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The semi-empirical theory of the nuclear
energy surface as a sum of volume, surface, sym-
metry, Coulomb, and expansion terms has been
subjected to critical revision. A quantitative
correlation appears to exist between the windings
of the mass valley in the K—Z, A plane and
irregularities (plateaus) in the packing fraction
curve. The theoretical Pf curve and the various
energy parameters are Axed within narrow
limits by the mass differences of odd isobais
(N Z=&1—) independent, within wide limits,
of the value assigned to the compressibility
coefFicient. Two procedures (the analysis of
nuclear fission, the fitting of the theoretical Pf
curve) yield independent values for the ratio sur-
face energy/Coulomb energy. These values differ,
presumably because the first involves the size of
the real nucleus, whereas the second, through the
assumption R = r„A&, refers to a uniform state of
nuclear matter as it would be in the absence of
internal pressures tending to produce expansion.
A reasonable value of the compressibility coeffi-
cient, consistent with estimates based on the
virial theorem, sufhces to account for the com-
puted 10 percent diR'erence. A general proof is
found for signer's rule that isotopic numbers
N —Z = 2n —I and N —Z =2n 6rst occur at
nearly the same values of A.

(A) INTRODUCTION

HESE notes are concerned with the critical
discussion and evaluation of a simple semi-

empirical energy formula based on the concept of
a nearly constant average density of nuclear
matter throughout the range of known, ,nuclear
species. The essential structure and properties of
the formula are well known' ' but no entirely
adequate treatment in the light of present
knowledge is available. Adopting the simplest

~ The research described irI this paper was supported in
part by contract N60RI-117, U. S. Navy Department.' C. F. v. Weizsacker, Zeits. f. Physik 90, 431. (1935).' H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,
82 (1936'.' P. Jordan, Ergeb. d. exakt. Naturwiss. (1.937).

possible analytical representation we write

E(N, Z) =E„+E,+E,+E,
—(E,'+E,'+E,) '/2E, " (1)

for the normal state energy of a nucleus con-
taining X neutrons and Z protons. Here

E,= —u,A,

E, =u,A'',

(N —Z) '
B„=u~

A

Z(Z —1)
B,=4u,—

A'

All dependence on the even-odd character of N
and Z may properly be ignored in the preliminary
survey. The modifications required to adapt
Eqs. (1) and (2) to the observed even-odd de-
pendence are reserved for discussion in sec-
tloll. (F).

In Fq. (1) the first term may be interpreted as
volume energy in view of the proportionality of
volume and total number of particles (an alterna-
tive statement of the basic assumption). The
surface area varies as A. ', permitting the identih-
cation of the second terms in Eq. (1) as surface
energy. Since the third term is a homogeneous
function of the erst degree in X and Z, it might
properly be grouped with the volume energy.
However, the designation symmetry (or isotopic
spin) energy proves convenient. A similar term
can be derived from the crude nuclear model of
non-interacting particles in a potential well. The
fourth term is the electrostatic or coulomb
energy. The electrostatic energy of a uniformly
charged sphere of radius R, and total charge Ze
has the value 3(Ze)'/SR„. From this relation and

(3)
we infer

u, = 3e'/20r. „.
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In particular, for r, = ro
—=1.47 g 1.0 " cm,

N, =0.157 millimass units, the value required by
the empirical mass differences of odd isobars with
X—Z= &1 under the assumption that, nuclear
matter is incompressible. 4 '

At this point there is need for a critical exami-
nation of the basic assumption. It seems plausible
that the assumption should apply, not to actual
nuclei, but to hypothetical nuclear systems in

which

2 T„k,„ (5)

in which T„ is the total kinetic energy associated
with A, . Some uncertainty at;taches to the
coefficient k„, but it seems likely to fall in the
neighborhood of 2 to 3. Adopting. a reasonable

4 E. Wigner, Phys. Rev. 51, 947 (1937).
5 W. Barkas, Phys. Rev. SS, 694 (1939).

D. R. Elliot and L. D. P. King, Phys. Rev. 60, 489
(1941).

~ E. Feenberg and G. Goertzel, Phys. Rev. IO, 597
(1946).' E. Feenberg, Phys. Rev. SQ, 149 (1941). Detailed
calculations of the compressibility coefficient have bee&i
made by K. Nakabayasi, Zeits. f. Physik 9'7, 211 (1935);
H. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936);
R. D. Present, Phys. Rev. 60, 28 (1941).These calculations
involve the application of the statistical approximation to
exchange type force models. The results conform to Eq. (6).
Present also obt ~ins estimates for F.,' an(1 I&', '.

(a) the electrostatic interaction between protons is
absent.

(b) the internal pressure associated with the surface
energy is negligible (essentially imposes a lower limit on the
mass number A).

(c) N and Z are even integers and iV=Z.

Conditions l'a) and (c'l define a neutral four-group

type of nuclear matter.
Under the assumed conditions the energv has

the form 2„+B„and the surface energy does not
enter into the determination of the equilibrium

radius R,. Turning now to actual nuclei, B„F„
E„and 8, are all evaluated at the particle density
de6ned by Eq. (3). The last term in the right-
hand member of Eq. (1) arises from the change in

volume of the nucleus under the internal pressure

produced by the electrostatic force and by the
deficiency in binding energy associated with F.,
and E, The "compiessibility" coefficient E„"is

the second derivative of the volume energy with

respect to a uniform scale factor. A general

argument (essentially an application of the virial

theorem) leads to the result'

estimate for T„Eq. (5) yields

E„" (50 to 100)A mMU. (6)

The rates of change of .E„and 8, with respect
to a linear scale factor are denoted by I;,,' and F,'.
These derivatives are proportional to E,, and I&„

respectively; hence

L+" '=k 8,

A more complete discussion of Eqs. (5)—(7) ap-
pears in the following section.

The packing fraction' provides a convenient
representation of the experimental material.
With energy expressed in mMU and n = 1.00892,
II= 1.00813, the packing fraction is related to the
energy per particle in. the following simple
manner:

Pf X10 = (3I A(A—) 10'—
=8 53+0 4. 0(X .Z(A)—+E/A (8).

Experimental packing fraction curves have
been plotted by Dempster" and by Hahn,
Fluegge, and Mattauch. "A considerable element
of interpretation is involved in the experimental
curves, since a number of points are derived from

packing fraction differences alone. There are
features of Dempster's curve which find no
counterpart in the theory provided by Eq. (1).
Especially striking is the Hat plateau between S'
and I'b required by the experimental fact that the
slope of the packing fraction curve in the mass

range 90—105 is double that in the range 180—210.
One might attempt to correlate the plateau with
the development of a two-phase system; an inner
region consisting mostly of neutrons and an oute~

region in which there is a trend toward approx&-

mately equal numbers of neutrons and protons.
The incipient stages of such a development would. .I

be irked by an additional negative term in

Eq. (1) associated with the variation in neutron
and proton densities within the nucleus arising
from the electrostatic repulsion of the protons.
Crude estimates of these effects suggest that they
are not large in actual nuclei. "-"

" F. W. Aston, kiss 5pectrc gnd Isotopes (Edward
Arnold and Company, London, England, 1942).

A. J. Dempster, Phys. Rev. S3, 869 (1938)."0.Hahn, S. Fluegge, and J. Mattauch, Physik. Zeits
41, 1 (&940)."E.Feenberg, Phys. Rev. 59, 593 (1941)."E. signer, Bicentennial Symposium, l J»iversi[. y ()t
['ennsylvania (1.940).



A second representation considered by
Dempster places a point of inflexion (or possibly
a plateau') near A = 105.The experimental points
in this region are compatible with the existent of
a nearly horizontal plateau extending over the
range 108~2~124. It is then possible to elimi-
nate the plateau between S' and Pb by con-
siderably increasing the slope in the range
90«A « l05. Dempster's curve and also the
second. possibility both appear in Fig. 1. Evi-
dently the danger of widespread n-instability
below A = 180 1s l. educed by the shift Qf the
plateau from the range 180—210 to 108—124. As
shown in Section (E), the second representa-
tion can be interpreted quantitatively within
the framework of Eq. (1). The plateau in the
mass number range 108—124 is a natural and
unforced consequence of the empirical depend-
ence of u, on mass number.

