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=2 V2=statistical weight of b; in Eq.
(23). Numerical values of N; in Table
XIII

= N;/Su=‘denominator’ actually tabu-
lated by Birge and Shea, corresponding
to the tabulated “pair-factors” Vi, by
Eq. (25)

Coefficient of € in expressions for V3,
corresponding to Table III for T and
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the evaluation of a;”’ in Eq. (42). Ex-
plicit expressions for. Hy: in Table IV
=2g9—t=n—t—1. A set of finite differ-
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as e runs from —g¢ to ¢ for the obser-
vations 9y, (which correspond to =0
difference)
Weighting factor of 8%y, Egs. (47) and
(49), for use with ‘“‘denominator’” K, of
Eq. (48)
Smallest integer value of weighting fac-
tor, for a given value of ¢, in Eq. (52).
Evaluated by Eq. (51), see footnote 30
“Denominator’’ in Eq. (52), correspond-
ing to weighting factor Q.. Evaluated by
Eq. (53)
Smallest integer weighting factor of &y,
for a given value of # and ¢, in Eqgs. (54),
(55). Values listed in Table XIV
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with W;, Eqs. (54), (56). Values listed
in Table XIV
Weighting factor of Aty,, Eqgs. (57), (58),
to use with ‘“denominator” K, of Eq.
(53)
=2 xty=power moment of the obser-
~ vations
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A. INTRODUCTION

VERY common problem in physical science

is that of the representation of a set of
experimental data by means of a smooth curve.
For many reasons it is frequently desirable to
use for this purpose an analytic function, and to
obtain such a function in explicit, numerical
form. Of all the functions thus used in science,
the most common is undoubtedly the polynomial
(often denoted a rational integral function). The
truth of this last remark is evident from the fact
that the arithmetic average of a set of # un-
weighted observations (or the weighted average
of a set of weighted observations) represents the
least-squares’ fitting of the observations by
means of a polynomial of zero degree. Similarly
the commonly found, linear relation between x
and vy is, of course, a polynomial of the first
degree.

Methods for obtaining the least-squares’ solu-
tions of zero- and first-degree polynomials are
well known and in frequent use. The general
method for obtaining the least-squares’ solution
of a polynomial of any degree, by means of
determinants, is also rather well known. But
the numerical labor involved in the case of poly-
nomials of the third or higher degree is so great
that such a solution is rarely attempted.
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If the observations are equally spaced along
the abscissa axis, and are of equal weight, the
situation is very different. Such a regularity
permits an enormous simplification of the neces-
sary process, and the least-squares’ fitting of a
polynomial of the fifth or even higher degree can
actually be carried out with reasonable ease and
accuracy. One might naturally anticipate such a
situation, and hence it is not surprising that a
number of important papers have been published
on the subject. A partial list of such material,
alphabetic by author, is given in Section H.

The history of the matter is, however, a most
curious one. To the writer it illustrates a more or
less inevitable result of the great expansion and
specialization of science that has been evolving
now for a number of generations. No scientist
has the time to read even a small fraction of the
papers that might actually be of service to him in
his own investigations. What is still more un-
fortunate is that increased specialization of sub-
ject has been accompanied by increased special-
ization of symbols and nomenclature, so that it
is often difficult to follow intelligently papers in
fields other than one’s own.

In the case of least-squares’ fitting by means of
polynomials, most of the fundamental work has
been done by mathematicians. Some has been
done by statisticians who, incidentally,. carried
out such investigations because they desired to
make practical use of the results. But, in general,
mathematicians do not make actual numerical
use of their equations, and often leave them in a
form not convenient for numerical use. On the
other hand, the physical scientists, who could
use the results with great profit, all too often are
quite unaware of the existence of such material,
and have difficulty in perceiving its true sig-
nificance, even when they do happen to notice
it in the literature.

The history of the present subject is indicated
briefly at scattered points in the paper, and at
the end (Section G) certain alternative processes

1 We assume here that there is no experimental error in
x, or at least that such error is negligibly small in compari-
son with that in y. When both coordinates are subject to
significantly large errors,-the corresponding least-squares’
solution becomes extremely complicated in the case of any
function more complex than a polynomial of the first degree.
See W. E. Deming, Phil. Mag. 11, 146 (1931).
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are discussed. But in order not to confuse the
reader who desires to. know merely what the
pertinent results are, and how they may be used,
the main body of the present paper is devoted
primarily to the presentation of such explicit
information, with as little interruption as possible
in the form of historical remarks.

The particular methods of calculation pre-
sented here are believed by the writer to be the
most advantageous for use by physical scientists.
It must, however, be understood that there are
many possible alternative methods and those

who have proposed such alternative methods -

may have quite diverse opinions on the matter.
Certain of these alternative methods, as just
noted, will be considered near the end of the
paper, when they can be compared more con-
veniently with the methods advocated here.
The writer’s previous work in this field con-
sists of two papers, one published in 1919 on the
least-squares’ fitting of a second-degree poly-
nomial,? and the other, written jointly with
Dr. J. D. Shea, in 1927, on the least-squares’
fitting of a polynomial of any degree.® The
writer admits with regret that when these pre-
vious investigations were carried out, he was
totally unaware of the earlier work in the field.
Since then numerous papers along this general
line have been published and from such papers
one may collect an almost complete set of im-
portant references. But it should be pointed out
that, in spite of the fact that many dozens of
papers on this subject are now in print, a new
paper still appears occasionally, written by a
person who, like the writer twenty years ago, is
obviously in ignorance of all previous work.
Partly as a result of the information given in
certain papers, and partly as a result of recent
new investigations by Dr. Weinberg and the
writer,? it is now possible to modify and extend
the material of the Birge and Shea paper in a
substantial way. In particular, Dr. Weinberg and
I have been able to get a. simple method for
evaluating the probable errors of all quantities

2 R. T. Birge, Phys. Rev. 13, 360 (1919).

3 R. T. Birge and J. D. Shea, Univ. of Cal. Pub. in Math.
2, 67-118 (1927). These results were first presented to the
American Physical Society in 1924 (Phys. Rev. 24, 206A,
(1924)).
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of interest. No general method for doing this
has heretofore been presented in the literature.
Thus the purposes of the present paper are two-
fold—(1) to reintroduce into print the main
facts and tables of the Birge and Shea method?
since the paper itself has long been out of print,
and (2) to present in detail, with certain neces-
sary new tables, important modifications and
extensions of the Birge and Shea method.

The detailed description of the modified Birge
and Shea method is presented in Section C, and
a brief discussion of an alternative method,
which yields the desired results explicitly in
terms of finite differences rather than in terms of
observations, appears in Section D. Sections B
and E contain details on two relatively ele-
mentary problems that appear, however, with
great frequency in scientific work.

In Section F a specific problem is worked out
in complete numerical detail in order to illustrate
the methods presented in Sections C and D.
A summary of these details constitutes Section
F8. The main tables (XII, XIII, XIV) needed
in the work constitute Section I, and the re-
maining tables, all of them brief, are scattered
throughout the paper. It is therefore hoped that
the reader who is not interested in the theoretical
aspects of the subject will be able, from Section F
alone, to understand the wvarious calculations
that are necessary in order to obtain the desired
results.

As an illustration of the character and value of
the information that can be obtained with truly
remarkable rapidity, by means of the methods
about to be presented, we consider the variation
of the electrical equivalent of heat with tempera-
ture. This variation, which is merely that of the
specific heat of water with temperature, was
measured with great precision by Jaeger and
Steinwehr® in 1921, and their experimental data
were analyzed by the writer® in 1929 in connec-
tion with the determination of the most probable
value of the electrical equivalent of heat. Addi-
tional information can now be obtained from
their experimental material, and the details are
as follows.

" 4R, T. Birge and J. W. Weinberg, Phys. Rev. 68, 106A
(1945); also J. W. Weinberg, Phys. Rev. 62, 304A (1942).
The theoretical contributions of Dr. Weinberg are sum-
marized in Section J of the present paper.
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Jaeger and Steinwehr measured 67 values of
the electrical equivalent J’, at mean tempera-
tutes ranging from 4.75°C to 49.60°C. Since the
various temperatures are spaced at unequal
intervals, the writer in 1929 first collected the
data into 19 points, spaced at 2.5°C intervals,
from 5° to 50°C. This process, denoted by
astronomers as the “formation of normal places,”’
was carried out with the utmost care, and the
resulting 19 points, all of equal weight, can be
taken as a reasonable reproduction of the original
data. Jaeger and Steinwehr fitted their data to a
second-degree polynomial and then interpolated
on this curve, at £=15°C, to obtain J'15=4.18420
int. joules. But as the writer has shown,® at
least a fourth-degree polynomial is required for
the proper representation of their data, and with
such a function one obtains J’15=4.18327 int.
joules. As already noted, it was not possible in
1929 to calculate in any simple way the probable
errors of these results.

The best criterion of the fit of any function to
the experimental data is furnished by the magni-
tude of 3 ¢?, i.e., the sum of the squares of the
residuals of the several (unweighted) points. By
the use of the methods to be described one can
obtain with comparative rapidity the 3 22 for a
least-squares’ polynomial of any degree, and in
the process one obtains simultaneously the value
of 3 92 for the least-squares’ polynomials of all
lower degrees. Beginning then with the zero-
degree solution and going up to the fifth degree
the respective values of > »? for the 19 points
just described, in terms of 10~ joule as the unit,
are (0) 69,812.841, (1) 36,908.491, (2) 1464.027,
(3) 15.510, (4) 1.051, (5) 0.084.

Thus the wvalue of > 2% is reduced from
1464.027 to 1.051 by the use of a fourth-degree
polynomial, in place of one of only the second
degree. A further improvement can apparently
be made by the use of the fifth-degree solution,
but the improvement is actually illusory because
of the uncertainty introduced in connection with
the reduction of the observations from 67 to 19
points. This uncertainty turns out to be of the
same order of magnitude as the probable error
of the fourth-degree solution.

( 5 VY) Jaeger and H. v. Steinwehr, Ann. d. Physik 64, 305
1921).

¢ R. T. Birge, Rev. Mod. Phys. 1, 1 (1929).
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We next calculate the value of the function,
at t=15°C, for the fifth-degree solution. Such a
single value can be obtained directly, inde-
pendent of any other value and, as in the case
of the evaluation of 3 9%, its determination
furnishes s¢multaneously the corresponding value
for all least-squares’ polynomials of lower degree.
The experimental point used here for 15°C, is
41832.70X10~* int. joules, and this value is
used in calculating the respective residuals (z).
Finally, we can easily evaluate the probable error
of the function, at t=15°C, for each of the least-
squares’ polynomials. All of these results, to-
gether with the change in the calculated value
with changing degree of the polynomial, are
given in Table 1.

Thus the actual change in the calculated value
of Jis, in passing from a second-degree to a
fourth-degree polynomial, is 10.78 X10~* joule.
This change is not only 5.3 times the probable
error of the second-degree solution, but is 124
times that of the fourth-degree solution. Hence
one sees clearly the unreliability of the value of
Jis' based on a second-degree least-squares’
fitting of the data, as carried out by Jaeger and
Steinwehr, and the very great improvement re-
sulting from the use of a fourth-degree solution.
One is, of course, considering here only the purely
accidental errors of the experiment, as shown by
the “‘scatter” of the points from a smooth curve.
It is only such accidental errors that can be
revealed and measured by any purely mathe-
matical treatment of a single set of data.

TABLE I. Summary of treatment of data used in
determining J'.

Degree
of

Probable
func- J’15 (calc.) 2 error
tion (107 joule) (1074 joule) (1074 joule)

0 41,813.62 +19.08 +9.64

+37.99

1 41,851.61 —18.91 +9.23
—8.08

2 41,843.53 —10.83 +2.02
—9.89

3 41,833.64 —0.94 +0.262
—0.894

4 41,832.746 —0.046 +0.087
+0.010 '

5 41,832.756 —0.056 +0.021




LEAST-SQUARES’

As one further illustration of the use of the
material about to be presented, let us consider
the determination of the acceleration of gravity
by means of an Atwood’s machine. In this case,
the second difference of points equally spaced in
time should be constant. One then naturally
first calculates a difference table, in order to
determine whether the second differences are, in
fact, constant, except for statistical variations.
Let us suppose that one thus obtains 10 second
differences. Then a properly weighted average of
these ten differences gives the value of 2la,,
where a, is the coefficient of x? in the least-
squares’ solution of the data by means of a
second-degree polynomial. From Table XIV of
this paper, one finds that the respective weights
W, for the 10 second differences (or 12 observa-
tions of position, i.e., n=12, t=2 of Table XIV),
are 55, 135, 216, 280, 315, 315, 280, 216, 135,
and 55. The sum of these weights (denoted L)
is 2002, as also given in the table. The series of
weights is always symmetrical about the center,
and hence only the last half of the values appears
in the table.

The table gives also the proper set of weights
for any number of observations (#) up to 30,
for the highest differences not only of the second-
degree polynomial (¢=2), but also of t=1, 3, 4,
and 5. If, as has been done only too often in
practice, one takes merely the arithmetic average
of the second differences, one thereby cancels out
automatically all but the first two and last two
observations of position. So far as I know, a table
such as Table XIV of this paper has not been
published previously. With its use, the least-
squares’ value of the quantity sought (i.e., the
coefficient a; of x¢ in a polynomial of degree ¢),
can be obtained almost as rapidly as a value
that admittedly fails to make any use of the
major portion of the available experimental
data. :

The probable error of any coefficient a; may
also be evaluated, but as shown in detail in
Sections D and F7, the calculation of the prob-
able error is always a more involved process than
the calculation of the coefficient itself. The com-
plexity arises primarily from the fact that the
probable error in any coefficient, whether of the
highest degree term of the polynomial or of any
other term, involves the value of a; not only for
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t=j (the degree of the polynomial) but for all
values of ¢ from 0 to j.

B. EXACT FITTING OF DATA

The main purpose of this paper is to discuss
the least-squares’ fitting of data by means of
polynomials. A special case to which the sug-
gested procedures still apply is that in which the
number of observations just equals the number
of undetermined coefficients (i.e., {+1 observa- .
tions fitted to a polynomial of degree #). In that
case each observed point is exactly fitted by the
calculated function, all residuals are zero, and
the question of probable error does not enter.
If the main purpose of setting up such a poly-
nomial is to use it for interpolation, then the
best method is undoubtedly to employ one of
the well-known interpolation formulas. Such
formulas are merely polynomials in factorial
form. If one wishes, finally, to express the poly-
nomial in power-series form, a simple transfor-
mation from the factorial form makes this
possible. .

Before passing to the general case of least-
squares’ fitting, I accordingly first give a method
of setting up a polynomial in power-series form
which exactly satisfies all of the observed points.
As usual, we are here considering only points
equally spaced along the abscissa axis. If they
are unequally spaced, one is forced to use one
of the entirely general methods for the solution
of a set of simultaneous linear equations.

Every process discussed in this paper will be
illustrated by a fully worked-out numerical ex-
ample. For this purpose I have chosen a set of
seven equally spaced observations, for which
the fourth differences are nearly constant. Hence
the set is well represented by a fourth-degree
polynomial. The numerical values have been
deliberately chosen in such a way that all of
the resulting coefficients and other desired quanti-
ties are given by terminating decimals. Thus
exact numerical results may be obtained and an
exact comparison of various procedures becomes
possible.

In order to illustrate the fitting of {41 points
by means of a polynomial of degree ¢, we choose
merely the first five of the seven points of our
standard set and fit these points to a fourth-



304

degree polynomial. The data and necessary differ-
ences are given in Table II.

For the case of least-squares’ fitting, we always
introduce a new abscissa, ¢, which varies from
—gq to +q where n=2¢+1=number of observa-
tions. Thus e=(x—x¢)/h=¢/h, where % is the
interval, in terms of x, between successive obser-
vations, and x is the middle observation, corre-
sponding to e=0. In Table 1V x, is replaced, for
convenience, by m. If n is even, xq (or m) is the
value of x half-way between the middle pasr of
observations, and the actual observations then
correspond to e=+3, £3, etc.

On the other hand, in the case of nterpolation
formulas e is so defined as always to have integral
values for the actual observations. Then, in the
case of an even number of observations, either one
of the central pair of observations is taken as
¢=0 and the symmetry of the limiting plus and
minus values of ¢ is lost. There are a great
variety of interpolation formulas in common
use, but 1 advocate the use of central difference
formulas. A central difference of order ¢ is de-
noted by &%. The attached subscript indicates
the value of ¢, as just defined for such formulas.
All differences lying on the same horizontal
line have the same subscript; ud'y, represents
F(8'y—3+3'yy).

The Newton-Stirling central difference formula
uses only quantities lying on the horizontal line
e=0. These quantities, which involve the arith-
metic averages ud'yy, for ¢{=odd integer,” are

~listed in Table 11 (i.e., 8.61, 8.925, 4.83, 25.093,
and 49.35). To obtain any polynomial up to the
eighth degree in power-series form from such a

TaBLE II. Set of data and differences for
illustrative example.

x € v oy 8y &y 3y
0 —2 0
2.10
S -1 2.10 4.41
6.51 0.42
10 0 8.61 (8.925) 4.83  (25.095) 49.35
11.34 49.77
.15 +1 19.95 54.60
65.94
20 +2 85.89
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set of central differences we use the following
equation.?
ud®1t

ud%tg 67u0}
30 140

Ue =ug+e{,u6ug—

{ 2110 6‘%0 8% Bqul
24 180 1120)
u63uo 551,{0 7/.1,67M()
e
5 720
{64u0 6%u0 763u0}
144 5760
{yamu 17 uo} 6{66140 68140}
S QNPT DR
360 720 2880

oo } (1)

ud"g
et
5040 40320
For the set of five observations given, we have,
accordingly,

7 The Newton-Stirling formula can be used for the case
of either an odd or an even number of observations. In the
latter case and for a polynomial of degree j, where j is odd,
the single available difference, 87y, is used for the wdiy,
demanded by the formula since the difference of order j is
constant by assumption.

8 It is customary, especially among statisticians, to use %
for the calculated value of the ordinate and y for the
observed value. These convenient symbols are adopted
throughout the present paper. But in the case of an
interpolation formula, based on a table of differences, the
calculated function passes exactly through each given point
(0, ¥1, etc.), and hence there is no distinction between such
values and the corresponding calculated values (uo, %,
etc.). For that reason it is standard practice to write % in
place of y in a table of differences as well as in all interpo-
lation formulas and in equations derived from them, such
as Eq. (1). Since, however, we shall later (Table VII) use
this same table of differences, extended to seven observa-
tions, for a least-squares’ solution, we here retain y in the
table, even though it is replaced by « in Eq. (1), which is in
standard form [see Whittaker and Robinson, Reduction of
Observations (Blackie and Son, London, England), p. 65].

As just indicated, the value of the abscissa is here shown
by a subscript, not only for the observations y (as is
customary) but also for the calculated function #. But
elsewhere in the present paper we write #;(e) for a poly-
nomial in ¢, of degree j. In other words, in the case of # as
well as many other symbols, we reserve the subscript for
the degree of the polynomial or some quantity associated
with it, and we write the abscissa, when needed, in paren-
thesis (see also footnote 14).
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25.095 4.83 49.35
ue=8.61+e{8.925— l+€2{ }

2 24
25.095 49.35
o))
6 24

or

He=8.61+4.7425¢+0.35875¢
+4.1825654+2.05625¢%.  (2)

To change from a f(e) to a f(e), where e=he, we
divide the coefficient of €’ by Ai=5% and sub-
stitute e for ¢, thus getting

%,=8.6140.9485¢+0.01435¢2
+0.03346€3-+0.00329¢".

To obtain the final equation in x, we perform a
Horner shift (synthetic division) of amount

—xo=—10. In order to make all directions
explicit, we give this shift in full. -
0.00329 0.03346 0.01435 0.9485 8.61
—0.03290 —0.00560 —0.0875 —8.61
0.00329 +0.00056 +0.00875 +0.8610 0
—0.03290 +0.32340 —3.3215
0.00329 -—0.03234 +0.33215 —2.4605
—0.03290 +0.65240
0.00329 —0.06524 4-0.98455
—0.03290
0.00329 —0.09814
Hence,
U, = —2.4605x+0.98455x2
—0.09814x3+0.00329x%.  (3)

I believe that the foregoing process is the most
rapid and convenient one for setting up a poly-
nomial in power-series form which exactly satis-
fies a given set of equally spaced data.

C. LEAST-SQUARES’ POLYNOMIAL FITTING OF
DATA IN TERMS OF OBSERVATIONS

Cl1. Introduction. Various Forms of Solution

As noted in the Introduction, numerous papers
have been published on the least-squares’ fitting
of equally spaced data. Many different forms of
solution are possible, and what constitutes the
most advantageous form depends in a major
way on the use to be made of the information.
Thus the final objectives of the statistician and
of the physical scientist are often quite different,
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and for just this reason the procedures advocated
by statisticlans may often not be the most
advantageous for physical scientists. The primary
purpose of the Birge and Shea paper? was to
present a method for obtaining, by least squares,
a polynomial in power-series form. I believe that
the method presented there still remains the best
for this particular purpose.

On the other hand, if one desires merely to
smooth the data (i.e., to obtain calculated or
adjusted values of each point) and has no interest
in the actual function that furnishes such values,
then a certain modification of the Birge and Shea
method is undoubtedly more convenient. Fur-
thermore, if one desires the probable error of
any one of the quantities evaluated (coefficients,
calculated points, etc.) then a further modifica-
tion of the Birge and Shea method is desirable.
The method about to be presented represents
what now appears to the writer the one most
advantageous for the general use of physical
scientists. Its relation to the original Birge and
Shea method will be indicated as we proceed.

“The new method involves in part the use of
certain results already existing in the literature
at the time the Birge and Shea work was done
but of which we were then quite unaware, as
already noted. In fact, the entire subject of
orthogonal polynomials, of which so much use is
made in this paper, goes back to Tchebycheff?
who in 1859 applied such polynomials to the
particular problem of concern here. His deriva-
tions were, however, very involved, and his
results have since been reproduced in a far
simpler manner by J. W. Weinberg. In fact,
Weinberg has independently derived all the
necessary equations by direct algebraic methods,
including some results that are quite new. An
outline of these results and of the method of
derivation is given by Weinberg in an appendix
(Section J) to the present paper. Accordingly, 1
shall in general merely quote such results and
refer to the appendix for their derivation.

Needless to say, the present article would
never have been written, had it not been for the
invaluable aid that I have received from Dr.
Weinberg. As a result of his own work, as well

¢ P. L. Tchebycheff (1854 to 1875). See Oeuvres (1899),
Vol. 1, pp. 203-230, 381-384, 473-498, 541-560, 701-702;
Vol. 2, pp. 219-242, ’
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as his ability to read and interpret correctly
some of the involved mathematical papers that
exist in the field, it now seems possible to present
all of the necessary material in a fairly simple
and straightforward manner. As already noted,
it is most unfortunate that so much valuable
mathematical work lies virtually unnoticed in
the literature just because of the difficulty found
by most potential users of the material in under-

standing and properly evaluating the practical

possibilities of the work. In fact, the relation of
the physical scientist to the mathematician is
much like that of the engineer to the physicist.
To discover a result is one thing, to formulate it
in such a way as to make it of obvious practical
value constitutes quite a different, but equally
important problem.

The least-squares’ solution of a polynomial
may be given in (4) power-series form, or (B)
factorial form. The solution may involve the
explicit use of (1) power moments of the observa-
tions, (2) factorial moments of the observations,
(3) the observations themselves, and (4) the
various finite differences of the observations.
Finally, the solution may be in (a) orthogonal
polynomial form, (8) non-orthogonal polynomial
form. The method presented by Birge and Shea,?
and its various modifications as given here, are
then properly labeled A3a. The A4a method
also is treated briefly in Section D. The method
given by Kerawalal?is 438, that by H. T. Davis!!
is A1B8, that advocated by Sasuly'? is B2«, etc.
It is obvious that numerous additional forms of
solution are possible although some would not
be very logical. Thus if the polynomial is ex-
pressed in factorial form, it is logical to use fac-
torial moments rather than power moments, etc.

Of the preceding sets of alternatives, the last
(a versus B) is by far the most important. There
are very great advantages resulting from the
use of an orthogonal form of solution, and just
this fact makes the methods given by Kerawala
and Davis of relatively little value. There are

10S, M. Kerawala, Indian J. Phys. 15, 241 (1941).

U H. T. Davis, Tables of the Higher Mathematical Func-
tions (Principia Press, Bloomington, Indiana, 1935), II,
307-385.

12 Max Sasuly, T'rend Analysis of Statistics.(The Brookings
-Institution, Washington, D. C., 1934).
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also serious objections to Davis’ method on the
score of accuracy, as will be explained in Sec-
tion G.

C2. Solution as Sum of Orthogonal Polynomials

Two functions T'; and T are orthogonal to
each other over a specified interval of x if they
satisfy the relations

X TiTe=0(k=j), X[T;P=M;, &)

x z
The role of the orthogonality property in the
present problem is shown more clearly by the
following treatment, which follows that of p. 34
of the reference in footnote 12.

We wish to express the least-squares’ poly-
nomial of degree j as the sum of a series of
orthogonal polynomials of degree i=0 to j. Then
by merely adding or subtracting terms of such a
sum, one can pass directly from the least-squares’
solution of any degree to the corresponding solu-
tion of any other desired degree. This last
possibility constitutes the fundamental advan-
tage of the orthogonal form. Thuslet T, represent
an orthogonal polynomial of degree ¢, satisfying
Eq. (4), and let us multiply it by a.. The @, is to
be a function of the ordinates y but not of the
abscissae (x or €), and T is to be a function of
the abscissae (x or €) but not of the ordinates y.
It may be shown that for the particular form
of T; about to be listed (see Table 1II), a. is
actually the coefficient of € in the least-squares’
polynomial of degree ¢, and hence this symbol®? is
appropriate.

Now we know that the least-squares’ poly-
nomial a¢T'y of degree zero is merely the arith-
metic average Y y/n of the observations. This
polynomial may also be designated'* u,(e). It is
thus evident that ap=3>_ y/# and Ty=1. Simi-

18 Sasuly, footnote 12, uses K ¢ for this quantity (a:). The
T is his symbol, which in turn is denoted £ by R. A. Fisher,
Statistical Methods for Research Workers (Oliver and Boyd,
Edinburgh, 1946), 10th edition, p. 147, and by his various
co-workers and followers. Note that a;T, is also an orthogo-
nal polynomial if T is, since a; is independent of x (or ¢).

1 As noted in footnote 8, the degree of the polynomial will
normally be indicated by a subscript followed by the
abscissa scale in parentheses. We shall use either ¢ or j to
denote the degree of a polynomial. As just mentioned, a
polynomial of degree j may be expressed as a sum of
orthogonal polynomials of degree ¢, where ¢ varies from 0 to
. In general we shall use ¢ for the degree of an orthogonal
polynomial—like T or a:T¢+—and j for the degree of the

final polynomial to which the observational data are
fitted, as in Eq. (5).
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larly, the first-degree least-squares’ polynomial
for the same set of data is designated #(¢). But
the difference of a polynomial of degree unity and
one of degree zero is necessarily a polynomial of
degree unity. The difference, in this case, is just
the desired orthogonal polynomsial of degree unity,
and hence denoted a17";. Thus

ul(e) - uo(e) E(ZlTl,
or

ul(é) = (11T1+uo(e) = @1T1+GOTQ.

