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CHAPTER I. GENERAL INTRODUCTION

1. Particles in the Maxwell-Lorentz Theory

HE understanding of the ultimate nature
of matter has been for a long time a funda-

mental pursuit of physics and philosophy. In
recent years this problem has acquired added
interest owing to the discovery of a number of
new particles. Besides the electron and the
proton, which have been known for. quite some
time, the existence of thc positron, neutron, an(1
posltlv'c and negative mcso I ls has bccn well
established by experiment. The existence of a
fern other particles (such as the neutrino, nega-
tive proton, and the neutral meson) has been
postulated from various theoretical considera-
tions, although there has as yet been no experi-
mental evidence. It is thought that a11 matter
could be regarded as being built out of a few such
elementary particles; consequently, a knowledge
of the properties of these particles and of their
interactions with each other ls of profound lm-

pol tancc.
The existence of particles cannot be explailled

on the basis of the Maxwell-Lorentz theory of
classical electromagnetism. Maxwell's equations
of classical electrodynamics, which have mct
with remarkable success in certain of their appli-
cations, have given rise to many difhculties when

generalized to consider the presence of charged
particles.

2. Finite Electron or Point Electron'P

In any theory of a particle it is desirable at the
outset to decide on the model to be used to
describe the particle, whether it is to be con-
sidered as having a finite size or as being a point
singularity. Lorcntz' regarded the electron as a
small charged sphere, and by using lVIaxwell's

theory he calculated the radiation reaction, ob-
taining for this force a series in ascending powers
of the radius, g, of the electron; thus,

F= '(e'/c') (d'V/dP)+ ( )R+-( )R'-+ I'1)

YVhen R is made small, only the first term of this
series remains; and therefore an approximate

form of the equation's of motion is

md V/dt -', (—e'/c') (d'V/dt') = eLE+ (7/c) )&H j, (2)

where V denotes the velocity of the electron, and
E and H the electric and magnetic vectors of the
lllcldcn. t fiPld.

The Lorentz theory, however, has only a
limited applicability. It is a non-relativistic
thcoIy, and cannot bc made relativistic IIl a
straightforward manner, since "'size" is not a
relativisti(;ally invariant concept. , and a spber(. ill

one frame of reference will not be a sphere in
another Lorcntz frame. Furthermore, the theory
does not give a stable model of the electron,
since any finit charge distribution would explode
if actc(l upon by purely electromagnetic forces,
the different parts of the electron repelling each
other according to the Coulomb law. The theory,
therefore, has to be supplemented by introducing
mechanical forces of some other type to hol(l
the charge on the electron together. Xo satis-
factoI y wag of iIltvoduciIlg sucll for ccs has yP1

bcpl 1 discovered.
For these and other reasons it has now become.

clear that it is better to abandon the extended
model of the electro' and regard the electron as
a point charge, and then proceed. to remove the
characteristic difhculties that arise in theories of
point particles. The chief difficulty is that on the
basis of the A&Iaxwell-Lorcntz theory, a poillt
electron is supposed to have an infinite self-

energy. This difficulty also exists in the quantunl
theory, where it manifests itself as a divergence
in the solution of the wave equation that de-
scribes the interaction of an electron and an
electromagnetic field. One cannot, therefore,
hope to remove these difhculties by merel&

passing over to the quantum theory; that is, by
taking into account the disturbances accom-
panying measurements. Hence, to build a theory
free frolri thc occuI"Iencc Qf iIl.flinitics, the pfopcI
approach is to make the necessary rcfinements in
the classical theory and then to proceed to the
quantum theory.

Two ways of avoiding the difficulty of infinities
in the dassical. theory have been suggested. One
method was developed by Born and Infeld' and

' H. A. Lorentz, The Theory of I'Iectrons {Leipzig. , 1916),
second edition.

2 M. Born, Proc. Roy. Soc. A143, 410 {1934);AI. Bor»
and L. Infeld, Proc. Roy. Soc. A144, 425 {1934).
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consists in modifying Maxwell's theory, so that
the energy of the 6eld round the point singularity
is 6nite. This method, however, has been only
partially successful and has encountered dif-
ficulties in the process of second quantization.
The other method is due to Dirac' and will be
discussed in detail later.

