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A. INTRODUCTION

A VERY common problem in physical science
is that of the representation of a set of

experimental data by means of a smooth curve.
For many reasons it is frequently desirable to
use for this purpose an analytic function, and to
obtain such a function in explicit, numerical
form. Of all the functions thus used in science,
the most common is undoubtedly the poLynonziaL

(often denoted a rational integral function). The
truth of this last remark is evident from the fact
that the arithmetic average of a set of n un-

weighted observations (or the weighted average
of a set of weighted observations) represents the
least-squares' fitting of the observations by
means of a polynomial of zero degree. Similarly
the commonly found, linear relation between x
and y is, of course, a polynomial of the first
degree.

Methods for obtaining the least-squares' solu-
tions of zero- and 6rst-degree polynomials are
well known and in frequent use. The general
method for obtaining the least-squares' solution
of a polynomial of any degree, by means of
determinants, is also rather well known. But
the numerical labor involved in the case of poly-
nomials of the third or higher degree is so great
that such a solution is rarely attempted.

If the observations are eglaLLy spaced along
the abscissa axis, and are of equal weight, the
situation is very different. ' Such a regularity
permits an enormous simplification of the neces-
sary process, and the least-squares' fitting of a
polynomial of the fifth or even higher degree can
actually be carried out with reasonable easy and
accuracy. One might naturally anticipate such a
situation, and hence it is not surprising that a,

number of important papers have been published
on the subject, A partial list of such material,
alphabetic by author, is given in Section H.

The history of the matter is, however, a most
curious one. To the writer it illustrates a more or
less inevitable result of the great expansion and
specialization of science that ha, s been evolving
now for a number of generations. No scientist
has the time to read even a small fraction of the
papers that might actually be of service to him in
his own investigations. What is still more un-
fortunate is that increased specialization of sub-

ject has been accompanied by increased special-
ization of symbols and nomenclature, so that it
is often difficult to follow intelligently papers in
6elds other than one's own.

In the case of least-squares' fitting by means of
polynomials, most of the fundamental work has
been done by mathematicians. Some has been
done by statisticians who, incidentally, carried
out such investigations because they desired to
make practical use of the results. But, in general,
mathematicians do not make actual numerical
use of their equations, and often leave them in a
form not convenient for numerical use. On the
other hand, the physical scientists, who could
use the results with great pro6t, all too often are
quite unaware of the existence of such material,
and have difhculty in perceiving its true sig-
ni6cance, even when they do happen to notice
it in the literature.

The history of the present subject is indicated

briefly at scattered points in the paper, and at
the end (Section G) certain alternative processes

' We assume here that there is no experimental error in
x, or at least that such error is negligibly small in compari-
son with that in y. When both coordinates are subject to
significantly large errors, .the corresponding least-squares'
solution becomes extremely complicated in the case of any
function more complex than a polynomial of the first degree.
See W. E. Deming, Phil. Mag. 11, 146 (1931).
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are discussed. But in order not to confuse the
reader who desires to. know merely what the
pertinent results are, and how they may be used,
the main body of the present paper is devoted
primarily to the presentation of such explicit
information, with as little interruption as possible
in the form of historical remarks.

The particular methods of calculation pre-
sented here are believed by the writer to be the
most advantageous for use by physical scientists.
It must, however, be understood that there are
many possible alternative methods and those
who have proposed such alternative methods
may have quite diverse opinions on the matter.
Certain of these alternative methods, as just
noted, will be considered near the end of the
paper, when they can be compared more con-
veniently with the methods advocated here.

The writer's previous work in this field con-
sists of two papers, one published in 1919 on the
least-squares' fitting of a second-degree poly-
nomial, and the other, written jointly with
Dr. J. D. Shea, in 1927, on the least-squares'
fitting of a polynomial of any degree. ' The
writer admits with regret that when these pre-
vious investigations were carried out, he was
totally unaware of the earlier work in the field.
Since then numerous papers along this general
line have been published and from such papers
one may collect an almost complete set of im-

portant references. But it should be pointed out
that, in spite of the fact that many dozens of
papers on this subject are now in print, a new

paper still appears occasionally, written by a
person who, like the writer twenty years ago, is
obviously in ignorance of all previous work.

Partly as a result of the information given in
certain papers, and partly as a result of recent
new investigations by Dr. Weinberg and the
writer, 4 it is now possible to modify and extend
the material of the Birge and Shea paper in a
substantial way. . In particular, Dr. Weinberg and
I have been able to get a. simple method for
evaluating the probable errors of all quantities

' R. T. Birge, Phys. Rev. 13, 360 (1919l.' R. T. Birge and J. D. Shea, Univ. of Cal. Pub. in Math.
2, 67—118 (1927). These results were first presented to the
American Physical Society in 1924 (Phys. Rev. 24, 206A,
{1924)).

of interest. No general method for doing this
has heretofore been presented in the hterature.
Thus the purposes of the present paper are two-
fold—(I) to reintroduce into print the main
facts and tables of the Birge and Shea method'
since the paper itself has long been out of print,
and (2) to present in detail, with certain neces-
sary new tables, important modifications and
extensions of the Birge and Shea method.

The detailed description of the modified Birge
and Shea method is presented in Section C, and
a brief discussion of an alternative method,
which yields the desired results explicitly in
terms Of finite diEerences rather than in terms of
observations, appears in Section D. Sections B
and E contain details on two relatively ele™
mentary problems that appear, however, with
great frequency in scientific work.

In Section F a specific problem is worked out
in complete numerical detail in order to illustrate
the methods presented in Sections C and D.
A summary of these details constitutes Section
FS. The main tables (XII, XIII, XIV) needed
in the work constitute Section I, and the re-
maining tables, all of them brief, are scattered
throughout the paper. It is therefore hoped that
the reader who is not interested in the theoretical
aspects of the subject will be able, from Section F
alone, to understand the various calculations
that are necessary in order to obtain the desired
results.

As an illustration of the character and value of
the information that can be obtained with truly
remarkable rapidity, by means of the methods
about to be presented, we consider the variation
of the electrical equivalent of heat with tempera-
ture. This variation, which is merely that of the
specific heat of water with temperature, was
measured with great precision by Jaeger and
Steinwehr' in 1921, and their experimental data
were analyzed by the writer' in 1929 in connec-
tion with the determination of the most probable
value of the electrical equivalent of heat. Addi-
tional information can now be obtained from
their experimental material, and the details are
as follows.

'
4 R. T. Birge and J. W. Weinberg, Phys. Rev. 68, 106A

(1945); also J. W. Weinberg, Phys. Rev. 62, 304A (1942).
The theoretical contributions of Dr. steinberg are sum-
marized in Section J of the present paper.
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Jaeger and Steinwehr measured 67 values of
the electrical equivalent J', at mean tempera-
tures ranging from 4.75'C to 49.60'C. Since the
various temperatures are spaced at unequal
intervals, the writer in 1929 first collected the
data into 19 points, spaced at 2.5'C intervals,
from 5' to 50'C. This process, denoted by
astronomers as the "formation of normal places, "
was carried out with the utmost care, and the
resulting 19 points, all of equal weight, can be
taken as a reasonable reproduction of the original.
data. Jaeger and Steinwehr fitted their data to a
second-degree polynomial and then interpolated
on this curve, at t = 15'C, to obtain J'15 ——4.18420
int. joules. But as the writer has shown, ' at
least a fourth-degree polynomial is required for
the proper representation of their data, and with
such a function one obtains J'~5 ——4.1.8327 int.
joules. As already noted, it was not possible in
1929 to calculate in any simple way the probable
errors of these results.

The best criterion of the fit of any function to
the experimental data is furnished by the magni-
tude of P v', i.e. , the sum of the squares of the
residuals of the several (unweighted) points. By
the use of the methods to be described one can
obtain with comparative rapidity the Q v' for a
least-squares' polynomial of any degree, and in
the process one obtains simultaneously the value
of P o2 for the les.'st-squares' polynomials of all
lower degrees. Beginning then with the zero-
degree solution and going up to the fifth degree
the respective values of P it' for the 19 points
just described, in terms of 10 4 joule as the unit,
are (0) 69,812.841, (1) 36,908.491, (2) 1464.027,
(3) 15.510, (4) 1.051, (5) 0.084.

Thus the value of P v' is reduced from
1464.027 to 1.051 by the use of a fourth-degree
polynomial, in place of one of only the second
degree. A further improvement can apparently
be made by the use of the fifth-degree solution,
but the improvement is actually illusory because
of the uncertainty introduced in connection with
the reduction of the observations from 67 to 19
points. This uncertainty turns out to be of the
same order of magnitude as the probable error
of the fourth-degree solution.

6 W. Jaeger and H. v. Steinwehr, Ann. d. Physik 64, 305
(1921)'.

6 R. T. Birge, Rev. Mod. Phys. I, 1 (1929).

TABLE I. Summary of treatment of data used in
determining J'.

Degree
of

func-
tion

J'» (cokie. )
(10 4 joule) (10 4 joule)

Probable
error

(10 4 joule)

41,813.62
+37.99

41,851.61
—8.08

41,843.53

+19.08

—18.91

—10.83

&9.64

A9.23

+2.02

—9.89
41,833.64

—0.894
41,832.746

+0.010
41,832.756

—0.94

—0.046

—0.056

+0.262

&0.087

&0.021

We next calculate the value of the function,
at t =15'C, for the fifth-degree solution. Such a
single value can be obtained directly, inde-
pendent of any other value and, as in the case
of the evaluation of g o', its determination
furnishes simul/aneously the corresponding value
for all least-squares' polynomials of lower degree.
The experimental point used here for 15'C, is
41832.70&&10 4 int. joules, and this value is
used in calculating the respective residuals (v).
Finally, we can easily evaluate the probable error
of the function, at t =15'C, for each of the least-
squares' polynomials. All of these results, to-
gether with the change in the calculated value
with changing degree of the polynomial, are
given in Table I.

Thus the actual change in the calculated value
of J15', in passing from a second-degree to a
fourth-degree polynomial, is 10.78X10 ' joule.
This change is not only 5.3 times the probable
error of the second-degree solution, but is 124
times that of the fourth-degree solution. Hence
one sees clearly the unreliability of the value of
J15' based on a second-degree least-squares'
fitting of the data, as carried out by Jaeger and
Steinwehr, and the very great improvement re-
sulting from the use of a fourth-degree solution.
One is, of course, considering here only the purely
accidental errors of the experiment, as shown by
the "scatter" of the points from a smooth curve.
It is only such accidental errors that can be
revealed and measured by any purely mathe-
matical treatment of a single set of data.
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As one further illustration of the use of the
material about to be presented, let us consider
the determination of the acceleration of gravity
by means of.an Atwood's machine. In this case,
the second difference of points equally spaced in
time should be constant. One then naturally
first calculates a difference table, in order to
determine whether the second differences are, in

fact, constant, . except for statistical variations.
Let us suppose that one thus obtains 10 second
differences T.hen a properly weighted average of
these ten differences gives the value of 2!am,

where a2 is the coefficient of x' in the least-
squares' solution of the data by means of a
second-degree polynomial. From Table XIV of
this paper, one finds that the respective weights
8 2 for the 10 second differences (or 12 observa-
tions of position, i.e. , I=12, t = 2 of Table XIV),
are 55, 135, 216, 280, 315, 315, 280, 216, 135,
and 55. The sum of these weights (denoted I.2)

is 2002, as also given in the table. The series of
weights is always symmetrical about the center,
and hence only the last half of the values appears
in the table.

The table gives also the proper set of weights
for any number of observations (m) up to 30,
for the highest differences not 6nly of the second-
degree polynomial (3=2), but also of t =1, 3, 4,
and 5. If, as has been done only too often in

practice, one takes merely the arithmetic average
of the second differences, one thereby cancels out
automatically all but the first two and last two
observations of position. So far as I know, a table
such as Table XIV of this paper has not been
published previously. 9/ith its use, the least-
squares' value of the quantity sought (i.e. , the
coefFicient a& of x' in a polynomial of degree t),
can be obtained almost as rapidly as a value
that admittedly fails to make any use of the
major portion of the available experimental
data.

The probable error of any coefficient a& may
also be evaluated, but as shown in detail in
Sections D and Fi, the calculation of the prob-
able error is always a more involved process than
the calculation of the coefficient itself. The com-
plexity arises primarily from the fact that the
probable error in any coefficient, whether of the
highest degree term of the polynomial or of any
other term, involves the value of a& not only for

t=j (the degree of the polynomial) but for all
values of t from 0 to j.

B. EXACT FITTING OF DATA

The main purpose of this paper is to discuss
the least squa-res' fitting of data by means of
polynomials. A special case to which the sug-
gested procedures still apply is that in which the
number of observations just equals the number
of undetermined coefficients (i.e. , /+1 observa-
tions fitted to a polynomial of degree t). In that
case each observed point is exactly fitted by the
calculated function, all residuals are zero, and
the question of probable error does not. enter.
If the main purpose of setting up such a poly-
nomial is to use it for interpolation, then, the
best method is undoubtedly to employ one of
the well-known interpolation formulas. Such
formulas are merely polynomials in factorial
form. If one wishes, finally, to express the poly-
nomial in power-series form, a simple transfor-
mation from the factorial form makes this
possible.

Before passing to the general case of least-
squares' fitting, I accordingly first give a method
of setting up a polynomial in power-series form
which exactly satisfies all of the observed points.
As usual, we are here considering only points
equally spaced along the abscissa axis. If they
are unequally spaced, one is forced to use one
of the entirely general methods for the solution
of a set of simultaneous linear equations.

Every process discussed in this paper will be
illustrated by a fully worked-out numerical ex-
ample. For this purpose I have chosen a set of
seven equally spaced observations, for which
the fourth differences are nearly constant. Hence
the set is well represented by a fourth-degree
polynomial. The numerical values have been
deliberately chosen in such a way that all of
the resulting coefficients and other desired quanti-
ties are given by terminating decimals. Thus
exact numerical results may be obtained and an
exact comparison of various procedures becomes
possible.

In order to illustrate the fitting of t+1 points
by means of a polynomial of degree t, we choose
merely the first five of the seven points of our
standard set and fit these points to a fourth-



kAYMON D T. 8 I RG 4

TxBI.E II. Set of data and differences for
illustrative example.

0 —2 0

10 0.

2.10

8.61
6.51

(8.925)
11.34

4.41
0.42

4.83 (25.095) 49.35
49.77

. 15 +1 19.95

20 +2 85.89
65.94

54.60

degree polynomial. The data and necessary differ-

ences are given in Table II.
For the case of least-squares' 6tting, we always

introduce a new abscissa, e, which varies from
—

g to +q where n=2q+I =number of observa-
tions. Thus s={x—xo)/h=s/h, where k is the
interval, in terms of x, between successive obser-
vations, and xo is the middle observation, corre-
sponding to s =0. In Table IV xo is replaced, for
convenience, by m. If rt is even, xo {or rII) is the
value of x half-way between the middle pair of
observations, and the actual observations then
corrcspond to ~ = ~~, &~, etc.

On the other ha.nd, in the case of interpolation
formulas ~ is so dehned as always to have integral
values for the actual observations. Then, in the
case of an even number of observations, esther one

of the central pair of observations is taken as
~=0 and the symmetry of the limiting plus and
minus values of ~ is lost. There are a great
variety of interpolation formulas in common

use, but I advocate the use of ceitral difference

formulas. A central difference of order I. is de-

noted by 6'y. The attached subscript indicates
the value of ~, as just dehned for such formulas.
All differences lying on the same horizontal
line have the same subscript; p5'yo represents
—:{~'X-:+b'y-:).

The Newton-Stirling central difference formula
uses only quantities lying on the horizontal line

a=0. These quantities, which involve the arith-
metic averages Jub'yo for I=odd integer, ' are
listed in Table II {i.e. , 8.61, 8.925, 4.83, 25.095,
and 49.35). To obtain any polynomial up to the
eighth degree in power-series form from such a

set of central differences we use the following
equation. '

N. =Ito+s ttbtto
P~~Sto P~5uo p~~uo

—+
6 140

+ s2
6Ap SNp 0 Np Slp——+

2 24 1.80 1120

tllPzto Ital Qo 7tlo zto
j+so +

~20 I

~'no ~'uo &~'&o
~s4 +

24 144 5760

~6Qo 88@p

+so
120 360 720 2880

P6 Np P6 Np

For thc set of Ave obscI vatlons glvcn, wc have,
accol dlngl y,

7 The Newton-Stirling formula can be used for the case
of either an odd or an even number of observations. In the
latter case and for a polynomial of degree j, where j is odd,
the single available difference, B&y, is used for the pb&y&

demanded by the formula since the difference of order j is
constant by assumption.

It is customary, especially among statisticians, to use u
for the calculated value of the ordinate and y for the
observed value. These convenient symbols are adopted
throughout the present paper. But in the case of an
interpolation formula, based on a table of differences, the
calculated function passes exactly through each given point
(yo, y&, etc.), and hence there is no distinction between such
values and the corresponding calculated values (u0, uI,
etc.). For that reason it is standard practice to write u in
place of y in a table of differences as well as in all interpo-
lation formulas and in equations derived from them, such
as Eq. (I). Since, however, we shall later (Table VII) use
this same table of differences, extended to seven observa-
tions, for a least-squares' solution, we here retain y in the
table, even though it is replaced by u in Eq. (1), which is in
standard form [see Whittaker and Robinson, Reduction of
Observations (Blackie and Son, London, England), p. 6S].

As just indicated, the value of the abscissa is here shown
by a subscript, not only for the observations y (as is
customary) but also for the calculated f'unction u. But
elsewhere in the present paper we write u;(e) for a poly-
nomial in e, of degree j. In other words, in the case of u as
well as many other symbols, we reserve the subscript for
the degree of the polynomial or some quantity associated
with it, and w'e write the abscissa, when needed, in paren-
thesis (see also footnote 14).



25.095 4.83 49.35
u, =8.61+» 8.925 — +»'

2 24

25.095
+»3 +»4

49.35

ol

0.00329 0.03346—0.03290

0.00329 +0.00056—0.03290

0.00329 —0.03234—0.03290

0.00329

0.00329

Hence,

—0.06524—0.03290

—0.09814

0.01435—0.00560

+0.00875
+0.32340

+0.33215
+0.65240

+0.98455

0.9485—0.0875

+0.8610—3.3215

—2,4605

8.61—8.61

34, = —2.4605x+0.98455x'
—0.09814x'+0.00329x'. (3)

I believe that the foregoing process is the most
rapid and convenient one for setting up a poly-
nomial in power-series form which exactly satis-
6es a given set of equally spaced data,

C. LEAST-SQUARES' POLYNOMIAL FITTING OF
DATA IN TERMS OF OBSERVATIONS

Cl. Introduction. Various Forms of Solution

As noted in the Introduction, numerous papers
have been published on the least-squares' fitting
of equally spaced data. Many diferent forms of
solution are possible, and what constitutes the
most advantageous form depends in a major
may on the use to be made of the information.
Thus the final objectives of the statistician and
of the physical scientist are often quite different,

u, = 8 61+.4 742.5»+0 358."/5»'

+4.1825»'+2.05625»'. (2)

To change from a f(») to a f(e), where e= I3», we
divide the coefficient of »' by I3'=54 and sub-
stitute e for e, thus getting

u, =8.61+0.9485e+0.01435e3
+0.03346e'+ 0.00329e4.

To obtain the final equation in x, we perform a
Horner shift (synthetic division) of amount
—xp = —10. In order to make all directions
explicit, we give this shift in full.

and for just this reason the procedures advocated
by statisticians may often not be the most
advantageous for physical scientists. The primary
purpose of the Birge and Shea paper' was to
present a method for obtaining, by least squares,
a polynomial in power seri-es form. I believe that
the method presented there still remains the best
for this particular purpose.

On the other hand, if one desires merely to
sn3aoth the data (i.e. , to obtain calculated or
adjusted values of each point) and has no interest
in the actual function that furnishes such values,
then a certain modification of the Birge and Shea
method is undoubtedly more convenient. Fur-
thermore, if one desires the probable error of
any one of the quantities evaluated (coefficients,
calculated points, etc.) then a further modifica-
tion of the Birge and Shea method is desirable.
The method about to be presented represents
what now appears to the writer the one most
advantageous for the general use of physical
scientists. Its relation to the original Birge and
Shea method will be indicated as we proceed.

The new method involves in part the use of
certain results already existing in the literature
at the time the Birge and Shea work was done
but of which we were then quite unaware, as
already noted. In fact, the entire subject of
orthogonal polynomials, of which so much use is
made in this paper, goes back to TchebycheR'
whe in 1859 applied such polynomials to the
particular problem of concern here. His deriva-
tions were, however, very involved, and his
results have since been reproduced in a far
simpler manner by J. W. Weinberg. In fact,
Weinberg has independently derived all the
necessar Y equations by direct algebraic methods,
including some results that are quite new. An
outline of these results and of the method of
derivation is given by Weinberg in an appendix
(Section J) to the present paper. Accordingly, I
shall in general merely quote such results and
refer to the appendix for their derivation.

Needless to say, the present article would
never have been written, had it not been for the
invaluable aid that I have re'ceived from Dr.
Keinberg. As a result of his own work, as mell

' P. I.. Tchebyt he6' (1854 to 1875). See Oeuvres (1899),
Uol. 1, pp. 203—230, 381—384, 473—498, 541—560, 701—702;
Uo1. 2, pp. 2].9—242,
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as his ability to read and interpret correctly
some of the involved mathematical papers that
exist in the 6eld, it now seems possible to present
all of the necessary material in a fairly simple
and straightforward manner. As already noted,
it is most unfortunate that so much valuable
mathematical. work lies virtually unnoticed in
the literature just because of the difhculty found

by most potential users of the material in under-
standing and properly evaluating the practical
possibilities of the work. In fact, the relation of
the physical scientist to the mathematician is
much like that of the engineer to the physicist.
To discover a result is one thing, to formulate it
in such a way as to make it of obvious practical
value constitutes quite a diferent, but equally
important problem.

The least-squares' solution of a polynomial
may be given in (A) power-series form, or (8)
factorial form. The solution may involve the
explicit use of (1) power moments of the observa-
tions, (2) factorial moments of the observations,
(3) the observations themselves, and (4) the
various 6nite diEferences of the observations.
Finally, the solution may be in (a) orthogonal
polynomial form, (p) non-orthogonal polynomial
form. The method presented by Birge and Shea, '
and its various modifications as given here, are
then properly labeled A3n. The A4u method
also is treated briefly in Section D. The method
given by Kerawala" is A3p, that by H. T. Davis"
is A1P, that advocated by Sasuly" is 82ct, etc.
It is obvious that numerous additional forms of
solution are possible although some would not
be very logical. Thus if the polynomial is ex-
pressed in factorial form, it is logical to use fac-
torial moments rather than power moments, etc.

Of the preceding sets of alterna, tives, the last
(a versus p) is by far the most important. There
are very great advantages resulting from the
use of an orthogonal form of solution, and just
this fact makes the methods given by Kerawala
and Davis of relatively little value. There are

S. M. Kerawala, Indian J. Phys. .15, &41 (1941);"H. T. Davis, Tables of the Higher Mathematical Func-
tions (Principia Press, Bloomington, Indiana, 1935), II,
307-385."Max Sasuly, Trend Analysis of Statistics. (The Brookings
Institution, Washington, D. C., 1934).

also serious objections to Davis' method on the
score of accuracy, as will be explained in Sec-
tion G.

C2. Solution as Sum of Orthogonal Polynomials

Two functions T; and TI, are orthogonal to
each other over a speci6ed interval of x if they
satisfy the relations

Q T;T =0 (kwj), P fT;j'=35,. (4)

The role of the orthogonality propeI'ty in the
present problem is shown more clearly by the
following treatment, which follows that of p. 34
of the reference in footnote 12.

We wish to express the least-squares' poly-
nomial of degree j as the sum of a series of
orthogortal Polynomials of degree t=0 to j. Then
by merely adding or subtracting terms of such a
sum, one can pass directly from the least-squares'
solution of any degree to the corresponding solu-
tion of any other desired degree. This last
possibility constitutes the fundamental advan-
tage of the orthogonal form. Thus let T& represent
an orthogonal polynomial of degree t, satisfying
Eq. (4), and let us multiply it by a&. The a& is to
be a function of the ordinates y but rot of the
abscissae (x or s), and Ti is to be a function of
the abscissae (x or s) but not of the ordinates y.
It may be shown that for the particular form
of Ti about to be listed (see Table III), ai is
actually the coe%cient of e' in the least-squares'
polynomial of degree t, and hence this symbol" is
appropriate.

Now we know that the least-squares' poly-
nomial apTp of degree zero is merely the arith-
metic average Q y/n of the observations. This
polynomial may also be designated" us(s). It is
thus evident that as=+ y/rt and Ts=1. Simi-

"Sasuly, footnote 12, uses X& for this quantity (n&). The
T& is his symbol, which in turn is denoted g& by R. A. Fisher,
Statistt'cat Methods for Research Workers (Oliver and Boyd,
Edinburgh, 1946), 10th edition, p. 147, and by his various
co-workers and followers. Note that af, T~ is also an orthogo-
nal polynomial if T& is, since a& is independent of x (or ~).