Similarly,

u2(é) - ul(e) = ang,
or

uz(e) =02T2+u1(6) = 02T2+C11T1+00T0,

and, in general,

u,-(e) = i atTg. (5)

t=0
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Equation (5), for the least-squares’ solution of
a polynomial of degree j, was first given in 1859
by Tchebycheff® who also derived explicit ex-
pressions for T, or rather for a quantity Py pro-
portional to our T, (see Eq. 19), up to t=35.
Birge and Shea® derived explicit expressions for
another quantity Pp proportional to 7, (see
Eq. (11)), also up to t=35, by a completely
different method and in entire ignorance of
Tchebycheff's earlier work. Miss Allan!'® some
years later derived a different form of general
expression for T'; and by means of it worked out
the explicit forms for T, up to ¢=10. Weinberg
has now found a much simpler method of ob-
taining such explicit forms by means of a modifi-
cation of Tchebycheff’s recursion formula for T',.

This modification consists of a recursion for-
mula for Ry;, where Ry, a function of # only, is

TasLE I11. Expressions for T, orthogonal polynomials with unit leading coefficients (V; may be obtained from T';)*

Rop=—(n?—1)/12
Ryy=—(3n2—17)/20
Riys=—(3n2—13)/14

Ros=+3(n2—1)(n2—9)/560

Ryy=—5n*—7)/18

Rys= -+ (157—230124-407) /1008

Ry=—5(3n2—31)/44

Ros= 4 (5Snt—110124-329) /176
Ros=—5(n2—1)(n2—9)(n2—25)/14784

Rer= —7(312—43)/52

Ry =+7(15n1—450n24-2051) /2288
Ryz=—(35n5— 1645n*+17297n2—27207) /27456

Reg—‘—_-v —7(712“ 19)/15

Rys=+7(3nt—118n2+763) /312
Ros= — (10515 —640574+91679n2—231491) /34320
Ros=+7(n2—1)(n2—9)(n?—25) (n*—49) /329472

T0(6)=1

Ti(e)=¢

T2(e) = €+ Ro2 where

T3(e) = 4+ Ryze where

T4(e) = €'+ Rase?+Ros where

T's(€) = €+ Rsse+ Ryse where

T(e) = ¢+ Ryge'+ Rose?+ Ros where

T7(e) = €+ Ry1+ Rare+ Ryze where

Fs(e) = &+ Rese®+ Ruse' + Roze?+ Ros where
where

T;;(_e) = &+ Ry9€ + Rsoe®+ R3o€8+ Ryge

Ryg=—3(3n2—=173)/17
Rye=+4-21(3n*— 15012} 1307) /680

R3o= —(21n5— 1617143038712 —112951) /3536
Rig=+3(105%#3— 110605+ 334054n*—297314012+-4370361) /3111680

T10(e) = €%+ Ry, 106+ R, 10€°+ Ry, 106!+ R, 1062+ Ro, 10

where Rg 10=—153#2—91)/76
Re 10=+21(152t—930n2410507) /2584
Ry 10=—5Q21n8— 199504 +477751—245737) /10336
Ry, 10= +3(1057%— 1358015+ 514990%* — 6039260224 13782993) /1074944
Ro,10=—63(n2—1)(n2—9)(n2—25)(n*—49) (n2—81) /47297536

* Note,—If the Ry: coefficients, including Rs«(=1), are replaced by the corresponding Sk: (values in Table XII), then these same f(e) give the

respective values of Vi(e). See Egs. (21), (28) and (77).

15 F, E. Allan, Proc. Roy. Soc. Edinburgh 50, 310 (1929-30).
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the coefficient of € in the expression for T, as
given in Table I11. The new recursion relation is

t2(n2—t2)
————Riy1, i1 (6)
4(4£2—1)

By the use of this relation I have verified all
of Allan’s expressions. Since such expressions
must be used in the numerical calculation of
extrapolated values of u;(e), it seems necessary to
present them in full. They apply only to the
special abscissa scale that we have designated
by ¢, where e runs from —q to 4-¢, and 2¢g+1=7
=number of observations. In fact, it is the
symmetry about e=0 that causes the coefficients
of alternate powers of e¢ to become zero, thus
greatly simplifying the expressions for 7';. Stated
more specifically, Ry (and Si) =0 if t—k=o0dd
integer.

In Table III the coefficient of € in T(e) is
really Ry, but T'; has been deliberately chosen so
as to make R;; equal to unity. Under this condi-
tion the coefficient of T, in Eq. (5) is actually a.,
the coefficient of €' in the power-series form of
polynomial, as already noted. We thus have a
complete formulation of the 7', portion of Eq. (5),
and by the use of Eq. (6) any desired explicit
expressions can be derived for values of ¢ higher
than 10.

The remaining problem is the evaluation of a.
in Eq. (5), the quantity which alone involves
the actual observations y of a given problem.
Tchebycheff® derived for a; the following ex-
pression :

at=Zy-Tz/Z Tt2EZy'Tt/Mt~ (7)

Rk+1, t+1=Rkl_

Thus'® M, is used to denote . .7 (compare
Eq. 4)).

16 The question of a convenient set of symbols is a very
perplexing one to which Dr. Weinberg and I have given a
great deal of thought. When it is possible to formulate a
certain relation in a variety of ways, as we shall find is the
case with Eq. (7), and when tables of numerical values are
given in various places in the literature, itis highly desirable
that a different symbol be used for each different form, in
order that there may be no confusion over what form is
being tabulated. Thus one might express the series of
possible forms of T by the symbols T, T/, T/, etc., or by
Te, T*, T**, etc. But if a table of one of these alternative
forms is being given, as is the case in this paper, so that
constant reference to such an alternative form is required,
it is obviously desirable to use for it the simplest possible
symbol. For that reason we are using different letters for the
different forms. In general the alphabetic letter immedi-
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f’utting Eq. (7) into Eq. (5) we get
wWO=E (Ey T/ETHT.  ®)

Thus Eq. (8), with the explicit values of T, given
in the foregoing table, furnishes the complete
least-squares’ solution of a polynomial of de-
gree j, expressed as a sum of orthogonal poly-
nomials, with the special ¢ scale of abscissa.

When expressed as a power series in ¢, the
function may be written

u;(e) = éo a et 9)

Hence a; is the coefficient of € in the poly-
nomial of degree j. It is, in general, necessary to
use such a double subscript, since the present
method of deriving the least-squares’ solution of
a polynomial of degree j involves all of the
polynomials of lower degree. In this same sym-
bolism, the final coefficient in Eq. (9) is a;;
Also, in Eq. (5), a; is more correctly written
as ay since it is the coefficient of €t in the poly-
nomial of degree f{. However, because of the
repeated occurrence of a,; (or ¢;;) in the present
treatment, it is convenient to simplify the symbol
to a; (or a;).

A comparison of Egs. (9) and (5), in connection
with the explicit expressions for T'; already given,
shows that the az; in Eq. (9) are given by

i
Qpj= Z Ry,

t=k

(10)

Thus Egs. (9) and (10), with the explicit values
of Ry listed in Table III, lead to the least--
squares’ solution of a polynomial of degree j,
in the form of a power series in e. These equations
are used in the form of solution given by Birge
and Shea.? Dr. Shea and the writer obtained a

ately or closely beyornd the original letter is used for the
alternative form. Thus V, represents a certain new form of
T, N:a new form of M, b, of a¢, Hg: of Gie, and Si: of Rys.
(See Table V). The present adopted symbols frequently
differ from those used earlier (footnotes 3 and 4).

Many other differing sets of symbols appear in the
literature, but none of them has seemed appropriate to our
present purpose. We have avoided the use of Greek letters,
in general, merely because such letters do not appear on
ordinary typewriters. For that reason we reject the symbols
¢ and &/ in constant use by Fisher and his co-workers.
They correspond to our 7% and Vi, respectively.
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general formula for @, corresponding to Eqgs.
(14), (15), and (16) ahead, as well as explicit
expressions for the necessary Ry; up to ¢=S5.
We did not then notice the relations between a.
and Ry, as shown by Eq. (7) with the values of
T: given in Table III. "

C3. Alternative Forms of Orthogonal
Polynomials

Let us now return to Tchebycheff’'s funda-
mental Eq. (8). We note in this equation that 7,
occurs twice as a factor in both the numerator
and the denominator. This simple fact furnishes
the possibility of an endless variety of equally
valid modifications of the equation. Several such
modifications have already appeared in the litera-
ture, and in most cases the author has apparently
been unaware of the previous closely related
work of others. It therefore seems desirable to
indicate the explicit relations between some of
these modifications of Eq. (8).

Thus, because of the fact that 7', appears to
the same power in both numerator and denomi-
nator of Eq. (8), we can multiply 7', by any factor
F, not a function of ¢, without changing the values
of u;(¢). In order to obtain the Birge and Shea
equation for a;, we write

Pp="Fy-T,=2IT,/(t)" (11)

Putting Eq. (11) into Eq. (8) we get
j
uj() =2 (X ¥-Ps/2 Pp*)Ps
t=0 € €
=2 (X ¥y Ps/K)T,, (12)
t=0 €

where, with the incorporation also of M, from
Eq' (7)y

K=Y Pp?/Fg=Fg-M, (13)
and, from Egs. (12) and (5)
a¢=Zy-PB/K¢. (14)

€

- Equation (14) was used by Birge and Shea for cal-
culating a, and Pg was termed a ‘‘pair-factor.”
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No special symbol was used for it. Expressions
for P and K were derived in terms of factorials,
but by changing the factorials into binomial
coefficient form,!7 it is now found that a common
integral factor (¢!) exists. The new simplified
expressions are ‘

Py =Pg/t!=201T/(#!)
£ ()G o

2g+t-1
K¢I,=K¢/t'=2t'lM,§/(f!3=t1( ), (16)
2t+1

in which'®7 = |¢|,and as usual 2¢-+1 =# = number
of observations. Weinberg has derived Eqs. (15)
and (16) in a far simpler way than that used
earlier by Birge and Shea (see Section J). These
equations contain, implicitly, the analytic ex-
pressions for T'; and M; of Eq. (7).
A second modification of Eq. (8) is obtained
by writing
o 2 —1-)IT,
Py=Fy - T,=(—-1)t———— —. (17)

Then P represents the Legendre polynomial for
discrete points, and it has been tabulated and
used by W. E. Milne!® for the solution of the
present problem.

17 The binomial coefficient (';l) is defined as

m!/r!(m—r)!. An alternative statement is (z)z(‘;)

=al/blec!, if b+c¢=a and if all three letters represent posi-
tive integers. One advantage of using a binomial coefficient,
wherever possible, is that it is necessarily an integer.

18 The use of this new symbol 7 is directly connected with
the fact that in the original Birge and Shea method, as well
as in its new modified form, two observations corresponding
to equal positive and negative e value form a “pair,” which
is to be multiplied by a common “pair-factor.” Each such
pair of observations is then designated by the value of 7.
We shall also use 7 for probable error, but there can be no
possible resulting confusion.

19 Private communication from his student, George
Pomeroy. Milne actually uses a form of Py applying to the
range x=0 to n—1, whereas Eq. (17) applies to the range
e=—q to +¢. Milne’s own form is

¢ t\ [t+s x(
et ()
=0 s s J(n—1)®

‘where x® =x!/(x—s)!and (m— 1)@ =m—1)/(n—s—1)! If
x() is replaced by x* and (z—1)® is deleted, one gets an
expression for one form of the Legendre polynomials, in
which x varies continuously.
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The first practical use of Tchebycheff’s or-
thogonal polynomials was made by Jordan?® in a
paper of fundamental importance. In this paper
he carried out in detail the application of such
polynomials’ to the case of uniformly spaced
data. In connection with this work he calculated
a table of values, not of 7T, as defined here,
but of

Py=F;-T,=201T,/(#)%2". (18)

His table covers the range ¢ up to S, and #» up
to 20. It is undoubtedly the first table of such
“pair-factors’” to be published, but Dr. Shea
and I in 1924 were unaware of its existence, and
everyone else who has since published analogous
tables, even up to the present time, seems to
have been equally unaware of its existence.

Finally, Tchebycheff gave his orthogonal ‘poly-
nomials in the form?*

Pr=Fp Ty=201T4/1\. (19)

As already noted, the particular form 7%, as
used by Sasuly™ and others, has been so chosen
that the coefficient of € is unity (Table I11I).

C4. The a-T and b-V Systems of Calculation

After this rather long digression on the various
ways in which Eq. (8) can be expressed and has
been expressed, we take up the question of the
best actual use of this fundamental equation.
It will be noted that Eq. (14), as used by Birge
and Shea, gives the most direct calculation of a,
for use in Eq. (5). But, as shown by Egs. (12)
and (13), K; is not the sum of the squares of
the quantity Pp that appears in the numerator
of Eq. (12). On the contrary, it is that sum
divided by Fp (defined in Eq. (11)).

Now our recent study of probable errors has
shown that it is most important to preserve the
form of Eq. (8), regardless of the factor used.
Thus let us write, as an entirely general ex-
pression,

ui(e) = g (S y-P/SPYP,  (20)

20 Charles Jordan, Proc. London Math. Soc. (2) 20,
297 (1921). This paper includes a brief description of
Tchebycheff’s original work. We are indebted to Dr. E. U.
Condon for calling our attention to Jordan's contributions.
(Note that Charles Jordan and Karl Jordan are the same
person.)

2 See the footnote p. 34 in Sasuly’s book (footnote 12) or
p. 299 of Jordan's paper (footnote 20).
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where P = F-T;and F is any factor not a function
of €. Let the quantity inside the parentheses be
denoted by a.. Then it is found that 3. P? is
the weight of a/, to be used in getting the prob-
able error of as/. If F=1, then a/=a: and
S P2=3 . T2= M,=weight of a, on the basis of
unit weight assigned to each observation y (see
Section J). Thus, if one desires to calculate
probable errors, it is most convenient to use the
form of Eq. (20). Furthermore, Eq. (20) is most
convenient for calculating the value of u;(e) for
any single value of e. In the Birge and Shea
method Eq.‘ (10) was used to get the coefficients
a;; of the polynomial as a power series in ¢, and
then any value of the polynomial was calculated
by direct substitution in this power series. But

.Eq. (20) is more convenient for this purpose,

after the necessary constants a, have been
evaluated.

The change from the use of Eqs. (14), (10),
and (9) to an expression of the form of Eq. (20)
constitutes the essential modification now pre-
sented of the original Birge and Shea method.
The simplest way of getting from the values of a,’
in Eq. (20) to the values of the coefficients of
any desired power series (in either e or in the
original x) will be discussed presently.

The rapid and efficient use of Eq. (20) for
the calculation of values of u;(¢) requires tables
of values of P and of > P2 for the desired values
of ¢ and #. It is obvious that for such calculations
integer values of P (and hence also of 3 P?) are
highly desirable. Let us therefore examine, with
this idea in mind, the various expressions already
given for P.

In the first place, the fact that Pg"’ of Eq. (15)
consists of a product of binomial coefficients
shows that it is always an integer. Then Pjg of
Eq. (11) is also an integer, but larger by a factor
¢! than Pp’”. The Py of Eq. (19) is also an integer
but larger than P” by a factor (¢!)%

On the other hand, most of the values of T'; are
non-integers, as can be seen easily by examining
the explicit expressions listed in Table III.
Nearly one-half of the values of P of Eq. (18),
as given in Jordan's table,?® are also non-integers,
and from Eq. (17) most of the values of Py
must also be non-integers, especially in the case
of larger values of #.



LEAST-SQUARES’ FITTING

As a matter of fact, Pp’’ represents the smallest
possible set of integers valid for a given value of ¢
and for all values of #. On the other hand, for a
particular value of # and of ¢ there is usually a
particular factor®? that can be removed from the
entire set of values of Pp’’. The values of the
new integral set of “pair-factors’” thus obtained
are denoted by the symbol V,. As will appear in
a moment, it is necessary in calculating the
coefficients ax; of Eq. (10) to know the relation
of the V, values, not to Pg’’ or Pg, but to the
more fundamental T, of Egs. (5) and (8). For this
relation Fisher and his co-workers use the symbol
A\, but the logical symbol for this paper, as
shown in Eq. (28) ahead, is Si. Thus, by
definition,

V¢E)\1T¢ES”T¢. (21)

We now replace T, by V, in the fundamental
Eq. (8) and thus get, with the use of Egs. (7)
and (21),

us(e) = g (Ey-VJ/E V) Vts;io bV (22)

Thus, by definition,
bt:z y: Vt/Z Vt2EZ y'Vt/Nt=at/Su. (23)

In Eq. (23), N: is the “weight” of b, just as M,
in Egs. (7), (13), and (16) is the weight of a., as
* already noted. ’

Hence Eq. (5) may be replaced, for purposes
of numerical calculation, by Eq. (22), as a result

of the important relation, which follows directly
from Egs. (21) and (23),

a;T,=bth. (24)

If we desire to know the calculated values of the
polynomial at either the observed values of € or
at any extrapolated values, and also the probable
errors of the function at such values of e—but no¢
the coefficients of the polynomial in power-series
form—then it is possible to carry through all
the necessary calculations in terms of (1) values
of a; and T or (2) values of b; and V.. We shall

2 Let us denote this factor by f so that Pg”’/f=V; of
Eq.(21). ThenfromEgs. (15)and (21) we get f+ See=2¢1/(¢1)3.
As will appear later, this is a very valuable relation, con-
necting the S;: values listed in Table XII of Section I with
the f values listed in Table VI of Section D. Further details
appear in Section D.
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denote the first as the a—T system of calculation
and the second as the b—V system.

For each symbol in the a~T" system there is a
“corresponding’’ symbol in the -V system. Thus
N(=3> ¢ V?) corresponds to M(=2..T#). Full
details are shown in Table V ahead. The basis
for the choice of the corresponding pairs of
symbols is stated in footnote 16. The factor con-
necting each such pair of symbols is Si; or some
power of it. As already noted, the values of S:
have been so chosen as to give integers, and the
smallest possible integers, for the quantities of
most common occurrence in the calculations of
the b-V system. That system, therefore, possesses
a very great advantage over the a-T system in
which the major portion of the corresponding
quantities are non-integers.

In the Birge and Shea paper the values of the
so-called ‘“‘pair-factors,” listed in an extensive
table, are just the values of V., But instead of
calculating b; by means of Eq. (23), Birge and
Shea calculated a; by means of Eq. (14), except
that all common integral factors were first re-
moved from numerator and denominator, giving

a;=z y- V;/Kg*, (25)

where

¢*=E Vtz/Stz=Nt/Szt- (26)

The values of K;* were listed by Birge and Shea
(and denoted K) in the same table as those of V..
In the modified Birge and Shea method now
being presented we keep all calculations in the
b-V system in order to utilize the important
advantage of that system which has just been
mentioned. Hence we again list (in Table XIII)
the values of V,, but in place of K:* we now list
the values of N;, which are related to those of
K.* by Eq. (26). For convenience, we have calcu-
lated the listed values of N, from Eq. (26), using
the values of S;; listed in Table XII. But, in
principle, the values of N, are to be obtained
from the more basic M; as expressed by Eq. (16),
and with the use of Eq. (31). One then employs
the listed values of V; and N, (Table XIII) in
Eq. (23) to obtain b,.

If now one desires the values of ay;, defined by
Eq. (9), or the values of the corresponding coeffi-
cients of the power series in x, it becomes neces-
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sary to formulate a new equation in the -V
system, ‘‘corresponding” to Eq. (10) of the a-T
system, which was used by Birge and Shea.
This new equation is

i
(LA;,':Z Sie-bu, (27)
t=k
where :
Ske= St Ris (28)

B

We now have the basis for the choice of symbol
St As already stated, the various expressions
for T'; listed in Table III actually start with the
term Ry-€t, but T, is so defined that all R,
equal unity. This condition on Ry is satisfied by
Eq. (28) by putting k=¢. In the present paper
we list values of Sy, (Table XII) in place of the

“table of Ry, values published by Birge and Shea.
In the new table the values of Sy are necessarily
included. They are the basic numbers connecting
the a—1 and b~V systems. Aside from these
values of .Sy, the contents of Table XII have not
before appeared in print.

Furthermore, since Sy: ‘‘corresponds’ to Ry
and V, to T; if we substitute Si: for Ry in
Table 111, we will get explicit expressions for V;
as a f(e). Hence, Sy is best defined as the coeffi-
cient of € in the expression for V, as f(e, n).

In 1927, Birge and Shea published a table of
values of V, for t=1 to 5, and for » up to 30.
So far as I knew until a short time ago, this was
the first table of such values to be published.
As already noted, the table by Jordan,?® pub-
lished in 1921, gives values of P, Eq. (18), most
of which are not integers. But quite recently
Dr. V. A. Nekrassoff has informed me that a
table similar to that of Birge and Shea appears
in a book by Khotimsky?® published in 1925.
I have not yet seen the book.

Then, in 1938, a new table of V, values was
published by Fisher and Yates?* covering the
region =1 to 5 and » up to 52. The method
presented by these authors is based upon the
use of Eq. (22). Their work, in turn, seems to

23 V. Khotimsky, Graduation of Statistical Series by Least
Squares (Moscow and Leningrad, 1925), in Russian. This
publication is mentioned also by A. C. Aitken, Proc. Roy.
Soc. Edinburgh 54, 1 (1933).

2¢R. A. Fisher and F. Yates, Statistical Tables for
Biological, Agricultural and Medical Research (Oliver and
Boyd, London, 1938), see Table XXIII.
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be based essentially on two earlier papers by
Fisher.2%2¢ In the earlier of these two papers
Fisher gives the results of what appears to be an
independent derivation of Tchebycheff’'s Eq. (5).
In neither of these papers nor in Fisher’s well-
known book!? is there any mention of Tche-
bycheff’s earlier work on orthogonal polynomials.
In fact, in his first paper Fisher names such
expressions ‘‘uncorrelated polynomials” which,
to the statistician, is a much more revealing
designation.

Finally, in 1942, Anderson and Houseman?’
extended the Fisher and Yates’ table to n=104.
Their table is thus by far the most extensive now
in print and their paper includes a detailed ac-
count of the use of Eq. (22) with an illustrative
problem. But the much older table of Birge and
Shea is not mentioned in any of these papers.

To summarize the discussion thus far: By
means of the table of values of ¥, and

2. V=N,

(Table XI1I1), and Egs. (22) and (23), one can
obtain with amazing speed and accuracy the
calculated values of the least-squares’ polynomial
u;(e) for each value of ¢, from —g to +g¢, i.e., at
abscissa points corresponding to the given data.
We can also calculate any extrapolated value of
u;(e) but here the process takes much longer.
We still use Egs. (22) and (23), but.now we have
available no numerical value of V;in Table XIII.
Hence, we are forced to calculate V,; from the
analytic expressions of Table I1I, with the Ry,
replaced by Si; and with the numerical values
of Sy from Table XII, for the appropriate
value of #. In this connection one must remember
to multiply each €t term in 7", by Sy, which thus
replaces the implicit Ry (=1) of Table III.
Furthermore, we can calculate the values of
arj, the coefficients of u;(e) expressed as a power
sertes in €, by the use of Eq. (27). Then the most
rapid way to obtain the coefficients of u;(e),
where e=¢k, is undoubtedly to divide each ay;
coefficient by %* and replace € by e, exactly as
has been done in the problem of Section B. The

25 R, A. Fisher, J. Agric. Sci. 11, 107 (1921).
( ;“2‘1;{) A, Fisher, Phil. Trans. Roy. Soc. London B213, 89
1 .
_# R. L. Anderson and E. E. Houseman, Research Bulle-
tin 297, Agric. Exp. Station, Iowa State College, 1942.
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coefficients of #;(x) can then be obtained by a
Horner shift of —x,, where e=x—x,, as also
carried out in Section B. But this method, while
the most rapid, does not furnish explicitly the
quantities needed to get the probable errors of
the new coefficients. Hence a method suitable for
this latter purpose will be given in a moment.
With the values of b, obtained from Eq. (23)
one can immediately calculate Y. [v;(e) ], where
v;(e) =y.—u;(e) =residual of any observation y..
The necessary equation (derived in Section J) is

> [0/ =3 y2— z Ma?r, — (29)

where M,=3. T 2=statistical weight of a,, in
Eq. (7), as already noted. Eq. (29), which is a
type fundamental in analysis of orthogonal func-
tions, was first applied by Jordan?® to the problem
under discussion. It is given by Anderson and
Houseman?” without reference to source, and it
may have been derived independently by R. A.
Fisher. It is also derived in Section J.

The ‘“‘corresponding’ equation in the -V
system is

TP =Ty-X Nbs  (0)

where N,=3_. V#=weight of b; in Eq. (23), as
already noted. Values of N, are listed in Table

XIII together with the V, values. A typical -

series of values of X . [v;(e) ] for j=0 to §, as
yielded by the difference of 3. ¥* and the suc-
cessive sums Nobo?, Nobo*+N1bi%, Nobo2+N1b:?
-+ Nsbs?, etc., has been given in Section A. The
great advantage of Eq. (30), resulting from its

orthogonal form, is that in the process of calcu--

lating the desired X . [v;(¢) ]* for the jth degree
polynomial, we incidentally discover just the
effect on the value of 3 9 of each least-squares’
polynomial of degree t=0 to j. This fact has been
pointed out in Section A. '

C5. Coefficients, Weights, and Probable Errors

We now consider the important subject of the
probable error of each of the quantities of in-
terest to us. We note, in the first place, that
My(=73, T¥) is the statistical weight of a;. This
fact is proved in Section J, but it has presumably
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been proved earlier by others and it is used by
Fisher and Yates.?* The “corresponding’ weight
of b, is then N,(=2 . V), and it follows from
Eq. (21) that

N=Si? M, (31)

Now if Z is a function of 2z, 2, etc., where

21, 29, - are independently observed quantities,
and if py, ps, --- are the assigned weights of
31, 2, +- -, then the resulting weight pz of Z, as

given by the law of ‘propagation of errors, is

1/ps=5 (02/3)/p (32)

In connection with the problem now being dis-
cussed, the orthogonal character of the solution
is again of major importance since, as proved in
Section J, the quantities b, (o7 a;) act like inde-
pendently observed quantities. It is believed that
this proof is new. Thus in the case of any quantity
that can be written as an explicit function of the
be or the a;, we can immediately obtain an ex-
pression for its ‘“‘weight” by applying propaga-
tion of errors.

Then, knowing the weight p, one gets the
probable error

1’?:7,/\/?)

where # =probable error of a hypothetical
quantity of unit weight. It is calculated from

7' =0.6745[> 2*/(n—s) L

(33)

(34)
This equation applies to the case of # unweighted
observations fitted to a function of s undeter-
mined constants. For a polynomial of degree j we
have s=j41.

Thus, from Egs. (5) and (32), the weight p;(e)
of the function u;(e) at any specified value of ¢,
is given by

;

1/pie) =2 (T'2/ M), (3%5)
t=0

since M,(= 3. T#) is the weight of a, in Eq. (5).

