { (2wivmn)q(m /1) } = —(27v,)%q

or
[vme —vo?]q(m,n/t)=0. (105)
This equation shows that g(m, #/f) must vanish unless
E,.—E,
Vinn = p —=t,. (106)

It follows that the energy levels, or diagonal elements of the H matrix, are
arranged in one or more equidistant series, and that there are just two non-
vanishing elements in each row and column. From the Hermitian character
of the matrices we know, of course, that the non-vanishing elements are
symmetrically arranged with respect to the diagonal. Let us now assume
that there is only one set of equidistant energy values as in the Bohr theory.
The order of the elements of a diagonal matrix is arbitrary, so that we can
assume without loss of generality that it is the same as the order of the ener-
gies. The non-vanishing elements of the matrices for ¢ and p are then arranged
in two lines parallel and adjacent to the principal diagonal. It follows at
once that all non-diagonal elements of [g, p] vanish as required by the com-
mutation rule. The diagonal elements of [q, p] must have the common value
unity. In other words

h
Py ?nkl g(n, /1) | =[] g(m,n+1/0) | 2= | q(m;n—1/9)| 2]. (107)

"Hence the squares of the absolute values of the matrix elements g(n, n+1/f)
form an arithmetical progression with the common difference k/8w2uv,.
These terms are essentially positive so that # must have a minimum value
which we shall set equal to zero. For =0, Eq. (107) then reduces to

| 9(0,1/2) | 2= h/8x%uno
and we have finally
| g(n,n+1/1) | 2= (n+1)b/8x%uws, 7=0,1,2,---. (108)
For the matrix element g(z-+1, n/f) this yields
(n+ 1)h]!/2

8r2uvg

‘I("+1,”/t)=q*(”,"+1/t)= I: ei(zﬂ"tw")’ (109)
where ¢, is an arbitrary phase constant. The factors ei¢» may be lumped
with the complex amplitudes ¢, in determining- mean values in the case of
a particular ensemble of linear oscillators. [Cf. for example, Eq. (38).]
In the simple problem under consideration the electric moment is propor-
tional to the displacement ¢ so that by combining Eq. (108) with Egs.
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(28) and (35) we obtain at once the transition probabilities with which to
compute the intensity of the emitted radiation.

Having evaluated the g matrix, we can next determine p by Eq. (104)
and H by Eq. (103). For the latter we find

H(n,n/t)=E,=(n+%)hv. (110)

These conclusions are in agreement with the pure wave theory of Sect.
2, 5 of Part I, and we thus see that the two theories lead to equivalent re-
sults.48

5. HamiLTOoN's EQUATION FOR WAVE PACKETS

Due to the general relation between matrices and mean values, viz.,
a = f V¥ Oubdr= Y ca*cma(m,n/1)

it follows that all matrix equations such as the Hamiltonian Egs. (101) and
(102) are equally valid if we replace each member by the corresponding mean
value for some definite ensemble of systems. Thus we have

dqp, d_—_ O0H dp, d__ 0H

—oEQr= T o= pp= (111)

dl dt Bpk dt dlf qu
If, in particular, we consider an ensemble represented by a wave packet in
which each of the coordinates and momenta is well defined, the mean value
of any function of the coordinates and momenta will closely approximate the
same function of the mean values of the individual coordinates and momenta.
The classical mechanics is the mechanics of just such wave packets and the
classical coordinates and momenta are evidently to be identified with the
mean values of the actual coordinates and momenta. Thusin the limiting case
where the coordinates and momenta are very well defined, Egs. (111) go
over into the classical Hamiltonian equations. The proof is independent of
the coordinate system employed, and hence the theorem shows that the def-
inition of the momentum operator in generalized coordinates given on p. 29
is justified by agreement with the classical definition of canonical pairs of
variables in the limiting case of a sharply defined wave packet. On the other
hand the proof does depend on the assumption that the Hamiltonian function
has only a discrete spectrum of characteristic wave functions. As pre-
viously explained, one can approximate the solution of any problem in quan-
tum mechanics involving a continuous spectrum by means of a modified

48 Cf. in this connection L. Brillouin, Journ. de Physique 7, 135 (1926). Brillouin’s
conclusion that the matrix theory leads to different results if # is allowed to assume nega-
tive values seems to the authors to be due to an algebraic error in his final energy formula.
On checking the steps we find that the energy and coordinate matrices for his alternative
solution are given by (110) and (109) with (#+3}) and (»+1)replaced by (—#-+3)and (—n-+1)
respectively, with n=0, —1, —2, - - - . This amounts simply to a different svstem of nnmber-
ing for the rows and columns and leads to no new results.
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problem having only a discrete spectrum. Thus the continuous spectrum
problem is a limiting case to which the Hamiltonian equations must also
apply. A more direct treatment of the continuous spectrum case is given,
however, in Sect. 7, 2.

6. MATRICES AND BOHR’S CORRESPONDENCE PRINCIPLE

The matrix theory of Heisenberg, Born, and Jordan was developed in
the beginning from Bohr’s famous correspondence principle for condition-
ally periodic motions. This principle postulates the asymptotic identity of
the frequencies and intensities of spectrum lines as observed and as computed
from classical theory in the limiting case of high quantum numbers. The
quantum mechanics is, of course, in harmony with Bohr’s principle, which
we have already used in a somewhat modified form in setting up the Schrod-
inger equation in Part I. As the process of tracing out the assumed corre-
spondence is of practical value as well as historical interest, we briefly describe
it here.

A conditionally periodic motion is a motion which from the classical
standpoint should emit a line spectrum. .In other words, it is a motion of
such a character that every function of the coordinates and momenta, in-
cluding the all-important electric moment, can be analysed into a multiple
Fourier series. Thus if P denotes the x component of the electric moment

+0o0
@) (=) .
P classial = Z P-,l'...,7/62”2[””1"""'*”/”/“ (112)

Tyt Tp=—o

where the 7's are positive or negative integers and the »’s are a set of funda-
mental frequencies characteristic of the motion. P@, ..., is the complex
conjugate of P@_, ..._, so that P® is real. A similar expansion holds for
each individual coordinate and momentum component. The simplest type
of conditionally periodic motion, and the one of the greatest importance in the
Bohr theory, is that which occurs when by a suitable choice of coordinates
the action function W can be resolved into the sum of a series of terms Wi,
W, etc., each of which depends on a single coordinate. The variables are
then said to be separable, and the Wilson-Sommerfeld quantum conditions
can be applied to each of the cuordinates, or what amounts to the same thing,
to each of the terms in W. Under these circumstances the frequencies v,
vs, v3, - - - in Eq. (112) are the frequencies associated with the various coor-
dinates used to define the system. Furthermore, each “stationary state,”
as defined by the quantum conditions, is associated with a set of quantum
numbers 7;, ns, - - - correlated in a one to one manner with the coordinates
and with the frequencies.