Hahn, Fluegge, and Mattauch utilize the free-
«lom available in interpreting the data to mini-
mize the possibility of O.-particle emission belov

the heavy radioactive elements. They obtain
essentially the second possibility discussed above
with a clearly defined plateau in the range 108—
124.

In the preliminary survey it seems desirable to
ignore the detailed structure of the packing
fraction curve and to seek for the optimum
quantitative representation of selected groups of
experimental data. These are:

(a) Smoothing out local oscillations„ the isotopic number
Ã —Z is a fairly regular and simple function of the mass
number.

(b) The packing fraction attains the minimum value
—0.74 mMU in the general neighborhood of 3 =60.

(c) The packing fraction vanishes at mass numbers 16
a nd j 73.

(d) The energy difference between odd isobars with
X—Z = ~1 follows closely the formula

DZ, = 0.628(A —1)/A 1 m M U (A ~15).

With (d) always satisfied, we find that u„and
n„are practically independent. of the compressi-
bility coef6cien t. Numerical relations «Ieriv|:d

Pf'» JO

-8.0'-

{i

k {) " 4)

-/O. O—

F?G. 1.Experimental packing fraction curves. Solid curve —Dempster (a); dashed curve —Dempster (b);
@—experimental points {Hahn, Fluegge, and Mattauch); x—estimated from Dempster's packing fraction
differences.
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from (a), (b), (c), (d) and Eqs. (1) and (2) are
collected in Table V. Following the preliminary
survey the discussion turns to problems involving
the irregularities of the packing fraction curve
and the even-odd properties of nuclear systems.

E(N, Z, X) =E.(A, X) +E.(A, X)

+E,(N, Z, X)+LE.(A, Z). (12)

It is evident from the definition of B„that

I,'8) THE COMPRESSIBILITY COEFFICIENT
OF NUCLEAR MATTER AND

RELATED QUANTITIES

Let II represent the nuclear Hamiltonian with
ommission of the Coulomb interaction. The Consequently,
equ841on

(BE

E ax)~=,
(13)

determines the normal state eigenfuncti

f,(x~, y~ ) and eigenvalue E,(N, Z) of
nuclear model in which there is no Coulomb force
between protons. The eigenvalue E(N, Z) and
radius R of an actual nucleus may be computed
to a sufficient degree of approximation from
the expectation value of the total Hamiltonian
using as wave function f,(Xxq, Xyq ) with X a
scale factor to be determined by minimizing E.
Thus'

From the condition for a minimum there follows

X =—R./R = 1 —{E,'+E,'+P-,) /E. ",
E(N, Z, X) =E(N, Z, 1)

—(E.'+E '+E,)'/2E„".

To obtain an order of magnitude estimate of
the compressibility coeAicient Z„"it is convenient
to express E,(A, X) as a sum of potential and
kinetic energy matrix elements, i.e. ,

E(N, Z, X)

t P *(Xx, )2.$.()x, )dv

(9) E(N, Z, X)—E,.(A, 1)+E,(A, 1)
+E,(N, Z, 1)+E.(A, Z)+(X —1)
X[E,'(A, 1)+E,'(N, Z, 1)+E,(A, Z)]

+-'(X—1)'E "(A, 1). (14)

f
J

' ' [f (kx '')]d'U

—+)E, (10)

=E.(N, z, x) yxE, .

A (A' A'
E„(A, ~) =limit —E.

I
—,—,h~'--A' ( 2' 2' )

(A A
E(A, l)=limit E (

—,—,i)
A t'A' A'

——E.
I
—,—,x I,

tA A
E,(N, z, x) =E.(N, z, ~) —E.

~

—,—,&,
I

&2 2

To express E,(N, Z, )) as a sum of volume,
surface, and symmetry energies consider a system
containing A' particles with A'))A and Z'=N'
=-,'A'. Then

E„(A, X) = X'T, —U„P ) .

The coeIIj.cient X' multiplying 1, is a consequence
of the fact that the kinetic energy operator
transforms as a homogeneous function of degree
—2 in the space coordinates under a change of
scale. Equation (13) now yields

U.'(1) = 2T..

The calculations of Section (D) determine E„ to
have the value —1.5A mMU independent of the
magnitude assigned to the "expansion" energy,
subject to the condition that the mass difference
of isobaric odd nuclei with N —Z=~i is given
correctly by the theory. The statistical model
(Section (H)) yields T 1SA(ro/r„)'mMU. Thus

U(1)-2 1+I —
I

«0&

Results are stated for three analytical forms of
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the potential matrix element:

U. (X) k,

B exp( —a/) )
(1+(r /"o)')

1+3(r /rs)'

1+(r /rs)'

B exp[ —(a/X) ']
(1+(r./«) ')'

1+2(r„/ro)'.
2

1+(r„/rp)'

BX'/(X'+ a') l
2 p

*
2 1+6(r„/ro) '

(.1+3(r,/rs)') 3 1+(r,/rs)'

in which 8~ and b2 represent the relative increase
in kinetic energy and decrease in potential energy,
respectively, of the excited state. The minimum
value of 8, occurs at

X = 1 —(3,+3s)/0,
or

R/R„=1+ (bt+bs)/Is„,

and the excitation energy is simply

(21)

AE,„,= 3tT„+IsU.~ s(&t+23s) U, .-(22)
Equations (21) and (22) together yield

(23)

For a numerical example suppose ¹,"is excited
by the absorption of a slow meson. Then
AE, , 100 mMU and, with k, U, 1200 mMU,
the expansion lies between 8 percent and 16
percent of the normal state radius. This expansion
is large enough to reduce materially the potential
barrier involved in the emission of low energy
protons. Another eR'ect facilitating the emission
of low energy protons has been discussed by
Bagge."The excitation of "surface" vibrations
produces an increase in the mean square radius
and thus a decrease in the eff'ective Coulomb

t4 E. Bagge, Ann. d. Physik 33, 27 (1938).

Two other problems of general interest can be
treated conveniently in this context. First it is
plausible that the nuclear radius should depend
slightly on the state of excitation. To obtain a
semi-quantitative relation between radius and
excitation energy consider the equation

E„(X)= (1+St)X'T.—(1—8s) U. (X) (20)

barrier. The two effects are comparable in magni-
tude and doubtless both occur in actual nuclear
systems.

The second problem concerns the stability of
the spherical shape in heavy nuclei. All available
discussions are based on the assumption that
nuclear matter is incompressible. However, a
finite value of the compressibility coefficient,
consistent with Eq. (6), appears necessary to
bring about concordance between results ob-
tained from

(a) the analysis of the packing fraction curve (Section
(D)) and

(h) the analysis of the fission process. u

Suppose that E, and the Coulomb energy are
expressed as functions of two parameters, ) a
scale factor, and p, a shape factor. These are
defined conveniently by the equation

(24)

representing the surface of the nucleus under the
combined action of a uniform change of scale and
an ellipsoidal distortion. In terms of ) and p,

E(X, p) =E„(X)+E,(X, p)+E,(X)+)E,(ls). (25)

Equation (25) can be studied conveniently by
expanding E(X, p) in a double power series about
the point ) =p = 1:
E(X, Ia) =E(1, 1)+(X—1)[E,'+E,'+E, j

+s()t-1)'E."+s(~-1)'
&&(E,„„y()—1)E.„„'+)E.„„)+ . (26)

*

The flotation of primes to indicate derivatives

"N. Bohr and J. A. Wheeler, Phys. Rev. 50, 426
(1939)
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TABLE 1. [k,u,A l+u„(A —1) /2 l7/50A.

I

with respect to X is continued, and derivatives
with respect to p are denoted by the subscript p.
All derivatiyes are evaluated at X= p, =1.