Similarly, in the 5~V system, from Egs. (22)
and (32)
j -~
1/pi(e) = ZO (VE/Ny), (36)
t=

since NV,(=2_. V?) is the weight of b, in Eq. (22).
It is Eq. (36) that is to be used in actual calcula-
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tions since values of both V; and N, are listed -

in Table XIII.
Next, the weights pi; of the coefficients ax; of
Eq. (9) are given, from Egs. (10) and (32), as

1pe=3 (Ruit/ M), (37)
t=k

or in the b—V system, from Eqgs. (27) and (32), as

I/ij=§ (Ske?/No). (38)

We shall now use a;; for the coefficients of the
power series in e(=eh), and az;/’ for those of
the power series in x(=eh+xo). Thus

i
u;(x) =2 axf'x*,
¥=0

(39)

where x gives the true abscissa value at which
the ordinate y is observed, and #;(x) is the corre-
sponding calculated ordinate.

In order to get the weights of the coefficients
ar’, we must first express such coefficients
explicitly as functions of a; or of b, and then
apply propagation of errors. It is for just this
reason that the method used in getting ., and %,
in Section B is not suitable if one wishes to
calculate the probable errors of such coefficients.
The conversion of a f(¢) to a f(x), where
e= (x—xo)/h, keeping all relations in literal form,
is quite simple and direct. The writing of the
resulting equations is, however, simplified by
replacing the oft-occurring xo by m. Thus m(=x,)
is that value of x for which e=0. In the Horner
shift from f(x—m) to f(x), the amount of the
shift is —m.

We now give the explicit expressions to be
used in calculating the ai;’ coefficients of the
final f(x) in power-series form and their weights
pri/’. As usual, such expressions may be formu-

lated in either the a-T system or the -V
system. :
In the a-T system
j .
(L};j” = Z that’, (40)
t=Fk
and
i
1/pri" =22 (Gre®/ M ). (41)

t=k
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In the -V system

j
ari' =3 Hyibe, (42)
t=k
and
V/pei" =2 (Hri?/Ny). (43)

t=Fk

Numerical values of N,(=3.V? appear in
Table XIII. It seems desirable to list explicit
expressions for Hp:(=S: Gr) in detail, since
they are to be used in actual calculations, and
the present method of obtaining ai;’ with the
aid of a table of Si; values has not been pre-
sented before. If in the expressions which follow
(Table 1V) one merely replaces Si: by Ry, then
Hy,; becomes Gy, of Eq. (40) in the a~T system.
It is therefore unnecessary to list explicit ex-
pressions for Gg:.

Table IV contains all expressions needed in

TaBLE IV. Expressions for ax;”’ and Hp. (ax;’’ =coeffi-
cient of x* in a power series of degree j, for values of x
spaced at intervals of %, where m = ‘“middle” value of %, i.e.,
where e=0. Numerical values of Si; listed in Table XII.)

ao;'’ = Hoobo+Hob1+ - - - Hojb;

Hopo=So=1

Hop=—Su(m/h)

Hoz=Soz+Sea(m/h)?

Hos= —[S1s(m/h) +533(M/h)3]

Hos= Sos+Sea(m/h)*+ Ssa(m/h)*

Hos= —[S1s(m/h)+Sss(m/h)3+Ses(m/1)%]

a1;" = Hubi+ Higba4- - - - Hajb;
Hu=5u/h

Hyo=—S20(2m/h?)
H13=513/h+533(3m2/h3)

Hyy=— [SZA(Zm/hz) +Sd4(4m3/h’4)]
Hy5=S35(3m?/1%) + Sss(Smt /%)

@y = Hagba+Hasbs+ - - - Hajb;
H22=522/h2

H23= —533(37}1/}!3)
Hyy=S24/B2+S1a(6m2/1*)
Has=—[S35(3m/h3)+ Ss5(10m3/h5) ]

as;"" = Hysbs+Hsabs+ - - - Hyjb;
Hss=Sss/h3

H34= —544(47”/}14)
H35=Sss/h8+355(10m2/h5)

a4i"=H44174_+H45b5+ M
Hyy=Su/M
H 5= —Ss5(Sm/h5)

ass'’ = Hisbss
Hys = Sss/h®

(42:0)
where

(42:1)
where

(42:2)
where

(42:3)
where

(42:4)
where

(42:5)
where
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Egs. (42) and (43) for polynomials up to j=S5. In
order to make Eq. (42) more explicit, its special

forms are given and designated (42:0) to (42:5) .

for k=0 to 5, followed by the actual expressions
for Hy, needed in each such form.

If, in Table IV, m=0 and k=1, so that f(x)
becomes f(e), then the various Hi; become
merely the S;: and Eq. (42) simplifies to Eq. (27).
Furthermore, Eq. (43) for the weights then
becomes Eq. (38).

C6. Table of Important Equations

In concluding this section of the paper, it is
desirable to summarize all important relations
by means of a table in the form of the corre-
sponding symbols of the a—T and b-V systems.
The relation between each pair of symbols in-
volves the factors .S;;(=Fisher’s \;), the values
of which, up to# =30, are given in our Table XII,
up to #=>52 by Fisher and Yates,?* and up to
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n=104 by Anderson and Houseman.?” The last
column of Table V lists the equations used in
calculating all quantities (functions, coefficients,
and weights)-thus far discussed.

D. LEAST-SQUARES’ POLYNOMIAL FITTING OF
DATA IN TERMS OF FINITE DIFFERENCES

As already noted, the desired coefficients of
the least-squares’ polynomial may be expressed
explicitly in terms of the finite differences of the
observations, as well as in terms of the observa-
tions themselves. An example of the use of finite
differences, applied to data from an Atwood
machine, has been outlined in Section A. By this
method it is the value of a, that is obtained
most directly from the finite differences of order ¢,
since tla; is always a certain weighted average of
such differences. The problem is then to deter-
mine the appropriate weights.

TABLE V. Relations of the ¢ — T (polynomials with unit leading coefficient) and 56—V (polynomials with least integer
ordinates) systems. e= (x—x,)/h, %o (or m)=middle value of x, and}is = constant interval of x. Numerical values of V, and
N are given in Table XIII, those of Si: are given in Table XII. Explicit expressions for Hy, are found in Table IV.

a-T -V
system system Relation Relevant equations
) Zy-T, Zy-V
a: b be=a./Su (23) a= y b= (7)(23)
M; Nz
i 7
T, V. Vi=SuT;, (21) u;(e) =l§0atTt=t§0sz: (5)(22)
Lot i i
R);g Skt Skt=S"Rk¢ (28) (23] =tz:k ng-a¢=t§k Skt'bg (10)(27)
. ) i
Gre Hy, Hyo=SuGre ar;”’ =t§k Gre-ar =Ek Hy, b, (40)(42)
(1 iTe Ve
———= =2 — (35)(36)
pie) VM, O N,
1 i Rpg? i Sk
M(=ZT?) N(=Z V) Ny=S5:2 M, (31) 7 —=2—=3 — (37)(38)
Pki t=k Mt t=k N’
1 i Gr? i Hid
—,—y = (41)(43)
Upri/ % M, ** N,
i 7
u;(e)=2 ar;- € ) uj(x) =2 ax;’'x* (39)
k=0 k=0
i i
Ze[vi(P=2c y*— Eo Mual=2Zy*—Z N2 (29)(30)
t= t=0
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The final result of the work on finite differ-
ences by Weinberg and the writer appears as
Egs. (54)-(56) ahead, with the values of ‘the
various symbols given by Egs. (46), (51), and
(53). The detailed use of the method constitutes
Section F7 ahead. But in order to show the
relation of our work to the earlier work of
Sasuly, as well as to establish certain very im-
portant relations between the coefficients appear-
ing in the formulas of the present section and
those appearing in the equations of Section C,
it is necessary to give the following rather de-
tailed discussion.

Sasuly?? considers the use of finite differences

of the data for the present problem on pp. 47-58

of his book. He outlines there a method by
which the weighted averages of the &%y values,
for successive values of #, can be formulated,
starting from the original observations. Special
formulas are given for t=1, 2, 3, and 4, holding
for the abscissa scale x=1 to n. Thus for t=1
and 2 he writes

6 n—1
— 2 i(n—1)Ay. (44)

n(n?—1) =1
30
n(n®:—1)(n?—4)
xij G 1) (=) (n—i—1)A%s.  (45)

1!a1=

2!a2=

His succeeding two formulas are increasingly

complex and will not be quoted. Sasuly®? also
gives on p. 318 of his book an empirical general-

ization of these expressions that is equivalent to -

our Eq. (52).

The method used by the writer in obtaining
the desired generalization is as follows. It was
first noted that the factor preceding the summa-
tion in Eqgs. (44) and (45) is just the 1/K; of
Eq. (14), the equation derived by Birge and
Shea for the calculation of @; from the obser-
vations. The generalization of the factors follow-
ing the summation sign is obvious by mere
inspection. There are, however, several modifica-
tions that can well be made. In the first place,
all of the weighting factors are symmetrical
about the central finite difference. Hence these
finite differences may be handled in pairs, the
two differences comprising a pair having the
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same weight. For the purpose of designating a
pair we again employ the symbol = |¢|, which
is zero for the central difference if the number of
differences is odd, and % for the central pair of
differences if the number is even.

In the second place, because of the arrange-
ment in pairs it is convenient to use central
differences together with our special abscissa e,
which runs from —g to +g¢ for the observations,
but from —» to +» for a given-set of finite
differences of order ¢, where

(46)

In this connection it should be noted that the
observations themselves should now be con-
sidered as the finite differences of zero order,
for which =0 and »=g¢. Thus the equation for
t=0, corresponding to Eq. (44) for t=1, is
necessarily ao=72 y,/n, which is just the familiar
arithmetic average of the observations.

With the use, then, of central differences and
the symbols » and » we get as the generalized
formula for the coefficient @, of a polynomial of
degree ¢, when the abscissae are spaced at unit
interval,

2v=2¢—t=n—t—1.

1 v
“a;—_—— Z

¢ =0 or %

(8ty,+8'y-r) Qs (47)

where
2v+2t4+1) 1(21)? 2v+2t41
K=——————=(! 2( ) (48)
@ 1Q2t+1)! 2+1
and
(y4t=1)(v41t-47)!
=)

vt—r\ fv+i+r
=(t!)2( )( ) (49)
t t

It should be noted that since tla, is a weighted
average of the finite differences 8%y, with weights
Q., it necessarily follows that K, is merely the
2. Q. over all §*y values.

Replacing 2» in Eq. (48) by its equivalent
2qg—t, from Eq. (46), we see that the K, of Eq.
(16) is just the K, of Eq. (48), as already stated.
This identity is not entirely a matter of coin- .
cidence. In each case the K, is a factor that
converts non-integer values into integers al-
though, as it will appear, not the smallest




LEAST-SQUARES’

possible factor. The identity does, however, lead
to valuable numerical relations.
Thus let us rewrite Eq. (14) in the form

a=2y-Pp/K;=3 y-Pg* (14)

and Eq. (47) in the form

ar=3 8"y Qu/t!K, =3 8'y-QF.  (47")
By comparing Eqgs. (14’) and (47’) we see that,
according to the theorem of summation by parts
(see Section J),-the complete coefficients Pg* of
the observations y in Eq. (14’) must be just the
finite differences of order ¢ of the complete
coefficients Q;* of the §%y in Eq. (47’). It will be
understood in future references to the quantities
Q. that ¢ successive null values are adjoined
beyond the range of ¢ in Eq. (47'), i.e., for
e=—y—1...—v—1t and e=v+1...v+¢t These
null values are consistent with Eq. (49) for Q
as a function of r=|e|. Hence, if one had
derived Eqs. (48) and (49), from which the
values of Q.*(=Q./t'K;) immediately follow,
but had not yet derived any formulas for the
“pair-factors’” of Egs. (14), (15), etc., then one
could have obtained all numerical values of Pg*
by merely constructing a table of differences of
the Q/* values.?8

Inspection of the Pg* and Q,* values will show

that in general they are not integers. Then K,, as .

defined by Eq. (48) or by Eq. (16), may be
considered as merely one possible integer factor
that converts a given set of Q;* values into the
values Q./t! which, by Eq. (49), are necessarily
integers. If now the corresponding set of Pp*
values in Eq. (14’) is multiplied by the same
factor K;, one must obtain integer values of Py
(as defined by Eq. (15)), since these new Pp
values must be, in turn, merely the finite differ-
ences of the new integral Q./¢! values. Of course,
Eq. (15) indicates the integral nature of the Pg
but, as noted, we are now assuming that this
equation has not yet been derived.

Furthermore, a comparison of Egs. (14") and
(47") shows that

2y Pp=30'y-Q./th (50)

28 For ¢ an even integer, the resulting finite differences
give just the values of Pg*, but for ¢ odd, the results give the
negative of Pg*.
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The sets of quantities P and Q,/t! are, however,
not the smallest sets of integers for a given value
of t. As shown explicitly by Egs. (15) and (49),
the actual smallest sets of integers, independent
of n, are obtained by removing a common integer
factor (¢!) from Pp to give the Pg" values of
Eq. (15), and from Q,/t! to give, from Eq. (49),

vti— vt
Q/=Qt/<u>2=( [ y)( l ”). 51)

Then Eq. (50) takes on the new form
2y Pg'=3%0%-0Q/,

€

(50"

where again the Pp’’ values for a given ¢ are just

the finite differences of order ¢ of the Q" values.
We can now use the integer values Q, and still

preserve the form of Eq. (47) by writing

a=(/K) X Gtsv ol (52)

r=0 or 3

where

2v+2t+1)

53
2t41 (53)

K/=K¢/(t!)2=(
It is actually Egs. (51)—(53) that have been
derived by Weinberg with the use of direct
algebraic methods (see Section J).

Finally, if there are special integer factors f,
for special values of # that may be removed from
the respective sets of Q. values to give what we
shall term W, values then, by Eq. (50’), these

" same factors f must be removable from the Pz’

values to give the V, values, as mentioned in
footnote 22. For, again, the new V; values must
be merely the finite differences of order ¢ of the
new W, values. We thus get as a second new
form of Eq. (50)

Z y: Vt'—‘z (Sty‘Wt. (50”)
To preserve the form of Eq. (52) or of Eq. (47)
we write :

v

tla,=(1/L) wDz: @yt )W, (S4)
where v
| We=Q//f=Q./(t)f (55)
and, necessarily, from Eq. (52),
Li=K{/f=K./(t)f. (56)
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Weinberg has now been able to devise a
general method for determining the f values of
Eqgs. (55) and (56). Such. information greatly
simplifies the numerical calculation of the W,
and L, values starting with the derived Egs. (51)
and (53). The values of f thus found are listed
in Table VI, for the range t=1 to 5, and # to 30.
The resulting values of W; and L, over the same
range, are listed in Table XIV, which is entirely
new. As just noted, these W, and L, represent
the smallest possible sets of integers for the
evaluation of ¢, by Eq. (54).%°

Since tla, of Eq. (54) is a properly weighted
average value of 6%y, it follows that L, is neces-
sarily the sum of all the weighting factors W, of
a given set, just as K; of Eq. (47) is the sum of
the weighting factors Q;, as already noted. But
since the weights are always distributed sym-
metrically about e=0, only the common weight
W, of a given value of r=e| is recorded in
Table XIV. Hence the values of L;, in terms of
the recorded sets of W, are given by

L¢=2 Z Wt

r=}%

for an even number of oty values (half-integer
values), and

Lg: W;(for r=0)+2 Z Wg

r=1

for an odd number of 8%y values (integer 7 values).

The calculation of numerical values of Q,” and
K/, from Eqgs. (48), (49), (51), (53) is really
extremely simple, because of certain recursion
relations.?® The necessary relation between L,

29 It was only after these f values had been determined
that we noted the necessary relation between them and the
S:: values of Table XI1, cited in footnote 22 (f- S, =2£1/(21)3),
which follows from the necessary relation of the V;and W,
values just discussed. We do not know how the S;; values
(to n=104) published by Anderson and Houseman?” were
actually obtained. Those used by Birge and Shea3 (to 7= 30)
were found purely empirically by studying each set of Pg
values of Eq. (15) for a possible common integer factor. We
have now used our f values (extended to n=104) to verify
all of the Sy, values published by Anderson and Houseman?
(their N;).

30 As an example of the simplicity of the numerical work
involved, consider the set of values for =4 and n=24. The
successive values of Q,, Eq. (51), are obtained from the
respective values for #=23 by multiplying by the suc-
cessive factors 14/10, 15/11, 16/12, ---.23/19. Then for
n=25, where we have an additional fourth-difference
coefficient, the initial Q;//(r=1%) for n =24 is multiplied first
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and the sum of the W, values furnishes a com-
plete numerical check on the listed values.

It may be noted that the analytic expression
for tla, assumes an equally simple form, if one
uses the abscissae x=0 to 2» in place of e=—»
to +». Thus we obtain, in place of Eqs. (52)
and (51),

2y
t!a,= (1/K¢') Z Q/'At 9

z=0

(87)

where

()

B (x+0)!12v+t—x)!
T (2v—x) kN

(58)

It should be emphasized that the x values, like
those of ¢, are assumed to be spaced at umnit
interval. The K, values are given by Eq. (53)
as before. ’

Weinberg’s derivation actually leads to Egs.
(57), (58), and I then transformed his results to
Eqgs. (52), (51) in order to check my own Egs.
(47), (49), which in turn represent a generaliza-
tion and transformation of Sasuly’s specific ex-
pressions for t=1 to 4. It should further be
noted that Jordan?® developed a formula for the
orthogonal polynomial T'; as the jth difference
of a polynomial of degree 2j, which can readily
be transformed into Eq. (57) by repeated sum-
mation by parts (see Section J).

Although it is a very simple matter to calcu-
late any desired a; value by the use of Eq. (54)
and Table X1V, it is a far more laborious process
to obtdin the probable error 7 in a,(=a.). But
the same situation exists when a given value of a,
is calculated directly in terms of the observations,
as shown by the equations and discussion of
Sections C5 and C6. A numerical calculation of
all probable errors of interest is made in Sections

by 14/10 and then by 15/11 to give the initial two values
of Q' for n=25. The succeeding values are gotten from the
remainder of those for # =24 by the use of the factors 16/12,
17/13, - - -24/20. The quoted figures are merely to illustrate
two quite obvious general rules, which it does not seem
necessary to quote, one applying to.an even number of
difference coefficients, and the other to an odd number. By
their use all values of both Q. and K/’ are easily derived
from preceding values. Then the f factor listed in Table VI
is removed to give the final W; and L, values of Table XIV.
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F4 and F6, and in Section F7 an explicit equation
and a calculation are given for the probable error
of a certain a. coefficient, whose value has been
obtained from finite differences.

The present paper is devoted primarily to the
discussion of a complete least-squares’ solution,
including probable errors, explicitly in terms of
the observations. A corresponding complete solu-
tion could certainly be worked out in terms of
finite differences. We are, however, confining the
present discussion of finite differences to the cal-
culation only of the a, values. For just that reason
the formulas quoted, such as Eq. (54), are
designed to lead directly to the value of a, rather
than of b; which, for purely numerical reasons,
is found to be especially convenient when one
desires calculated values of the function at
various points and the corresponding probable
errors of the function.

TABLE VI. Values of f in Eqs. (55) and (56).

n t=1 2 3 4 5
2 1

3 2 {-

4 1 3 1

5 2 3 4 1

6 1 2 2 5 1

7 2 3 20 5 6
8 1 3 5 5 3
0. 2 1 P 5 14
10 1 6 2 7 21
1 2 3 4 35 84
12 1 1 5 10 14
13 2 3 20 5 36
14 1 6 2 5 9
15 2 1 4 1 2
16 1 3 1 5 21
17 2 3 20 35 42
18 1 2 10 35 7
19 2 3 4 5 84
20 i 3 1 2 6
21 2 1 4 5 4
22 1 6 10 5 9
23 2 3 20 5 126
24 1 1 1 35 7
25 2 3 4 7 42
26 1 6 2 5 21
27 2 1 20 5 4
28 1 3 5 10 6
29 2 3 4 5 12
30 1 2 2 1 7
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In spite of the limited extent of the present
presentation in terms of finite differences, it is
believed that Eq. (54), in connection with our
new Table XIV, will prove of great value in
many experimental situations such as in the
calculation of acceleration by means of an At-
wood’s machine, considered briefly in Section A.

E. SPECIAL TREATMENT OF FIRST
DEGREE POLYNOMIAL

The first-degree polynomial represents merely
one special case of the general methods discussed
in Sections C and D. But for this commonly
used function, the equations needed for the
least-squares’ solution are so simple that it is
convenient to write them in explicit form. Inci-
dentally, a direct derivation of these equations
shows, in principle, one method of deriving the
more general equations already listed. In fact,
the following method is actually the one used by
Birge and Shea? in obtaining the needed results
for the first-, second-, and third-degree poly-
nomials. The method, however, becomes intoler-
ably complex for polynomials of higher degree.

Let us start with the standard equations for
the least-squares’ solution of # unweighted obser-
vations (distributed in any way on the x axis)
in the form of a first-degree polynomial. For
this case

ul(x) =an+tanx, (59)
whgre '
an=(2y 2 x*"—2 xy 2. x)/D,  (60)
an=m-2xy—3 x 2. 3)/D, (61)
and
D=n-Y x2— (3 x)2 (62)

If now we restrict ourselves to the special case
of n observations y1, ¥2, ¥3, * * *, ¥, corresponding
to x=1, 2, 3, ---, n, we may employ the well-
known -expressions \

S x=n(n+1)/2, (63)

n

S x?=nn+1)2n+1)/6.

1

(64)

Substituting Egs. (63), (64), into (61), we obtain
after a little algebraic reduction,
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{n=y)(n—=1)

1=

n(n?—1)

+@na—y2)(n—=3)+---}. (65)

This equation for a;; may be found in various
texts on physical measurements. On examining
it, we note that each pair of observations is
multiplied by a factor that equals the interval
Ax between the two observations comprising the
pair; in other words, a certain interval Ay is
multiplied by its corresponding interval Ax.

Furthermore, the reciprocal of the factor out-
side the summation is just the sum of alternate
squares from (z—1) to 1 (or 0). Thus

n(n*—1)/6=mn—1)2+mn—-3)2+---120r 02. (66)

To be specific, Eq. (65) for an even number of
observations, such as # =6, has the form

SWe—y1) +3(Ws—y2) + (Vs—ys)

iy == (67)
52 + 32 + 12
but for an odd number, such as =35,
4(ys—y1) +2(ya—y2) +0(ys—7ys)
an= . (68)

2 4+ 22 4 0

It should be noted, from Eq. (68), that in the
;ase of an odd number of observations the
middle observation (here y3;) does not appear and,
hence, has no effect on the value of the slope.

If now we understand that observations are
to be combined in pairs in the particular way
shown by Eq. (67) or Eq. (68), i.e., last and first,
next to last and second, etc., then Eq. (65)
might be written

T AyAxs X (Ayi/Ax) (Ax)?

= (69
2. (Axy)? )

a1

"TY ey

The second form of Eq. (69) shows that ay, is the
weighted average of a series of slopes Ay;/Ax ., each
of which is weighted proportional to the square of
the interval, Ax, covered by the slope. Thus two
points twice as far apart as another set of two
points contribute four times as much weight in
determining the slope @1 of the least-squares’
straight line through the data.
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In Section D we have given the weights to be
assigned to the slopes (first differences) furnished
by successive points. But Eq. (69) applies to the
quite different pairing of points shown by
Eq. (65).

We now continue the least-squares’ solution
by substituting Egs. (63) and (64) into (60). The
result after some algebraic reduction is

1
(n+1) (10)

o1 = Qoo — @11,

where

aw=L 3/n, (1)
and where aq; is given by Eq. (65). Thus in the
case of the first-degree equation we already see
emerging the pattern of the least-squares’ solu-
tion for the case of unweighted, equally spaced
data. Any coefficient (here a,;) can be expressed
as the sum of terms containing the final coeffi-
cient of the polynomial in question and the final
coefficients of the polynomials of all lower degrees.
These coefficients are here merely a1 and @oo.
In general they are a4, a symbol that has been
simplified to a, in Sections C and D. The general
formula for any coefficient a;; is given by Eq. (10)
of Section C.

The proper expressions for Ry in Eq. (10) are
different from those now being derived, since we
are here using the scale x=1 to » in place of
e=—gq to +g¢. Thus from Egs. (70), (71), and
(59) we have

(n+1) .
uy(x) = {aob— 5 an} +anx. (72)

But with x =e+xo=€¢+(n+1)/2 we get
#1(€) = aoo+ayse. (73)

We have now expressed ui(e) in the form of
Eq. (5), i.e., as the sum of orthogonal poly-
nomials,

u1(e) =aoTo+a1Ty, (74)

where To=1 and T:=e in agreement with
Table III. :

Another interesting, but lengthy process for
calculating the least-squares’ slope of a straight
line is by means of the equation

an=y, Ay/Y. Ax, (75)
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where each Ax corresponds to a Ay, and the Ay’s
are obtained by combining the observations in
pairs in every possible way. Thus for 5 observa-
tions ¥; to ys we obtain the list

Ay

B
8

Y=
Ys—M
Ya
Ys—1
Y3—Y2
Ya— Y2
Ys—Y2
Ya—Ys
Ys— Y3
Ys— Y4

P DN b G0 DN = o 0 RS

Then Y Ay=4(ys—vy1)+2(ys—y2), and 3 Ax
=20=42+42?2, in agreement with Eq. (68). This
last method has been used in elementary labora-
tories, but I do not recommend it. I see no reason,
however, why Eq. (65) or the even more explicit
forms, such as Eqs. (67), (68), should not be
used even in an elementary phyéics course. In
fact, the essential object of this section is to call
attention to the simplicity of equations such as
(67) and (68), which obviously can be written
down from memory without reference to any
more general formula.

F. EXPLICIT DIRECTIONS AND
ILLUSTRATIVE PROBLEM

F1. Values of b; and Y v? (Model Form 1)

The object of this section is to present detailed
directions for the use of the results contained in
Sections C and D. The clearest method of
presenting such material, it has always seemed to
the writer, is by means of an illustrative problem.
Although it is obviously necessary to refer re-
peatedly to the equations of Sections C and D,
the present 'section is, so far as possible, inde-
pendent of the preceding sections. It is hoped,
therefore, that potential users of the method
will be able from this section alone (when used
in connection with the various tables of numerical
values) to follow the necessary steps.

Our object is to fit data, equally spaced along
the x axis, and unweighted, to a polynomial of
any desired degree by the method of least squares,
and to obtain the probable errors of various
calculated quantities. Although the general for-
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mulas given in Table I1I of Section C2 extend
up to the tenth-degree polynomial, the various
tables of numerical values presented here extend
only to the fifth degree (and to 30 observations).

As a sample problem we choose seven observa-
tions that are closely satisfied by a fourth-degree
polynomial. A sixth-degree function will exactly
satisfy all seven points and, due to the deliber-
ately chosen symmetry of the fourth differences,
the sum of the squares of the residuals is no
smaller for the fifth-degree solution than for that
of the fourth degree. The assumed observations
have also been so chosen that all essential calcu-
lated quantities appear as simple terminating
decimals and hence the exact value of each can
be and is obtained. All computations have been
made on a 10-key calculating machine. The
methods advocated in this paper require, for
rapid work, such a machine rather than -an
adding-tabulating machine. This point is dis-
cussed in Section G.