'4 As noted in footnote 8, the degree of the polynomial will
normally be indicated by a subscript followed by the
abscissa scale in parentheses. We shall use either t or j to
denote the degree of a polynomial. As just mentioned, a
polynomial of degree j may be expressed as a sum of
orthogonal polynomials of degree t, where t varies from 0 toj.In general we shall use t for the degree of an orthogonal
polynomial —like T& or a&T&—. and j for the degree of the
final polynomial to which the observational data are
fitted, as in Eq. (5).
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2s;(2) = g a,T,.
5=0

(5)

larly, the first-degree least-squares' polynomial
for the same set of data is designated ui(o). But
the dgere22ce of a polynomial of degree unity and
one of degree zero is necessarily a polynomial of
degree unity. The difference, in this case, is just
the desired orthogonal polynomial of degree unity,
and hence denoted ajTj, Thus

Qi(o) No(o) =aiTi,
or

Ni(o) =aiTi+Qo(o) =aiTi+aoTo.
Similarly,

u2(o) —ui(o) —=a2T2,
or

N2(o) a2T2+2sl(o) a2T2+alT1+aoTo

and, in general,

Equation (5), for the least-squares' solution of
a polynomial of degree j, was erst given in 1859
by Tchebycheff' who also derived explicit ex-
pressions for 1&,, or rather for a quantity I'p pro-
portional to our Ts (see Eq. 19), up to t=5.
Birge and Shea' derived explicit expressions for
another quantity I'& proportional to Ts (see
Eq (.11)), also up to t=5, by a completely
different method and in entire ignorance of
Tchebycheff's earlier work. Miss Allan'~ some
years later derived a diit'erent form of general
expression for Ts and by means of it worked out
the explicit forms for Ts up to t = 10. Weinberg
has now found a much simpler method of ob-
taining such explicit forms by means of a modi6-
cation of Tchebycheff's recursion formula for T&.

This modi6cation consists of a recursion for-
mula for RI, &, where RI,~, a function of n only, is

TABI.E III. Expressions for T~, orthogonal polynomials with unit leading coefficients (Vg may be obtained from T~)'

Tp(s) =1
Ts(s) =s
T2(e) = e2+R02
T3(c) = ~3+R13e
T4{6)= c +R24c2+RP4

Ts(s) = ss+Rssss+Rsss

Ts(s) = s +Rsss +Ross'+Ros

TY(e) = e~+R57es+R3ge'+RID~

Ts(s) s +Ross +Rsss +Rsss +Rps

Tg (e) = cg+ Ryg e7+R5g &5+R3g &3+RI g e

where
where
where

where

where

where

where

Ros = —(n' 1)/12—
R, s

———(3n' 7)/20—

Rss = —(3n'-13)/14
Ros = +3(es—1)(n' —9)/560

R so
———5 (n' —7)/18

Rs s ——+ (15ns- 230e'+ 407) /1008

Rss = —5 (3n' 31)/44—
Rss =+(5ns —110n'+329)/176
Rps = —5(n' —1)(n' —9)(n' —25) /14784

R57 = —7 (3ri' —43)/52
Rsr ——+7(15ns 450n'+—2051)/2288
Rsr = —(35ns —16 45+ns1 2977ns 272 7)0/2 7456

Rss = —7 (ns 19)/15—
Rss = +7(3n' 118n'+ 763)—/3 12

R ps = —(105n' 6405n'+—91679ns 231491)—/3432
Rps = +7 (n' 1)(n' —9)—(n' —25) (e' —49)/329472

Rro = —3(3ns 73)/17—
Rsp +21(3e'-150ns+ 1307)/680
Rsp = —(21es—1617e'+30387es-112951)/3536

+3(105ns 11060tts+334054+4 2973140 +4370361)/3111680

T10(&) & +R8, 10& +R6, 10& +R4, 10& +R2, 10& +R0, 10

where Rs, ~p= —15(3n'-91)/76
Rs, so = +21 (15e'—930e'+ 10507)/2584
Rs, so ———5(2 in 1995ns+—47775ns 245737)/1—0336
R 2, » ——+3(105n'- 13580n'+ 5 14990n' 6039260n'—+13/82993) /1074944
Rp, 2 2 ———63(ns- 1)(n' 9) ( n2s5) —(ns-49) (ns-81) /47297536

+ Note, —If the Ra& coefBcients, fncluding R«( =1), are replaced by the corresponding Sk& (values in Table XII), then these same f(e) give the
respective values of Vg(e). See Eqs. (21), (28) and (77).

"F.E. Allan, Proc. Roy. Soc. Edinburgh SO, 310 (1929—30).
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the coefficient of e in the expression for Tt, as
given in Table III. The new recursion relation is

t2(tt2 ts)
+0+1, t+1 +kt +@+I,t—1 ~

4(4t' —1)
(6)

Thus" Mt is used to denote p, Tts (compare

"The question of a convenient set of symbols is a very
perplexing one to which Dr. steinberg and I have given a
great deal of thought. When it is possible to formulate a
certain relation in a variety of ways, as we shall hnd is the
case with Eq. {7),and when tables of numerical values are
given in various places in the literature, it is highly desirable
that a dhgerent symbol be used for each different form, in
order that there may be no confusion over what form is
being tabulated. Thus one might express the series of
possible forms of T& by the symbols T&, Tt', T&", etc., or by
Tt, Tt*, Tt**, etc. But if a table of- one of these alternative
forms is being given, as is the case in this paper, so that
constant reference to such an alternative form is required,
it is obviously desirable to use for it the simplest possible
symbol. For that reason we are using diferent letters for the
different forms. In general the alphabetic letter immedi-

By the use of this relation I have verified all
of Allan's expressions. Since such expressions
must be used in the numerical calculation of
extrapolated values of tt;(e), it seems necessary to
present them in full. They apply only to the
special abscissa scale that we have designated
by e, where e runs from —g to +g, and 2q+1 = n
=number of observations. In fact, it is the
symmetry about e =0 that causes the coefficients
of alternate powers of e to become zero, thus
greatly simplifying the expressions for Tt. Stated
more specifically, Rt, t (and 5t-t) =0 if t —t't =odd
integer.

In Table III the coefficient of s' in T,(s) is
really R«, but. Tt has been deliberately chosen so
as to make Rtt equal to unity. Under this condi-
tion the coefficient of Tt in Eq. (5) is actually ttt,
the coefficient of et in the power-series form of
polynomial, as already noted, Ke thus have a
complete formulation of the lt portion of Eq. (5),
and by the use of Eq. (6) any desired explicit
expressions can be derived for values of t higher
than 10.

The remaining problem is the evaluation of at
in Eq. (5), the quantity which alone involves
the actual observations y of a given problem.
TchebycheR' derived for at the following ex-
pression:

«=Ex T't/Z ~t'=2 7 ~tlat.

Putting Eq. (7) into Eq. (5) we get

2

~.()=E (Zr Tt/E Tt')Tt
t=o e

Thus Eq. (8), with the explicit values of T, given
in the foregoing table, furnishes the complete
least-squares' solution of a polynomial of de-
gree j, expressed as a sum of orthogonal poly-
nomials, with the special e scale of abscissa.

When expressed as a power series in e, the
function may be written

tt, (s) = P ttp, e".
k=o

(9)

+kq= P +atttt
t=I~,

Thus Eqs. (9) and (10), with the explicit values
of Rst listed in Table III, lead to the least-
squares' solution of a polynomial of degree j,
in the form of a power series in e. These equations
are used in the form of solution given by Birge
and Shea. ' Dr. Shea and the writer obtained a

ately or closely beyond the original letter is used for the
alternative form. Thus Vt represents a certain new form of
Tt, Nt a new form of Mt, bt of ut, HI, t of Gkt, and SI,t of RI,t.
(See Table V). The present adopted symbols frequently
differ from those used earlier (footnotes 3 and 4).

Many other differing sets of symbols appear in the
literature, but none of them has seemed appropriate to our
present purpose. %e have avoided the use of Greek letters,
in general, merely because such letters do not appear on
ordinary typewriters. For that reason we reject the symbols
(& and (&' in constant use by Fisher and his co-workers.
They correspond to our Tt and V&, respectively.

Hence ak, is the coefficient of e' in the poly-
nomial of degree j. It is, in general, necessary to
use such a double subscript, since the present
method of deriving the least-squares' solution of
a polynomial of degree j involves all of the
polynomials of lower degree. In this same sym-
bolism, the ftnat coefficient in Eq. (9) is tt;, .
Also, in Eq. (5), ttt is more correctly written
as att since it is the coefFicjent of e in the poly-
nomial of degree t. However, because of the
repeated occurrence of att (or c;;) in the present
treatment, it is convenient to simplify the symbol
to a, (or tt;).

A comparison of Eqs. (9) and (5), in connection
with the explicit expressions for rt already given,
shows that the tt&; in Eq. (9) are given by
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general formula for a&, corresponding to Eqs.
(14), (15), and (16) ahead, as well as explicit
expressions for the necessary RI, ~ up to /=5.
We did not then notice the relations between a~

and Rsi, as shown by Eq. (7) with the values of
T~ given in Table III.

No special symbol was used for it. Expressions
for Ps and E&w'ere derived in terms of factorials,
but by changing the factorials into binomial
coefficient form, '~ it is now found that a common
integral factor (t!) exists. The new simplified
expressions are

C3. Alternative Forms of Orthogonal
Polynomials

Let us now return to Tchebycheff's funda-
mental Eq. (8). We note in this equation that T&

occurs twice as a factor in both the numerator
and the denominator. This simple fact furnishes
the possibility of an endless variety of equaHy
valid modifications of the equation. Several such
modifications have already appeared in the litera-
ture, and in most cases the author has apparently
been unaware of the previous closely related
work of others. It therefore seems desirable to
indicate the explicit relations between some of
these modifications of Eq. (8).

Thus, because of the fact that T~ appears to
the same power in both numerator and denomi-
nator of Eq. (8), we can multiply Ti by any factor
F, not a function of e, without changing the values
of u, (s). In order to obtain the dirge and Shea
equation for a&, we write

Ps = Fs Ti ——2t!Ti/(t!) '.

Putting Eq. (11) into Eq. (8) we ge't

»(s) = Z (Z X Ps/Z Ps')Ps

=2 (2 X Po/«)Tl, r (12)

and, from Eqs. (12) and (5)

a, =P y P&/X, . (14)

Equation (14) was used by Birge and Shea for cal-
culating ag, and I'~ was termed a "pair-factor. "

where, with the incorporation also of 3f~ from
Eq. (7),

«=Q Pa'!&s=Fs cVi

P,"=P,/t! =2t!T,/(t!)'

)q r~ t'2q——sy pt+sy= 2 (-I)
I I I II I. (15)

s )E2q —t&& s

p2q+t+1iE',"=«/t! =2t!M, /(t!)'=t!
I 2t+1 )

in which" r =
I

e I, and as usual 2q+ 1 = n =number
of observations. Weinberg has derived Eqs. (15)
and (16) in a far simpler way than that used
earlier by Birge and Shea (see Section J). These
equations contain, implicitly, the analytic ex-
pressions for' T& and cV& of Eq. (7).

A second modification of Eq. (8) is obtained
by writing

2t!(n —1 —t)!T,
PsI=Fia Ti=(-1)' (»)

(t!)'(n —1)!

Then P~ represents the Legendre polynomial for
discrete points, and it has been tabulated and
used by W. E. Milne" for the solution of the
present problem.

"The binomial, coefficient is defined as

m!/r!(m —r)!. An alternative statement is
C

=a!/b!c!, if b+c= a and if all three letters represent posi-
tive integers. One advantage of using a binomial coefficient,
wherever possible, is that it is necessarily an integer.

The use of this new symbol r is directly connected with
the fact that in the original Birge and Shea method, as well
as in its new modified form, two observations corresponding
to equal positive and negative e value form a "pair, "which
is to be multiplied by a common "pair-factor. " Each such
pair of observations is then designated by the value of r.
We shall also use r for probable error, but there can be no
possible resulting confusion."Private communication from his student, George
Pomeroy. Milne actually uses a form of P~ applying to the
range x=0 to n —1, whereas Eq. (17) applies to the range
~ = —q to +q. Milne's own form is

(t! (t+s! x& &

z =z(—I)
I

Esi k s i(~-I)"'
.~here x&') =—x!/(x —s)!and (n —1)(')—= (n —1).'/(n —s-1)!If
x&'& is replaced by x' and (n —1)&') is deleted, one gets an
.expression for one form of the Legendre polynomials, in
which x varies continuously.
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The first practical use of Tchebycheff's or-
thogonal polynomials was made by Jordan" in a
paper of fundamental importance. In this paper
he c'arried out in detail the application of such
polynomials' to the case of uniformly spaced
data. In connection with this work he calculated
a table of values, not of Tf,, as defined here,
but of

PI Fg ——Tg ——2t!Tg/(t!)'(2'). (18)

His table covers the range t up to 5, and n up
to 20. It is undoubtedly the first table of such
"pair-factors" to be published, but Dr. Shea
and I in 1924 were unaware of its existenc. e, and
everyone else who has since published analogous
tables, even up to the present time, seems to
have been equally unaware of its existence.

Finally, Tchebycheff gave his orthogonal 'poly-

nomials in the form"

Pr Fr .T( ——2t!T,/t!——. (19)

As already noted, the particular form T&, as
used by Sasuly" and others; has been so chosen
that the coefficient of e' is unity (Table III).

(20)

Charles Jordan, Proc. London Math. Soc. (2) 20,
297 (1921). This paper includes a brief description of
TchebycheG's original work. We are indebted to Dr. E. U.
Condon for calling our attention to Jordan's contributions.
(Note that Charles Jordan and Karl Jordan are the same
person. )"See the footnote p. 34 in Sasuly's book (footnote 12) or
p. 299 of Jordan's paper (footnote 20).

C4. The a-T and b-V Systems of Calculation

After this rather long digression on the various
ways in which Eq. (8) can be expressed and has
been expressed, we take up the question of the
best actual use of this fundamental equation.
It will be noted that Eq. (14), as used by Birge
and Shea, gives the most direct calculation of at,

for use in Eq. (5). But, as shown by Eqs. (12)
and (13), Ki is not the sum of the squares of
the quantity P~ that appears in the numerator
of Eq. (12). On the contrary, it is that sum

divided by Fii (defined in Eq. (11)).
Now our recent study of probable errors has

shown that it is most important to preserve the
form of Eq. (8), regardless of the factor used.
Thus let us write, as an entirely general ex-

pression,

where P = F.Ti and F is any factor not a function
of e. Let the quantity inside the parentheses be
denoted by a&'. Then it is found that Q, P' is
the weight of a&', to be used in getting the prob-
able error of a~'. If I' = 1, then a~ = a~ and

g, P'= g, TP = M& =weight of a& on the basis of
unit weight assigned to each observation y (see
Section J). Thus, if one desires to calculate
probable errors, it is most convenient to use the
form of Eq. (20). Furthermore, Eq. (20) is most
convenient for calculating the value of u;(e) for
any single value of e. In the Birge and Shea
method Eq. (10) was used to get the coefficients

uz; of the polynomial as a power series in e, and
then any value of the polynomial was calculated
by direct substitution in this power series. But
Eq. (20) is more convenient for this purpose,
after the necessary constants a&' have been
evaluated.

The change from the use of Eqs. (14), (10),
and (9) to an expression of the form of Eq. (20)
constitutes the essential modification now pre-
sented of the original Birge and Shea method.
The simplest way of getting from the values of a~'

in Eq. (20) to the values of the coefficients of
any desired power series (in either e or in the
original x) will be discussed presently.

The rapid and efficient use of Eq. (20) for
the calculation of values of u;(e) requires tables
of values of P and of g P' for the desired values

of t and n. It is obvious that for such calculations
integer values of P (and hence also of g P') are

highly desirable. Let us therefore examine, with

this idea in mind, the various expressions already
given for P.

In the first place, the fact that P&" of Eq. (15)
consists of a product of binomial coeScients
shows that it is always an integer. Then P& of

Eq. (11) is also an integer, but larger by a factor
f! than PJi". The Pz of Eq. (19) is also an integer
but larger than Pii" by a factor (t!)'.

On the other. hand, most of the values of T~ are
non-integers, as can be seen easily by examining
the explicit expressions listed in Table I II.
Nearly one-half of the values of Pg of Eq. (18),
as given in Jordan's table s' are also non-integers,
and from Eq. (17) most of the values of Pir
must also be" non-integers, especially in the case
of larger values of n.
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As a matter of fact, I'~" represents the smallest
possible set of integers valid for a given value of t
,and for all values of n. On the other hand, for a
particular value of n and of t there is usually a
particular factor" that can be removed from the
entire set of values of I'g". The values of the
new integral set of "pair-factors" thus obtained
are denoted by the symbol V~. As will appear in
a moment, it is necessary in calculating the
coefficients as; of Eq. (10) to know the relation
of the Vi values, not to I'Ji" or I'o, but to the
more fundamental Ti of Eqs. (5) and (8). For this
relation Fisher and his co-workers use the symbol

but the logical symbol for this paper, as
shown in Eq. (28) ahead, is Sii. Thus, by
definition,

(21)

We now replace Ti by Vi in the fundamental
Eq. (8) and thus get, with the use of Eqs. (7)
and (21),

*

u;(e) = g (P y V,/Q V, ') V, —=P b, V, . (22)
8=0

Thus, by definition,

bi=a y Vi/Q Vi' —=Q y Ug/Ni=ag/S(( (23).

denote the first as the a T—system of calculation
and the second as the b—V system.

For each symbol in the a—T system there is a
"corresponding" symbol in the b—V system. Thus
Ni(= P, VP) corresponds to M&(=g, TP). Full
details are shown in Table V ahead. The basis
for the choice of the corresponding pairs of
symbols is stated in footnote 16. The factor con-
necting each such pair of symbols is Sii or some
power of it. As already noted, the values of S«
have been so chosen as to give integers, and the
smallest possible integers, for the quantities of
most common occurrence in the calculations of
the b—V system. That system, therefore, possesses
a very great advantage over the a Tsystem —in
which the major portion of the corresponding
quantities are non-integers.

In the Birge and Shea paper the values of the
so-called "pair-factors, " listed in an extensive
table, are just the values of U~. But instead of
calculating b& by means of Eq. (23), Birge and
Shea calculated ai by means of Eq. (14), except
that all common integral factors were first re-
moved from numerator and denominator, giving

«=Zy Vi/&i*

where
(26)&i*=+ Vi'/Sii=K/SiiIn Eq. (23), Ni is the "weight" of bi just as 3/I&

in Eqs. (7), (13), and (16) is the weight of ai, as
already noted.

Hence Eq. (5) may be replaced, for purposes
of numerical calculation, by Eq. (22), as a result
of the important relation, which follows directly
from Eqs. (21) and (23),

The values of IC&* were listed by Birge and Shea
(and denoted X) in the same table as those of Vi.
In the modified Birge and Shea method now
being presented toe keep all calculations in the

b Vsystem in —order to utilize the important
advantage of that system which has just been
mentioned. Hence we again list (in Table XIII)
the values of V~, but in place of E»* we now list
the values of Ni, which are related to those of
X&e by Eq. (26). For convenience, we have calcu-
lated the listed values of Ni from Eq. (26), using
the values of 5«listed in Table XII. But, in
principle, the values of N~ are to be obtained
from the more basic Mi as expressed by Eq. (16),
and with the use of Eq. (31). One then employs
the listed values of Vi and Ni (Table XIII) in
Eq. (23) to obtain bi.

If now one desires the values of a~;, defined by
Eq. (9), or the values of the corresponding coeffi-
cients of the power series in x, it becomes neces-

(24)agTg =kg Vg.

If we desire to know the calculated values of the
polynomial at either the observed values of s or
at any extrapolated values, and also the probable
errors of the function at such values of e—but not
the coefficients of the polynomial in power-series
form —then it is possible to carry through all
the necessary calculations in terms of (1) va.lues
of ai and Ti or (2) values of bi asid V~. We shall

ss Let us denote this factor by f so that Pa"/f = Vs of-
Eq. (21),Then from Eqs. (15)and (21)we get f S«= 2tf/(t!) 3.
As wi11 appear later, this is a very valuable relation, con-
necting the Stt values listed in Table XII of Section I with
the f values listed in Table VI of Section D. Further details
appear in Section D.
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sary to formulate a new equation in the b—V
system, "corresponding" to Eq. (10) of the a T—
system, which was used by Birge and Shea.
This new equation is

&k~=S« ~I~. (28)

'3 V. Khotimsky, Graduation of Statistical Series by Least
Squares (Moscow and Leningrad, 1925), in Russian. This
publication is mentioned also by A. C. Aitken, Proc. Roy.
Soc. Edinburgh 54, 1 (1933).

s' R. A. Fisher and F. Yares, Statistical Tables for
Biologica/, Agricultural and 3IIedica/ Research (Oliver and
Boyd, London, 1938), see Table XXIII.

%e now have the basis for the choice of symbol
S«. As already stated, the various expressions
for T& listed in Table III actually start with the
term Rt, t, e', but T~ is so defined that all R~~

equal unity. This condition on R« is satisfied by
Eq. (28) by putting k=t. In the present paper
we list values of Si,i (Table XII) in p/ace of the
table of R&, t, values published by Birge and Shea.
ln the new table the values of S&i are necessarily
included. I hey ale tile basic numbers collllectlllg
the a—l™and b—V systems. Aside from these
values of S«, the contents of Table XII have not
before appeared in print.

Furthermore, since S~~ "corresponds" to RI, &

and V& to T~, if we substitute SI,~ for R~~ in
Table III, we will get explicit expressions for V&

as a f(e) Hence, . Si& is best defined as the coefFi-

cient of e~ in the expression for Vi as f(e, rt).
In 1927, Birge and Shea published a table of

values of V& for t=1 to 5, and for n up to 30.
So far as I knew until a short time ago, this was
the first table of such values to be published.
As already noted, the table by Jordan, " pub-
lished in 1921, gives values of Pz, Eq. (18), most
of which are not integers. But quite recently
Dr. V. A. Nekrassoff has informed me that a
table similar to that of Birge and Shea appears
in a book by Khotimsky" published in 1925.
I have not yet seen the book.

Then, in 1938, a new table of U~ values was
published by Fisher and Yates" covering the
region t=1 to 5 and n up to 52. The method
presented by these authors is based upon the
use of Eq. (22). Their work, in turn, seems to

be based essentially on two earlier papers by
Fisher. ""In the earlier of these two papers
Fisher gives the results of what appears to be an
independent derivation of Tchebycheff's Eq. (5).
In neither of these papers nor in Fisher's mell-

known book" is there any mention of Tche-
bycheff's earlier work on orthogonal polynomials.
In fact, in his first paper Fisher names such
expressions "uncorrelated polynomials" which,
to the statistician, is a much more revealing
designation.

Finally, in 1942, Anderson and- Houseman'7
extended the Fisher and Yates' table to e=104.
Their table is thus by far the most extensive now
in print and their paper includes a detailed ac-
count of the use of Eq. (22) with an illustrative
problem. But the much older table of Birge and
Shea is not mentioned in any of these papers.

To summarize tl1e discussion tllUs fal: By
means of the table of values Of V] and

P IrP(=N, ),

(Table XIII), and Eqs. (22) and (23), one can
obtain with amazing speed and accuracy the
calculated values of the least-squares' polynomial
u;(e) for each value of e, from —

g to +g, i.e. , at
abscissa points corresponding to the given data.
We can also calculate any extrapolated value of
u;(s) but here the process takes much longer.
We still use Eqs. (22) and (23), but. now we have
available no numerical value of V~ in Table XIII.
Hence, we are forced to calculate V& from the
analytic expressions of Table III, with the E«
replaced by Si,& and with the numerical values
of SI,~ from Table XII, for the appropriate
value of n. In this connection one must remember
to multiply each e' term in T& by S«, which thus
replaces the implicit R«(= 1) of Table III.

Furthermore, we can calculate the values of
ui, ;, the coefFicients of u;(c) expressed as a power
series in e, by the use of Eq. (27). Then the most
rapid way to obtain the coefticients of u;(e),
where e = eh, is undoubtedly to divide each a»
coefFicient by h~ and replace e by e, exactly as
has been done in the problem of Section B. The

5 R. A. Fisher, J. Agric. Sci. 11, 107 (1921).
2' R. A. Fisher, Phil. Trans. Roy. Soc. London 8213, 89

(1924). '"R. L. Anderson and E. E. Houseman, Research Bulle-
tin 297, Agric. Exp. Station, Iowa State College, 1942.



coefIicients of u;(x) can then be obtained by a
Horner shift of —x0, where e =x—x0, as also
carried out in Section B. But this method, while
the most rapid, does not furnish explicitly the
quantities needed to get the probable errors of
the new coeKcients. Hence a method suitable for
this latter purpose will be given in a moment.

With the values of b& obtained from Eq. (23)
one can immediately calculate P, [v;(e))', where

v;(e) =y, —u;(e) =residual of any observation y, .
The necessary equation (derived in Section J) is

been proved earlier by others and it is used by
Fisher and Yates. 24 The "corresponding" weight
of bi is then A i(= P, VP), and it follows from
Eq. (21) that

(31)

Now if Z is a function of sg, z2, etc. , where
ei„z2, are independently observed quantities,
and if pi, p2, are the assigned weights of
si, s2, , then the resulting weight pz of Z, as
given by the law of'propagation of errors, is

(29)

1/p =p (BZ/Be;)'/p, . (32)

where 3f,=g, TP=st tai tsic laweigkt of a„ in

Eq. (7), as already noted. Eq. (29), which is a
type fundamental in analysis of orthogonal func-
tions, was first applied by Jordan" to the problem
under discussion. It is given by Anderson and
Houseman" without reference to source, and it
may have been derived independently by R. A.
Fisher. It is also derived in Section J.

