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I. INTRODUCTION AND FUNDAMENTAL
EQUATIONS

HE nuclear 6ssion program has stimulated
the solution of a great variety of neutron

diffusion problems. Many of these problems have
been solved on the assumption that the diRusion
of neutrons takes place without loss of energy.
Or, if the neutrons do lose energy, it is supposed
that the losses occur in large (fixed) amounts-
as in inelastic scattering where the scattering

~ A large part of this review article was written
while the author was a, Consultant to the Los Alamos
Scientific Laboratory (under Contract No. W-7405-Fng-36
with the Manhattan Project) during August, 1946. The
information contained therein will appear in Division V
of the Manhattan Project Technical Series as part of the
contribution of the Los Alamos Scientific Laboratory.**Now at the University of Rochester, Rochester, New
York.

nuclei are left in excited states. As long as the
neutrons can be regarded as belonging to a small
number of energy groups, the methods appro-
priate to the treatment of neutron diffusion
without energy loss can easily be generalized.
However, if the energy loss is essentially "con-
tinuous" —as in the slowing down of neutrons by
elastic collision with atomic nuclei (which take
up variable amounts of recoil kinetic energy of
translation) —the group treatment becomes arti-
6cial and unsatisfactory for most purposes. ' In
the latter case, a direct approach through the
rigorous transport equation —subject to the con-
ditions discussed below —is indicated. By means

' Ten years ago, Westcott (W4) attempted an approxi-
mate treatment of the slowing-down process on the basis
of three groups of neutrons —fast, slow, and intermediate.
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of this direct approach, the outstanding problems
connected with the slowing down of neutrons by
elastic collision with nuclei have been inves-
tigated. While some work still remains to be
done, a great deal has been accomplished and it
seems useful to give a comprehensive review
of the theory at the present time. In order that
the results to be presented will be applicable to
all cases where the slowing down of neutrons
plays a role—the moderation of cosmic-ray
neutrons in the atmosphere, the shielding of high
voltage accelerators against neutron background,
etc. , in addition to pile design —it will be assumed
that no multiplication takes place in the slowing-
'down medium

As mentioned above, the possibility of ob-
taining fairly rigorous results on the slowing
down of neutrons by elastic collision with nuclei
depends on certain conditions being fu1611ed. If
these conditions are not fulfilled, the theory must
be suitably (and usually approximately) cor-
rected. The conditions in question are: (1) inelas-
tic scattering' is assumed absent, (2) the elastic
scattering is assumed spherically symmetric in
the center of the mass system, (3) the effects of
chemical binding are neglected.

Condition (1) implies that a neutron energy
less than that of the first excited level of the
nucleus with which it collides is contemplated.
The energy of the first excited level is (on the
average) smaller, the heavier the nucleus. Light
"alpha-particle" nuclei like C" and 0" have
their 6rst excited levels between 4 and 6 Mev,
whereas heavy nuclei have their first excited
levels nearer 100 kev.

Condition (2) implies that the energy of the
neutron is low enough so that deviations from
s-wave scattering need not be considered. At
high energies, i.e, , when the DeBroglie wave-

length of the neutron becomes of the order of
nuclear dimensions, p-wave scattering starts con-
tributing appreciably. This requires an energy
of several Mev for light nuclei and several
hundred kev for heavy nuclei, or more explicitly,
E=10/cV'* Mev, where E is the neutron energy
and M is the mass of the scattering nucleus
measured in units of the neutron mass. Thus, the
deviations from s-scattering become signi6cant

' Pure capture, which completely removes the neutron,
will be permitted {cf.below).

at energies similar to those necessary for the
onset of inelastic scattering and are usually
unimportant compared with the latter effect.
Deviations from s-scattering may occur at a
lower energy than that indicated by the above
criterion because of resonances in the scattering
cross section; thus, there are p-resonances in the
scattering of neutrons by helium at 1.05 Mev
and 1.35 Mev. However, such resonances occur
rather infrequently and when they do occur, the
character of the resonance is not generally known.
At any I ate, the practical consequences al e not
veI y great.

Condition (3) implies that the energy of the
neutron is large compared with the vibration
frequency associated with the chemical bond.
One would expect that the picture of a neutron
suffering an elastic collision with a free nucleus
would break down when the energy transfer
becomes of the order of the vibration quanta,
i.e., several volts in heavy substances. However,
it can be shown that while the collision function
changes when the nucleus is bound, the average
energy loss stays the same until the energy of the
neutron becomes comparable with the quantum
of the chemical bond. In other words, the for-
rnulae which will be derived will remain valid
down to energies of the order of the vibration
quanta —below one electron volt—provided the
capture is small and slowly varying within this
energy range, so that only the average energy
loss counts (A2, A3).

If the above conditions are accepted, the time-
dependent transport equation for a single eIe-
ment' can be written iri the form:

8N
(r, 0, u, t)+v gradN(r, a, u, t)

vN(r, a, u, t) r"
(

v'N(r, Q', zz', t)—+ du' dQ'
~0 l,,(u')E(u)

Xf(tzo, u —u')+5(r, u, t). (1)

In Eq. (1), N(r, 0, u, t)drdQdu is the number
of neutrons between r and r+dr, Q and Q+dQ,
u and u+du at time t, where r represents the
three space coordinates, Q is a unit vector

' The transport equation for a mixture is an easy gen-
eralization and will be treated below in connection with
certain special problems.
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in the direction of the neutron velocity, and'
u==iog(EO/E) with I'0 some initial energy (which
is unique if the source is mono-energetic), and E
the energy of interest. The first two terms on the
left-hand side of Eq. (1) represent the time rate
of change of the neutron distribution function
moving with the neutron stream in the direction
Q. The 6rst term on the right-hand side of
Eq. (1) represents the neutrons removed from
the beam by scattering and capture, i.e.,

vX(r, Q, u, t)/l(N) represents the number of
scattering and capture collisions per unit time
at r and t which occur to neutrons with param-
eters D and u, where l(u), the total mean free
path, is dehned by:

FIG. 1a. Center of mass system.

+
l(u) l, (u) l, (u)

with I„and 1, the scattering and capture mean
free paths, respectively. The second term on the
right-hand side of (1) represents the neutrons
scattered into the beam: v'X(r, O', I', t) /l, (u')
is the number of collisions per second at r and t,
which occur to neutrons with parameters Q' and
u', whereas f(po, u —u') (the function f(po, u —I')
is normalized so that J'dQ J'dN, 'f(IJo, u —u') 1

for all Q and u) is the relative probability of a
neutron having the parameters 0, u after a
scattering collision before which their values
were Q' and u'. The scattering function
f(po, u —u') depends only on p~ ——Q 0' and the
difference between I and u', i.e., the ratio of the
final to the initial energy. s The derivation of the
explicit form of the function of f(po, u —u') is
given directly below. The last term on the right-
hand side of Eq. (1) is the source term (assumed
isotropic) representing the neutrons emitted per
unit time at r and I„and with energy corre-
sponding to N.

The form of f(po, u) follows from the assump-
tion of spherically symmetric scattering in the
center of mass system (s-scattering), and the
laws of conservation of energy and momentum.
If a neutron, moving with velocity vo, collides

It is convenient to use logarithmic energy units because
the asymptotic neutron density (for large I) is constant on
this scale (cf. below).' The dependence on the difference (I—u') is the result
of the special character of the scattering (s-scattering)
while the dependence on po holds generally for isotropic
scattering media.

Vo

M+(
FIr. 1b. Relation between 0 and (3.

cos8+ = v cosO'
&+1 &+1

(2)

v, q
' 2&v, '

cose =v'. (3)
EM'+1) &M+1) M+1

with a nucleus of mass M (measured in units of
the neutron mass) at rest, then in the center of
mass system the initial velocity of the neutron
is 3Ao/(M+1) (cf. Fig. 1a) and that of the
nucleus vo/(M+1). After the collision, the
momenta of the neutron and nucleus must again
(in the center of mass system) be equal in mag-
nitude and oppositely directed. Furthermore,
since energy is conserved in the collision, it is
clear that the velocity of the neutron (in the
center of mass system) is the same as before, i.e. ,
3Ao/(cV+1). If the deflection of the neutron
from its initial direction is denoted by 0, its
deflection in the laboratory system by 0, and its
Anal velocity in the laboratory system is denoted
by v, then (cf. Fig. 1b):
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From (3):

or since u = log(Ep/E):

Qry 1)'
cos0=1 —— (1 —& ').

23II

(4)

the laborat'ory system) in one collision, (cosO)A, .
Q~e 6nd:

~35

udu "dQ pf(/ p, u)

(~V+1)'
= 1 ———

g e-&», (8)
43II

Furthermore, substituting (4a) into (2) leads to
the relation:

(&+1) (M—1)
cosO~ = —— —e—""— ez.t, /2 (6)

Equation (6) shows that the maximum possible
logarithmic energy loss is g» —=log(M+1/3f 1)'—
corresponding to' 0"=zr. Combining (5) and (6)
leads to the desired result for the relative prob-
ability, f(/z p, u) of a collision changing the
neutron velocity from vp to v through a deHection
(in the laboratory system) of /zp

——cosO, namely:

The assumption of scattering which is spherically
symmetric in the center of mass system implies
that the differential cross section is proportional
to d(cos9); but:

(&+1)-'

d(cos8) = — e—"du.

(cos0)A, =
p

du dQp/zpf(/zp, u) =2/335.

l(u) BP—+l(u)Q grad&+/(r, Q, u, t)
v Bt

du' ~dQ'P(r, Q', u', t) f(tzp, u —u')

No loss of generality is incurred by assuming
that 5(r, u, t) =Q(r) 6(u) 8(t) where Q(r) is a
function of r alone and the 8(x) is the Dirac
8-function. A solution of the intcgro-differentia
Eq. (1) corresponding to an arbitrary distribu-
tion of sources (in u and t) is obtained by super-
posing solutions of (1) with a 5-distribution of
sources (in u and t) Using th. e above equation
for S(r, u, t), Iz(u) =l(u)/l, (u) and the abbrevia-
tion P(r, Q, u, t)(P(r, Q, u, t)drdQdu is the total
nunIbcI of colllslo11s pal unit time between I' and
r+dr, etc.) for tz//l(u) j&(r, Q, u, t), we find
Eq. (1) becomes:

Xh(u')+Q(r) ~(u) ~(t). (10)

(3EI+ 1) (M —1)
~
—u/z su/z (7)

In Eq. (7), (3f+1)'-/SzrM is the normalization
constant chosen so that J dQ Jduf(p"p, u) '= 1

and 8(x—a) is the Dirac 8-function defined by:
b(x —a) =0 when x &a and J'8(x a) Ji(x)dx-
= Ii(a). It is understood that u ~& q», for u) I7»,

f(/zp, u) is identically zero.
Two quantities of interest later may be de-

rived immediately from (7), i.e. the average
logarithmic energy loss in one collision, g, and
the average cosine of the angle of deflection (in

6 This remark does not hold for hydrogen (iV=1) where
the maximum possible logarithmic energy loss is infinity
corresponding 0~ =x/2.

If we are not interested in the spatial dis-
tribution of neutrons, we may integrate (10)
over dQ and over all space; we then obtain the
following intcgro-differential equation:

l(u) B+p fO

+ep(u, t) = du'ep(u', t) Iz(u')
Jp

&&fp(u —u')+Q~(u) ~(t) (11)

In Eq. (11), 4p(u, t) = fdrfdQQ(r, Q, u, t) is
the average number of collisions a neutron
experiences per unit time per unit logarithmic
energy interval, Q= J'drQ(r) is the total source
strength, and fp(u u') =J d—Q pf(/zp, u —u') is the
relative probability that a neutron will be scat-
tered into the logarithmic energy interval du



from the logarithmic energy interval du'. lf wc
use (7), we find:

A. Stationary Case

If stationarity is assumed, Eq. (11) becomes

(M+ 1)'
fo(u )=. e " for u&qM,

p
'lC

o(zz) = dit I o(zi )h(Q )fo(u 8 ) +6(it), (13)

foi u) g.&J

The rest of this article consists essentially of a
discussion of solutions of Eqs. (10) and (11)
under different assumptions regarding l(zz) and

h(zz). Equation (11) is simpler and is treated in

Part II. We present rigorous solutions for the
energy distribution of slowed down neutrons in

the stationary non-capturing' case. Fairly ac-
curate —although not rigorous —solutions for the
time-dependent and capturing cases are also
given. In Part I I I, Eq. (10) is treated and
information is obtained about the more com-
plicated problem of the spatial distribution of
slowed down neutrons. The problem of the
spatial moments of the neutron density is con-
sidered first. In principle, knowledge of all the
moments of a distribution function yields the
distribution function itself. Inability to write
down rigorous expressions for all the spatial
moments leads to the development of a method
of successive approximations for obtaining the
neutron density directly. The well-known "age"
equation is the first approximation. Higher ap-
proximations, i.e, , improvements on the "age"
theory, are also presented. Finally, the asymp-
totic neutron density is discussed. Part IV
contains an appendix on the predictions of the
theory with regard to the second spatial moment
of the neutron density in C, 0, H, D20, H2O.

II. ENERGY DISTMBUTION OF SLOWED-
DOWN NEUTRONS

In this part, we discuss solutions of Eq. (11)—the spatially independent equation. We assume
that a mono-energetic source of neutrons of
energy Zo is emitted first continuously (sta-
tionary case)„and then at time t=0. In the
stationary case we inquire into the distribution
of neutroris at all energies E. In the time-
dependent case, we also ask for the distribution
of neutrons in time.

where fo(zz) is clefined by Fq. (12). The total
number of neutrons produced per unit time is
assumed to be unity. For hydrogen (M= 1), Eq.
(13) takes on an especially simple form, namely:

eo(zz) = dzz'eo(u')h(u')e &
—"~+b(zz). (14)

~o

The solution of (14) can be obtained by con-
verting it into a differential equation; we get, if
we omit the neutrons experiencing. no collisions
at all and set g(u) = 1 —h(zz) (F2):**

%~0(zz) = h(0) exp — g(zz')dzz' . (15)

The physical significance of (15) becomes clearer
if we rewrite it as:

l(0) r
" l(u')

e„(zz) = exp — du' . (15a)
l, (0) 0 l, (zz')

For zero-capture, i.e. , l(zz) =l.(zz), (15a) reduces
to unity for all u. In other words, in the absence
of capture, the average number of collisions in
hydrogen per unit time and per unit logarithmic
energy loss is a constant, equal to unity for unit
source strength; with capture present, the same
quantity decreases exponentially in accordance
with (15a).

For M)1, a simple solution of Eq. (13) does
not exist, since the lower limit of the integral is
no longer 0 for all zz (as for M= 1) but

zz —gM(gM ——log(M+1/M —1)')

for u) q~. This peculiar lower limit prevents the
reduction of Eq. (13) to a differential equation,
although a solution can still be found, in prin-
ciple, by repeated integration from one collision
interval to the next L(0, qM) to (qM, 2gM) to
(2qM, 3qM), etc.].The latter procedure is cumber-
some and, in practice, has only limited interest

References to the bibliography are given in paren-
theses.
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since capture generally sets in for energies con-
siderably lower than the initial energy, i.e. ,

u))g~. Hence, it suffices to examine how the
asymptotic solution of the non-capture problem
is modified by the presence of capture. The non=

capture case will therefore be treated first. VVe

shall then consider the novel inodifications
introduced by capture, both when the capture is
slowly varying in one collision interval (i.e. ,

g~), and when it is rapidly varying (resonance
capture). Finally, the case of "1/v"—capture (v is
the velocity) will be discussed separately because
of its intrinsic interest and the usefulness of the
solution for the time-dependent problem without
capture (cf. Section 8).

1. 2VO CaPture

If capture is absent, Eq. (13) becomes:

e, (zz) = dzz'e, (zz')f, (zz zz') P—S(zz)

The integral Eq. (16) can easily be solved by the
method of Laplace transform (A1). If we write:

c,(~) = ze, (N) = dN8 ""'Po(zz),

then taking the Laplace transform of both sides
of (16) yields:

where
C'o(n) =C'o(n) Go(n) +1, (17)

Go(n) = [1—exp[ —q~(.1 y1)]$,
~+1

(a = (%+1)'/435). (17a)

The first term on the right-hand side of (17)
follows from the convolution theorem' for
Laplace transform; Eq. (17) leads immediately
to the following solution for +o(u):

e, (zz) =
2xz g $(g)

(1 —exp[ —
V.v(~+1)3)

g+1

(18)

where the integration is taken over a line to the right of all the poles of the integrand. The poles
of the integrand are at:

(g+1)/o. = 1 —exp[ —qzz(q+1) j.
If we separate 8(z&) (this is the direct source term) from 4'o(zz), we can write the solution in the form:

+o(u) = 8(zz)+ (20)

+o(zz)- -=1/6, (21)

where ri; is the jth root of Eq. (19).
The only pole for which g; has a non-negative

real part is at go ——0; all other poles (j)0) lie

to the left of the imaginary axis. Consequently,
for large zz, the asymptotic solution for +o(N) is:

estimated by finding the poles y~, 2 with the
largest negative real part. Since the poles depend
on 2VI, two cases have been distinguished: 3f=2,
and 3II&)1. The results are (M2):

3XI=2: », 2 = —1.55 &3.37i,
»,= —0.52m~ ~.87zsi.

where $ is defined by Eq. (11a). It is precisely
because the asymptotic behavior of +0(zz) is a
constant that we chose u as a variable rather than
the energy itself.

The error introduced by using (21) may be

Substitution into ('20) shows that the dominant

7 The convolution theorem for Laplace transforms states
that 210"du'F1(u —u') Ji2(N') = G1(q)G2{g}, where G1{g}
= g~1(u), and G2(g) = gF2(u). This theorem and all other
cited theorems on Laplace transform are proved in G.
Doetsch, Jap/ace Transformation (Dover Publishers).