The first five observations of the seven now
presented have been fitted exactly to a fourth-
degree polynomial, in Section B, and directions
for such work are given there. The process given
in Section C and now illustrated (Table VII)
is, however, equally valid in such a case.

For the method discussed in Section C it is
not necessary to calculate the differences since
all results are in terms of the observations.
The € scale of abscissas is the standard scale in
terms of which the results are first obtained. It is
defined by e=(x—m)/h=e/h, where h=35, the
constant interval in terms of x, and m (also
denoted x,) is the middle value of x(=15). For an

TasLE VII. Standard illustrative problem.
Data and differences.

x € y 8y 8%y 8y oty
0 -3 0 .
2.10
5 =2 2.10 4.41
6.51 0.42
10 -1 8.61 4.83 49.35
11.34 49.77
15 0 19.95 54.60 51.66
65.94 101.43
20 +1 85.89 156.03 49.35
221.97 150.78
25 42 307.86 306.81
: 528.78
30 ©+3  836.64
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even number of observations m is half-way be-
tween the center pair of values of x. The values
of € always run from —q to +¢ where 2¢g+1=#
=number of observations. :

The observations are now to be combined in
pairs, the last and first, next to last and second,
etc. Hence they are listed in columns § and 7 of
model form 1, with the final y (largest value
of x) at the head of column 7 and the initial y at
the head of column 5. The observations com-
prising each pair then lie on the same horizontal
line. The pair is designated by the value of
r=|e| in column 6. For an odd number of
observations, as here, there is only one observa-
tion corresponding to =0, and the last space in
column 5 is left vacant. For an even number of
observations the last pair has =% (or e==4-1).

Column 8 is the sum of columns 7 and 5, and
column 4 is the difference. The numbers in
columns 2, 3, 9, and 10 are the values of V,, as
copied from Table XIII, for z=7. The missing
column 1, to the left of column 2, would be
headed V5 and would be used in the case of a
fiftth-degree solution. These values of V, are
called ‘“‘pair-factors’” by Birge and Shea.? The
values of Ny, occupying the first horizontal line

- below the data (row (1)), are likewise taken from
Table XIII for n="7. The value of N, is merely #,
and is placed in column 8. These values of N,
differ numerically from the values designated as
K by Birge and Shea® and by K.* here, since

F=N,/Si; by Eq. (26). The K values of Birge
and Shea lead directly to the values of a; whereas
the N, values lead directly to b;, as shown in
Section C, Egs. (25) and (23).

Row (2) gives the algebraic sum of the products
> ey V. for each value of ¢ from 0 to j. Each
of these sums can be obtained in one continuous
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TaBLE VIIL. Values of Ze [v;(¢) 2 from Eq. (30).

© Zeyr= 802,597.9059 (exact)
— Nob2=—227.178.1575

Sog= 575419.7484
— Nibj2= —365;421.7728

2= 209,997.9756
— Nabo2=—173,709.9525
2 v2= 36,288.0231
— Nsbs2= —34,292.1600
2 ol= 1,995.8631
— Nib2= —1,995.8400
Zol= 0.0231 (exact)

process on any calculating machine. Actually the
values of V., for negative e are the negative of
those for positive ¢, if ¢ is an odd integer, but
there is no such change of sign for ¢ an even
integer. These relations are evident from Table
III and they are automatically satisfied by
multiplying the successive differences in column 4
first by V; and then by V3, and the successive
sums in column 8, first by V, and then by V,.
Since the value of Vyis always unity, the > .y- Vs
is obtained by merely adding column 8, and the
sum is recorded in row (2), column 8.
Thus in row (2),

3198.72=3X836.64+2X305.76+77.28,
and

554.40=3<X836.64—7<309.96
+-94.50+6X19.95.

Then row (3) (=b,) is obtained by dividing
each row (2) result by the corresponding value
of N, in row (1). Rows (4) and (5) (b2 and
N, -b2) are then to be calculated. The results

MobpEeL ForMm 1. Values of b, from the observations.

@ ©)] 4) Q) (6) (N (€)) ()] (10)
Vs Vi diff. Vg - 7 Yqr o+ sum Ve Vi
+1 +3 836.64 0 3 836.64 836.64 +5 +3
-1 42 305.76  2.10 2 307.86 309.96 0 -7
-1 +1 77.28  8.61 1 85.89 94.50 -3 +1
0 0 — — 0 19.95 19.95 —4 +6
1) 6 28 N, 7 84 154
(2) 453.6 3198.72 Sey-V, 1261.05 3819.90 554.40
(3) 75.6 114.24 b 180.150 45.475 3.60
4) 5715.36 13050.7776 b2 32454.0225 2067.975625 12.96
(5) 3429216  365421.7728 Ny-be? 227178.1575  173709.9525 1995.84
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given in these last two rows are needed only for
calculating the sums of squares of residuals
(and hence, finally, any desired probable errors).
These last sums are given by Eq. (30) which is
now repeated for convenience.

S 09 =5 32— z Nobi (30)

Hence we get, by repeated subtraction, the value

of 3 .9® for polynomials of successive degree.

7=0, 1, 2, etc. The magnitude of 3_ ¢? is probably
the best criterion of the fit of the data to the
polynomial used. The figures for our sample
problem are given in Table VIII.

Ordinarily the calculations need not be carried
to so many digits, but if one wishes an accurate
value of the residuals for a curve that fits the
data very closely, it is necessary to retain all
digits shown. Here all results are exact, both in
model form 1 and in the Y. [v:(¢) ]* calculations.

As already noted, the fourth differences are
symmetric about e=0. This fact leads to b5=0,
and hence Y v3* also equals 0.0231. The 3 v is
necessarily zero, since a sixth-degree polynomial

exactly fits any given seven points. It is thus

evident that a fourth-degree polynomial gives a
satisfactory fit, and a far better fit than does
one of any lower degree. The same information
is shown by the constancy, or lack of constancy,
of the various columns of finite differences, as
given in Table VII. But the successive values of
3" 22 put this information in quantitative form.
One therefore has the following rule for
choosing the degree of the polynomial to be
employed. Increase the degree until the value of
> 2 has dropped to a roughly constant value.
The size of this final value is a measure of the
goodness of fit. It should, of course, be re-
membered that the higher the degree of the
polynomial and thus the greater the number of
undetermined coefficients, the better the fit will
necessarily be. But each added degree should, in
general, produce a very large proportional de-
crease in the value of }_ 2. If it does not do so,
there is little justification for the added degree.
Thus, in this case, the first-degree polynomial is
little better than that of zero degree, the second
degree makes a considerable improvement, the
third degree still greater (proportional) improve-
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ment, and the fourth degree an enormously

- greater improvement. But the fifth degree pro-

duces no further improvement at all. Hence the
fourth-degree polynomial, but one of no lower
degree, is to be considered a satisfactory repre-

. sentation of the data.

F2. Values of u;(e) and v;(e) for Observed
Points (Model Form 2)

The next information that we obtain easily
and rapidly consists of the calculated values and
the probable errors of each observation. With
somewhat more labor we can determine the
calculated value and probable error of any
extrapolated point. It is very common in physical
science to obtain an analytic representation of a
set of data primarily in order to calculate a
certain extrapolated value (possibly the ordinate
at x=0 for experimental data extending over
some positive range of values x; to x;). Pre-
sumably because of the fact that the standard
method for the least-squares’ solution of a poly-
nomial and for the calculation of its probable
error is a laborious process, even for one of the
second degree, the calculation of the probable
error of an extrapolated value is practically never
carried out by physical scientists.

But the representation of a polynomial as a
sum of orthogonal polynomials, as is done in
Section C, makes such a calculation compara-
tively simple, as will be illustrated immediately.
There are numerous cases in the literature where
an extrapolated value has been calculated and
later used as if it were both reliable and im-
portant. But if the probable error of such an
extrapolated point had been calculated, it is
probably no exaggeration to say that in a sub-

- stantial fraction of the cases the error thus

obtained would have been found to be so large
as to nullify completely any significance that
might be attached to the result.. Especially in
the case of polynomials of high degree, the
probable errors increase with extreme rapidity
as we move beyond the limits of the experimental
data. This fact has been emphasized and illus-
trated in an important paper by Schultz.3!

31 H, Schultz, “The standard error of a forecast from a
curve,” J. Am. Stat. Assoc. 25, 139 (1930), p. 159.
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MonpEeL ForM 2. Calculation of u;(e) and v;(e) values. #;(e) =boVo+b1Vi+ -« +b;V;, uo(e) =boVo=bo=180.15,
#4(e) =180.154-114.24 V14+45.475V,+75.6 V3+3.6 V4. (Values of V, and b, from model form 1.)

y—u1(e) u1(e)

y=—uo(e) Va1 uo(e) +01 V) =vo(e) —b1 V3 by Ve +b2Ve

€ v =vo(e) =114.24V, =u(¢) =7,(e) =45475V, =1us(€)
-3 0 —180.15 —342.72 ~162.57 +162.57 +227.375 +-64.805
-2 2.10 —178.05 —228.48 —48.33 +-50.43 0 —48.330
-1 8.61 —171.54 —114.24 +465.91 ~57.30 —136.425 -~70.515
0 19.95 —160.20 .0 +180.15 —160.20 —181.900 —1.750
+1 85.89 —94.26 +114.24 +294.39 —208.50 —136.425 +157.965
+2 307.86 +127.71 +228.48 +408.63 —100.77 0 +408.630
+3 836.64 +656.48 +342.72 +522.87 +313.77 +227.375 +750.245

y—ua(e) y—us(e) y—1u4(e)
=7)1(6)—‘b2V2 bsVs . M2(€)+b3V3 =1’2(E)—b3V3 b4 V4 1&3(6)-’-‘1)4 V4 =113(6)—'b4 V4

€ =v2(€) =75.6V; -'-_-143(6) =U3l€e =3.6V, =u4(e) =1)4(6) x
-3 —64.805 —-75.6 —10.795 +10.795 +10.8 +-0.005 —0.005 0
-2 +50.430 +75.6 +27.270 —25.170 —25.2 +2.070 -+0.030 5
-1 +79.125 +75.6 +5.085 +3.525 +3.6 +8.685 —0.075 10
0 +21.700 0 —1.750 +21.700 +21.6 +19.850 +0.100 15
+1 —72.075 —175.6 +82.365 +3.525 +3.6 +85.965 —0.075 20
+2 —100.770 —75.6 +333.030 —25.170 —25.2 +307.830 +0.030 25
+3 +86.395 +75.6 +825.845 +10.795 +10.8 +836.645 —0.005 30

In contrast to the laborious method of determi-
nants used by Schultz, we now have the following
rapid method for calculating ordinates and prob-
able errors. From Section C we rewrite

j
u]-(e) = Z b[Vt, (22)
t=0
in which both the b; and the V, values® required
for each value of ¢, over the range of the data,
are given in model form 1.

Just as in the case of 3~ #? in Eq. (30), the form
of Eq. (22) shows that in‘obtaining each calcu-
lated value u;(e) for the polynomial of degree j,
we simultaneously obtain the calculated value
for each polynomial of lower degree. In fact, as
shown by the various equations of Section C,
every desired result, when calculated by an
orthogonal polynomial method, is given by a
sum of terms. If one desires merely the result
corresponding to a polynomial of stated degree,

32 As just mentioned, each value of V;for a negative value
of € when ¢ is an odd integer, is the negative of that given in
model form 1 (as taken from Table XIII). The magnitude
of e is given by 7.

all that need be recorded is the actual sum. But
by recording each successive partial sum one
obtains simultaneously the solutions for all poly-
nomials of lower degree. In the case of the specific
problem treated in the present section we shall
in every case record and use such partial sums,
partly to show the possibility of such additional
results and partly to illustrate in detail the im-
provement in the fitting of a given set of data
to a polynomial as the degree of the polynomial
is increased (from 0 to 4).

There is a very significant interpretation of the
change in the u;(e) values as j increases. Let us
start with the zero-degree polynomial. The solu-
tion is merely uo(e) =boVo=bo=_ vy/n, the arith-
metic average of the observations (=180.15 in
model form 1). Suppose that we now calculate
the residuals vo(€) [ =y —uo(e) ] for such a solution.
Obviously they are large, but let us attempt to
fit these residuals v¢(¢) to a first-degree poly-
nomial. In other words, we now consider the v,(e)
as new observed values. We then find for the
calculated values of v, just the second term of
Eq. (22), i.e., : V. Then the difference of the
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observed and calculated values [o(e) —b:1V1]
gives the residuals v; of the first-degree least-
squares’ polynomial #:(e¢). Next we consider the
v1(e) as new observed values and attempt to fit
them to a second-degree polynomial. The result
is then just the third term of Eq. (22), i.e., b2 V5.
The difference [v1(e) —b2V>] in turn gives the
residuals v,(e) of the second-degree polynomial
ug(e). ‘

We thus find that each orthogonal polynomial
bV, of Eq. (22) actually represents the least-
-squares’ polynomial of degree ¢ for the residuals
(considered as observations) of the least-squares’
solution of one lower degree. As a series of
algebraic steps the foregoing process reads

140(6) =bo Vo,
vo(€) =y —uo(e),
141(6) =u0(e)+b, Vi, .
vi(e) =y —u1(e) =y— (uno(e) +b1V1)
=v9(e) —b, V4,
ua(e) =u1(e) + 02V, e
v2(€) =y —uz(e) =y — (u1(e) +0:V)
=v1(e) —b2 Vs, (76)
etc.

This interpretation of the orthogonal polynomial
bV, of degree ¢, as the analytic function best
fitting a series of residuals v,_;(¢), which result
from the use of a function of degree t— 1, appears
to be highly significant.

Having found that a fourth-degree polynomial
represents a satisfactory fit of the data of model
form 1, one would ordinarily merely calculate and
add the five terms of Eq. (22) that are necessary
to obtain each value of u4(¢). But in order to
show the foregoing relations between successive
orthogonal polynomials and successive residuals
we include these residuals in model form 2, which
covers the range of the data e=—3 to +3.

Then, in model form 3, we will calculate the

extrapolated values out to e=—6 and +6.
Next we will obtain, in model form 4, the weights
of all points over the range e=—6 to +6, for

the polynomials of all degrees from zero to four
and finally in model form 5 the corresponding
probable errors in all these cases. Thus we obtain
a complete picture of the fitting of our seven
‘assumed observations, not only to a polynomial
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of the fourth degree, but also to polynomials of
all lower degrees.

In connection with model form 2, we again
call attention to the relations mentioned in
footnote 32.

F3. Values of u; for Extrapolated Points.
(Model Form 3)

We will next calculate extrapolated values of u;
out to e=—6 and +6 by the use of the same
Eq. (22) that we have just used for the range
e=—3 to +3. But now we must first calculate
values of V; for the desired values of ¢, since the
values of V;in Table XIII cover only the range
of the observations. The equations for V, are
given in Table III, provided we substitute S,
for Ry The values of Sy, are given in Table XII.
Here we wish the values for n=7. For con-
venience, the needed expressions from Table 111
in terms of Si; are now listed. These expressions
can obviously be used for any value of ¢, either
interpolated or extrapolated.

I/ = Soo = 1,
Vi= 5119

Vy= 522€2+502y
V3= S35+ S1se,

V4=SA4€4+524€2+SO4- (77)

In model form 3 we list the values of V, as
calculated by the foregoing expressions and also,
as in model form 2, the values of the successive
orthogonal polynomials 4.V, and the successive
least-squares’ polynomials #;(e). But since there
are no residuals in the extrapolated region, the
five columns of v;(¢) values of model form 2 no
longer appear.

The method of calculating u;(e) values given
by Eq. (22) and used in model form 2, is certainly
the most rapid one for values of ¢ corresponding
to the observations. But in the case of other
values of ¢, whether interpolated or extrapolated,
we may, in place of model form 3, calculate the
coefficients ay; of the power series in ¢ by means
of Eq. (27), as will be done presently (Section F5)
and then evaluate the function, Eq. (9), for the
desired value of e. Actually these two processes
give the values of u;(e) in terms of the Si; of
Table XII and differ only in the order in which
the various algebraic processes are performed.
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F4. Values of Weights and Probable Errors of
Calculated Points, for Both the Observations
and the Region of Extrapolation.
(Model Forms 4 and 5)

We now consider the important question of
the weights and probable errors of the u;(e)
values already calculated. Later we will calculate
the coefficients and their probable errors, of the
various polynomials in power series form. Most
of these equations for calculating weights and
probable errors are believed to be new. They are
based on the important fact, proved in the
Appendix (Section J), that because of the or-
thogonal character of the solution, the quantities
b: act like independently observed quantities to
which we can apply the law of propagation of
errors. ¢

Therelations needed for calculating the weights
and probable errors of u;(e) are covered in Egs.
(31), (32), (33), (34), and (36) of Section C.
The weight of b;is N,(=3Y.. V?) and the values
of N, for n=17, have already been used in model
form 1. Then, applying propagation of errors—
Eq. (32)—to Eq. (22), we get for the weight
pi(e) of u;j(e) the result already given in Eq. (36),
namely

1/pi(e) = g (Vi/N). (36)
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Using the values of V, already listed in model
forms 1 and 3, for the several desired values of e
and the values of N; from model form 1, we
obtain the results given in model form 4. As
usual, in the process of getting values of p4(e) we

“also get weights for all polynomials of lower

degree. The weight is obviously the same for
equal plus and minus values of e since only the
square of Ty is involved and, hence, we need to
list only | €| (=7), just as is done in model form 1.

Equation (36) shows that we are concerned
with a sum of reciprocals of weights and, further-
more, it is convenient to calculate only the
reciprocal 1/p;(e) since from Eq. (33) multipli-
cation of [1/p;(e)]* by #’, the probable error for
unit weight, gives us the final desired probable
error. In the case of reciprocals of weights we
encounter for the first time more complex re-
peating decimals. This result is inevitable for the
case of 7 observations since 1/po(e) =1/n=1/7.
The results given in model form 4 are carried to
5 or 6 decimals in order to show the precise
relations, but 'in all practical work involving
probable errors, slide-rule accuracy is of course
fully sufficient. ‘

To get the probable errors 7;(e) for the several
uj(e) values, whose weights p;(e) are listed in
model form 4, we need first the probable error 7;
of a hypothetical quantity of unit weight, for a

MobpeL Form 3. Extrapolated values of #;(e). (Values of V; calculated by Eq. (77), with values of Sy for n=7 from
Table XI1.) uo(e) =boVo=bo=180.15.

#o(e) 210
bV +0 V1 b V2 +b2 Vs

€ 18 =114.24V, =1u,(€) Ve =45475V; =us(e)
—6 —6 —685.44 —505.29 32 +-1455.200 94991
) -5 —571.20 —391.05 21 +954.975 563.92
—4 —4 . —456.96 —276.81 12 +545.700 268.89
+4 +4 +456.96 +637.11 12 +545.700 1182.81
+5 +35 +571.20 +751.35 21 +954.975 1706.32
+6 +6 +685.44 +865.59 32 +1455.200 2320.79

b3V us(€)+b3Vs byV4 uz(€)+b4 Vs

€ Vs =75.6V; =u3(e Vs =3.6V, =1u4(e) x
—6 —29 —21924 —1242.49 561 2019.6 +777.11 —15
-5 —15 —1134.0 —570.08 231 831.6 +261.52 —10
—4 —6 —453.6 —184.71 66 237.6 +52.89 -5
+4 +6 +453.6 +1636.41 66 237.6 +1874.01 +35
+35 +15 +1134.0 +2840.32 231 831.6 +3671.92 +40

+6 +29 +2192.4 +4513.19 561 2019.6 +6532.79 +45
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MobpeL ForM 4. Weights p;(e) of calculated values #,(e).
1/po(e)=1/No=1/n=1/T7 here.

I/No 1/?1(5)
+ V1i2/Ny © 4+ V2/N,
€] Vi2/ Ny =1/p1(e) V22/ N, =1/pa(e)
6 1.285714 1.428571 12.19047 13.61904
5 0.892857 1.035714 5.25 6.28571
4 0.571428 0.714285 1.714285 2.42857
3 0.321428 0.464285 0.2?7619 0.76190
2 0.142857 0.285714 0 0.28571
1 0.035714 0.178571 0.10714 0.28571
0 0 0.142857 0.19047 0.33*
1/pa(e) 1/ps(e)
+ V3?/Ns +V&/Ny
lel  V#/Ns  =1/ps(e) V/ Ny =1/pa(e)
6 140.16* 153.7856* 2043.6428 2197.428
S 37.50 43,7857 346.5 390.286
4 . 6 8.42857 28.2857 36.714
3 0.16* 0.92857 0.05844 0.987
2 0.16* 0.45238 0.31818 0.7706
1 0.16* 0.45238 0.00649 0.4589
0 0 0.33* 0.23376 .. 0.5671

* Singly repeating decimals are indicated by a star. Thus 140.16%
=140.16666 - - -.

polynomial of degree j, where j=0 to 4. The
needed value of 7/ is given by Eq. (34) of
Section C, in which the number of undetermined
coefficients s is j+1. Thus

2 [vj(e)]“’]*
n—G+10l
The values of Y. [v;(e) ]* have been calculated
from Eq. (30), immediately following model

form 1. Using these values in Eq. (78) we obtain,
forn=17,

v =0.6745[ (78)

ro’ =208.89, r,/=138.23,
rs’ =17.397, 7/ =0.07249.

7’2, = 6425,

Then, from Eq. (33), v
ri(e) =r{[1/pi(e) ]

Model form 5 gives the resulting values of 7;(e)
for the calculated values #(e) of each polynomial,
as listed in model forms 2 and 3, with the use of
the values of p;(e) listed in model form 4. Again
it is to be recalled that the u;(e) for the same posi-
tive and negative value of € in model forms 2 and
3, have the same weight and probable error, and

(79)
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hence in both model forms 4 and 5 we need list
only the values of |e|. In these two cases we
use [e| rather than the equivalent symbol 7 in
order to avoid any possible confusion with the
symbol for probable error.

The values of 7;(¢), the probable error of the
function, in model form 5 are worthy of careful
study. As one proceeds into the region of extrapo-
lation the predominating term in 1/p;(e). becomes
V#/N; and the predominating term in Vj, for
sufficiently large ¢, is e/. Hence the resulting
value of 7;(¢), which depends on [1/p;(e) ]},

" wvaries as e/. This rule is very approximate, as

shown by an examination of the actual ex-
pressions for V, in Eq. (77) in connection with
the values of Sy, in Table XII. But it is important
to notice that in a rough sort of way the probable
errors of a first-degree polynomial, as one pro-
ceeds into the region of extrapolation, vary
linearly with ¢, those for a second-degree poly-
nomial vary as the square of ¢, etc. It is just this
fact that causes the great uncertainty of extrapo-
lated values when calculated by means of a
polynomial of high degree.

On the other hand, within the region of the
data (here e=—3 to +3) the probable error
remains more or less constant with small maxima

MobEL ForM 5. Probable errors 7;(e) for #;(e) values of
model forms 2 and 3. Weights p;(e) in model form 4. Values

of 7/ following Eq. (78). 7(e)=208.89(1/7)¥=178.95
=constant.
r'[1/pi(e) I 7o'[1/ps(e) I*
el  [1/pi(e)]t =r1(¢) [1/p2(e) It =72(e)
6 1.1952 - 165.21 3.690 237.08
S 1.0177 140.67 2.507 161.07
4 0.8451 116.82 1.5584 100.13
3 0.6814 94.19 0.8729 56.084
2 0.5345 73.89 0.5345 34.341
1 0.4226 58.42 0.5345 34.341
0 0.3780 52.25 0.5774 37.095
. rs'[1/ps(e) 1t 74/ [1/p4(e) ]t
el [P =rs(@ " (/e =rile)
6 12.401 215.740 46.88 3.398
5 6.617 115.116 19.75 1.432
4 2.903 50.503 6.06 0.439
3 0.9636 16.764 0.9935 0.0720
2 0.6726 11.701 0.8778 0.0636
1 0.6726. . 11.701 . .0.6774 0.0491
-0 0.5774°" . 10.045

0.7531 10.0546
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and minima values. In fact, for a polynomial of
degree j there are, within the range of observa-
tions, j minima and j—1 maxima values of the
probable error of the function, all symmetrically
located about e¢=0. The center point, e=0,
corresponds to a small maximum of probable
error for j=even integer and to a small minimum
for j=odd integer.3® One notes in this connection
that the ‘“‘center of mass” of the observed points
is located at e=0, y=bo=2_ y/n.

As a final remark on the probable errors in
the region of extrapolation, 1 note that i addi-
tion to the fact that they are large, they have no
real significance unless there is reason to believe
that a polynomial of the jth degree is a wvalid
function in the region considered. Thus if one,
from theoretical considerations, believes that a
linear relation actually exists even out to a
certain extrapo.lated point, then one can use the
value of the point thus calculated and can take
its calculated probable error as a trustworthy
measure of its uncertainty. But if the true but
.uunknown function deviates from linearity in the
extrapolated region, obviously the entire process
breaks down. For just this reason, when poly-
nomials are used as purely empirical functions
for the smoothing of data, extrapolated values,
and their probable errors become completely
meaningless even though calculated correctly.
The importance of this point cannot be over-
emphasized.

F5. Coefficients of Power Series

We have now completed the discussion of the
results that can be obtained very quickly from
the data given in model form 1. These results
have included the calculated values and probable
errors of the function expressed as a polynomial
of any degree up to the fourth (in the actual
problem treated), at points corresponding to the
observations as well as at certain extrapolated
points.

The remaining desired information consists of

" (1) the coefficients ar; of the function expressed

33 Using the least-squares’ solution of polynomials by
means of determinants, Schultz, footnote 31, pp. 155-160,
discusses these facts about the probable error of a poly-
nomial in the interpolated and extrapolated regions. He
gives the explicit mathematical expressions for j=1, 2 and
3, needed to locate on the e axis the various maxima and
minima of probable error.
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as a power series in ¢, and the coefficients ax;”’ of
the corresponding power series in x, and (2) the
probable errors of all such coefficients. In the
usual treatment of orthogonal polynomials in
the literature no rapid method is given for ob-
taining the results of (1) and, as already stated,
it is believed that the method here presented of
getting the probable errors of the coefficients is
entirely new. In the present section we treat the
coefficients. In Section F6 we shall consider
the probable errors.

The simplest coefficients to obtain are those
for the power series in e. These are given by
Eq. (27), i.g,,

P
Ap;= Z Skgbz.

t=k

27)

As usual, due to the orthogonal characte; of the
solution, it is possible to obtain the coefficients
of all lower degree polynomials at the same time
that one obtains those for the desired polynomial.
For convenience, the specific expressions for all
ar; coefficients up to j=4 are now given together
with the numerical results for our sample prob-
lem. The needed values of b; from model form 1,
and those of Si; (for #=7) from Table X1I, are®!

bo=180.15, b;=114.24, b,=45.475,
b3=175.6, bs=3.6,
Sew=1 (always), Su=1, Sp2=—4,
522—“-—1, 533=0.16*,
Sm= - 116*, S44=0.583*,
Sz4= —5583*, S()4=6.