The "corresponding" equation in the b—V
system is

t=o
(30)

C5. CoefBcients, Weights, and Probable Errors

Q'e now consider the importajit subject of the
probable error of each of the quantities of in-
terest to us. We note, in the first place, that
DER(= g, Ti ) is the statistical weight of ai. This
fact is proved in Section J, but it has presumably

where Ni = g, VP =weight of bi in Eq. (23), as
already noted. Values of N& are listed in Table
XIII together with the V& values. A typical
series of values of P, [v;(e)]' for j=0 to 5, as
yielded by the difference of P, y' and the suc-
cessive sums ¹bo', ¹bo'+X&b&', N, b02+&,bi2

+¹bm', etc. , has been given in Section A. The
great advantage of Eq. (30), resulting from its
orthogonal form, is that in the process of calcu-
lating the desired P, [v;(e)$' for the jth degree
polynomial, we incidentally discover just the
effect on the value of P v' of each least-squares'
polynomial of degree t = 0 to j.Thip fact has been
pointed out in Section A.

r' =0.6745[+ v'/(n s)]&— (34)

This equation applies to the case of n unweighted
observations fitted to a function of s undeter-
mined constants. For a polynomial of degree j we
have s=j+1.

Thus, from Eqs. (5) and (32), the weight p;(e)
of the function u;(e) at any specified value of e,
is given by

(35)

since M&(= P, TP) is the weight of a& in Eq. (5).
Similarly, in the b Vsystem, from—Eqs. (22)
and (32)

(36)

since X&(=P, VP) is the weight of b& in Eq. (22).
It is Eq. (36) that is to be used in actual calcula-

In connection with the problem now being dis-
cussed, the orthogonal character of the solution
is again of major importance since, as proved in
Section J, the quantities b& (or ai) act like inde
pendently observed quantities. It is believed that
this proof is new. Thus in the case of any quantity
that can be written as an explicit function of the
b& or the a~, we can immediately obtain an ex-
pression for its "weight" by applying propaga-
tion of errors.

Then, knowing the weight p, one gets the
probable error

(33)

where r' =probable error of a hypothetical
quantity of unit weight. It is calculated from
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ris;" =P ~~she,
t-k

tions since values of both Vt and Xt are listed - In the b—V system
in Table XIII.

Next, the weights pi; of the coeKcients ai; of
Eq. (9) are given, from Eqs. (10) and (32), as

(42)

1/pi,:——p (gi.ss/Ms), &/ps;" = Q (&is'/%).
t=k

(43)

or in the h Vsy—stem, from Eqs. (27) and (32), as

&/p» = Q (Sss'/K)

' We shall now use a~, ' for the coefficients of the
power series in e(=sh), and as," for those of
the power series in x(=sh+xp). Thus

I;(x) = Q as/'x',
k=o

(39)

where x gives the true abscissa value at which
the ordinate y is observed, and I;(x) is the corre-
sponding calculated ordinate.

In order to get the weights of the coefficients
ass", we must first express such coeKcients
explicitly as functions of at or of ht and then
apply propagation of errors. It is for just this
reason that the method used in getting I, and I,
in Section 8 is not suitable if one wishes to
calculate the probable errors of such coeKcients.
The conversion of a f(s) to a f(x), where
e = (x—xs)/)'s, keeping all relations in literal form,
is quite simple and direct. The writing of the
resulting equations is, however, simplified by
replacing the oft-occurring xp by m. Thus m(=xs)
is that value of x for which &=0. In the Horner
shift from f(x m) to f(x—), the amount of the
shift is —m.

We now give the explicit expressions to be
used in calculating the aI,;" coefficients of the
final f(x) in power-series form and their weights
ps;". As usual, such expressions may be formu-
lated in either the a T system or the b V
system.

In the a—T system

Numerical values of Xs( = P, Vss) appear in
Table XIII. It seems desirable to list explicit
expressions for H'qs(=Sss Gss) in detail, since
they are to be used in actual calculations, and
the present method of obtaining aj,;" with the
aid of a table of Sss values has not been pre-
sented before. If in the expressions which follow
(Table IV) one merely replaces S&4 by R&4, then
H&4 becomes Gzs of Eq. (40) in the a Tsystem. —
It is therefore unnecessary to list explicit ex-
pressions for Gl, t.

Table IV contains all 'expressions needed in

where

where

where

where

+0j Hppb0+ Hplb 1+ ' ' ' Hpj bj
Hpp=Spp= 1

Hos ———Ss4 (m/h)
Hps =Sps+ Sos(m/h)'
Hop = —$Sss(m/h)+See(m/h)45
Hpe =Sp4+ Sse (m/h)'+ S44 (m/h)'
Hpe ———LSse(m/h)+See(m/h)'+See(m/h)'5

~1 ' Hllbl+H12b2+ ' Hl jbj
Hss —Ssl/h
Hss ———Sss(2m/h')
II,s ——S„/h+S, s(3m'/h')
Hs4 — LSse(2m/h') +S44 (4m'/h') 5
Hse ——Sse(3m'/h') +See(5m'/h')

C2j H22b2+H23b3+ ' ' ' H2jb;
Hss = Sss/h'
Kss ———

See�

(3m/h')
H44 Ss4/h'+ S44(6ms/h——')
Hse —[See(3m/h') + See( 10me/he) 5

asj"——H33b3+H34b4+ ~ .H3; b;
H33 =S33/h'
Hse ———S44(4m/h')
Hee Sse/h'+See(toms/he)

(42 0)

(42. 3)

(42:2)

(42:3)

TABLE Iv. Expressions for a»" end Hos. (a»"=coeS-
cient of x~ in a power series of degree j, for values of x
spaced at intervals of h, where m = "middle" value of x, i.e.,
where &=0. Numerical values of S~& listed in Table XII.)

and

j
= Q Gi's,

t=l
(4o) whe. e

a4,"——H44b4+H45b5+ ~ --
H44 S44/h'——
Hee = —See(5m/h')

(42:4)

&/p»" = Q (Gos'/W).
+5s"=Hssbss

(41) where Hee =See/he

(42:5)
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Eqs. (42) and (43) for polynomials up to j=5. In
order to make Eq. (42) more explicit, its special
forms are given and designated (42:0) to (42:5)
for k =0 to 5, followed by the actual expressions
for Hl, ~ needed in each such form.

If, in Table IV, m =0 a,nd Ii = I, so that f(x)
becomes f(e), then the various H'si become
merely the $&& and Eq. (42) simplifies to Eq. (27).
Furthermore, Eq. (43) for the weights then
becomes Eq. (38).

C6. Table of Important Equations

In concluding this section of the paper, it is
desirable to summarize all important relations
by means of a table in the form of the corre-
sponding symbols of the a—'1 and b—U systems.
The relation between each pair of symbols in-
volves the factors $ (ii=Fisher's )ti), the values
of which, up to n =30, are given in our Table XII,
up to I=52 by Fisher and Yates, " and up to

n =104 by Anderson and Houseman. '~ The last
column of Table V lists the equations used in
calculating all quantities (functions, coefficients,
and weights) thus far discussed.

D. LEAST-SQUARES' POLYNOMIAL FITTING OF
DATA IN TERMS OF FINITE DIFFERENCES

As already noted, the desired coefficients of
the least-squares' polynomial may be expressed
explicitly in terms of the finite differences of the
observations, as well as in terms of the observa-
tions themselves. An example of the use of finite
diHerences, applied to data from an Atwood
machine, has been outlined in Section A. By this
method it is the value of at that is obtained
most directly from the finite difFerences of order t,
since t~b& is always a certain weighted average of
such differences. The problem is then to deter-
mine the appropriate weights.

TABLE V. Relations of the a —T (polynomials with unit leading coefficient) and b —V (polynomials with least integer
ordinates) systems. e = (x—xo)/b, xo (or ni) = middle'value of x, andlb= constant interval of x. Numerical values of Vi and
Nt are given in Table XIII, those of Skt are given in Table XII. Explicit expressions for IIkt are found in Table IV.

c-T
system

at

b-V
system Relation

bi =«I&ii (23)

Relevant equations

Zyzt Zy V,
Gt i 5t (7)(23)

3IIt Nt

Vt = SttTt (21) I;(e) = 2 at Tt = Z bt Vt
t=o0

{5)(22)

Si„=S«Rs, (2&)

2' 2

~k; = ~ &kt ~t = ~ Skt &t
t=k t=k

(10)(27)

Hkt = Sttokt
j

as;"=& Gai «=& ~is bi (4())(42)
t=k t-k

Mi(=Z, TP) N, (=Z, VP) ~,=S,,2 Mt (31)

i Tt2 i VP——=Z —=Z—
p;(a) '='Mg ' ' Ni

~kt ~ Skt

p . t k ~ t=k

t Gkt2 ~ HkP

Pk. l~ t=k ~ t=k

(3S}(36)

(»)(»)

(41)(4~)

1

I;(C) =Z ek; ek
k=0 k=0

(39)

t=o
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n—i
1!ui—— —P i(n —i)Ay;.

n(n' —1) '=i
(44)

The. final result of the work on finite differ-
ences by Weinberg and the writer appears as
Eqs. (54)—(56) ahead, with the values of 'the

various symbols given by Eqs. (46), (51), and

(53). The detailed use of the method constitutes
Section F7 ahead. But in order to show the
relation of our work to the earlier work of
Sasuly„as well as to establish certain very im-

portant relations between the coefficients appear-
ing in the formulas of the present section and
those appearing in the equations of Section C,
it is necessary to give the following rather de-
tailed discussion.

Sasuly" considers the use of finite differences
of the data for the present problem on pp. 47—58
of his book. He outlines there a method by
which the weighted averages of the 6'y values,
for successive values of t, can be formulated,
starting from the original observations. Special
formulas are given for 5=1, 2, 3, and 4, holding
for the abscissa scale x = 1 to n. Thus for t =1

' and 2 he writes

2m= 2g —t =e—t —1. (46)

In this connection it should be noted that the
observations themselves should now be con-
sidered as the finite differences of zero order,
for which t =0 and v =q. Thus the equation for
t = 0, corresponding to Eq. (44) for t = 1, is
necessarily ao ——P y;/n, which is just the familiar
arithmetic average of the observations.

With the use, then, of central differences and
the symbols r and v we get as the generalized
formula for the coefficient a& of a polynomial of
degree t, when the abscissae are spaced at unit
interval,

same weight. For the purpose of designating a,

pair we again employ the symbol r =
~

e ~, which
is zero for the central difference if the number of
differences is odd, and —', for the central pair of
differences if the number is even.

In the second place, because of the arrange-
ment in pairs it is convenient to use central
differences together with our special abscissa ~,

which runs from —
g to +g for the observations,

but from —v to +v for a given set of finite
differences of order t, where

2 lg2
n (n' —1)(n' —4)

n—2

y P i(i+1)(n —, 1)(n —i —1)6'y;. (45)
i=1

His succeeding two formulas are increasingly
complex and will not be quoted. Sasuly" also
gives on p. 318 of his book an empirical general-
ization of these expressions that is equivalent to
our Eq. (52).

The method used by the writer in obtaining
the desired generalization is as follows. It was
first noted that the factor preceding the summa-

— tion in Eqs. (44) and (45) is just the 1/X& of
Eq. (14), the equation derived by Birge and
Shea for the calculation of a~ from the obser-
vations. The generalization of thy factors follow-

ing the summation sign is obvious by mere
inspection. There are, however, several modifica-
tions that can well be made. In the first place,
all of the weighting factors are symmetrical
about the central finite difference. Hence these
finite differences may be handled in pairs, the
two differences comprising a pair ha~ing the

(47)

where

(2v+2t+1)!(t!)' (2v+2t+1 )—=(t')'I
I (48)

(2v)!(2t+1)! & 2t.+1

(v+ t r)!(v+ t+ r—)!
(v r)!(v+—r)!

(v+t r! (v+t+r i-
=«!)-'I

E t ) ( t )

It should be noted that since t!a~ is a weighted
average of the finite differences 5'y, with weights

Q&, it necessarily follows that X, is merely the

Q Q~ over all 8'y values.
Replacing 2v in Eq. (48) by its equivalent

2g —t, from Eq. (46), we see that the ICi of Eq.
(16) is just the K& of Eq. (48), as already stated.
This identity is not entirely a matter of coin-,
cidence. In each case the X& is a factor that
converts non-integer values into integers al-
though, as it will appear, not the smallest
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and Eq. (47) ill the fol Ill

~=K ~'y Q~/~'«==2 ~'y Q~' (47')

By comparing Eqs. (14') and (47') we see that,
according to the theorem of summation by parts
(see Section J),. the complete coefficients Pii* of
the observations y in Eq. (14') must be just the
finite differences of order t of the complete
coefficients Q&" of the 6'y in Eq. (47'). It will be
understood in future references to the quantities

Q~ that t successive null values are adjoined
beyond the range of e in Eq. (47'), i.e. , for
c= —v —1. . . —v t and e—=i+1. . . v+I. These
null values are consistent with Eq. (49) for Qi
as a function of r= IeI. Hence, if one had
derived Eqs. (48) and (49), from which the
values of Q&*(=Q~/I!K~) immediately follow,
but had not yet derived any formulas for the
"pair-factors" of Eqs. (14), (15), etc. , then one
could have obtained all numerical values of I'~*
by merely constructing a table of differences of
the Qg* values"

Inspection of the Pii* and Q~* values will show
that in general they are not integers. Then K», as
defined by Eq. (48) or by Eq. (16), may be
considered as merely one possible integer factor
that converts a given set of Q~* values into the
values Q~/t! which, by Eq. (49), are necessarily
integers. If now the corresponding set of I'~~
values in Eq. (14') is multiplied by the same

factor E'», one must obtain integer values of I'~;

(as defined by Eq. (15)), since these new PIi
values must be, in turn, merely the 6nite differ-
ences of the new integral Qi/t! values. Of course,
Eq. (15) indicates the integral nature of the Pz
but, as noted, we are now assuming that this
equation has not yet been derived.

Furthermore, a comparison of Eqs. (14'.) and
(47') shows that

possible factor. The identity does, however, lead
to valuable numerical relations.

Thus let us rewrite Eq. (14) in the form

ag=Q y Pg/Kg= Q—y Pg*, (14')

The sets of quantities Ps and Q~/t! are, however,
not the smallest sets of integers for a given value
of t. As shown explicitly by Eqs. (15) and (49),
the actual smallest sets of integers, independent
of n, are obtained by removing a common integer
factor (t!) from Ps to give the P~" values of
Eq. (15), and from Q&/t! to give, from Eq. (49),

Zy Ps"=Z~'y Q', (50')

where again the I'g" values for a given t are just
the finite differences of order t of the Q~' values.

We can now use the integer values Q~' and still
preserve the form of Eq. (47) by writing

&'~. = (1/«') 2 (~'y. +~'y .)Q»', -(52)
r=-0 or:~

(2p+2t+1y
!K,'=K,/(I!)'=

I

2t+1

lt is actually Eqs. (51)—(53) that have been
derived by steinberg with the use of direct
algebraic methods (see Section J).

Finally, if there are specia/ integer factors f,
for special values of n that may be removed from
the respective sets of Q,

' values to give what we
shall term W& values then, by Eq. (50'), these
same factors f must be removable from the Pji"
values to give the V» values, as mentioned in
footnote 22. For, again, the new V» values must
be merely the hnite differences of order t of the
new S'» values. Ke thus get as a second new
form of Eq. (50)

P y V( ——P 8'y W). (50/I)

To preserve the form of Eq. (52) or of Eq. (47)
we write

&!& = (1/L ) P (8'y, +6'y, ) W, (54)
r=o or -~.

(v+t r) —(v+t+r)
Q'=Q /«')'=

I II I (»))E t )'
\

Then Eq. (50) takes on the new form

Zy P~=E~'y Q/~'. (50) W~= Q~'/f =Q~/(~~) f (55)

~8 For t an even integer, the resulting 6nite differences
give just the values of I'g*, but for t odd, the results give the
negative of E~*.

and, necessarily, from Eq. (52),

L( K,'/f =K,/(t!)'f. —— (56)
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Weinberg has now been able to devise a
general method for determining the f values of
Eqs. (55) and (56). Such information greatly
simplifies the numerical calculation of the t/V&

and I.i values starting with the derived Eqs. (51)
and (53). The values of f thus found are listed
in Table VI, for the range t = 1 to 5, and n to 30.
The resulting values of t/I/"& and I.~, over the same
range, are listed in Table XIV, which is entirely
new. As just noted, these F& and I& represent
the smallest possible sets of integers for the
evaluation of a& by Eq. (54)."

Since t!ai of Eq. (54) is a properly weighted
average value of 5'y, it follows that I.& is neces-
sarily the sum of all the weighting factors t/V& of
a given set, just as X& of Eq. (47) is the sum of
the weighting factors Qi, as already noted. But
since the weights are always distributed sym-
metrically about e =0, only the common weight
Wi of a given value of r =

~

e
~

is recorded in
Table XIV. Hence the values of I.t,, in terms of
the recorded sets of Wi, are given by

P

Ii=2 Q Wi

for an even number of fi'y values (half-integer r
values), and

for an odd number of 6'y values (integer r.values).
The calculation of numerical values of Qi' and

E,', from Eqs. (48), (49), (51), (53) is really
extremely simple, because of certain recursion
relations. " The necessary relation between I.&

"It was only after these f values had been determined
that we n'oted the necessary relation between them and the
S«values of Table XII,cited in footnote22 (f S« ——2t!/(t!)'),
which follows from the necessary relation of the V& and t/t/'&

values just discussed. We do not know how the S«values
(to n=104) published by Anderson and Houseman' were
actually obtained. Those used by Birge and Shea' (to n =30)
were found purely empirically by studying each set of I'&
values of Eq. (15) for a possible common integer factor. We
have now used our f values (extended to n = 104) to verify
all of the S«values published by Anderson and Houseman'7
(their ) ~).

"As an example of the simplicity of the numerical work
involved, consider the set of values for t =4 and n =24. The
successive values of Q&', Eq. (51), are obtained from the
respective values for n=23 by multiplying by the suc-
cessive factors 14/10, 15/11, 16/12, ~ .23/19. Then for
n =25, where we have an additional fourth-difference
coefficient, the initial Q, (r = —,) for n =24 is multiplied first

and the sum of the 8'~ values furnishes a com-
plete numerical check on the listed values.

It may be noted that the analytic expression
for t.'a& assumes an equally simple form, if one
uses the abscissae x=0 to 2v in place of e= —v

to +i. Thus we obtain, in place of Eqs. (52)
and (51),

(57)

where

(t+x) (2ii+f —x)

(x+t)!(2i+f x)!—
(58)

(2 v —x)!x!(t!)'

It should be emphasized that the x values, like
those of e, are assumed to be spaced at unit
interval. The Xi' values are given by Eq. (53)
as before.

Weinberg's derivation actually leads to Eqs.
(57), (58), and I then transformed his results to
Eqs. (52), (51) in order to check my own Eqs.
(47), (49), which in turn represent a generaliza-
tion and transformation of Sasuly's specific ex-
pressions for i=i to 4. It should further be
noted that Jordan" developed a formula for the
orthogonal polynomial T; as the jth diR'erence

of a polynomial of degree 2j, which can readily
be transformed into Eq. (57) by repeated sum-
mation by parts (see Section J).

Although it is a very simple matter to calcu-
late any desired a& value by the use of Eq. (54)
and Table XIV, it is a far more laborious process
to obtain the probable error rii in a,(=aii). But
the same situation exists when a given value of a~

is calculated directly in terms of the observations,
as shown by the equations and discussion of
Sections C5 and C6. A numerical calculation of
all probable errors of interest is made in Sections

by 14/10 and then by 15/11 to give the initial two values
of Q~' for n =25. The succeeding values are gotten from the
remainder of those for ii =24 by the use of the factors 16/12,
17/13, ~ ~ .24/20. The quoted figures are merely to illustrate
two quite obvious general rules, which it does not seem
necessary to quote, one applying to, an even number of
difference coefficients, and the other to an odd number. By
their use all values of both Q&' and X&' are easily derived
from preceding values. Then the f factor listed in Table VI
is removed to give the final S'~ and I ~ values of Table XIV.
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TABLE VI. Values of f in Eqs. (55) and (56).

2
20

10

3
14
21

~,

F4 and F6, and in Section F7 an explicit equation
and a calculation are given for the probable error
of a certain a& coefficient, whose value has been
obtained from finite diff'erences.

The present paper is devoted primarily to the
discussion of a complete least-squares' solution,
including probable errors, explicitly in terms of
the observations. A corresponding complete solu-
tion could certainly be worked out in terms of
finite differences. We are, however, confining the
present discussion of finite diff'erences to the cal-
culation only of the a& values. For just that reason
the formulas quoted, such as Eq. (54), are
designed to lead directly to the value of a& rather
than of b& which, for purely numerical reasons,
is found to be especially convenient when one
desires calculated values of the function at
various points and the corresponding probable
errors of the function.

In spite of the limited extent of the present
presentation in terms of finite differences, it is
believed that Eq. (54), in connection with our
new Table XIV, will prove of great value in
many experimental situations such as in the
calculation of acceleration by means of an At-
wood's machine, considered brieHy in Section A.

where
Ni(x) = Qpi+Giix, (59)

E. SPECIAL TREATMENT GF FIRST
DEGREE PGLYNGMIAL

The first-degree polynomial represents merely
one special case of the general methods discussed
in Sections C and D. But for this commonly
used function, the equations needed for the
least-squares' solution are so simple that it is
convenient to write them in explicit form. Inci-
dentally, a direct derivation of these equations
shows, in principle, one method of deriving the
more general equations already listed. In fact,
the following method is actually the one used by
Birge and Shea' in obtaining the needed results
for the first-, second-, and third-degree poly-
nomials. The method, however, becomes intoler-
ably complex for polynomials of higher degree.

Let us start with the standard equations for
the least-squares' solution of e unweighted obser-
vations (distributed in any way on the x axis)
in the form of a first-degree polynomial. For
this case

-11
12
13

2
1
2

5
20

35
10
5

84
14
36

„=(Zy g ' —P y g )/D, (6O)

14
15
16

2
2

1

9
2

21

aii = (n g xy- Q x P y)/D,

D=n Q x' —(Q x)'.

(61)

(62)

17
18
19

20
21
22

20
10

1.

10

If now we restrict ourselves to the special case
of n observations yi, ys, ys, , y„, corresponding
to x= 1, 2, 3, ~ ~, n, we may employ the well-

known expressions

23
24
25

26
27
28

2
20

5

5
35

7

. 5
5

10

126
7

42

21

6

g x=n(n+1)/2,
1

P x'=n(n+1)(2n+1)/6.
1

(63)

29
30

3.
2

Substituting Eqs. (63), (64), into (61), we obtain
after a little algebraic reduction,
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I (y.—yi) (24 —1)
n(N2 —1)

+(y -i —y2) (22 —3)+ I (65)

This equation for a» may be found in various
texts on physical measurements. On examining
it, we note that each pair of observations is
multiplied by a factor that equals the interval
Ax between the two observations comprising the
pair; in other words, a certain interval hy is
multiplied by its corresponding interval Ax.

Furthermore, the reciprocal of the factor out-
side the summation is just the sum of alternate
squares from (42 —1) to 1 (or 0). Thus

n(n' 1)—/6 = (n1), '—+ (n —3)'+ . .1' or 0'. (66)

To be specific, Eq. (65) for an even number of
observations, such as n = 6, has the form

5(yp —yi) +3 (yp —y2) + (y4 —yp)
a11———— — —— ——-- —:, (67)

52 + 32 + 12

but for an odd number, such as n = 5,

4(yp —yi) +2(y4 —y2) +0(yp —yp)
a»= (68)

42 + 22 + 02

It should be noted, from Eq. (68), that in the
ase of an odd number of observations the

middle observation (here yp) does not appear and,
hence, has no effect on the value of the slope.

If now we understand that observations are
to be combined in pairs in the particular way
shown by Eq. (67) or Eq. (68), i.e. , last and first,
next to last and second, etc. , then Eq. (65)
might be written

In Section D we have given the weights to be
assigned to the slopes (first diRerences) furnished
by successive points. But Eq. (69) applies to the
quite diRerent pairing of points shown by
Eq. (65).

We now continue the least-squares' solution
by substituting Eqs. (63) and (64) into (60). The
result after some algebraic reduction is

where

a 01 aoo
(n+1)

(70)

«p=Z y/~,

(22+1)
24 1(X) 1ip () 1211 + Ii11X.

2
(72)

But with x = p+xp ——p+(n+1)/2 we get

241(p) =4ipp+ G11p.

and where aii is given by Eq. (65). Thus in the
case of the 6rst-degree equation we already see
emerging the pattern of the least-squares' solu-
tion for the case of unweighted, equally spaced
data. Any coefficient (here 41») can be expressed
as the sum of terms containing the 6nal coefFi-

cient of the polynomial in question and the final
coefhcients of the polynomials of all lower degrees.
These coeAicients are here merely a~~ and apo.

In general they are a~~, a symbol that has been
simpli6ed to a& in Sections C and D. The general
formula for any coefFicient az; is given by Eq. (10)
of Section C.