Bohr has shown that according to the fundamental assumptions of his
theory the frequency emitted in any jump, say

E(%ll,nz’, Ty "f’)—)E("lnyn2”y ttty nf”): (113)

is equal to the mean value of the frequency 1(T1V1+T2V2+ cee +'r,v;)l of
a corresponding pair of terms in Eq. (112) evaluated by taking a suitable
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average over a continuous series of classically permissible, but unquantized,
states between the initial and the final stationary states.** One of the corre-
sponding terms is that for which 7,=#n,"—n,", To=n,’—n,", etc., while the
other is the conjugate term. In the limiting case of very high quantum
numbers the classical frequencies »;, »,, v3, etc. have the same values for the
initial and final states, and hence the quantum frequencies become actually
identical with the corresponding classical combination frequencies.

In addition to this limiting agreement in the frequencies, which can
be deduced from the quantum conditions and from his other quantum postu-
lates, Bohr assumed a limiting agreement between the intensities of the terms
in (112) and the intensities of the corresponding spectrum lines, and then
used this assumption as a tool for the approximate computation of quantum
intensities.

As a first step toward exhibiting the correspondence principle in terms of
the quantum mechanics, we observe that since the classical action function
W obeys a differential equation which is a limiting case of the differential
equation for®® — (h/2w%) log ¢, it follows that the process of resolving ¥ into
the product of several factors is equivalent to resolving W into a sum of
corresponding terms. Thus if the variables in the Schrédinger equation
for ¢ are separable in the sense of Section 2,6, Part I, it follows that the vari-
ables in the corresponding classical action function will be separable in the
sense just defined. '

Let us assume that this condition is fulfilled. Then in the wave mechanics
there will be a differential equation for every coordinate, which can be
thrown into Sturm-Liouville form, and each energy level will be characterized
by a set of quantum numbers #;, s, - - -, n; one for each coordinate.
We expect that just as in the Bohr theory the frequency and intensity of
the radiation produced by the transition (113) will be asymptotically equal
to the frequency and intensity of the corresponding term in Eq. (112).

Since the classical mechanics may be regarded as a limiting case of the
quantum mechanics of wave packets when the coordinates and momenta
of the latter are defined with precision, we can prove the point by writing
out the wave mechanical equivalent of Eq. (112) for a well defined packet
and actually passing to the limit. The necessary equation is evidently
— *

ZEEND SEED R N S

n? g e g

P(x)(nll, cee, nj,; nl’l, e . s n!ll)eQ,r/[y(nl"...,nf’;”l"'...'n,")[
(114)
This is equivalent to Eq. (38), but the notation has been amplified to bring
out the explicit relation of each state to the corresponding quantum numbers.
With the aid of suitable approximations the double sum in the above equa-
tion must collapse into a single sum like the right hand member of Eq. (112).

4 Cf. J. H. Van Vleck, “Quantum Principles and Line Spectra” (Eq. (15a) ) for an explicit
statement of this theorem, which is also implicitly contained in Bohr's Danish Academy
papers.

80 Cf. Sect. 5, 2.
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To accomplish the reduction the following assumptions are necessary :*

a) The characteristic functions in the packet which have amplitudes
differing appreciably from zero all have very short wave-lengths. In other
words, we are in the region of high quantum numbers. Without such func-
tions it is impossible to fix coordinates and momenta simultaneously with
the desired precision. (Cf. Part I, Section 1, 8 and 9).

b) The number of characteristic functions in the packet having amplitudes
differing appreciably from zero must be very large if the mutual interference
between these functions is to make the packet very small.

c) The range of energy values with appreciable amplitude coefficients
must be so narrow that in this range the energy can be treated as a linear
function of all of the quantum numbers.

d) The matrix elements of P® corresponding to transitions between the
different characteristic functions of the packet must depend primarily on
the quantum number differences between the different states involved, being
practically independent of the absolute values of the initial quantum num-
bers through the range of the packet. This hypothesis is easily verified in
special cases, and the work of Eckart and of Van Vleck® on the asymptotic
relation between the matrix elements P (n,/, - - -, n,/;n,", - - -, /') and
the Fourier coefficients in Eq. (112) affords a sufficiently general proof.

e) Finally we must suppose that the amplitudes Cny,---,n, Which define
the packet vary quite slowly in absolute value with the quantum numbers
and have phases which like the energy values are linear functions of the
quantum numbers. Then if the corresponding indices 7/, n:'’; ny’, ny’’; etc.
differ by small integral values

Cnr’yoovmg? ZCnyt7 e .nf"ei[("1’_7‘l“)‘1+("1,~"2”)”+' -1,

We shall undertake no careful verification of the above assumptions
but shall comtent ourselves with exhibiting the relation between matrix
elements and classical Fourier components to which they lead. For a more
complete treatment of the problem the reader is referred to the paper by Van
Vleck cited in footnote 52.

Let

mn=m'—n'" ; k=1,2,3, ..., f.

81 The writers are indebted to Professor H. A. Kramers for assistance in setting up the
following scheme of reduction.

82 C. Eckart, Proc. Nat. Acad. Sci. 12, 684 (1926). J. H. Van Vleck, Proc. Nat. Acad. Sci.
14, 178 (1928). Strictly speaking, there is an arbitrariness in the values of the matrix elements
due to the arbitrariness in the phases of the characteristic functions. Thus if we multiply
each of the characteristic functions of the linear oscillator Y1, ¥z, * * * , ¥m, * * * by a correspond-
ing phase factor e*" where e, is arbitrary, we get a new set of normalized wave functions which
is just as good as the first set. This transformation of the characteristic functions multiplies
each of the matrix elements in turn by a phase factor of the form ei(tn=¢m), Consequently the

hypothesis d) holds only for a particular choice of the phase constants of the basic char-
acteristic functions.
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Then in view of the hypotheses stated above
P(E)(nl” ey nfl; nlu’ cee, 71«]”)32”’:"("/;"”)
(=) C @rilh) (O rkaElamk)t
—P (7'1) ) Tf)e 27; .

Thus Eq. (114) reduces to

P@&= 3 PO (ry, - -, T/)e(QWi/h)(ZkaaE/ank)t > Cogt oo ! oy im =1 pe
Tttty ny'yeee g’

Because of the assumed normalization of the wave packet and assumption

e) this reduces to the form

P@= 3 P@(r, -, T/)ei(z;fkik)e(2ri/h)(;‘rkaE'/ank)l (115)
71 A ,‘l’/

which is similar to that of Eq. (112). Now we have already shown in Part I,
Section 2, 4 and 5 that there is an asymptotic agreement between the values
of the energy differences predicted by the wave mechanics and by the Bohr
theory in the case of a linear oscillator. The same agreement is found in the
case of the hydrogen atom problem, and may be proved for the general case
of any conditionally periodic motion from the work of Van Vleck.®? But
according to' the Bohr theory the values of the classical frequencies
Vi, Ve, * * -, Vi, - - - are asymptotically equal to the corresponding coefficients
h~Y(0E/dn,) in the exponents of Eq. (115). Thus the frequency factors of
the terms in Eq. (115) are the same as the frequency factors in the corre-
sponding terms of Eq. (112), provided only that the wave packet of Eq. (115)
is adjusted to the initial conditions characteristic of the classical motion to
which Eq. (112) refers. The agreement between the matrix coefficients

P@(ry, -, T/)ei(zkfkék)zei(zk:fklk)lim [P (ny, « ey nfyny =11, oo, ) —15)]

of the one series and the Fourier amplitudes

P@, ..
of the other, can be proved directly by the method used by Van Vleck, or
can be inferred from the fact that the motion of the center of gravity of the
wave packet in configuration space is identical with the motion of the repre-
sentative point of the classical system in the same space. (Cf. Hamilton's
equations of motion, Section 6, 5).