One should exspect that this difficulty of
infinities would arise as long as a point electron
is considered as the limit of a finite charge dis-
tribution. The infinite self-energy is the work
that has to be done against electromagnetic
forces in concentrating the finite charge to a
point. If, however, we give up considering the
electron as the limit of a 6nite charge but regard
it as an "elementary partic1. e," meaning that,
while all matter may be thought of as being
built out of certain elementary particles, these
particles themselves cannot be divided further
into simpler entities, then it becomes clear that
an electron cannot have any self-energy, finite or
otherwise, because the concept of energy of a
system is derived from that of the mechanical
work that can be obtained from the system by
suitably displacing it, and no work can be ex-
tracted from an electron when it is by itself, it
being understood that all elementary particles are
permanent and immutable in the classical
theory. 4 5 In this way one sees that it should be
possible to have a classical theory of point par-
ticles, free from the occurrence of infinities.

3. Dirac's Theory

Dirac retains Maxwell's theory to describe the
held right up to the point singularity that repre-
sents the electron and shows that, in the mathe-
matical formulation of this theory, the terms
which give rise to in6nities can be subtracted out
in a Lorentz invariant way. Such a subtraction
process becomes possible for the reasons given in
the previous section. The theory is in agreement
with well established principles, such as the
principle of relativity and the principles of con-
servation of energy and momentum. The reaction
of the radiation 6eld on the motion of the electron
is eff'ectively taken into account,

3 P. A. M. Dirac, Proc. Roy. Soc. A16V, 148 (1938).' H. J. Bhahha, Proc. Iad. Acad. Sci. A11, 347 (1938).
"' I'. , A. 1VIilne, Phil. M rg. 34, 73 (1943),

Pryce' has shown that this method is equiva-
lent to replacing the usual energy-momentum
tensor, 1"„„ofthe Maxwell 6eld by a tensor of
the form

T„, r)X—.„,/'r)1,

where K,„„is a tensor which is antisymmetrical in
0 and p,

'
and which depends explicitly on the

coordinates of the point charges present in the
field. This new energy-momentum tensor gives a
finite value to the field energy of a given system
of charges. It agrees with the usual tensor, for
held. points at large distances from the charges.

The equations of motion obtained by Dirac's
method are, in their non-relativistic approxima-
tions, found to be the same is the Lorentz
equations. In this way the equations of Lorentz
were rederived by Dirac. But whereas I..orentz'
method of derivation makes these equations
necessarily approximate, Dirac has suggested
that his method of derivation gives room to hope
that these equations are exact within the limits
of the classical theory.

This method introduced by Dirac has been
successfully applied by Bhabha to derive the
equations of motion of spinning particles in elec-
tromagnetic and meson 6elds.

4. DifBculties in Dirac's Theory

The present author, in a series of recent
papers, has applied Dirac's theory to various
problems. The results of these applications reveal
several features of the theory which appear to be
at variance with familiar ideas of physics. The
self-accelerating motions of a free electron, the
arti6cial nature of the only physically allowable
solution of the problem of an electron that is
disturbed by a pulse of electromagnetic radiation,
the inability of the electron in the hydrogen
atom to spiral inwards and fall into the nucleus,
and the absence of a physically allowable solution
of the problem of an electron moving in the
field of a thin in6nite-charged plate, all appear
to suggest that in some respects the Lorentz-
Dirac equations are unsatisfactory. However, the
correspondence between the classical and the
quantum theories is not close enough for one to
conclude from the above results that the Dirac

6 M. Pryce, Proc. Roy. Roc. A168, 389 (1938).
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classical theory is inadequate owing to its con-
tradiction with experimental results. The theory
has to be translated into the quantum theory and
the consequences investigated and compared
with experimental results. Nevertheless, it seems
also desirable to look for possible modifications
within the classical theory. In Chapter II we
shall consider a generalized classical electro-
dynamics which includes the Dirac theory as a
particular case.

5. Quantum Electrodynamics

Once the classical theory is formulated in a
satisfactory way, free from the occurrence of
infinities, one has then to take it over into the
quantum theory. This may be done by first
expressing the classical equations of motion in

Hamiltonian form, and then passing over to the
quantum theory according to the usual rules, by
replacing momenta by operators satisfying cer-
tain commutation relations. One has then to
examine the physical interpretation of the re-

sulting theory.
It has been shown by Dirac' that in order to

avoid singularities when expressing the equations
of motion in Hamiltonian form, a certain limiting
process becomes necessary. This process, called
the '"A limiting process, " was first introduced by
Wentzel' and subsequently developed by Dirac,
and consists in expressing the equations of
motion in terms of a small time-like vector, ).
The equations are then exact only in the limit of
) tending to zero. This limiting process is found
to help in the subsequent developments by
securing the elimination of certain divergent
integrals in quantum electrodynamics.