The proper expressioris for R1,4 in Eq. (10) are
different. from those now being derived, since we
are here using the scale x=1 to I in place of
p= —

g to +g. Thus from Eqs. (70), (71), and
(59) we have

(69) We liave liow expl essed 241(p) in the form of
Fq. (5), i.e. , as the sum of orthogonal poly-
nomials,

The second form of Eq. (69) shows that 1211 is the
2veigkted average of a series of slopes hy4/bx;, each
of which is weighted proportional to the square of
the interval, hx, covered by the slope. Thus two
points twice as far apart as another set of two
points contribute four times as much weight in
determining the slope a» of the least-squares'
straight line through the data.

ui(P) =aP1P+aiT1, (74)

F11——P hy/P hx, (75)

where To ——1 and T~ ——~, in agreement with
Table III.

Another interesting, but lengthy process for
calculating the least-squares' slope of a straight
line is by means of the equation
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where each Ax corresponds to a Ay, and the Ay's

are obtained by combining the observations in
pairs in every possibte way. Thus for 5 observa-
tions y~ to y~ we obtain the list

y3 yl
y4 yl
yS —y1
y3-y2
y4 y2

y4 y3
y& y3

y4

1
2
3
4

2
3
1
2
1

Then P Ay=4(ys —yi)+2(y4 —y2), and g Ax
=20=4'+2', in agreement with Eq. (68). This
last method has been used in elementary labora-
tories, but I do not recommend it. I see no reason,
however, why Eq. (65) or the even more explicit
forms, such as Eqs. (67), (68), should not be
used even in an elementary physics course. In
fact, the essential object of this section is to call
attention .to the simplicity of equations such as
(67) and (68), which obviously can be written
down from memory without reference to any
more general formula.

F. EXPLICIT DIRECTIONS AND
ILLUSTRATIVE PROBLEM

Fl. Values of b& and P v' (Model Form 1)

The object of this section is to present detailed
directions for the use of the results contained in
Sections C and D. The clearest method of
presenting such material, it has always seemed to
the writer, is by means of an illustrative problem.
Although it is obviously necessary to refer re-
peatedly to the equations of Sections C and D,
the present section is, so far as possible, inde-
pendent of the preceding sections. It is hoped,
therefore, that potential users of the method
will be able from this section alone (when used
in connection with the various tables of numerical
values) t;o follow the necessary steps.

Our object is to fit data, equally spaced along
the x axis, and unweighted, to a polynomial of
any desired degree by the method of least squares,
and to obtain the probable e'rrors of various
calculated quantities. Although the general for-

I'AaLE VI I. Standard illustrative problem.
Data and diAerences.

0 —3

5 —2

10 —1

2.10
2.10

6.51

$2y $3y

0.42

Z4y

49.35

19.95

20 + 1 85.89

25 +2 307.86

30 ' +3 836.64

11.34

221.97

528.78

54.eo

156.03

306.81

49.77

101.43

150.78

51.66

49.35

/

mulas given in Table II I of Section C2 extend
up to the tenth-degree polynomial, the various
tables of numerical values presented here extend
only to the fifth degree (and to 30 observations).

As a sample problem we choose seven observa-
tions that are closely satisfied by a fourth-degree
polynomial. A sixth-degree function will exactly
satisfy all seven points and, due to the deliber-
ately chosen symmetry of the fourth di8'erences,
the sum of the squares of the residuals is no
smaller for the fifth-degree solution than for that
of the fourth degree. The assumed observations
have also been so chosen that all essential calcu-
lated quantities appear as simple terminating
decimals and hence the exact value of each can
be and is obtained. All computations have been
made on a 10-key calculating machine. The
methods advocated in this paper require, for
rapid work, such a machine rather than an
adding-tabulating machine. This point is dis-
cussed in Section G.

The first five observations of the seven now
presented have been fitted exactly to a fourth-
degree polynomial, in Section B, and directions
for such work are given there. The process given
in Section C and now illustrated (Table VII)
is, however, equally valid in such a case.

For the method discussed in Section C it is
not necessary to calculate the differences since
all results are in terms of the observations.
The e scy.le of abscissas is the standard scale in
terms of which the results are first obtained. It is
defined by e = (x—m) /h = ejh, where h =5, the
constant interval in terms of x, and m (also
denoted xo) is the middle value of x( = 15). For an
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even number of observations m is half-way be-
tween the center pair of values of x. The values
of e always run from —q to +q where 2g+1 = n
=number of observations.

The observations are now to be combined in

pairs, the last and first, next to last and second,
etc. Hence they are listed in columns 5 and 7 of
model form 1, with the final y (largest value
of x) at the head of column 7 and the initial y at
the head of column 5. The observations com-
prising each pair then lie on the same horizontal
line. The pair is designated by the value of
r= ~e~ in column 6. For an odd number of
observations, as here, there is only one observa-
tion corresponding to r =0, and the last space in

column 5 is left vacant. For an even number of
observations the last pair has r =-', (or e = +—,').

Column 8 is the sum of columns 7 and 5, and
column 4 is the difference. The numbers in
columns 2, 3, 9, and 10 are the values of V&, as
copied from Table XIII, for n=7. The missing
column 1, to the left of column 2, would be
headed V5 and would be used in the case of a
6fth-degree solution. These values of V~ are
called "pair-factors" by Birge and Shea. ' The
values of N&, occupying the first horizontal line
below the data (row (1)), are likewise taken from
Table XIII for n = 7. The value of No is merely n,
and is placed in column 8. These values of N&

differ numerically from the values designated as
X by Birge and Shea' and by E&* here, since
E&*——N&/5«by Eq. (26). The X values of Birge
and Shea lead directly to the values of a& whereas
the N~ values lead directly to b~, as shown in
Section C, Eqs. (25) and (23).

Row (2) gives the algebraic sum of the products
P, y V& for each value of t from 0 toj Eac.h
of these sums can be obtained in one continuous

TABLE VIII. Values of Z, Ls;(e)g' from Eq. (30).

Z, g = 802,597.9059' (exact)—Npbp2 = —227, 178.1575

2 vp'= 575,419.7484—¹b12= —365-,421.7728

5 vj'= 209;997.9756—N.bg = —173,709.9525

2 v22 = 36,288.0231—¹bP = —34,292.1600

Z v32 = 1,995.8631—N4b4' = —1,995.8400

Z v4' —— 0.0231 (exact)

~54.40 = 3 X836.64 —7 X309.96
+94.50+6 X 19.95.

Then row (3) (=b&) is obtained by dividing
each row (2) result by the corresponding value
of N~ in row (1). Rows (4) and (5) (bP and
1V& bP) are then to be calculated. The results

process on any calculating machine. Actually the
values of V~ for negative e are the negative of
those for positive e, if t is an odd integer, but
there is no such change of sign for t an even
integer. These relations are evident from Table
I I I and they are automatically satisfied by
multiplying the successive differences in column 4
first by Vi and then by Us, and the successive
sums in column 8, hrst by Us and then by V4.

Since the value of Vs is always unity, the g, y. Us

is obtained by merely adding column 8, and the
sum is recorded in row (2), column 8.

Thus in row (2),

3198.72 = 3 X836.64+2 X305.76+77 28,

and

MDDEL FoRM 1. Values of bg from the observations.

(1)
(2)
(3)
(4)
(5)

(2)
V3

6
453.6

75.6
5715.36

34292. 16

(3)
V1

28
3198.72

114.24
13050.7776

365421.7728

(4)
diff.

836.64
305.76
77.28

(5)
y—e

0
2.10
8.61

(6)

Z, y. Vg
bt

b 2

Ng bP

(7)
~ ~ ~

836.64
307,86
85.89
19'.95

(8)
suIIl

836.64
309.96
94.50
19.95

, 7
1261.05

180.150
32454.0225

227178.1575

(9)
V2

84
3819.90

45.475
2067.975625

173709.9525

(10)

+3
7

+1
+6
154
554.40

3.60
12.96

1995.84
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given in these last two rows are needed only for ment, and the fourth degree an enormously
calculating the sums of squares of residuals greater improvement. But the fifth degree pro-
(and hence, finally, any desired probable errors).
These last sums are given by Eq. (30) which is

duces no further improvement at all. Hence the
fourth-degree polynomial, but one of no lower

now repeated for convenience. degree, is to. be considered a satisfactory repre-
, sentation of the data.

(30)

Hence we get, by repeated subtraction, the value
of P, e2 for polynomials of successive degree

j=0, 1, 2, etc. The magnitude of g e' is probably
the best criterion of the fit of the data to the
polynomial used. The figures for our sample
problem are given in Table VIII.

Ordinarily the calculations need not be carried
to so many digits, but if one wishes an accurate
value of the residuals for a curve that fits the
data very cIosely, it -is necessary to retain all
digits shown. Here all results are exact, both in
model form 1 and in the g. Lv&(c) ]' calculations.

As already noted, the fourth differences are
symmetric' about &=0. This fact leads to bed=0,
and hence P eP also equals 0.0231. The P vP is
necessarily zero, since a sixth-degree polynomial
exactly fits any given seven points. It is thus
evident that a fourth-degree polynomial gives a
satisfactory fit, and a far better fit than does
one of any lower degree. The same information
is shown by the constancy, or lack of constancy,
of the various columns of finite differences, as
given in Twb1e VII. But the successive values of

Q u' put this information in quantitative form.
One therefore has the following rule for

choosing the degree of the polynomial to be
employed. Increase the degree until the value of
g v' has dropped to a roughly constant value.
The size of this final value is a measure of the
goodness of fit. It should, of course, be re-
membered that the higher the degree of the
polynomial and thus the greater the number of
undetermined coefficients, the better the fit will

necessarily be. But each added degree should, in

general, produce a very large proportional de-
crease in the value of g v'. If it does not do so,
there is little justification for the added degree.
Thus, in this case, the first-degree po1ynomia1 is
little better than that of zero degree, the second
degree makes a considerable improvement, the
third degree still greater (proportional) improve-

F2. Yalues of u;(e) and- v;(e) for Observed
Points (Model Form 2)

The next information that we obtain easily'
and rapidly consists of the calculated values and
the probable errors of each observation. With
somewhat more labor we can determine the
calculated value and probable error of any
extrapolated point. It is very common in physical
science to obtain an analytic representation of a
set of data primarily in order to calculate a
certain extrapolated value (possibly the ordinate
at x =0 for experimental data extending over
some positive 'range of values xi to x2). Pre-
sumably because of the fact that the standard
method for the least-squares' solution of a poly-
nomial and for the calculation of its probable
error is a laborious process, even for one of the
second degree, the calculation of the probable
error of an extrapolated value is practica11y never
carried out by physical scientists.

But the representation of a, polynomial as a
sum of orthogorIal polynomials, as is done in
Section C, makes such a calculation compara-
tively simple, as wi11 be. i11ustrated immediately.
There are numerous cases in the literature where
an extrapolated value has been calculated and
later used as if it were both reliable and im-
portant. But if the probable error of such an
extrapolated point had been calculated, it is
probably no exaggeration to say that in a sub-
stantia1 fraction of the cases the error thus
obtained would have been found to be so large
as to nu11ify completely any significance that
might be attached to the result. „Especially in
the case of polynomials of high degree, the
probable errors increase with extreme rapidity
as we move beyond the limits of the experimental
data. This fact has been emphasized and illus-
trated in an important paper by Schultz. 3'

"H. Schultz, "The standard error of a forecast from a
curve, "J. Am. Stat. Assoc. 25, 139 (1930), p. 159.
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MQDEL FoRM 2. Calculation of I;(e) and v;(e) values. I;(e) =bpVp+b1V1+ ~ b; V;, Np(e) =bpVp=bp= 180.15,
n4(c) =180.15+114.24V1+45.475V2+75.6V3+,3.6V4. (Values of V& and b~ from model form 1.)

0

+1
+2
+3

85.89
307.86
836.64

y —Np(e)

0 —180.15
2.10 —178.05
8.61 —171.54

19.95 —160.20

—94.26
+127 71
+656.48

bl VI
= 114.24 V1

—342.72
-228.48—114.24

+114.24
+228.48
+342.72

leap(C)+b1 V1
=up(a)

162.57—48.33
+65.91

+180.15

+294.39
+408.63
+522.87

e

y —n1(e)= vp(e) —bg V1=vg(e)

+162.57
+50.43—57.30

—160.20

—208.50—100.77
+313.77

b~ V2
=45.475 V2

+227.375
0= 136.425

—181.900

—136.425
0

+227.375

u1(e)
+b2 V~
=N2(e}

+64.805
—.48.330—70.515

-1.750

+157.965
+408.630
+750.245

+1
+2
+3

y —up(e)
=v() —b V

=»(~)
—64.805
+50.430
+79.125

+21.700

—72.075—100.770
+86.395

N2(e)+b3 V3
=u3(e)

—1.750

—75.6—75.6
+75.6

+82.365
+333.030
+825.845

bs V3
= 75.6 Vg

—75.6 -10.795
+75.6 +27.270
+75.6 +5.085

y —u3(e}
= v2(~) ba V3-

=v3(e)

+10.795—25.170
+3.525

+21.700

+3.525—25.170
+10.795

b4 V4
=3.6 V4

+10.8—25.2
+3.6

+21.6

+3.6—25.2
+10.8

I,(.)+b, V,
=N4(e)

+0.005
+2.070
+8.685

+19.850

+85.965
+307.830
+836.645

y —u4(&)
=v() —b V

= v4(~)

—0.005
+0.030—0.075

+0.100

—0.075
+0.030—0.005

5
10

15

20
25
30

In contrast to the laborious method of determi-
nants used by Schultz, we now have the following
rapid method for calculating ordinates and prob-
able errors. From Section C we rewrite

u;(e)=P b, V„ (22)
8=0

in which both the bg and the V~ values" required
for each value of e, over the range of the data,
are given in model form 1.

Just as in the case of P v' in Eq. (30), the form
of Eq. (22) shows that in'obtaining each calcu-
lated value u, (e) for the polynomial of degree j,
we simultaneously obtain the calculated value
for each polynomial of lower degree. In fact, as
shown by thy various equations of Section C,
every desired result, when calculated by an
orthogonal polynomial method, is given by a
sum of terms. If one desires merely the result
corresponding to a polynomial of stated degree,

e

"As just mentioned, each value of V& for a negative value
of e when t is an odd integer, is the negative of that given in
model form 1 (as taken from Table XIII). The magnitude
of e is given by r.

all that need be recorded is the actual sum. Hut
by recording each successive partial sum one
obtains simultaneously the solutions for all poly-
nomials of lower degree. In the case of the specific
problem treated in the present section we shall
in every case record and use such partial sums,
partly to show the possibility of such additional
results and partly to illustrate in detail the im-
provement in the fitting of a given set of data
to a polynomial as the degree of the polynomial
is increased (from 0 to 4).

There is a very significant interpretation of the
cbange in the u, (e) values as j increases. Let us
start with the zero-degree polynomia1. The solu-
tion is merely uo(e) = boVO bo Qy/——n, th——e arith-
metic average of the observations (=180.15 in
model form 1). Suppose that we now calculate
the residuals vo(e) [=y —uo(e) J for such a solution.
Obviously they are large„but let us attempt to
fit these residuals vo(e) to a first-degree poly-
nomial. In other words, we now consider the vo(c)
as new observed values. We then find for the
calcula/ed values of vo just the second term of
Eq. (22), i.e. , b~V~. Then the difference of the
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observed and calculated values Lvo(o) —b, Vi]
gives the residuals v~ of the first-degree least-
squares' polynomial ui(o). Next we consider the
vi(o) as new observed values and attempt to fit
them to a second-degree polynomial. The result
is then just the third term of Eq. (22), i.e. , boVo.
The difference Lvi(o) boV—o) in turn gives the
residuals vo(o) of the second-degree polynomial
uo(o).

We thus find that each ortkogona/ polynomial
biVi of Eq. (22) actually represents the least-
squares' polynomial of degree t for the residlals
(considered as observations) of the least-squares'
solutiog of one lower degree. As a series of
algebraic steps the foregoing process reads

up(o) =bp Vp,

vp(o) =y —up(o),

ui(o) =up(o)+b, V„
»(o) =y —«i(o) =S—(up(o)+bi Vi)

= vp(o) —bi Vi,

uo(o) = ui(o)+bo Vi,

v&(o) =y —u, (p) = y —(ui(o)+bo Vo)

=vi(o) bo Vo, —(76)
etc.

This interpretation of the orthogonal polynomial
b&U&, of degree t, as the analytic function best
fitting a series of residuals v& i(o), which result
from the use of a function of degree t —1, appears
to be highly significant.

Having found that a fourth-degree polynomial
represents a satisfactory fit of the data of model
form 1, one would ordinarily merely calculate and
add the five terms of Eq. (22) that are necessary
to obtain each value of u4(o). But in order to
show the foregoing relations between successive
orthogonal polynomials and successive residuals
we include these residuals in model form 2, which
covers the range of the data o= —3 to +3.

Then, in model form 3, we will calculate the
extrapolated values out to o = —6 and +6.
Next we will obtain, in model form 4, the weights
of all points over the range o= —6 to +6, for
the polynomials of all degrees from zero to four
and finally in model form 5 the corresponding
probable errors in all these cases. Thus we obtain
a complete picture of the fitting of our seven

'assumed observations, not only to a polynomial

of the fourth degree, but also to polynomials of
all lower degrees.

In connection with model form 2, we again
call attention to the relations mentioned in
footnote 32.

UO=SOO= &,

Ug = Sgge,

V2 S22& +S02~
Vp ——Sppo'+ Sipo,

« = S44o'+ So4o'+ Sp4 (77)

In model form 3 we list the values of U& as
calculated by the foregoing expressions and also,
as in model form 2, the values of the successive
orthogonal polynomials b&V& and the successive
least-squares' polynomials u, (o). But since there
are no residuals in the extrapolated region, the
five columns of v;(o) values of model form 2 no
longer appear.

The method of calculating u;(o) values given
by Eq. (22) and used in model form 2, is certainly
the most rapid one for values of e corresponding
to the observations. But in the case of other.
values of e, whether interpolated or extrapolated,
we may, in place of model form 3, calculate the
coefficients al,; of the power series in e by means
of Eq. (27), as will be done presently (Section F5)
and then evaluate the function, Eq. (9), for the
desired value of e. Actually these two processes
give the values of u, (o) in terms of the Soi of
Table XII and differ only in the order in which
the various algebraic processes are performed.

F3. Values of u; for Extrayolated. Points.
(Model Form 3)

We will next calculate extrapolated values of u;
out to o= —6 and +6 by the use of the same
Eq. (22) that we have just used for the range
o= —3 to +3. But now we must first calculate
values of V& for the desired values of e, since the
values of Vi in Table XIII cover only the range
of the observations. The equations for U& are
given in Table III, provided we substitute Sl, &

for R~~. The values of S~t, are given in Table XII.
Here we wish the values for n=7. For con-
venience, the needed expressions from Table I I I
in terms of S~~ are now listed. 'These expressions
can obviously be used for any value of o, either
interpolated or extrapolated.
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1/p;(s) =Q (Vz'/Xz).
t,=o

(36)

F4. Values of Weights. and Probable Errors of
Calculated Points, for Both the Observations

and the Region of Extrapolation.
(Model Forms 4 and 5)

We now consider the important question of
the weights and probable errors of the u;(s)
values already calculated. Later we will calculate
the coefficients and their probable errors, of the
various polynomials in power series form. Most

.of these equations for calculating weights and
probable errors are believed to be new. They are
based an the important fact, proved in the
Appendix (Section J), that because of the or-
thogonal character of the solution, the quantities
bz act like independently observed quantities to
which we can apply the law of propagation of
errors.

The relations needed for calculating the weights
and probable errors of I;(s) are covered in Eqs.
(31), (32), (33), (34), and (36) of Section C.
The weight of b, is Nz(= P, Vzs) and the values
of Nz for n = 7, have already been used in model
form 1. Then, applying propagation of errors-
Eq. (32)—to Eq. (22), we get for the weight

p, (e) of zz;(e) the result already given in Eq. (36),
namely

Using the values of Vt already listed in model
forms 1 and 3, for the several desired values of ~

and the values of Nt from model form 1, we
obtain the results given in model form 4. As
usual, in the process of getting values of p4(s) we
also get weights for all polynomials of lower
degree. The weight is obviously the same for
equal plus and minus values of e since only the
square of Vq is involved and, hence, we need to
list only

~
s

~
(=r), just as is done in model form 1.

Equation (36) shows that we are concerned
with a sum of reciprocals of weights and, further-
more, it is convenient to calculate only the
reciprocal 1/p;(s) since from Eq. (33) multipli-
cation of L1/p;(e) $& by r', the probable error for
unit weight, gives us the fina desired probable
error. In the case of reciprocals of weights we
encounter for the 6rst time more complex re-
peating decimals. This result is inevitable for the
case of 7 observations since 1/ps(e) = 1/n= 1/7.
The results given in model form 4 are carried to
5 or 6 decimals in order to show the precise
relations, but "in all practical work involving
probable errors, slide-rule accuracy is of course
fully suAicient.

To get the probable errors r;(s) for the several
u;(e) values, whose weights p;(s) are listed in
model form 4, we need 6rst the probable error r
of a hypothetical quantity of Neit weight, for a

1

MQDEL FQRM 3. Extrapolated values of u;(o). (Values of Vz calculated by Eq. (77), arith values of Soz for zz=7 from
Table XII.) uo(o) =ho Vo=bo=180 15.

—6—5

bl Vl
= 114.24 Vl

—685.44—57).20—456.96

+456.96
+571.20
+685.44

uo(o)
+bl Vl
=uz(o)

—505.29—391.05—276.81

+637.11
+751.35
+865.59

32
21
12

12
21
32

bg V2
=45.475 V2

+1455.200
+954.975
+545.700

+545.700
+954,975

+1455.200

uz(o)
+b2 Vg=us(o)

949.91
563.92
268.89

1182.81
1706.32
2320.79

—6—5

+4
+5
+6

V3

—29—15—6

+6
+15
+29

ba V3
= 75.6 Vg

—2192.4—1134.0—453.6

+453.6
+1134.0
+2192.4

uz(o)+ho Vo=uz(o)

—1242.49
-570.08—184.71

+1636.41
+2840.32
+4513.19

561
231
66

66
231
561

b4 V4=3.6 V4

2019.6
831.6
237.6

237.6
831.6

2019.6

uz(o)+boV4
=u4(e)

+777.11
+261.52
+52.89

+1874.01
+3671.92
+6532.79

—15—10—5

+35
+40
+45
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MQDEL FQRM 4. Weights p;(e) of calculated values N, (e).
1/Po(~) =1/¹=1/e=1/7 here.

1/Np
+VP/¹V|2/¹ =1/p|(~)

1/p|(e)
+ V22/Xg

VP/X, =1/P, (.)
1.285714
0.892857
0.571428

0.321428
0.142857
0.035714

0 0

1.428571
1.035714
0.714285

0.464285
0.285714
0.178571

0.142857

12.19047
5.25
1.714285

0.2/7619
0
0.10714

0.19047

13.61904
6.28571
2.42857

0.76190
0,28571
0.2857 1.

0.33*

V3'/¹
1/P (.)

+ Va'/¹
=1/ps(~)

6 140.16* 153.7856*
5 37.50 43.7857
4 6 8 42857

0.16*
0.16*
0.16*

0 0

0.92857
0.45238
0.45238

0.33*

VP/N4

2043.6428
346.5
28.2857

0.05844
0.31818
0.00649

0.23376

1/pa(e)
+ &4"-/¹
=1/p4(~)

2197.428
390.286
36.714

0.987
0.7706

. 0.4589

0.5671

+ Singly repeating decimals are indicated by a star. Thus 140.16+=140.16666 ~

polynomial of degree j, where j=0 to 4. The
needed value of r, ' is given by Eq. (34) of
Section C, in which the number of undetermined
coeAicients s is j+1.Thus

hence in both model forms 4 and 5 we need list
only the values of isa. In these two cases. we
use isa rather than the equivalent symbol r in
order to avoid any possible confusion with the
symbol for probable error.

The values of r;(e), the probable error of the
function, in model form 5 are worthy of careful
study. As one proceeds into the region of extrapo-
lation the predominating term in 1/p;(e) becomes
VP/N; and the predominating term in V;, for
suf6ciently large e, is e&'. Hence -the resulting
value of r, (e), which depends on L1/P;(e) jl,
varies as ~&. This rule is very approximate, as
shown by an examination of the actual ex-
pressions for V& in Eq. (77) in connection with
the values of S~& in Table XII. But it is important
to notice that in a rough sort of way the probable
errors of a 6rst-degree polynomial, as one pro-
ceeds into the region of extrapolation, vary
linearly with e, those for a second-degree poly-
nomial vary as the square of e, etc. It is just this
fact that causes the great uncertainty of extrapo-
lated values when calculated by means'of 3,

polynomial of high degree.
On the other hard, within the region of the

data (here e= —3 to +3) the probable error
remains more or less constant with small maxima

Z E~(e)]' '
r =0.6745

n —(j+1)

MoDEL FQRM 5. Probable errors r;(e) for u;(e) values of
model forms 2 and 3. Weights P;(~) in model form 4. Values

(78) of r following Eq. (78). ro(e)=208.89(1/7)1=78.95
=constant.

The values of P, (v;(e)$' have been calculated
from Eq. (30), immediately following model
form 1. Using these values in Eq. (78) we obtain,
for n=7,

ri'I 1/pi(e) g&

I 1/pi(~) 0' =ri(~) I 1/p2(~) j1

6 1.1952 165.21 3.690
5 1.0177 140.67 2.507
4 0.8451 11.6.82 1.5584

rs'L1/p~(e) i'
=~~(~)

237.08
161.07
100.13

ro' ——208.89, r1' = 138.23,
r ~' = 17.397, r4' =0.07249.