+p (u) asym = 1
m

1 —P c,u„ps', expL —ps', j, (23)
s=l

terms, which have been neglecterI. in writing
down (21), are:

(M=2)e ' "", (M»l) Me ' "~".

For the special case M=1 (hydrogen) it can
easily be shown that the only pole is at go=0;
hence the rigorous solution is 4's(u) —=1, obtained
by using the fact that tfsr t= ~ and a =1.This
is in agreement with the previous derivation
(cf. Eq. (15)).

Placzek has solved Eq. (16) by an alternative
method, and has obtained curves for

+p(u) —4'p(u). ,y

+p(u) ppym

as a function of (u/gsr) for different values of
M (P1). His results are shown in Figs. 2 a, b, c;
it is seen that the fluctuations of 0'p(u) about its
asymptotic value die out fairly completely when

N&3g~. Since g~ is the larger, the lighter the
nucleus (e.g. , qsr s = 2.2 as compared with

q,~r=&s=0.159), the deviations of 4'p(u) from its
asymptotic value will thus extend over a larger
energy region for the light nuclei. Hence, for a
given width in initial energy of the neutrons, the
deviations will be observed more easily in light
nuclei.

Placzek (P1) has also examined the solution
of Eq. (16) for a mixture of elements. He hnds,
for a mixture of m elements with all the mean
free paths constant or varying in the same way
with energy, the following asymptotic behavior
for +p(u):

K

0
ps

lo ~
f

i.4 l,5 2.0 2.5,
Qss

3.0 3.5

Fio. 2a. [fp(N) —pp(u), »~5/pp(pp), » as a function of u/qpr
(from (P1)) for &=2..

2.5
0

FIG. 2b. [Pp(u) —Pp(pp)ssy&u5/4'p(s)ssym'as a function of u/qst
(from (P1)) for &=12.

O

I P

-3
l,4 l.5 2.5

FIG. 2c. [Pp(u) Pp(u),—» 5/fp(u). »„, as a function of u/qpr
(from (Pi)) for M=

1

where c, =l(u) /l, ( u), with /(u) the total mean
free path, and l, (u) the mean free path for scat-
tering at a nucleus of type s. Equation (23) is valid
for variable c, provided the variation is small in
a region of the extension of one collision interval.

Z. CaPture

Equation (21) gives us the asymptotic behavior of 4'p(u) in the case of no capture. When capture
sets in for some u=us»pe, the solution (21) is modi6ed. To determine the character of the new
solution, we rewrite Eq. (15) for u) gsr.

(24)

where %p(up) = 1/P, h(up) = 1. If we multiply both sides of Eq. (24) by (, and introduce the notation
5(u) = &+p(u), we get: p

5(u) = n du'5(u')k(u')e —t"—"'&

~u —qM

(24a)
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where S(uo) =1. The quantity S(u) represents the so-called slowing-down function, i.e. , the number
of neutrons reaching the energy corresponding to u per unit time. Equation (24a) can be written
in another form, namely (P1):

".u
S(zi) = F'(zi) -+n

& rr- q-

dzi'[h(ii') S(zi') —,S(u) I,

P(u) = 1 —— du'g(u') S(u')
(J„,

is the probability per unit time, that the neutron is not captured in the logarithmic energy interval
(uo, u). The presence of the second term on the right-hand side of Eq. (24b) distinguishes hydrogen
from all the other nuclei (since q»=& ——~), and is responsible for the physical difference between S
and I'. If the capture is slowly varying within one collision interval, an approximate solution of
(24a) is (P1):

S(zi) = exp — vo(zt )du (25)

where vii(u) is the positive root of:

(1 —vo)+nh exp[ —q»(1 —vo)] —nh=0.

For large cV and g(u) «1, Eq. (25) reduces to:

(25a)

S(u) =exp —— g(u )du' .
1

(25b)

Equation (25) has been generalized to mixtures for h(u) equal to a constant slightly less than
unity (weak capture). The result for a mixture of m elements is (W2):

vo = (1 —h) 1 —P c,n, q», exp[ —q», ],
@=1

(25c)

where 4'0(uo) is now given by the right-hand side of (23).
If the capture is rapidly varying within one collision interval (resonance capture), it is necessary

to solve (24a) rigorously. This is feasible if the rapidly varying capture extends over several collision
intervals. We seek a solution of (24) which satisfies the boundary condition S(uo) =1,. and which
reduces to S(u) —= 1 for h(u) =1 for all u &~ uo. This solution turns out to be (P1.):

1l

S(zi) = e&i"& 1 ne 'vl e—&'"'&du' (26)

where

ply

x(zi) =n) h. (u')du' —(u —uo).
tz p

The solution (26) is valid in the interval (uo, uo+q»); the solution in the following intervals can be
found from (26) by successive integrations. After the capturing region has been passed, S(u) will

Huctuate for a while and finally tend to an asymptotic value. This asymptotic value can be deter-
mined without a knowledge of S(u) in the fluctuating region. In particular, if u, ()uo) is the value

It is the connection between S and .P which 1eads to the introduction of the quantity S; in the time-dependent case
we sha11 return to +0.
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of u beyond which the capture ceases, it follows from (24b) that the asymptotic value of S(u) is

given by:
j ~M

S(u).,„„„,=
)

1 —— du'S(u') g(u')
5 "nn

(27)

If the resonance capture takes place within a sniall portion of one collision interval, i.c, , the
width of resonance is small compared to q,&I, then Eq. (27) leads to the following simple result

1
I

l(u')
S(u),...„„= 1 —— du' .

5 "-'t'( ')

Equation (28) follows from the fact that it is self-consistent to replace S(u') under the integral sign
in (27) by its "no-capture" value, i.e. , unity.

3. "1/v" CaPture

If the scattering mean free path is assumed constant, and the capture mean free path is propor-
tional to the velocity ("1/v" law for the capture cross section), a rigorous solution of (24a) can be
obtained (P1). Let us write w=l, /I, = v, /v where /, is the scattering mean free path (assumed con-
stant), I, is the capture mean free path, and v, is the velocity at which the mean free paths for scat-
tering and capture are equal; then h(u) =1/(1+w). If we rewrite Eq. (24a) in terms of w, we get
(S(«) —=0(w)):

g(w) =
w'(1 r ') &—, '-

w'it (w')
dGJ

(1+w')
(29)

where r =—L(n —1)/n]l = (M 1/M+1)—. Equation (29) implies that we restrict ourselves to values of
u) g~, the error introduced is small as long as v, ((vo (vo is the initial neutron velocity). The solution
of (29) is most conveniently expressed in terms of an infinite series, namely:

y(w) =Q P,w',
j'=0

with

Ho=1, & =(—)'~ II(1—~~) '
k=1

2 1 —r2+

' j+21-r'

(30a)

(30b)

O(w) =1/(1+w)'
For large M, an expansion of log[y(w) j is more convenient. and one Ands (P1):

The expansion (30) is useful for small M; for hydrogen a rigorous solution is easily obtained,
namely (B3):

( 1)

or

logLO(w) 3 =—2 (1+r+r')w (1+3r+2r')
—VO

(1+2r) 2 (1+2r) ' (32)

y(w) = exp L
—(Mw —-', Mvw') ],

where terms of order m' and 3'' have been neglected.

(32a)

'A detailed discussion of the effect of resonance capture on the slowing down of neutrons in uranium piles will be
found in the Plutonium Project Record of the Chicago Metallurgical Laboratory.
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S. Time-Dependent Case

)Ve now turn to the time-dependent Eq. (13), and assume that capture is absent and that the
source strength is unity. We have:

l(u) pt+p—++p(u, t) =
v

du'C~p(u', t)e &" "'&+6(u)6(t) (33)

Equation (33) is difficult to solve for a general element of mass 3E, if /(u) is permitted to vary arbi-
trarily with energy. EVe therefore consider two special cases:

1. 3II=1 (hydrogen) and arbitrary variation of /(u) with energy.
2. 3E/1 and l(u) —=constant.

1. Hydrogen

For hydrogen, Eq. (33) assumes the simple form:

l(u) 8+p
-++p(u, t) =

~

du'&'p(u', t)e-~"-"'~+~(u)/'(t).
V B$ ~p

The solution of (34) is most readily obtained by taking the Laplace transform of both sides of Eq.
(34) with respect to t; we get:

sl(u)
1+ Cp(u, s) = ' du'Cp(u', s)e & "'&+8(u), (35)

where

Cp(u, s) =, dte "+p(u, t).
0

It is convenient to separate out the 5-function part of the solution of (35); thus we write:

b(u)
&Ip(u, s) =—— +x(u, s).

1 + (sip/vp)
(36)

In Eq. (36), the zero subscript on l and v indicates that the values of l and v at u =0 are to be chosen.
Substituting (36) into (35) yields:

sl(u)- 'tt ' . e
1+ x(u, s) = du'x(u', s)e- ~.--'&+

1+(sl p/vp)

If we differentiate (37) with respect to u, we find:

sl t'/q' l-
1+—x'+

~

—
I
+- x=o,

v Evi v
(38)

where the primes denote differentiation with respect to u (the parameter s is regarded as fixed). The
solution of (38), subject to the boundary condition

x(0, s) =
(1+(s/p/vp)1'
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(cf. (37)), is:

X(u, s) = — ——exp —s
l 1+(»p/vp)3I 1+(»(u)/v)3 — "o s+(v'/t(u'))-

To find %'p(u, t), we must take the Laplace inverse of (36); we obtain:

Vp p
rr+ 'soo

%p(u, t) =—expl —vot/lpjb(u)+
I,p 0'—400

dsexp s f—

L1+ (st(u)/v jr1+ (»o/») j
where the contour of integration is chosen to the right of a11 the poles of the integrand. Equation
(40) was first obtained by Ornstein and Uhlenbeck (01) by a method essentially equivalent to the
one above.

The evaluation of the second term on the right-hand side of (40) is in general laborious; however,
if Lv/l(u) j is approximated by certain simple expressions, the Laplace inverse can be obtained
immediately from tables. "Thus, if the scattering mean free path is assumed to vary as v("1/v"
cross section —this is a good approximation from 50 kev to 2-3 Mev), so that v/l(u) =vp/Ep (constant),
Eq. (40) reduces to:

&p Vp ( Vpt ) (Vout'l *

'lp(u t) =—~(u) exPl —»t/tpj+ —
l I

Ii 2I —I exPC —u —(votlto) j,
lp lo Etou~ ( lo ~

(4»)

where Ii(s) is the first-order Bessel function of imaginary argument. Similarly, if we take i=to
(constant) —valid below 50 kev—we get:

Vp 1(v) v 2tp
+p(u, t) = 5(u)—expL —vpt/tpg+ —

l

—
l

t' 1 ——+ expL vt/lo]. —
lp 2 Elo ) Vp tvp

Z. Constant 3Iean Free Paths for Heavy Eternents

If the mean free path is taken as constant, it is possible to obtain a fair1y accurate solution of Eq.
(33) for arbitrary mass (M7). If we write l(u) =—tp (constant) and take the Laplace transform of Eq.
(33) with respect to t (the notation is the same as in Eq. (35)), we get:

( sloe
l 1+—IC'o(u, s) =

V) aJ p

du'C p(u', s)fp(u u') + b—(u). (42)

lf one is interested in large u (which is generally the case), the influence of the solution in the first
interval 0 &~u ~& ass is unimportant and we can rewrite Eq. (42) as follows:

where

4(w, s) =
(1 r') ui' ~—,

ui'@(ui' s)
(AD for Q) g~,

(1+u')
(43)

w =los/v, r = (M 1)/(3/I+ 1), @(w, s) = (1+w)4,(u, s).

Equation (43) is identical with Eq. (29) except that g(ui, s) is a function of the parameter s; this
implies that the solution of the time-dependent problem reduces to taking the Laplace inverse of the
solution of (29) or (43). In other words, the time-dependent neutron distribution without capture
is the Laplace inversion of the stationary distribution with "1/v" capture.

"N. W. McLachlnn and P. Hnmbert, Tabettes des Laplace Transformes
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The solution of Eq. (43) has already been given in (30). The solution of the time-dependent
equation is then:

&cr+ 7',ce

Op(u, t) =
2X$ g $QQ

dse" P P,w'/t(1+w)
j=0

(44)

where the P s are defined by (30a). The rigorous evaluation of (44) is very difficult. We therefore
have recourse to the following approximation method; we observe that:

Q &L

(t") = ( —)" 2 t3 w'/(1+w)
8$7L

wvhcI c

(t'")A„= „dtt C,p(N, t)
"0

dip(u, t).

Equation (45) can be rewritten as:

$7L

(~'") = ( —)" 2 P w'/(1+w)
8QI

(46)

where x = (vt/tp).
Now Placzek has calculated (x")A, (P2) with the result:

n

(;~'()A, =n'! g (1.—/I„)
k=1

(47)

where X& is defined by Eq. (30b). In principle, these moments determine a generating function F(x)
which is directly related to 4'p(u, t). The expression for the nth moment is so complicated, however,
that we can at best hope to find an approximate expression for F(x). This we proceed to do. We
first notice from the moments that for large x, F(x) behaves like e *x't" "'&. This follows from the
fact that:

n 7L

log g (1—Xk) ' = Q log (1—X~)
k=1 k=1

n 2
=P log 1—

(&+2)(1 —r')

~——,(0+2)(1—r') ""~(1 —r')

( 2
(~-)A = d«-"x' '-"'~-=r] +n+1 )

=n!n
p &1 r— (4g)

Secondly, we notice that the integral equation (43) is equivalent to a differential equation with an
essential singularity. The simplest essential singularity (at least for integration purposes) is exhibited
by exp( —&/x) (& a constant). We therefore try:

Fp(x) =A exp —
(

—+x [
x"&' "'&,

.E x
(50)

where A is a normalization constant. The constant b is determined by maximizing Fp(x) at the
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TABr.E I. Constants for time-dependent case. point x=xA, . The advantage of (50) is that in-
tegrals of the form

M 2/1 -r2 &Ay

2
9

15

2.250
5.556
8.533

13.6
1.0.38
16.36

0,190
0.0730
0.0526

4.86
50.15

128.:13

(&

J
dxexp —

(
—+x [

x"+-'
Ex )

(n an integer) are readily evaluable. Fo(x) is

only a first approximation; after some experimentation, it is found that the relation

oo

dxx "Fo(x) = [1+a(n+1)](x")A„ (51)

where a is a constant and (x")A„ is given by (47), is closely fulfilled. We therefore improve our result
by vrriting:

dxx"Fo(x) = [1+a(n+1)] dxx"Fi(x),
"o 40

(52)

and solving for Fi(x). It can be shown that (52) is equivalent to the following di6erential equation
for Fi(x):

d Fi(x)
Fi(x) —ax = Fo(x), (53)

with the boundary condition Fi( ~) =0. It is clear that the value of Fi(x) at x=xA„ is equal to that
of F0(x). The solution of (53) is:

1 /

"dx'Fo(x')
Fi(x) =—x"

(x&) 1+1/a
(54)

If further accuracy is desired, one can express:

I

dxx"F,(x) = [1+ai(n+1)+a~(n+1) (n+2) + . .](x")A,
V p

and obtain higher order differential equations.
The above procedure has been applied to three cases: %=2, 35=9, and &=15. Table I gives

the corresponding values for [2/(1 —r') ], xA„, a, and b. The quantity a was found from (51) by taking
the nearest half-integer for [2/(1 —r')], i.e. , 2.5, 5.5, 8.5 for M = 2, 9, 15, respectively, and performing
the fit at the fifteenth moment. Kith the value of a thus determined, the ratio r„of the nth moment,
defined in terms of Fi(x), to the nth moment, defined by Eq. (47), is given in Table II for the first
thirty moments.

TABI E II. Ratio of approximate nth moment to exact nth moment.

1
2

6
8

10
12
14

0.951
1.027
1.102
1.118
1.101
1.064
1.028
0.986

0.945
0.956
0.974
0.986
0.996
1.000
1..003
1.003

0.953
0.956
0.962
0.967
0.973
0.979
0.986
0.994

16
18
20
22
24
26
28
30

0.946
0.912
0.878
0.848
0.818
0.791
0.764
0.737

1.001
0.997
0.991
0.984
0.975
0.965
0.954
0.942

1.001
1.009
1.017
1.024
1.031
1.038
1.045
1.051
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lt is seen that the deviation is not more than 5
percent for .V=9 and M= 15. However, for
3f=2, the results are not as good. This is to be
expected since the derivation of (48) is the less
accurate, the smaller the 3f. Hence, for 35=9
and M = 15, the distribution function Fq(x)
(given by (54)) should be quite accurate up to
rather large values of x. For 35=2, the distri-
bution function F~(x) will not hold as far out.
Figures 3a—3c contain plots of logF~(x) as a
function of x up to x=35 for ~ 9 15.

IO C. Energy Distribution of Neutrons after Given
Number of Collisions

IO
35

FIG. 3b. Time dependence for &=9.