For the purpose of studying the stability of the
spherical shape p, —1 is treated as an arbitrarily
small quantity; consequently the equilibrium
value of X is identical with that already computed
(Eq. 15). The spherical shape is stable against
small ellipsoidal deformations if the coefficient of
(p —1)' is positive. According to the elementary
theory of fission" "

16 8

45 45
(27)

Thus the stability condition can be expressed in

the form

or, explicitly,

2E, (X, 1)
&1

XE.(1)
(28)

u, 2Z(Z —1) k,E,
1 —(1—k,)I, A I/

E.
(2+k,)(1—k,) . (29)

2E,"
The factor in square brackets is new. In the
absence of this factor Bohr and Wheeler find that
u, /u, has the value

(us/

4 uc) Bw

2 X92 X91 1

239 0.74
= 94.7. (30)

TAM. E II. u, and r, as functions of k, .

gks
A X —1.00 —0.50 —0.25 0.00 0.25 0.50 1.00 1.50

15 —0.093 —0.038 —0.011 0.017 0.044 0.071 0.126 0.180
23 —0.072 —0.024 —0.001 0.023 0.047 0.071 0.118 0.165
31 —0.057 —0.014 0.007 0.029 0.051 0.072 0.115 0.1.58

The number 0.74 appearing in Eq. (30) is a
measure of the potential barrier opposing the
spontaneous fission of »O'". Provisionally, the
same number may be combined with Eq. (28) to
produce the equality

+s k,E,—=94.7 1 —(1—k.)—
uc ~ I/

—(1—k,) (1.48+k,)— . (31)
1.48'„"

Here the square bracket is evaluated at A = 239,
Z =92.

Reliable theoretical estimates of k, and k, are
lacking. However, k, can hardly be negative
considering that the kinetic and potential energies
both increase with decreasing radius (increasing
lI.). It is therefore plausible that the additional
kinetic energy and the deficiency of potential
energy associated with X—ZAO should also in-
crease with decreasing radius. In view of the
fact that the ratio E,/E, is small, no attempt
will be made to determine k, from the empirical
data.

To determine the sign of k, we observe that
the particle density at the center of very light
nuclei may reasonably be expected to increase
with increasing mass number under conditions
(a) and (c) of the introduction. An equivalent
statement is contained in Eq. (15) provided that
8,'&0. Thus k, should be positive.

Upper and lower limits on k, can be derived
from the combination of empirical data on
Coulomb energy differences in odd isobars with
the hypothesis that Eqs. (1) and (2) are valid
down to mass number 15. The theoretical energy
difference is

4u, (A —1)
AE(N Z= W1)=-

A&

ks

0.00
0.50
1.00
0.50

Z," (mMV)

508
502
502
302

uc (mMV)

0.161
0.169
0.178
0.178

r&10» (cm)

1.44
1.37
1.30
1.30

k,E,+k,E,+u, (A —1)'/A '

while the empirical'differences are represented
adequately by the first factor only (omitting the

E. Feenberg, Phys. Rev. SS, 504 (1939).
'7 C. F. v. Weizsarker, Naturwiss. 2'7, 133 (1939)."J.Frenke1, Phys. Rev. SS, 987 (1939).

M. S. Plessett, Am. J. Phys. 9, 1 (1941).

factor in square brackets) with u, =0.157 mMU.
Considering the accuracy and number of the
experimental measurements, the latter factor
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cannot vary by more than 2 percent in the range
15—A «31. Numerical results for

B„"=50A mMU,
u, =0.157 mMU,
u, =13.5 mMU

(33)

are shown in Table I. The variation in the
vertical columns is less than 0.02 on the interval
—0.25 «k, «1.00 and practically vanishes at
k, =0.50. Evidently the optimum value of I,
depends on k, in accordance with the relation

=0.157 mp, (34)

the symbol ( ) denoting a mean value on
the interval 15—A —31. Equation (34) states
simply that the actual radii of real nuclear
systems conform closely to the formula 1.47
)&10 "A& cm. The numerical solution of Eq. (34)
appears in Table II.

In the event that k, is negligible, the condition
E,"&30A mMU is required to keep the variation
in the square bracket factor of Eq. (32) within

' the permitted range of 2 percent. On the other
hand, the preceding analysis places no useful
restriction on the compressibility coefficient if
k, 0.5. The inclusion of a symmetry energy
term k,Z, with reasonable restrictions on k,
does not materially alter the numbers in Tables I
and II.

1 PA
ZA =- y =u, /u,

2 1+»** (35)

2 1 1 —k, t' k,u,A4"
P=1+~ —+ +

u, A'~' Z„" I 1+»"'
u,A 71'(1+k,yA 2)')

y
(36)(1+»"')' j

(C) THE NEUTRON EXCESS IN STABLE NUCLEI

For fixed A the mass and packing fraction
attain minimum values when Z takes on the
integral value closest to

The notation

p 1 0.2 yX =(1+»-:)I —+
4A uQi)

X2=

(37)
1 —k, u,A '"(1+k,yA'")

k,u,A'"+
Z„" (1+»"')'

TABLE III.

92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
7. 1
70
69
68
67
66
65
64
63
62
61
60

58
57
56
55
54

A —2Z

A. Q/3Z

0.0153
0.0143
0.0153
0.0148
0.0153

0.0158

0.0141
0.0147
0.0151
0.0151
0.0148
0.0146
0.0149
0.0149
0.0152
o.oa48
0.0150
0.0150
0.0151
0.0149
0.0153
0.0147
0.0151
0.0154
0.0156
0.0152
0.0156
0.0145
0.0150

o.oa48
0.0144
0.0155
0.0163
0.0170
0.0160
0.0167

53
52
51
50
49
48
47
46
45
44
43
42
4a
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

A —2Z

A2I3Z

0.0157
0.0179
0.0159
0.0155
0.0146
0.0147
0.0131
0.0141
0.0131
0.0138

0.0136
0.0131
o.'oa40
0.0142
0.0156
0.0160
0.0173
0.0154
0.0176
0.0153
0.0155
0.0148
0.0j.1 a.

0.0122
0.0065
0.0122
0.0103
0.0138
0.0121
0.0158
0.0135
0.0113
0.0005
0.0052
0.0188
0.0080

proves helpful in transforming Eq. (35) into the
more useful form

A —2Zg
2y= [1—X)—X2] '.

A &Z~

The left-hand member of Eq. (38) is nominally
a constant. However, the hypothesis that the
symmetry energy is a homogeneous function of
the first degree in Xand Z is possibly too special.
The presence in the symmetry energy of a term
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of degree two-thirds would require

Q~ —Q~g+S, g/A',

(39)

N,.A '

Regarding numerical values two points can be
made: (1) the model of free particles in a poten-
tial well of infinite depth's yields I„/N, „=0.4.
As the depth of the well is reduced, the ratio
decreases and attains a small negative value

( —0.1) for a reasonable depth ( 30 mMU).
(2) In actual nuclei the surface energy may be
expected to decrease with increasing isotopic
number more or less paralleling the behavior
of the volume energy. The second point suggests
a small negative value for u„.

In evaluating the right-hand member of Eq.
(38) the proper value of A to associate with a
given Z is generally not known accurately, but a
suitable approximation is provided by the mean
mass number" since there appears to be a close
correlation between abundance and stability.

The functions Xi and Xs occur in Eq. (38)
because of three small, but physically real,
effects. These are

(xa) the neutron-hydrogen mass di6'erence,

(xb) the linear term in Z in the Couiomb energy,
(xc) the "expansion" energy associated with the finite

value of the compressibility coefficient.

Since both functions involve y, a preliminary
estimate of y must be secured before the right-
hand member of Eq. (38) can be evaluated.
Table III lists the quantity

as a function of atomic number with A replaced
by the mean mass number.