Then, from Eq. (33),

r,'=64.25,

0

0.6814
0.5345
0.4226

0.3780

94.19
73.89
88.42

52.25

0.8729
0.5345
0.5345

0.5774

56.084
34.341
34.341.

37.095

r;() =«'C1/P ()): (79)

Model form 5 gives the resulting values of r;(e)
for the calculated values I;(e) of each polynomial,
as listed in model forms 2 and 3, with the use of
the values of p;(e) listed in model form 4. Again
it is to be recalled that the u;(s) for the same posi-
tive and negative value of ~ in model forms 2 and
3, have the same weight and probable error, and

"I:1/p ()j'
I 1/P3(e) g& = ra(e)

12.401 215..740
'6.617 115.116
2.903 50.503

0.9636 16.764
0.6726 11.701
0.6726,:. , 11.701.

0.57-.74 ' -
.- 10.045

46.88
19.75
6.06

0.9935
0.8778
0;6774

0.7531

3.398
1.432
0.439

0.0720
0.0636
0.0491

'0.0546

r4'Ll/p4(~) 3'
I:1!p()31 = ()
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and minima. values. In fact, for a polynomial of
degree j there are, within the range of observa-
tions, j minima and j—1 maxima values of the
probable error of the function, a11 symmetrically
located about ~ =0. I'he center point, e =0,
corresponds to a sma11 maximum of probable
error for j=even integer and to a small minimum
for j=odd integer. "One notes in this connection
that the "center of mass" of the observed points
is located at 0=0, y=bO py—/—n

As a 6nal remark on the probable errors in

the region of extrapolation, I note thatin a,ddh-

tion to the fact that they are large, they have no
real signi6cance unless there is reason to believe
that a polynomial of the jth degree is a valid
function in the region considered. Thus if one,
from theoretical considerations, believes that a
linear relation actually exists even out to a
certain extrapolated point, then one can use the

4.
value of the point thus calculated and can take
its calculated probable error as a trustworthy
measure of its uncertainty. But if the true but
.unknown function deviates from linearity in the
extrapolated region, obviously the entire process
breaks down. For just this reason, when poly-
nomials are used as purely empirica/ functions
for the smoothing of data, extrapolated values,
and their probable errors become completely
meaningless even though calculated correctly.
The importance of this point cannot be over-
emphasized.

FS. CoefBcients of Power Series

We have now completed the discussion of the
results that can be obtained very quickly from
the data given in model form 1. These results
have included the calculated values and probable
errors of the function expressed as a polynomial
of any degree up to the fourth (in the actual
problem treated), at points corresponding to the
observations as well as at certain extrapolated
points.

The remaining desired information consists of
(1) the coegcients a0; of the function expressed

'3 Using the least-squares' solutiori of polynomials by
means of determinants, Schultz, footnote 31, pp. 155—160,
discusses these facts about the probable error of a poly-
nomial in the interpolated and extrapolated regions. He
gives the explicit mathematical expressions for j=1, 2 and
3, needed to locate on the e axis the various maxima and
minima of probable error.

as a poorer series in 0, and the coefficients aq;" of
the corresponding power series in x, and (2) the
probable errors of all such coef6cients. In the
usual treatment of orthogonal polynomials in
the literature no rapid method is given for ob-
taining the results of (1) and, as already stated,
it is believed that the method here presented of
getting the probable errors of the coefficients is
entirely new. In the present section we treat the
coe%cients. In Section F6 we shall consider
the probable errors.

The simplest coefficients to obtain are those
for the power series in 0. Thyrse are given by
Eq. (27), i.e. ,

(27)

500 ——1 (always), Sqq ——1, 500 ———4,
5 = 1, 5 =0.16*,

Spa = —1.16*, 544 =0.583*,
S24 = —5.583~, So4 = 6.

The various a0, values are then, by Eq. (27),

coo = co~ = Soobo = 180.15,
GOO COO 50050+502I 2 1 ~ 7D)

. 804 ( = GOO) = SOOI 0+50252+ 504~ 4

aug = aug = Sggbg ——114.24)
+i0 = a&4 ——5&&by+5)0b0 ——26.04,
a» ——a» ——S»b& ——45.475,
a 04( =@00)=5.0b0+504b4 25.375, ——
a33 ——a~4 ——5»b3 ——12.6,
a44(=a40) =544b4 2.1. ——

(80)

All of these results are exact. In fact, as stated
earlier, the experimental data have been de-

'4 As noted in model form 4, a star denotes a repeatirig
decimal digit. Thus 0.16*=0.16666. - ..

4

As usual, due to the orthogonal character of the
solution, it is possible to obtain the coeScients
of all lower degree polynomials at the samq time
that one obtains those for the desired polynomial.
For convenience, the specific expressions for all

a~; coefficients up to j=4 are now given together
with the numerical results for our sample prob-
lem. The needed values of b& from model form 1,
and those of 50, (for n = 7) from Table XII, are"

bo ——180.15, bg ——i i4.24, b2 =45.475,
b g

——75.6, b4 ——3.6,
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Hpp= 1, Hpi= —3, Hpo='+5,
Hop= —1, IIo4=+3,up(p) = +180.15,

ui(p) =+180.15+114.24p,

up(p) = —1.75+114.24e+45.475p',

uo(p) = —1 75+26.04p+45.475p'+12.6p',

u4(p) = +19.85+26.04p+ 25.375p'

+12.6e'+ 2.1p'.

IIgg =0.2, IIj 2
———1.2,

Hip ——+2/3, H, 4 ———5.9,
Hpo =o o4, Hop = —0.06, Hu =+311/300,
Hop = 1/750, Ho4 = —7/125, II44 = 7/7500.

(81)

All of these values of HI, ~ are exact.
The values of ar, t,

" are given by the successive
partial sums of Eqs. (42:0) to (42:5). These
results are now listed in Table IX. The first
row contains the designation of the successive
terms of these equations, and the second rom

contains the salue of the successive partial sums

of the terms, yielding the value of the coefficient
stated in the third row under each such partial
sum. Hence, from Eq. (39), the successive least-
squares' solutions expressed as power series in

x are

One does not ordinarily have any real need for
an analytic expression in terms of e in power-
series form since its calculated values can be
more rapidly obtained by the methods already
presented (model forms 2 and 3). But the
coefficients of the corresponding f(x) may have
real theoretical interest in physical science, and
we now proceed to calculate the coefficients aA,;"
of this new function, where p = (x —m)/Ii, as used

throughout the paper. The necessary equation,
as given in Section CS, is

liberately chosen to make such simple exact tioned, and with the values of Si, i used in Eq.
results possible. The successive least-squares' (80), we get
solutions, corresponding to Eq. (9), are then

(42)

and explicit expressions for the II~~ are given in
connection with Eqs. (42:0) to (42:5) in Sec-
tion CS. We shall not repeat these expressions,
but shall merely give the resulting values of III, &

for the present problem.
From Table VII, in Section F1, we hnd

up(x) =+180.15,
ui(x) = —162.57+22.848x,
up(x) = +64.805 —31.722x+ 1.819x',
uo(x) = —10.795+18.678x

—2.717x'+0.1008x',
u4(x) = +0.005 —2.562x+ 1.015x'

—0.1008x'+0.00336x4.

As in the case of the corresponding Eq. (81), all

equations in (82) are exact.

k = 5 = interval between values of x,
m=xp ——+15

F6. Probable Errors of Coef5cients
of Poorer Series

middle value of x (for which p —0).
Our final problem is to calculate the weights

Then from the expressions for HI, & just men- and probable errors of the coefficients ao; of Eq.

Tash. E IX. Values of af,;".

(1) Terms

(2) Sums
(3} Coefficients

(1) Terms

(2) Sums
(3) Coefficients

Hppbp

+180.15
ll

+00

Hllb 1

+22.848
I/

+11

Hp1b1

—162.57
ll

+01

H12b2

310722
I/

QIg

Hplb2

+64.805
lf

+02

Hp3be

—10.795
II

+08

H18b3

+18.678

II04b4

+0.005
I/

C04

H14b4

-2.562
//

+14

(1,) H22b.

(2} +1.819
(3) a.22"

H23b 3

—2.717
llgg~

H24b4

+1.015
II

624

(1) H83b8

(2) +0.1008
(3) n;,3"

H$4b 4

—0.1008
I/

+34

{1) H44b4

(2) +0.00336
(3) Cl44
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(81) and of the coefficients a»" of Eq. (82). The
weights p» of the coefficients a4; are given by
Eq. (38), na, mely,

The required values of Sy, 4 (from Table XII)
precede Eq. (80), and those of %4 (from Table
XIII) appear in model form 1.With these values
we obtain, from Eq. (38), the results listed in
Table X.

In ordinary work all of these results would
naturally be expressed in decimals, with only
slide-rule accuracy necessary. But in the fore-
going expressions the exact results are recorded.

With the foregoing values of pi;, the probable
errors r~; of the coef6cients a~; are to be obtained
by the use of Eq. (33), which now takes the
specific form

(83)

in place of the special form Eq. (79) used in
connection with model form 5. The numerical
values of r, the probable error for unit weight,
have already been calculated from Eq. (78) and
listed following that equation for use in model
form 5. With these values one obtains, for
example,

ri, ——r3'(1/pi4)1= 17.397(397/1512)& = 8.9144,
r 24

——r4'(1/p, 4) 1 = 0.07249 (679/3168) ' =0.03356.

Instead of listing separately the remaining values
of r», we insert them directly into Eq. (81) and
thus get as our final power-series polynomials,
expressed as a function of e,

No(4) = 180.15&78.95,
ui(4) = (180.15+52.25) + (114.24~26.12)g,

N2(e) =, —(1.75 &37.09)+ (114.24&12.14)4

+(45.475+ 7.010)c',

N8(e) = —(1.75 +10.04) +(26.04&8.914)4

+ (45.475 +1.898)c'

+ (12.6+ 1.184)e',

u4(4) = (19.85W0.05459)
+ (26.04&0.03714)e

+ (25.375&0.03356)c'

+ (12.6&0.004932)e'

+(2.1+0.003407)e'.

As in the case of Eq. (81), the coefficients az; of
Eq. (84) are exact. All probable, errors are here

TAM. E X. Values of Pg„..

1/poo = 1/poi = Soo/No = 1/"
1/p44 = 1/Pos = 1/Poo+ So4 '/N4 = 1/3
1/P04( = 1/P0g) = 1/P02+ 504~/X4 ——. 131/231
1/pg4 ——1/pg4 ——Spy/Ng ——1/28
1/pj3 1/p)4 ——1/ping+ S13 /N3 397/1512
1/P44= 1/p44 =5»/¹=1/84
1/p24{ 1/p») = 1/p44+S44'/N4 ——679/3168
1/p )4 = 1/p44 = S»'/Na = 1/216
1/p44{ = 1/p44} = S444/N4 = 7/3168

recorded to four significant figures although in
practical work two signi6cant figures in the
probable errors, with the corresponding two
doubtful figures in the quantities themselves, are
always quite sufficient. Since the value of u;(4)
at &=0 is merely ao;, the respective probable
errors ro; in Eq. (84) are also the probable errors
of the function at- &=0, which have already been
given in model form 5 in the row e=O and in
the respective r, (4) columns.

Ke now proceed to calculate the weights and
probable errors of the coefhcien. ts a~;" of the
various I;(x) listed in Eq. (82). The weights are
given by Eq. (43), namely,

(43)

The required values of II«have already been
calculated, from Eqs. (42:0) to (42:5), in con-
nection with the evaluation of the coefBcients
a»" of Eq. (82). The values of N4 have already
been used in obtaining the weights p» of Table X.
They appear in model form 1 and are taken from
Table XIII for n = 7.

As in the case of the ai,;"coefficients, a tabular
arrangement (Table XI) is used for the suc-
cessive partial sums given by Eq. (43). The
third row gives the designation of the numerical
values in the second row.

Just as in the case of the values of p», it is far
simpler and quicker to express all of the fore-
going weights as decimals, with only slide'-rule

accuracy necessary. The exact values are here
recorded just to show their simplicity or com-
plexity, as the case may be.

The 6nal calculation is that of the probable
errors rq/" of the 444/' coefficients. Here we again
use Eq. (83) with p» replaced by p»". We also,
as in the case of r~;, do not list separately the
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resulting r&;" values but merely insert them in
the u;(x) of Eq. (82). We thus obtain

TABLE XI. Values of 1/po;".

Np(x) = 180.15&78.95,
Ni(x) = —(162.57&94.19)

+ (22.848+5.225)x,
Ns(x) = (64.805&56.08)

—(31.722 &8.756)x
+ (1.819&0.2804)x',

Ns(x) = —(10.795&16.76)
+ (18.678+5.295)x
—(2.717a0.4328)x'

+ (10.08+0.9470) 10 'x'
No(x) = (5.0&72.02) 10—'

—(2.562 &0.04092)x
+ (1.015&0.006318)x'
—(10.08&0.03295) 10 'x'

+(33,i60&0.05452) 10 4x4.

(85)

(1) Terms Hoop/No Hoi /Ni Hoo /No Hoop/Ns Hoo /No

(2) Sums 1/7 13/2 8 16/21 13/14 76/77
(3) 1/po&" 1/ppo' 1/ppg 1/ppo" 1/ppo" 1/pp4"

(1) Hn'/N& H&o'/No Hioo/No H, 4'/No

(2) 1/700
(3) 1'/P~~"

13/700
1/pip

1751/18900 132509/415800
1/p»" I/pi4",

(1) Hoo'/No

(2) 1/52500
(3) 1/p o"

Hop'/No

13/21000
I/poo"

Hoop/N4

15043/1, 980,000
I/pop"

(1) Hoop/No Ho 4'/N4 (1) H44'/No

(2) 1/3, 375,000 767/37, 125,000 (2) 7/1, 237,500,000
(3) 1/p»" 1/pop" (3) 1/pop"

In Eqs. (85), jqpt as in Eqs. (84), all coefiicients
are exact, and the probable errors are recorded
to four significant figures, although no more than
two figures are of any significance in experi-
mental work.

A portion of the probable errors in Eqs. (85)
has already appeared in model form 5, just as
in the case of Eqs. (84). In fact, the probable
errors rp/' of the absolute term in Eqs. (85) are
just the probable errors of the function at x =0
or e= -3, and are given in the row ~e~ =3 of
model form 5.

F7. Ca1culation of a& Va1ues from Finite
Differences. (Model Form 6)

In model form 1 we have calculated values of
b, directly from the observations. From Eq. (27)
we can then get a«(normally denoted co) = S«b&,
where a~ is the coefficient of e' in a polynomial of
degree t. It is also the coefficient for any other.
abscissa scale for which the observations are
spaced at unit interval, since a shift in the
absolute value of the abscissa does not affect the
coeScient of the highest degree term in a power
series.

In Section D we have shown that t!u~ can be
considered as the weighted average of the finite
differences 8'y, and Eq. (54) expresses such a
weighted average. The necessary weights H/'& and
sums of weights I & are listed in Table XIV. We
shall now apply Eq. (54) to our sample problem.

The necessary finite differences of the observa-
- tions are given in Table VII of Section F1.

Since the weights are always symmetrical
about the center point, the finite differences can
be combined in pairs, as shown in Eq. (54), i.e. ,

(54)

but with a small number of 8'y values it is simpler
to list the entire set of values. ". With the values

'~ As stated in Section D, the values of the "pair-factors"
V&, listed in Table XIII and used in model form 1, may be
proved (see Section J) to be merely the finite differences of
order t of the "weights" S'g, listed in Table XIV and now
used in model form 6. Historically, the values of V& were
first calculated by Birge and Shea (footnote 3) from the
equations derived by them, and then, many years later, the
values of TV~ were calculated from the equations of Section
D. Actually, however, the simplest way to obtain the U&

values is by merely differencing the W'|, values, since the
equations for t/I/'g are simpler to handle than those for V~.

In order to obtain the necessary n values of V& for a set
of n observations from the available n-t'values of t/V~, we

. attach t zeros at either end of the set of le values. The
justification for this procedure hes in the fact that W&(p) is
a polynomial of degree 2t, whose 2t roots occur at unit
intervals on either side of the region of observation, im-
mediately adjacent to it. There are thus no roots within the
region of observation (i.e., all values of S'g listed in
Table XIV are positive). Furthermore, since the values of
Vg are the finite differences of order t of the t/1/~ values, it
follows that U&{e) is a polynomial of degree t,.all of whose
roots occur within the range of the observations, so that
each complete set of n values of V~ I',not the "half-set"
listed in Table XIII, for use in connection with the
observations arranged in pairs) changes sign t times.

As an illustration of the above facts, let us obtain the
values of Vg for n = 7, listed in model form 1, from the values
of 8'2 for-n=7, listed in model form 6, and similarly the
values of Vi from those of 8'1. In all cases the coeS.cients
are listed in descending order of e, and as stated in footnote
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MQDEL FORM 6. Values of a~ from fInite differences. u0=b0= 2 y/n= 180.15 as in Eq. (80}.

5/2

3/2

1/2

8y,

528.78

221.97

65.94

11.34

6.51

$2y

306.81

156.03

54.60

4.83

10

10

$3y

150.78

101.43

g4y

49.35

2.10

I f= 28
2 6'y TV&=3198.72

t!c(——114.24
a] = 114.24

42
3819.90

90.95
45.475

6
453.60

75.60
12.60

11
554.40
50.40
2.10

of 8'~ and I & for n=7, from Table XII, we get
the values of a& as shown in model form 6. These
values of a& check" with the final coeffi.cients of
the various N, (e) functions of Eq. (84).

As stated in Section D, one may also calculate
the probable error r, , of a, ( =a,;), but the process
is far longer than that involved in evaluating a;
itself. Suppose, for instance, that we wish to
calculate a4 and its probable error r4~. To get a4
v e use only the 84y, values and their weights
W4 in model form 6. One can also get a4 with
equal ease from model form 1 by the use of
column 10, headed V», in connection with the
data listed in columns 5 and 7. The quantity
evaluated there is b4 but a4 follows immediately
from Eq. (23) (a;=5;,b~).

All calculations of probable error already made
in this paper have been in terms of the b—V
system, and Tables XII, XIII, XIV are designed
specifically for use in that system. Hence if we
have evaluated a4 from finite diAerences and
wish to get its probable error, we must convert
all values, where necessary, to the b—V system.

28, one thus gets the values of + V2 (for which t is even),
but of —V1 (for which t is odd).

The first quantity needed for the evaluation of
r»» ls g, $8»(&)]', and as Table VIII shows in
detail, we need for this purpose not only the
value of b» (as gotten from a») but also all other
b» values for t less than j(=4). Hence, the com-
plete model form 6 must be calculated up to
t=4. The X» values of Table VIII, or Eq. (30),
are taken as usual from Table XIII. This calcu-
lation of Q v~. , as Table VII I shows, must ln

general be carried out with great accuracy if the
final result is to be at all reliable.

One next follows the process outlined in Sec-
tion F6. The weight p;; of the final coefficient a;,
of a polynomial of degree j has the specially
simple form N, /5;P, as shown by Eq. (38) and
Table X. Finally, the probable 'error r;; is given
by Eq. (33) of Section C5, which now takes the
special form

with r given by Eq. (78) of Section F4. For con-
venience all of the above steps, which involve
Eqs. (23), (30), (38), and (86), may be combined
in the following expression, which is explicit in
the a» values that have presumably been ob-
tained by model form 6.

W~ 0
First
di8er-
ence

Vs

0 5 10 12 10 5—5 —5 —2 +2 15 +5

+5 0

0 0
0

(87)

8' It should be noted also that the respective values of
i~ 8'y S'& in model form 6 are identical with the corre-
sponding values of 5 y V& in model form 1, in agreement
with Eq. (50") of Section D.

where, from Eqs. (30) and (23),

(88)



With the various values of a» calculated in
model form 6, and with the values of S~~ from
Table XII and of X» from Table XIII (all for
n=7), we get, from Eq. (88) with j=4, g v4'

=+0.0231, just as in Table VIII. Then from
Eq. (87), &»»=0.3407X10 '. Hence, a4»=2. 10
&0.00340~, checking the result already shown in
the n»(e) function of Eq. (84), Section F6.

The explicit directions that have been given
in Sections I"'1 to F7 may be summarized as
follows.

(F1). A given set of equally spaced, unweighted
data, such as that given in Table VII, is to be
6tted to a polynomial of degree j, by the method
of least squares. The original abscissa scale x is
replaced by a new scale ~, in which e proceeds by
unit intervals from —

»7 to +»I, where e=2I7+1
=number of observations. Model form 1, in
which r =

~

e ~, then leads to the calculated values
of b», where t varies from 0 to j.The values of V»

and N~ appearing in model form 1 are taken
directly from Table XIII for the proper value
of n.

Knowing b& and X~ one easily obtains the sum
of the squares of the residuals (Eq. (30) and
Table VIII) for each degree of polynomial t from
0 to j, and one is thus able to decide on the
proper degree to use '(the fourth degree, for the
data of Table VII).

(F2). The calculated va, lue u, (e) of a least-
squares' polynomial of degree j corresponding to
each and every observed y(e) follows immedi-
ately, by Fq. (22), from the va, lues of b, and V».

Full details for the illustrative data of Table VII
are given in model form 2, which contains also
the value v;(e) of each corresponding residual, for
polynomials of degre'e j=0 to 4.

A rearrangement of the terms of Eq. (22) leads
to a very significant interpretation of the orthog-
onal polynomials b, V» for successive values of t,
namely, each such orthogonal polynomial repre-
sents the least-squares' polynomial of degree t,
fitted to the residuals v» &(c) of the polynomial of
one lower degree, considered as a set of ob-
servations.

(F3). For any value of e not corresponding to
an observation, whether extrapolated or inter-

polated, one cannot get numerical values of V»

from Table VIII but must calculate them by
Eq. (77) with the use of values of 5»,.» listed in
Table XII.Then Eq. (22) may be used, as before,
to get each desired calculated value I;(c), as
shown in detail in model form 3 for certain
extrapolated points.

(F4). To determine the proba. ble error of the
function u;(e) at any value of e we must first get
the weight p;(e) of the function, by Eq. (36).The
values of V» and N» for the observed values of e

alrea, dy appear in model form 1, and the values
of V» for extrapolated values of e (with the same
values of N» as before) in model form 3. Full
details of the calculation of p;(e) appear in model
form 4.

To get the probable error r, (e) corresponding to
the weight p, (e), we need in addition to p;(e) only
the probable error r of a hypothetical point of
unit weight for the jth degree polynomial, as
given by Eq. (78). Numerical values of r/ for
j=0 to 4 follow that equation, and the resulting
values of r;(e) are given by Eq. (79), as shown in
deta. il in model form 5. There follows a brief
description of the variation with ~ of such
probable errors, with emphasis on the rapid in-
crease of the errors in the region of extrapolation.

(F5). In order to obtain the coefFicients a», ; of
the power series u;(e), we use Eq. (27), as shown
in detail in Eq. (80) with the numerical results
given by Eq. (81).The necessary values of 5», » in
Eq. (80) are taken directly from Table XII for
n='i.

To obtain the coef6cients a~;" of the power
series n; as a. function of the original x scale of
abscissas (see Table VII of Section F1) we use
Eq. (42) with the detailed expressions for H», »

given in connection with Eqs. (42:0) to (42:5).
The resulting numerical values of HI, &, for the
standard illustrative problem, are given in Sec-
tion F5 and are used in Table IX to calculate the
a»,;" coefficients. The final »», (x) are listed in
Eq. (82).

(F6). The weights pi; of the coefficients a»,; of
the power series in e are given by Eq. (38), for
which detailed expressions are also listed with the
resulting numerical values in Table X. The
needed values of SI,~ are taken from Table XII,
just as in Section F5. The probable errors rj,;
corresponding to the weights pq; are given by
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Eq. (83). The numerical results as;~rs; are
included in Eq. (84), which thus represents the
final set of least-squares' solutions as f(e) for j=0
to 4 of the standard illustrative problem.

The weights pI, ;i' of the coefficients as;" of the
corresponding power series in x are given by
Eq. (43), with the numerical values listed in
Table XI. Then Eq. (83) is again used, 'with P~;
replaced by pi.,;", to obtain the probable errors
ri;" corresponding to the weights pi.,;".The final
power-series polynomials u, in terms of the
original abscissa scale x for j=o to 4 with
coefficients aq;"&rs;" are listed:in Eq. (85).Exact
values are recorded for all coefficients, and all
probable errors and weights are here given to
several more digits than have any signiFicance in
practical work.

(F7). In place of a solution explicitly in terms
of the observations, as carried out in. Sections Fl
to F6, we may obtain the value of any single +~,
the coefficient of e' (or of x' if x varies by unit
intervals), of a polynomial of degree 1 in terms of
the finite diR'erences 6'y, . The necessary formula
appears as Eq. (54), with numerical values of W&

and L ~ listed in Table XIV. The actual calcula-
tion of the a& values, with $ = 0 to 4, for the
standard data of Table VII, is given in model
form 6.

To obtain the probable error r;; of a;(=a@) in a
polynomial of degree j, we must first calculate
each a~ for t =0 to j, as is done in model form 6,
for j=4.Then Eqs. (87) and (88) give the explicit
process for the calculation of r;;. The necessary
values of S~~ appear in Table XII, and those of N~
in Table XIII, for the specified number of
observations.