SECTION 7. TRANSFORMATION THEORY

1. OPERATORS AND CANONICAL TRANSFORMATION

In the so-called “g-number theory” of Dirac the same non-commutative
algebraic machinery was used as in the matrix theory of Born, Heisenberg,
and Jordan, but the symbols which the latter authors use for matrices were
given a less specific interpretation. Dirac called these symbols “g-numbers”
to distinguish them from ordinary numbers or “c-numbers” which obey the
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usual commutation rule for algebraic multiplication. These g-numbers
were shown by him to be capable of representation by matrices in special
cases. The matrix representation, however, is subject to limitations; e.g.,
in case angles, or “angle variables”, are used as coordinates no corresponding
matrices satisfying the commutation rules (89) exist. Also if problems in-
volving continuous spectra are to be dealt with, one must use continuous
matrices or matrices of partly continuous character, and convergence difficul-
ties cause trouble.®® These difficulties led Born and Wiener® to introduce
operators instead of matrices for the discussion of aperiodic motions, and
later Schridinger,* Dirac, and Eckart’? identified the g-numbers with the
operators for the corresponding classical quantities as defined in the Schré-
dinger theory and as used in the preceding sections of this paper (except for
the difference in sign noted in the final foot-note of Part I). According to the
conventions adopted in this paper the operators associated with the co
ordinate ¢ and the conjugate momentum p are*

Oy= [q>< ] =0,%; 0p=—(h/270)8/dq=—0,*. (116)

where [¢X ] denotes the operation of multiplying by g. The starred symbols
represent the operators used by Schriodinger, Eckart, and Dirac. To avoid a
confusing inversion of the usual order of multiplication it will be convenient
in this section to use these latter operators and to adopt Eckart’s symbolism
for them. Thus Q is to replace the symbol [¢X] and P is to represent
the operator

P=0,*=(h/271)3/9q. (116a)

If 4 and B are any two operators and if f(¢) is any function of the ¢'s, then
the operators C and D which satisfy the identical relations

C/=Af+Bf; Df=A(Bf),

are called the sum of the operators 4 and B, and the product of A and B
respectively. We indicate these relations by the operator equations

C=A+4+ B; D= AB.

From the second of these equations it is obvious that the operators P
and Q satisfy the same commutation rules as the matrices. Thus, since

h [ 0 a¢] >
2milage™ ” aqid ™ 2mi

%8 The continuous and mixed types of matrix are sufficiently defined in the fine print on
p. 201 of Part I. The difficulties encountered in their use are briefly discussed by Born in his
Massachusetts Institute of Technology lectures “Problems of Atomic Dynamics,” Cambridge,
1926, at the end of Lecture 19, and by J. v. Neuman in his article “Mathematische Begrundung
der Quantenmechanik,” Géttingen Nachrichten (1927), p. 1.

% M. Born and N. Wiener, Zeits. f. Physik 36, 174 (1926).

5 E. Schrédinger, Ann. der Physik 79, 734 (1926).

8 P. A. M. Dirac, Proc. Roy. Soc. A112, 661 (1926).

57 C. Eckart, Phys.. Rev. 28, 711 (1926).

* These are the operators to be applied to ¥,. Cf. p. 44.
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for any function ¥(g), we have the identical operator equation

The other operator products are commutable and we can summarize the
commutation rules by the equations,

PiOi—QiPr=(h/278)b11 ; PrPi—PiPr=0:01—0iQr=0. (117a)

In developing the general transformation theory of quantum dynamics,
Eq. (117) may be taken as the definition of canonical operators in all ordi-
nary cases where the ¢’s assume continuous ranges of values.’” The operators
P, Q clearly obey the associative law of multiplication and the commutative,
distributive, and associative laws of addition.

The reciprocal or inverse operators of Q and P are defined by

Q= [ix] ; p=2r dg (118)
q h
in accordance with the rule
00-1=I=[1X] PP '=p'P=I=[1X]. (119)

With the aid of these conventions we can manipulate the P’s and Q’s as we
do matrices and can deal with any function of the P’s and Q’s involving only
integral powers of the former. The derivative of an operator function f(X)
with respect to an argument operator X can be defined in accordance with
Eq. (96) by the rule

=A-0\ T T — T ——

A

where 4 is the operator [aX ]. When applied to operators Py, Qi which obey
the commutation rules, this definition is equivalent to the equations

f(X+4 X
—“f( )= llm( (X+4)—1( )) (120)

3/ (P, Q)_gg
T [70s—0uf1=[0s,/] -
of(P,Q) _2mi

an P —[Puf—fPi]=[f, P:i]

There is a difficulty, however, in connection with the time derivatives
needed for the formulation of Hamilton’s equations of motion, since the opera-
tors P and Q are not functions of the time operator. Furthermore the Hamil-
tonian operator H(P, Q) is not a function of the time operator, so that so far
as the writers can see, the Hamiltonian equations can be applied to the
operators P, Q, H(P, Q) only as definitions of the operators Pand (.58 This

87 [n case any one of the coordinates gx assumes only discrete values, e.g. when the energy
is used as a coordinate, the operator (k/274)9/3gx has no meaning when applied to ¢(gq). Then
Eq. (117) fails as do the corresponding matrix relations (89).

8 Eckart assumes the Hamiltonian equations to be valid for suitable operators and then
defines the momentum operators Py and the time derivatives Py and O so as to reduce the
equations of motion to identities. Dirac does not discuss the question at all.
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means that the equations of motion no longer give any hold on the char-
acteristic value problem.

The operator calculus is useful, however, in dealing with coordinate
transformations, and to this problem we now address ourselves. Let the
Hamiltonian function of a system be given in Cartesian coordinates, and let
us suppose that we wish to make a change of variables. The simplest case is
that of an ordinary point transformation in which the old coordinates
%1, -+ +, %, are functions of the new coordinates qi, - - -, ¢» and are inde-
pendent of the momenta. Thus let

xl:fl(‘Il, ) qﬂ)
xz=fz(¢11, oty (In) (122)

The corresponding operator equations are simply

X1=1(Q1, - -+, Qn)

Xa=f2(Q1, - -+, Qn) (123)
Let the momenta conjugate to the original coordinates be designated by the
symbols $:° - - -, p.°% The corresponding operators are
Pd=(h/2n1)d/dxx. (124)
Similarly we denote the momenta conjugate to the ¢'s by ¢4, - - -, ps and
we define the corresponding operators by
Py=(h/271)d/dqx. (125)

It is a straightforward job of differentiation to compute the P;x%s in terms
of the P,’s by means of Eqgs. (122). The result will be of the form

Pl= ngl(Q)Pl=¢( 1, "7, Qﬂv ;Pl) R Pﬂ)' (126)

l

By substitution from formulas (123) and (125) we can derive an expression
for the original Hamiltonian operator in terms of the P’s and Q’s. We thus
accomplish the change of variables

H(P°, X)=H"[¢(P,Q),f(Q)]=H!(P,Q). (127)

The process just described is exactly equivalent to an ordinary change of
variables in a partial differential equation, so that the solutions of the
original equation®?