In the range Z~31, Xp experiences large
fluctuations, but there is no sign of a trend.
A sharp break occurs at Z=30. Consider first the.

upper range 58~Z~92. Here the mean value is
0.0150 and the fluctuations are small and quite
random. It is interesting that of the ten devia-
tions from the mean exceeding &0.0003, eight
occur for elements containing substantially only
one isotope. Evidently the mean mass number
of an element composed of several relatively
abundant isotopes generally lies very close to
the smooth curve defined by A as a function
of Z~. On the lower range 31—Z~57 the mean
value is 0.0152, and the deviations from the mean
are large and oscillatory in a systematic way.
The present theory can be made to fit the be-
havior of Xp on the upper range but cannot-
account for the oscillations on the lower range.
Possibly these may be interpreted in terms of
shell structure. Disregarding the oscillation s,
Xp ——0.0150 holds well enough on the average
down to Z=31.

Suppose that X2 is omitted from the right-
hand member of Eq. (38), Xs replaced by 0.0150,
and y and u, given the provisional values 0.0080
and 0.157, respectively, in evaluating X&. It is.
found that the function equated to 2p is not
constant but exhibits a monatomic variation in

the range Z~31, amounting to 6 percent of the
mean value. On the upper range the variation is
2 percent, somewhat greater than any possible
systematic trend in Xo. Assuming that all or
part of this variation is balanced by the sym-
metry dependence of the surface energy, we get

0 & —(u„/u„,)«0.6.

64
125
216
343

A —2Zg
Xp=

A -:Zg

TABLE IV. Evaluation of X1 and X2.

ks=kv =0 ks=0.5, kr =0

Xt

0.108
0.071
0.052
0.041

X2

0.039
0.054
0.067
0.077

X1+X2

0.147
0.125
0.119
0.118

0.073
0.081
0.089
0.096

X1+X2

0.181
0.152
0.141
0.137

E. Feenberg, Phys. Rev. 60, 204 (1941}.

The effect of Xs on the right-hand member of
Eq. (38) is apparent from Table IU, based on the
provisional values y=0.0085, N. =0.157 mMU,
and B„"=502mMU.

Now the monatomic variation in the upper
range of the function equated to 2y is reduced
to 0.7 percent (k, =0) or 1.3 percent (k, =0.5).
The upper limit in Eq. (40) is correspondingly
reduced to 0.2(k, =0) or 0.4(k, =0.5). The best
constant value for y appears to be 0.0085(k, =0)
and 0.0088(k, =0.5). If u, is taken from Table II
these values are not appreciably altered. For any-
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choice of k, a finite positive value for k, reduces
X2 and the mean value of y and permits a larger
upper bound on —zz„/zz. ..

{D) THE PACKING FRACTION CURVE IN THE
REGION OF STABLE NUCLEI

It is evident from Eqs. (1) and (8) that the
packing fraction formula can be expressed as a
fourth-degree polynomial in Z —Z~. The third
and fourth degree terms may be orriitted without
appreciable loss of accuracy leaving the simple
quadratic polynomial

Pf X10'=(PfX1 0')z~

1( Bz

+—
i PfX10'

i (Z —Z~)' (41)
2&azz ] z,

In Eq. (40)

1t' Bz
Pf~10'

~

2 EBZ' ) zg

1+yA '"— (k, +yA '")
yA' EI

The factor 1+(0.4y/z4) —(2/A) is not exact;
however the neglected terms total less than
0.002 at A =64 and decrease as A increases. To a
sufficient degree of accuracy

(PfX10')z~ =8.53 —zz, +-
A&

,1+(0 47/ .) —(2/A)
+zzoA

1+jzA:

zz, 'A & zz. A (1+k,'rA I) '
(44)

2P." N. (1+vA')'

The symmetry energy utilized in the derivation
of Eq. (44) fails to account for the sharp break
in Xo below Z=31 (Table III) ~ Consequently
the range of validity of Eq. (44) presumably
does not extend down to the minimum of the
packing fraction curve. Below Z=20, Eq. (44)
should be replaced by

(PfX10')z-~iz

zz+»z(1+k, yA'iz) )
X] k,zz,A'z'+

(1+qA»~) ' )
2zz, 'r(1 —k )zA'i'+, — . (42)

(1+~A 2/z) 2

ug=8.53 —I„+—+zzQ-'*(1 —2/A)
A&

u, 'A' u,
k,—+A (1—2/A)

2B u

-2

(45)

The constant term is best evaluated by grouping
together linear and quadratic terms in Z except
those implicit in the expansion terms. With the
notation

~z' =Zg for E„"=
the result of the grouping procedure is

us
PfX10'=8.53 —zz.+-

A&

in the approximation which ignores the even-odd
properties of N and Z.

Equations (44) and (45) are now subjected to
the condition Pf=0 at A=16 and 173. It is
desirable to proceed as far as possible without

fixing the numerical value of u, . However, where

is involved in a small correction term we use

the following table:

1+,(0.4y /N, ) —(2/A)
+zz,A'*

(1+yA &)

4u,
+ (1+rA *)(Z —Zg') '

yA '
0.0

0.5

uc

0.i6i

0.169

0 4y

0.02 1

zzQ

2E."
0.00i6

0.00i 7

1 (A —2Z) '
—k.zz,A &+k,zz,

2AB„"

4u, 2

+ Z(Z —1) i . (43)
A&

The reduction of Eqs. (44) and (45) to numeri-

cal form yields, for k, =k, =0,

8.53 —zz. +0.3969zz, +(5 55 —0 05)gc=0~
8 53 „„+01795%,+ (24.79 —0.59)z4 =0 (46)
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Pf=0,

Pf=0,

A =16 and 173;

A =16 and 173;

E,"=30A mMU,
0, =0.5, u, =0.178

u, =0.157 mMU
Pf=0, A=173; Z"= ~,

u, =0.157 mMU, u, /N. =94.7

appear in the third, fourth, and fifth rows of
Table V.

Perhaps the most interesting feature of Table V
is the almost constant numerical values in the

and, for k, =0.5, k, =0,

8.53 —u„+0.3969u, + (5.55 —0.87)u, =0,
8.53 —u„+0.1795u,+ (24.60 —1.25)u, =0. (47)

The contributions from the first-order Coulomb
energy and the "expansion" energy are listed
separately to show the order of magnitude of
the latter term. Numerical results computed
from Eqs. (46) and (47) are listed in the first
two rows of Table V. For comparison results
obtained from the conditions

seventh and ninth columns; it appears that the
symmetry and volume energy coefficients are
determined by the empirical energy surface alone
without regard to the properties exhibited by
nuclear matter under a uniform change of scale.

Figure 2 exhibits the theoretical packing frac-
tion curves computed from the fourth and fifth
rows of Table V. The first four rows yield almost
identical curves so only one is plotted. It is
evident that the uniformity results from (a)
fixing the points at which the packing fraction
vanishes and (b) adjusting u, to fit the "Coulomb"
energy differences of light odd nuclei. Both
branches are extended beyond their respective
limits of validity to aid in visualizing the prob-
able interpolation curves. A few experimental
points taken from curve (b) of Fig. 1 are included
for comparison.

The solid curve (rows 1—4) will be discussed
first. On the lower branch the agreement is
satisfactory. Ne" and Mg' lie above the theo-
retical curve, possibly because they occur near

4.0—

+,0—

-40—

-6.'0—

FrG. 2. Theoretical packing fraction curves. Solid curve —B„"= ~, I,=0.157 mMU; dashed curve —E,"= ~,
u, =O.T57 mMU, I,/I, =94.7; p—experimental points.
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the beginning of the shell which closes at Ca".
It appears that the notion of surface energy is
applicable to very light nuclei of the alpha-
particle type (including C") and, moreover,
combines satisfactorily with the nuclear radii
deduced from the "Coulomb" energy differences
of light odd nuclei. On the upper branch the
agreement is only fair, and it must be empha-
sized that the assumption of a finite compressi-
bility coefficient hardly modifies the theoretical
curve.

The dashed curve (Bohr-Wheeler value of
u, /u, ) is unsatisfactory on the lower branch and
somewhat inferior to the solid curve on the
upper branch. A quantitative measure of this
inferiority is supplied by the statement that a
five percent decrease in r, applied to the dashed
curve brings the upper branch into coincidence
with the solid curve.