Tables XII, XIII, and XIV, at the end of the
paper, cover polynomials up to the fifth degree
for any' number of observations up to 30. The
material of Table XIII only, up.to e =52, appears
in the reference of footnote 24, and up to n = 104
in the reference of footnote 27.

G. ALTERNATIVE PROCESSES

In Section A it is noted that much work has
been done on the least-squares' Fitting of poly-
nomials to equally spaced data. A partial list of
references on. the. subject is given in Section H.
Any adequate account of these alternative proc-

esses would require. in itself a paper far longer
than the present one. We discuss here in detail
merely two such alternative processes that lead to
a solution in. power-series form and hence are
closely related to the methods just discussed. A
few very general remarks are added on the
factorial form of solution. .

Near the beginning of Section C there has been
presented a scheme for labeling the various pro-
posed methods. In terms of that scheme the two
alternative methods now to be discussed are
(1) A IP, H. T. Davis" and (2}.A3P, .Kerawala. "

Gl. H. T. Davis Method, Alp. (Model Form 7)

This method, as its designation indicates, leads
to a result in power-series form making explicit
use of power moments of the observations, but
riot making use of orthogonal polynomials. As will
be demonstrated, the Davis method not only
loses the vital advantages of the orthogonal
solution, but is also a longer and less accurate
method than that advocated in this paper and
also than that proposed by Kerawala. " The
original references for the Davis method are
Davis and Latshaw'~ and Davis, '8 but full details,

3' H. T. Davis and V. V. Latshaw, Annals Math. (2) 31,
52 (1930}.

3' H. T. Davis, Annals Math. Stat. 4, 154 (1933).In this
article Davis tabulates the numerical factors needed for the
-g to +q range of abscissa. He also discusses the so-called
Gram polynomials, which are orthogonal polynomials in a
special form first studied by J. P. Gram (J. f. Math. 94, 41
(1883)).On page 158 of his paper Davis writes, in regard to
Gram polynomials: "This method has since been more fully
investigated by Edward Condon (Univ. of Calif. Pub. in
Math. 2, 55—66 (1927)) and his work was made the basis of
a method for obtaining least squares polynomials by R. T.
Birge and J. D. Shea. The work of the latter, however,
while e6'ecting a simplification, does not reduce the problem
to its simplest form. "

Both the facts and the implications of these remarks are
so incorrect that the true circumstances should be noted. In
the first place Condon states in his paper: "This investiga-
tion grew out of a desire to provide a more general basis for
the work of Birge and Shea. (Phys. Rev. 24, 206(1924))."
In other words, Condon's investigation was not carried out
until some time after Birge and Shea had reported their
work to the American Physical Society. Condon did revive
and extend the work of Gram and he suggested the name
"Gramian polynomials. "But the chief purpose of his paper
was to get a direct derivation of the formula for a~, which
had been obtained in an inelegant and laborious way by
Birge and Shea (footnote 3). Condon, however, failed in
this attempt, and the first direct derivation was obtained
iri j.942 by Weinberg (footnote 4).

In the second place, the Birge and Shea method, although
possibly not in the simplest form from the standpoint of
mathematical elegance, is certainly far simpler and far
more accurate numerically than the method presented ten
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MoDEr. FoRM 7. Davis method.

27
8

836.64
305.76

77.28

~
~ ~ ~

0
2.10

8.61

p~ ~ ~ ~

836.64
307.86

85.89
19.95

sum

836.64
309.96

94.50
19.95

r2

1
0

r4

81
16

25112.64 3198.72 (=&. "x) 1261.05 8864.10 72821.70

with the complete numerical tables of factors, are
given also in Davis' book."

As is well known, the normal equations for the
least-squares' solution of a polynomial of degree j
are formed by equating the calculated power
moments, from t=0 to j, to the corresponding
power moments of the observations, g x'y. The
calculated moments involve various g x', where
i runs from 0 to 2j, multiplied by the coefficients
ap; of the power series whose values are to be ob-
tained by least squares. If the values of x are
equally spaced and at unit interval we thus need
to know for the -calculated moments only the
sums of pow'ers of successive integers. Davis"
considers the solution for x= —p to +p, where
his p is just our g and will be so designated here-
after. He gives extensive tables of numerical
factors (pp. 326-359 of his book). He also gives
less complete tables of factors (pp. 370—385) for
the case x=1 to n (where n=2g+1). The latter
set of tables is, of course, completely superfluous,
since when one has a solution in the form f(e)
=f(x xp), th—e transformation to f(x) can be
made very quickly by a simple Horner shift
(synthetic division), as illustrated in Section B.

For the case x= —q to +g, i.e., n=2g+1
observations in all, the Davis tables run to g = 150
for the first-degree polynomial (j=1), to g=100
for j=2, to g=50 for j=3, and to g=25 for
j=4, 5, 6, and 7. In order to use our standard
illustrative problem we will consider his fourth-
degree solution which takes the form"

years later by Davis, as is shown in detail in the present
section. This distinction between mathematical elegance
and simplicity (including accuracy) of numerical calculation
is emphasized more than once in the present paper just
because it is so often misunderstood and hence ignored.

"Davis uses Mg for the power moment. But since we
have already employed this symbol in a different sense, in
Eq. (7), we adopt n4~ for Z 44'y.

ap4 ——Amp+Bmp+ Cm4,

ap4=Bm p+Dms+Em4,
@44

——Cmp+Zms+ Fm4,
a i4 A'm i+——B'm 4,

ap4 ——B'mi+ C'mp.

(89)

Davis gives these functions in terms of g (=his P) and
also uses many special symbols, so that it is dificult to
visualize by inspection the exact dependence on the number
of observations r4. But Kerawala (footnote 10) does derive
and list explicit f(r4), for j= 1 to 5, as discussed in Sec-
tion G2.

These uI„.;coefficients apply to Davis' x = —
g to

+g. Hence his x is identical with our e and the
coefficients of Eq. (89) are identical with the ap;
coefficients of Eq. (9). The needed factors A, B,
etc. , whose numerical values are listed in the
tables, are more or less complex functions of n,
the number of observations. "

Davis gives the numerical values of the factors
A, B, etc. as decimals to ten significant figures,
and the accuracy of the solution is necessarily
limited. by this fact. In the method advocated in
the present paper, all of the corresponding factors
(the Sp4 of Table XII) appear as simple termi

nating decimals (or at the worst as thirds) and
hence there is no limit on the resulting accuracy
arising from 'this cause. This question of the
accuracy of the solution as limited by the
calculations themselves is very important, as will

appear later.
The calculation of the power moments m& in-

volves multiplication of the observations y by the
various values of x', and for x(= e) = —g to +g it
is evident that we can shorten the process by
combining the observations in sums and differ-
ences of pairs, just as has been done in model
form 1. In fact, model form 1 can easily be
adapted to the Davis method, a,lthough Davis
himself suggests no such special form. Hence we



now proceed, by the use of our model form 7 arid
Eqs. (89), to obtain the a» values for our stand-
ard illustr'ative set of data given in Table VII of
Section F1. The corresponding solution, by our
own method, consists in the calculation of the b~

values in model form 1, and then the calculation
of the a~; values by Eqs. (80) with the results
given in Eqs. (81).But here, for brevity, we carry
out only the fourth-degree solution. As usual,
r= ]el = fxfof Davis.

The value of mo is that under the "sum"
column, and the other m~ values lie in the re-
spective r' columns. It should be noted first that
the mi' values are, in general, considerably larger
than the g y V~ values of model form 1, which
are obtained by an exactly similar process, i.e. , as
an algebraic sum of products. The reason for
these larger values of m& lies first in the larger
average value of r', as compared with V&, and
second in the fact that for a given sum a portion
of the V~y products are negative and a portion
positive, whereas all r'y products in a given sum
are positive.

We now use Eqs. (89) to evaluate ai„with the
values of A, 8, etc. from Davis' tables, "for n = 7.
It is just this process that causes the main
limitation in the accuracy of the Davis method
and hence it is here given in complete detail.

For n= 7

A. =0.5670995671,
C =0.02272727 - ~ ~,

Z = —0.021148989
8' = —0 032407407

8 = —0.265151515
D =0.214330808

A' =0.2625661376,
C' =0.004629629629

Hence, by Eq. (89),

A11 of the values of a~& thus calculated agree
with the exact values of Eq. (81) to at least eight

a04= +715.i409091 —2350.329546
+1655.038636 = 19.849999,

a24 = —334.3693182+1899.849715
—1540.105398=25.374999,

@44 =. +28.66022728 —187;4667614
+160.9065341 =2.1000000,

@ii=+839.87555 - . —813.83555
= +26.0400. ~ ~,

a34= —103.66222 +116.26222 ~

= +12.6000

significant figures. But the number of multiplica-
tions and additions is now much greater, and the
numerical size and complexity of the factors are
very much larger. The results just presented have
been obtained on a ten-key calculating machine
and hence all products are given to ten digits. In
any case, they cannot in general be trusted to
more than ten digits because the factors A, 8, etc.
are given by Davis only to that number of digits.
(But many of these factors, as shown in the
hgures quoted, involve simple repeating decimals
and hence can be extended indefinitely. )

As Eq. (89) shows, the set of nine terms for k

even, or the set of four for k odd, may be said to
occupy a complete matrix, whereas in Eq. (80)
we have only the main diagonal and one side of
such a matrix. Thus the determination of Gp4 624,

and a44 by Eq. (89) requires a total of nine
multiplications and six additions, whereas the
determination of these same three coefticients by
Eq. (80) requires only six multiplications and
three additions. 4'

The loss of accuracy in the Davis method
results just from the fact that to obtain a44, for
instance, we add algebraically three terms that
almost cancel To be. specific, the sum of the two
positive terms in our illustrative problem di6'ers

from the negative term by only 1.1 percent of
either. Thus if the individual terms are good to
ten digits, the resulting value of a44 is good only
to eight digits. On the other hand, in the method
illustrated in Section F the tabulated factors are
exact, and if a ten-key machine is used the re-
sulting values of ai; and other calculated quanti-
ties are in general good to ten digits.

Actually all methods for obtaining a least-
squares' solution are in principle the same in. that
they all lead to the same numerical result for a
given set of data. It is, in fact, merely the order in

4' In the original Dirge and Shea method 3 where the ay;
coefficients are calculated from Eq. {10) in which all
R«= 1, in place of Eq. (27) or Eq. (80), there are only three
required multiplications and three additions. As has been-
shown in detail in Sections C and F, the adoption of the
complete b —V system of calculation in place of the Birge
and Shea method does make the calculation of both the ag&

and the a»" coefficients slightly longer. On the other hand,
it greatly shortens the evaluation of the calculated values
of the function. The main reason, however, for the use of
the b —V system with its accompanying necessary replace-
ment of the RI,& table of Birge and Shea Py the S&& Table XII
of the present paper (see Table V), is the simpliCication of
the numerical factors appearing in the various necessary
calculations.



which the various necessary algebraic processes
are performed that divers from one method to
another. This point appears to me of sufhcient
importance to be considered with some care.
Thus, just how does it happen that the Section F
method gives the correct result to more places
than does the Davis method, with the same
calculating machine&

The answer is as follows. Let us consider the
calculation of b4, from which a44 immediately
follows by Eq. (23). We evaluate P y. U&, which
involves both positive and negative terms. For
1=4 we have 2724.12 for the sum of the positive
terms and 2169.72 for the sum of the negative
terms, with the difference +554.40, as the
recorded value of P y U4. This difference is 20
percent of the positive sum (compared to only
one percent in the Davis method). But suppose
that this process is carried out on a six-key
machine. The values of y are given only to five
digits and hence all of the operations in model
form 1 could be carried out on such a machine
with the same complete accuracy in the determi-
nation of b& as that indicated in the model form.

The point is simply that on a six-key machine
the lower dial (in which each product appears) has
room for twelve digits, and all the cancelling of
terms is done on this lover dial, in the continuous
process of getting P y U4. In other words, a six
key machine has here effectively the accuracy of
a twelve-key machine in the crucial cancellations
that limit the final accuracy of the result ~ But in
the Davis method the cancellations occur with
product terms of the form a;b; in which the
accuracy of both a; and b;, and hence of their
product, is limited just to the number of keys on
the machine (unless we go through a laborious
process of multiplication by parts with all aux-
iliary additions and subtractions done on paper).
Thus for the Davis method a six-key machine has
only six-key accuracy in handling the various
cancelling terms whose algebraic sum may be
good to a far seal/er number of digits.

A more typical illustration of the di6'erence in
accuracy of the two methods is furnished by the
sample problem used by Birge and Shea. ' In that
problem 25 observations (actually 25 observed
spectral lines of a band series) are fitted to a
fourth-degree polynomial. In that paper a six-key
calculating machine was used and the final calcu-

lated values are good to six digits so far as the
accuracy of the calculation itself is concerned.
But the results for the same problem, when
carried out by the Davis method with a nine ke-y

machine, are definitely /ess accurate than those
obtained by the Dirge and Shea method with a
six-key machine.

Thus the Davis method, in addition to being,
definitely longer and involving the handling of
much larger factors, also requires that all inter-
mediate results be obtained correctly to more
digits for a given final accuracy, than does the
method advocated in this paper. The Davis
method suffers, in fact, from just the well-known
defect of the standard solution of simultaneous
linear equations by determinants. Thus, due to
the almost complete cancellation of terms in the
determination of the unknown first evaluated
(which sets the accuracy of all the others), it is
often necessary, in the case of four such simul-
taneous equations, to obtain correctly all products
to ten digits in order to get final results correct to
possibly five digits.

In conclusion it should again be noted that the
Davis method gives the result in non-orthogonal
form and thus lacks the numerous important
advantages of the orthogonal solution advocated
here. Furthermore, there has been published, so
far as I am aware, no method for getting the
probable errors of any of the results when derived
by the Davis method. Because of the non-
orthogonal character of the solution, the neces-
sary method will almost certainly be found to be
very laborious.

62. The Kerawala Method, A3$.
(Model Form 8)

As indicated by its designation, the Kerawala .

method" yields a least-squares' solution in terms
of a power series and explicitly in t'erms of the
observations but in non-orthogonal form. It is, in
fact, just the obvious simplification of the original
Dirge and Shea method that is possible if one
relinquishes the advantages of the orthogonal
solution.

In the Blrgc and Shea iIlcthod the values of
ui( = ai~) are first calculated from the observations
in a madel form analogous to the present model
form 1, and then the ai.,; coefficients of f(e) are
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calculated by Eq. (10). In the modified process
presented in Sections C and F the bi values are
calculated from the observations in model form 1
and the a» coefficients are then calculated by
Eq. (27) . It is fairly obvious that one can combine
the two steps of either method so that each
coefficient a» is expressed explicitly as a function
of the observations. This is just what Kerawala
has done.

In order to derive the various needed factors he
' begins with the expressions for the aq; coefficients

in terms of power moments m&, exactly as Davis"
has done. Kerawala independently derives ex-
pressions for the factors 2, 8, etc. , and as noted
in footnote 40 his results involve explicitly the
number of observations n, whereas this depend-
ence is rather hidden by special symbols in Davis'
expressions.

As a very simple example the 6rst coeScient
of the second-degree solution (compare Eq. (83))
is given by

a02 ——AmP+Bms,

where, "according to Kerawala,

(90)

3(3n' —7)
A= 8=-

4n(n' —4) n(n' —4)
(91)

Kerawala now "dissects" mp and ms into the
terms whose sum these power moments represent
in order to get finally an explicit dependence of
a02 on the observations y;. Thus for n = 7, ri = 1/3
and 8 = —1/21. But the moments, for n = 7, may
be written as

4~ Kerawala uses no explicit symbols for the coeKcients
of mg. Those given here are due to Davis, "who writes the
A, J3, etc. without subscripts although their values depend
obviously on the degree of the polynomial, as well as on the
number of observations. Thus in Eq. (89) one writes, more
precisely, a04 A4mp+84m2+ C4m4——and in Eq. (90l,
aPg =A 2m0+B2m2.

mp (yp+y —2) + (y2+y —2) + (yi+y i) +yp
m2 ——3'(yp+y 2)+2'(y2+y 2)+1'(yi+y, ). (92)

Hence the actual factor multiplying (yp+y 2)

is given by the combination of Eqs. (90), (91),
and (92) as 1(1/3) —9(1/21) —2/21. Similarly
for (y2+y 2) one finds 1(1/3) —4(1/21) +3/21.
The remaining two factors, for (yi+y i) and yp,
are +6/21 and +7/21. Since these four factors
have a common denominator E(=21), we can
multiply by the respective numerators, add the

products to get the sum (Q), and divide by Z to
get @02 in complete analogy to model form 1. In
other words, al/ factors used in the Kerawala
method are expressed as integers, just as they are
in the determination of bi in model form 1, or of a&

in the original Birge and Shea method 2

For our standard illustrative problem (Table
VII) the calculation may then be put in the
following model form 8.4' Hence N4(s) =19.85
+26.04s+25.37502+12.6002+2.104, in agreement
with Eq. (81).

The Kerawala tables cover the same range as
those of the Birge and Shea paper' and of the
presentpaper, namely, to I=30 for j=1 to 5. His
tables for calculating a;; are identical with those
of Birge and Shea, since in both cases this final
coefhcient is given by Eq. (25). Kerawala states
that all the numerical factors (values of V& and
IC&*) published by Birge and Shea were thus
checked and found to be correct. But his own

paper is not free from typographical errors. Thus
the factor +3 at the head of the last column of
model form 8 is printed by Kerawala as —3.

It is obvious that the Kerawala method is far
superior in every respect to that of Davis. The
Kerawala method is, in fact, the most rapid and
accurate one for evaluating the coefficients a~; of
the power series in e if one wishes to forego the
advantages of the orthogonal form of solution.

G3. Factorial Forms of Solution

It has been noted in Section C that the least-
squares' solution of a polynomial may be carried
out in terms of factorial moments, and may be
expressed in factorial form. Such a solution, which
is strongly favored by Sasuly, " is denoted B2 in
Section C. I have myself made no extensive
investigation of the relative merits of the power
series form of solution and the factorial form. As
already stated, physical scientists usually prefer
the power series form since it is often directly
related to theory, whereas statisticians are usually
interested primarily in merely smoothing the
data. In the 1atter case the explicit analytic form
of the solution is immaterial.

"Kerawala publishes all the model forms given by Birge
and Shea (footnote 3). However he refers only to the 1924
abstract and not the complete 1927 paper, which contains
the model forms. No reference is made by Kerawala to the
work of Davis.
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MoDEL FoRM 8. Kerawala method.

+1—1

—1
0

453.60

+12.60

k=1
—22
+67

+58

252

6562.08

+26.04

diR.

836.64
305.76

77.28

0
2.10

8.61

ye

836.64
307.86

85.89
19.95

(=Z/X)

sum

836.64
309.96

94.50
19.95

k=o

+5-30
+75

+131

231

4585.35

+19.850

k=2

—13
+67
—19
-70
264

6699.0

+25.375

+3
7

+1
+6

554.4

+2.10

In this connection the remarks of two statis-
ticians, Anderson and Houseman, "are of inter-
est. As stated in Section C, where their paper is
listed, they merely extend to n = 104 the tables of
V& values already given to n =52 by Fisher and
Yates" (and much earlier to n =30 by Birge and
Shea'). Before commencing this rather laborious
task of computation, Anderson and Houseman
made a careful study of the time required with
factorial moments as contrasted with that re-
quired by their method, which is identical with
our model form 1. It may be noted that the
evaluation of the factorial moments themselves
requires only successive additions, "which are
most conveniently made on a printing-adding
machine, whereas the method advocated here
(and by Anderson and Houseman) involves the
successive multiplications and additions of Eq.
(23), which are best performed on an electric
calculating machine.

Anderson and Houseman state that if both
printing-adding and calculating machines are
available the summation method requires almost
30 percent more time on the average. This time is
almost doubled when no adding machine is avail-
able. They also state that the relative eKciency
of the product method is greater for high degree
polynomials, but that if no comparison is desired

44The factorial moment corresponding to the power

moment Z x'y; is given by

a (n+$
i

Since a11 binomial coefficients can be derived by successive
summation, the same process obviously yields factorial
moments.

of the fit of polynomials of various degree, as
shown by the relative magnitudes of P vp,
Eq. (30), there may be little difference in the
computing time of the two methods. Finally they
state that there are fewer formulas ir)volved in
the product method, and hence it is learned more
quickly by the computer.

Although Sasuly, in private correspondence,
has indicated a very strong preference for the
summation method, he has apparently never
made any such actual comparison of the two
methods, and the experience of Anderson and
Houseman seems to demonstrate conclusively the
advantage of the method advocated in this paper
over a method involving factorial moments.

Anderson and Houseman also refer to the
beautiful work of Aitken. 4' They state that the
method is too involved for ordinary computing
work, but that if a computer is to handle
polynomials exclusively the Aitken method is
worthy of consideration. It may be remarked, in
closing this section, that the chief purpose of the
extensive investigation's of both Aitken and
Jordan (see Section H for more complete refer-
ences) is to eliminate so far as possible the need
for extensive tables of numerical factors. Thus in
the latest paper by Jordan, "tables that occupy
only 23 rather small pages give all of the neces-
sary factors for the polynomial solution up to the
seventh degree and up to 100 observations. In
contrast, the Anderson and Houseman paper"
includes 62 pages of tables with far more figures
to the page, and carries the solution, as already
noted, to 104 observations, but only to j=5. The

's A. C. Aitken, Proc. Roy. Soc. Edinburgh 53, 54 (1932).
4' Charles Jordan, Annals Math. Stat. 3, 257 (1932).
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brevity thus attained by Jordan is, however,
annulled in part by the increased complexity of
the method. In fact Jordan's article like that of
Aitken is evidently addressed to trained mathe-
maticians, and is not likely to be read profitably
by any one without such training.
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TABI.E XII. Values of Syc for Eq.

L TABLES XII, XIQ, XIV

(2/) (Sao= 1 ) Sst is the coefficient of s" in Vq(s), the orthogonal polynomial with least
integer ordinates —see Table III and Eq. (77).

~l S22.Rpg
n =Span = Sp2

—2—1.25-2

= S22

3
1
1

Sas %3=Sj.3

—6.83+
-2.83+

Xg
=S3s

3 3Q
0.83*

S44-Rp4
=. Sp4

S44.R24
= S24

—12.916+

=S44

2.916*

Sss-RIs
=Sos

Sss. Rss=Sss

6 2
7 1
8 2

—4.375 1.5—4 1'
—5.25

9 1 —20
10 2 -4125 0$
1i 1 —10 1

12 2 -35,75 3
13 1 -14
14 2 -8.1250.$
1$ 1 -56 3
16 2 —21 25 1
17 1 -24 .

—8.416+—1.16+-6.16*

—9.838
-24.416+—14.83*

—14.16+
-4.16+

-48.416+

-27.83+
-126.83+-7.16*

1.6*
0.16*
0 6g

0 83+
1.6*
0 83+

0.6+
0.16*
1.6+

0.83+
3.3+
0.16+

2.953125
6

10.828125

18
20.109375

6

30.164062$
84

113.95312$

7$6
196.,82812$
36

-3.9583*—5.583*—7.4583+

—9.583+-8.5416*—2.083*

—8.72916+
-20.583+
-23.9583+

-137.916*
-31.4583+-5.083+

0.$83+
0.583*
0.583*

0.583~
0.416+
0.083*

0.2916+
0.$83*
0.583+

2.916~
0.583+
0.083~

24.097916+
8.73+

16.3635416+

11.93~
12.639583*
4.76+

41.4177083*
22.56*

-123.047916+

737.53+
91.722916+
58.86+

-16.916*-4.083+—11.083*

—3.083*-2.583~-0.7916+

—5.7083*—2.62$
'

—1.2.2$

—63.583+—6.916*
- -3.916+

2.1
0.35
0.7

0.1$ 9
0.1 10
0 025 11

0.15 12
0.0583+ 13
0.23* 14

1PS 15
0.1 16
0.05

18 2 -40.375 1.5
19 1,-30 1
20 2 —33.25 1

—16.083+
-44.83+—198.83+

0.3+
0.83+
3

45.421875
396

121S.8203125

—$.7083+
-44.583*—123.64583+

0.0834
0.583*
1.4583+.

446.585416+
46.43+

801.5302083+

—26.416* 0.3 18-2.4583+ 0.025 19—38.2083+ 0.35 20

21 1
22 2
23 1

24 2
25 1
26

—i&0 3
-20.125 0.5
-44 1

-143.75 3—52 1
-28.125 0.5

—54.83+
-24.083+—13.16+

-286.83+—V7.83*
-168,416

0.83+
0.3+
0.168

3.3+
0.83+
1.6+

594
716,953125
858

145.546875
858

1406.953125

—54.583+—59.9583+
-65.583+

-10.2083*
-55.416~
-83.9583~

0.583*
0.5838
0.583+

0.083+
0.416~
0.583+

1466.76+
V87.714583+
67.4

1441.835416+
283.53*
664.639583+

—63.2916+—30.9164-2.416+

-47.416+—8.583~—18.583+

0.525 21
0.23+ 22
0.01.6+ 23

.0.3
0.05
0;1

27
28 2
29 1

—182 3
-65.25 1—70 1

-18.16*—78.16+—104.83+

0.16+
0.6*
0.83*

1638
948.1640625

2184

-90.583*
-48.72916+
104.583+

0.583+
0.2916+
0.583+

4064.76*
3138.8635416+
1808.36*

—105.291&
-75.5416*
-40.5416*

0.525
0.35
0.175

27
28
29

30 2 —112.375 1.5 —224.416+ 1.6+

0.83* indicates 0.83333 ~ ~ -, etc.