H(P*,Q"W*(x) = — (h/2wi)oy*(x)/0¢ (128)

when expressed in terms of the new coordinates become solutions of the new
differential equation

HY(P,Q)¥*(g) = — (h/2wi)dy*(q)/ ¢ (129)
% This is the conjugate of Eq. (1).
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with
Y*i(g) =y*[f(g)].

This change of variables will in some cases simplify the problem of de-
termining the energy levels and wave functions but it does not reduce the
problem in the new coordinates to a form equivalent to that which it had in
the original coordinates. This is evident when we note that by changing the
variables in the original normalization equation we obtain

fn/u//*dxl s dag= f\//Ttﬁ*TAdq‘ s dge=1 (130)
where A denotes the Jacobian or functional determinant of the system of
functions fi, - - -, fn with respect to the arguments gy, + - -, ¢x; i.€.,

I R
a(qr, ++y qu)

Thus the solutions of Eq. (128) still have a character which relates them to
the original Cartesian coordinate system. On this account we may designate
them with a subscript x in accordance with the notation of footnote 51,
Part I. The probability that the system has a configuration corresponding

to the volume element dxi, - - -, dx, of Cartesian coordinate space is
Y. *dx, - - - dx,, but the probability that it has a configuration correspond-
ing to the volume element dg; - - - dg. of the new non-Cartesian coordinate

space is ¥.'Y,*'Adg, - - - dg.. The functions ¥, have only conditional orthog-
onality in the g-space, and there is a further serious difficulty about com-
puting mean values of the p’s which will be indicated below (see especially
footnote 60).

To avoid these difficulties we introduce a new wave-function

Vo= A2, (132)

Since
YoboXdwy - o - dan = Ybo*dg, - - - dgn, (133)
it is evident that ¢, is the probability amplitude for the coordinate system
g1, * + *, ga. This equation also shows that the orthogonality of they.

functions in Cartesian coordinate space carries with it the orthogonality of
the ¢, in the g-space. Reference to Sect. 3, Part I will show that we can com-
pute the mean value of the momentum p; from the formula%®

—_— h 9
pp= f!/'q*(-zr—i 3;‘) Ydqi - - - dgn= f¢qu¢q*dql © e dgn. (134)
© k ©

60 P, is defined by an equation analogous to Eq. (93) of Part I. Its evaluation depends on
the determination of the corresponding probability amplitude which is to be carried through
by Fourier analysis as in Sect. 1, 8 of Part I. In order to carry out this analysis it is clearly
essential that we start with ¢,.
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The operator Py is by Eqgs. (125) and (90) clearly self-adjoint with respect
to the g coordinate system, and hence the values of p; given by Eq. (134)
are necessarily real.

To get the differential equation for this modified wave function we have
only to make the substitution of ¥ , A2 for .} in Eq. (129). We find

AN
AMPHNP, QA Yt = = (=) = -
2zi/ Ot

(135)

In other words the correct Hamiltonian operator to be used in connection
with the coordinate system ¢y, - + +, gn is

H(P,Q)=AYHI(P,Q)A™Y2, (136)

The matrix elements of H, with respect to the characteristic functions of
Eq. (135) are the same as the matrix elements of H° with respect to the
corresponding characteristic functions of Eq. (128),and we may conclude that
H , is self-adjoint with respect to the ¢ coordinate system.s

Both steps in the derivation of H, can be regarded as examples of canon-
ical transformations. These transformations are re-statements of the initial
problem in terms of new variables which, like the original ones, are grouped
in canonical pairs. In the general case these transformations involve a mixing
of the ¢’s and p’s like the contact transformations of classical mechanics.
Thus we may define a transformation as the setting up of a new problem by
means of a substitution of the form

Q'—F(P,Q) ; P*—G(P,Q). (137)

This converts H°(P?, Q) into H(P, Q). In case Eqgs. (137) are of such char-
acter that

h
Pka"'QkPk=“2___

i
if
h
PilQi'—Qi0Py° =2——, ’

i

we say that the transformation is canonical. In this case we may interpret
Py, as (h/2mi)d/dgy in accordance with Eq. (125), and then use H(P, Q) to
set up a Schrédinger equation for ¥/(g).

There are two standard forms of canonical transformation used in wave
mechanics. One of these is described by the substitutions

Q'—-T(P,Q) Q T(P,Q)
P'—>T-Y(P,Q) P T(P,Q)

in which T'(P, Q) is an arbitrary operator function and T-}(P, Q) is its
reciprocal. This substitution has the property of carrying over any operator

(138)

¢ In carrying through the computation of H, from H?° the formulas of Podolsky (Note 51,
Part I) or of Schrédinger (Note 50, Part I) can be used to advantage.
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function expressible as a power series in the P%s and Q%s into a correspond-
ing function of the new variables according to the simple rule

F(P°,QO)—-T-(P,Q)F(P,Q)T(P,Q). (139)
The converse substitution is obviously
Q-T(P°,Q0QTH(P°,Q) 5 PT(P,Q)PT-H(P,Q0). (140)

From the rule of Eq. (139) it follows that the transformation is canonical,
and it seems probable that it is in fact the most general type of canonical
transformation.®

The transformed Hamiltonian function has the form

H(P,Q)=T"(P,Q)H(P,Q)T(P,Q) (141)
and the new Schriodinger equation obtained from the transformation is
e, QEP.OTR. o= LD
This is equivalent to
P 0P, 00(@) == [T(P,00°@)] (143)
if T'(P, Q) is independent of the time. If we set
¥*(q) =T(P,Q*(9) ; ¥*(9) =T(P,QW¥*(g) (144)
Eq. (143) becomes identical with the initial differential equation
HO(P°,Q"W*(g°) = — (/2wi) 0y **(g")/ 3¢ (145)

except for the change in the symbols for the independent variables. It
follows that for every solution of Eq. (145) there is a corresponding solution
of Eq. (142) given by Eq. (144). It is assumed by London® that if y°(q?)
satisfies the boundary conditions appropriate to Eq. (145), the corresponding
solution of Eq. (142) will satisfy the boundary conditions appropriate to the
latter equation, but although this hypothesis is verified in various special
cases it needs further examination. If we accept this assumption we may
conclude that since the characteristic functions of Eq. (145) are derivable
from those of (142) the latter equation is in fact a restatement of the original
problem in different language.

It is worthy of note that by the use of a suitable exponential form for
the operator T'(P, Q) it is possible to pass from Cartesian coordinates to
spherical coordinates or to angle variables in which the region of definition of
the transformed functions ¥(g) is quite different from the region of definition
of the initial functions ¢°(g°).

¢ Jordan (Zeits. f. Physik 37, 383 (1926) ) has given a proof that the corresponding type

of matrix transformation is the most general type of canonical matrix transformation.
% F, London, Zeits. f. Physik 40, 193 (1926).
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As a simple example of this type of canonical transformation we may cite
the second of the two steps in the process of changing from Cartesian co-
ordinates to generalized coordinates described on p. 44. Here we have
T =A-%? and the substitution is

QoAUHQ)QAIHQ) =/
P—AVQ) PIAIQ),

which leaves the coordinate system unchanged.