For some purposes, it is of interest to know
the energy distribution of neutrons w hach have
suffered just n collisions. This problem has been

6 l5 20 25 30
solved by Wick (W5) for hydrogen, and for an
element of arbitrary mass by Condon and Breit
(C1), by Langevin (L1), and by Dancoff (D1). If
X(n, u)du represents the number of neutrons

s then N(n, u) is different from zero for values of u betweenbetween u and u+du after n collisions, t en n, u is i

0 and nq,M. Ke have the integral equation:

N(n u) =a du'e '" 'N(n —1, u').
4e—q~

(56)
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The solution of (56) is:

ne " i (n~
ar(n, u)= P ~

((-) Pu-u& q--
(n —1) l p=o (Pj (57)

where k is defined as the largest value of 4 for which the bracket is negative.
Equation (57) has been generalized to a mixture of nz elements, including capture, on the assump-

tion that all scattering cross sections and the capture cross section vary in an identical fashion with
the energ. y (W2). The result is:

~e—"
~' (n)

X(n, u) = P ( —)'(
(n 1)!a=o—

(57a)

The asymptotic behavior of N(n, u) for a single element has also been investigated by Dancoff
(D1). He finds:

( 6 &
~ ( u 1) ' ( u 1) ( u 1&

&(n u)=« "(~~~)" 'I —
~

«p —12n(
& ~n) (nqM 2) & ng~ 2) &nidor 2)

X(n, u) reaches a maximum, and is symmetrical about the point u=-,'ng&&, this maximum becomes
sharper as n, increases. For very large n, (58) may, in turn, be approximated by a Gaussian:

)6y'* — ( u 1y'
X(n, u) =«- (nq,„)"-

I
—

[ exp —6n
(7m) knq&r 2&

Equation (59) is valid provided n))1 and
~ (u/nidor) —-',

~

((1.
It is clear that the total number of neutrons per unit logarithmic energy interval, ¹(u),is obtained

by adding the contributions from all collisions, that is:

¹(u)= P X(n, u).
n=O

(60)

The relation between ¹(u)and 0 o(u) is simply: ¹(u)=l(u)/v+o(u) (cf. above).

III. SPATIAL DISTRIBUTION OF SLOWED-DOWN NEUTRONS

In Part I I we have treated some characteristic problems associated with the energy distribution
of neutrons slowed down by elastic collision with nuclei. However, for many purposes, one requires
a knowledge not only of the energy distribution of the slowed-down neutrons, but also of their spatial
distribution. In some instances —such as the design of a slow neutron pile —the complete spatial
distribution of the neutron density need not be known but only the second moment. In other cases,
an accurate knowledge of the neutron density itself is desirable. We, therefore, turn —in this part-
to a discussion of the spatial distribution of slowed-down neutrons. Section A is devoted to a fairly
complete presentation of the results on the second spatial moment of the neutron density. In Section
8, we consider more brieHy the higher spatial moments of the neutron density. In Section C, we give
a direct derivation of the age approximation to the neutron density and examine the conditions of
its va»dity. Finally, Section D contains an account of improvements on age theory and of the
asymptotic neutron density.



A. Second Spatial Moment of the Neutron Density

We work with the stationary, non-capturing form of Eq. (12). Capture and time dependence are
complications which can be incorporated into the theory if necessary (cf. below). The discussion of
the spatial behavior of the neutron density in an infinite slowing-down medium can be carried out
on the basis of a plane 8-source. This follows from the fact that (1) the neutron density, Xo(r, u),"
due to an arblt1ary distribution of (isotropic) sources 5(r) is o'iven by

Ã„(r, zz) = dr'h(r')G„(i r —r'i, u), (61)

where G~z is the neutron density caused by a point source of unit strength; and (2) G„(r, u) is related
to the neutron density G»(z, u), caused by a plane 6-source of unit strength by:

(62)

The stationary, non-capturing form of Eq. (12) in one dimension —corresponcling to a source 6(z)—becomes:

l(u)u(8$/Bz)+P(z, Iz, u) = t du' dQ'P(z, p, ', u') f(uo, u —u')+8(z)g(u)/4zr.
~c

(63)

Equation (63) is the starting point for our discussion of the spatial moments of the neutron density.
Q~e l~eep the treatment general at erst and then specialize to the second spatial moment.

Spatial moments of a distribution function are most easily found by studying the Fourier trans-
form of the distribution function. Let us, therefore, take the Fourier transform of Eq. (63) with

respect to z; we get:

where

I 1 zyl(u—)7&(y, p. , u) = " du' dQ'@(y, u', zz') f(zzo, u —u')+8(u)/4zr,
0 L

(64)

4 (y, u, u) =&LP(z, p, u) 7 = dze*&'p(z, p, u).

Suppose we expand P, f in spherical harmonics:

4 (y, u, u) = P t (2l+1)/4m 7$,(y, u) P/(jl),
l=o

(65a)

where

f(p, u) = P L(2l'+1)/4zr7f&(u)P, (zz)„
l=—0

(65b)

4 t(y, u) = dQP, (p) y(y, p. , z~), (65c)

f~(u) = ~d&P~(lz)f(u, zz). (65d)

&f we now multzply Eq. (64) by P&(u) and integrate over dQ, we arrive at an infinite set of integral

' The neutron density, .Vo(r, u) is related to the number of collisions per unit volume per unit time integrated over all
angles, &0(r, n) by Xo(r, u) =E(n)/v &0(r, I). In the remainder of this article, we shall refer to +0(r, zl) as the neutron
density.
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equations, thus (the subscript l is not to be confused with the mean free path l(u)):

Qo(y, u) i—yl(u) Q, (y, u) =, du'Q, (y, u') f,(u —u') +5(u),
~0

iyl(u)
@&(y, u) — tlPz i(y, iz) +(l +1)g z+z( y, u) 1= du'gf, (y, zz,)'fz(u n—,')

(2l+ 1) 0

(66b)

Each pz(y, u) may be expanded in a power series in y, and from the structure of Eqs. (66a) and (66b),
it is seen that gz(y, u) contains only even powers of y when l is even, and odd powers when l is odd.
Furthermore, it is easily seen that the expansion for pz(y, u) starts with y. Hence we may write:

4i(y, u) =
k=l, L+2, l+4, ~ ~ ~

i "P '"'(u) v" /k ~ (67)

We wish to know the spatial moments of the neutron density; the 2nzth spatial moment is deFined
as:

00

tz'""'(u)j = d 2™ d&4( z ) d~P(z, zz, u). (68)

It is easy to see that (68) reduces to:

Lz""'(u)j .=4""'(u)/00'"'(u). (69)

The procedure for evaluating the various Po&'"&(u) when the mean free path is permitted to vary
arbitrarily with energy is clear in principle, but laborious to carry out in practice. Since—in lieu of
the actual neutron density itself—the second spatial moment is of greatest interest, we shall in this
section derive some fairly rigorous expressions for it. The higher spatial moments will be calculated
under more restrictive assumptions in Section B.

The slowing down length L„, which is a term widely used in the literature, is defined in terms of
the second spatial moment by:

(70)

In (70), the equivalence of tz'(u)]«and 39'(u)1«(the average r' from a point source) follows
immediately from (62). Formulae for L„have been obtained for the following cases":

1. Single element: arbitrary variation of mean free path with energy.
2. Single element: representation of mean free path by sum of decreasing exponentials in N.

3. Mixture containing hydrogen or deuterium: representation of mean free paths by sum of decreasing exponentials in u.
4. Mixture of heavy elements: representation of mean free paths by series of step functions.
5. Hydrogenous mixture: rigorous formula assuming inFinite mass for the heavy component.

1. Single Elenzent: Arbitrary Variation of iVean Free Patk zoitk Energy

To find the slowing-down length, we must find goz'&(u) and goi'&(u) (cf. Eq. (69)). Inspection of
the system of Eqs. (66a) and (66b) reveals that the determination of &0&'&(u) and Po&'&(u) only
requires (66a) and the l = 1 equation of (66b), with Pz omitted. Applying a Laplace transformation

"Numerical applications of the formulae for L. are given in the appendix.
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with respect to I to these two equations, we hnd:

where

vo(n)~o(y, n) —64' (X, n) =1,

~~(~)4'~b, n) —(6/3)Co(S, n) =o,

C'o, 4, ~) = &I A, (X, u) 3,

~'0, ~(X, n) = ~L~(u)A, i(y, u)],

vo, i(v) =1—
go, i(v),

(71b)

a (n) —= ~ufo(u) j= 1 —
I 1 —expL —g. (v+1)j I,

q+1

a(1VI+1) n(cV —1)
a~(~) =—~D~(u) 3 =1- I1 —exp[ —

qual(g+-',

)l I + I1 —expL —gag(g+-.,')) I. (72b)
(2q+3) . 2rl+1

The subscripts 0 and I refer to the zeroth and first spherical harmonics of the various quantities in
question.

The expansion (67) applies equally well to the Laplace transform of both sides. Making use of an
obvious notation, we have:

~-'[co'"(~) l

21., '-'(u) =
&-'LC o'"(~)3

(73)

Substituting the expansion (67) into (71a) and (71b), and equating the coefficients of y', y', y', we
obtain:

4.&"(~) = 1/vo(~),

C'~'" (n) = L1/3v~(n) )C'0'" (n)

C'0 "(n) = L2/vo(v)l@~'"(n).

Let ns denote the Laplace inverse of 1/yo &(q) by yo &(u); then:

~-'L+o'"(~)3=~.( )

(74a)

(74b)

(74c)

(75)

To obtain the Laplace inverse of Co&'&(g), we make use of the inverse of the convolution theorem,
l.e. :

Z 'LG~(g) Gm(g) $ = du'F~(u —u') P2(u'),

where
J'~, 2(u) = & 'LG~, ~(~)j

and also the fact that the Laplace inverse of C is l(u) times the Laplace inverse of C. Thus, (74c) yields

Z 'LC '"(q)(=2)' du'yp(u —u')l(u')0!g"'(u'),
0

(76)

But

2 'L4g'"(g)]=-' ' du'y~(u —u')l(u')+0(u')du','.I, (77)
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Combining (75)—(77), we arrive at the final formula:

2,'(u) = du'go(u —u')l(u')
3yp(u) & p J0

du "pi(u' —u")l(u") yo(u") . (78)

Equation (78) has been derived by Marshak (M4) and Schwinger (S1).
Equation (78) is a rigorous result, and in principle can be used to calculate I., for an arbitrary

variation of mean free path with energy since the y's are completely we11-defined functions. For
example, in the case of hydrogen (since iV= 1), we have po(q) = rr/(g+1) and vi(zt) = (a+ p)/(0+ p) ~

so that yo(u)'=8(u)+1 and yi(u) = b(u)+e ""-. A straightforward substitution for yo(u) and yi(u)
then 1eads to the well-known result:

'V

I,, '{u) = -', lz(0) +l'(u) + l (0)l (u) e ""+--l (u), du'l(u') e &" -""—'+, du'l'(u')
~0

+l(0) du'l(u') e—"'"+ du'l(u')
J0 ~i 0

du"l(u")e &"' ""&r' . (79)

Equation (79) has been derived by alternative methods (F1 and 01).
Ashkin (A4) has generalized Eq. (79) to the case of a mixture consisting of hydrogen and an

absorbing material. He neglects the scattering properties of the absorber but takes account of the
variation of capture cross section with energy. He finds for the slowing-down length:

r
" l '(u') r

" l '(u')
L,, '(u) =-,'- l&'(0) +l&'( u)+l (r0)l, ( u)e ""+—l, (u)

' du' e
—r"——"'&r'-+ '

du'
lzz(zz') ~ p lzz(u')

lip(u')
+I r (0) du' e—""-+

~ o 4(u')

l '(u')
dQ

4(u') ~ o

lip(u")
du" e r"'—""'&r P-(79a)

lH(u")

where 1/Ll, (u)]=1/I lzI(u)]+1/[l, (u)] with lzz the scattering mean free path of hydrogen, and l,
the capture mean free path of the absorber.

For elements heavier than hydrogen, the calculation of yp(u) and yi(u) is more complicated, and
for large I and not too irregular variation of the mean free path with energy, it is easier to apply
the formula derived below. If the mean free path changes irregularly, i.e. , there are resonance
effects, it is usually preferable to use Eq. (78) (cf. M4).

Z. Single Element: Representation of 3&an Free Pat& by Sum of Exponentials

As remarked above, formula (78) is, in general, difficul to apply to nuclei with masses greater
than that of hydrogen. If the variation of mean free path with energy is not too irregular, then the
following artifice can be resorted to (M2); we write l(u) in the form:

l(u) = P A,e 'r"-
7=0

where A; and a, are arbitrary constants with" a;&~0. This representation is quite general since a
large number of terms may be taken; it becomes laborious when the variation of l(u) with u is
extremely irregular. Using (80) for l(u), we find Eqs. (71a) and (71b) reduce to:

7 (zt)+o(y rr) —zy 2 ~rC' (y rr+a~) =1
j=-0

oo

yi(rr)C'z(y, g) ——Q A;4'p(y, zt+a, ) =0.
3 9'=0

13 It is necessary that c;&~ 0 in order for the Laplace transform to exist (cf. below).

(81b)
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Equations (81a) and (81b) follow from the fact that

Z(e -""J(u)] =G(r)+u), where G(t)) = Z/E(u) j.
Following the procedure which led to the derivation of Eqs. (74a) —(74c), we obtain:

@p'"'(n) = 1/vp(n),

00

c't'"(n) = Z ~'c'p'"(~+~ ),
3yi(t)) i=p

(82b)

GO

c i'&(&)= gA c &»(~+a)
vp(n) i=p

(82c)

From Eqs. (82a)—(82c), we can immediately write down the solutions for 4 p&" (t)) and Cpt'&(r)), the
two quantities which are needed for the determination of I., These are:

(83a)

Since

2 00 Ag
c'o'"(n) =

3p p(r)) t—p p, (r)+g„,) I=p yp (t)+ g, + (i „.)
(83b)

we must still take the Laplace inverses of (83a) and (83b). This cannot be done easily; however, for
large u, recourse can be had to the Tauberian theorem'" so that it is on1y necessary to study the
behavior of @pi i(tl) and 4p"'(tl) for small r) We fin.d:

2 00 AgA;
& 'Lc'p'"'(v) j=-, , +—,

3L+p (0)] 'yl(0) 3&p (0) j =k =p {j=p =0 sxpipdsd) 'rt(ci')r p(rii+&1c)

pe."(0) v '(o) &+ —
i

. (84b)
„(0)&,(0) & &.'(0) &,(0) )

In deriving (84a) and (84b), it is assumed that ap ——0 and all the other a s WO. The quantity 2I.,
is the ratio of (84b) to (84a).

For reference purposes, we write down expressions for the y s and their derivatives" which enter
into Eqs. (84a) and (84b) (the quantities yp(a) and yt(a) are defined by (72a) and (72b)):

(3f—1)'-'

yp'(0) =1—— q.ir=~t, (85a)
23I

(3/l —1)'
yp" (0) = —2+ g.ir(1+/Br)—,

2M
(85b)

'4 The Tanberian theorem states that since
iT+l 00

I'( )= &ii'EG(p)3= — d~s""G(n)
271$0' 'b 00

(where the integration is to the right of all the poles), the behavior of F(u) for large u is found by studying the pole of
G(p) which has the largest real part (cf. G. Doetsch, LaPlace Transformation) In the case of Cp&'&.(g) and Cp"&(p) these poles
are at g=0.

"The quantities ( and (cosO)q& are the average logarithmic energy loss and average cosine of the angle of deAection,
respectively (cf. Eqs, (11a) and (11b).
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yi(0) = 1 — =—1 —(cos8)A„
3M

(85c)

1 10 1( 2y
p, '(0) =- —2m+ +-~ iV' 3+— ~q,,r . (85d)

For constant mean free path (independent of energy), Eqs. (84a) and (84b) lead to the following
simple formula for 1., (A, =O for j WO):

I,. '(u) =— u
3vo'(0) vi(0)-

~ "(0) 7 '(o)

vo'(0) vi(0)—
(86)

Equation (86) was first derived by Placzek (P2).

3. Mixture Containing Ilydro gee or Deuterium

Equations (78) and (84a)—(84b) can be extended to a mixture of elements provided the scattering
mean free paths of the component elements vary in exactly the same way over the entire energy
interval. If this is the case, the integrals in Eqs. (66a) and (66b) are of convolution type and the
method of Laplace transform can be applied as before. If the energy dependence of the mean free
paths is not the same, the method of Laplace transform is not immediately applicable and the
problem must be examined more closely.

Thus, let us suppose we have a mixture of two elements of masses 3f and N (3f&N), with the
variation of the total mean free path, l(u), with energy given by (cf. (80)):

l(u) = Q A, e
j'=0

where A, is an arbitrary constant, ao ——0, and a,(j)0) is an arbitrary positive constant. Furthermore,
let us assume that the ratio c(u) =—l(u) jl))r(u) has a variation of the form:

c(u) =Bo+Q 3I, exp[ —b),u],
le= 1

where 8& and bk are arbitrary positive constants, and 81„- is an arbitrary constant whose absolute
value is small compared to Bo. The latter condition is equivalent to the requirement that c(u) is a
more slowly varying function of u than l(u). Experimentally, this is usually fulfilled and is true as
long as the mean free paths of the component elements do not vary (with u) markedly in opposite
directions.

Substituting the expressions for l(u) and c(u) into Eqs. (66a)—(66b) (generalized for a mixture),
we obtain the analogs of Eqs. (82a)—(82c), namely:

~'o'"(n) = ao(n)-
+ 2 Bk~&o'o)(n+~&i)-

Vo(~) Vo(~) "='

+)( )(~)—
00 a)(n)
Z A,@o'o)(n+~;)+- Z BIP)'"(v+4)

3V)(n) ~--o v (n) ~--
(87b)

go(n)-
&I&o

'i
(n) == Q A 4)~" ())+a~)+ P B)'~&o 2 (i)+b)r).