12515.765625 -559.7916~ 2.916* 3554.5SS416+ —74.416+

TABLE XIII. Values df Vc and Nc for Eq. (23).
(See model form 1.)

TaBI.E XIII.—Continued.

Vg
m r

3 1
0

Vg V2

+1
-2

2

3/2 +3
. 1/2

Nc = 20.

+1
4

+6

8 7/2
5/2
3/2
1/2

1
0

+7
+5
+3
+1

168

+4
+3
+2

+7
+1~3
—5

—17
—20 0

+7—13
~3
+9

+9
+18

+7—23
+17
+15

2184

N4= 10

6 5/2 +5
3/2 +3
1/2 +1

10 70

+1 10 9/2
7/2

+10

2772 990 2002

+18
-22
-17

. +6—14
+i

7 3
2
1
0

+3
+2
+1

0

180

+1
—1

0
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+1
+6

154

3/2
1/2+1—4

11 5

84

330 132
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-12

8580
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-22
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+11
+6

780



T. 8 I RGE

TAm, E XIII.—Continued. Tear. E XIII.—Continued.
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9
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—21
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-33
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+33
-57
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Xg ——
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15/2
13/2
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9/2
7/2
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+17
+15
+13

—20
—23
-24
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+68
+44
+23

—13—7
0

+68
+20
-13
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+31
+36

+68
—12
—47
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-36
—12
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+588
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—96

5/Z
3/2
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-37
—40

-35
-23
—8
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+33
+44
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—13
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+11
+64
+84

+11
+26
+20
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+51
+34
+19
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+68
—28

28,424
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—68
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—68
-98

13/2
11/2
9/2

7/2
5/2
3/2
1/2

+7
+5
+3
+1

2002

+13
+7
+2

-98
—95
-67
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-77
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—92
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—187
-132

+28
+139
+145
+60

=21
-26

29
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-89
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-168

+42
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+352
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1
0

15/2
13/2
11/2

9/2
7/2
5/2

3/2
1/2

910

+7
+6
+5

+4
+3
+2

+1
0
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+15
+13
+11
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+7
+5

+91
+52
+19
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-29
—44

37,128

+35
+21
+9
—1.
—9

-15

97,240

+91
+13
-35

39,780

+455
+91

-143

-267
—301
-265

-179
—63

136,136

+1001—429
—869

-704
-249
+251

+621
+756

6,466,460

+273
-91

—221

-201
—101
+23

+129
+189

235,144

+1001
—1144
—979

—44
+751

+1001

10,581,480

+143
-143
—143

-33
+77

+131

ZO 19/2
17/2
15/2.

13/2
11/2
9/2

7/2
5/2
3/2
1/2

Ãg=

21 10
9
8

+19
+17
+15

+13
+11
+9

+7
+5
+3
+1

2660

+10
+9
+8

+57
+39
+23

+9
—3

—13

-21
—27
-31

33

17,556

+190
+133
+82

+37
—2

—35

—62
—83
—98

+969
+3S7
—85

—377
-539
—591

-553
-445
-287
—99

4,903,140

+285
+114
—12

—98
—149
-170

+1938
—102

—1122

—1402
-1187
—687

—77
+503
+948

+1188

22,881,320

+969
0

—510

—680
—615
—406

—130
+150
+385

+1938
—1122
—1802

—1222
-187
+771

+1351
+1441
+1076
+396

31,201,800

+3876
-1938
—3468

—2618
—788

+1063

+2354
+2819
+2444

5712

+8 +40
+7 +25
+6 . +12

1,007,760

+28
+7~7

470,288

+52—13
—39

201,552

+104
—91

-104

—107
—110

770 201,894 432,630

+540
+594

5,720,330

+1404

121,687,020

—39
+36
+83

22 21/2
19/2
17/2

+21
+19
'+17

+35
+25
+16

+2261
—969

—1938
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15/2
13/2
ii/2

3/1
1/2

+15
+13
+11

+8
+1—5

—19
20

7084

-40
-65
—77

78
-70
—55

—810
—775
—563

—258
+70

+365,.

8,748,740

—1598
—663
+363

+1158
+1554
+1509

+1079
+390

40,562,340

19/2
17/2
15/2

13/2
11/2
9/2

7/2
5/2
3/2
1/2

&x

+19

+7
+5
+3
+1

—22
—25
-27
—28

—171
-408
—5.60

—637
-649
—606

—518—395
-247
—84

-1419
—1614
—1470

—1099
-599
—54

+466
+905

+1221
+1386

-1881
—1326
—482

+377
+1067
+1482

+1582
+1381
+935
+330

23 11
10
9

+11
+10
+9

+8
+7
+6

+5
+4
+3

1012

+77
+S6
+37

+20
+5—8

-19
—28
-35

35,420

+77
+35
+3

—20
—35
-43

—45
—42
~35

—25

0

32,890

+1463
+133—627

—950—955
747

—417—42
+315

+605
+793
+8S8

13,123,110

+209
-76

-171

-152
—77
+12

+87
+132
+141

340,860

27 13
12
11

10

8

+10
+9
+8

+7
+6
+5

+118
+61
+10

—134
-155
-170

16,380

+13 +325
+12 +250
+11 +181

7,803,900

+130
+70
+22

—15
—42
—60

40,060,020

+2990
+690
—782'

1587
—1872
-1770

—1400
—867

262

+338
+870

+1285

48,384,180

+16445—2530
—10879

-12144
-9174
—4188

+1162
+5728
+8803

+10058
+9479
+7304

24 23/2
21/2
19/2

+23
+21
+19

+253
+187
+127

+1771
+847
+133

+253
+33
—97

+4807
—1463
—3743

+1
0

—179
-182

—18
0

+1548
+1638

+3960
Q

17/2
15/2
13/2

+17
+15
+13

+73
+25—17

-391
-745
-949

—157
-165
—137

—3553
-2071
-169

28 27/2
25/2
23/2

+27
+25
+23

+117
+91
+67

1638 V12,530 101,790

+585
+325
+115

+1755
+455
—395

+13455—1495
-8395

56,448,210 2,032,135,560

11/2
9/2
7/2

5/2
3/2
1/2

-53
—83

-107

—125
—137
—143

-1023
987

-861

—665
—419
—143

-87
-27
+33

+85
+123
+143

+1551
+2721
+3171

+2893
+2005
+715

21/2
19/2
17/2

15/2
13/2
11/2

+15
+13
+11

9
23

-35

—49
—171
-255

—305
—325
—319

-879
-1074
—1050

—870
—590
-259

-9821
-7866
-4182

l

-22
+3718
+6457

4600 394,680 17,760,600 394,680., 177,928,920

+12
+11
+10

+92
+69
+48

+506
+253
+SS

+1528
+253
—517

+1012
-253
—V48

9/2
7/2
5/2

+9 -45
+7 . -53
+5 -S9

—291
-245
—185

+81
+395
+655

+7887
+7931
+6/01

—16
—27—36

—93
=196
-259

-287
—285
—258

—897
—982
-857

-597
—26V
+78

-753
=-488
—119

+236
+501
+636

+3
ya

7308

29 14 +14
13 +13
12 +12

-63
-65

95,004

+126
+99
+74

2,103,660

+819
+468
+182

+840
. +936

+4456
+i560

19,634,160 1,354,757,040

+4095 +8190
+11VO —585
-780 -4810

X|,——

26 25/2
23/2
21/2

+3
+2
+1

0

1300

+2S
+23
+21

—43
—48
—51—52

53,820

+50
+38
+27

—211
-149
—77

0

1,480,050

+1150
+598
+161

+393
+643
+803
+858

14,307,150

+2530
+506—759

+631
+500
+275

0

7,803,900

+2530
-506

-1771

11
10
9

+11
+10
+9

+8
+7
+6

+51
+30
+11
-6

-21
-34

-215
—336

-420
—366

—1930
-2441
-2460

—2120
-1540
—825

—5885
-4958
—2946

-556
+1694
+3454
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TABLE XIII.—Continued. TsM, E XIV.—Continued.

p4

+1290

~z r Vy Vs

3.~. +3

+1775
+2080
+2184

—203
-104

20
Xg = 2030 113,274 4,207,320 107,987,880 500,671,080

30 29/2 +29 +203 +1827 +23751 +16965
27/2 +27 +161 +1071 +7371 —585
25/2 +25 +122 +450 —3744 —9360

3
23/2 +23 +86
21/2 +21 +53
19/2 +19 +23

—46
—427
—703

10504
—13749
-14249

—11960
—10535
—6821 100

1/2 10 50-4 —884
—28 —980
—49 -1001

17/2 +17
15/2 +15
13/2 +13

11/2 +11
9/2 +9
7/2 +7

-12704
—'9744
—5929

—2176
+2384
+6149

90
3/2

5/2+8679
+9768
+9408

—957
-858
=-714

—1749
+2376
+6096

+ /753
+5083 10 ' 0
+1768

5/2 +5 =103 =-535
3/2 +3 =109 -331
1/2 +1 —112 —112

+9131
+1127)
+12376

200

8990 302,064 21,360,240 3,671,587,920 2, 145,733,200

5/2
4216TABLE XIV. Values of

Weland

I&for Eq. (54). Where the
least integer coefFicients used in expressing t tag as a
weighted sum of the tth order data-differences.

7/2

I g
= 165

11 0
1/2 15

3/2 14

5/2 12

140

3 0
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4 0
I z= 110 429

2
5/2

3/2
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6 0

Lg = 286 2002
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1/2. 21

3/2 20
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9/2 1001 2002
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24024 84084
11/2 728
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6

13/2

400126017 0 432
36 85686800641/2

1
3/2

2'i72504 272 7650420 1188 193832642376 193815/2990
5/2 33 1716

330
30 1001
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9/2 26
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13/2 15 28
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TABLE XIV.—Continued. Tsar.E XIV.—Continued.

Wx Wu Wg Wg
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15/2 27
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19/2 10

2808
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3400

2040

42042
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. 189189

137592
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44982

13/2.

15/2

17/2
9

19/2
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1260
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13300

6160

1771
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2565

1045

494208

408408
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209304
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22572

770 33,649 86,526 408,595 1,931,540 21/2

121
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605

4719
70785

18404i

176176

23'

2300 65,780 880,030 197,340 4,942,470

5/2

7/2

9/2

aa/2

13/2

15/2'
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420
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33320
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2S 0
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53312

27132

10336

1/2 78

3/2 77

5/2 VS

7/2 72

9/2 68

li/2 63

13/2
7

15/2 50

2028

2002

1925
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1197

950

700

26026

25025

23100

20400

17i36

13566
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6650
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29925

15675

143143
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465i2

27132
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10

23 0

Lg=

1/2 66
1452

1430
3003

102245

99099
20449

1771 7084 48,070 624,910 1,448,655

10

17/2 42

19/2 33

21/2 23

23/2 12

462

253

3850

1771

506
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1518

4807
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1365 90090
1300 26,910 296,010 f,430,715 1,300,650

11/2

13/2

51

45

15/2 38

17/2 30

19/2 21

60

9/2 56
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952
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2352
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1428

969

570
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1463
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11/2

13/2

15/2
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122094
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255816

186048

122094

24 0

3/2

144

soos

81796

80080
20449

572572

552123

1012 17,710 32,890 937,365 170,430

ao

17/2

19/2

105 15400

8855

4048

26565

10626
12144

2530
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TABLE XIV.—Continued. TABLE XIV.—Continued.
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79695

1644$
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8281 372645
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10

12

1/2

3/2

S/2

105

104
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19/2 60

21/2 50

23/2 39

25/2 27

27/2 14

7/2 99

9/2 95

11/2 90

~ 13/2 84

15/2 77

17/2 69

3640

3536

3366

3135

2850

2520
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1771

1380
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650

351
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61880
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32340

24794
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11500

6500

2925

819
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4?9655

395010
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223146
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44850
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5/2
3
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17/2
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12
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147
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115

96
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2805
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1617

1265
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41405

40768

38896

35904
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27360

22344

17248

12397

8096

4600

2080
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159885
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61985

37191

18975

7475

1755
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1106028
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396704

185955
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13455
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1/2

3/2

5/2

7/2

9/2

ii/2

13/2

15/2

17/2
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144

6300
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3542
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4332600
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4176900
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3464175

125400
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956340
88SSOQ
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12
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14625
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2030 56,637 841,464 7,713,420 23,841,480

13
25/2

27
117 14 29

3654 47,502 525,915 2,804,880 32,2$6,120
4495 100,688 2,136,024 52,451,256 S9,603,700



k EVIEVvs oF Moo ERR OH VS I: CS VOi UME $9, bfUMBER 4 OCTOBER, 1947

J. Mathematical Ayyenrlix

J. W. WEINBERG

Jl.— Introduction

HE task of fittiIlg a polpIloHlial to a series
of data by the method of least squares is

essentially. the solution of a set of simultaneous,
linear, "normal" equations. The problem is so
much further simplified in the case of equally
weighted and uniformly spaced data, that
explicit analytical formulas for most quantities
of interest can readily be found by elementary
algebra. Ninety years ago P. L. Tchebycheff'
thoroughly expounded the general problem, ae.d
explicit results for the simplified case were ob-
tained twenty-five years ago by K. Jordan. "
Since that time, many more or less independent
presentations have appeared in diverse pub-
lications (see footnotes 3, 12, 15, 19, 23, 25, 45,
46, 47), often accompanied by extensible tables
and directions for use. At this late date, it would
seem impossible to contribute to the literature
of this subject anything fundamentally new or
important.

And yet, here is another independent exposi-
tion. The reason for its existence rests on three
differences it bears from other work in this field.

Past treatments have been content to obtain
the coeScients and adjusted values of least-
squares' polynomials and to set aside the
problem of their probable errors. But the advance
in accurate measurement has given new im
portance to, questions of probable error, and it
was found necessary to extend the' theory to
these questions. Because of the relative inac-
cessibility of the general theory —a consequence
both of the scattered journals in which it has
been reported and the specialized learning
lavished upon it—it seems difficult to explain the
foundation of these new developments without a
thorough elementary treatment of the whole
subject,

Wherever analysis and numerical application
have been developed in a unified way, ""4'4'
they have been directed toward use in connection

7 E. U. Condon, Univ. of Calif. Pub. in Math. 2, 55
(1927). This article is mentioned also in footnote 38, in
connection with the work of H. T. Davis.

with adding-tabulating IIlacllines. The con=-

venience and prevalence of modern automatic
calculators have brought to the fore, however,
the method of Birge and Shea. ' It is to the
application of their rapid and accurate tech-
nique, which makes use to the fullest extent
of the general results of theory, that the fol-
lowing analysis is oriented.

In the past, expositions have derived their
cogency from learned and powerful mathe-
matical methods —Tchebycheff's from ortho-
gonal polynomials as the successive convergents
of a continued fraction, Jordan's from elaborate
analysis in the calculus of finite differences. It
seems unlikely that many workers with least
squares have the opportunity to follow such
arguments. The result has been that many con-
clusions of Tchebycheff and Jordan have been
rediscovered accidentally or. empirically, and in-

corporated in various methods and tables
without recognition of their origin or full sig-
nificance. ' "'5 An even more striking result has
been the publication of methods making no use
whatever of the great practical simplifications
that theory can bring. There appears to be a
real need for a presentation of the theory,
appropriate to the obviously elementary charac-
ter of the problem —a presentation on the basis
of simple algebra, , such as the one that follows.

Although this section is designed to provide
a mathematical basis for the methods set forth
in preceding sections, and a fixed point of prin-
ciple by which the preceding critique has been
oriented, it is convenient to present it as an
analytical unit with its own equation numbers in

square brackets. Where this procedure involves
repetition of an equation quoted in an earlier
section, its number there will be repeated in

parentheses.

J2. Tchebycheff Polynomials

Tchebycheff's significant contribution to this
field was the introduction of orthogonal poly-
nomials, which render the least-squares' problem
of degree j essentially independent of that for
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M, =g.[T,(x)7'. L27, (4)

Any polynomial of degree j can, of course, be
expressed as a linear combination of Tcheby-
cheff polynomials T&(x) with t ~&j, in accordance
with

u;(x) =P a,T,(x), L37 (3)

the coefficients a& being obtained explicitly by
multiplying both sides with T&(x), summing over
x, and applying Eqs. [17 and [27:

P, u;(x) T,(x) =a,3/I, .

In addition to this fundamental property of
orthogonal polynomials —their simplification of
the determination of the a& coefficients from the
function u;(x)—there is a special simplicity that
they bring to least-squares' problems. Suppose,
for example, that y(x) is a set of n equally
weighted data, and that u;(x) is the least-squares'
polynomial of degree j expanded in the manner
of Eq. [37.Then P,[y(x) —u;(x)7' is the sum of
squared residuals which must be minimized by
suitable adjustment of the values of the several
ai. Upon differentiation with respect to ai,
therefore, and observation that Ti(x) =Du;/Bai,
one obtains, by means of Eq. [47, the minimizing
condition

g, y(x) T,(x) =g. u, (x) T,(x) = M,a&.

This is a direct expression in terms of the data
for the value of a& that makes u;(x) the least-
squares' solution of degree j:

Because this result is independent of the degree j,
of u;(x), the suppression of any j dependence in
the symbol a, is justified. (The possible n de-

degree (j—1).The orthogonal polynomials T&(x)
of degree t in x are defined over a range of'n
discrete values of x at which the data y(x)
appear. The property of orthogonality, in this
case, requires that

P. T.(x) T,(x) =0, (t~u), [17, (4)

and if T&(x) is further limited by requiring its
leading coefficient to be unity, i.e., its leading
term to be just x', a definite numerical value as
a function of e and t is further assigned to

pendence of any quantity is generally not
explicitly indicated. ) On proceeding from u; i(x)
to the more detailed representation of the data
afforded by u;(x), one has merely to compute a
single new quantity a; from Eq. [57 in order to
obtain explicitly the value

u;(x) =u; i(x)+a;T;(x).

It is this circumstance that makes a,T;(x) itself
the least-squares' fit of degree j to the residuals
y(x) —u; i(x), as discussed in connection with
Eq. (76).

The minimum value of the sum of squared
residuals is needed for the calculation of the
probable error r of an individual datum, Eq.
(34); and it is readily found with the aid of Eqs.
[47 and [57:

7

P, y(x)u;(x) =P g y(x)a, T,(x) =P M,a,2,
8=0 5~0

g, [u;(x)7'= g P u;(x)a, T,(x) = g M,a,

As a consequence,

K*I y(x) -u (x)7'

= Z*[y( )7' —2 Z y( ) ( )+E.[;( )7'

and the sum of squared residuals is thus dimin-
ished by precisely the amount 3E;a on pro-
ceeding from u; i(x) to the fit of next higher
degree, u;(x). This suggests that 3II, is the statis-
tical weight of a&, and that the probable error of
a& is therefore r'/(M&) &, a fact that can be demon-.
strated by reference to Eq. [57. Since in that
equation the coefficients of y(x) are [Ti(x)/Mi j,
the reciprocal of the weight of a~ relative to the
data must be given by the sum of the squares of
those coefficients, i.e., P,[T&(x)/%&7'=1/M
according to Eq. [27.

It is quite important that the coefficients e& of
the Tchebycheff polynomials are, in effect,
statistically independent combinations of the
data, so that they act like independently observed

glantities of appropriate weight Mg. This fact
is seen by studying a linear combination of the ai
with arbitrary coefficients g&,
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i 7'

Q=Z q«i=2 qi Z*y(x)[Ti(x)/Mij
t=o t~0 i

=2 y(x) 2 qiTi(x)/Mc,
t=o

u;( —~) must certainly be the least-squares' fit
to the data y( —e), ordered in reverse, with

(—)&'a, as the coefficient of e&. Application of Eq.
[57 to this case yields

upon application of Eq. [5].The weight of Q,
denoted Po, may be found by summing the which, on reversing the order of summation
squares of the coefficients of the data y(x) to form

1/pq ——p Q qiT, (x) /M,
t=0

s t~0 k~0

(—)'~~ = Z. y(e) [T~(—~)/Mt 7.

Comparing this result with the application of
Eq. [5] to the data ordered as usual, namely,

qiq& Mi,M& T,(x T& x,
&~ =2 y(e) [Tt(~)/Mt 7

[10]Tt( —~) = ( —)'Tt(~)
L8]1/ps ——g q, '/M, .

t=-0 because y(e) may be chosen arbitrarily. This last
result means that T;(e) contains only odd or only
even powers of c as j is odd or even, respectively,
and the number of parameters determining T;
as a function of e is thereby reduced by half. The
summation in Eq. [57 that expresses a& in terms
of the data, is correspondingly shortened:

This is precisely the relation that would result
from applying the law of propagation of errors
directly to the coefficients at considered as
independently observed quantities of weight M&.

An immediate consequence of this new
theorem may be used in the problem of the
probable error of the adjusted or smoothed data,
the values of u;(x). If p;(x) denotes the weight of
u;(x) relative to the weight of the data, then by
Eqs. [3]and [8]

M ~ = Z[y(r)+( —)'y( —r) ]Ti(r)
+y(0) T (o), [11]

with r defined as
I

e I, and the term in y(0) to be
included only when the number of data is odd
and e is capable of assuming the value zero.
Equations [10] and [11] express the "pair-
factor" type of symmetry, to the systematic
exploitation of which is due some of the special
convenience of the method of Birge and Shea. '

These results may be embodied in the proper-
ties of the coefficients R~t of e' in the explicit form
of T, :

1/p;(x) =2 I:T (x)]'/M L9], (35)
0

Further application of the theorem [8] may
be made in finding the weights of the coefficients
of u, (x) expressed as a. sum of polynomials other
than T&(x), i.e. , the monomials x', as in Eq. [16]
ahead.

which, by means of Eqs. [17 and [2], may be one must conclude that
expressed as

J3. Symmetry Properties

Up to this point there has been no need to
limit arguments to the case of equally spaced
data, but to make further progress by elementary
methods, it is necessary to assume that situation.
By introducing a new variable, e, the data may
be placed at points symmetric about the origin
e = 0 and ranging by integer steps from —(n —1)/2
to +(n —1)/2. In this notation a; is the coef-
ficient of e&' in u;(e), and y( —e) is the same set of
data as y(e) but enumerated in the opposite
order a5 e runs through its values. The function

Ti(~) = Qs Ri~~'.

(Cf. Table III, Section C2.)

The fact that T&(e) is a polynomial of degree t in
e with leading coefficient unity can be expressed
as

Rl, i ——0 for k (0 or k) t, Rii ——1, [137

and the pair-factor symmetry appears as

Ri&=0 for (t —k) odd.

One may use the values of Rl, t to determine
directly the coefficients a» of e~ in u;(e) by mea. ns
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of Eqs. [3]and [12]:

[15],{10)

1/pa; =+[Rag)'/W, [16j (37)

which reduces, by Eq. [13$, to the required
1/p;;=1/M;.

According to this relation one needs to use the
data directly only in finding the quantities a&,

while the coefficients a~y are speci6c linear com-
binations of these a~. A special use of this is, by
Eq. [1Sj,

a;;=R;;a~=a;.

On proceeding from u~&(e) to I;(e), a&r may
be found from uJ, , ; i by addition of R~,a;.
Furthermore, the theorem concerning the ef-
fective statistical independence of a~ as ex-
pressed by Eq. [8j, may be employed to obtain
the weight p~; of ai; ..

taining only odd powers of e when t is even, and
only even powers when t is odd. It may therefore
be expressed as a sum of orthogonal polynomials
of degree (t+1), (t 1)—, (t —3), etc. , and since

cT~(e) and T&+r(e) both have the leading term
e'+', it is evident that the 6rst term in the expan-
sion must have unit coe%cient:

cT~(e) = Ti~r(~) +c~T~-r(~) +
the remaining terms being of degree ~&(t —3).
One may next evaluate P, TI, (e) ~ T&(e) which
certainly vanishes, by Eq. [1), when k)(&+1)
because the expansion of ~T,(e) contains no
Tchebycheff polynomials of degree higher than
(i+1).Since the expression is, furthermore, quite
symmetric in k and t, one may apply the same
argument, interchanging k and t, with the con-
clusion that the expression vanishes whenever
3) (k+1). It has thus a finite value only for
k=t+1, and, therefore, according to Eq. [4j,
only the first two terms in the expansion of eT&(e)

have coefficients not identically zero, i.e. ,

J4. Recursive Relations
~T~(~) = T~+r+c~T~-r(~). [17j

To realize numerically the foregoing results
one must evaluate the quantities RI,&, 3E&, and
eventually T&(x) as functions of n and. of their
explicit arguments. Although analytical for-
mulas for T&(x) and 3/I~ will be developed later„
similar results for RA & are not possible because of
the intervention of the Stirling numbers, which
connect (x+k)(x+k —1) ~ ~ (x+1) and x~, x' ',
etc. , and for which there is no general formula.
The quantities R&& are nevertheless connected by
a recursive relation which enables them to be
found when R~ r, & i, RL& 2, 3E& i, and M& ~ are
known. As a rnatter of fact, tables of R~& values
are more readily constructed by the recursive
algorithm than by any (necessarily quite com-
plicated) analytical formula. In similar fashion,
one may also tabulate the numbers T,(e) and M
by simple recursive methods, but the versatility
and power of the theory is severely limited
without the analysis which leads to closed for-
mulas for 3E~ and T~(x).