A second type of canonical transformation is derived from classical
analogy. Let S(Q, P denote an arbitrary function of the operators Q and
P9, Let the variables Q and P be defined in terms of the operators Q° and
P? by means of the equations

0 0
=35(Q,P) : P___as(Q,P) ) (146)
apo 30

If we solve these equations for Q° and P° in terms of Q and P and sub-
stitute for each of the original variables its equivalent in terms of the new
ones, we obtain a new Hamiltonian function. Furthermore the operators
P, Q satisfy the commutation rules if they are satisfied by P° and Q° so
that the transformation is canonical. The proof of this last proposition is
that by a suitable use of exponentials it is possible to convert the transforma-
tion (146) into the form of the substitution (138).%4 By the same method one
can show that the Schrédinger equation based on the new Hamiltonian has
the same characteristic values as the original equation (128).

The first of the two steps required in changing over from Cartesian to
generalized coordinates gives a convenient example of a case in which

S(Q, P has a simple form. Using the notation of Egs. (122) and (123)
we set

QO

S= Zfl(Ql’ T Qn)Ploo (147)
1
Then
aS
Xi= = sy On (148)
Ly (01 Qn)
in accordance with Eq. (123). Similarly
A a h i) d
Pr=—-= _'Qplo=__ > a9, (149)

Q% 7 00k 2wt 7 Oqx 0x;

This is the inverse of Eq. (126). It shows that Pj is computed by a rule
equivalent to the partial differentiation in the discussion on p. 43 and thus
insures that the canonical transformation derived from Eq. (147) is an ordi-
nary change of variables.

% Cf. P. Jordan, Zeits. f. Physik 38, 513 (1926). A. Landé, Handbuch der Physik XX,
Kap. 8, p. 434. P, A, M. Dirac, Proc. Roy. Soc. A113, 621 (1927).
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In Article 5 of Sect. 6 we have shown that the classical Hamiltonian equa-
tions can be derived from the Hamiltonian equations of the matrix theory in
the limiting case of awave packet whose configuration is defined with precision.
This proof requires extension due to the fact that it does not rigorously cover
problems in which there is a continuous spectrum of E values but more
especially because matrices for a coordinate g and its conjugate momentum
P satisfying the commutation rules do not exist if either one is “quantized”
so that it takes on only discrete values.®® This situation arises when one uses
the action and angle variables so important in classical dynamics and in the
Bohr theory.

It would be natural to seek a means of bridging the above gap with the
aid of operator equations of motion paralleling the matrix equations of motion.
This method gets nowhere, however, on account of the impossibility of
differentiating the P, Q operators with respect to the time. The following
procedure, however, leads to the goal.

Let a system of generalized coordinates ¢y, - - -, ¢» be given and let ¢
denote the probability amplitude ¥, which goes with the system. The correct
Hamiltonian function H is then self-adjoint with respect to the coordinates
qi, * * -, gn. Let 0 denote an angular coordinate such that ¢ is periodic in
6 with period 2w. Consider now the time derivative of the mean value
of ei?

d . .
EL\&*GW‘M@ cedgn = L[w*eia,/,_l_‘l,*ew‘p]d,

; h
=§ﬂf [q/*ewz{(——_ 2, Q> ¢~¢ewH(L g, Q)¢*] dr.  (150)
h Je 2wi 9q 2wi 9q

Denoting the second of these Hamiltonian operators by H(P, Q) and making
use of the fact that it is self-adjoint we obtain

ié?"iﬁf Y[H(P,Q)e—e?H(P,Q) [¥*dg - - - dg (151)
dt rJ. ’ ’ i

This expression can be thrown into a more convenient form by means of the
theorem®

8 Cf. P. Jordan, Zeits. f. Physik 44, 1 (1927). The reader will readily convince himself by
actual multiplication that in the hydrogen atom problem the matrices for the azimuthal angle
¢ and its conjugate momentum M, as defined by Eq. (68) do not satisfy the commutation rule
of Eq.(85). The failure of what seems at first glance to be a clean-cut general theorem is to be
referred to the restrictions on the preliminary theorem of p. 8.

% To prove the theorem note first that

Pt b D o[22 BT,
27i 96 2wi 9 27
Obviously the theorem is true for F(Py, Q) = F(Q) and one can prove that it is true for the sum
and product of two functions if it is true for the functions taken separately. The extension to
sufficiently general cases follows by induction as in footnote 45. Cf. also P. A. M. Dirac, Proc.
Roy. Soc. All11, 281 (1926).
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k
PP et=etr (Pt Q). (152)
T
Identifying F(Ps, Q) with H(P, Q) we obtain
h
H <P0+""') Q> - H(Po,Q)
Vi

d_
—pil — 5 10 *d “ e d ne 153
a f,,'l/e h/2n Vg dg (153)

As a final step one can define the mean velocity associated with the angle
6 by the relation

Frf )

a

Then passing to the limit of a sharply defined wave packet, the right hand
member of Eq. (153) becomes equal to the pro_ciuct of the partial derivative
of the classical Hamiltonian into the function ¢¥. Hence

- 8H(p,q

0=——(;?::Q . (154)

)

This takes care of the difficult type of Hamiltonian equation for a coordinate
of the angle-variable type. The other Hamiltonian equations can be derived
in a similar manner by the transformation of the time derivatives of p;
and gy.

2. THE DiRAC-JORDAN TRANSFORMATION THEORY

Various gaps in the preceding discussion are bridged and loose ends tied
together by the Dirac-Jordan transformation theory.8”4® TUnfortunately
our exposition of their point of view must be very much abridged. In the
main we shall follow the fuller and more general treatment of Jordan who
has cast the essence of the matter in the form of a few postulates.

As the earlier sections of this paper testify, the quantum mechanics has
much to say about “probability amplitudes.” These are functions of co-
ordinates, or systems of coordinates, whose squared absolute values de-
termine the absolute or relative probability of the corresponding con-
figurations. The probability depends, of course, on the circumstances and
the circumstances which go with such functions are frequently labeled in the
symbol for the function. For example, in the case of a one-dimensional
oscillator, each of the characteristic functions ¥.(x, t) is a probability ampli-
tude for the positional coordinate x when the energy E is known to have the
value E,. The “circumstances” are indicated by the subscript #. In this
case the independent variable x has a continuous range of values, and accord-

87 P, A. M. Dirac, Proc. Roy. Soc. A113, 621 (1927).
% P, Jordan, Zeits. f. Physik 40, 809 (1927); 44, 1 (1927). These two papers will be re-
ferred to as Jordan I and Jordan II respectively,
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ingly |\//,.(x, t) Izdx measures the absolute or relative probability®® that x
has some value in the range from x to x+dx. In other cases the circumstances
are not to be described so simply. For example, the solutions of the Schré-
dinger equation in the form which contains the time derivative (I, 38)
depend on the initial conditions of the problem, which are fixed by the way
in which each system of the ensemble is prepared. Any mode of preparation
of the system may be regarded, however, as a specification of certdin gen-
eralized coordinates,”® and, following Jordan, one may formally attach sub-
scripts for these coordinates to the symbols for the probability amplitudes.
“Thus in the case of the one-dimensional problem one can label the wave
function Y(x, t) as Ys(x, ¢) to indicate that the initial conditions of the
problem are the equivalent of the specification of a suitably chosen “co-
ordinate” 8.