The various ay; values are then, by Eq. (27),

ao():(Lm—‘—‘Soobo: 180.15, )

o2 = Qo = Soobo+ Sosbe = —1.75,

@o4( = os) = Soobo+ So2b2+ Sosbs=19.85,
a11=012=511b1= 11424,

@13 =0a14=S1101+ S1305=26.04,
a22=a23=522b2=45.475,

024( =azs) = Ss005+ S2404=25.373,

@33 =a34=S3303=12.6,

a“( = a45) = S44b4 =2.1.

(80)

All of these results are exact. In fact, as stated
earlier, the experimental data have been de-

3¢ As noted in model form 4, a star denotes a repeating
decimal digit. Thus 0.16*=0.16666" - -.
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liberately chosen to make such simple exact
results possible. The successive least-squares’
solutions, corresponding to Eq. (9), are then

wo(e) = +180.15,
u1(e) = +180.15+114.24¢,
us(e) = —1.75+114.24¢+45.475¢,
us(€) = —1.75+26.04e+45.475+12.6¢%,
u4(€) = +19.85+26.04e+25.375¢
‘ +12.665+2.1¢.

(81)

One does not ordinarily have any real need for
an analytic expression in terms of e in power-
series form since its calculated values can be
more rapidly obtained by the methods already
presented (model forms 2 and 3). But the
coefficients of the corresponding f(x) may have
real theoretical interest in physical science, and
we now proceed to calculate the coefficients ax;’’
of this new function, where e= (x—m)/k, as used
throughout the paper. The necessary equation,
as given in Section CS, is

7
api’ =2 Hie by, (42)
t=k

and explicit expressions for the Hj; are given in
connection with Eqs. (42:0) to (42:5) in Sec-
tion C5. We shall not repeat these expressions,
but shall merely give the resulting values of Hy,
for the present problem.

From Table VII, in Section F1, we find

h =35 =interval between values of x,
m=xo=-+15
= ‘“middle” value of x (for which e=0).

Then from the expressions for Hy; just men-
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tioned, and with the values of Sy, used in Eq.
(80), we get

H00=1, H01=—3, H02=+5y
Hy=—-1, Hou=+43,
Hy1=0.2, Hyp=-—12,
Hyz=+2/3, Hu=—-35.9,
1{22=0.04, 12{23="‘0.06, I‘Iz4"——~“+311/300,

Hy3=1/750, Hy=—7/125, Hyu=7/7500.

All of these values of Hj; are exact.

The values of a;;”’ are given by the successive
partial sums of Eqs. (42:0) to (42:5). These
results are now listed in Table IX. The first
row contains the designation of the successive
terms of these equations, and the second row
contains the value of the successive partial sums
of the terms, yielding the value of the coefficient
stated in the third row under each such partial
sum. Hence, from Eq. (39), the successive least-
squares’ solutions expressed as power series in
x are

wo(x) = +180.15,
u1(x) = —162.57422.848x,
19(x) = +64.805 —31.722x+1.819x7,
w3(%) = —10.795+18.678x
—2.717x?4-0.1008x3,
u(x) = +0.005 — 2.562x+1.015x2
—0.1008x340.00336x*.

(82)

As in the case of the corresponding Eq. (81), all
equations in (82) are exact.

F6. Probable Errors of Coefficients
of Power Series

Our final problem is to calculate the weights
and probable errors of the coefficients ax; of Eq.

TaBLE [X. Values of ax;”.

(1) Terms Hoobo }Imbl Hozbz I‘Ioaba H04b4
(2) Sums +180.15 —162.57 +64.805 —10.795 +0.005
(3) Coefficients o’ an’”’ ao’ aos”’ oy’

(1) Terms Hyby Hyobs Hisbs Hubs
(2) Sums -+22.848 —-31.722 +18.678 —2.562
(3) Coefficients an’” ars”’ ais”’ ard’

(1) Hagbo Hosbs Hosby (1) Hsshs H4by (1) Hyabs
(2) +1.819 +1.015 (2) +0.1008 —0.1008 (2) 40.00336

—-2.717

(3) a” o

(2.7}

(3) ass’” @34 (3) as”’
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(81) and of the coefficients ay,” of Eq. (82). The
weights p;; of the coefficients a; are given by
Eq. (38), namely,
J

1/pri= ZZ (Sw?/No). (38)
t=
The required values of Sy (from Table XII)
precede Eq. (80), and those of N, (from Table
XIII) appear in model form 1. With these values
we obtain, from Eq. (38), the results listed in
Table X.

In ordinary work all of these results would
naturally be expressed in decimals, with only
slide-rule accuracy necessary. But in the fore-
going expressions the exact results are recorded.
- With the foregoing values of py;, the probable
errors 7i; of the coefficients a;; are to be obtained
by the use of Eq. (33), which now takes the
specific form

ris=ri(1/prs)* (83)

in place of the special form Eq. (79) used in
connection with model form 5. The numerical
values of 7;/, the probable error for unit weight,
have already been calculated from Eq. (78) and
listed following that equation for use in model
form 5. With these values one obtains, for
example,

1’13=73’(1/P13)%= 17.397(397/1512)%=8.9144,
7’24=7’4I(1/p24)%=007249(679/316»8)’}=003356

Instead of listing separately the remaining values
of 7 we insert them directly into Eq. (81) and
thus get as our final power-series polynomials,
expressed as a function of e,

wo(€) =180.15--78.95,
21(€) = (180.15452.25) + (114.24-26.12)¢,

us(e) = — (1.75437.09) + (114.24+12.14)e
y +(45.4754-7.010)¢,
u3(e) = — (1.75£10.04) + (26.04--8.914)¢

+ (45.475-1.898) 2 (84)

+(12.6£1.184)¢,

tis(e) = (19.85£0.05459)
+(26.04--0.03714)
+(25.375-:0.03356) 2
+(12.6£0.004932) 8

+(2.1::0.003407)¢.

As in the case of Eq. (81), the coefficients a;; of
Eq. (84) are exact. All probable errors are here
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TaBLE X. Values of px;.

1/poo=1/por=Soo/No=1/7
1/poe=1/pos=1/poo+ Ses?/N2=1/3
1/pos(=1/pos) = 1/poz+ S/ Ny =131/231
1/pu=1/p12=S1/N1=1/28

1/1’13—1/?14—1/P11+5132/N3 397/1512
1/pas=1/p2s=S22/Na=1/
1/?24(~1/i’25)—1/i>22+ 9242/N4 679/3168

/P33— /PM"Ssaz/Na—-l/ 16
1/pau(=1/pss) = Ss?/Ns=7/3168

recorded to four significant figures although in
practical work two significant figures in the
probable errors, with the corresponding two
doubtful figures in the quantities themselves, are
always quite sufficient. Since the value of #;(e)
at e=0 is merely ao;, the respective probable
errors 7o; in Eq. (84) are also the probable errors
of the function at e=0, which have already been
given in model form 5 in the row ¢=0 and in
the respective 7;(¢) columns.

We now proceed to calculate the weights and
probable errors of the coefficients az;/” of the
various #;(x) listed in Eq. (82). The weights are
given by Eq. (43), namely,

1/ i =§ (Hie?/Ny). (43)

The required values of Hj: have already been
calculated, from Eqs. (42:0) to (42:5), in con-
nection with the evaluation of the coefficients
ari’ of Eq. (82). The values of N, have already
been used in obtaining the weights p;; of Table X.
They appear in model form 1 and are taken from
Table XIII for n=7.

As in the case of the a;;/’ coefficients, a tabular
arrangement (Table XI) is used for the suc-

cessive partial sums given by Eq. (43). The

third row gives the designation of the numerical
values in the second row.

Just as in the case of the values of py;, it is far
simpler and quicker to express all of the fore-
going weights as decimals, with only slide-rule
accuracy necessary. The exact values are here
recorded just to show their simplicity or com-

‘ _ plexity, as the case may be.

The final calculation is that of the probable
errors 7/’ of the a;’ coefficients. Here we again
use Eq. (83) with pi; replaced by pi;//. We also,
as in the case of 7;; do not list separately the
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resulting 7x;’ values but merely insert them in

the #;(x) of Eq. (82). We thus obtain

uo(x) =180.154-78.95,
u1(x) = —(162.57494.19)
+(22.848-+5.225)x,
us(x) = (64.8054+56.08)
—(31.7224-8.756)x ,
+(1.81940.2804)x?,
u3(x) = — (10.795+16.76)
4 (18.6784-5.295)x
—(2.71740.4328)x2
+(10.080.9470) - 10~2x3,
us(x) =(5.0472.02)-10-3
—(2.562£0.04092)
+(1.0154+0.006318)x2
—(10.084-0.03295) - 1023
+(33.6040.05452) - 10— x*.

(85)

In Eqgs. (85), juyst as in Egs. (84), all coefficients
are exact, and the probable errors are recorded
to four significant figures, although no more than
two figures are of any significance in experi-
mental work. _

A portion of the probable errors in Egs. (85)
has already appeared in model form 5, just as
in the case of Eqgs. (84). In fact, the probable
errors 7o;” of the absolute term in Eqgs. (85) are
just the probable errors of the function at x=0
or e=—3, and are given in the row |e|] =3 of
model form 3.

F7. Calculation of a; Values from Finite
Differences. (Model Form 6)

In model form 1 we have calculated values of
b; directly from the observations. From Eq. (27)
we can then get a,; (normally denoted a;) =S,
where a, is the coefficient of ¢ in a polynomial of
degree t. It is also the coefficient for any other
abscissa scale for which the observations are
spaced at unit interval, since a shift in the
absolute value of the abscissa does not affect the
coefficient of the highest degree term in a power
series. ’

In Section D we have shown that ¢!a; can be
considered as the weighted average of the finite
differences 6%y, and Eq. (54) expresses such a
weighted average. The necessary weights W, and
sums of weights L, are listed in Table XIV. We
shall now apply Eq. (54) to our sample problem.
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TaBLE XI. Values of 1/px;".

(1) Terms HooQ/No Hmz/Nx Hozz/Nz Hosz/Na HOAZ/N4

(2) Sums 1/7 13/28 16/21 13/14  76/77
3) 1/t 1/bod”  1/pa”  1/po2”  1/bos”  1/pos”
(1) Hw2/ Ny H,y9%/N, Hi52/Ns H,2/N,y
(2) 1/700 13/700 1751/18900 132509/415800
3) 1/pn” 1/p12” 1/p1s" 1/p1d” .

(1) H3y?/N, Hy3?/ N3 H:2/N,

(2) 1/52500 13/21000 15043/1,980,000
(3) 1/p2” 1/p2s" 1/pas”

(1) Hasz/Na H342/N4 (1) H442/N4

(2) 1/3,375,000  767/37,125,000  (2) 7/1,237,500,000
(3) 1/pas” 1/psd” (3) 1/pad”

The necessary finite differences of the observa-

- tions are given in Table VII of Section F1.

Since the weights are always symmetrical
about the center point, the finite differences can
be combined in pairs, as shown in Eq. (54), i.e.,

v

1 .
“dt"—“z‘ Z (6tyr+6ty—-1') Wh

¢ r=0or }

(54)

but with a small number of 8%y values it is simpler
to list the entire set of values.?®® With the values

3 As stated in Section D, the values of the “pair-factors”
Vi, listed in Table XIII and used in model form 1, may be
proved (see Section J) to be merely the finite differences of
order ¢ of the “weights’’ W,, listed in Table XIV and now
used in model form 6. Historically, the values of V, were
first calculated by Birge and Shea (footnote 3) from the
equations derived by them, and then, many years later, the
values of W, were calculated from the equations of Section
D. Actually, however, the simplest way to obtain the V;
values is by merely differencing the W; values, since the
equations for W, are simpler to handle than those for V..

In order to obtain the necessary # values of V, for a set
of n observations from the available #»—¢ values of W;, we

_attach ¢ zeros at either end of the set of W; values. The

justification for this procedure lies in the fact that Wi(e) is
a polynomial of degree 2, whose 2¢ roots occur at unit
intervals on either side of the region of observation, im-
mediately adjacent to it. There are thus 7o roots within the
region of observation (i.e., all values of W, listed in
Table XIV are positive). Furthermore, since the values of
V¢ are the finite différences of order ¢ of the W, values, it
follows that V,(e) is a polynomial of degree ¢, all of whose
roots occur within the range of the observations, so that
each complete set of # values of V; (not the “half-set”
listed in Table XIII, for use in connection with the
observations arranged in pairs) changes sign ¢ times.

As an illustration of the above facts, let us obtain the
valuesof Vaforn=7, listed in model form 1, from the values
of W, forrn=17, listed in model form 6, and similarly the
values of V) from those of Wi. In all cases the coefficients
are listed in descending order of ¢, and as stated in footnote
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MobEiL ForM 6. Values of a, from finite differences. ao=>bo=2 y/n=180.15 as in Eq. (80).

€ 5:)15 W1 52}’5 Wz 53:)'e w. 3 54}'5 W4
5/2 528.78 3
2 306.81 S '
3/2 221.97 N 150.78 1
. 1 156.03 10 49.35 3
1/2 65.94 6 101.43 2
0 54.60 12 51.66 5
—1/2 11.34 6 49.77 2
-1 . 4.83 10 49.35 3
—-3/2 6.51 N 0.42 1
-2 4.41 N
—5/2 2.10 3 ’
L= 28 42 6 11
2 oty W,=3198.72 3819.90 453.60 554.40
tla,= 114.24 90.95 75.60 50.40
ay= 114.24 45.475 12.60 2.10

of W; and L, for n=7, from Table XII, we get
the values of a; as shown in model form 6. These
values of a, check?®® with the final coefficients of
the various u;(e) functions of Eq. (84).

As stated in Section D, one may also calculate
the probable error 7;; of a;( =a;;), but the process
is far longer than that involved in evaluating a;
itself. Suppose, for instance, that we wish to
calculate a4 and its probable error 744. To get a4
we use only the 8%y, values and their weights
Wy in model form 6. One can also get a4 with
equal ease from model form 1 by the use of
column 10, headed V4, in connection with the
data listed in columns 5 and 7. The quantity
evaluated there is b4 but a4 follows immediately
from Eq. (23) (a;=Sj;;,).

All calculations of probable error already made
in this paper have been in terms of the 6-V
system, and Tables XII, XIII, XIV are designed
specifically for use in that system. Hence if we
have evaluated a4 from finite differences and
wish to get its probable error, we must convert
all values, where necessary, to the -V system.

28, one thus gets the values of 4+ V; (for which ¢ is even),
but of — Vi (for which ¢ is odd).

W2 O 0 5 10 12 . 10 S [ ]
First 0 -5 =5 -2 +2 +5 +5 0
differ-
ence
Ve +5 0 -3 —4 -3 0 +5
Wi 0 3 5 6 6 S 3
V1 -3 -2 -1 0 +1 +2 43

3 It should be noted also that the respective values of
2 8ty- W, in model form 6 are identical with the corre-
sponding values of 2 y-V; in model form 1, in agreement
with Eq. (50”) of Section D.

The first quantity needed for the evaluation of
744 is 2 ¢ [v4(e) 2, and as Table VIII shows in
detail, we need for this purpose not only the
value of b, (as gotten from a,) but also all other
b; values for ¢ less than j(=4). Hence, the com-
plete model form 6 must be calculated up to
t=4. The N, values of Table VIII, or Eq. (30),
are taken as usual from Table XIII. This calcu-
lation of Y 92, as Table VIII shows, must in
general be carried out with great accuracy if the
final result is to be at all reliable.

One next follows the process outlined in Sec-
tion F6. The weight p;; of the final coefficient a;,
of a polynomial of degree j has the specially
simple form N,/S;? as shown by Eq. (38) and
Table X. Finally, the probable error 7;; is given
by Eq. (33) of Section C5, which now takes the
special form

rii=ri(1/pi
with 7, given by Eq. (78) of Section F4. For con-
venience all of the above steps, which involve
Egs. (23), (30), (38), and (86), may be combined
in the following expression, which is explicit in
the a; values that have presumably been ob-
tained by model form 6.

(86)

2 [vi(e)]* 13
7']J=06745 S,,{_Em} , (87)
Nin—j-—1)
where, from Eqgs. (30) and (23),
% [0 =5 v~ Nida/Sa.  (69)
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With the various values of a; calculated in
model form 6, and with the values of S;; from
Table XII and of N, from Table XIII (all for
n="7T), we get, from Eq. (88) with j=4, > v
=+4-0.0231, just as in Table VIII. Then from
Eq (87), 7’44=0.34O7X10—2. Hence, a44=2.10
+0.0034,7, checking the result already shown in
the u4(¢) function of Eq. (84), Section F6.

F8. Summary

The explicit directions that have been given
in Sections F1 to F7 may be summarized as
follows.

(F1). A givensetof equally spaced, unweighted
data, such as that given in Table VII, is to be
fitted to a polynomial of degree j, by the method
of least squares. The original abscissa scale x is
replaced by a new scale ¢, in which e proceeds by
unit intervals from —g¢ to +g¢, where n=2g+1
=number of observations. Model form 1, in
which 7= ||, then leads to the calculated values
of b, where ¢ varies from 0 to j. The values of V,
and NV, appearing in model form 1 are taken
directly from Table XIII for the proper value
of n. '

Knowing b; and NV, one easily obtains the sum
of the squares of the residuals (Eq. (30) and
Table VIII) for each degree of polynomial ¢ from
0 to j, and one is thus able to decide on the
proper degree to use (the fourth degree, for the
data of Table VII).

(F2). The calculated value u;(¢) of a least-
squares’ polynomial of degree j corresponding to
each and every observed y(e) follows immedi-
ately, by Eq. (22), from the values of b; and V..
Full details for the illustrative data of Table V1
are given in model form 2, which contains also
the value v;(e) of each corresponding residual, for
polynomials of degree j=0 to 4.

A rearrangement of the terms of Eq. (22) leads
to a very significant interpretation of the orthog-
onal polynomials .V, for successive values of t,—
namely, each such orthogonal polynomial repre-
sents the least-squares’ polynomial of degree ¢,
fitted to the residuals v;—1(¢€) of the polynomial of
one lower degree, ‘considered as a set of ob-
servations.

(F3). For any value of e not corresponding to
an observation, whether extrapolated or inter-
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polated, one cannot get numerical values of V,
from Table VIII but must calculate them by
Eq. (77) with the use of values of S;. listed in
Table XII. Then Eq. (22) may be used, as before,
to get each desired calculated value u;(e), as
shown in detail in model form 3 for certain
extrapolated points.

(F4). To determine the probable error of the
Sfunction u;(e) at any value of ¢ we must first get
the weight p;(e) of the function, by Eq. (36). The
values of V; and N, for the observed values of ¢
already appear in model form 1, and the values
of V, for extrapolated values of ¢ (with the same
values of N, as before) in model form 3. Full
details of the calculation of p;(e) appear in model
form 4. :

To get the probable error 7;(e) corresponding to
the weight p;(e), we need in addition to p;(e) only
the probable error 7;/ of a hypothetical point of
unit weight for the jth degree polynomial, as
given by Eq. (78). Numerical values of 7/ for
j=0 to 4 follow that equation, and the resulting
values of 7;(e) are given by Eq. (79), as shown in
detail in model form 5. There follows a brief
description of the wvariation with e of such
probable errors, with emphasis on the rapid in-
crease of the errors in the region of extrapolation.

(F5). In order to obtain the coefficients ay; of
the power series u;(e), we use Eq. (27), as shown
in detail in Eq. (80) with the numerical results
given by Eq. (81). The necessary values of S in
Eq. (80) are taken directly from Table XII for
n=1.

To obtain the coefficients ai;/’ of the power
series #; as a function of the original x scale of
abscissas (see Table VII of Section F1) we use
Eq. (42) with the detailed expressions for Hj,
given in connection with Eqs. (42:0) to (42:5).
The resulting numerical values of Hy;, for the
standard illustrative problem, are given in Sec-
tion F'5 and are used in Table IX to calculate the
aii’’ coefficients. The final #;(x) are listed in
Eq. (82).

(F6). The weights py; of the coefficients ay; of
the power series in € are given by Eq. (38), for
which detailed expressions are also listed with the
resulting numerical values in Table X. The
needed values of S;; are taken from Table XII,
just as in Section F5. The probable errors 7;;
corresponding to the weights p,; are given by
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Eq. (83). The numerical results aj;+7;; are
included in Eq. (84), which thus represents the
final set of least-squares’ solutions as f(e) for j=0
to 4 of the standard illustrative problem.

The weights pi;’ of the coefficients a;;’ of the
corresponding power -series in x are given by
Eq. (43), with the numerical values listed in
Table XI. Then Eq. (83) is again used, with px;
replaced by p;;/, to obtain the probable errors
7xi’" corresponding to the weights p;/. The final
power-series polynomials #; in terms of the
original abscissa scale x for j=0 to 4 with
coefficients ay;/' 7y’ are listed'in Eq. (85). Exact
values are recorded for all coefficients, .and all
probable errors and weights are here given to
several more digits than have any significance in
practical work.

(F7). In place of a solution explicitly in terms
of the observations, as carried out in Sections F1
to F6, we may obtain the value of any single a;,
the coefficient of e (or of x* if x varies by unit
intervals), of a polynomial of degree ¢ in terms of
the finite differences 8*y.. The necessary formula
appears as Eq. (54), with numerical values of W,
and L, listed in Table XIV. The actual calcula-
tion of the a, values, with ¢=0 to 4, for the
standard data of Table VII, is given in model
form 6.

To obtain the probable error 7;; of a;( =a,-j) ina
polynomial of degree j, we must first calculate
each a, for t=0 to j, as is done in model form 6,
for j=4. Then Egs. (87) and (88) give the explicit
process for the calculation of 7;;. The necessary
values of S;; appear in Table X1I, and those of IV,
in Table XIII, for the specified number of
observations.

Tables XI1I, XIII, and XIV, at the end of the
paper, cover polynomials up to the fifth degree
for any number of observations up to 30. The
material of Table XIII only, up to# =52, appears
in the reference of footnote 24, and up to # =104
in the reference of footnote 27.

G. ALTERNATIVE PROCESSES

In Section A it is noted that much work has
been done on the least-squares’ fitting of poly-
nomials to equally spaced data. A partial list of
references on.the subject is given in Section H.
Any adequate account of these alternative proc-
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esses would require in itself a paper far longer
than the present one. We discuss here in detail
merely two such alternative processes that lead to
a -solution in power-series form and hence are
closely related to the methods just discussed. A
few very general remarks are added on the
factorial form of solution.

Near the beginning of Section C there has been
presented a scheme for labeling the various pro-
posed methods. In terms of that scheme the two
alternative methods now to be discussed are
(1) 418, H. T. Davis,"! and (2) 438, Kerawala.!®

G1. H. T. Davis Method, 418. (Model Form 7)

This method, as its designation indicates, leads
to a result in power-series form making explicit
use of power moments of the observations, but
not making use of orthogonal polynomials. As will
be demonstrated, the Davis method not only
loses the vital advantages of the orthogonal
solution, but is also a longer and less accurate
method than that advocated in this paper and
also than that proposed by ‘Kerawala.!® The
original references for the Davis method are
Davis and Latshaw?®? and Davis,?8 but full details,

3 H. T. Davis and V. V. Latshaw, Annals Math. (2) 31,
52 (1930).

38 H. T. Davis, Annals Math. Stat. 4, 154 (1933). In this
article Davis tabulates the numerical factors needed for the
—g to +¢ range of abscissa. He also discusses the so-called
Gram polynomials, which are orthogonal polynomials in a
special form first studied by J. P. Gram (J. f. Math. 94, 41
(1883)). On page 158 of his paper Davis writes, in regard to
Gram polynomials: ‘“This method has since been more f ully
investigated by Edward Condon (Univ. of Calif. Pub. in
Math. 2, 55-66 (1927)) and his work was made the basis of
a method for obtaining least squares polynomials by R. T.
Birge and J. D. Shea. The work of the latter, however,
while effecting a snmphﬁcation does not reduce the problem
to its simplest form.”

Both the facts and the implications of these remarks are
so incorrect that the true circumstances should be noted. In
the first place Condon states in his paper: “This investiga-
tion grew out of a desire to provide a more general basis for
the work of Birge and. Shea .(Phys. Rev. 24, 206(1924)).”
In other words, Condon’s investigation was not carried out
until some time after Birge and Shea had reported their
work to the American Physical Society. Condon did revive
and extend the work of Gram and he suggested the name
“‘Gramian polynomials.” But the chief purpose of his paper
was to get a direct derivation of the formula for a;, which
had been obtained in an inelegant and laborious way by
Birge and Shea (footnote 3). Condon, however, failed in
this attempt, and the first direct derivation was obtained
in 1942 by Weinberg (footnote 4).

In the second place, the Birge and Shea method, although
possibly not in the simplest form from the standpoint of
mathematical elegance, is certainly far simpler and far
more accurate numerically than the method presented ten
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MobEeL ForM 7. Davis method.

78 r diff. Vg r Vg oo sum r? : rt

27 3 836.64 0 3 836.64 836.64 9 81

8 2 305.76 2.10 2 307.86 309.96 4 16

1 1 77.28 8.61 1 85.89 94.50 1 1

0 0 — 0 19.95 19.95 0 0
25112.64 3198.72 me  (=Zeety) 1261.05 8864.10 72821.70

with the complete numerical tables of factors, are
given also in Davis’ book.!!

As is well known, the normal equations for the
least-squares’ solution of a polynomial of degree j
are formed by equating the calculated power
moments, from ¢=0 to j, to the corresponding
power moments of the observations, > xty. The
calculated moments involve various Y x?, where
2 runs from 0 to 23, multiplied by the coefficients
ax; of the power series whose values are to be ob-
tained by least squares. If the values of x are
equally spaced and at unit interval we thus need
to know for the calculated moments only the
sums of powers of successive integers. Davis!
considers the solution for x=—p to +p, where
his p is just our g and will be so designated here-
after. He gives extensive tables of numerical
factors (pp. 326-359 of his book). He also gives
less complete tables of factors (pp. 370-385) for
the case x=1 to # (where n=2¢g+1). The latter
set of tables is, of course, completely superfluous,
since when one has a solution in the form f(e)
= f(x—x,), the transformation to f(x) can be
made very quickly by a simple Horner shift
(synthetic division), as illustrated in Section B.

For the case x=—gq to ¢, ie., n=2¢+1
observations in all, the Davis tables run tog=150
for the first-degree polynomial (j=1), to ¢g=100
for j=2, to ¢=50 for j=3, and to ¢=25 for
j=4,5, 6, and 7. In order to use our standard
illustrative problem we will consider his fourth-
degree solution which takes the form?®

years later by Davis, as is shown in detail in the present
section. This distinction between mathematical elegance
and simplicity (including accuracy) of numerical calculation
is emphasized more than once in the present paper just
because it is so often misunderstood and hence ignored.

3 Davis uses M, for the power moment. But since we
have already employed this symbol in a different sense, in
Eq. (7), we adopt m; for Z xty.

aos=Amo+Bms~+ Cmy,
@94=Bmo+Dma+ Emy,,

Q4= Cmo—l—Em2+ F’i’l’L4, (89)
. 014=AIM1+B,WL3,
QA34 =B’m1+ C/’l'l’ls.