Equation (31)provides the possibility of recon-
ciling the Bohr-Wheeler value of u, /u, with
the semi-empirical packing fraction curve. For
E„"=50AmMU, k, =k, =0 and N, =0.161 mMU

u, /u, (94.7L1 —0.0727 =87.8

while for E„"=50A,k, =0.5, k, =0 and u, =0.169
mMU

u, /u, (94.7L1 —0.0517= 89.8. (49)

The inequalities result from the neglect of the
symmetry energy terms in Eq. (31).With k, =1,
Eqs. (48) and (49) are replaced by u, /u, =86.0
and 88.9, respectively. The first value is in

perfect agreement with the packing fraction
analysis while the second is still somewhat high.
On the whole these numerical trials support the
view that a unified self-consistent theory in-

cluding both the fission phenomenon and the
packing fraction curve is possible but requires
dropping the fiction of incompressible nuclear
matter.

TAni. s V. Evaluation of the energy coe%cients (in mMU).

502 0.0 86.02 39.64 0.0085
50A 0.5 85.88 38.76 0.0088
302 0.5 83.12 37.09 0.0094

89.56 41.10 0.0081
94.7 42.02 0.0081

0.161
0.169
0.178
0.157
0.157

19.0 13.9 14.9
19.2 14.5 15.1
19.0 14.8 15.1
19.4 1.4.1 15.1
19.4 14.8 15.1

properties of N and Z is ignored. The coefficient

g is not greater than 1 and may be as small
as 0.5.

It is evident that the linear term in
~

X—Z
~

tends to prevent the shift of the stability curve
away from the straight line X=Z. The analytical
expression of this statement is embodied in the
formula

A —2ZA = yA "' 1 0.2 4q
1 ———

1+yA'" A u,A'" yA"'
(51)

derived from the condition 8(Pf)/BZ=O with
omission of the "expansion" term. Equation (51)
holds only for positive values of A —2Z~., the
vanishing of the factor in square brackets defines
a value of A below which the packing frac-
tion minimum in an isobaric series occurs at
A —2Zg —0. With I,=0.157,, y =0.0081., and
g=1, Eq. (51) yields A =2Z& at A =45: con-
sequently A —2Z&—0 holds in the range A —45.
With q = —,', the critical value of A is 30. Actually
deviations from X=Z (in even nuclei) occur
below these critical values, but there is no
systematic trend away from the straight line
until mass number 50 is passed. The deviations
find a ready explanation in the complete ex-
pression of Wigner's theory.

In the present discussion the analog of Eq.
(38) is

A —2zg+4g
I 1 —Xi—%27 '

A' (52)

Nv —8.53

Rv iles 22s /Qc 2' 22c /I & 22c N7 24 22 u

.(E) WIGNER TYPE SYMMETRY ENERGY

In the theory developed and tested by Wigner4
and Barkas' the symmetry energy can be ex-
pressed as

(50)

if the dependence of the energy on the odd-even

which differs from Eq. (38) only in the re-
placement of A —2Z& by the larger quantity
A —2Z&+4q.

I

(F) DETAILED STUDY OF THE MASS VERSU8 N, S
SURFACE; EVEN-ODD CHARACTERISTICS

OF N'UCLEAR SYSTEMS

The function Z~ follows the general trend of
the empirical distribution of Z against A with
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FIG. 3. The mass valley in the N —Z, A plane.

A Zg+ (A —2Zg*) /Zg+A 2i3 104'*

50 22 9 00135 77 0
60 27.2 0.0134 75.3
65 29.4 0.0133 74.4
70 31.1 0.0148 82.3
75 33.0 0.0153 84.5
80 35.0 0.0154 84.6
85 37.0 0.0154 84.5
90 39.2 0.0147 80.4
95 41.5 0.0139 75.7

100 44.0 0.0127 69.0
105 46.1 0.0127 68.9
110 47.8 0.0131 71.0
115 49.3 0.0140 75.6
120 50.8 0.0149 80.3
125 52.3 0.0156 84.0
130 54.0 0.0159 85.5
135 55.7 00161 864
140 58 0 0 0154 82.3
145 60.4 0.0145 77.5
150 62.1 0.0147 78.5
155 63.7 0.0150 80.0
160 65.4. G.0151 80.4
170 69.2 0.0149 79.4
180 72.8 0.0148 78.6
190 76.3 0.0148 78.5
200 79.8 0.0148 78.3

4N /y~ n (y+ —y)104

82 90
84 94
84 94
76 87
74 85
74

'

86
74 86
78 91
83 96
91 105
91 105
88 102
83 98
78 93
75 91
74 90
73 89
76 93
81 98
80 98
78 97
78 97
79 98
80 100
80 1G1
80 101

—4.0—5,7—6.6
1.2
3.5
3.6
3.5—0.6—5.3—12.0

12 ~ 1—10.0
54—0.7
3.0
4.5
54
1.3—3.5—2.5—1.0—0.6—1.6-2.4—2.5
2 47

great precision but fails to show the detailed
structure. In the present discussion this struc-
ture is utilized to compute u, as a function of
mass number. The empirical relation between

TABLE Vl. Functions of Zg*.

Z& and A is determined in large measure by the
data for odd nuclei alone. " A convenient plot
appears in Fig. 3. The solid curve presumably
runs along the bottom of the mass valley as it
winds across the X—Z, A plane. To avoid con-
fusion, values of Z taken from this curve are
denoted by the symbol Z&*.

The vertical extent of the boxes in Fig. 3
&xes upper and lower limits on A —2Z~* con-
sistent with the stability of the known odd
nuclei. These nuclei appear on the diagram as
dots along the horizontal axis of the boxes.
Stable isobaric triples occur at mass numbers 96,
124, 130, and 136. The curve is drawn to pass
through points determined by the average iso-

topic number of the stable nuclei at these mass
numbers. 62Sa'" is placed at some distance from
the bottom of the mass valley by a discon-
tinuity at mass numbers 147—148. The product
nucleus 60Nd'" resulting from the n-decay of
62Sa'4' then falls directly on the solid curve.
There is a strong suggestion that the rare isotope
64Ga' may exhibit long-lived alpha-activity.
The comparatively low relative abundance of

2' G. Gamow, Atomic Nuclei and Nuclear Transformations
(Oxford University Press, New York, New York, 1937).
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the suspected active isotope may be responsible
for the failure to observe alpha-activity in
gadolinium

Between mass numbers 210—220 the observed
stability-instability relations ' " appear to re-
quire separate curves for even and odd nuclei.
The dotted portion of the curve is a compromise
solution representing the general trend of the
mass valley without regard to local irregularities.

The closing of the 2s —3d neutron shell at
N = 20 is generally held responsible for the
instability of &SA" relative to»K". It is interest-
ing that the geometric pattern of stable nuclei
shown by Fig. 3 near A =39 is repeated at
A =99. However, the interpretation at the latter
point is more dificult, because the nuclei in-
volved are 43Tc" (instable) and 44Ru" (stable).
This stability-instability relation does not sug-
gest the formation of a closed shell in either
nucleus.

Equation (38) with Zz replaced by Zz* serves

a = 'gA'L(cls/riZ') PfX 10']z„~ (54)

can be computed from Eq. (42) with y replaced
by y*. This procedure for estimating 3II and 0.

parallels a closely related discussion by Bohr
and Wheeler. '4 The present treatment is poten-
tially more accurate, since it includes the effect
of the "expansion" energy. However, the addi-
tional term is small. The functions 4N, /pe, n and
(y*—y) X10» listed in Table VI have been com-
puted under the conditions holding in the fourth
row of Table V (B„"= ~, N. =0.157 mMU).