In case a coordinate B takes on a discrete series of values instead of a
continuous range, there is a finite probability for each possible value of 8.
The probability of this value is then given directly by the product of the
probability amplitude into its conjugate without multiplying in a factor dg.
As an example, consider the probability amplitude for the energy in the case
of a one-dimensional oscillator. This is the system of coefficients ¢,, or
¢(E,), obtained when one analyses ¥(x, ) into a series of characteristic func-
tions ¥.(x, £). The probability of each discrete energy value is c,c,* while the
probability of any energy range in the continuous spectrum is ¢(E)c*(E)dE.™

As examples of probability amplitudes in problems involving more dimen-
sions we cite the characteristic functions of the hydrogen atom problem ob-
tained by separating the variables in spherical coordinates. These give the
probabilities of the positional coordinates when the component of angular
momentum along the z-axis, the square of the total angular momentum,
and the total energy are given predetermined values, The functionsy/(¢,x, v,2)
and Q(¢t, Pz, Py, P.) met with in Sect. 1, 8 of Part I are probability amplitudes
for position and momentum respectively for definite but unspecified modes of
preparing the system.

Jordan adopts the symbol &, ,(8’, ¢') for the probability amplitude of

the coordinate system B(=pi, - - -, B;) with respect to the coordinate
system q(=gq1 -+ *, gs); that is, ®, ,(8’, ¢') is the probability amplitude for
the coordinates Bi, - - -, By when the coordinates gi, - - - g, are given

specified values. Here the argument symbols are primed in order to dis-
tinguish the numerical values 8;’, g:’ which the coordinates take on, from
the symbols By, gi for the coordinates themselves. The subscript a stands for
the set of momenta conjugate to the coordinates 3, while p stands for the
momenta conjugate to the g’s.”

69 The former in case y¥.(x, £) is normalized.

70 Here “generalized coordinate” means a function of the Cartesian coordinates and
momenta.

1 Cf. Eq. (I, 85) and the last paragraph on p. 214 of Part I.

72 The momenta are not uniquely determined by the corresponding coordinates and the
probability amplitude varies from one momentum system to another although, as Jordan
proves, l(ba,,(ﬂ'. ¢') |* depends only on the 8’s and ¢'s. Cf. Jordan 11, p. 20.



QUANTUM MECHANICS 51

In normalizing the probability amplitudes we have to sum over all
discrete values of the arguments and integrate over all continuous ranges.
This process we indicate by the symbol 3 which degenerates into a simple
summation sign or simple integration sign in special cases. As an example
of the use of the symbolism we may take Eq. (I, 90) which gives the expan-
sion of an arbitrary function of «x, y, z in terms of the space factors of the
hydrogen atom problem. The left hand member is a possible probability
amplitude for the positional coordinates and the ¢’s constitute the corre-
sponding probability amplitude for the energies, so that the equation can
be written in the form

q’pz.pq(x»Q) = Z q’p,.pg(x: E) q’pg.pq(Ea‘I) (155)
E

where x stands for the x, ¥,  coordinate system, ¢ stands for an unspecified
set of coordinates whose values fix the function f(x, v, 2), and E stands for
the coordinate system E, I, m which defines the set of orthogonal functions
employed in the expansion. (The momentum conjugate to the energy itself
may be identified with the time, but in this case we use the symbol pg
since we have used E for a system of coordinates and not for one coordinate
only.) The phrase “system of coordinates” has several different meanings in
the quantum mechanics. The simplest type of coordinate system is a set of f
parameters qi, - - -, ¢ which are independent functions of the Cartesian
positional coordinates x3, - - -, x;. Canonical transformations, however, lead
to the introduction of coordinates which are independent functions of both
the Cartesian coordinates and their momenta. The transformation theory
requires a further modification of this conception in that it treats the values
of g1, - - -, gr at each instant of time as forming different coordinate systems.
Thus the determination of the coordinates at t=¢; from those at t=1#, is
regarded as a coordinate transformation.

In carrying out the normalization we need in some cases an imaginary and
magical function 8(x) first introduced by Dirac.®” This is defined as a function
which vanishes when x is not equal to 0 and whose integral over a range in-
cluding the point x=0 is equal to unity. Strictly speaking, no such function
exists, but we use the symbol as a convention to avoid circumlocution.
The justification lies in the Dirichlet integral formula

+00 +a
lim dxF(x) dy e**i=v=F(0) (156)

a0 o —a

If we define 8,(x) by the formula

+a
da(x) = dy evizy (157)
we see that when a is very large the properties of §,(x) approach those of
the imaginary function §(x) although we may not actually allow a to become
infinite due to the non-convergence of the integral. The existence of the func-
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tion d.(x) makes it possible to carry through many calculations formally
just as if there were a genuine function 6(x), without making errors.”

For use in many-dimensional problems, Jordan has extended this con-
ception by introducing a function A(8’ —B’’) of the pair of points 8;’, 82/, - - -,

By and B/, - - -, B/’ in B-space. This function is defined to have the
properties
A(ﬂ/"—B”)=0 unless 611=Bl,,; BZ,=62”; ‘‘‘‘ Bf'=ﬁf”-
TAE -8 =1. (158)
BI

In one dimension it reduces to the Weierstrassian symbol™ 8, if the argu-
ment (3 takes on discrete values, and to the & function of the preceding para-
graph with x =3"—p"" if § assumes continuous values.

By the aid of this symbol one can state the normalization and orthogon-
ality relations for probability amplitudes with both discrete and continuous
values of the arguments in the single form

> % p(B,0) Barn(B”,4) = A —B"). (159)
ql

With these preliminary ideas in mind, we proceed to state Jordan's
fundamental assumptions in the following manner:

(I) In the case of any two systems of coordinates B, g it is possible to define
conjugate systems of momenta o, p such that there exists a probability amplitude™

Pa,»(8',9)

having the property that if we perform the operation 3 g on the product
®,,8, ¢') Pap*(B’, ¢') over any region in B-space we obtain the relative or
absolute probability of the corresponding configurations of the system (B) for
the given values of the coordinates q.

(IT) If we have the probability amplitudes for two coordinate systems with
respect to a third we can determine the probability of the two with respect to one
another by the rule

¢a.p(ﬁ',0')=f¢a 28,0)®y.6(q,Q) . (160)

This rule is exemplified in Eq. (155) above and in Egs. (42), (43), and
(87) of Part I.

(ITII) The probability amplitude of a system of coordinates B with respect
to the conjugate momenta o is™

7 Cf. E. H. Kennard, Zeits. f. Physik 44, 326 (1927).

7 Cf. Sect. 2, 7 of Part I.

% The probability amplitude connected with such a pair of coordinate systems must, of
course, be independent of the particular problem under discussion; i.e., it must depend only on
the relations existing between the two systems of coordinates.