The next stage of the development concerns
the physical interpretation of the quantum elec-
trodynamical equations. In the early attempts to
extend the non-relativistic quantum mechanics
to make it conform to the special theory of rela-
tivity, the mathematical scheme was easily
formulated, but there arose several difficulties
over an adequate physical interpretation of the
theory. It was found that according to these
equations- a particle has negative energy states

~ P. A. M. Dirac, Ann. d. 1'Inst. Poillcare 9, 13 (1939);
Proc. Roy. Soc. A&SO, ~ (r94Z).

8 t . genteel, 7eits, f. Physjk 86, 479, 635 ($933); 87, 726
I )934).

in addition to the usual ones of positive energy,
and further, if the particle has integral spin, the
negative energy states occur with probability
values which are negative. The methods which
were introduced to meet these difficulties,
na'mely, the Dirac hole theory for particles of
half-odd integral spin, and the method of second
quantization according to the Pauli-Weisskopf
scheme, have met with some success. But a
further difficulty arises. When applied to photons,
the corresponding wave equation is found to have
no valid solution, owing to the occurrence of
divergent integrals.

Various attempts have been made to eliminate
these divergent integrals. Among the notable con-
tributions to this problem are: (i) the non-linear
field theory of Born and Infeld, ' where the clas-
sical Maxwell equations are modified to eliminate
divergences, but the quantization of the theory
has proved difficult; (ii) the theory of Heitler and
I'eng, "which is a heuristic attempt to demon-

strate that the divergent terms may be con-
sistently omitted; (iii) the quantum theory of
vacuum fields of Born and Peng" (iv) the
quantum electrodynamics of Dirac. 7 "

In this paper we shall follow the lines of
Dirac's quantum electrodynamics. We first
expres's the generalized form of the Lorentz-Dirac
equations in Hamiltonian form, and translate
them into the quantum theory. We then inves-

tigate the interaction of an electron and a
radiation field on the basis of these new equa-
tions. We shall show that the interaction is

entirely free from divergent integrals to any
order of approximation in the perturbation
theory.

CHAPTER II. GENERALIZED CLASSICAL
ELECTRODYNAMICS

6. Fields associated with an electron

Let (xo, xi, x2, x3) be the time and space coor-
dinates of any point, and let the metric tensor

'W. Pauli aiid V. YVeisskopf, Helv. Phys. Acta '7, 709
(1934).

"W. Heitler au&1 H. W. Pen@, $-'roc. |".a1nb. Phil. Soc. 38,
'&96 (1.942).

"M. Bor'n and H. K'. Peng Proc. Roy, Soc. Edinhurgli
62, 40 (1944).

P. A. M. I)lrac, C001111ullI.c'lt logs of t:hP. Dt.ll)ljn In&I. ,

A, I (19432,
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g„„be given by

gOO= ~& g].&. =g22=g33= —
~

&

and j„is the charge-current density vector, given
by

I
d2'p,

j„=e, ii(xo zo) 5(xx e])
ds

X 5(x2 s2) 5(x, —e3)ds. (2)

The field quantities, I'&', are connected with the
potentials by the relations

F""= BA"/Bx„BA"/—Bx,

Particular solutions of Eqs. (1) are the re-
tarded and advanced potentials, 6rst considered
by Lienard and Wiechert, and which shall be
denoted by A „&and A,d, respectively. A general
solution is obtained by adding to either of these
particular solutions any solution of

BA„/Bx„=0, A„=0. (4)

lt has been usual to assume that only the
retarded 6eld is of relevance to physical prob-
lems, the advanced potentials being looked upon
as mathematical solutions of a non-physical
type. Thus, denoting by Ii,& the Beld due to the
electron, the usual procedure has been to take

~el ~ret.