As Fig. 2 makes evident, the packing fraction
curves associated with constant values of y are

to define p (now denoted by y*) as a function
of inass number. According to Eq. (41) the mass
of a nucleus can be represented in the form

M(Z, A) = 3I(Z~*, A)+n/(Z Z—ge)'/A] (53)

in the approximation which neglects the even-
odd properties of N and Z. Here

e.o—
~ 0 le

o.o—

4.0—

~ ~ ~ 4 ~ ~

~o
~ t

~0
~ &

I ~
~re

~0

~I
~t

~0
~1

44

~ I
~t

~ I
~t

rMo zA o 8&0

-8.0—

-co—

-e.o—

FIG. 4. The theoretical packing fraction curve corrected for the oscillatory variation of the
symmetry energy coefBcient with mass number. The dotted portion is taken directly from the
experimental points. Included is a theoretical curve (Qi) giving the mean excitation energy pro-
duced by the capture of a slow neutron.

"G.T. Seaborg, Rev. Mod. Phys. 16, 1 (1944).
u E. Segrh, unclassified charts compiled for the Manhattan Project (July, 1946).
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er 80.ver nearly straight lines above mass num er

variation of Zg with A. Empirically Z~* is not a
h f tion of A (since y* is oscillatory),

d h acking fraction curve is eci e y no
e two

correlated in a simple manner by inser ing
function y*(A) into Eq. (44) in place of y. The
resulting packing fraction formula can be ex-
pressed as

Pf X 10' PfX10' APf X10'

DPf X10'
=(v —v' (55)

Ai
X

] )
—25

&1+&W-:)

Figure 4 reveals the extent of the improved
agreement. A number o pf oints taken from

~(Z —Z,*)'~~(Z—Z, *)'+-',S,
Z odd, N odd,

—+n(Z —Zg ) ——,6,1 (56)
Z even, %even,

—+a(Z —Zg*)', A odd.

Equation (56) implies the following replacement

u (X—Z)' —+u, (K—Z)'+-', 5, Z odd, N odd,Q~
2 1—+u, (X-Z)' ——,5,

Z even, X even,
—+u, (X—Z)', A odd.

(57)

In an isobaric series of even-eveen nuclei the
inequality

5/2n) ~Z —Z/*~ ——', (58)

ries whileholds for the stable members of the series,
~ ~

s for the unstablethe reversed inequality o s

curve b of Fig. 1 are included to facilitate com-
parisonison with experimental results.

Bohr and Wheeler adapt Eq. (53) toto the
depen ence o0 f M on the even-odd properties
of N and Z by the substitutions:
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members. "Here instability means that energy
is available for the emission of a negative electron
or for the absorption of an electron (K-capture).
Figure 5 shows a plot of the right-hand member
of Eq. (58) for those stable, unstable, and un-
known even nuclei which border closely on the
stability limit. An uncertainty of at least +0.2
must be associated with all points because of the
uncertainty in the determination of ZA*. Crosses
and circles denote known" '4 stable and unstable
nuclei respectively; where the nucleus is unknown
the point is indicated by a cross within a circle.

The solid line for 8/2n as drawn in Fig. 5 does
not permit stable isobaric triples above mass
number 150. In this range the limit of stability
allows only stable doubles and singles. Since
triples and singles presumably occur only when
ZA* falls sufficiently close to an even integer,
one expects about the same number of stable
singles above A = 150 as stable triples below.

The unknown nuclei below and near the
stability limit may be grouped into two classes:

Stability indicated 2oitI2 resPect to P~ emission or

K cajt24re-
62Sm"', 66Dy'", 72Hf'", 82Pb'", 84Po"', 90Th226,

U g2U U 4Pu g4Pu2 g4Pu

Stability Uncertain.

46pd100 ~2Te118 62Sm 66Dy 56 66Dy'", 68Er

7 H f172 +$178 Qflss Pt190 „Os194 Pt200 4po206

Rn 2 Rn Hn2 6 Rn2 8 Ra 22

The stability of 46Pd"' would fit neatly into the
pattern of Fig. 3 by completing a stable triple at
A =100 to balance one known to exist at A =96.

¹teaddedin proof: The Q at A =158 in Fig. 5 should be
replaced by )( since it refers to «Dy'5' which is a known
stable nucleus. J. J. Howland, D. H. Templeton, and I.
Perlman, Phys. Rev. 7'1, 552 (1947) report that Po ' is
unstable (both E' capture and a-emission is observed)
while Po"' is apparently stable (only o.-emission is ob-
served). These observations con6rm the assignment of
84Po'" to the stable class. Thus the Q at 2 =208 in Fig. 5
can now be replaced by X; also the upper Q) at A =206
should be replaced by Q.

L. A. Turner, Rev. Mod. Phys. 291, 17 (1945), considers
the properties of missing heavy nuclei. Turner's conclu-
sions, listed in Table II of the reference, are consistent
with the present location of the mass valley (dotted
portion of the curve in Fig. 3) and the determination of
S/242 (Fig. 5) except for 94Pu'86 which is probably a positron
emitter according to Turner and probably stable according
to the present paper.

Equation (56) determines the energy available
for p transitions between the ground states of
initial and product nuclei. The required for-
mulae are

AB& &=(2n/A)(z~* —Z& & —-', ) +0 (A odd),

AZ&"& = (2n/A) (Z&+& —Z~* —-')
+8/A (Z' & odd, A even),

~«+) =~Z(') —2mc2.

There exist nuclei, of even mass number,
capable of both p+ and p transitions. For these

4E& &+BE&'&=2/A (tf n), —
AZ& & —AZ&'& =4n/A (Zg* —Z). (60)

Examples illustrating the application of Eq. (60)
appear in Table VII. Energies, expressed in

mMU, are taken from references 22 and 23.
A radiation transition of 0.62 mMU occurs in

the arsenic reaction resulting in an ambiguity in
the assignment of energies to the positive and
negative branches. Figure 3 favors the associa-
tion of the gamma-quantum with the positive
branch. The computed values of tl/2n appear in

Fig. 3 as squares, and the curve is drawn to

'4 J. M. Siegel, J. Am. Chem. Soc. 68, 2411 (1946).

pass through them. An additional example is
provided by As", but hB' &+AZf+& is too large

( 5.7 mMU) to fit reasonably into the present
analysis.

For even radioactive isobars separated by a
stable nucleus Eq. (59) yields

t&,Z&-&+aB~» =2/A (n+8),
ax&-& —t&,Z~» =4n/A (Z,*—Z&-& —1). (61)

The available experimental material does not

TABLE VII. Analysis of branching P transitions.

A' ZA+ ZA+
Element A Z h, E& ) hF&+) (Table 6) 5/2n (Eq. 60) (Fig. 3)

Cu 64 29 0.62 0.71 95 0.91 28.8 29.0
As 74 33 140 159 85 139 32 7 325
As 74 33 2.02 0.97 85 1.39 33.0 32.5
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conform to the general pattern prescribed by
Eq. (61).Possibly the theory is quite inadequate;
however, it is also possible that future changes
in the assignment of activities and the measure-
ment of energies may improve the agreement.

Many radioactive transitions are known in
the A classification" '4 (element and isotope as-
signment considered certain). The results of a
detailed comparison of measured and computed
values of DE~ ~ for transitions in the A classifi-
cation can be summarized as follows:

as a sum of three terms Qt, Qs, and Qs defined as
follows:

Qt ——10'[A (1+Pfg)
—(A+1) (1+Pfg+t) +1.00892j
—8.92 —PfX10'—A PfX10', (62a)

dA

tr~(Z —Z t*)' o.g~t(Z —Zg+t*)'

A 1

P, A(odd) «35, A(even) =6'0.

120 examples; of these 25 percent yield dis-
crepancies

~

d B' 1(observed) —AZ& 1(computed)
~~1.0 m MU with the mean discrepancy 1.8 m MU.

For the remaining 75 percent the mean value of
the discrepancy is 0.4 mMU.

,P+, A(odd) ~41, A(even) 56—
20 examples; 10 show large discrepancies.
In evaluating the apparently unsatisfactory

:showing of the theory one must remember that
Zg* is uncertain by at least &0.1 resulting in
errors in the computed energies ranging from
0.1 mMU (A 200) to 0.4 mMU (A 50). Also
there are no theoretical grounds for excluding
small random variations in the 'packing fraction
within an isobaric series. These two sources of
error are adequate to account for a mean dis-
crepancy of 0.4 mMU, but leave unexplained
the larger discrepancies (mean 1.8 mMU)
associated with many radioactive nuclei in the A
classification.