76 This rule leads to the identification of ®q,(8’, ¢’) with the wave function which we would
have indicated by the symbol y*(8) in our old notation.
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271 4
®,,5(8',a’) =const X exp [<7> Eﬂk'ak’]. (161)

k=1

This assumption re-states for the more general case the conclusion reached
in Sect. 1 for an individual particle, that the momenta corresponding to a
Cartesian coordinate system play the part of wave-number components for
the waves in coordinate space. It is almost, but not quite, equivalent to the
assumption of Eq. (I, 123), since it is applicable in case either 8 or « takes on
a discrete range of values, while Eq. (I, 123) loses its meaning if the coordin-
ate ¢ has only discrete values. It can be regarded as a convenient definition
of the relation existing between a coordinate and its canonically conjugate
momentum. The subscripts on the symbol ¥, _,(8’, o’) indicate that if the
o's are momenta conjugate to the 8’s, cohversely if we treat the a's as coordin-
ates then the B’s with their signs changed become the new momenta. This
reciprocal relationship between coordinates and conjugate momenta is a
characteristic of the classical theory.

(V) If ®up (B', q') is the probability amplitude for the coordinate system
B with respect to the system q, the corresponding amplitudes for the system q
with respect to the system B is ®%, (8, ¢'). Thus

®,..(¢",8) = ‘I’a‘.‘p(ﬁ”q,) . (162)

For the case in which the ¢'s are canonically conjugate to the 8's this rule
is merely a corollary on (III).

(V) If two canonical systems of coordinates B, o and B, & have a common
coordinate 3= B, the amplitude Paz (B, B') contains the factor A3, —By’). Thus

®aa(8',8") =AB—B/ WP ,B) if B1=P. (163)

This axiom is probably derivable from the others.

These probability amplitudes have certain of the properties of matrices,
viz., they are functions of two sets of variables which are equal in number,
and furthermore the mode of computing the value of any of these functions
for a particular set of values of the variables from related probability ampli-
tudes (Cf. Eq. (160)) is formally similar to the rule for the multiplication
of matrices (Cf. Eq. (69)).” On this account Jordan introduces the symbol
®,,#7 for the whole system of values ®,,(8’, ¢’) and using matrix notation
replaces Eq. (160) by

‘I’aPBQ = <I:'apﬁ qq:'pP @, (165)
Eq. (165) is related to (160) just as the ordinary matrix equation
C=AB
is related to the equation
Clm,n)= Y A(m,k)B(k,n).
3
77 The probability amplitudes differ, however, from the matrices of Sect. 6 in that their

rows and columns refer in general to different things (8’s and ¢'s respectively) instead of to the
same set of variables. Jordan calls them “matrices of the first kind.”
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Equation (162) now takes the form
Ppa® = Payf ¥, (166)
From Eq. (165) we deduce that
Pao Papf 1= P, (167)

which means that as ®,,#? is arbitrary, ®,.’* must play the role of an unit
matrix. Explicitly written out this becomes

®a,a(8,8") =A(B'—B").
The probability that 3=g8’, when 8 is by hypothesis equal to 8'’, is zero
unless 8/ =3'. Furthermore it follows that

q;apﬂqcppam‘?: q)paqﬁq)apﬂq=1. (168)

This proves the orthogonality and the completeness™ of the set of probability
amplitudes, for explicitly written out it yields

> 80 n(8,0) s * (B¢ =B —B"), (169)

and
D@ p(B,9) ®a n* (B4 =A' —"). (170)
&

In addition to the probability amplitudes, the development of the theory
requires the introduction of linear operators for the various dynamical
variables. The differential operators used hitherto are unsatisfactory, how-
ever, since they cannot be applied to functions in which the independent
variables take on discrete values. Hence Jordan invents integral operators
to take their place.

The fundamental characteristic of ‘the operators previously employed
is indicated by the much-used equation

0( 3—)w<>~a¢<) (171)
a?:aq a\g) = ¥a\q

whose solution is to give a probability amplitude for the ¢’s corresponding to
a fixed value of @. In terms of our present notation we may require of the
operator for a dynamical variable 8; that it shall have the property

08, %5a(g",8") =B ®palg’,8") . (172)
An equally satisfactory operator is one which transforms a function of ¢’/
into a function of ¢’ according to the rule

Oﬁ1q’pu(q” ,B8") =B1" ®5(q",8"). (173)

78 Cf, Courant-Hilbert, Chap. 11, Article 1, 3 Eq. (9).
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An integral operator with this characteristic is"
Oﬂxsqnﬁlq' = Z Zéaﬁ*(ﬁ,aq’)Bl,¢aP(ﬁ’)q”) e (174)
ﬂl qll

as the reader can easily verify. (The notation .81, is used to indicate that
the operator carries a function of ¢’/ into a function of ¢’.) .

In special cases this operator reduces to the corresponding operator of
Sect. 7, 1. Suppose, for example, that we identify 3; in Eq. (174) with ¢i.
Then we obtain the operator for ¢ with respect to the probability ampli-
tudes of the system of coordinates to which ¢; belongs. Eq. (174) reduces to

olie= 20 280 (d" )" (g g - -
qll’ qll

—_—— (175)
— E ZA(QW"'Q’)(IIHIA(Q'"'—QH) v

'’ g
When applied to any probability amplitude with argument ¢/, say ®,.(¢"’,8’)
this changes ¢’/ into ¢’ and multiplies by ¢’. Hence it is equivalent to the
operator Q of Sect. 7, 1.

Consider next the operator for one of the momenta p; with respect to

the same coordinates

e

Z‘p—q.p(?,:q')?ll'b—qp(p’:q”) ce

o
el Gr-ap A (g —g0") - - - AlgS —g/) - . (176)

g’ ;p! g = -_Z—-
»'

=2
'

q'’

Evidently the operator merely substitutes ¢x’ for ¢i’’ for every value of the
subscript & except k=1. In case ¢; and p, both vary continuously it can be
proved from Dirichlet’s integral that

h a@ o I/-; /
o' P10 ®p.a(g”,8") = const. X (2——) [_p_@__@] . Q77
Q' 'e=q’

T ’l: 3 Q1"

In this case also we see that the integral operator is equivalent to the cor-
responding differential operator P of Sect. 7, 1.

Consider next the matrices of the type used in Sect. 6 formed from the
operator 81, and the probability amplitudes ®, ,(¢"’,s’’) and &, ,(¢’, u’).
In analogy with Eq. (68) we define the element (u’, u’’) of this matrix as*

B ") = Z®p (g 1) o Bro®oalg” ). (178)
=

7 We here define the operator by means of the probability amplitude where in other cases
we have defined the probability amplitude in terms of the operator. This procedure is a con-
sequence of the fact that probability amplitudes for canonically conjugate quantities are treated
as fundamental in the present theory.

* The use of the wavy line in Bi(u’, u'") does not refer to a transposition of the indices
u’ and p’’ as in Sect. 6, 1 but is used merely to distinguish the matrices of Eqs. (178) and (179)
from those of (180).
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Hence
El(l"/ ) IJ'”) = E-@ar*(ﬁ,>“')ﬁl,¢ar(8,,IJv") . (179)
L

The second of the above expressions for El(,u’, u’’) becomes the analog of
Eq. (1, 93) if we identify u’ and p’’. Thus this very general type of matrix
formula contains within itself both the matrix elements of Sect. 6 and the

mean value formulas of Sect. 3.
Finally, if we form the matrix Bi(q’, ¢’’) of _.,81,, with respect to the co-
ordinate system ¢,  we obtain

Bi(g',q") = 2 %ar*(8',9)81 Bar(B',4"). (180)
ﬁ’
Comparing with Eq. (174) we see that
o By = 2B ,q") . (181)
qll

Thus the operator of 8, with respect to the coordinate system ¢, p is equiva-
lent to a linear transformation whose matrix is Bi(q’, ¢'").