V (n) = Vo(n) &=
(87c)

In Eqs. (87a)—(87c), we have set y&(q) =1—[Bogt))I(q)+(1—Bo)g)v(q)], and gi())) =g))r(it) —giv(g);
the rest of the notation follows closely the previous definitions.
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We solve Eqs. (87a)—(87c) by means of a perturbation method. Before we apply perturbation
theory, however, let us write down expressions (these are still rigorous) for the 4 s in the neighbor-
hood of » =0; these will lead to the asymptotic expressions for the Laplace inverses. Thus, neglecting
a.ll terms beyond 1/», we get:

~'p"&(n) =
v.'(o) ~'

Ap
@ '"(~)=

3vi(o)vo'(o) n

g p' (7,"(0) vi'(0) q——+-, Z~~~ (~)——, I, +
3L» (0))»(0) r&' 37p'(0) i=i vo (0)vi(0) ( vp (0) vi(0))

(884)

gp'(0)A o' ~ 1
+ Q &go'"(~;)+- P B&C pi'&(bp) .—. (88c)

vi(o) &=i vo'(o)vi(o) p=i

In Eq. (88c), we must insert values for 4 p "&(d) and 4 i "&(d) where d) 0. Since I Bp
~
&&Bp, these may

be obtained from Eqs. (87a) and (87b) by regarding the terms involving B&, as a perturbation. We
therefore first neglect the B~„terms in. Eq. (87a) and get:

Cp'"&(d) =1/»(d). (89)

Substituting L1/vp(d+b&)$ for Cpio&(d+bp) into the B&, terms, we And in the next approximation:

go(d)
~'o'"(d) =@'p'"(&)+-

vo(d) p=i vp(d+bk)

In a similar fashion, the first approximation for C in&(d) (cf. Eq. (87b)) is:

(89a)

00

4 &'&(d) = Q 2 4 &"(0+0 )
37i(d) ~=p

In the next approximation we get:

1 ~ A; ~ Bg
~i'"(d) =~i'"(d)+ — 2 —gp(d+~ ) 2 ——

3. (d) = "(d+,) ' '= .(d+;+b.)-
(90)

Ã!

+gi(d) 2——2
&=i vi(d+b&, ) ~=o 7 (d+oi&,+b )k (90a)

QO +k
1+go(~;+«) .Q—

p=' 70(&j+«+bk)-

A p'N1 1 ~ A; A)
L,'(u) =- +- Z

3 70'(0)71(0) 3 '= vl(~, ) i=o 7p(o +«)-
Bk ~ ' (7 "(o) 7 '(o))

+gi(~&) 2 &i 2 —— — - ——, I,—+-
7o (0)7 (0) & 7o (0) v (0))

Inserting (89a) and (90a) into Eqs. (88a)—(88c), we obtain the asymptotic expressions for L„:

Ao B&„. gp'(0) A p' ~ B&,

+ - 2 — I+go(i& ) 2 — +—,—
vi(0) i=i vp(ag) . a=i vp(aq+b&) vo (0)vi(0) &=i vo(bi)

(91)



SLOW I NG DOWN OF NE UTRONS

Of course, it is possible to go on to the next approximation and arrive at more accurate values of
@p&'&(d) and C &&'&(d) and, therefore, of I., However, if the 8&'s are really small, Eq. (91) will yield
fairly accurate results.

Formula (91) can be generalized to mixtures of more than two elements and is especially useful for
mixtures containing hydrogen or deuterium.

4. 3A'xtures of IZeavy Elements

If the mixture of elements does not contain hydrogen or deuterium and there are, moreover,
rapid variations in the mean free paths (i.e. , resonances) of the component elements, a fairly accurate
expression for the second moment can be derived if the total logarithmic energy interval, u, can be
divided into a Rnite number of sub-intervals, each large compared with pm~ (the maximum logarith-
mic energy loss associated with the element of the mixture having the smallest M) and over each of
which the mean free paths of the different components are sensibly constant. Thus, consider a
mixture of m nuclei whose masses are arranged in order of increasing magnitude:

M, &3f&& &3E„;

further, let the jth nucleus have a scattering mean free path l, (u). If l(u) is the total mean free path,
1.e.)

)9

1/l(u) =2 1/l (u)
j=l

then we can use the transport Eq. (63) provided we understand that:

where

f(t „u—u') ~P c;(u')f, (p„u —u'),
j=1

l(u) tn

c,(u) = (j=1, m) and Q c;(u) =1 (for all u).
l, (u) j=1

(92)

Making use of our basic assumption, we now divide the interval (0, u) into sub-intervals (0, u~),
(uq, up), (u„p, u„~), (u„q, u) such that each sub-interval is large compared with g~„and the
l;(u) (j= 1, m) are step-functions, and equal to constants l;& (k = 1, n) in the kth sub-interval.
It follows that the value of the total mean free path l(u) in the kth sub-interval —which we denote by
l~—is given by:

m

ll
(k= l - n)

and that the effective concentration, c;(u) o'f the jth component in the 4th sub-interval, which we
denote by c;I„ is given by:

cp ——(lI,/lp, ) (j=1, .m; k=1, n). (94)

Finally, to complete our notation, we write f(yp, u —u) in the kth sub-interval as f&"&(pp, u —u ) so
that:

f"'(p, u —pu') = Q c;kf, (IJp, u —u') (lp= 1, n).
j'=-. I

(95)

In order to make clear the essential points of our procedure, we work out the case of two sub-
intervals. We then write down the general formula for n sub-intervals. If we take n=2, Eq. (63)
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recluces to:

(&P (1) S(s) S(u)
Iijl +P")(S &(1 u) =

i

du' dQ'P("(S )2' u')f("(jlo u —u')+'
a.. 4m

(u (ui), (96a)

(kP (2)

Iojl —+P(2)(s, ji, u) =
Bz "0

Xf'-'(jlo, u —u') (u) ul). (96b)

p
'g] pgj,

du' du'p(1&(s, jl', u') f("()20, u —u')+ du' dQ'p'2'(s, jl', u')
J ' ' '

J„,

In Eqs. (96a) and (96b), p("& is defined in the first interval (0, ul), and $(2) is defined in the second
interval (ul, u). Since ul))qojl, we can solve (96a) by the usual asymptotic considerations for
constant mean free path. In other words, if we write:

g2
A'"(y u) = 4 o()

' (u) 4 o2
' (u)+ ' ' '

2
(97a)

el("(y, u) =2y01 "'(u)+ (97b)

then (cf. Eqs. (74a)—(74c)):

where

~-("( ) =1/,
y»("(u) = bl/3(llnl,

2I,'-(b, p
&0-("(u) = —

I

—+—I,
3(21 (Xl 3(21 ul 4(21 nl)

(98a)

(98b)

(98c)

m m. m 'fN

(21 Q rj170j (0) &
t&1 Q rj170j (0) 2 (21 Q rj171j(0)) Pl Q cjl7lj (0) 2

with the 7's defined by Eqs. (85a)—(85d) for the jth nucleus.
With a knowledge of &00("(u), p»("(u), and &02(')(u) we can proceed to solve Eq. (96b). If we

change the variable in (96b) from u to u=u —ul, write p(2)(s, p, , u) for $(2)(s, jl, u), and take the
customary Fourier transform with respect to s, and Laplace transform with respect to u, -we find:

where

(I —2I yj)+'"(y, u, n) = II("(y, j, n)+ d&'@"'(y, j ', n)g"'(j 0, n) (99)

&""(y, j2. n) = «» dss'"0")(s, j, u),
ajJ

a")() 0, v) = ~(-.)f")(j 0, u)

8("(y jl )&) = Z(-) ' dse'"' du
J

dQ'p(" (s, il', u') f("(jlo, u u'+ul)— ~

If we then take the zero and first moments of (99) with respect to )tl, expand in powers of y, etc. ,

we finally obtain:
70"'()&)~'oo'" (2&) =&oo'" (2)),

l2
7 ("(e)4 '"(e)——Coo"'(n) = I~ '"(~).

3

(2) ()&)&j)02(2) (2&) 2I2$&11(2) (2&) p 2(1) (2&)

(100a)

(100k))

(100c)
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In Eqs. (100a)—(100c), the first subscript refers to the moment with respect to tz, the second to the
expansion in powers of (iy).

Now
2L.'(u) = &(=) '[Coz '(n)3/&i--) '[C'«"'(~)3

and since it is assumed that u))Q'M1, we can obtain an expression for I, valid up to terms of order
exp[ —u/ q))ri] by studying the behavior of 400&') ())) and C»&z) (z)) as ))—+0. The B's have no poles or
zeros at q=0; hence, we get:

~(-) '[~'»'"(~) 3 =Boo'"(0)/az (101a)

~(=) '[~"'"(n))=
30.g 0.'2

»z'Boo&" (0) (b. )3.)»z' dBOO'"(n)

(az nz) 3az nz d)) I;=0

2lzBii") (0) Boz'" (0)
+ . (101b)

Substituting (98a)—(98c) into the definitions of the B s, we 6nd for the quantities which appear in

(101a) and (101b) the following:

Boo&i)(0) =1,
dBOO &)) ())) l,pi 2l, ' ( bi Ail

Bi)&')(0) = Bo'"(0)= —ui —
I +—

I

z=o 2ai 3aini 3a)ni (2ai ni)

Inserting these into (101a) and (101b), we obtain as the final two-interval formula for I., (M3):

l2'
I., '(u) =——u —ui

3 62o.'g

bz P& bi l)lzP) li'
l bi Pi

+ + —+ ic)—
~ 2 O'2 2~ 1- +1&10'2 ~ lo'1 - ~12'1 0'1-

(102)

The generalization to n intervals is easy; we find (the terms have been rearranged and we have
set uo=0, un=u):

1 /k'(u), ui i—) —i |' b q ( 2 q('l' j
I- (u)=- 2 +&

3 I'=) aini k=1 (2al i Lao!) iyi Calid );

( l~ ( l~
+I —

I I
—

I
—

I

—
I

——I-+—
I

(acK~ ]„. (i)!) i+i (o!)i a(x (a cK~

Examination of (103) reveals that the first term on the right-hand side is simply the result one would
obtain by an application of the age theory under the specified assumptions (cf. Section C). The
remaining terms represent the correction to age theory which is a consequence of starting with the
rigorous transport equation. Of course, (103) does not constitute a rigorous solution since terms of
order exp[ —(ui —ui i)q))ri] have been neglected. However, so long as (ui —ui i))&qM) (for all k),
then the error introduced by using (103) is small. Since l),. is never strictly constant, some average
value must be used; the most reasonable choice is

(cf. Appendix).

~k

tt f„-

l'(u)du (ui —u), i)

5. IIydrogenous Mixtures: Rigorous Formula Assuming Infinite i%ass for Heavy Flement

Substances containing appreciable amounts of hydrogen —e.g. , water or paraffin —slow down
neutrons so.effectively that it is desirable to have more accurate values of I, than can be obtained
from the approximate formula (91). It is possible to derive a rigorous formula for I, in a hydro-
genous mixture if the heavy element in the mixture" is assumed to be infinitely heavy. The latter
assumption implies that the scattering, but not the slowing-down property of the heavy element, is
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taken into account. This assumption introduces only a slight error" so long as the scattering cross
section of hydrogen is considerably greater than the scattering cross section of the heavy element.

If the heavy element of the hydrogenous mixture is assigned in6nite mass, the scattering function
can be written:

c(u') e-~"-"'&

f(yo, u, , u') =-
2

Li —c(u')]
SLY —e '" "'"]+ b(u —u')

where c(u) is the ratio of the total mean free path to the hydrogen mean free path at the energy
corresponding to u. Substitution of (104) into Eq. (63) does not lead to an integral equation of con-
volution type so that a solution for I, through the use of Laplace transform is not feasible. Instead,
a direct solution can be obtained as follows. We take the Fourier transform of Eq. (63) and then the
zero ance erst moments with 1cspcct to p, to 6ncl:

V.

y, (y, u) —Zy~(u)y, (y, u) = du'y, (y, u')f, (u, u')+~(u),
4p

(105a)

zyl(u)
0 z(y, u) — A(y, u) = du'ez(y, u')fz(zz, u'),

"o
(105b)

fo(u, u') =c(u')e —~"-"'&+L1 —c(u') ]b(u —u'),

fz(u, u') =c(u')e-l&"-"''.

If we expand @o and p& in powers of (zy), i.e. :

p2

~o(y, ) =~o.(u) ——So ( )+
2

4z(y, u) =zygo»(u)+ . ,

separate out the b-function part, @„,(u) =x„,(u)+E'„,8(u) .(the X„,'s are constants), and substitute
into Eqs. (105a), (105b), we get:

Epp=
f(0) 2/z(0)

+11 z +P2
3c(0) 3c'(0)

(106)

and the integral equations for the x's:
'lt

c(u)xoo(u) =e—"+ du'xoo(u')c(u')e (107a)

l(u) l(0)e-'"zz
Xii(u) ——Xoo(n) =

3 3
+ du'xzz(u')c(u')e —""—"',

p

(107b)

c(u)x~z(u) —2l(n) x'g(n) =
2lz(0)e—"

+ I duxoz(u)c(u')e
3c(0)

(107c)

The solutions of (107a) are readily obtained by differentiation, and we get as our final formula for

'6 We assume that the mixture consists of hydrogen and one heavy element; the presence of several heavy elements
can be taken into account if all are'assumed to be infinitely heavy.

"The error can be estimated (cf. Appendix).
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I,(u WO):

1 /2(0) P(u) pQ

I.,'(u) =— + +l(0)l(n) exp — L-32 —c(u') 7du'
3 c(0) c(u) 0

II+ $2(uI) ~u — u

+ du'+l(u) l(u')dn' exp — ' $-32—c(zz")7du"
c(u')

+l(0) ~ l(u')du' exp—
t I

[-23 —c(u")7dn"

u' u'

j+ l(n')dn' t l(n")dn" exp —~ Lo; —c(u"') 7du"' . (108)

Fermi first derived (108) using "kinetic-theory" methods; however, Fermi's formula as given in
his original article (F1) is incorrect, presumably because of typograp'hical errors. Horway's numbers
are also wrong (H1), since he used Fermi s incorrect version. The correct formula has been derived
independently by Frankel and Nelson (F4), Marshak (M1), and by Nordheim, Nordheim, and
Soodak (N1).

B.Hlgh8X' SPRtiRI Mom. 6IltS of the NCUtfOQ DCilSitg

Most of the methods used in the previous section to derive expressions for the second spatial
moment can be extended to the calculation of the higher spatial moments of the neutron density.
The formulae become more involved and the algebra increasingly laborious. However, in principle
the extension is possible and some work has actually been done along these lines.

Thus, Placzek (P2) has obtained asymptotic formulae for all moments for the case of constant
mean free path, i.e. , l(u) =—lo(const). Assuming that u))qoz, he has worked out an expression go111g

as far as the two highest powers of u. He finds (for a single element):

Ls2™(u)73 = (2m)! (&o'n) "- zzz(mB11+Bio)
1+ +'''

zzz! & X ) u
(109)

where

with

E = 3$(1 —(cosO)3,),

Bll ~1+~2+ ~3i

~10 ~1 ~3 2

8M —(M —1)2qzr (q~+ 2)

835 2(3f 1)2q3i— —

1 12M2 —20 —3(3II—1)2(vV+2)gM
2=

6 3M—2

(110a)

(110b)

(110c)

32 — 43II (M 1)2gzr—
3=

15 43II(3P+1)—(3II2—1)2qzr. .

X= 1, B11——11/15, Bio = —1/15.

Equation (109) can be applied with obvious modifications to mixtures (W3) provided the scattering
mean free paths of all the component elements are constant (independent of energy). For M=1,
Eqs. (110a)—(110c) reduce to

( )



For M))1, Eqs. (110a)—(110c) yield:

6) 4'
Z= —{1——+

3V
(112a)

18 )
sg&

2
+3' )

4
Bio———

{
1—

&sm( 3.V ) (112c)

For zzz= 1, Eq. (109) contains a term proportional to zz and a constant term, reducing to Vq. (86)
as it should. The terms omitted in (109) are of exponentially decreasing order in (z(/g((z). For m) 1,
the terms omitted in (109) are powers of N. Hence, as m increases (the higher the moment), Eq. (109)
yields increasingly poorer values for the higher moments. It must be remarked, however, that (109)
is a considerable improvement over age theory (cf. Section C below) which leads —under the assump-
tion of constant mean free path —to the formula:

Lz'-'"'(z() ]A,
——{ (2m) !(zn!](t 0'-'u 'K) '". (113)

Equation (109) was derived assuming constant mean free path. A formula for variable mean free
path, with the mean free path represented by a sum of exponentials, i.e. ,

l((() = Q A, expl —(z,z( ]
j=-- 0

(cf. Section A above), has been de( ived by Al:I irshak (M2) to the order of approximation represente(l
by (109). He finds:

Lsi2m) (z()]
(2ziz)! (Ao'zzq "'[ m(zzzB»+8&0) m ) E q A,.A„.

1+— +—
{ —, I 2 —— ——-' (114)

zzz. ( E ( 1 z( 3 EA p z() j=k =0 'yo(G(+Q(k)p(((z()(j=k =0
excluded)

Marshak (M2) has also calculated Ls4(z()]A, for the same variation of mean free path with energy,
but the formula is so long that we refrain from citing it here. However, it is worth quoting Table III
for carbon (M2), showing the percentage deviations of Ls'(z()]„„and Ls4(z()]A, from age theory as a
function of energy for both constant and variable mean free path, Column 1 of Table III gives the
initial energy of the neutrons; the final energy is always taken as 1.44 ev (the indium resonance
energy). Columns 2 and 4 are derived by assuining a linear variation of scattering mean free path
with energy which fits the energy range in question quite well for carbon .(cf. Appendix). The vari-
ation in mean free path is about a factor three from Z'0=0. 1 to Eo ——2.7 Mev, and decreases only
about 10 percent from 0.1 Mev to 1.44 ev. Columns 3 and 5 are obtained from Eq. (109).Table III
makes manifest the relative importance of the variation of the mean free path and the order of the
moment in causing deviations from age theory. A rough measure of the deviation from age theory is
the quantity {Ls4]„„/3Ls']A,z } which is identically one in age theory. Examination of Table III shows
that this quantity decreases from 1.07 to 1.05 for variable mean free path and increases from 1.04
to I.05 for constant mean free path.

C. Age Theory

If all the moments of a physical distribution function are known, then the distribution function
is uniquely determined except for a normalization constant. Thus, the distribution function associated
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TABLE III. Percent deviations from age theory.