These a;; coefficients apply to Davis’ x= —g¢ to

~+¢. Hence his x is identical with our e and the
coefficients of Eq. (89) are identical with the a;;
coefficients of Eq. (9). The needed factors 4, B,
etc., whose numerical values are listed in the
tables, are more or less complex functions of #,
the number of observations.

Davis gives the numerical values of the factors
A, B, etc. as decimals to ten significant figures,
and the accuracy of the solution is necessarily
limited by this fact. In the method advocated in
the present paper, all of the corresponding factors
(the Si: of Table XII) appear as simple termi-
nating decimals (or at the worst as thirds) and
hence there is no limit on the resulting accuracy
arising from 'this cause. This question of the
accuracy of the solution as limited by the
calculations themsélves is very important, as will
appear later.

The calculation of the power moments m, in-
volves multiplication of the observations y by the
various values of x¢, and for x(=¢) = —g to +¢ it
is evident that we can shorten the process by
combining the observations in sums and differ-
ences of pairs, just as has been done in model
form 1. In fact, model form 1 can easily be
adapted to the Davis method, although Davis
himself suggests no such special form. Hence we

40 Davis gives these functions in terms of ¢ (=his p) and
also uses many special symbols, so that it is difficult to
visualize by inspection the exact dependence on the number
of observations #. But Kerawala (footnote 10) does derive
and list explicit f(#), for j=1 to 5, as discussed in Sec-
tion G2.
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now proceed, by the use of our model form 7 and
Eqgs. (89), to obtain the a;; values for our stand-
ard illustrative set of data given in Table VII of
Section F1. The corresponding solution, by our
own method, consists in the calculation of the b,
values in model form 1, and then the calculation
of the a;; values by Egs. (80) with the results
given in Egs. (81). But here, for brevity, we carry
out only the fourth-degree solution. As usual,
7= |e| = |x|of Davis. .

The value of m, is that under the ‘‘sum’
column, and the other m, values lie in the re-
spective 7* columns. It should be noted first that
the m; values are, in general, considerably larger
than the Y v- V; values of model form 1, which
are obtained by an exactly similar process, i.e., as
an algebraic sum of products. The reason for
these larger values of m; lies first in the larger
average value of 7¢, as compared with V,, and
second in the fact that for a given sum a portion
of the Vi products are negative and a portion
positive, whereas all 7%y products in a given sum
are positive.

We now use Egs. (89) to evaluate a;; with the
values of 4, B, etc. from Davis’ tables, forn=17.
It is just this process that causes the main
limitation in the accuracy of the Davis method
and hence it is here given in complete detail.

For n=7

4 =0.5670995671, B=—0.265151515-- -,
C=0.02272727-- -, D =0.214330808- - -,
E=—0.021148989- - -, 4’=0.2625661376,

B’=—0.032407407- - -, C’'=0.004629629629- - -.

Hence, by Eq. (89),

@oa=+715.1409091 — 2350.329546
+1655.038636 = 19.849999,

asa= —334.3693182+1899.849715
‘ —1540.105398 = 25.374999,

a4s=+28.66022728 — 187.4667614
+160.9065341 = 2.1000000,

a14=+839.87555- - - —813.83555- - -

. 4 =+26.0400- - -,
as=—103.66222- - - +116.26222- - -
: = +12.6000- - -

All of the values of a;; thus calculated agree
with the exact values of Eq. (81) to at least eight
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significant figures. But the number of multiplica-
tions and additions is now much greater, and the
numerical size and complexity of the factors are
very much larger. The results just presented have
been obtained on a ten-key calculating machine
and hence all products are given to ten digits. In
any case, they cannot in general be trusted to
more than ten digits because the factors 4, B, etc.
are given by Davis only to that number of digits.
(But many of these factors, as shown in the
figures quoted, involve simple repeating decimals
and hence can be extended indefinitely.)

As Eq. (89) shows, the set of nine terms for k
even, or the set of four for & odd, may be said to
occupy a complete matrix, whereas in Eq. (80)
we have only the main diagonal and one side of
such a matrix. Thus the determination of aos, @24,
and au by Eq. (89) requires a total of nine
multiplications and six additions, whereas the
determination of these same three coefficients by
Eq. (80) requires only six multiplications and
three additions.*

The loss of accuracy in the Davis method
results just from the fact that to obtain a4, for
instance, we add algebraically three terms that
almost cancel. To be specific, the sum of the two
positive terms in our illustrative problem differs
from the negative term by only 1.1 percent of
either. Thus if the individual terms are good to
ten digits, the resulting value of @44 is good only
to eight digits. On the other hand, in the method
illustrated in Section F the tabulated factors are
exact, and if a ten-key machine is used the re-
sulting values of a;; and other calculated quanti-
ties are in general good to ten digits.

Actually all methods for obtaining a least-
squares’ solution are in principle the same in that
they all lead to the same numerical result for a
given set of data. It is, in fact, merely the order in

4 In the original Birge and Shea method,® where the az;
coefficients are calculated from Eq. (10) in which all
Ry =1, in place of Eq. (27) or Eq. (80), there are only three
required multiplications and three additions. As has been
shown in detail in Sections C and F, the adoption of the
complete b— V system of calculation in place of the Birge
and Shea method does make the calculation of both the ax;
and the ax;’”’ coefficients slightly longer. On the other hand,
it greatly shortens the evaluation of the calculated values
of the function. The main reason, however, for the use of
the b— V system with its accompanying necessary replace-
ment of the Ry, table of Birge and Shea by the .Sk, Table XII
of the present paper (see Table V), is the simplification of
the numerical factors appearing in the various necessary
calculations.
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which the various necessary algebraic processes
are performed that differs from one method to
another. This point appears to me of sufficient

importance to be considered with some care.

Thus, just how does it happen that the Section F
method gives the correct result to more places
than does the Davis method, with the same
calculating machine?

The answer is as follows. Let us consider the
calculation of b4, from which a4 immediately
follows by Eq. (23). We evaluate Y y- V;, which
involves both positive and negative terms. For
t=4 we have 2724.12 for the sum of the positive
terms and 2169.72 for the sum of the negative
terms, with the difference -+554.40, as the
recorded value of 3 y-7V,. This difference is 20
percent of the positive sum (compared to only
one percent in -the Davis method). But suppose
that this process is carried out on a six-key
machine. The values of y are given only to five
digits and hence all of the operations in model
form 1 could be carried out on such a machine
with the same complete accuracy in the determi-
nation of b, as that indicated in the model form.

The point is simply that on a six-key machine
the lower dial (in which each product appears) has
room for fwelve digits, and all the cancelling of
terms is done on this lower dial, in the continuous
process of getting > - V4. In other words, a six-
key machine has here effectively the accuracy of
a lwelve-key machine in the crucial cancellations
that limit the final accuracy of the result! But in
the Davis method the cancellations occur with
product terms of the form a:b; in which the
accuracy of both a; and b;, and hence of their
product, is limited just to the number of keys on
the machine (unless we go through a laborious
process of multiplication by parts with all aux-

iliary additions and subtractions done on paper).’

Thus for the Davis method a six-key machine has
only six-key accuracy in handling the various
cancelling terms whose algebraic sum may be
good to a far smaller number of digits.

A more typical illustration of the difference in
accuracy of the two methods is furnished by the
sample problem used by Birge and Shea.? In that
problem 25 observations (actually 25 observed
spectral lines of a band series) are fitted to a
fourth-degree polynomial. In that paper a six-key
calculating machine was used and the final calcu-
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lated values are good to six digits so far as the
accuracy of the calculation itself is concerned..
But the results for the same problem, when
carried out by the Davis method with a nine-key
machine, are definitely less accurate than those
obtained by the Birge and Shea method with a
six-key machine.

Thus the Davis method, in addition to being
definitely longer and involving -the handling of
much larger factors, also requires that all inter-
mediate results be obtained correctly to more
digits for a given final accuracy, than does the
method advocated in this paper. The Davis
method suffers, in fact, from just the well-known
defect of the standard solution of simultaneous

‘linear equations by determinants. Thus, due to

the almost complete cancellation of terms in the
determination of the unknown first evaluated
(which sets the accuracy of all the others), it is
often necessary, in the case of four such simul-
taneous equations, to obtain correctly all products
to ten digits in order to get final results correct to
possibly five digits.

In conclusion it should again be noted that the
Davis method gives the result in non-orthogonal
form and thus lacks the numerous important
advantages of the orthogonal solution advocated
here. Furthermore, there has been published, so
far as I am aware, no method for getting the
probable errors of any of the results when derived
by the Davis method. Because of the non-
orthogonal character of the solution, the neces-
sary method will almost certainly be found to be
very laborious.

G2. The Kerawala Method, 433.
(Model Form 8)

As indicated by its designation, the Kerawala .
method!? yields a least-squares’ solution in terms
of a power series and explicitly in terms of the
observations but in non-orthogonal form. It is, in
fact, just the obvious simplification of the original
Birge and Shea method that is possible if one
relinquishes the advantages of the orthogonal
solution, '

In the Birge and Shea method the values of
a(=ay,) are first calculated from the observations
in a model form analogous to the present model
form 1, and then the a;; coefficients of f(e) are
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calculated by Eq. (10). In the modified process
presented in Sections C and F the b, values are
calculated from the observations in model form 1
and the ay; coefficients are then calculated by
Eq. (27). Itisfairly obvious that one can combine
the two steps of either method so that each
coefficient a;; is expressed explicitly as a function
of the observations. This is just what Kerawala
has done.

In order to derive the various needed factors he
" begins with the expressions for the ay; coefficients
in terms of power moments ., exactly as Davis!!
has done. Kerawala independently derives ex-
pressions for the factors 4, B, etc., and as noted
in footnote 40 his results involve explicitly the
number of observations #, whereas this depend-
ence is rather hidden by special symbols in Davis’
expressions.

As a very simple example the first coefficient
of the second-degree solution (compare Eq. (83))
is given by

Qo2 ?AMo+B7112, (90)
where,*? according to Kerawala,
3(3n2—17) 15
A=—- =— 91)
4n(n2—4) n(n—4)

Kerawala now ‘‘dissects’” m, and m, into the
terms whose sum these power moments represent
in order to get finally an explicit dependence of
@92 on the observations y;. Thusforn=7,4=1/3
and B= —1/21. But the moments, for n="7, may
be written as

mo= (¥s+y-3) + (¥2+y_2) + (y14y-1) +0,
ma=3%(ys+y-3) +22(yaty—2) +12(y1+y-1). (92)

Hence the actual factor multiplying (ys+7y_s)
is given by the combination of Egs. (90), (91),
and (92) as 1(1/3)—9(1/21) = —2/21. Similarly

for (y2+y-2) one finds 1(1/3) —4(1/21) =+3/21..

The remaining two factors, for (y14+y_1) and y,,
are +6/21 and +7/21. Since these four factors
have a common denominator K(=21), we can
multiply by the respective numerators, add the

42 Kerawala uses no explicit symbols for the coefficients
of m,.. Those given here are due to Davis,! who writes the
A, B, etc. without subscripts although their values depend
obviously on the degree of the polynomial, as well as on the
number of observations. Thus in Eq. (89) one writes, more
precisely, @os=Amo+Bime+Cuns and. in Eq. (90),
ao2=A 2o+ Boms.
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products to get the sum (3°), and divide by K to
get ao2 in complete analogy to model form 1. In
other words, all factors used in the Kerawala
method are expressed as integers, just as they are
in the determination of b; in model form 1, or of @,
in the original Birge and Shea method.?

For our standard illustrative problem (Table
VII) the calculation may then be put in the

following model form 8.4 Hence u4(e)=19.85

+26.04e+425.375¢2+412.606¥+ 2.1 ¢4, in agreement
with Eq. (81).

The Kerawala tables cover the same range as
those of the Birge and Shea paper? and of the
present paper, namely, to #n =30 for j=1 to 5. His
tables for calculating a;; are identical with those
of Birge and Shea, since in both cases this final
coefficient is given by Eq. (25). Kerawala states
that all the numerical factors (values of V; and
K ) published by Birge and Shea were thus
checked and found to be correct. But his own
paper is not free from typographical errors. Thus
the factor +3 at the head of the last column of
model form 8 is printed by Kerawala as — 3.

It is obvious that the Kerawala method is far
superior in every respect to that of Davis. The
Kerawala method is, in fact, the most rapid and
accurate one for evaluating the coefficients ay; of
the power series in e if one wishes to forego the
advantages of the orthogonal form of solution.

G3. Factorial Forms of Solution

It has been noted in Section C that the least-
squares’ solution of a polynomial may be carried
out in terms of factorial moments, and may be
expressed in factorial form. Such a solution, which
is strongly favored by Sasuly,!? is denoted B2 in
Section C. I have myself made no extensive
investigation of the relative merits of the power
series form of solution and the factorial form. As
already stated, physical scientists usually prefer
the power series form since it is often directly
related to theory, whereas statisticians are usually
interested primarily in merely smoothing the
data. In the latter case the explicit analytic form
of the solution is immaterial.

4 Kerawala publishes all the model forms given by Birge
and Shea (footnote 3). However he refers only to the 1924
abstract and not the complete 1927 paper, which contains
the model forms. No reference is made by Kerawala to the
work of Davis.
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MopEL ForMm 8. Kerawala method.

E=3 k=1 diff. Yeqitr 1 Yor+ - sum E=0 k=2 E=4
+1 —22 836.64 0 3 836.64 836.64 +5 —13 +3
-1 +67 305.76 2.10 2 307.86 309.96 —30 +67 -

-1 +58 77.28 8.61 1 85.89 94.50 +75 —19 +1
0 o - — 0 19.95 1995 4131 —70 +6
36 252 K 231 264 264
453.60 6562.08 = 4585.35 6699.0 554.4
+12.60 +26.04 wmi  (=3/K) +25.375 +2.10

+19.850

In this connection the remarks of two statis-
ticians, Anderson and Houseman,?? are of inter-
est. As stated in Section C, where their paper is
listed, they merely extend to # =104 the tables of
V: values already given to #=>52 by Fisher and
Yates?* (and much earlier to # =30 by Birge and
Shea?®). Before commencing this rather laborious
task of computation, Anderson and Houseman
made a careful study of the time required with
factorial moments as contrasted with that re-
quired by their method, which is identical with
our model form 1. It may be noted that the
evaluation of the factorial moments themselves
requires only successive additions,** which are
most conveniently made on a printing-adding

machine, whereas the method advocated here-

(and by Anderson and Houseman) involves the
successive multiplications and additions of Eq.
(23), which are best performed on an electric
calculating machine.

Anderson and Houseman state that if both
printing-adding and calculating machines are
available the summation method requires almost
30 percent more time on the average. This time is
almost doubled when no adding machine is avail-
able. They also state that the relative efficiency
of the product method is greater for high degree
polynomials, but that if no comparison is desired

44 The factorial moment corresponding to the power

n
moment X xty; is given by
=1

n fn+t—1
Sy0=2 Yie
=1 t

Since all binomial coefficients can be derived by successive
summation, the same process obviously yields factorial
moments.

of the fit of polynomials of various degree, as
shown by the relative magnitudes of Y 2,
Eq. (30), there may be little difference in the
computing time of the two methods. Finally they
state that there are fewer formulas involved in
the product method, and hence it is learned more
quickly by the computer.

Although Sasuly, in private correspondence,
has indicated a very strong preference for the
summation method, he has apparently never
made any such actual comparison of the two
methods, and the experience of Anderson and
Houseman seems to demonstrate conclusively the
advantage of the method advocated in this paper
over a method involving factorial moments.

Anderson and Houseman also refer to the
beautiful work of Aitken.*® They state that the
method is too involved for ordinary computing
work, but that if a computer is to handle
polynomials exclusively the Aitken method is
worthy of consideration. It may be remarked, in
closing this section, that the chief purpose of the
extensive investigations of both Aitken and
Jordan (see Section H for more complete refer-
ences) is to eliminate so far as possible the need
for extensive tables of numerical factors. Thus in
the latest paper by Jordan,*® tables that occupy
only 23 rather small pages give all of the neces-
sary factors for the polynomial solution up to the
seventh degree and up to 100 observations. In
contrast, the Anderson and Houseman paper?’
includes 62 pages of tables with far more figures
to the page, and carries the solution, as already
noted, to 104 observations, but only to j=35. The

45 A, C. Aitken, Proc. Roy. Soc. Edinburgh 53, 54 (1932).
46 Charles Jordan, Annals Math. Stat. 3, 257 (1932).
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brevity thus attained by Jordan is, however,
annulled in part by the increased complexity of
the method. In fact Jordan’s article like that of
Aitken is evidently addressed to trained mathe-
maticians, and is not likely to be read profitably
by any one without such training.
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. (27). (Soo=1.) Si is the coefficient of e* in Vy(e), the orthogonal polynomial with least

N
—-

A S22cRo2 A2 SmeRus A3 Su+Ros Sas+ Rag A Sss+ Ris Sss+ Rss s
n =Sun =S =S =S5 =Ss =Su =Su =Su =S =Ss5 =Sss n
31 -2 3 —_ _— — — —_ _ — —_— 3
4 2 -125 1 —6.83%  3.3% —_ —_— — _— — 4
s 1 -2 1 —2.83%  0.83* 6 ~12.916* 2.916% — —_— — 5
6 2 —4.375 1.5 —8.416%  1.6% 2.953125 —3.9583%  0.583% 24.097916% —16.916% 2.1 6
7 1 —4 1 —1.16*  0.16% 6 —5.583% 0.583* 8.73% —4.083%  0.35 7
8 2 —525 1 —6.16¥  0.6% 10.828125 —7.4583%  0.583% 16.3635416%  —11.083% 0.7 8
9 1 —20 3 —9.83%  0.83% 18 —9.583% 0.583% 11.93* —3.083%  0.15 9
10 2 —4.125 0.5 —24.416%  1.6% 20.109375 —8.5416%  0.416% 12.639583% —~2.583% 0.1 10
11 —10 1 —14.83%  0.83* 6 —2.083*% 0.083% 4.76% —0.7916%  0.025 11
12 2 —3575 3 —14.16%  0.6% 30.1640625 —8.72016%  0.2916% 41.4177083* —~5.7083*  0.15 12
131 —14 1 —4.16%  0.16* 84 —~20.583* 0.583* 22.56% —~2.625 0.0583% 13
14 2 —8.125 0.5 —48.416%  1.6% 113.953125 —23.9583%  0.583* 123.047916% —12.25 0.23% 14
15 1 —356 3 ~27.83*% 0.83* 756 - —137.916% 2.916*% 737.53% --63.583* 1.05 15
6 2 -21.2 1 ~126.83%  3.3*% 196828125 —31.4583%  0.583% 91.722916* —6.916% 0.1 16
71 —24. 1 —7.16%  0.16% 36 ~5.083% 0.083% 58.86% ~3.916*  0.05 17
18 2 —40.375 1.5 —16.083*%  0.3* 45.421875 —5.7083% 0.083* 446.585416* —26.416% 0.3 18
19 1 —-30 1 —44.83%%  0.83% 396 —44.583*% 0.583* 46.43% —2.4583%  0.025 19
20 2 —3325 1 —198.83%  3.3% 1218.8203125  —123.64583*  1.4583*  801.5302083*  —38.2083*  0.35 20
1 —110 3 ~54.83%  0.83* 594 —54.583% 0.583*  1466.76% © —63.2916%  0.525 21
22 2 —20.125 0.5 —24.083%  0.3% 716.953125 —59.9583%  0.583* 787.714583% —30.916%  0.23* 22
23 1 —44 1 —13.16%  0.16* 858 —65.583% 0.583* R —2.416% 0016 23
24 2 —-143.75 3 —286.83* 3.3% 145.546875 —10.2083% 0.083* 1441.835416* —47.416% 0.3 24
25 1 —52 1 ~—77.83% 0.83* 858 —~55.416* 0.416* 283.53%* —8.583% 0.05 25
26 2 —28,125 0.5 —168.416% 1.6% 1406.953125 —83.9583* 0.583* 664.639583% —18.583* 0.1 26
27 1 —182 3 —18.16*  0.16* 1638 - —90.583* 0.583*  4064.76% —~105.2916%  0.525 27
28 2 —65.25 1 —78.16* 0.6* 948.1640625 —48.72916*  0.2916*  3138.8635416* ~75.5416%  0.35 28
29 1 ~70 1 —104.83*% 0.83* 2184 ~—~104.583* 0.583* 1808.36*" ~40,5416*  0.175 29
30 2 -112.375 1.5 —224.416*% 1.6% 12515.765625 —559.7916* 2.916* 3554.585416* ~74.416% 0.3 30
0.83* indicates 0.83333 - - -, etc.
TaBLE XIII. Values of V¢ and N for Eq. (23). TaBLE XIII.—Continued.
(See model form 1.)
n r V1 Va Vs Vs Vs
n r V1 Va Vs Vs Vs
8 7/2 +7 +7 +7 +7 +7
31 +1 41 5/2 45  +1 -5 —13 —23
Y o -2 3/2 43 -3 -7 -3 +17
1/2 1 ) -3 “+9 +15
Ng= 2 6 / +
4 3/2 +3 +1 +1 N¢= 168 168 264 616 2184
1/2 +1 -1 -3
/ o' 4 +4 428 +14 +14 +4
Ne= 20 4 20 3 43 47 -7 ~21 ~11
2 42 -8 —13 —~11 +4
S 2 +2 +2 +1 “+1 .
1 +1 -1 -2 -4 1 “+1 —17 -9 +9 +9
0 0 -2 0 +6 0 0 —20 0 +18 0
N¢= 10 14 10 70 N;= 60 2772 990 2002 468
6 5/2 +5 +5 +5 +1 +1 10 9/2 49 +6 +42 +18 +6
3/2 +3 -1 -7 -3 -5 /2 +7 +2 —14 -22 —14
1/2 +1 —4 —4 +2 +10 5/2 45§ -1 ~35 —17 +1
N¢= 70 84 180 28 252 3/2 43 -3 —~31 +3 +11
7 3 +3 +5 +1 +3 +1 1/2 +1 —4 —12 +18 +6
2 42 0 -1 -7 —4 _ :
1 +1 _3 -1 +1 +5 Ng= 330 132 8580 2860 780
0 o 4 0 +6 O 11 s 45 415 +30 +6 +3
_ 4 +4 +6 -6 -6 -6
Ne= 28 8 6 154 34 s 13 .9 2 - -
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TABLE XIII.—Continued.

Ve

n v Vi Ve - Vs Vs Vs - n r Vi Vs Vs Vs
2 42 -6 —23 -1 44
1 41 -9 —14 +4 +4 2 +2 =20 —13 +17 +88
0 0 -10 0 +6 ) 1 41 —23 —7 +31 +55
0 0 —24 0 +36 0
N.= 110 858 4290 286 156
Ne= 408 7752 3876 16,796 100,776
12 11/2 411 455 +33 433 +33 .
9/2 49 425 -3 —27 ~57 18 17/2 417 468 +68 +68 +884
/2 47T 41 —21 —33 —21 15/2 +15 444 420 —12 —676
13/2 +13 423 —13 —47 —871
5/2 45 —171 —25 —13 +29
3/2 43 —29 —~19 +12 +44 11/2 411 45 —33 —-51 —429
/2 +1 =35 —~7 +28 +20 9/2 49 —10 —42 —36 +156
7/2 47 22 —42 —12 +588
Ne= 572 12,012 5148 8008 15,912
: 5/2 +5 =31 —-35 +13 +733
13 6 +6 422 +11 +99 +22 3/2 +3 —-37 -23 +33 4583
5 +5 411 0 —66 —33 1/2 41 —40 -8 444 +220
4 +4 42 —6 —96 ~18
N¢= 1938 23,256 23,256 28,424 6,953,544
3 43 -5 -8 —54 +11
2 42 —10 -7 +11 +26 19 9 49 451 +204 +612 +102
1 +1 —13 -4 +64 +20 8 48 434 +68 —68 —68
0 0 —14 0 +84 0 7 47T 419 ~28 —388 —98
Ni= 182 2002 572 68,068 6188 6 46 46 —~89 —453 —58
s 45 =5 ~120 —354 +3
14 13/2 413  +13 +143 +143 +143 4 44 14 126 —168 +54
11/2 +11 47 411 -77 —187 .
9/2  +9 +2 —66 —132 ~132 3 +3 —21 —112 +42 +79
2 42  -26 ~83 +227 +74
7/2 41 =2 —98 —92 +28 1 41 —29 —44 4352 +44
5/2 45 -5 —95 —13 +139 0 0 —30 0 +396 0
3/2 43 -1 67 +63 +145 :
/2 +1 - -8 —24 1108 +60 N¢= 570 13,566 213,180 2,288,132 89,148
Ne= 910 728 97,240 136,136 235,144 20 19/2 +19 457 +969 +1938 +1938
17/2 +17 439 +357 —102 —1122
15 7 47 491 +91 +1001 +1001 15/2 +15 423 -85 —1122 —1802
6 46 +52 +13 —429 —1144
5 +5 419 -35 —869 —-979 13/2 +13 +9 —377 —1402 —1222
11/2 +11 =3 —539 1187 —187
4 +4 -8 —58 —704 —44 9/2 +9 —13 —591 —687 +771
3 43 -29 —61 —249 +751
2 42 -4 —49 +251 +1001 7/2 47  -21 ~553 —77 +1351
5/2 45 =27 —445 +503 +1441
1 +1  ~—53 —27 +621 +675 3/2 43 -31 —287 +948 +1076
0 0 -—56 0 +756 0 /2 +1  ~-33 ~99 +1188 +396
N¢= 280 37,128 39,780 6,466,460 10,581,480 N¢= 2660 17,556 4,903,140 22,881,320 31,201,800
16 15/2 415 435 +455 +273 +143 21 10 +10 +190 +285 +969 +3876
13/2 +13 421 +91 —91 —143 9 49 4133 +114 0 —1938
11/2 411 49 —143 —221 —143 8 48 482 —12 —510 —3468
9/2 49 -1 —267 ~201 —-33 7 47 437 —98 —680 —2618
/2 +1 =9 —301 —101 +77 6 +6 -2 —149 —615 —788
5/2 45  —15 —265 +23 +131 5 45 35 —170 —406 +1063
3/2 43 -19 —179 +129 +115 4 44 —62 —166 —130 +2354
/2 +1 ~-21 —63 +189 +45 3 43  -83 —142 +150 +2819
2 42 —o98 —103 +385 +2444
Ne= 1360 5712 1,007,760 470,288 201,552
1 41 —107 —54 +540 +1404
17 8 48 440 +28 +52 - +104 0 0 —110 0 4594 0
7 47 4325 +7 —13 —91
6 46 = 412 -7 -39 —104 N¢= 770201,804 432,630 5,720,330 121,687,020
5 45 41 —15 -39 —39 22 21/2 421 435 +133 +1197 +2261
4 44 -3 —-18 —24 +36 19/2 +19 425 +57 +57 —969
3 43  -15 —17 -3 17/2 +17  +16 0 —~570 —1938