¹teadded in proof: In this connection the history of
the 2.6 hr period of nickel is suggestive. Formerly the
period was associated with Ni'3 (classi6ed A) resulting in

.a large discrepancy between observed and computed dis-
-integration energies. The recent assignment to Ni" (byJ. A Swartout, G. E. Boyd, A. E. Cameron, C. P. Keim,
C. E. Larson, Phys. Rev. 70, 232 (1946)) removes the dis-
crepancy.

(G) THE EXCITATION ENERGY OF INTERMEDIATE
SYSTEMS FORMED BY NEUTRON CAPTURE

The intermediate system formed when a
nucleus captures a slow neutron begins its life
.with the excitation energy

Q =10'LM'(Z, A)+n 3II(Z, A+1)j. (62)

To facilitate numerical evaluation Q is expressed

=2n/A (Zg+,*—Z~*) (Z ——,
' (Z~*

+Zg+ts)) 80/A (Z —Z~~;*), (62b)

Qs ———8/2A (Z even, A even; Z odd, A odd),
(62c)= 6/2A (Z even A odd; Z odd, A even).

A plot of Qt, computed from the theoretical
packing fraction curve shown on the same
diagram, appears in Fig. 4.

The stability of the target nucleus implies
~Z —Z~*~ s (A odd) or ~Z —Zg*~ —2 (A even),
the second inequality following from Eq. (58)
with 8/2n 1.5. With Zg+)* Za*+0.2

—56/A =Q =24 /A (A odd),
—176/A =Qs =144/A (A even). (63)

Because of the numerical relation 6 3 n 300
mMU, Qs —8/2A is never positive and approaches
zero only for those even nuclei quite near the
stability limit. Consequently

Q~Qt (Z even, A even),
Q) Qt (Z even, A odd),
Q(Qt (Z odd, A odd).

(64)

The statistical theory of nuclear level density"-

makes the spacing of levels at the excitation
energy Q an exponentially decreasing function of
(Q/b. e)1 (Ae is essentially a unit of excitation
energy). The characteristic dependence of Q on
the even-odd properties of Z and A should there-
fore inBuence the distribution of large capture
cross sections among the different nuclear types.
However there also exists a specific dependence
of level spacing on the even-odd properties of Z
and A comparable with the implicit dependence
through Q and in the opposite direction. 's Under

"J Bardeen and E. Feenberg, Phys. Rev. 54, 809
(j.938).
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the tentative hypothesis that the dependence
through Q is the larger of the two effects, Eq.(64)
yields the rule that odd nuclei with even charge
are favored to possess large capture cross sections.
The empirical evidence suggests rather an absence
of dependence on the even-odd character of Z
except for the very largest cross sections which
conform to the rule.

Note added in proof: M. J. Inghram, D. C. Hess, Jr. ,
and R. J. Hayden, Phys. Rev. 'Tl, S'il (l947) have deter-
mined the cross sections for slow neutron capture by the
separated isotopes of Hg. Large cross sections are found for
2 =196, 199 and small cross sections for 2=200, 202,
204, 201. These results conform to the pattern suggested
by the rule.

It is perhaps significant that a fair proportion
of the elements with large capture cross sections
occur near the peaks of the Qt curve. The first
peak centered at A =115 is associated with Rh,
Ag, Cd, and In, while the second centered at
A =151 covers the rare earth elements Sm, Eu,
Gd, Dy, and Ho.

The function Qt appears again in the semi-
empirical formula for the energy released in
A-decay:

Q'= 10s[M(Z+1, A+2)
—sIIe' M(Z 1, A ——2)j—

effects and the detailed structure of the single
particle levels are ignored. The quantization of'

the single particle motion and the complete-
degeneracy of the gas are expressed in the state-
ment that momentum space is fully occupied up
to a maximum momentum I'; determined by the-

relation.
A;ks= (4s/3)'(P; R)'. (66)

2
a& (3 )4&'

A .sls

2cVR' (4s.)
p&i~n,

Es=
2iV ~p

0dP
p

&im

P'dP =ge;m.

The total kinetic energy of gas i is then simply
T;=A;e;. For the complete system

3k'
t 3 ~'~s

T=P A;e;=
(
—

~ P A I'. (68)
10JidRs &4w)

Equation (66) equates the number of occupied
cells in phase space, each of volume )'ts, to the
product of the configuration and momentum
space volumes.

Maximum and average kinetic energies,
and ~;, are defined by the equations

=Qt'+Qs',

Qt' 4ttPf X10'——
+A (r)/r)A)Pf X10s—1]mMU

=4(7.93—Qt),

(65)
The behavior of the kinetic energy in an

isobaric series can be studied by allowing the.
separate A's to vary while the sum remains

(65a)

Qs' = (trysts/A+2) (Z+1—Zg+s*)'
—(rsg s/A —2) (Z —1 —Z~,*)'

(2tr/A) (Zg, *+2—Zg~s*) (Z —Zg*). (65b)

(H) THE SYMMETRY QUANTUM
NUMBERS PP'P"

Consider a gas of non-interacting neutrons and
protons confined to the volume

(4s./3) R' = (47r/3) r s'A.

In accordance with signer's notation, the inte-
gers A~, A2, Ae, A4 refer, in the order named, to the
Dumber of

(l) neutrons with positive spin
(2) neutrons with negative spin

(3) protons with positive spin
(4) protons with negative spin

In the present calculation" each type of particle
forms a completely degenerate gas. Surface

Structure
symbol

302010

31
22
32'1
24
3241
26

Structure
symbol

2
321
23
32'1
25
32'1
27

A =4k

P' P"

TABLE IX.

A =4k+2
pl PI1

TABLE VIII.

S'1

0
2

10
16
26
36

lV1

1
5
9

17
25
37
49

0
8

12
24
32
48
60

5
15
21
35
45
63
77
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Structure
symbol

1
32
221
328
241
32'
261

P

1/2
3/2
5/2
7/2
9/2

ii/2
13/2

TABLE X.

pl

1/2
1/2
1/2
1/2
1/2
1/2
1/2

A =4k+1
p//r

1/2—1/2
1/2—1/2
1/2—j/2
1/2

W1

3/4
11/4
27/4
Si/4
83/4

123/4
171/4

W2

15/4
39/4 As, f/= s'LE, (A+1, A+1, A —1, A —1)

111/4
159/4
215/4
279/4

—Z, {A, A, A, A)j,
(73)

SN, 154
mMU.

A A

Equation (72) has the virtue of suggesting a
procedure for computing an "effective" single
particle level spacing in actual nuclei. The obvi-
ous generalization is

constant. To make this behavior explicit let

P= ', (AI+A-p As A—4) =—-', (X—Z),
P'= ,'(A, A, +-A, —A4) =5+—S, —
P"= ~~(AI —Ap —As+A4).

(69)

These are the quantum numbers introduced by
signer to describe the symmetry properties of
nuclear systems. 4 In terms of the P's"

The numerical coeAicient is taken from Table V.
A possible application of Eq. (73) occurs in the
statistical theory of level density. It is known
that the statistical theory, ' with Ae for the single
particle level spacing, greatly underestimates the
average spacing of the nuclear levels as a function
of excitation energy. In view of the fact that

Ds, (/ 2.4hs(r„/r p)', (74)
27 (pr) 2~P fPAs+

T=
40 &3) MR'

For

20 PP +P/s+ P//P

X 1+—
9 A'

+ . (70)

r, =ro—= 1.47&10—"cm,

20 P'+P"+P'"
T=14.4A 1+—

9 A'
+ mMU.

The quantum members PP'P" have been
introduced here in an extremely restricted sense.
There is no need to restate the general definition,
but one important property can be pointed out.
A brief examination of a diagram showing the
fourfold system of single particle levels clearly
indicates that a given set of numbers PP'P" can
be associated with all nuclei for which —2P~N
—Z —2P. Thus all isobaric nuclei in the range
—2P~X—Z~2P possess states to which Eq.
(70) applies.