(Mev)

2.7
1.0
0.5
0.1

~
~f&']Av

(variable m, f.p. )

6.8
3.4
2.6
2.3

~[~']Av
(constant m.f.p. )

1.8
1.9
2.0
2.3

~(~4]A.
(variable m.f.p. )

21.2
12.0
10.3
9.8

~f.s~]Av
(constant m.f.p. )

7.6
8.0
8.4
9.6

with the sequence of moments (109) is easily found to be:

i z'E B» (Ez')-
Po(z, g) = C expL —z'E/4lo'u j 1+—(Bii—2B&o) —(2Bii—Bio) +

~

—(, (115)
4N lo'u 4 4l'u )

where the normahzation constant'o C= 1/)lo(4oru/E) &. The age approximation to the neutron density
is obtained by retaining only the first term on the right-hand side of (115), i.e. :

go&"'& (z) = C exp L
—z'E/4/o-"u] (115a)

2E ~

Apeak

3A o i =&=o vo(+j++i)7i{+~)~'1
lgo(z, zo) = C expL —z'E/4A &o] 1+—

~
Bii 2Bio-

4u
excluded)

where C is the same as in (115). Equation (115a) is the distribution function whose moments are
given by (113). It is also possible to derive the distribution function corresponding to the sequence
of moments (114);we get:

—
( 2Bii —Bio—

E ~ API.- ) z'E Bii / z'E ) '-'

3Ao' g=A. =o yo(a;+al, )yi(a;.)) Ao'u 4 (Ao'u&
(~ =u =o
excluded)

(116)

where C=1/&Ao(4oru/E) i.
Equations {115)—(116) represent approximate expressions for the neutron density, valid for

su%ciently large u and sufficiently small s. The limitation to large u follows from the use of the
Tauberian theorem in deriving these equations. The limitation to small s follows from the increasing
inaccuracy of the expressions for the higher moments. The particular range of applicability of each
distribution function is obscured by its indirect deviation. We, therefore, start de novo with the
transport equation (63) and derive directly froin it successive approximations to the neutron density.
The first approximation to the neutron density will turn out to be the widely used age approximation.
The use of age theory seems to have started with the investigation of Bethe, Korff, and Placzek
(84) into the slowing down of cosmic-ray neutrons in the atmosphere. The age approxiiiiation can
be derived in many ways: from the time-dependent diffusion equation (P2), from simple arguments
about the conservation of neutrons (F3), or from the rigorous transport equation (MS). We prefer
to derive age theory from the rigorous transport equation in order to make evident the nature of
the restrictions underlying the approximation, and to facilitate improvements upon it.

The first condition on which the age approximation is based is that the neutron distribution
function P(z, p, n) is almost isotropic; we retain the first two terms of an expansion in Legendre

'" WVe normalize $0(s, u) so that $0(z., z~)de=-; this corresponds to normalizing the slowing down density to unity

(cf. Eq. (122a)). It can easily be shown that the correction term to the Gaussian contributes nothing to the integral
1oo

(as follows immediately from Eq. (142) since &0(s, zc)d;:= 2 rI&&~(0, g)}; this explains the values of C specified in

F..qs. (115;t}and (116).



R. E. MARSHAK

polynomials, "namely:

where

lf (z, p, u) =—[Ps(z, u)+3filti(z, u)],
4m

(117)

ps, i(z, u) = dQPa t(fi)p(z, p, u). (117a.)

To take advantage of the approximation (117) to the distribution function, we take the zero and
6rst moments (with respect to la) of Eq. (63); we get:

f1&i(z, u) p'M

~(u) +Ps(z, u) = du'Ps(z, u') fs(u —u')+ S(z) S(u),
ljls Jo

(118a)

where

f)lt s(z, u)
-'s$(u) +p&(z, u) = du'Pt(z, u') fi(u —u');

Bs

(ilf+ 1)-(M —1)
fs(u) =me ", ft=n

(M+1)'y

)

(118b)

It is understood in (118a) and (118b) that fs and fi are zero when (u —u') )q,~, so that the integrals
are taken over an interval ps' (except for u&gsr, which does not affect the results since it will be
assumed that u»gM).

The second condition underlying the derivation of age theory is that the Ps and Pt under the
integral signs in (118a) and (118b) vary slowly with u'. This condition will be the more closely
satisfied, the smaller the collision intervals' gsr (ps' is smaller, the larger M'), and the more slowly
does the mean free path vary within it. Expanding Ps and ft about u'=u, we get:

0

Ps(z, u') =Ps(z, u) —(u —u') (z, u)+
Bs

(119a)

lf t(z, u') =Pi(z, u) + (119b)

One more term is carried in lf s because it is assumed that lf t«ps. Insertion of (119a) and (119b)
into (118a) and (118b) yields:"

f
l(u) — +ps =Ps

&u—q3f

M

du'fo(u —u') — du'(u —u') fs(u —u') +~(z) ~(u),
au ~.-„,

fifo
sl(u) +ft =lPt du fi(u —u ).

Bs
(120b)

"If only the first term were kept, the approximation would be too crude since there would be no net How of neutrons
(zero current)."Ke assume that M & I; in hydrogen, if the energy of the source neutrons is greater than 100 kev, age theory is very
poor because the scattering mean free path varies so rapidly. If the source energy is less 100 kev, age theory gives a fair
approximation; in this case, the arguments given below can be extended to hydrogen with similar results.

'tC

"This derivation is correct only when N&gM since it involves replacing the integral by . However, it

can be shown by Laplace transform methods (cf. below) that it is also correct for N(gairnd that the source term is
correct as given in (121a).
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But

du'fp(u —u') = 1 (from Eq. (10))

du'(u —u') fp(u —u') =
& (from Eq. (11a))

du'fz(u —u') = (cosO)A, . (from Eq. (11b))

Hence, Eqs. (120a) and (120b) become:

l(u) BPz/B» = —(BPp/Bu+ 8 (») 8(u), (121a)

l(u) BIPp
(121b)

3 (1 —(cos0)A,) B»

Substituting (121b) into (121a) leads to the age equation:

where

(122)

du'l'(u') /3 ((1—(cos0)A,)
"o

is called the age" of the neutrons and has the dimensions of an area and x(», z-) = g p(», u) is called
the slowing-down density and represents the number of neutron per unit volume per unit time
which reach the age 7.

The solution of (122) for an infinite slowing-down medium is:

x(», z.) = (4zrz)
—i exp[ —»'/4z. ],

where x is normalized to unity over all space. If we calculate (»'(u))A, using (122a), we find:

(»z(u) )A„=—2I.,'(u) = 2z. .

(122a)

(122b)

In other words, in the age approximation, the square of the slowing-down length is precisely the
age of the neutrons.

It is consistent. to use (122a) to determine the magnitudes of the various approximations made
111 deriving (122). Thus, in writing (117) we assumed that lgz« leap, llslng (121b) and (122a), this
condition is equivalent to:

(123)

Next, in writing (119a), we assumed that g~Bgp/Bu&&gp, ' substituting (122a) into this condition
leads to one inequality which is essentially identical with (123), while the other is:

ptC

[l'(u) „,.„]«— I'(u') du'.
$dp

(124)

"The term "age"—sometimes "symbolic age"—has its origin in the formal analogy of Eq. (122) to the heat con-
duction equation where r corresponds to the time. Moreover, v is related to the average distance a neutron travels from
the time it is born with an energy P0 until it reaches the energy Ii.
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Inequality (124) has been derived by using the approximate equality (for cV) 1) q~ =2). Finally,
the expansion (119b) was based on the assumption q~(8$&/du)((P&, this condition yields three
inequalities of which two are essentially (123) and (124), while the third is:

iif, 1ogl (u)
(125)

The inequalities (123)—(125) delimit the range of validity of age theory; they state, respectively,
that:

I

(l) Age theory can only be used up to distances of the order L,'/l; at greater distances, the age approximation breaks
down and (and as will be shown in Section D) the Gaussian solution (122a) goes over into an exponential solution.

(2) Age theory can only be used provided the average number of slowing-down collisions is large; this follows from
the fact that the average number of collisions, DN, which degrade the energy of a neutron by an amount, au, is (Au/g).
For small (u/t), age theory is a poor approximation.

(3) Age theory can on1y be used if the fractional rate of change of mean free path in one collision interval (i.e., g.&I) is
small; if the mean free path changes very rapidly, age theory will break down.

gfhile the above conditions may appear somewhat restrictive, they are su%.ciently well satisfied
for many practical problems to make age theory extremely useful. The great virtue of age theory
is that the diAerential equation for the slowing-down density is formally identical with the time-
dependent heat-conduction equatiori, for which a large number of solutions are known for different
geometries and boundary conditions. As a matter of fact, Eq. (122) can be generalized to three
dimensions and a general source distribution, namely:

8x(r, r) = 7"x(r, r) +S(r) b(r), (126)

where S(x) represents the general source distribution.
Wallace and Le Caine (W1) have worked out a great variety of solutions of Eq. (126). They

consider chieHy cases in which the slowing-down media and source distributions are either plane,
or spherically symmetrical. Furthermore, they always apply the initial condition x(r, 0) =S(r)
and the boundary condition x(r, r) =0 (for all r) at an outer bounding surface of the medium under
consideration. They do not solve problems involving media with diR'erent slowing-down properties.

The two problems we now proceed to solve supplement Wallace and Le Caine's work. The solution
of the first problem clarifies the extent to which the boundary condition x(r, r) =0 (for all 7) at
an outer bounding surface is correct. The solution to the second problem, apart from having a certain
intrinsic interest, exhibits the boundary conditions which obtain at: the interface between two different:
slowing-down media. The second problem also illustrates the power of the Laplace transform method
for solving problems of neutron aging.

Problem Z: Semi Infinite Slowi-ng Down iVedium-Bounded by Vacuum

The first problem is: given a plane 8-source, 8(z —z') (z') 0) in a semi-infinite slowing-down medium
extending from x=0 to s= ~, what is the extrapolated end-point?" The age equation valid for this
problem is (cf. Fig. 4):

ax(z, r)/r)r = O'X(z, r)/r)z'+ti(z z') fi(r). — (127)

The boundary conditions are:

~' I.e. the point where the slowing-down density varlishes.
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(a)

(b)

(c)

xgg(s, r) +0— as s—+~, all r,

xx(s, r) =Xiii(s, r)

~ at s=s', ail r,

(d)
2 l(u) Bxg(s, 7)

x~ls, r) —— =0 at x=0, all ~.
3 (1 —(cosO)A, ) Bs

Boundary conditions (a)—(c) are the usual ones at infinity and across a 6-source for an equation
of the heat-conduction type. Boundary condition (d) follows from the fact that the total incoming
current at s=0 is zero, and that this incoming current is

l(u) Bx(s, r)
0(s, ~ u) =—x(s, u) —~

4m & L1 —(cosO)„] Bz

where (in the age approximation —cf. Eq. (117)):

The solution of (127), subject to the above boundary conditions, is difficult to obtain for arbitrary
variation of /(u). We therefore resort to a perturbation calculation (M6) which gives good results
even for rapidly (though smoothly) varying l(u). We write:

l(u) = /p+ ~(u), (128)

where lp ls a constant, and p(u) ls an arbitrary function having the property e(u) —+0 as u —+~;
physically, /p represents the mean free path for slow neutrons (e.g. , indium resonance neutrons).
Substituting (128) into boundary condition (d) yields:

xi(0, r)—
3(1 —(cos0")A,)

B»(O, .) 2p(u) Bx,(O, .)
Bs 3(1—(cosO)A, ) Bs

(129)

We now set the right-hand side of (129) equal to zero and solve the "zero-order" problem.
To solve the "zero-order" problem, '4 we take the Laplace transform of (127) and of the boundary

conditions. We get:
d'y(s, ()

(130)

(a)

(b)

Air(s, /') —+0 as s—+ pp, all (", ,

@ (s, i) = @ i(s, /. )

«s=s', all /,

(d)

'4 The "zero-order" problem is equivalent to a heat-conduction problem wherein the 8-source is contained in a semi-
inhnite medium which radiates into vacuum at zero temperature. The heat problem is solved in H. Carlsaw, Theory 0f
Conduction of Hect (Dover Publishers), (82, through the use of Green's function. We present the Laplace transform method
of solution because it can so easily be extended to other problems.
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with ts=ls/(1 —(coso~)„,). Equation (130) is a diffusion equation with I appearing as a parameter;
its solution is:

2&o()
3

~ (, I-) =,-pL —("-')((.)-:3——,
2(t-)'-- 2(I.)

'*-

2l, s
1+—(I.):

3

exp( —(e+e') (I) 'j, (131a)

(1—l4(I ):~
&»(e |)= ——,I, , I ~pL —2s'(I)'j —1 expL —(e —e')(I)'3

2(I.) r ( I y-', l, (I.)-:)
(131b)

The Laplace inverses of (131a) and (131b) can be obtained from tables of Laplace transforms; thus,
the result for (131a) is:

x(e, ) = «PL —(e—e')'/4 l+expL —(s+s')'/4 3
(4' r) l

3(7rr) l ( 9r 3(e+e') ) — (3(r)-='(eye') ) ~

exp ] + —
)

1 —erf] ——+ [ . (132)
.. (4ls'-' 2ls ( 2ls 2(r)l )

Fquation (132) is the "zero-order" solution for variable niean free path, but is the exact solution
(in the age approximation) for constant mean free path. In the latter case, the extrapolated end-point
es may be found by setting x(e, r), as given by (132), equal to zero. It turns out that for values of
e and 7 for which age theory is valid (cf. (123)—(125)) that" ss= —0.70ls.

For variable mean free path, i.e. , when «(u) &0 in (128), we substitute (132) into the right-hand
side of (129) and then solve for the "first-order" x subject to the boundary conditions (a)—(c) and
(129) (which is now correct to "first-order"). This "first-order" problem is equivalent to a heat-
conduction problem radiating into a medium whose temperature is a specihed function of the time.
This problem is solved in $83 for Carslaw (cf. reference 24). If we use that solution (which we
refrain from writing out because of its length), we And that even for as much as a fivefold linear
variation of mean free path with energy (from several Mev to 1 ev), the extrapolated end point sp

is within a few percent still ' —0.70ls. Thus, for variable mean free path the boundary condition
(d) can be replaced by (129) with the right-hand side=0, provided we are interested in the density
of slow neutrons. In other words, the extrapolated end point corresponding to a particular age is
of the order of the transport mean free path at that age. Since the transport mean free path usually
decreases at the low energy end (large ages), the effective extrapolated end point for large ages
becomes very small.

Problem Z: Two Diferent Slowing Down 3Iedios7-
The second problem is: given a point source of fast neutrons in one of two adjacent semi-infinite

media of different slowing-down properties, what is the slowing-down density everywhere in space?
To simplify the calculation, we assume that the point source of mono-energetic fast neutrons is
situated at the interface between the two semi-inhnite media of different slowing-down properties.
The more general problem of the source located in one medium has also been solved (B2).

The equations for the slowing-down densities xi(p, s, ri) and xs(p, e
i rs) in the two media are (it is

-'' This can be seen by expanding the error function for large values of the argument (since (r)&))ls); we get:
e*'*»»' —1+s (s'+ss) lo/r = O. Furthermore, it is implicit that s'))ss' , making use of this fact and the hypothesis that ss«(r) &

leads to the result s0= ——',l0. More accurate evaluation changes the 3 to 0.70.
"Computations were carried out with I=15, s'=3(v)&. Larger values of z' (i.e. , greater distances of source from

boundary) and smaller values of I (i.e., higher source energies) increase s'0 somewhat. A calculation was also performed
for a twofold linear variation of mean free path (over the same range of energy} with similar results (M6).

"The two-medium problem with a plane distribution of sources has been solved by Friedman (F5).
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Medium 2
Detector

VACUUM Medium I
Source

FIG. 4. Semi-infinite medium with plane b-source. FK'. 5. Tv o-mediuni slowing-down problem.

convenient to use cylindrical coordinates —cf. Fig. 5):

w 11el e

1B ( Bxt) Bxt Bxt 5(r)6(tt)——Ip I+
papE Bp) Bs' Br, 4~r~

1 B ( Bx2) B'xs Bx ~(r)~(r,)
I+-

p Bp E Bp) Bs Brs 47lr

4u'l1, 2 (u)
T1 2=

"t 3&t, 2[1—(cosH&, s)A,]

(133a)

(133b)

Fquations (133a) and (133b) are to be solved subject to two boundary conditions at the interface
between the two media, namely":

(lt(u)/t t) xt(p, 0 u(»)) = (ls(u)/ks) xs(p, 0, u(rs))

(continuity of neutron density for all p and u),

lt'(u) ~Xi ls'(u) Bxs
(p o, u(rt))=- —(p, o, u(rs))

&2[1—(cosO, )A„j Bsg, [1—(cosOt)A„j Bz

(continuity of normal neutron current for all p and u).

(A)

We now assume that l&(u) and l~(u) vary arbitrarily, but in such a manner that their ratio is always
constant. Then (A) and (B) can be rewritten as:

xz(p, 0, u(r&)) = (DB)'x~(p, 0, u(r. )),

(Bxt/Bz)(p, 0, u(rt)) =D(Bxs/Bs)(p, 0, u(rs)),

where D and 8 are constants'-' dehned by:

ls'(u) lt'(u) (1 —(cos89)A,) (1—(cos(~)')Ay)

$2(1 —(cosOs)A„) (t(1 —(cosOt)A„)

Hence rs Drt so that Eq—.—(133a) becomes:

1 B ( Bxt) B'x, Bx, DB(r)B(r,)
I+

p Bp E Bp) Bs' Br2 4vrr'
(134)

"Use. is made of the relation between the neutron density. N0 and the slowing-down density, i.e., y= pvNO/1. The
neutron current is —ls/3(1 —(cosO~)A„) grad¹.