+83
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n 7 Va Ve Vs Vi Vs n 7 Vi Ve Vs Va Vs
15/2 +15 48 —40 —810 —1598 19/2 +19 417 —171 —1419 —1881
13/2 +13  +1 —65 —715 —663 17/2 +17  +8 —408 —1614 —1326
11/2 +11 =5 —77 —563 +363 15/2 +15 0 —560 —1470 —482
9/2 49 —10 ~78 —258 41158 13/2 +13 =7 —637 —-1099 +377
772 471 —14 -70 +70 +1554 1172 +11  -13 —649 —599 -+ 41067
5/2 45 =17 —55 +365. +1509 9/2 49 —18 —606 —54 +1482
3/t +3 —19 -35 4585 +1079 7/2  +7  -22 518 +466 +1582
1/2 41 =20 —12 +702 +390 5/2 45 —25 —395 +905 +1381

3/2 43 —27 —247 +1221 4935
N¢= 3542 7084 96,140 8,748,740 40,562,340 1/2 +1 -—28 —84 +1386 +330

23 11 411 477 +77 +1463 +209 N,= 5850 16,380 7,803,900 40,060,020 48,384,180
10 +10 +56 +35 +133 —76
9 49 437 +3 —627 —171 27 13 413 +325 +130 +2990 +16445

12 +12 4250 +70 +690 —2530

8 +8 420 -20 —950 ~152 11 411 - 4181 +22 —782 —10879
7 47 45 —35 —955 —77

6 +6 -8 —43 —747 +12 10 410 +118 —~15 - —1587 —12144

9 49 461 —42 —1872 —9174

5 45 —19 —45 —417 +87 8 +8 410 —60 —1770 —4188

4 44 —28 —42 —42 +132 »

3 43 =35 —35 +315 +141 7 47 =35 —70 —1400 +1162

R 6 +6 —74 —73 —867 +5728

2 42 —40 —25 +605 +116 5 45 —107 —70 ~262 48803
1 41 —43 —-13 4793 +65

0 0 —44 0 +858 0 4 44 134 —62 +338 +10058

3 43 —155 ~50 +870 +9479

N¢= 1012 35,420 32,890 13,123,110 340,860 2 42 =170 -35 +1285 +7304

24 23/2 +23 4253 1771 +253 +4807 1 41 —179 —18 +1548 +3960
21/2 +21 4187 +847 +33 —1463 0 0 —182 0 41638 0
19/2 +19 +127 +133 —97 —3743

N.= 1638712,530 101,790 56,448,210 2,032,135,560
17/2 +17 473 —391 —157 —3553
15/2 +15 425 —745 —165 —2071 28 27/2 +27 +117 +585 +1755 +13455
13/2 +13  —17 —949 ~137 —169 25/2 +25 491 +325 +455 —1495
23/2 423  +67 +115 ~-395 —8395
11/2 411 —-53  ~1023 —87 +1551
9/2 +9 —83 —987 —27 +2721 21/2 421 +4S5 —49 ~879 —9821
7/2 47 —107 —861 +33 +3171 1972 419 +25 —171 ~1074 —7866
17/2 +17 47 —255 —~1050 —4182
5/2 45 —125 —665 +85 42893 . .
3/2 +3 -—137 —419 +123 +2005 15/2 +15 -9 —305 —~870 —22
172 +1 —143 —143 +143 +715 13/2 +13 —23 ~325 —590 +3718
11/2 +11 =35 —319 —259 +6457
N,= 4600 394,680 17,760,600 304,680 177,928,920
9/2 49 —45 —291 +81 +7887

25 12 412 492 +506 +1518 +1012 772 471 . —53 245 4305 +7931
11 +11 +69 +253 +253 —253 5/2 +5 —~59 -185 4655 +6701
10 410 = 448 +55 —~517 —~748

3/2 +3 —63 —-115 +840 +4456
2 49 429 —93 —897 —-753 1/2 +1  —65 ~39 +936 +1560
8  +8 +12 —~196 —982 —488
. -3 =259 —857 119 N¢= 7308 95,004 2,103,660 19,634,160 1,354,757,040
6 +6 —16 —287 —597 4236 29 14 +14 +126 +819 +4095 +8190
5 45 =27 —285 —267 +501 13 +13 499 +468 +1170 —585
4 44 =36 —258 +78 4636 12 412 +74 +182 —~1780 —~4810
3 43 —43 —211 +393 +631 11 411 +51 —44 —1930 —5885
2 42  —48 —149 +643 +500 10 +10 +30 —215 —2441 —4958
1 41 =51 —77 4803 +275 9 49 411 —336 —2460 —2946
0 0 -52 0 +858 o
8 +8 —6 —412 —2120 —556
Ny= 1300 53,820 1,480,050 14,307,150 7,803,900 7 47 -21 —448 —1540 +1694
6 +6 —34 —449 —825 +3454

26 25/2 +25 +50 41150 +2530 +2530
23/2 423  +38 +598 +506 —506 5 45 —45 —420 —66 +4521
21/2 421 427 +161 ~759 ~1771 4 44 —54 —366 +660 +4818
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TasLe X11I.—Continued. TaBLE -XIV.—Continued.
n r Vi Vi Vs Va Vs ”n r Wi W W, W, Ws
. ke 3.a 43 —o1 —202 +1290 44373 2 5
5/2 3
2 +2 —66 203 +1775 +3298
1 -+1 —69 -104 +2080 +1768 L= 28 42 6 11 2
0 0 - 70 0 +2184 0
° 8 0 16 20 12
N.,= 2030113,274 4,207,320 107,987,880 500,671,080 . 172 s 20 ‘6 15 .
) /
30 29/2 429 4203 41827 +23751 416965 3/2 15 7
27/2 427 4161 +1071 +7371 —585 2 12 7
25/2 425 4122 +450 —3744 —9360 5/2 7
3 7
23/2 423 +86 —46 —10504 —11960
21/2 421 453 —427 —13749 —10535 L= 84 84 66 44 26
19/2 419 +23 —703 —14249 —6821 0 0 100 45
17/2 +17  —4  —884  —12704 —2176 P 30 35 ?
15/2 +15 —28 —980 9744 +2384 3/2 0 35 4
‘13/2 +13 —49 —1001 —5929 -+6149 2 63 14
11/2 +11  —67 957 —~1749 +8679 ; 572 7 25 14
9/2 +9 —82 —858 +-2376 +9768 . 7/2 4
7/2 +7 —04 —~714 +6096 +9408 - i
L;= 60 462 198 143 26
5/2 45 -—103 —535 +9131 +7753
3/2  +3 —109 -331 +11271 +5083 10 0 25 200 , 21
1/2 41 -112 -112 12376 +1768 1/2 25 75
1 24 175 16
N;= 8990 302,064 21,360,240 3,671,587,920 2,145,733,200 3/2 21 50
2 21 112 6
5/2 14 18
TaBLE XIV. Values of W;and L; for Eq. (54). W;are the 3 16 42
least integer coefficients used in expressing tla; as a 7/2 6
weighted sum of the tth order data-differences. 4 9
L= 165 132 858 286 65
n 7 Wi W W3 Wi Wy 11 0 75 35
0 1 1/2 15 175 14
1 70 - 30
L= 1 3/2 14 140 9
2 56 18
3 0 1 5/2 12 84 3
1/2 1 , 3 36 6
7/2 9 30
L;= 2 1 4 15 :
9/2 5
4 0 4 1 )
1/2 1 L;= 110 429 858 143 ° 52
1 3
12 0 36 245 224
Li= 10 2 1 1/2 315 245
1 35 224 189
5 o 3 1 3/2 280 189
1/2 3 1 2 32 168 108
1 2 5/2 216 105
3/2 2 3 27 96 33
7/2 135 33
L= 10 7 2 1 4 ’ 20 33
©9/2 55
6 0 9 8 1 5 11
1/2 9 1 ~
1 8 5 L= 286 2002 1287 1144 884
3/2 5
2 5 13 0 147 980
1/2 21 98 196
L= 35 28 18 2 1 1 140 882
3/2 20 84 147
7 0 12 5 2 120 630
1/2 6 2 1 5/2 18 ’ 60 77
1 10 3 3 90 330
3/2 5 1 7/2 15 33 22
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n r W W W3 W, Ws n r Wi W2 W3 W, W
4 55 99 7 40
9/2 11 11 15/2 8
5 22
1172 6 L,= 408 3876 3876 8398 16,796
L;= 182 1001 572 4862 884 18- O 81 1440 30492
1/2 810 1980
14 0 49 1568 1764 80 1386 28512
1/2 98 1704 3/2 770 1782
1 48 1470 1568 2 77 1232 . 23166
3/2 90 1470 5/2 693 1430
2 45 1200 1078 3 72 1001 16016
5/2 75 990 7/2 585 1001
3 40 825 528 4 65 728 9009
7/2 S5, 495 9/2 455 585
4 33 440 143 5 56 455 3744
9/2 33 143 11/2 315 260
5 24 143 6 45 224 884
11/2 13 13/2 180 68
6 13 7 32 68
L¢= 455 728 9724 9724 8398 3 15/2 17 68
15 0 784 15876 L= 969 7752 11,628 14,212 193,154
1/2 28 1176 15876
1 756 14700 19 0 675 21780
3/2 27 1050 12936 1/2 45 4950 4356
2 675 11550 660 20790
5/2 25 825 8316 3/2 44 4620 3861
3 550 ( 7425 616 18018
7/2 22 550 3861 5/2 42 4004 3003
4 396 . 3575 546 14014
9/2 18 286 1001 7/2 39 3185 2002
5 234 1400 4 455 9555
11/2 13 91 9/2 35, 2275 1092
91 5 350 ] 5460
13/2 7 11/2 30 1400 442
6 240 2380
L= 280 6188 7956 92,378 83,980 13/2 24 680 102
16 0 64 7056 3024 7 s 1 136 2o 612
1/2 336 5202 8 51
1 63 6720 2772 1772 °
3/2 315 4620
2 60 5775 2112 L,= 570 6783 42,636 163,438 29,716
5/2 275 3465
3 55 4400 1287 20 0 100 27225 104544
7/2 220 2145 1/2 825 81675
4 48 2860 572 99 26400 99099
9/2 156 1001 3/2 792 75075
5 39 1456 143 96 24024 84084
11/2 91 273 5/2 728 . 63063
6 28 455 91 20384 63063
13/2 35 7/2 637 47775
15 4 84 15925 40768
. 9/2 525 31850
L= 680 2856 50,388 33,592 16,796 75 11200 21658
17 0 432 1260 o M M 6800 17850 8568
1/2 36 504 2772
13/2 272 7650
1 420 1188
51 3264 1938
3/2 35 462 2376 15/2 153 1938
2 385 990 /
8 36 969
5/2 33 385 1716 17/2 57
3 330 715 19
7/2 30 286 1001
4 260 429 L¢= 1330 8778 245,157 653,752 742,900
9/2 26 182 429
5 182 195 21 0 3025 49005
11/2 21 91 104 1/2 55 9075 254826
6 ) 105 52 2970 47190
13/2 15 28 3/2 54 8580 231231
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n r W1 W2 Ws Ws Ws n r Wi W2 Ws Wi Ws
2 2808 42042 2 140 75075 494208
s/2 52 7644 189189 5/2 . 4725 17160
3 2548 34398 3 135 67200 408408
7/2 49 6370 137592 7/2 4320 14280
4 2205 25480 4 128 57120 308448
9/2 45 4900 86632 9/2 3808 11016
5 1800 16660 5 119 45696 209304
11/2 40 3400 44982 11/2 3213 7752
6 1360 - 9180 6 108 33915 124032
13/2 34 2040 17442 13/2. 2565 4845
7 918 3876 7 95 22800 61047
15/2 27 969 3876 15/2 1900 2565
8 513 969 8 80 13300 22572
17/2 19 285 17/2 1260 1045
9 190 9 63 6160 4807
19/2 10 19/2 693 253
10 44 1771
Le= 770 33,649 86,526 408,595 1,931,540 21/2 253
22 0 121 4840 184041 n 23
1 1/2 120 605 4719 70785 176176 Le= 2300 65,780 880,030 197,340 4,942,470
3/2 585: 66066 25 0 2028 143143
2 17 ‘ 4368 154154 12 78 26026 143143
5/2 546 57330 1 2002 139425
3 112 3822 122304 32 1 25025 133848
7/2 490 45864 2 1925 128700
4 105 3136 86632 5/2 715 23100 116688
9/2 420 33320 3 . 1800 112200
5 96 2380 53312 7/2 712 20400 94248
11/2 340 21420 4 1632 91800
6 85 1632 27132 9/2 68 17136 69768
13/2 255 11628 S 1428 69768
7 72 969 10336 11/2 63 13566 46512
15/2 1711 4845 6 : 1197 48450
8 57 456 2261 13/2 87 9975 . - 27132
17/2 95 1197 7 950 29925
9 40 133 15/2 50 6650 13167
19/2 35 3 700 15675
10 21 1772 42 3850 4807
9 462 6325
L.= 1771 7084 48,070 624,910 1,448,655 192 33 71 1012
23 0 1452 102245 10 253 1518
1/2 66 3146 20449 21/2 23 506
1 1430 99099 11 92
3/2 65 3003 18876 23/2 12
2 1365 90090
5/2 63 2730 16016 L= 1300 26,910 296,010 1,430,715 1,300,650
3, 1260 76440 26 0 169 66248 420429
772 60 2352 12376 1/2 1183 273273
4 1120 59976
o/2 56 1904 8568 1 168 65065 416416
60260
5 952 42840 3/2 1155 2
2 165 61600 379236
1172 51 1428 5168 s/2° 1100 235620
6 765 27132
, 3 160 56100 323136
13/2 45 %69 2584 1/2 1020 201960
7 570 14535
4 153 48960 255816
15/2 38 570 969 o/2 018 162792
8 12 30 380 266 5985 200 5 144 40698 186048
5 210 1463 11/2 798 122094
19,2 21 77 6 133 31920 122094
10 - 13/2 665 83790
21/2 11 7 120 23275 ) 70224
15/2 525 ‘ 51205
Le= 1012 17,710 32,890 937,365 170,430 8 105 15400 33649
17/2 385 26565
24 0 144 81796 572572 9 88 8855 12144
1/2 5148 20449 19/2 253 110626
1 143 80080 , 552123 10 69 4048 2530
3/2 5005 19305 21/2 138 2530
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n r W1 W Ws W Ws
11 48 1150
23/2 50
12 25
L;= 2925 16,380 780,390 2,861,430 4,032,015
27 0 8281 372645
1/2 91 8281 3279276
1 8190 364364
3/2 - 90 8008 3097094
2 7920 340340
5/2 88 7480 2756754
3 7480 . 302940
7/2 85 6732 ’ 2302344
4 6885 255816
9/2 81 5814 1790712
5 6156 203490
11/2 76 4788 1281987
6 5320 150822
13/2 70 3724 829521
7 4410 102410
15/2 63 2695 471086
8 3465 61985
1772 55 1771 223146
9 2530 31878
19/2 46 1012 79695
10 1656 12650
21/2 36 + 460 16445
11 900 2990
23/2 25 130
12 325
25/2 13
L;= 1638 118,755 101,790 4,032,015 32,256,120
28 0 196 41405 3179904
1/2 3185 248430
1 195 40768 3097094
3/2 3120 238238
2 192 38896 2858856
5/2 2992 218790
3 187 35904 2494206
7/2 2805 191862
4 180 31977 2046528
9/2 . 2565 159885
5 171 27360 1566873
11/2 2280 125685
6 160 22344 1106028
13/2 1960 92169
7 147 ' 17248 706629
15/2 1617 61985
8 132 12397 396704
17/2 1265 37191
9 115 8096 185955
19/2 920 18975
10 96 4600 65780
21/2 600 7475
11 75 2080 13455
23/2 325 1755
12 52 585
25/2 117
13 27
L¢= 3654 47,502 525,915 2,804,880 32,256,120

n r Wi Wa Ws Wy Ws
29 0 3675 662480
1/2 105 63700 2252432
1 3640 649740
3/2 104 61880 2144142
2 3536 612612
5/2 102 58344 1939938
3 3366 554268
7/2 99 53295 1662804
4 3135 479655 .
9/2 95 47025 1343034
2850 395010
11/2 90 39900 1013859
2520 307230
013/2 84 32340 706629
7 © 2156 223146
15/2 77 24794 446292
8 1771 148764
17/2 69 17710 247940
9 1380 88550
19/2 60 11500 115115
10 1000 44850
21/2 50 6500 40365
11 650 17550
23/2 39 2925 8190
12 351 4095
25/2 27 819
13 126
27/2 14
Ly= 2030 56,637 841,464 7,713,420 23,841,480
30 0 225 156800 5470192
1/2 6300 4331600
1 224 154700 5346432
3/2 6188 4176900
2 221 148512 4988412
5/2 5967 3879876
3 216 138567 ’ 4434144
7/2 5643 3464175
4 209 125400 3741309
9/2 5225 2962575
5 200 109725 2979504
11/2 4725 2413950
6 189 92400 2220834
13/2 4158 1859550
7 176 T 74382 1530144
15/2 3542 1338876
8 161 56672 956340
17/2 2898 885500 .
9 144 40250 526240
19/2 2250 523250
10 125 26000 242190
2172 1625 263250
11 . 104 14625 84240
23/2 1053 102375
12 81 6552 16965
25/2 567 23751
13 56 1827
27/2 203
14 29
L;= 4495 100,688 2,136,024 52,451,256 59,603,700
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J1. Introduction

HE task of fitting a polynomial to a series

of data by the method of least squares is
essentially the solution of a set of simultaneous,
linear, ‘“normal’”’ equations. The problem is so
much further simplified in the case of equally
weighted and uniformly spaced data, that
explicit analytical formulas for most quantities
of interest can readily be found by elementary
algebra. Ninety years ago P. L. Tchebycheff®
thoroughly expounded the general problem, and
explicit results for the simplified case were ob-
tained twenty-five years ago by K. Jordan.?
Since that time, many more or less independent
presentations have appeared in diverse pub-
lications (see footnotes 3, 12, 15, 19, 23, 25, 45,
46, 47), often accompanied by extensive tables
and directions for use. At this late date, it would
seem impossible to contribute to the literature
of this subject anything fundamentally new or
important. ,

And yet; here is another indépendent exposi-
tion. The reason for its existence rests on three
differences it bears from other work in this field.

Past treatments have been content to obtain
the coefficients and adjusted values of least-
squares’ polynomials and to set aside the
problem of their probable errors. But the advance
in accurate measurement has given new im-
portance to.questions of probable error, and it
was found necessary to extend the’theory to
these questions. Because of the relative inac-
cessibility of the general theory—a consequence
both of the scattered journals in which it has
been reported and the specialized learning
lavished upon it—it seems difficult to explain the
foundation of these new developments without a

thorough elementary treatment of the whole .

subject.

Wherever analysis and numerical application
have been developed in a unified way,% 20 45.46
they have been directed toward use in connection

“E. U. Condon, Univ. of Calif. Pub. in Math. 2, 55
(1927). This article is mentioned also in footnote 38, in
connection with the work of H. T. Davis.

with adding-tabulating machines. The con-

 venience and prevalence of modern automatic

calculators have brought to the fore, however,
the method of Birge and Shea.® It is to the
application of their rapid and accurate tech-
nique, which makes use to the fullest extent
of the general results of theory, that the fol-
lowing analysis is oriented.

In the past, expositions have derived their
cogency from learned and powerful mathe-
matical methods—Tchebycheff’s from ortho-
gonal polynomials as the successive convergents
of a continued fraction, Jordan's from elaborate
analysis in the calculus of finite differences. It
seems unlikely that many workers with least
squares have the opportunity to follow such
arguments. The result has been that many con-
clusions of Tchebycheff and Jordan have been
rediscovered accidentally or empirically, and in-
corporated in various methods and tables
without recognition of their origin or full sig-
nificance.* 1225 An even more striking result has
been the publication of methods making no use
whatever of the great practical simplifications
that theory can bring. There appears to be a
real need for a presentation of the theory,
appropriate to the obviously elementary charac-
ter of the problem—a presentation on the basis
of simple algebra, such as the one that follows.

Although this section is designed to provide
a mathematical basis for the methods set forth
in preceding sections, and a fixed point of prin-
ciple by which the preceding critique has been
oriented, it is convenient to present it as an
analytical unit with its own equation numbers in
square brackets. Where this procedure involves
repetition of an equation quoted in an earlier
section, its number there will be repeated in
parentheses.

J2. Tchebycheff Polynomials

Tchebycheff’s significant contribution to this
field was the introduction of orthogonal poly-
nomials, which render the least-squares’ problem
of degree j essentially independent of that for

348
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degree (j—1). The orthogonal polynomials T":(x)

of degree ¢ in x are defined over a range of »

discrete values of x at which the data y(x)

appear. The property of orthogonality, in this
case, requires that

and if T(x) is further limited by requiring its
leading coefficient to be unity, i.e., its leading
term to be just x!, a definite numerical value as
a function of # and ¢ is further assigned to

M=Y.[Tx)] [2], 4)

Any polynomial of degree j can, of course, be
expressed as a linear combination of Tcheby-
. cheff polynomials T,(x) with ¢< j, in accordance
with

”’J'(x) = Z Gng(x),‘ [Sja (5)
t=0

the coefficients @, being obtained explicitly by

multiplying both sides with Ty(x), summing over

x, and applying Eqgs. [1] and [2]:

2o 1 (%) To(x) =a.M.. [4]

In addition to this fundamental property of
orthogonal polynomials—their simplification of
the determination of the a, coefficients from the
function #;(x)—there is a special simplicity that
they bring to least-squares’ problems. Suppose,
for example, that y(x) is a set of # equally
weighted data, and that #;(x) is the least-squares’
polynomial of degree j expanded in the manner
of Eq. [3]. Then X .[v(x) —u;(x) ]2 is the sum of
squared residuals which must be minimized by
suitable adjustment of the values of the several
a.. Upon differentiation with respect to a,
therefore, and observation that T:(x)=0u;/da:,
one obtains, by means of Eq. [4], the minimizing
condition

e y@)To(x) =2 s u;(x) To(x) = M@y

This is a direct expression in terms of the data
for the value of a; that makes u;(x) the least-
squares’ solution of degree j:

0= y©)[Tu(x)/M] [5]1,(7)

Because this result is independent of the degree 7,
of u;(x), the suppression of any j dependence in
the symbol a; is justified. (The possible # de-
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pendence of any quantity is generally not
explicitly indicated.) On proceeding from #;_,(x)
to the more detailed representation of the data
afforded by #;(x), one has merely to compute a
single new quantity a; from Eq. [5] in order to
obtain explicitly the value ‘

(%) =1;-1(x) +a,-T,-(x). 6]

It is this circumstance that makes a;T;(x) itself
the least-squares’ fit of degree j to the residuals
y(x) —uj—1(x), as discussed in connection with
Eq. (76). ‘

The minimum value of the sum of squared
residuals is needed for the calculation of the
probable error 7;/ of an individual datum, Eq.
(34); and it is readily found with the aid of Eqgs.
[4] and [5]: '

Yy @) =5 T y@aTi®) =3 Mad,

z t=0 t==0
T Luf®9 =L T (o -3 Mar.

As a consequence,

2oLy (%) —ui(x) ]2
=2 [y(®) 12—2 2o y(@)ui(x) + 2 [u(x) ]2

~SLy@ - Mas, [7], (29)

t=0

and the sum of squared residuals is thus dimin-
ished by precisely the amount Mz on pro-
ceeding from #;_;(x) to the fit of next higher
degree, u;(x). This suggests that M, is the statis-
tical weight of a,, and that the probable error of
a. is therefore 7' /(M )}, a fact that can be demon-
strated by reference to Eq. [5]. Since in that
equation the coefficients of y(x) are [Ts(x)/M.],
the reciprocal of the weight of @, relative to the
data must be given by the sum of the squares of
those coefficients, i.e., X2 .[T:(x)/M,2=1/M,,
according to Eq. [2].

It is quite important that the coefficients a; of
the Tchebycheff polynomials are, in effect,
statistically independent combinations of the
data, so that they act like independently observed
quantities of appropriate weight M, This fact "
is seen by studying a linear combination of the a;
with arbitrary coefficients ¢,
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0= 2_: qzat=io ¢ ey Tux)/ M.
| > y(x)[éqm(@/M;],

upon application of Eq. [5]. The weight of Q,
denoted pg, may be found by summing the
squares of the coefficients of the data y(x) to form

1/pe=5| £ a0/

z Li=0

i i
=2 2 2ZLarge/ MM 1T o(x) Ti(x),
T t=0 k=0
which, by means of Egs. [1] and [2], may be
expressed as -

1/pe=2 q:*/M..

i
t==0

(8]

This is precisely the relation that would result
from applying the law of propagation of errors
directly to the coefficients a; considered as
independently observed quantities of weight M,.

An immediate consequence of this new
theorem may be used in the problem of the
probable error of the adjusted or smoothed data,
the values of #;(x). If p;(x) denotes the weight of
u;(x) relative to the weight of the data, then by
Egs. [3] and [8]

7
1/Pf(x)=Zo[Tz(x)]2/Mt- (91, (35)

=
Further application of the theorem [8] may
be made in finding the weights of the coefficients
of u;(x) expressed as a.sum of polynomials other
than T(x), i.e., the monomials x?, as in Eq. [16]

ahead.

J3. Symmetry Properties

Up to this point there has been no need to
limit arguments to the case of equally spaced
data, but to make further progress by elementary

methods, it is necessary to assume that situation. °

By introducing a new variable, ¢, the data may
be placed at points symmetric about the origin
¢=0and ranging by integer steps from — (# —1) /2
to +(n—1)/2. In this notation a; is the coef-
ficient of €/ in u;(e), and y(—¢) is the same set of
data as y(e) but enumerated in the opposite
order as-¢ runs through its values. The function
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#;(—e) must certainly be the least-squares’ fit
to the data y(—e), ordered in reverse, with
(—)%a; as the coefficient of ¢/. Application of Eq.
[5] to this case yields

(=)a;=2y(—[Tie)/M;],

which, on reversing the order of summation
becomes

(=)aj=2 y( LT —€)/M;].

Comparing this result with the application of
Eq. [5] to the data ordered as usual, namely,

a;=2y(LTi(e)/M;],

one musf conclude that
Ti(—e)=(—)Te), [10]

because y(e) may be chosen arbitrarily. This last
result means that T'j(¢) contains only odd or only
even powers of € as j is odd or even, respectively,
and the number of parameters determining T';
as a function of € is thereby reduced by half. The
summation in Eq. [5] that expresses a, in terms
of the data, is correspondingly shortened :

Mae=3[y(r)+(=)y(—nITur)
> +5(0)T.(0), [11]

with 7 defined as |e¢|, and the term in y(0) to be
included only when the number of data is odd
and e is capable of assuming the value zero.
Equations [10] and [11] express the ‘‘pair-
factor” type of symmetry, to the systematic
exploitation of which is due some of the special
convenience of the method of Birge and Shea.?

These results may be embodied in the proper-
ties of the coefficients Ry, of ¢* in the explicit form
Of Tg:

Tg(e) = Zk Rkte’“.

) [12]
(Cf. Table III, Section C2.)

The fact that T(e) is a polynomial of degree ¢ in
e with leading coefficient unity can be expressed

as
Rm:OfOT k<0 or k>t, R“=1’, [13]
and the pair-factor symmetry appears as
Ry:=0 for (t—k) odd. [14]

One may use the values of Ry to determine
directly the coefficients a;; of €* in %;(e) by means
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of Egs. [3] and [12]:

i
;= Z Rktag.

t=Fk

(157, (10)

According to this relation one needs to use the
data directly only in finding the quantities a.,
while the coefficients ax; are specific linear com-
binations of these a;. A special use of this is, by
Eq. [15],

aj;=Rjja;=a;.