The recursive relations in question stem from
'a formula of Tchebycheff, readily derived by
expanding eT&(e) in orthogonal polynomials. Now
eT&(e) is a polynomial of degree (t+1), con-

To obtain the value of c& in this simple recur-
sion formula, one must consider Q,T, ,(e) e

~ T&(e). This expression can be evaluated by
multiplying Eq. [177 by T& &(e) and summing
over all e, in which case the result is c~3f~ ~

according to Eq. [2]. It can be found from the
form which Eq. [17j takes when (t 1) replaces—

by multiplying both sides by T&(e) and
summing over e, in which case the result is
evidently M&. Comparing these two results for

P, T~ r(e) e T,(e), one obtains

c( 3f,/M~r. ——

The combination of Eqs. [17j and [18j is
known as Tchebycheff's recursion formula for
obtaining T&+r(e) in terms of T,(e) and T& r(e):

Tg~r(e) =eTg(e) —(Afar/Mg r) Tg r(e). [19j

For example, one may use the values of To and

Ti obtained from the restriction that they have
unit leading coefficient to calculate the 6rst few

Tchebycheff polynomials from Eq. [17j:
To(e) =1, Tr(e) =c, Tg(e) =e' —cr,
Ta(e) =e' —(cr+c2)e,
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T4(N) = 6 (Cl+C2+C2)6 +C1C6 6

T6(6) 6 (Cl+ C2+C6+ C4) 6

+[Clck+(Cl+C2)C4]6. [20)
/

Explicit values of Mt, a,nd thence of ct, may be
found in succession by means of Eqs. [27 and
[18j.; e.g. ,

Mtt n, ——Ml ——n(n' —1)/12,

M2 ——n(n' —1)(n' 4—)/180,

n(n'-1) (n'-4) (n'-9)
M3 ——

2800

cl ——(n' —1)/12, C2 ——(n' —4) /15

ck ——9(n' —.9)/140, etc.

It will shortly be proved (see Eq. [44]) that,
as might be guessed from the values in Eq. [21j,
ct ——[t2(n2 —t2)1/[4(4/2 —1)J; this formula alone
is clearly sufhcient to place the entire -theory on a
quantitative basis.

Substituting Eq. [12j into. Eq. [19] and
equating coefficients of 6k+' yields at once the
recursion on which the Birge and Shea RI, & tables
may be built:

Jp
d& =lim[1/nj P

ORk=li mM /kn2k+'

in terms of which the fundamental Eqs. [1jand
[2] become the continuous orthogonality rela=

tions over the interval {0~&&&~1) for the kth
degree polynomials v'~($) with leading term pk:

case in which the number of data in any finite
range is allowed to increase without limit. This
process eliminateq e from all equations and
brings forth a striking analogy between the
polynomials of Tchebycheff and Legendre, inde-
pendently noted by many authors, """and it
leads, incidentally, to the solution of the most
difficult algebraic problem connected with the
determination of Tt(x) and Mt.

It will be convenient, therefore, to i xpress all
functions of x first as functions of g =x/n, and to
define

v'k(g) = limTk(x)/nk,

Rk+1, t+1 =Rkt —CtRk+1, t 1[22—), (6)

The mode of formation of R&& from c& may be
summarized by

Jo

d&[v' {g)O'=OR

[25]

Rt tt('c, l-+C2+ ' ' ' +Ct—1)i

Rt 4, t=C1C2+(Cl+C2)C4+

+(Cl+C2+ ' ' '+«—6)«—i, [23J

Rot= ( ) C1CS' ' 'Ct —l.

Further progress requires the development of
the explicit formulas for c~ as well as for 1» as a
function of e.

JS. Legendre Polynomials

The method by which Tt(x) and Mt will be
obtained involves the use of kth degree poly-
nomials in x, such as x(x—1) ~ (x —k+1), where
x is a variable ranging by integer steps from
x=0 to x=n —1. In order, however, to expose
the pattern of reasoning through which the
final result is reached, it is desirable to free the
argument of those complications introduced by
factorial polynomials by first treating the special

&0
dj (kr, (() =0, (0&k«),

d $ gt vt($) = OR(.
'

Writ&ng the Legendre polynomials explicitly in
powers of P, one obtains

Apart from the change of interval from (—1, +1)
to (0, 1), and the change of normalization to
make the leading coefficient unity, Eq. [25$ is a
characteristic equation for the Legendre poly-
nomials.

The process by which Wt(g) is found explicitly
begins with the observation that any power P
may be expressed as a sum of ~;(&) with 6&~k.
From this it follows that J~'tlat gkst($) must
vanish for all k &t, and, since )t contains a term
in 9t(&) with unit coefficient, one may derive,
from Eq. [25j, the equations



«(&) = OR( Q w;gP', $27$
'toot w«(2t+ 1) t(z —1) ~ ~ ~ (s t)—

+ . .+
s s+t (t!)'s(s+1) ~ ~ ~ (s+t)

and it thus appears that Eq. $26) is a set of
(t+1) linear equations to determine the (t+1)
unknowns wot, wi&, ~ ~ wii. The equations for
w;i are constructed by substituting Eq. L27 J into
Eq. [26]and by making use of

dP g'+'=1/(i+ 0+1):

On multiplying both side~ by (s+k), with k an
integer between zero and t, one observes that a
corresponding factor is cancelled in the de-
nominator on the right and in the term wt„/(s+0)
on the left. lf s is then made to approach —k,
every term on the left but the latter vanishes, so
that

lim (z+k)w(s) =wI„.,

P w, ,/(i+k+1) =0, (0(~k(t),
i=0

P w, ,/(i+k+1) =1, (k =t).
i=o

Since the m;& will recur in the determination of
Ti(x) and M „it is useful to solve Eq. L28) at this
point. So simple are the coefficients of this set of
linear equations that it would be quite awkward"
to forego the knowledge of their special con-
struction and to attempt to apply mathematical
induction to the general solution in terms of de-
terminants. It is appropriate, instead, to recall a
device in use before the invention of deter-
minants, for equations which showed the "per-
symmetric" property.

Consider the function of z defined in terms of
v8itg by

~OC
t

5)gg
w(s) =2 = +- +

,=o i+s s 1+s t+z

= (—)"+'L(»+1)!(k+t) l3!
L(t')'(k')'(t-k) 'j. L293

This relation enables one to determine 9R& at
once, for, in Eq. $27], the leading coefficient in

«(P), OR,w«, has been defined as unity. Taking
this fact into account, one may summarize the
results of Eqs. L27j and L291 as

OR) ——1/wing ——(t!)'/[(2t)!(2t+1)!g,
30

As an application of these formulas one may
consider the limit of the Tchebycheff recursion
Eq. L19j, on division by I'+' and use of Eqs.
L24j, Poj, and, =x—(I—1)/2

«+ (5) = (5—l) ~ (()—Lt'/4(»' —1)1«- (5),

which is a form of the well-known Gaussian
recursion for Legendre polynomials.

By combining the (t+1) terms in the sum over
the common denominator z(s+1) ~ ~ .(z+t), it is
clear that the numerator of the resu1ting fraction
must be a polynomial of degree t in s. Since w(s)
is required by Eq. L28$ to vanish at the t points
z=1, 2, t, its numerator must be proportional
to (s —1)(s—2) (s t); i.e. ,

—

w(s) ~ L(s—1)(s—2) (s —t)j/
[s(s+1). (s+t)].

A«= t+1 the right side of this relation assumes
the value (t!)'/(2t+1)!, while w(s) is known
«om Eq. L28j to assume the value w(t+1) =1.
These relations fix the proportionality factor at
(2t+1)!/(t!)' and the value of w(z) at

J6, Explicit Formulas

A preliminary suggestion for determining T&(x)
might be to attempt to carry through the same
process used for «(p) in terms of powers of x.
But then it would become necessary to effect
sums of the form

(1/+) g (xi+i/+i+i)

in analogy with Jo d$ ~ go+', and the remainder of
the problem mould turn upon the evaluation of

. persymmetric determinants of Bernouilli num-

bers, which is not entirely a simple matter. It
seems appropriate, therefore, to try to express
T,(x) in terms of polynomials that can readily
be summed over integer values of x from 0 to
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(n —1). One thinks, at once, of binomial coef-
ficients, which have a role in problems of sum-
mation and di6'erencing analogous to that of the
powers in integration and differentiation.

(x)
The binomial coefficient

I I may be con-
g&

sidered as the polynomial of degree t in x with
leading coefficient 1/t! given by

('x't
I
=x(x —1) . ~ (x—t+1)/t!. . [31]

Et

It is thus defined for aLL values of x but only for
positive integer values of I,. It reduces to zero
for x=0, 1, (t 1) an—d to positive integer
values for integer values of x greater than or
equal to t. Its importance here comes from the
readily verified binomial recursion formula

(xl (s—ti (s —x)

The most significant property of the binomial
coefficient polynomials is the ease with which
they may be summed by repeated application of
Eq. [32j:
(x+1) ( x ) (x)
E t+1) I t+1) E t)

(x—11 (x—1) t'x t

(x—k) fx —ki (x—0+ii
I+ i I+Iit+1) ( t ) «)

It is convenient to be able to extend the definition
(x)

of
I I to negative integer values of t, and this
«

result is accomplished through Eq. [32$;
which may be rewritten to bring out their
resemblance to the corresponding continuous
formula as

(x+iq ( x q (xy In particular, if x ranges over integer values
[323 from 0 to (n —.1),«+1) ( t+1) «+1)

( n ) " ' (x) (n+t t
" ' (x+tl

I~t+1)I
= & I(t)I ' l(t+1)I

= 2, I( t )I,

(x) (x+1' (x)
I
—

I I
= (x+1)—x= 1,

&0) & 1 ) Ei)

( x i (x+1) (x't

&-1) & 0 ) &0)

(x't
&
—2)

(x) ( s ) (x+s)
~=0«) (j t) E j )—[33]

(xl
The analogy of I I to the function x'/t! is

\, t

suggested, for example, by the binomial theorem
for the latter, and is proved by induction on the
basis of Eq. [32$, exactly as in the usual form of
the theorem:

(1/n) Z I I I I =1/(t+1).=0 Et ) E t )

=~1/) Z I

*=0 ( t ) ( t )
In fact, as n increases without limit, and
(x) (n ii — (x+ti (n+ti

, )I I , ]I

approach (x/n)' = P, Eq. [35]approaches
(s1

dh 5'= 1/(t+1)

Furthermore, by means of the identities

(x& (x+kl (i+kgb (x+k)
&i)& k ) &k)E~+k)

and

!
(i+kgb ( n+k

[34j ( k ) (i+k+1)
(n ii (n+k)—

With the aid of the elementary identity

I
=(—)'I

(x+t ii—
(i+k+1), [36jthe binomial theorem may also take the form



which follow directly from the definition L31),
it is easy to derive from Eq. L36) the important
result

(n 1—)
t!nI

(x+k ) (n+k)
(x)(n-1)Z I. I

=o Ei)
(n —13 (x+k) (n+kl .

= 1/(i+k+1). $37)
(n+t)

t!nI
t )

This equation approaches

« ~ ~ =1/('+k+1)
Jo

(x+k'! (n+k)
and

k ) I, k )
(x)
Ei)

(n —1)
. )I

in sums of Tchebycheff polynomials; Eqs. L1)
and L2) will yield, just as did their analog Eq.
I 25), the results

in the limit of large n.
One is now equipped to retrace the argument

that led to Eq. L28) in the case of K,(t). Just as
in the derivation of Eq. L26), one may here
expand the polynomials

(x)
XE g, cI

'=o

(n —1)

2 fI ~/(i+k+1) = o =2 g'~/(i+k+1)
{i&t) {6«)

2 fo /(t+k+1) =1=2 g'/(t+i+1)

The outer factor has been chosen to cancel the
right side of Eq. I 39). One must then substitute
these relations into Eqs. $38) and L39) in the
order in which they are written, to obtain the
simultaneous linear equations for fq~ and g;~ after
eKecting the sum over x on the left by means of
Eq. $37):

(x+k)
(1/n) Z 7'~(x)

I. o

(n —1)
I =0, (i&i),)

I 38)
(n+k)

I =0, {k&i)
k )

These equations for f&&, g;& are not merely
analogous to those for w, & in Eq. L28), they are
actually identical to them. This special simpli-
fication was brought about by throwing the
summation formula in Eq. (37) into a form where
the result of summing terms with n-dependent
factors was quite independent of n; this, in turn,
was secured by the use of the pair of polynomials

(x+k1 (n+k ) (x) (n —1)
and

*=o ( t ) ( t )
(n+t)

t )t!ni

(n —1~- (k) (k) E~) (i)
t!ni

which approach the monomials $" and $' in the
limit of large n.

The solution of the problem of the explicit
form of K&($) contained in Eq. I 29) may now be
directly taken over into the problem at hand,
through the identity

These equations form the analog of Eq. L26).
Following the lead of Eq. [27) one may convert
Eqs. L38) and L39) into linear equations for f&&

(x+k) (x)
and g;~, the coefficients of

I I
and

I I
in

the appropriate expansions of T~(x),

The first application of Eqs. I 29) and L42)
appears in the determination of 3E& by an argu-
ment similar to that which led to Eq. $30);
namely, the leading coefficient of x' in Eq. L40)
must be unity:
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or

Wg g3IIg
(n —1& (n+t'!Et)(t
n

i2t+1)
2t

l 43], (16)
I, t)

in which the latter appear as linear combinations
of data differences. In particular, aq must be
linearly constructed from the kth differences of
y(x) because in the special case that the kth
differences are actually constant one has the
mell-known result

At Once, the Quantities c& may be found ancl

applied to Eqs. [17]—[23],

c,= iVI,/3I, ,= [t'(n' t')]/—[4(4t' 1)],—[44]

as exemplified by the values in Eq. [21].
For the final step in the explicit formula for

T~(x), the w;, are substituted from Eqs. [42]
and [29] into Eq. [40] in terms of binomial
coeKcients:

6"y(x) =k!a, wit?i Ay(x) =y(x+1) =- y(x)

It will be convenient to introduce fictitious
data which vanish identically at integer points
outside the actual data range, 0«x«e —1. In
this way one avoids having to specialize the
limits of summation in the following treatment,
e.g. ,

T)(x) /Mg 1——(n+t l
tl

XXI
(t n) ft+—6 (xl

oft i) I, —i) (i)

I

where the sumniation extends over all integer
values of x. Under these conditions it is easy to
apply "summation by parts" to sums of the form

(n+t )
tl

q2t+1j
I'

(t+n) (t+kp (x+k) according to Eq. [32], by merely shifting the
I( )"

I ~l
[45] index of summation by one unit in the second

This expression gives the weighting factor for the
data in Eq. [5] in terms of a small number of
integer factors. The ratio of Eqs. (15) and (16)
in Section C3 may be shown to be identical with

Eq. [45].
As emphasized in the introduction to this

section, results equivalent to Eqs. [43] and [45]
have been independently derived by many
methods'"" "4' ranging from ingenious gener-
aliza, tion of numerical ta,bles to polished analysis.
The elementary argument above may, never-
theless, be useful through its accessibility to the
general reader. It was independently developed'
in substantially the form presented here.

J'7. Solution in Data Differences

Since successive differences of the data y(x)
are often formed in preliminary work to see if
polynomial fitting is justified, it is worth trans-
forming the results obtained for a~ into a form

Thus

+x1&= Z[y(x) —y(x+1)]l .
&i+1 )

(x) t'x+ 1)
Zy(x)l . I= —2 ~y(x)l . I [4~i].=o Ei ) * ( i+11

(xl )x+ty
Zy(x)I . I=(—)'Z~'y(x)l . I [4&]
*-o E) * ( i+tJ

The disappearance of an explicit "summed part"
has been secured by the introduction of the
fictitious data, and this method may be iterated
as many times as desired since the limits of sum-
mation never enter explicitly. On t-fold iteration,
for cxaIIlplc,
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This result may be used in connection with the explicit formula for ai obtained by combining Eqs.
[5) and [45):

(t—n'r (t+P (x)
~ = Z y(x) Z

(n+t )
tl

(2t+1)

'=0 Et —i) ( i ) Ei+t)

,
(n+t i

ti
q2t+1)

&2t+1)

by rearrangement of the order of the summations over i and x. On reference to the identity in Eq.
(x+8 (i+ted (x+ti (xy

[36), ] f f f may be written as
( f] ), and the i-dependent factors may be sepa-(i+t)

rately summed with the aid of the binomial theorem Eq. [33$ and the identity Eq. [34j:
(t—n) (x) (x+t —n) (n —x-1)

Substitution into the result obtained above for ai then yields

(x+t) (n —x 1)—' =2 ~'y(x)
I ) I 2t+1)

The weighting factor in this sum of data differences is proportional to the polynomia1 of degree t~

(x+t) (n —x —1i
~, which vanishes at x = —1, —2, , t and also—to the polynomial of degree t,

~

t )'
which vanishes at x=n —1, n —2, ~ n —t. The advancing difference 6'y(x) is formed from data
y(x)y(x+1) y(x+t). Therefore b, 'y(x) vanishes identically for x&( t) or—'x&(n —.1), for only
fictitious evanescent quantities contribute to its value. Because, furthermore, the weighting factors
of 6 y(x) in Eq. [48$ vanish for (—t) &~x &0 and for (n —t —1) &x ~& (n —1), the limits of summation
over x in Eq. [48] may be fixed at x =0 and x= n —t —1. No fictitious data then appear in the final
formula:

(n+t )
&2t+1)

[49j, (57)

This result is given in Section D as Eq. (57) with symbols defined by Eqs. (46), (53), and (58).
Equation [49j has the special advantage that all weighting factors of data differences are positive;

the weights sum to unity, as may be seen by inserting a set of data with exactly equal differences of
degree t. The weights are symmetrical about the point x = (n —t —1)/2 = i in a manner evident upon
introduction of the variable e=x —i, and the central differences 8'y(e) =5'y(x):

+" (u+t+ei (v+t '«i (2v+—2t+1)
[50j, (52)

This expression appears in Section D as Eq. (52), with the symbols defined by Eqs. (51) and (53).
Here is illustrated the analog of the pair-factor symmetry of Eq. [11]which enables the data dif-
ferences to be grouped in pairs and which halves the number of weighting factors that need be tabu-
lated. Considered as a function of e, the weighting factor is a polynomial of degree 2t, symmetrical
about the origin where'it has its maximum and diminishing to zero just beyond the interval of sum-
mation. There it has its roots at the points e = +(v+1), +(i +2), ~ ~ &(i+t).
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One may therefore extend the summation in Eq. L50] from « = —(v+ t) to « = (v+t) wrthout altering
its value; application of the same technique of summation by parts which led from Eq. L46] to Eq.
(49] transforms Eqs. L49] and L50] into

(x) (n 1 —x+—t) ( n+t. )
.=0 E tJ ( t ) E2t+1l

=2 s()(—)'l'!(v+t+ «) (v+ t «) —/2 v+2t+ 1i

Comparison with Eq. L5] yields a new form for the explicit Tchebyche6 polynomials:

/' n+t )
tl

&2t+1)

(2v+2t+1)
tt

2t+1
fv+t+«l (v+t «l-

=(—)'~~!
t

[52]

Some insight into these expressions, erst
derived by Jordan, "may be afforded by passing
to the limit of large n according to Eq. [24].
Observing that 6' +n '(d—/«)' and cancelling a
factor of n '—' on both sides, one obtains the
result

The simple construction of the weighting
factors in Eqs. L497 and L50], as well as their
positive sign, recomm nd these formulas for the
determination of a~. or the same reasons, Eq.

, $527 appears to be a practical means to evaluate
z.,(,).

or

~~(&) =L(—)'tl/(2t). ]

Apart from range and from normalizing factor„
this is just the well-known formula of Rodrigues
for the Legendre polynomials. Jordan's Eq. L52]
is thus disclosed as the analog of Rodrigues'
theorem for the Tchebycheff polynomials.

Just as in the continuous case, the process of
differencing produces roots near the maxima and
minima of the differenced function; because the
roots of the functions diBerenced in Eq. L52]
lie between +(v+t) and —(v+t), their maxima
and minima must be similarly located. T,(«) thus
has all its roots in the range of the data and can
only increase or decrease steadily and without
limit outside the data range. To this circum-
stance must be ascribed the extreme unreliability
of an extrapolated point; for, according to Eq.
$9], the corresponding probable error increases
essentially with the tth power of the distance
from the range of data.

J8. Computation of Tables

A fundamental consideration in making tables
for numerical realization of the theory is the rep-
resentation of the rational numbers involved as
the quotient of the smallest possible integers. The
simplest problem of this type occurs in connec-
tion with Eq. $49], where the weighting factors
(x+t3 (n —x —1) ( n+t )

might well ap-«) & t ) &2t+1)
pear unreduced to lowest terms. Much of the
reduction, however, has already been accom-
plished through merely having written this ex-
pression in terms of the binomial coeKcient
function. For the latter is known to be an integer
for all integer values of its argument, although
when explicitly written as a quotient of factorials
it might not appear so at first glance.

The e6ect of the binomial coefficients has been

to cancel in numerator and denominator any
common factors independent of n. All that now
remains is to examine whether for certain values
of n common factors may be extracted from

(x+t) (n —x —1)
! for all integer values of x in

t



the range 0&x~&n —t —1. If such factors exist,
they must surely be cancelled by the denom-
inator, since the latter is the sum over all x in
the range 0~&x&~n —t —1 of the values of the
numerator, i.e.,

( n+t i ='-' (x+t't (n —x —1)
(»+1) .=. &»& t )

a consequence of the remark following Eq. (49j.
Before carrying out the factorization it is

worth observing that such a process will achieve
the same e8ect in T&(x)/M& in Eqs. L5 1 and L45j.
This is a consequence of Eqs. L52j and L45j,
according to which

(t n't (—t+i1 (x)
;=o« —i) & i) &i)

(x) (n x+t 1i— —«)«)
On the left is a function proportional to Ti(x),
and on the right occur the tth differences of the

(x+t t (n x ——1i
numbers ! !! !, which give the

weighting factors for the data differences in Eq.
L49). Since the t initial and the t terminal values
of the latter sequence are null, the sequence can
be obtained entirely from the tth differences
appearing in Eq. L54j by t-told iteration of the
process of forming, in order, the partial sums and
by adjoining a null value to the beginning and

(x+t t (n —x—1)
end. If the sequence ! for

I, ti(
0 ~& x &~(n 1) has —all its common factors divided
out, its tth differences will then also be freed of
common factors. This is, of course, not generally
true, but is a consequence of the t initial and final
null values; for if the tth differences had a com-
.mon factor, their partial sums, and hence the
primary sequence, would have to possess the
same common factors.

One concludes, therefore, tha, t the process of
reduction to lowest terms of the complicated ex-
pressions for T&(x)/Afar is accomplished by can-
celling from numerator and denominator exactly
the same common factors as those that occur
in the relatively simple weighting factors

(x+.t't ('n —x —1P (n+t )
! occurring in Eq.

& t)& t ) I,»+1)

The reduction of these weighting factors, in
turn, rests on the periodic occurrence of mul-
tiples of a given prime among the successive
integers that must be multiplied together to

(x+ti (n x 1i- —
!form the numerators of

)
It is not dificult to discover the condition on m

in order that there exist at least one value of x
in the range 0~&&~&n —t —1 for which neither
(x+t t (n —x—1)

! can haveaprime factor
)

P in their numerators not cancelled by a cor-
responding factor in their denominator t t. The
result, which formalizes the procedure of the
"Sieve of. Eratosthenes, " may be stated upon
writing both n and t in the form of a multiple of
I'&, with a positive or zero remainder less than
I'&, i.e.,

with

There exists a common factor of P for every value of
n such that P' t*&~ n*~& t*;—and if these conditions
can be satisfied for some P, t, n vvith more than
one value of q, there is one disti nct factor of P'for
every possible choice of q.

An immediate corollary is that one need
consider neither prime factors P & 2t nor powers
of such primes P&&2t. In reducing to lowest
terms one might proceed by 6rst setting down
all P&&~2t, and then dividing these quantities
into t to obtain the corresponding remainders t*.
One must reject all cases for which P~ —t*&t*,
and for those that remain one must permit n* to
assume all values with P&—t*~&n* ~& t*. The
values of n for which a common factor of I' is
present are then given by n =XP'+n*, where N
is any integer which makes n &t. As an example,
consider the most complicated case in the
accompanying table, that for t=5, 2t= 1.0, and
P( ~& 2t) = 7, 5, 3, 2. In this way there is fashioned
a kind of Sieve of Eratosthenes which sifts from
the values of n, set down in succession, the
periodically recurring groups for which the
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MQDEL FQRM 9. Scheme for determining common factors.

2
5
1

3
3

2, 3, 4, 5

e(5)

7%~2, 7%+3

9K~4
2K+1

8NW3, 8%+4

&weighting factors possess in common a given
prime divisor. The labor of computation of pair
factors for data and for data difFerences is thereby
greatly reduced.

How to apply this process in order to represent
T,(x) as proportional, by a fixed factor, to a
sequence of relatively prime integers, and how
further to exploit this numerical simplicity
throughout least-squares' problems, has been
thoroughly explained in preceding sections.

ln conclusion, let the author of this section
gratefully acknowledge the initiative and the
practical evaluation of results of the foregoing
research as coming from Professor Birge. Many of
the formulas derived here for the first time were,
in fact, predicted by him in advance of analytical
proof, and without his distinguished guidance,
this work would not have been possible.