"The subscripts 1 and 2 are chosen so that D) 1; 8 may be greater or less than unity.
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Applying a Laplace transformation with respect to rs to Eqs. (133b) and (134) and to the boundary
conditions (A') and (B'), we get:

where

1 a ( any} a a(r)
I+

papE api as' 4mr'-

1 a ( ass) ay, a(r)
I+

pap& ap) as' 4~r'

q, (p, o, f) = (Da)-'*q, (p, o, 1),

ass(., 0, I-) =D (., 0, l-),
F98 Bs

$1 2(p, s, I) = Zxl, 2(p s rs) = dT28 x1, (p s rs).
0

(134a)

(134b)

(A//)

(B//)

The solutions of (134a) and (134b), subject to the boundary conditions (A") and (B"),are:

D(a)'* t" }IdXJs(Xp) exp[(X'-+DI)ls]
d (. 1-)=

I [aP '+DI)] +[D(~'+ l)]'I
(D)i t-" }IdXJs(hp) exp[ —(X'+|)ls]

~(p, , 1-)= " I [a(}'+Dl)]:+[D(}'+I-)]-:I

(135a)

(135b)

where Js(x) is the Bessel function of zero order.
We must now take the I.aplace inverses of Eqs. (135a) and (135b). This can be done for arbitrary

D, a, p and s. However, to illustrate the method, we work out a limiting case, namely, a = 1, s=0, D
and p arbitrary. Consider Ps when 5 =1, s=0; we have:

(D) i I.
" XdXJs(hp)

y, (p, o, I) =
2s. ~ s I [V+DI ]&+[D(X'+p)]'*I

(136)

The Laplace inverse of (136) can be easily obtained by rationalizing the denominator and making
use of the identity:

wc gct-'

}Id}I.exp[ —X-'rs]Js() p) = exp[ —p'/4rs];
0 272

( p'Dl . ( p'&
~,(p, O, .) =—Z-'d s =— —Ei

I

—
I EsI ——

(4s.rs)&(1 —1/D) ( 4rs ) 0 4rs)
(136a)

where Ei(x) is the exponential integral function. In the limit D—&1, (136a) goes over into the solution
for a point source in an infinite medium, namely 3'

X2(p, rs) — exp[ p /4T2].
(4w rs)&

(136b)

Equation (136a) represents the slowing-down density in the less dense of two media for which the
ra.tio of densities is (D) . For small p, xs, as given by (136a), is greater than xs, as given by (136b);

"Equation (136b} agrees with the point-source solution obtained by substituting (122a) into Eq. (62) as it should.
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this is to be expected qualitatively since the dense medium 1 enhances the slow neutron density in
medium 2 through more efficient "aging. " For large p, (136a) gives smaller values than (136b) for
a given v 2 since the greater "aging" in medium 1 carries a greater percentage of neutrons beyond z2
as compared with the situation when only medium 2 is present. This completes our discussion of
problems 1 and 2.

The age equation (122) was derived on the assumption of stationarity and absence of capture If.
we wish to take account of time dependence and capture, we must start: with Eq. (10). If we then
make the assumptions which led to Eq. (122), and furthermore assume that the capture is weak and
that only the time variation of Pp (and not Pi) need be considered, we get:

l(u) B&p B&i Blip
+l(u) +[1—h(u) $P, = —

P +5(s)B(u) B(l),
Bf Bs BQ

(137a)

8
-,'l, (u)—+Pi ——0,

Bs
(137b)

where l&(u) =l(u)/(1 —(cosO~)A, ) with l(u) the scattering mean free path. Combining Eqs. (137a) and
(137b) into one equation, and introducing the age r and the slowing-down density y, one obtains the
equation:

~X 3 By 3[1—h(u) jy B'y—(s. .. l)+ —+— — = y B(s)B(r) B(l)
il, (u) Bt l(u) l, (u) Bs'

(138)

Examination of Eq. (138) reveals that both the time-dependent and capture terms lead to multi-
plicative factors in the final solution; thus, if we write

y(s, r, l) =y(z, r)F, (h)F, (l),

we find that,

[1—h(u') ] (139a)

t "l(u')du'
I;;(&) =B

p$

and that y(s, 7) satisfies the stationary, non-capturing age equation (122). In other words, within
the limits of validity of age theory, time dependence and capture can be included by merely mul-
tiplying the solution of (122), subject to the customary boundary conditions, by (139a) and by (139b).

D. Neutron Density Throughout Space

In Section C we derived the age approximation in slowing-down theory, and specified the three
conditions which must be fulfilled in order for this approximation to be valid. If any one of the three
conditions is not fufilled, then age theory becomes a poor approximation. In particular, when s
becomes comparable to, and larger than (LP/1), age theory becomes increasingly poorer and for
very large s the Gaussian distribution of slow neutrons due to a plane b-source of fast neutrons
must go over into an exponential with a decay length equal to the mean free path of the fast neutrons.



R, F. . MARSHAK

We divide our discussion in this section into three parts. In the first two parts, we discuss those
improvements upon age theory which 1ead to a more accurate spatia1 distribution of the slow neutron
density as z becomes comparable to, or somewhat larger than (I,2/l). In this discussion, two alter-
native methods are presented which start with age theory as the erst step in a series of successive
approximations. In the third part of this section, we consider the behavior of the neutron density
for very large z, i.e., z»(I. , /l). Most of the work ori the asymptotic neutron density is still un-

published and has been carried out by 9(ick." Unless otherwise stated. it is assumed that the scat=

tering mean free path is constant for all energies (taken equal to unity) and that" u/$»1.

I. Improvements on Age Theory: Spherical SIarmonic Idethod

Equation (115) already contains a first correction to age theory —a correction which is of order

($/u) for z=I., It was derived by obtaining more accurate expressions for the moments than those
following from simple age theory (cf. Eqs. (109) and (113)).Equation (115) can also be derived in

another way —by starting directly with the transport Eq. (63). A direct derivation has the virtue
that it is capable of obvious generalization and has actually been carried out to order (&/u)'. The
direct approach to the neutron density through the transport equation has already been applied
in the derivation of the age approximation (cf. Section C). When one attempts to extend the same
treatment to the higher approximations, one gets a series of complicated partial differentiaa1 equations.
However, if one works in transform space—Fourier transform with respect to z, and Laplace trans-
form with respect to u —improvements on age theory can be obtained much more readily. Let us
then start with the Laplace-Fourier transform of (63), namely:

(140)

where

~ 00 ~00

dze'~' due ~"P(z, ti, u),
—00 0

(140a)

(140b)

If we take the moments of (140) with respect to ti, we get the infinite sequence of equations:

(141a)

(141b)

where

vi(n) —= 1 —ai(n) with gi(n) = «I'i(t )a(t, n)

~' Dr. G. C. Wick very kindly communicated his results to the author prior- to publication.
"That is, only the first of the three conditions underlying the derivation of age theory is lifted.
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The solution for Co(y, g) can be written down at once, namely:

2
v'(n) —--~r

3

2 3
v (~) —-6

5 5

3
iy y—3(—q)

7

0(X ")=
vo(n)

'by 2
vi(n)

3

(142)

2. 3
v2(n)

5 5

3
v3(n)

7

The rigorous evaluation of the in6nite determinants seems hopeless. Nor does the problem become
any more tractable when it is realized that the neutron density is the Laplace-Fourier inverse of Eq,
(142). However, for all practical purposes, one is interested in the density of slow neutrons from a
fast neutron source (i.e. , in large u). The assumption of large u (and not too large z—cf. below)
permits the problem to be solved by a method of successive approximations in which age theory
turns out to be the lowest approximation.

Thus, consider the expression for $0(s, n):

Po(s, u) =-
2m "

0+ jOO.-'"gy.
7l b 0—'b~

e""dg40(y, g). (142a)

Since u is large, the dominant term arising from the Laplace inverse integral in (142a) is contributed
by the pole of Co(y, p) with the largest real part. But the poles of Co(y, q) are defined by the zeros
of the denominator of (142), and the zero of thisdenominator with the largest real part can bewritten
in the form:

ay'+by4+— (142b)

where c and b are constants (a) 0). Consequently, the largest contribution to the Fourier inverse
integral arises from small y. Further study of (142) on the basis of these remarks leads to the con-
clusion that one can arrive at increasingly improved results for the neutron density by taking larger
sub-determinants of the infinite determinants.

If we choose a sub-determinant of order (n+1) in (142), we say that we are working in the nth
~phe~ical harmonic approximation or the P -approximation. Thus, the lowest approximation which
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gives a spatial dependence of the neutron density is the PI-approximation; in this approximation
we have:

—zy

@o(y, ~)— (143)

lg 'P

v (n)
3

The pole of 4 0(y, g) is obtained in the form (142b) by expanding. yo(g) and y, (g) about q =0; we have

( )= o'(o)+ ' ( ) = (o)+
where yo'(0) = $ and y~(0) =1—(cosO')A, (cf. (85a) and (85c)). Hence, the pole is at

q = —y'/3$(1 —(cosO)A„) .

Calculating the residue at this point, we find:

01

with

p 00

Po(z, u) =— exp[ —
hays

—y"-u/3&(1 —(cosO)A, ) jdy
2sp ~

$0(s, r) =exp[ —z'/4rj/((4m 7) i,

r = u/3$(1 —(cosO)A„).

(145)

In other words, the E~-approximation is identical with age theory" when one retains the 6rst non-
vanishing terms in yo(q) and y~(g).

The above procedure can be continued: in the P2-approximation it turns out that one must retain
terms in yo up to g', in y~ up to g, and in y2 up to the constant. Furthermore, terms up to and
including y are present in the pole-condition (142b). As might be expected, the P2-approximation
leads to a result identical with Eq. (115).

The expression for Po becomes more and more involved in still higher approximations. However,
it seems worth while to quote the results of a P3-calculation (81) in which yo is expanded up to g',

y~ to q', y2 to g, and y3 to the constant and where the pole-condition involves the retention of all
terms up to and including y'. The result is:

exp[ —x') 1 D&A, 1
A(s, r)= A o+—A ~(-', —x') +— (x' —3x'+,'-) +—A 2(x' —3x'+,'-)

(4~r) r

DgA4 ( 15 45 15) Dprf g f 105 105 105)—x'+—x' ——x'+—
) +—

(
x' —14x'+. x' — @2+ — (, (146)

FD 4 2 4 8) Eo' E 2 2 16 I
x' =z'/4r, r = u/3yg'(0) y, (0),

Jo Go 1
A O

———, A i ———+ — (2bgFpEO —FOB( —FgEO),
D] D'l D1

1 j6 1
4FO+2~ooo+o —+0&i ——R —+40 ~+ (F2+a'+2@0@iFi—3%Fr+0'

D 'E.35 35 ) DP

+2 FOFO+2+ FOF1 6~2FO+0+1+ 6~.'FÃ0' —3~3FO&0'),

~ The Laplace —transform derivation of the age solution for variable mean free path {corresponding to {j.45)) can be
obtained by a method analogous to the one which led to the result (78).
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3I' p

~ 0 . + (FOE1E0 ~2FOEO ) 0

35D, D 3

3Gp 1 (3 6 1262EOFO) 1
ii4 — +

~
F1EO+GOE1EO+ FOE1 —412GOEO — I+ — (~2EO Fl —~'1EO El

35 35 ) D„

FOE0 E2 2FOEOE1 +6t12FOEO El 462 FOE0 + fls~pEO ) ~

Dl
Ag= A3"-

2~o

with

Fp Vl( )72( )Vs(0) Fl VB(0)L72 ( )Vl(0) +Vl (0)72(0)3

9 9
G, =—„(0)+—&,(0), G, =—&,'(0), G, =—&,"(0),

35 15 35 70

& "(0)
F2 ——yp(0) yl'(0)y2'(0) + y2(0),

2

yp" (0) v "(o) v '"(0),
Dl=yp'(0)FO, D2=- — — F0+go (0)F1 Do=70 (0)F2+ Fl+ =F0,

2 2 6

V2'(o) 9, , ro (0) 2
EO = -'sy2(0) ys(0), El = yp'(0) Go+ -rp(0), E2 = 7o'(0)y—l'(0) +- yl(0) +—rp" (0)yp(0),

3 35 2 15

(147a)

412 D2/Dl& 41$ Dp/Dl.

The quantities yp'(0), yp" (0), yl(0), and 71'(0) have already been tabulated (Eqs. (85a)—(85d));
the remaining y's which enter above are:

3(M—1)' f' qsr qsrpq
vo"'(0)=6 — ~ I

1+—+-

32M f 7 q 2(4M+5)(M —1)'
Vl" (o) =- pm—

9 & 63II2 9M

(M+ 2) '(M —1)'
(147b)

(5 —33II2)
y2(0) =1— (M2 1)24Isr, —

32M
(147c)

(9M' —7) (M —1)' 3
V2'(0) = —— + gpr(9M2+ 6M —7) + (M' —1)2gpr,

16 64M 64M
(147d)

(147e)

Ke have derived the first three spherical harmonic approximations to the neutron density. Higher
approximations can be obtained if necessary although the numerical work becomes increasingly
more troublesome. The question now arises as to the range of validity of the different approxima-
tions. Examination of Eq. (146) (the P2-approximation is obtained by dropping the (1/r ) term, the
Pl-approximation by dropping both the (1/r) and (1/r ) terms) reveals that the spherical harmonic
method is essentially a development in powers of24 0 = Dt's sx /EOA pr. If e is small compared to unity,
the convergence is rapid and the P3-approximation is adequate. For very small e, the P&-approxima-
tion (age theory) of course suffices. If 0 is not small compared to unity, it would appear necessary
to go to even higher approximations than the P3".

'4 In a previous notation 4=8»oo4/I (cf. Eq. (115)}.
'0 The convergence condition turns out to be much less stringent due to considerable cancellation of terms (cf. Tables

IV and V).
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For large All (mass of the scattering nucleus), the convergence criterion for the spherical harmonic
method, i.e. e« 1, can be written as s'«(u/$)'. For given M and u, this condition very soon breaks
down with increasing distance from the source. Each higher approximation extends the region of
applicability of the theory to larger distances from the source. However, in principle it is not expected
that any finite P-approximation will be accurate beyond distances of the order s (I/g)'". In order
to push the theory to greater distances, it is necessary to somehow work in the P -approximation.
Placzek has partially succeeded in accomplishing this end (P2) by retaining only the highest power
of z in the polynomial correction contributed by each successive P-approximation. This leads him
to the following expression in the E„-approximation:

~o exp( —x']
Pp(s, u) =

(4n-r) '* =o ns!

Ao—exp[ —x'+ e].
(4m r)&

(146a)

Equation (146a) constitutes a correction to age theory which does not require that e«1. Indeed
e) 1 is also possible; however, there are two restrictions on Eq. (146a), namely: x'»1 and s«(N/$) "'.
The first inequality justifies the sole retention of the highest power of s in each polynomial, the
second follows from the fact that the term neglected in the exponential of Eq. (146a) is of the form"
(e'/x') and this must be small compared to unity. For very large (n/f) (very large cV and I), Eq.
(146a) provides a significant extension of the theory.

We present some numerical results" in order to throw light on the extent of the deviations from
age theory and the nature of the improvements upon it. We have chosen 3II=12 (carbon~ and
r = 183 cm'; the value of the age corresponds to neutrons emitted at about 150 kev (Ray+Be source)
and detected at 1.44 ev (indium resonance energy). Table IV gives the slow neutron density as a
function of the distance from a p/ane source of fast neutrons while Table V gives the slow neutron
density as a function of distance from a Point source of fast neutrons. The point-source values are
obtained from the plane-source values through the use of Eq. (62). Column 1 of each table lists the
square of the distance from the source in units of 4v-. Columns 2—4 list the P~, I'2, and I'3 results,
respectively, the latter two given in units of the I'~ values. Finally, Column 5 lists the ratio of the
neutron density predicted by formula (146a) (or its appropriate modification) to the I'i value.

It is seen from Tables IV and V that for carbon the spherical harmonic corrections to age theory
not become appreciable until x=71., According to the criterion discussed above, the correction

should become appreciable at distances s=(u/$)"'=5l. , The greater range of validity of these
results is due to the strong cancellation of terms in the I'2 and I'3 corrections. In virtue of the same
cancellation of terms, the correction predicted by formula (146a) becomes suspect. Instead of giving

TABLE IV. Neutron density from plane source QU(s, r)).

Pg (in cm ~) P2/P j. P3/P j. Exponential correction

0

2
3
4
5

10
15

1.32 ~

4.86.
1.79 ~

6.57 ~

2.42
8.89
5.99 ~

4.04 ~

10 '
10 '
10 '
10 3

10 '
10 4

10 6

10 '

1.00
1.00
1.00
1.01
1.03
1.05
1.28
1.67

1.00
1..00
1.00
1.01
1.03
1.05
1.29
1.82

1.00
1.02
1 ~ 10
1.25
1,48
1.85

11.59
247.7

'6 This can be guessed from the structure of the P3-approximation; it is also confirmed by the one-dimensional model
(cf. ref. P2).

» Tbc computations were performed by the Los Alamos Computing Group under the direction of Mr. B. Carlson.
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TAni, E V. Neutron density from point source i/a(r, r)).

0
1
2
3
4
5

10
15

P& (in cm 3)

5.74 10 '
2.11 10 '
7.77 10 '
2.86 10 '
1.05 10 '
3.87 10 ~

2.61 10 '
1.76 10 "

P2/Pi

1.01
1.00
0.99
1.00
1.01
1.02
1.21
1.58

1.01
1.00
0.99
1.00
1.01
1.02
1.22
1.68

Exponential correction

1.00
0.97
0.99
1.06
1.19
1.39
5.91

65.64

reasonable corrections to age theory up to distances of order s=(u/p) "s=7L„ formula (146a)
should overestimate them. This is confirmed by the fact that whereas for (s'/4r) =10, the exact
Ps-correction, for example, is only 1.29, the "exponential" Ps-correction (i.e. (1+e+ c /2)) is 6.45.
Similarly, for (s'/4r) =15, the corresponding numbers are 1.82 and 21.53. We conclude from this
calculation that the I'&-approximation is fairly reliable up to distances of the order s (u/&)'f'
and that formula (146a) should only be used in the region s=(u/P)'I' —(u/g)'I' for very large M
(and n).