The spacing he of the single particle levels at
the top of the occupied region can be derived
from Eqs. (68) or (70). For simplicity suppose
A, =A=A/4. Then

Ae= ,'I T(A+1, A+1, A —1, A ——1)
T(A, A, A, A) J (—72)

=40T/9A' 64/A (rp/r„)' mM—U.

the substitution of Ae. fg for A~ in the statistical
theory produces a greatly reduced level density
and a somewhat closer correspondence with the
observations.

In this connection Bardeen26 has computed the
single particle level spacing Ae~ for a specific
model of nuclear forces having the essential
saturation property. His results, based on the
statistical approximation, may be summarized in
the relation Ae~ 2he.

The appearance of the "symmetry" function

g7 (PP/P//) PP +PIP +P//P (75)

in Eq. (70) suggests replacing the symmetry
energy in Eq. (1) by

4u, (Wg/A). (76)

"J.Bardeen, Phys. Rev. 51, 799 (1937).

Actually the modified symmetry energy of Eq.
(76) does represent an improvement since it can
be related to the observed even-odd character-
istics of nuclei.

Wigner's analysis of the nuclear symmetry
problem4 yields the symmetry function.

Wp(PP'P") =P'+P"+P'"+4P+2P' (77)

on the basis of fairly general assumptions con-
cerning the symmetry properties of the nuclear
Hamiltonian and the nature of the interaction
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between pairs of particles. In the detailed com-
parison with experiment Wigner uses a linear
combination of W~ and S'2 with the coe%cient of
8"& taken from the statistical theory of the
kinetic energy and the coefficient of S'2 adjusted
to fit the empirical stability-instability relations,
As explained in Section (E) the correlation with
experiment begins to break down just where the
systematic trend away from equal numbers of
neutrons and protons is getting started.

Tables VIII—X list numerical values of 8'~ and
S'2 for completely degenerate systems. The
structure symbol shows the number of triply,
doubly and singly occupied levels in terms of the
single particle model or the irreducible repre-
sentation of the symmetric group to which the
state in question belongs from the more general
point of view adopted by Wigner. To adapt
Table X to nuclei of the type 44+3, replace "1"
by "3"and "3"by "1"in the structure symbols
and reverse the sign of P".

General relations between successive lines of
the tables are easily inferred and can be used to
prove the relations

In discussing Eq. (81) it proves convenient to use
language appro pris, te to the three (Wigner)
diagrams, (Fig 6.), which illustrate the symmetry
dependence of the nuclear energy for a special
form of Wa(q=0, t=3). The lines connecting
isobaric nuclei in states with the same PP'P" are
drawn horizontal, but in reality slope down to the
right because of the variation in Coulomb energy
along an isobaric series. The neutron-hydrogen
mass diHerence tends to produce a positive slope,
but the effect is too small to overcome the
opposite tendency produced by the Coulomb
energy. All lines in one diagram have the same
slope at the vertical axis. Moreover the curvature
is negligible (subject to the restriction P«A);
hence all lines in one diagram are substantially
parallel. Finally the slope is a monatonic in-
creasing function of A.

Theorem I

Subject to the condition t) 1. , Eq. (81) makes
all odd-odd nuclei instable. The proof follows

t/VI —
~
=P' —— N, Z even,
=P'+ 'X, Z odd-,
=P', A odd.

W2 —-' =P'+4P -'„X, Z eve—n,
=P'+4P+ ', , X, Z odd, -
=P'+4P, A odd.

(78)

(79)

According to Eq. (78) or (79) the masses of
isobaric even nuclei fall on two parabolic curves;
one (the lower) for even X and Z, the other (the
upper) for odd X and Z. The vertical separation
of the parabolas is

—:(N-z)

or
4u, /A, Eq. (78)

12u, /A, Eq. (79).
(80)

—,'(N-z)

Empirically, above mass number 80, the spacing
8/A (from Eq. (56)) is very nearly 15u, /A or
about double the value given by Wigner's linear
combination of 8'& and W~.

Two theorems on isobaric stability will now be
derived from the general symmetry function

W3 P'+4qP t/2, X——, Z even, —
=P'+4qP+t/2, K, Z odd,
=P'+4qP, A odd.

(81)
"6

—.'(N- z)
0 1 2 4 4 5 6

Fre. 6. %'igner type energy diagrams.
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TABLE XI. Theoretical and observed correlations
in isotopic number.

Mass numbers for first occur-
rence of stated K —,Z

Odd A

3
5
7
9

11
13
15

'

17
19
21
23
25
27
29

.31
33
35
37
39
41
43

47
49
51
53

Even A

6
8

10
12
14
16
18
20
22.
24
26
28
30
32
34
36
38
40
42

46
48
50
52
54

Odd A

37
49
65
71
Si
87(?)

109
113
119
123
131
137
153
157
163
173
179
187
193
201
205
213
215
217
235

unknown

Even A

36
46
64
70
76
86
96[

110
116
122
124
130
136
150
160
170
176
186
192
198
204
214

216(?) 220
218(?) 222

232
238

immediately from the inequality

P'+4gP+t/2 I (P —1)'+4g—(P —1)—t/2 I

& (P+1)'+4g(P+1)
t/2 —

IP —+4gP+t/2 I, (82)

which reduces to t & 1. Equation (82) states that
Z=2(P+1) (even—, even) falls below X—Z

=2P (odd, odd) before the latter point falls
below &—Z=2(P —1) (even, even).

The exceptions O', Li' 8" and N" are under-
stood in terms of a spin dependent nuclear force.
Beyond A =14, the Coulomb energy is large
enough to overcome the disturbing inHuence of
the spin dependent force, and the theoretical
pattern agrees with the observations.

Theorem 2

The shift from P 1stable to P+1 stabl—e in
the even-even series occurs at the same slope
(and hence at nearly the same mass number) as
the corresponding shift from P ——,

' stable to
P+-,' stable in the nuclei of odd mass number.

The theorem expresses the physical meaning of
the identity:

(P+1)'+4g(P+1)—t/2
—

I (P—1)'+4q (P—1 t/2 )—I
=2L(P+ 2)'+4a(P+ 2)—

f (P—l)'+4a(P —k) l 3 (83)

In terms of X—Z the theorem states that nuclei
with

X—Z=2n —1 (A odd),
Z=2n —(A even),

first become stable at nearly the same mass
number.

Numerical results are listed in Table XI.
Alpha-emitters are included since the stability
argument refers to stability within an isobaric
series. The table shows

17 good correlations, A,dq —A, ,„—3,
3 near misses, AQQQ Aevpn 5
3 poor correlations, AQ~~ —A,v«= 7,
2 extreme failures, A,gd —A, . =13, 17.

There is also one point for which no odd repre-
sentative is known. The energies available in the
radioactive transitions starting from 36Kr",
37Rb 7, and sqSr ' are 0.85, 0.3, and 1.5 —1.3 Mev
in the order named. Thus 37Rb" barely misses
being stable and consequently may be counted as
supporting the theory. The same statement
might also be applied to 84Po'" and 84Po"'

The possibility cannot be completely excluded
that rare isotopes required to eliminate one or
more of the exceptional cases actually are stable
but exist in such small abundance as to have sg
far escaped detection. However, a survey of the
known stable and instable nuclei in regions where
the exceptions occur leads to the tentative con-
clusion that the exceptional cases are all real.
Wigner27 has remarked that the extreme failures
(A = 109, 153) are followed in the table by nuclei
with large capture cross sections for slow
neutrons.

Theorem 2 is not new, "but the present dis-
cussion has the advantage of generality in that rio
restrictions are placed on g and t except that
required to avoid the stability of odd-odd nuclei.
Consequently the theorem is applicable over the
whole range of nuclear species.

~~ Private communication.
'8 E. Wigner, Phys. Rev. Sl, 106 (1937).