On proceeding from u;_1(e) to u;(e), ay; may
be found from as ;1 by addition of Rya;.
Furthermore, the theorem concerning the ef-
fective statistical independence of a; as ex-
pressed by Eq. [8], may be employed to obtain
the weight px; of ax;:

1/Pki=§ERkt]2/Mh 167, (37)

which reduces, by Eq. [13], to the required
1/pi=1/M;.

J4. Recursive Relations

To realize numerically the foregoing results
one must evaluate the quantities Ry, M, and
eventually T(x) as functions of # and of their
explicit arguments. Although analytical for-
mulas for T(x) and M, will be developed later,
similar results for Ry are not possible because of
the intervention of the Stirling numbers, which
connect (x+k&)(x+k&—1)--(x+1) and x*, x*1,
etc., and for which there is no general formula.
The quantities Ry: are nevertheless connected by
a recursive relation which enables them to be
found when Ry_i, ¢—1, Ry 1—2, Ms_1, and M,_, are
" known. As a matter of fact, tables of Ry values
are more readily constructed by the recursive
algorithm than by any (necessarily quite com-
plicated) analytical formula. In similar fashion,
one may also tabulate the numbers T';(¢) and M,
by simple recursive methods, but the versatility
and power of the theory is severely limited
without the analysis which leads to closed for-
mulas for M, and T:(x).
~ The recursive relations in question stem from

‘a formula of Tchebycheff, readily derived by
expanding €T (e) in orthogonal polynomials. Now
eTi(e) is a polynomial of degree (¢+1), con-
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taining only odd powers of € when ¢ is even, and
only even powers when ¢ is odd. It may therefore
be expressed as a sum of orthogonal polynomials
of degree (¢+1), (¢—1), (¢—3), etc., and since
eTi(e) and Typ1(e) both have the leading term
e+l it is evident that the first term in the expan-
sion must have unit coefficient:

eTz(e) = Tz+1(€) +eiTea(e)+- -,

the remaining terms being of degree < (t—3).
One may next evaluate Y. Tu(e) € T¢(e) which
certainly vanishes, by Eq. [1], when 2> (¢+1)
because the expansion of eT;(e) contains no

- Tchebycheff polynomials of degree higher than

(t+1). Since the expression is, furthermore, quite
symmetric in £ and ¢, one may apply the same
argument, interchanging % and ¢, with the con-
clusion that the expression vanishes whenever
t>(k+1). It has thus a finite value only for
E=t+1, and, therefore, according to Eq. [4],
only the first two terms in the expansion of €77(e)
have coefficients not identically zero, i.e.,

eTi(e) =T op1+c:To1(e). [17]

To obtain the value of ¢; in this simple recur-
sion formula, one must consider YT i(e)-e€
-Ti(e). This expression can be evaluated by
multiplying Eq. [17] by T1(¢) and summing
over all ¢ in which case the result is ¢:M;
according to Eq. [2]. It can be found from the
form which Eq. [17] takes when (¢—1) replaces
¢t, by multiplying both sides by . T.(e) and
summing over e in which case the result is
evidently M, Comparing these two results for
> Ti_1(e) -e- Ti(e), one obtains

Cz=Mg/Mg_1. [18]

The combination of Eqs. [17] and [18] is
known as Tchebycheff’s recursion formula for
obtaining T1(e) in terms of T:(e) and Ty—i(e):

Tir1(e) =eTi(e) — (Mo/Mo1)T—s(e). [19]

For example, one may use the values of Tpand
T, obtained from the restriction that they have
unit leading coefficient to calculate the first few
Tchebycheff polynomials from Eq. [17]:

To(e) = 1, T1(€) =€,
Ts(é) = — (C1+62)é,

Ta(e) =€ —cy,
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Ts(e) =€ — (c1+catc3)er+cics,
Ts(e) =~ (c1+catcs+ca)é
+[eies+ (ertca)cale.

Explicit values of M,, and thence of ¢;, may be

found in succession by means of Egs. [27] and

[18]; e.g.,

Mo=n, Mi=nn*-1)/12,

Mo=n(n?—1)(n?—4) /180,
n(n?—1)(n2—4)(n2—9

ol i)

2800
1)/12,

[21]

ca=(n*—4)/15,
c3=9(n?—9)/140,

It will shortly be proved (see Eq. [44]) that,

" as might be guessed from the values in Eq. [217,

cr=[t*(n*—17)]/[4(4*—

is clearly sufficient to place the entire theory on a
quantitative basis.

Substituting Eq. [12] into. Eq. [19] and
equating coefficients of &+! yields at once the
recursion on which the Blrge and Shea Ry, tables
may be built:

c1=(n*—

etc.

[22], (6)

The mode of formation of Ry from ¢; may be
summarized by

Ry =~ (c1}tcat- -+ o),
Rt—4, ¢=6163+(61+62)64+' .
+(f1+02+ cee +Cl~3)5t—-1y

Rk+], 1= Ry — Csz+1, t—1.

(23]

Roi=(=)"%1c3" "o

Further progress requires the development of
the explicit formulas for ¢; as well as for T'; as a
function of e.

J5. Legendre Polynomials

The method by which Ty(x) and M, will be
obtained involves the use of kth degree poly-
nomials in x, such as x(x—1)- - - (x —k+1), where
x is a variable ranging by integer steps from
x=0 to x=n—1. In order, however, to expose
the pattern of reasoning through which the
final result is reached, it is desirable to free the
argument of those complications introduced by
factorial polynomials by first treating the special

[20]

1)7]; this formula alone -
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case in which the number of data in any finite
range is allowed to increase without limit. This
process eliminates » from all equations and
brings forth a striking analogy between the

‘polynomials of Tchebycheff and Legendre, inde-

pendently noted by many authors,'20.4 and it
leads, incidentally, to the solution of the most
difficult algebraic problem connected with the
determination of T:(x) and M,.

It will be convenient, therefore, to express all
functions of « first as functions of £ =x/#, and to

define
T(&) =lim T (x) /n*,

1
[z
0

M = lim M,/ n?+,
nebc0

n—1

=lim[1/=] Y ---, [24]

in terms of which the fundamental Eqs. [1] and
[2] become the continuous orthogonality rela-
tions over the interval (0S£<1) for the kth
degree polynomials 7%(£) with leading term ¢ :

.fdbﬂ@MK9=Q (k<1),
o [25]
f dE[ T(§) P =, '

Apart from the change of interval from (—1, +41)
to (0,1), and the change of normalization to
make the leading coefficient unity, Eq. [25] is a
characteristic equation for the Legendre poly-
nomials.

The process by which 7,(#) is found explicitly
begins with the observation that any power ¢
may be expressed as a sum of 7(¢) with ¢<Ek.
From this it follows that Jfyld¢-£7,(f) must
vanish for all £<¢, and, since & contains a term
in 7,(¢) with unit coefficient, one may derive,
from Eq. [25], the equations

1
j'dayrxa=o,(osk<m
’ [26]
1
f ad&- £ T, (E) =9,
0

Writing the Legendre polynomials exphmtly in

powers of £, one obtains
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Tt(f) =M, Z witfﬁi, [27]

=0
and it thus appears that Eq. [26] is a set of
(¢41) linear equations to determine the (¢-+1)
unknowns wg;, wy, - ws. The equations for

w;, are constructed by substituting Eq. [27] into
Eq. [267] and by making use of

f dg g =1/(G+k+1):
0

i wie/(i+k+1) =0,

=0

(0<k <),
(28]
2 wa/((+k+1) =1,

=0

(k=1).

Since the w;; will recur in the determination of
T'(x) and M,, it is useful to solve Eq. [28] at this
point. So simple are the coefficients of this set of
linear equations that it would be quite awkward?!?
to forego the knowledge of their special con-
struction and to attempt to apply mathematical
induction to the general solution in terms of de-
terminants. It is appropriate, instead, to recall a
device in use before the invention of deter-
minants, for equations which showed the ‘“per-
symmetric’’ property.

Consider the function of z defined in terms of
Wity by

Z Wit 'w0¢+
=01tz

Wit

Itz itz

Wt

w(z) =

By combining the (¢+41) terms in the sum over
the common denominator z(z+1)- - - (z+4¢), it is
clear that the numerator of the resulting fraction
must be a polynomial of degree ¢ in 2. Since w(z)
is required by Eq. [28] to vanish at the ¢ points

z=1, 2, - -+, its numerator must be proportional
to (2—1)(z—2)---(z—1); i.e.,
w(ez) «[(z—1)(z—2)---(z—1)]/

[z(z+1)- - - (z+2)].

At gs=t-1 the right side of this relation assumes
the value (¢!)2/(2t4+1)!, while w(zg) is known
from Eq. [28] to assume the value w(t+1)=1.
These relations fix the proportionality factor at
(2t41)1/(¢)? and the value of w(z) at
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| We __(2t+1) (z—1)--+(z—0)
z+f N2%(E+1)- - (348

On multiplying both sides by (z+£k), with &2 an
integer between zero and ¢, one observes that a
corresponding factor is cancelled in the de-
nominator on the right and in the term w;../(2+k)
on the left. If 2 is then made to approach —k,
every term on the left but the latter vanishes, so
that

lim (z4£)w(z) = wi.
2>—k

= (=) [(2t+1) (k+0) 1]/
CeEDH2EH2(—R)1]. [29]
This relation enables one to determine 9, at
once, for, in Eq. [27], the leading coefficient in
7,(£), Mw,, has been defined as unity. Taking

this fact into account, one may summarize the
results of Egs. [27] and [29] as

M= 1/wtt= (t !)4/[(20 '(2t+1) ']

() o=z () (o)

As an application of these formulas one may
consider the limit of the Tchebycheff recursion
Eq. [19], on division by #tt! and use of Egs.
[24], [30], and e=x—(n—1)/2

Tepa(8) = (E—5) 7.(8) —[##/4 (22 — 1) 1701 (8),

which is a form of the well-known Gau551an
recursion for Legendre polynomials.

Wot

+

J6. Explicit Formulas

A preliminary suggestion for determining 7"(x)
might be to attempt to carry through the same
process used for 7(£) in terms of powers of x.
But then it would become necessary to effect
sums of the form

n—1

(1/m) T (+/n+)
z=0
in analogy with fp!d§- £¥t%, and the remainder of
the problem would turn upon the evaluation of
persymmetric determinants of Bernouilli num-
bers, which is not entirely a simple matter. It
seems appropriate, therefore, to try to express
T(x) in terms of polynomials that can readily
be summed over integer values of x from 0 to
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(n—1). One thinks, at once, of binomial coef-
ficients, which have a role in problems of sum-
mation and differencing analogous to that of the
powers in integration and differentiation.

x
The binomial coefficient (t) may be con-

sidered as the polynomial of degree ¢ in x with
leading coefficient 1/¢! given by

(;‘) =x(x—1)- - @—t+1)/eL . [31]

It is thus defined for all values of x but only for
positive integer values of £ It reduces to zero
for x=0, 1, ---(¢—1) and to positive integer
values for integer values of x greater than or
equal to ¢ Its importance here comes from the
readily verified binomial recursion formula

x x+1 X x
2(1)= (i) - () =) e
t+1 t+1 t+1 ¢
It is convenient to be able to extend the definition

x
. of (t) to negative integer values of ¢, and this

result is accomplished through Eq. [32];

(z) _ (x*l"l) _(’1“) — (D —x=1,
(2)-C3)-()-
()

x
The analogy of (t) to the function xt/t! is

suggested, for example, by the binomial theorem
for the latter, and is proved by induction on the
basis of Eq. [32], exactly as in the usual form of
the theorem:

z()(2)-(7)

With the aid of the elementary identity

()-=(77)

the binomial theorem may also take the form

[33]

[34]
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i x\ f2—t Z2—x
== () (G2)-(5)
t=0 t/ \j—t J
The most significant property of the binomial
coefficient polynomials is the ease with which

they may be summed by repeated application of
Eq. [32]:

(-(2)0)
(T
AT
()

In particular, if x ranges over integer values
from 0 to (n—1),

n =1 gy n+t =1 gyt
(5)-20) ()-z ()
141 z<0 \1 t+1 20 t

which may be rewritten to bring out their

resemblance to the corresponding continuous
formula as

(1/n) z[( )/( )]=1/(t+1)
awE[(7)/ (1) e

In fact, as #» increases without limit, and

()/ () v () /(7)

approach (x/n)t=¢§¢, Eq. [35] approaches

f dg-g=1/(t+1).

Furthermore, by means of the identities
x\ [/x+k 1+E\ /x+Ek
(¢)( k )=< k )(i+k)’
and
i+k nt+k
( k )('H-k-l-l)

(D)) e, o
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which follow directly from the definition [31],
it is easy to derive from Eq. [36] the important
result

SHO/DIC)/C)

This equation approaches
1 .
[ aeee=1/G+E+0
0

in the limit of large #.

One is now equipped to retrace the argument
that led to Eq. [28] in the case of 7:(£). Just as
in the derivation of Eq. [26], one may here
expand the polynomials

VAR n+k x n—1\1]
[/ )] = [C)/ ()]
k k 1 7
in sums of Tchebycheff polynomials; Egs. [1]

and [2] will yield, just as did their analog Eq.
[25], the results '

e ()/ (7)o

(<7,
]

C
amEre (1)) ()] wen.

(1/n>§Tf<x>[(f)/ (ﬂjl) ]
e/l

<1/n>§T t<x>[(x;rt)/ (n;H) ]
/()]

These equations form the analog of Eq. [26].
Following the lead of Eq. [27] one may convert
Egs. [38] and [39] into linear equations for f.

. ‘x+k x\ .
and g;;, the coefficients of ( Y ) and ( ) in
- 1

the appropriate expansions of T(x),
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o=l
(/1)

~fu/ (7))
(/)

The outer factor has been chosen to cancel the
right side of Eq. [39]. One must then substitute
these relations into Eqgs. [38] and [39] in the
order in which they are written, to obtain the
simultaneous linear equations for fi; and g, after
effecting the sum over x on the left by means of
Eq. [37]:

[40]

Zt: Jie/ ((+k+1)=0=2 gu/(i+k+1),

= (i<t) = (k<t)  [41]

t t
2 fre/ (tHk+1) =1=F gu/(t+i+1).
k=0 =0 .
These equations for fi:, gi: are not merely
analogous to those for w;, in Eq. [28], they are
actually sdentical to them. This special simpli-
fication was brought about by throwing the
summation formula in Eq. [37] into a form where
the result of summing terms with z-dependent
factors was quite independent of #; this, in turn,
was secured by the use of the pair of polynomials

)/ () e /()

which approach the monomials £ and £ in the
limit of large .

The solution of the problem of the explicit
form of 7,(£) contained in Eq. [29] may now be
directly taken over into the problem at hand,
through the identity :

[42]

The first application of Egs. [29] and [42]
appears in the determination of M/; by an argu-
ment similar to that which led to Eq. [307;
namely, the leading coefficient of xt in Eq. [40]
must be unity:

Wi = fi=gi.
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wart,/[w(") (M) |1
w=wr(37)/ (2;) [43, (16)

At once, the quantities ¢; may be found and
applied to Egs. [177]-[237,

or

Com= Mo/ Moy=[m2—2))/[4@r—1)], [44]

as exemplified by the values in Eq. [21].

For the final step in the explicit formula for
T.(x), the w; are substituted from Egs. [42]
and [29] into Eq. [40] in terms of binomial
coefficients: '

T,(x>/M,={ l“(2t+1)]}
<=0
(/G
_H ) (H—k) . )k(x+k) (451

This expression gives the weighting factor for the
data in Eq. [5] in terms of a small number of
integer factors. The ratio of Egs. (15) and (16)
in Section C3 may be shown to be identical w1th
Eq. [45].
As emphasized in the introduction to this
section, results equivalent to Eqs. [43] and [45]
“have been independently derived by many
methods? 1520.25.4 ranging from ingenious gener-
alization of numerical tables to polished analysis.
The elementary argument above may, never-
theless, be useful through its accessibility to the
general reader. It was independently developed*
in substantially the form presented here.

J7. Solution in Data Differences

Since successive differences of the data y(x)
are often formed in preliminary work to see if
polynomial fitting is justified, it is worth trans-
forming the results obtained for a; into a form

WEINBE RG

in which the latter appear as linear combinations
of data differences. In particular, a; must be
linearly constructed from the kth differences of
y(x) because in the special case that the kth
differences are actually constant one has the
well-known result

Afy(x) =klar, with Ay(x)=y(x+1)—y(x).

It will be convenient to introduce fictitious
data which vanish identically at integer points
outside the actual data range, 0<x<z—1. In
this way one avoids having to specialize the
limits of summation in the following treatment,
e.g.,

S 3@ f@) = ey @) ),

2=0

where the summation extends over all integer
values of x. Under these conditions it is easy to
apply “‘summation by parts’ to sums of the form

() -2 0()

according to Eq. [32], b3} merely shifting the
index of summation by one unit in the second
term of

zy@A( )= (C)-()]

1
=zr:y(x>—y<x+1>](f:1 )
Thus

T 3 ) ~ ég Ay () (’:1) .[46]

=0

The disappearance of an explicit “summed part’’
has been secured by the introduction of the
fictitious data, and this method may be iterated
as many times as desired since the limits of sum-
mation never enter explicitly. On ¢-fold iteration,
for example,

z=0

=30(;) ~r s (i) v
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This result may be used in connection with the explicit formula for a; obtained by combining Egs.

[5] and [45]:
(NG
)(w)( )y A‘y(x)(H_t)/[ (;ii)]
et (]

by rearrangement of the order of the summations over ¢ and x. On reference to the identity in Eq.

t ¢ ¢
[36], (x+ )(H_ ) may be written as (x+ )( ), and the ¢-dependent factors may be sepa-

rately summed with the aid of the binomial theorem Eq. [33] and the identity Eq. [34]:

£()C)-CT)-o)

Substitution into the result obtained above for a; then yields

oz (F) () 1G]

The weighting factor in this sum of data differences is proportlonal to the polynomial of degree ¢
x4t n—x—1
( ) which vanishes at x= —1, -2, , —tand also to the polynomial of degree ¢, ( ; ),

which vanishes at x=n-—1, n—2, -.-n—¢. The advancing difference Aty(x) is formed from data
y(x)y(x+1)---y(x+¢t). Therefore A‘y(x) vanishes identically for x <(—¢) or x>(n—1), for only
fictitious evanescent quantities contribute to its value. Because, furthermore, the weighting factors
of Aty(x) in Eq. [48] vanish for (—£) <x<0 and for (n—t—1) <x < (r—1), the limits of summation
over x in Eq. [487] may be fixed at x=0 and x=n—¢—1. No ﬁCtlthuS data then appear in the final

formula: n—t—l x4+ fn—x—1 n+t
(TG e

z=0

This result is given in Section D as Eq. (57) with symbols defined by Egs. (46), (53), and (58).

Equation [497] has the special advantage that all weighting factors of data differences are positive ;
the weights sum to unity, as may be seen by inserting a set of data with exactly equal differences of
degree ¢. The weights are symmetrical about the point x=(z—¢—1)/2=v in a manner evident upon
introduction of the variable e=x—», and the central differences 8ty(e) =A%y(x):

m,:éf_y 6‘y(e)(v+:+e) (”+i—e) / (Z”fol). [507, (52)

This expression appears in Section D as Eq. (52), with the symbols defined by Egs. (51) and (53).
Here is illustrated the analog of the pair-factor symmetry of Eq. [11] which enables the data dif-
ferences to be grouped in pairs and which halves the number of weighting factors that need be tabu-
lated. Considered as a function of ¢, the weighting factor is a polynomial of degree 2¢, symmetrical
about the origin where'it has its maximum and diminishing to zero just beyond the interval of sum-
mation. There it has its roots at the points e= == (v+1), =(»+2), - -+ £(v+9).
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One may therefore extend the summation in Eq. [507] from e= — (v+£) to e= (v+£) without altering
its value; application of the same technique of summation by parts which led from Eq. [46] to Eq.

[497] transforms Eqgs. [49] and [50] into

ta,= Zy(w)( )'A‘( )(n—

1——x+t)/(n+t)
t 2t+1

[51]

wen (/O

Comparison with Eq. [5] yields a new form for the explicit Tchebycheff polynomials:

'T,(x)/M,=(—)‘A‘(f)(n B x+t) [(Zii)]
(TN BCED)

Some insight into these expressions, first
derived by Jordan,? may be afforded by passing
to the limit of large # according to Eq. [24].
Observing that A'—n—t(d/d£)t and cancelling a
factor of »—*! on both sides, one obtalns the
result

7:(8) /M= (=) 2+ 1)1/ ()]
X(d/dg)tE(1 - )Y,

or
7(§) =[(—)*!/(2)!]
X(d/dg)[(1—-9)*]. [53]

Apart from range and from normalizing factor,
this is just the well-known formula of Rodrigues
for the Legendre polynomials. Jordan’s Eq. [52]
is thus disclosed as the analog of Rodrigues’
theorem for the Tchebycheff polynomials.

Just as in the continuous case, the process of
differencing produces roots near the maxima and
minima of the differenced function; because the
roots of the functions differenced in Eq. [52]
lie between +(v+%) and — (v+¢), their maxima
and minima must be similarly located. T(e) thus
has all its roots in the range of the data and can
only increase or decrease steadily and without
limit outside the data range. To this circum-
stance must be ascribed the extreme unreliability

of an extrapolated point; for, according to Eq. .

[9], the corresponding probable error increases
essentially with the ith power of the distance
from the range of data.

The simple construction of the weighting
factors in Eqs. [49] and [507], as well as their
positive sign, recommend these formulas for the
determination of a, For the same reasons, Eq.

. [52] appears to be a practical means to evaluate

Y‘t(é) .

J8. Computation of Tables

A fundamental consideration in making tables
for numerical realization of the theory is the rep-
resentation of the rational numbers involved as
the quotient of the smallest possible integers. The
simplest problem of this type occurs in connec-
tion with Eq. [497], where the weighting factors

x4t n—x—1 n+t X
( )( )/( ) might well ap-
¢ ¢ 2t41

pear unreduced to lowest terms. Much of the
reduction, however, has already been accom-
plished through merely having written this ex-
pression in terms of the binomial coefficient
function. For the latter is known to be an integer

* for all integer values of its argument, although

when explicitly written as a quotient of factorials
it might not appear so at first glance.

The effect of the binomial coefficients has been
to cancel in numerator and denominator any
common factors independent of #. All that now
remains is to examine whether for certain values
of # common factors may be extracted from

x+t\ fm—x—1 . .
( ; ) ; for all integer values of x in
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the range 0 x<n—t—1. If such factors exist,
they must surely be cancelled by the denom-
inator, since the latter is the sum over all x in
the range 0Sx<#—¢—1 of the values of the
numerator, i.e.,

n+t il fn—x—1
Go)-= (077,
2t+41 20 ¢ t
a consequence of the remark following Eq. [49].
Before carrying out the factorization it is
worth observing that such a process will achieve
the same effect in T4(x)/M,in Eqgs. [5] and [45].

This is a consequence of Eqs. [52] and [45],
according to which

EC(0)
()

On the left is a function proportional to T(x),
and on the right occur the ¢th differences of the

x4+t fn—x—1 . .
numbers( , )( . ), which give the

weighting factors for the data differences in Eq.
[49]. Since the ¢ initial and the ¢ terminal values
of the latter sequence are null, the sequence can
be obtained entirely from the tth differences
appearing in Eq. [54] by ¢-told iteration of the
process of forming, in order, the partial sums and
by adjoining a null value to the beginning and

t —-x—1
end. If the sequence (x;l—)(n :: ) for

0<x < (m—1) has all its common factors divided
out, its tth differences will then also be freed of
common factors. This is, of course, not generally
true, but is a consequence of the ¢ initial and final
null values; for if the ‘th differences had a com-
mon factor, their partial sums, and hence the
primary sequence, would have to possess the
same common factors.

One concludes, therefore, that the process of
reduction to lowest terms of the complicated ex-
pressions for T(x)/ M, is accomplished by can-
celling from numerator and denominator exactly
the same common factors as those that occur
in the relatively simple weighting factors
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x+t\ /n—x—1 n+t .
( )( )/( ) occurring in Eq.
2 ¢ A\2¢t41

[49.]

The reduction of these weighting factors, in
turn, rests on the periodic occurrence of mul-
tiples of a given prime among the successive
integers that must be multiplied together to

x4t n—x—1
form the numerators of ( ; ) and ) )

It is not difficult to discover the condition on #»
in order that there exist at least one value of x
in the range 0S¥ n—t—1 for which neither

x4t n—x-—1 .
( . ) nor ; can have a prime factor

P in their numerators not cancelled by a cor-
responding factor in their denominator #!. The
result, which formalizes the procedure of the
“Sieve of Eratosthenes,” may be stated upon
writing both # and ¢ in the form of a multiple of
P1¢, with a positive or zero remainder less than
Pq, ie.,

n=NPi+n*, t=TPi4t*

with ‘
0Sn* <Py, 0St*<Pa.

There exists a common factor of P for every value of
n such that P1—t* <n* < t*; and if these conditions
can be satisfied for some P, t, n with more than
one value of q, there is one distinct factor of P for
every possible choice of q.

An immediate corollary is that one need
consider neither prime factors P> 2¢ nor powers
of such primes P?>2¢{. In reducing to lowest
terms one might proceed by first setting down
all Pe<2¢, and then dividing these quantities
into ¢ to obtain the corresponding remainders #*.
One must reject all cases for which Pe—¢*>¢*,
and for those that remain one must permit #»* to
assume all values with Pi—*<n*<#*. The
values of # for which a common factor of P is
present are then given by n= NP?+4n*, where N
is any integer which makes #>¢. As an example,
consider the most complicated case in the
accompanying table, that for ¢=35, 2¢=10, and
P(£2H)=17,5, 3, 2. In this way there is fashioned
a kind of Sieve of Eratosthenes which sifts from
the values of #, set down in succession, the
periodically recurring groups for which the
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MobEeL ForM 9. Scheme for determining common factors.

P P t¥  Pa—t* n* n(5) P
7 7 5 2 2,3,4,5 TN£2, TN+3 7
5 S 0 5 —_— S S
3 3 2 1 1,2 3N:|:1} 3
9 5 4 4,5 IN+4
2 1 1 1 2N+1
2 4 1 3 — —_— 2
8 5 3 3,4,5 8N+3,8N-+4

weighting factors possess in common a given
prime divisor. The labor of computation of pair
factors for data and for data differences is thereby
greatly reduced.

WEINBERG

How to apply this process in order to represent
T(x) as proportional, by a fixed factor, to a
sequence of relatively prime integers, and how
further to exploit this numerical simplicity
throughout least-squares’ problems, has been
thoroughly explained in preceding sections.

In conclusion, let the author of this section
gratefully acknowledge the initiative and the
practical evaluation of results of the foregoing
research as coming from Professor Birge. Many of
the formulas derived here for the first time were,
in fact, predicted by him in advance of analytical
proof, and without his distinguished guidance,
this work would not have been possible. '