Z. Improvements on Age Theory: One-Velocity Method

'I.'he spherical harmonic method has furnished improvements on age theory for an infinite slowing-
down medium. It can also be applied to finite media. However, a study of the limitations of age
theory for finite media can be carried out more readily by means of an alternative method which
we call the one-velocity method. Infinite media can also be treated by the one-velocity method.

The idea of the one-velocity method is to perform a Laplace transform (with respect to n) on
the many-velocity transport equation (63); one obtains ss

t ~e/~s+e(s, f, n) = "«'e(e, v', n) g(f s, n)+ ~(s)/4~, (148)

where g(z, p, tf) = Zp(s, fi, u). Since rf can be regarded as a parameter independent of s and p, , Eq.
(148) is in Laplace space a one-velocity transport equation with anisotropic scattering and capture.
The scattering function is

(2l+1)
g(», n) =2 gi(~)&~(t o)

t=o 4x

where all the g&'s are different from zero. Furthermore, an equivalent capture is present since

gs(rt) = 1 only for tt =0; for all other values of tt() 0), gs(t)) (1.
In principle, once Eq. (148) has been solved subject to the appropriate boundary conditions for

an infinite or finite medium, the Laplace inverse of the solution is the solution of the corresponding
slowing-down problem. In practice, there are difficulties arising from the fact that: (1) the one-
velocity problem with general anisotropic scattering and capture has not been solved, (2) even if
the problem were solved, it would be impossible to take the Laplace inverse. While a rigorous
solution of the problem is therefore excluded, it is possible to obtain approximate solutions by setting
some of the g&'s equal to zero and by taking advantage of the fact that the slowing-down density is
desired for large u. The latter point implies (cf. above) that the one-velocity solution need only be
examined in the neighborhood of t) =0, i.e. , weak capture.

To illustrate the method, let us consider the case of isotropic scattering, i.e., we set g~(tt) =—0 for

"The mean free path is assumed constant and set equal to unity, as before.
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l) 0. Then, for an infinite medium, (148) leads to the following solution for po(z, rl) (P3):

where

4o(z, ~) = (1 —vp') voe "o'l po0

+-
as(v) [vs'+ap(n) —1j ap(~)

s 1 ——

dse-'1'1

w'gp'(~)
tanh 'I

I +
E s) 4s'

(149)

tanh-'vp/vo ——1/gp(il).

Low, it is well known that the integral on the right-hand side of (149) is only important within one
mean free path of the source. At larger distances, the contribution of the integral decreases rapidly
compared to the first term on the right-hand side of (149). We therefore drop the integral and try
to take the Laplace inverse of the 6rst term. The exact Laplace inverse cannot be written down but,
as mentioned before, we may study the behavior of pp for small rl. We expand gp(il) = 1 —)rl+.
and (tanh 'vp)/vs =1+vpp/3+ .

; substituting these expressions into the first term on the right-hand
side of (149), we get to order il:

p 3 q & exp[ —(3P~)-'*I z
I g.

yo(z, n) =
I

—
I

(4$J (ii) '

The Laplace inverse of (150) is the Gaussian (145) with the age" r=u/3$ To ob.tain the analog
of the Pp-approximation for isotropic scattering one would expand gp(rl) up to rp, and tanh 'vo/vo

up to vp . One can proceed in this way to get arbitrarily high approximations. However, as we have
seen in our discussion of the spherical harmonic method, a consistent P~-approximation includes

yi(0) (cf. fn. 39), a consistent Pp-approximation includes yp" (0), yi'(0), and ys(0) (in addition to
yi(0)) and so on. In other words, simultaneous with the retention of higher powers of il in the ex-
pression for gp, more gi's in the scattering function g(iip, il) must be taken into account. Just as in
the isotropic case, the "branch-point '" contribution, represented by an integral of the sort appearing
in (149), can be neglected compared to the "pole"4' contribution of the sort appearing as the first
term on the right-hand side of (149). Thus, for linear scattering (i.e. , gi(rl) —=0 for /) 1), we get as
the "pole" contribution:

gg(il) tanh 'vi
ao(n)—

3gi(il) )tanh —'vi

pi E. p]

—1
I expL —vi,'zl l

3 2pygo(n)
+3ai(n) [ap(~) —11

vi(1 vi ) vi (1 vi )

(151)
3 tanh-'r g

where vi is defined by:

3 |' tanh-'vip tanh-'vi 3 f' tanh —'vipI+,gi(rl) I
1

I

—go(il) —ap(rl)ai(il)1 1
vi' E vi ~1 vi

If Eq. (151) is now treated in accordance with the approximations go=1 —gil, and gi(il) =(cosO)A„,
etc. , one obtains the Gaussian (145) for Pp(z, u). The derivation of the analog to the Ps-approximation
in the spherical harmonic method requires a knowledge of the one-velocity "pole" solution for
quadratic scattering, and so on for the analogs to the higher P-approximations. '

While the one-velocity method does not seem to have any special advantage over the spherical
harmonic method as far as the infinite-medium problem is concerned, it would appear to be useful
for the study of certain aspects of the finite-medium problem, —e.g. , the extrapolated end point,

"The age should be u/3g(1 —(cosO)A,); however, since we have assumed isotropy, (cosO)Av=o.
"This refers to the origin of the term when &he one-velocity problem is solved by the Fourier transform method.
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albedo, etc. In particular, , some light is thrown on these matters by working in the approximatioii
of isotropic scattering in the laboratory system4' (i.e. , gi(q) =—0 for I)0). Thus, one may investigate
the extrapolated end point in the "isotropic" approximation by considering the problem of a plane
b-source of mono-energetic fast neutrons situated in a semi-inhnite slowing-down medium at a
distance z' from the boundary (cf. Fig. 4). The solution ("pole" contribution) valid more than a
mean free path from the boundary and from the source is (for isotropic scattering):4'"

2vo(1 —vo )
4o(z, g) (=)——— exi)[—vo I «'+=p(it) }g sinh I vo[ «+«p(it) J },

ao(~)[vp' +op(n) —13

where tanh 'vp/vp ——1/gp(g) and zo(it) is the extrapolated end-point defined in terms of rt by

(»2)

VO

zp(rt) = ~p 1+—+O(vp"),
3

(153)

with" zp=0. 7104. Equation (152) is a solution of the "diAusion-like" equation:

yo/az' -vo'yo(—z, it) = —Q(vo) &(z —z')

subject to the boundary condition:

tanh[vpzp(it) j 8&p(z it)
Pp(z it)— =0 at s=o.

Vp

(154a)

In Eq. (154), Q(vp), the effective source strength, is the coe%cient of e "0 ' in the infinite medium
solution (cf. (149)).

To obtain information about the neutron density in a 6nite medium, one expands all functions of
it in (152) about rt =0. In the first approximation, one keeps the first non-vanishing term; Eq. (152)
becomes:

4o(z it) = (3/4k') ' I exp[ —(3&rt) **(z'—«) 3—exp[ —(3$rt) '(z'+«+2«o)1}, (0 & « &«'), (155)

of which the Laplace inverse is (r = /u3&):

A(z, u) =—,I exp[ —(-"—z)'/4 1—expL —(z'+-+2«o)'/4r J }, (0&«z')
~(4~.)-'

(156)

Fquation (156) is the age solution with the extrapolated end point at z = —zo. In the next approxima-
tion, one expands all functions of q in (152) about rt=0, and retains the first two non-vanishing
terms, and so on. In this fashion one can study the dependence of the extrapolated end point on z'

and u by starting with the wiener-Hopf solution for the one-velocity problem.

3. AsymPtotic Neutron Density

Neither the spherical harmonic method nor the one-velocity method is suitable for finding the
neutron density for very large s. A method of successive approximations which starts with age
theory as a 6rst approximation cannot easily yield the asymptotic neutron density. The problem
must be tackled in some other way.

Physically, it is to be expected that most slow neutrons at great distances from the source arrive
at these distances after a large number of small-angle collisions, each associated with a small energy

"The assumption of isotropic scattering in the laboratory system becomes better, the larger M.
Equation (252) is derived using Wiener-Hopf techniques (cf. N. Wiener and E. Hopf, Berliner Ber. Math. Phys.

Klasse (2932), p. 696)."It is ta be remembered that all lengths are measured in units of the mean free path.
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loss. Consequently, an upper bound on the asymptotic neutron density can be obtained by assuming
that the neutrons which reach large s all travel in a straight line. If this assumption is made, the
probability P (s) that a neutron will reach a distance s after suffering just n collisions, is (the mean
free path is set equal to uruty):

P„(s)=s"e '/n~.

The number of neutrons per unit logarithmic energy interval after just. n collisions is iV(n, u) where

N(n, u) is given by Eq. (57). Hence, the total number of neutrons per unit logarithmic energy
interval at distance z is obtained by summing over-all collisions and we get:

X(s, u) = Q P„(s)X(n, u).
n=l

(158)

Since the greatest contribution to 1V(s, u) comes from terms corresponding to a large number of
collisions, we can replace X(n, u) by its asymptotic value (for large n, and for fixed but large u-
cf. Eq. (57)), namely:

ne "(uu)" '—
!t' (35+1)')

X(n, u)=,
~

o.=-
(n-1)! '

E 4ilf )
(159)

Substitutiiig (159) into (158), we hnd:

N(s, u) =
e—"—' (nus)" (us) " 7'

exp —u —s ——Ji (2i(nus) *').
u =in!(n —1)! E u) 2

(160)

For large values of s, the asymptotic behavior of N(s, u) is easily obtained from the asymptotic
behavior of the Bessel function; we get:

1 (ns) '
N(s, u) = —

~

—
~

expL —u —sy2(aus) &+0(1/s') 1,
(4ir) & ( u')

(161)

where e)0. Equation (161) was first derived by Wigner (W8) for the case of hydrogen (&=1).
It is difficult to judge the extent to which the upper bound for the asymptotic neutron density

given by (161) is in error. It is therefore desirable to obtain a rigorous expression for the asymptotic
neutron density, net merely an upper bound. The correct asymptotic neutron density could then
be fitted on to formula (146), say, and a fairly complete curve for the neutron density as a func-

tion of distance could be drawn (at least for constant mean free path).
Breit (B6) and Placzek (P2) were the first to investigate the asymptotic neutron density in some

detail. Breit assumed that the scattering is spherically symmetric in the laboratory system (i.e. ,

the mass of the scattering nucleus is infinite) and studied the asymptotic behavior of the Laplace
transform of the neutron density. Placzek looked into the asymptotic neutron density on the basis
of Fermi's "one-dimensional" model of slowing down and assuming constant mean free path. In
the one-dimensional model, it is supposed that the neutrons move in a straight line and that the
effect of a collision is to leave the direction of the neutron velocity unaltered, or to simply reverse
its direction. The energy loss in a collision can be chosen arbitrarily. Assuming that the energy loss

in a collision is a constant (equal, for example, to the average logarithmic energy loss in the actual
case), Placzek found for the asymptotic neutron density:

1 (!s()&
4o(s, u) =—,

/

'

I exp[ —lsl+P3,
(4 .)-:&2p)

(162)

where p= (u/()+1.
Bothe (B5) has also looked into the question of the asymptotic neutron density, even attempting

to take account of the variation of the mean free path with energy. However, his underlying as-



sumptions are so stringent —isotropic scattering in the laboratory system and a single average energy
loss per collision —that his results are not very satisfactory.

Recently, Wick (W6) re-examined the entire problem and deduced the correct asymptotic formula
for very large distances and for constant mean free path. Wick's procedure is quite ingenious and
we shall present it briefly here; we start with Eq. (140) rewritten as:

(1 —iy coso)4(y, 0, »1) = de'&I&(y, 0', »f)g((), »1)+(1/4»r), (1.63)

where coso replaces p, , and

g(0, n)=
»r (M' —sin'0) *'

cosO'+ (M' —sin'0~) l '«+'&

M+1
(163a)

It is to be recalled that the neutron density, its(s, n) is defined in terms of C (y, 0, »)) by:

~@+&00 $ ~ 00

lf, (s, u) =
~

d~e»" —dye 's* —dec(y, 0, z),
2XZ 0 —2oO 2% QQ

(164)

where o is to the right of all the poles (and can be taken as large as desired). A rigorous evaluation
of (164) is impossible. However, an asymptotic formula can be derived by taking advantage of the
fact that for large s, only the discrete pole of the I'"ourier inverse integral need be evaluated, and that
the Laplace inverse integral can be calculated by means of the "saddle-point" method.

We first observe that g(O~, »1) has a strong maximum for small collision angles, i.e. , O~ =0 (which
give the largest contribution to the neutron density at large distances —cf. above) for large values
of rf This lea.ds to the expectation (which is fulfilled —cf. below) that an expression for the asymptotic
neutron density can be obtained by studying Eq. (163) in the region of large»). We are, therefore,
interested in the behavior of g(O, rl) for large values of »f (i.e. , small values of 0); we find that
g(O, »1) can be expanded in the form:

where

g(O, »1) = - exp[ —0'»1'+ 0'»i" + ],
7f;3'

(165)1- 1
1—

2M 12M 4

3 y 1 [2—(3/M')j

Ms) M [1—(3/M')]

It will appear below that the values of 0, 0', and 0 which have to be considered, are of order 1/(rf'):;
hence, the term in 0' in the exponent in Eq. (165) is of order (1/rf ) compared with the quadratic
term. In the first approximation, we therefore take:"

g(O, rf) = (u/»rM) exp[ —0'rf']. (165a)

"A check on the accuracy of the first-order expression (165a) for large»i can be obtained by calculating

gi(ri)= fdQPi(cos8)g(8, »i) =2»r exp/ —»i'8'jJ»P(l+ ', }8$8d8= exp -——(f+—;—)',
o mM 4g

and comparing the result with the exact expression for g&(»i}. We have replaced P&(cos8) by 2'»t'(l+ —,')8j (since large»i
implies small 8), and»i' by (»i/M) (valid for large M). The following numbers were obtained for M=12 (carbon) and
g = 100.

g~ (exact)

0.0349
0.0328
0.0291
0.0242
0.0189
0.0140

g~ (approximate)

0,0350
0,0329
0.0292
0.0243
0.0192
0.0142

The agreement is excellent.
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The second approximation would consist in writing:

g(O, g) = (n/vr3I)(1+ 0'g") exp[ —0'g'), (165b)
and so on,

The next step is to solve Eq. (163) for C 0(y, q), and to take its Fourier inverse. As we have already
remarked, the evaluation of the Fourier inverse integral in (164) requires a knowledge of the discrete
pole of Co(y, q). lt can be shown that this pole occurs on the imaginary axis, i.e. , that the pole is
at a point yo(g), where ~y&~(rl)

~

&1 for finite g(~yo(g)
~

1 as g ~). I'urthermore, it can be shown
that the residue at. the pole of 4&0(y, g) is given in terms of the homogeneous solutioii, 40(y, it) of
Eq. (163) (i.e. , the solution with the source term omitted) by means of the relation:

lim (y —yo)Cp(y, g) =iCCO(yo, i1),
so(e)

(166)

where C is a normalization factor.
On the basis of Eq. (166), the residue of Co(y, g) at y=yo(g) can be found by studying the

homogeneous equation. Substituting (165a) into the homogeneous part of (163), and expanding.
cos8= 1 —-', 8', dQ' =8'd8'dp' leads to the first-order equation for C (y, 8, rl):

(1—k) C (y, 8, g) = ——C'(y, 8, p) +—8'd8'dy' exp[ —0'g')C (y, 8', p),
2 xM~

(167)

~here we can write, to the same order:

O~' = 8'+ 8"—288' cos(P —g') . (167a)

The quantity k takes the place of iy in the inhomogeneous equation and, as we shall see, plays
the role of an "eigenvalue"; that is to say, a bounded solution of the homogeneous equation (167)
only exists for certain specified values of k (really functions of g) which are called "eigenvalues. "
The limiting value of k for q—+ ~ is always unity; for large but finite g, k is close to unity. Use has
been made of the latter fact in deriving Eq. (167).

The largest "eigenvalue" k will determine the asymptotic behavior of the neutron density. To
obtain this "eigenvalue, " it is convenient to take the Fourier-Bessel transform of Eq. (167). This
corresponds to expanding C(y, 8, q) in the analogon to Legendre polynomials for very small" 8,
namely:

oo

C (y, 8, g) =—I sdsP(y, s, q)+o(sr),

P(y, s, g) =
~

rdrC (y, 8, q) Jo(sr)
0

(168a)

In Eq. (168) we have used the variable r = (g')**8 instead of 8. If we write k = 1 —ki/q', and insert the
Fourier-Bessel integral (168) into (167), we get the following eigenvalue equation for k (independent"
of g' and therefore of q):

d'y 1 dy 2A
+——+ —2k, +—exp[ —s'/4) y = 0.

dS S dS iV

We are interested in the lowest "eigenvalue" of Eq. (169) where p satisfies the boundary conditions:
dP/ds at s=0 and &=0 at s= ~. Equation (169) has the form of a Schrodinger equation with a

"This follows from the fact that P~(cos8) = J0(l8) for small 8. AVe have used J0(t|3) instead of Jo{ (l+-', )8j for the sake
of simplicity; the difference is not signi6cant for most of the I's.

"This is the justification for writing k=1 —(k1/g'), and shows that k~1 as g'~ ~.
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Gaussian potential. As is well known, an an'clytic solution of this problem does not exist; however,
the variational method easily yields accurate results for the lowest eigenvalue. Thus, if we choose @
of the form A expL —as'/4J, and carry out the variational calculation, we find a= (2n/M)' ——'„and
ki ——a'/2. The two limiting cases, &=1 and M))1, give values for ki of 0.418 and 0.0215, respec-
tively. "These values are lower than the correct values, and additional calculations show they are
not in error by more than about 10 percent.