Matrices of the type Bi(u’, u’’) and Bi(g’, ¢'’) are called “matrices of the
second kind.” 1f we introduce the matrix

8PP =p1'A(B'—B") (182)
we can express Eq. (180) in the form
By= (8., )18 ®ayf ) . (183)

We call 5,8 the matrix of 8; with respect to a system of coordinates of which
it is itself a member, while B; is the matrix of $8; with respect to the coor-
dinate system ¢, . This means, for example, that the probability amplitude
Yum(x, v, 2) in the hydrogen atom problem can be interpreted as the
matrix of a transformation which carries the matrix of x (or y or z) with re-
spect to an x, ¥, 2 coordinate system over into the matrix of x with respect
to the “coordinate system” #, I, m.%° Thus (for B;=x) Eq. (183) goes over
into the form

X!V 'y 1 m') = f\0:,,,,,,,,,,(3;,y,z)aa[/,,,pm:(x,y,z)dxdydz. (184)

If the matrix B, in Eq. (183) is known, we can use the equation to deter-
mine the probability amplitude ®.,#9. Multiplying both sides in front by
®,,f7 and writing out the explicit expression for the matrix element we

obtain
8 This use of the quantum numbers as a “coordinate system” is due to Dirac (ref. 67).

More correctly we should say that the coordinate system consists of the set of dynamical
variables determined by the quantum numbers; e.g., the total angular momentum, etc.



QUANTUM MECHANICS 57

—iq)ap(ﬂ,,q”)Bk(qnyq,) —_ -iﬁklA(ﬂl_ﬂlI) Qap(B” ,ql)
P

& (185)
=ﬁk,¢“?(6, )‘I') .

If the coordinates ¢ have discrete spectra only, Eq. (185) is a homogeneous
linear equation with the elements of the matrix ®,,8¢ as unknowns. If we
allow ¢'’ to take on all possible values we obtain an infinite set of simul-
taneous linear equations of which Eq. (I, 135) may be regarded as a special
case where (8 is identical with the energy.

On the other hand, the above equation can be reduced, under suitable
circumstances, to differential form. As By is Hermitian,

2-Bi(g,q") @palg” ,8') =B Bpalq’, ) . (186)
pry
Define o By, as the operator

2 A" —¢") 2B, q) .
q'’ q’

¢Biy is equivalent to .8k, or to %Bk(q’; q'’) except that it converts a
function of ¢’ into a function of ¢’. This reduces Eq. (186) to the form
{ Bry =B} ®pulg’,8)=0. (187)
Finally, if the g coordinate system is continuous, so that
B 9 ,
G,qu,=;; 5(;,, q,qu.=[qk X]

andif By, =gr(, iy oPr,), We have

{gk (q' zim a_}> —ﬂk’}%a(q’,ﬁ’)=0. (188)
This is paralleled by
/2 /2]
{n(e 55 aq,>+'21r—i g =0 (188)

in case 8 has a continuous range of values. Here, fi(g, p) =ay. Suitable
specialization of Eq. (188’) leads to the differential equation for Q referred to
on p. 173 of Part I. If B; is the energy and gi(g, p) is the Hamiltonian, (188)
is the Schrédinger equation without the time. In general it is identical with
Egs. (I, 124) and (171).

The wave functions in the second Shcrédinger equation are probability
amplitudes associated with the transformation from a fixed coordinate sys-
tem £ to a variable coordinate system g,. The problem of determining ¥(g, £)
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from the initial conditions as defined by ¥ (g, 0) is the problem of passing from
®(qo, £) to P(q:, £), which is solved by use of the formula

®(g, £) =§U«I><qt, 70)®(go, £)

if ®(q:, ¢o) can be found. Kennard™ has discussed the problem in detail and
has proved that if ®(g., £) is formed in this way it is then a solution of an
equation which differs from Eq. (I, 38) only through a term which is of no
physical importance.

Eqgs. (185), (186), and (187) can be paralleled by corresponding equations
in which the matrix of 8; (.e., By) is replaced by the matrix of the momentum
oy conjugate to 8. At the same time we have to replace the factor 8’ on
the right by ,ax, [Cf. Eq. (178)]. Then we have, for example

LAy —parg*} Euulg’,8) =0. (187a)

This equation, regarded as a functional equation for the probability ampli-
tude ®,.(¢g’, B’) has the same solutions as Eq. (187). The equivalence of the
solutions of the two equations is an expression of the fact that 8, and «;, are
canonically conjugate quantities. If we now, starting with an arbitrary set
of canonically conjugate coordinates and momenta (g, #) having continuous
spectra, form arbitrary operator functions®

q,qu,=gk(q,Qk¢, ;q,qu,)

q/Akql =fk (q:(qu, ;qlpkql) ]
we can set up a corresponding pair of equations of the form of Eq. (187) and
(187a).2 If the spectra for the §’s and o's can be defined such that these
equations have a simultaneous solution, then the coordinate system (B3, a)
thus defined is canonical. This rather formidable method of testing a set of
proposed transformation equations like (189) reduces to the one previously

used if the B spectrum, like the p and ¢ spectra is continuous. Then (187a)
goes over into

}k=1,---,f (189)

{ <' " a)+h a}@(' =0 188a)
R\ a¢')  2xi 0By w(,8)=0. (188a

and the condition for the identity of the solutions of (188) and (188a) be-
comes®
Segr—grfr=1. (190)

A canonical transformation can also be set up by means of the matrix
equations

§1=(Ppa?)'qi(Bpa ¥)
D= (‘I’pa Qﬂ)_lﬁk( D pa )

81 Cf. Egs. (137).
82 The operator 4 ax*y is defined by Eq. (176).
83 Cf. Jordan I, §5.
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where ®,,% is an arbitrary function of the ¢'s and f's satisfying the
conditions (166) and (168). If the transformation is to preserve the Hermitian
character of the Hamiltonian matrix (which is equivalent to keeping the
Hamiltonian operator self-adjoint), it is necessary that &®,,% be independent
of an interchange in the numerical values of the ¢’s and #’s.

For further details and applications of this beautiful theory the reader is
referred to the original papers of Dirac and Jordan.®

ERRATA
Epwin C. KEMBLE

Physical Review Supplement 2, October, 1929
Page 174, last line. The right hand member of the equation should be multi-
plied by dx.
Page 192, Eq. (97) should read
ST oWa* +¥ai*)dx dy dz=2_ [[[o(Q105* +Q201*)dp.dp,dp..
Eq. (98) is best derived by means of Eq. (91) of Part II.
Page 193, Eq. (102). The sign of the right hand member should be reversed.

Page 193, line 13 from bottom. Read (94) and (96) for (94) and (95)
Page 203, Eq. (137) should read ) |cxa [2=1.
k

4 Cf. also D, Hilbert, L. Nordheim, and J. V. Neuman, Math. Ann. 98, 1 (1927).