Knowledge of the quantity k is not sufficient for the derivation of the asymptotic neutron density.
I he calculation of the lowest eigenvalue must be pushed to second order. One writes k = 1 —k, /(ti' —c)
+O(1/r)'s), where c is determined by substituting (165b) for g(O~, it) into (163), and all expansions
are carried out one step further in powers of (1/r)'). The precedure is straightforward and we shall
not write down the result. Terms of order (1/t)") and higher can be neglected completely.

Once ki and c are known, the residue of 4 p(y, r)) at the pole iyp ——k can be determined from (166).
To get the correct asymptotic formula, it suffices to evaluate the residue in the first-order approxi-
mation. To do this, we write down the analog of (167) for C(y, 8, t)), namely:

g2 0.
(1 —'y)C(y, 8, n) = ——~(y, 8, n)+ 8'd8'4'4(y, 8', q) pL —O'g']+ —.

2 ~M~ 4m
(170)

We multiply Eq. (167) by C(y, 8, ti) and Eq. (170) by C(y, 8, ii), subtract and integrate over 8d8;
we get:

(k —iv) 8d84(y, 8, ~)C(y, 8, ~) =— 8d8C (y, 8, q).
4x

Now,

lim (y+ik) C (y, 8, ti) = iCC (—ik, 8, r))
y-+ -ik

(cf. (166)); moreover,
!

8d8~(y, 8, ~) =
,~(y, 0, ~—),
I

and in accordance with the convolution theorem for the Fourier-Bessel transform,

1
8d84'(y, 8, ri) =— sds@'(y, s, ri).

Hence, the residue of C»(y, rl) at y =yp(t)) is given by:

where
imp( —ik, g) =HII/2q',

b=iti'( ik, 0, i))—sdsy'( —ik, s, ti),

k = 1 —(ki/ti').

Collecting our results and inserting them into (164) yields the Final contour integral which enables
us to find the asymptotic neutron density; we get:

Pp(s, u) =
2xi ~~—i~

)bM~
d~! —,! exp

(2g' )
ki )

q' —c)
(173)

where the procedure for finding the constants ki, b, and c (which depend on the mass of the scattering

4~ It is interesting to note that the numbers 0.418 and 0.0215 are much sma11er than the corresponding numbers 8
and 2 associated with the upper limit for the neutron density defined by Eq. (161) (cf. Eq. (175) below).
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nucleus) has been completely specified above. The evaluation of (173) can be carried out by means
of the saddle-point method. The exponential term in (173) has a saddle point at q = g„where q. is
obtained from the equation:

with
u sk i'—/(g. ' —c) ' = 0, (174)

g,
' =—g.-+1-

355

Proceeding in the usual fashion (i.e. , expanding the various functions about g= g, and retaining up
to the quadratic terms in the exponential, etc.) leads to the final asymptotic formula:

b3I f' ki
Pp(s, u) =

~ ~
exp[ —s+ (k,%us)l+cu].

4(m) ~c (Aalu's)
(175)

Equation (175) is the correct asymptotic formula for the neutron density correct up to and in-
cluding the constant term —provided the mean free path for scattering is constant (independent of
the energy) .

While Eq. (175) is correct up to and including the constant term, the leading term neglected in
the exponential is of order (u/P) ls '. This implies that Eq. (175) is valid at distances (measured in
units of the mean free path) large compared to (u/$)'. These are very large distances indeed! However,
ii~Vick points out in his paper (W6) how the neutron density can be found at smaller distances from
the source at the expense of greater numerical work.

Wick (W6) has also examined the asymptotic neutron density for variable mean free path. He
assumes that the mean free path for scattering decreases monotonically with the energy. He finds:

Pp(s, u) -f(u)s'e-', (176)

where 0 & —1, f(u) is a function of u alone behaving lil e be'" (0 and c are constants) for very large u,
and where the distance is measured in units of the mean free path at the initial energy. Co&parison
of Eqs. (175) and (176) reveals that the term proportional to s' in the exponential is absent in the
variable mean free path case whereas it is present in the case of constant mean free path. In other
words, the neutron density at large distances decreases more rapidly for variable mean free path
than for constant mean free path. This is to be expected in view of the fact that the slowing down
process (for variable mean free path) becomes increasingly more e%cient as the energy decreases.
The absence of the s' term for variable mean free path has the additional consequence that the
energy spectrum of the slow neutrons tends to a limiting form at large distances in contrast to the
constant mean free path case where the ratio of slow to fast neutrons increases continuously with
distance. For further details, the reader should consult Wick (W6) and also Wick. and Verde (W7)
where some numerical results for the asymptotic neutron density on the assumption of a "1/v"
scattering cross section are given for the particular case of hydrogen.

It is a pleasure to thank Dr. George PIaczek for helpful discussion of some points in this article.

IV. APPENDIX: NUMERICAL RESULTS FOR THE
SECOND SPATIAL MOMENT4'

The formulae derived in Section A of Part II permit
fairly accurate predictions of the second spatial moment
of the density of neutrons in a slowing-down medium,

"The author is indebted to the Los Alamos Computing
Group under Mr. Bengt Carlson for the computations on
C, 0, H, and 020. The computations on H~O were carried
out by the Montreal Computing Group, again under Mr.
Carlson's direction.

provided the scattering mean free path is known as a
function of the energy. In this appendix, we apply those
formulae to the more common slowing-down substances
(C, 0, H, D~O, H~O) for which measurements of the
scattering cross section are available. For the purpose of
reference, the relevant scattering cross sections are plotted
in Figs. 6—9 as a function of energy. "

'These curves were taken from C. L. Bailey et al,
Phys. Rev. '70, 580 (1946); D. H. Frisch, Phys. Rev. '70,
589 (1946) and C. L. Bailey et al, Phys. Rev. VO, 80S (1946).
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FIG. 6. Scattering cross section of. carbon.

The results for the slowing-down lengths' of neutrons in
'C, 0, H, D20 are given in Tables VI—IX, respectively. In
each rf the four tables, column 1 gives the initial energy 8;
of the fast neutrons, and column 2 the corresponding value
of u(—= log(Z;/Ey)), where Zr is the energy at which the
slow neutrons are detected. The detection energy has in

all cases been chosen as the indium resonance energy, i.e.,
).44 ev. Column 3 in all four tables lists the slowing-down

lengths obtained by inserting the measured scattering
cross sections (as a function of energy) into Eq. (122b). In
the case of D ~O, proper account has been taken of the fact
that we are dealing with a mixture. Column 3, therefore,
represents the age approximation for the slowing-down

length.
The remaining two columns in Tables VI—IX have to

be discussed separately. Column 4 of Tables VI and VII
lists the slowing-down lengths derived from the "interval"
formula (103). Since the collision interval

g~ = log

TA.BLF VI. Slowing down length of neutrons in carbon
(p = 1.6).

Z (Mev)

3.0
2 0
1.0
0.50
0.25
0.10

14.55
14.14
13.45
12.76
12.06
11.15

Age
theory

19.2 cm
17.7
15.9
14.7
13.9
13.2

Interval
theory

19.7 cm
18.2
16.2
15.0
14.l
13~ 3

Exponential
theory

19.8 cm
18.2
16.2
15.0

13.3

Table VII). In the case of carbon, column 4 is included for
the sake of comparison" with the certainly more accurate
resultss' obtained on the basis of the "exponential"
equations (84a) and (84b).

Column 5 of Tables VI and VII lists the slowing-down

lengths in carbon and oxygen predicted by Eqs. (84a) and
(84b) when the scattering mean free ps, ths are fitted (in
their variation with u) by sums of exponentials. Rather
than choose a large number of exponentials and fit the
coeAicients at a series of points, we have written the mean

is quite small for both carbon and oxygen (cf. Table X),"
the sub-intervals, introduced for the purpose of applying
(103), can be chosen sufficiently small so that the variation
of the mean free path (with energy) over each sub-interval
is not more than 10 percent (cf. remarks preceding Eq.
(92)). The value of the mean free path in each sub-
interval is chosen in accordance with the remarks following

Eq. (103). While the "interval" formula was developed
primarily for its application to mixtures of heavy elements,
it can of course be used for the determination of the
slowing-down length of neutrons in single heavy elements.
In particular, for oxygen, formula (103) is especially con-
venient because of the existence of resonances in the scat-
tering cross section; by virtue of this fact, the slowing-

down lengths in oxygen as given by the "interval" formula
are probably more accurate than those given by the
"exponential" equations (84a) and (84b) (cf. column 5 of

TseLH VII. Slowing-down length of neutrons in oxygen
(p = 1.0).

B&(Mev)

3.0
2.0
1.0
0.50
0.25
0.l0

14.55
i 4.14
i 3.45
12.76
12.06
11.15

Age
theory

56.8 cm
48.8
42.2
38.6
37.9
36.8

Interval
theory

58.8 cm
51.2
42.5
39.2
38.0
37.1

Exponential
theory

62.6 cm
50.0
42.6
39.1
38.2
37.1

"It actually turns out that the "interval" and "ex-
ponential" values of the slowing-down length in carbon
are almost identical (cf. column 5 of Table VI).

~' L. Nordheim, G. Nordheim, and H. Soodak (Ni) have
derived values for the slov ing-down length of neutrons in
carbon from the formula:

"The slowing-down length is related to the second
spatial moment of the neutron density by Eq. (70).

~' Table X contains the values of the constants charac-
teristic of H, D, C, and 0 which were used in computing
the various slowing-down lengths.

dz~'+P(0) +12(u)

This formula is not as accurate as the "interval" or "ex-
ponential" formula; however, their results agree with the
ones given in Table VI to one unit in the last place.
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TABLE VIII. Slowing-down length of neutrons in hydrogen
(p = 1.0).

Es(Mev)

3.0
2.0
1.0
0.50
0.25
0.10

14.55
14.14
13.45
12.76
12.06
11~ 15

Age
theory

0.728 cm
0.608
0.463
0.375
0.328
0.293

Interval
theory

0.837 cm
0.693
0.516
0.407
0.348
0.306

Exponential
theory

0.865 cm
0.707
0.520
0.411
0.352
0.309

TABLE XI.Slowing-down length of neutrons in heavy water
(~ =1-1).

R (Mev)

3.0
2.0
1.0
0.50
0.25
0.10

14.55
14.14
13.45
12.76
12.06
11.15

Age
theory

10.5 cm
10.1
9.7
9.4
9.1
8.8

Interval
theory

11.4 cm
10.8
10.1
9.9
9.5
9.2

Exponential
theory

11.9 cm
10.9
10.2
9.8
9.5
9.2

free path as a constant plus one exponential, i.e.,

l(u) =A p+c4 ye 1", and on this representation are placed
the requirements that the mean free path of the slow neu-
trons (e.g. , at the indium resonance energy of 1.44 ev) he

correctly given, and further that. :

f~ tzp tzp

(3p+.4ge "1"~'dzz = P(g)du, (Ai)
0 0

ftzp 'Mp

zz(.4p+.4 ~e ' )du = ul(u)du, (A2)
0 p

where the mean free path under the integral signs denotes
the actual mean free path as a function of energy, and up

depends on the initial energy. Condition (A1) is chosen
since it expresses the fact that age theory is a good first
approximation to the final result. Condition {A2) is chosen
since it weighs the low energy region. more than the high
energy region; this is necessary because, while the mean
free path varies most rapidly in the high energy region, the
number of slowing-down collisions is greater in the low

energy region (where the mean free path is usually fairly
constant). For carbon, conditions (A1) and (A2) lead to the
expression: /(u) = 2.69+6.20e P 7"",where l(u) is measured

in cm, and the density has been taken as 1,6 g/cm', the
fit is made for up=14. 55 (i.e., E; =3 Mev). For oxygen,
we get l(u) =6.50+40.3e '"", corresponding to a density
of 1.0 g jcmz.

Column 4 of Tables VIII and IX lists the slowing-down
lengths in hydrogen and heavy water derived from the
"integral" form of the "interval" formula (103). That is,
Eq. (103) is replaced by the limiting form assumed when
the number of sub-intervals is permitted to become infinite,
namely:

J.,'{u)= l2(zz')dz~'

o g(u')o. {zz')

b(u') d P(u')+ d

f(u')P(u') d l(u')
a(u')a(u') du' n(u')

l~(u) b(u) p(u) A
g(u)a(u) c(u) a(u)

Equation (A3) can be written more simply for a single
element 4

)
30-

'H.

J.,'(z~ ) = — l2(n')de'
3 Qa n

-+- [P(0)+P(u)]~ (A4}
1 b P

2co. c a
Qf'e call Eq. (A3) (and (A4)) the integral form of Eq. (103).
The application of the "interval" formula (103) (and
therefore. of (A3) or (A4)) to hydrogen and heavy water
should, in principle, lead to poor results since the scattering
mean free paths of neither hydrogen nor heavy water are
sensibly constant over properly chosen. sub-intervals.
However, it is a relatively easy matter to apply Eqs.
(A3) and (A4) and this has been done for hydrogen and
heavy water to judge the accuracy of the interval-type
approximation (by comparison with the more accurate
"exponential" values f'or the slowing-down length listed
in column 5 of Tables VIII and IX). It is seen that the
"interval" values for the slowing down length are not very

t5
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Fra. 9. Scattering cross section of deuterium.
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FIG. 8, Scattering cross section of hydrogen.

'4 Equation (A4) could also be used for carbon and
oxygen in place of (103); however, both formulae lead to
essentially identical results (which is to be expected).
Presumably, Eq. (A4) (and (A3)) could be derived directly
from the transport equation.
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Txez, H X. Constants for H, D, C, O.

Element

H
D
C
0

M qM —log M 1

1 bQ

2
12
16

1,0000
0.7254
0.1578
0.1200

70"(0)

—2.0000—0.8472—0.0341—0.0196

carlo)1 —= 1 —(cos8)t)

0.3333
0.6667
0.9444
0.9583

0.4444—0.0454—0.0466—0.0366

different from the "exponential" values and are a con-
siderable improvement over the "age" values.

Column 5 of Table VIII lists the slowing-down lengths
obtained from Eqs. (84a} and (84b) by choosing a repre-
sentation of the scattering mean free path of neutrons in

hydrogen" in accordance with (A1) and (A2). This choice
leads to the following expression for l(N) in cm (for a
density of 1.0 g/cmr): f(u) =0.083+0.677e e r"". Since
heavy water is a mixture, Eqs. (84a) and (84b) cannot be
used; however, the "exponential" approximation has been
extended to mixtures in the form of Eq. (91). Column 5

of Table IX lists the values obtained for the slowing-down

length of neutrons in heavy water by an application of Eq.
(91). Both the total scattering mean free path, and its
ratio to the scattering mean free path in deuterium have
been chosen in accordance with relations of the type (A1)
and (A2). We find (for a density of 1.1 g/cm'):

l(u) =2.83+3.85e '"", c(N) =0.617+0.183e '"".
The slowing-down length of neutrons in ordinary water

can be calculated along the lines of the slowing-down

length in heavy water. However, if the mass of the oxygen
nucleus is assumed to be infinite, a rigorous formula for the

slowing-down length of neutrons in water is available,
namely Eq. (108). Computations based on Eq. (108) have
been carried out" (MS) and the results for the slowing-

down length are plotted in Fig. 10 as a function of the
initial energy (in lVIev). Just as in the previous com-

putations, the final energy is chosen as 1,44 ev (the indium

resonance energy). In contrast to the previous computa-
tions, results for the slowing-down length are included for
values of the initial energy as high as 5 Mev. For con-
venience, the total scattering mean free path, and the
ratio of the total mean free path to the mean free path in

hydrogen, as obtained from Figs. 7—8 augmented by the
measured values in the range 3-5 Mev, are plotted up as
functions of the energy in Fig. 11.

The results for the slowing-down length given in Fig. 10
are completely rigorous provided one accepts the assump-
tion of an infinitely heavy oxygen nucleus. '7 Because of
the rather large mass of the oxygen nucleus, and because
the scattering cross section of hydrogen is much greater
than that of oxygen, the error introduced by the infinite-

(a) t) = Total hlean Free Path ln Water

(h) c =itotio ot Total Mean Free Path to

Mean Free Path tn Hydrogen

l}.fern)

t $(CM)

0
0 2 3

g (M/V)~

g (Mtv) ~ 3

Fi(.. 11. Scattering mean free path of neutrons in water
as function of energy.

Fro. 10. Slowing-down length of neutrons in water.

"In the case of hydrogen, we have available a rigorous
formula for the slowing-down length as a function of the
energy (i.e., Eq. (79)). However, since hydrogen by itself
is not used as a slowing-down medium, the tedious nu-
merical calculations connected with the rigorous formula'
have not been carried out. Instead, the rigorous formula
for the slowing-down length of neutrons in a hydrogen-
containing mixture has been applied to ordinary water (cf.
below). The approximate calculations have been performed
for hydrogen, the lightest element and the one for which
the scattering mean free path varies most rapidly, to
provide a severe test of the various methods for calculating
the slowing-down length.

'6 L. Nordheim, G. Nordheim, and H. Soodak (N1) have
also calculated the slowing-down length of neutrons in
water on the basis of formula (108). However, they used
earlier (and less accurate) measurements of the cross
sections and hence their computations have been super-
seded by the present ones.

'~ Implicit in this statement is the assumption that the
scattering cross section is isotropic in the center of mass
system for both hydrogen and oxygen; This is very closely
true for hydrogen, but may not be true for oxygen. As a
matter of fact, the existence of resonances in the scattering
cross section of oxygen makes it unlikely 'that the scat-
tering is isotropic throughout the energy range con-
sidered. However, the deviations from isotropy are un-
1 nown and the net effect on the slowing-down length is
probably small.
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TAm. E XI. Slowing-down length of neutrons in water
(p = 1.0).

B (Mev)

3.0
2.0
1.0
0.50
0.25
0.10

14.55
14.14
13.45
12.76

~ 12.06
11.15

Interval theory

6.4 cm
5.3
3.8
3.].
2.7
2,4
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