This assumption is a corner stone in the Maxwell-
Lorentz theory. It determines the existence of a
radiation field, because when the field F„~ is
calculated, it is found that in addition to the
Coulomb fi.eld there is also a transverse field,
which is taken as the radiation Geld that is
emitted by the electron. All the properties of the

all the other components vanishing. The velocity
of light is taken as unity. Assuming that the
world-line of the electron in space-time is given
by the equations s„=s„(s), where s is the proper
time, the electromagnetic potentials A„of its
Beld at the point x„satisfy the equation

BA„/Bx„=0, A„=4~j„,
where

a2 82 a2 82

1

BXo BXy BX2 BX3 where C describes a radiation 6.eld which is
derivable from a potential function satisfying (4).
G should be finite on the world-line of the elec-
tron. Furthermore, when the electron is at rest,
the field F.i should reduce to the Coulomb field.
Hence G must vanish when the electron is

stationary. Subject to all the above conditions,
G is still arbitrary. By choosing various forms of
G we may obtain different radiation fields. We
should then examine which of these lead to
adequate equations of motion.

An obvious choice for the function C" is

G=k(F„»—F.g ), (6)

where k is an arbitrary constant. It has been
shown by Dirac' that on the world-line

4e /' d'v»' d'v')

3 ( ds' ds')

thus showing that 6 is free from singularities on
the world-line. It is easy to verify that (6)
satisfies Eq. (4), axid also that it vanishes when
the electron is at rest. Hence (6) satisfies all the
necessary conditions. We note that we have
introduced advanced potentials into the ex-
pression (6) for G. The use of advanced poten-
tials" should not be deprecated, provided all the
mathematical requirements are consistently met
and the resulting equations of motion lead to
physically understandable results. The advanced

"After this work was completed„ I saw a paper by J. A.
Wheeler and R. P. Feynman, Rev. Mod. Phys. 17', - 157
(1945), who have also introduced advanced potentials but
are led to the same results as Dirac, in «ttemptinp. to
provide a radiative mechanism.

radiation field are thus fixed by the assumption
that the field of a moving electron is its retarded
6eld. This assumption is also used in the Dirac
theory, and it is, therefore, not surprising that
the Lorentz theory and the Dirac theory lead to
the same equations of motion.

It seems, however, of some interest to see if
any improvement can be brought about by dis-
pensing with the assumption that the 6eld of a
moving electron is given by its retarded Geld,
and considering a more general solution of
Eqs. (1).We therefore take

F.x
= F-»+G,
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potentials may play an important part when the
theory is quantized, as for example they may
correspond in some way to photons of negative
energy which are now used in the physica1 inter-
pretation of quantum electrodynamics. We do
not attempt to give a physical mechanism for the
phenomenon of radiation reaction, but shall
chiefly be concerned with obtaining an adequate
set of equations. In atomic processes it may not
be possible to give a description in terms of cause
and effect, or past and future. Only a com-
plicated mathematical connection between dif-
ferent events may be feasible.

7. The Equations of Motion

9'e follow Dirac's method of derivation of the
equations of motion of an electron in an electro-
magnetic field. The world-linc of the electron is
assumed to be known between the points sl and
s2, and is supposed to be surrounded by a thin
world-tube; the How of energy, momentum, and
of angular momentum across a three-dimensional
section of this tube is calculated. The principles
of conservation of energy, of momentum, and of
angular momentum" require that these rates of
How should be perfect differentials. This require-
ment gives the relations satisfied by the coor-
dinates of the points on the world line of the
electron and hence gives the equations of motion
of the electron.

The field being described by the field quan-
tities Ii„„, its energy-momentum tensor is given
by

4ir I pp 1 IIp~ 1+Qg/I pl pp~ I

The angular momentum density of the held is
given by a tcnsol, 3I&p 13 y defined by

so that
I"'= 0(&;.1+~.,3.)+f,

f= (k+ -', ) (P„.1 —F.g.) +F.„3.

On the world-line

d'vp d'v ~P.= ', (2X+1-)e~ v.
dx' ds')

The integrals J' T„„dS" and J' M3,„„dS" are
evaluated by taking a tube which is spherical,
and of constant radius ~, for each value of the
proper time, . in the particular frame of reference
in which the electron is then at rest. We take
advantage of calculations already made by
Tlirac, by following his notation and writing

x, =~,(s0)+p„

which satisfies the equation of conservation ill

free space
BiV3,p, /Bx. = 0.

The flow of energy and momentum out of thc
tube is given by J'T„,dS", the integration being
over the surface of the tube, dS" representing a
three-dimensional surface element of the tube,
and the flow of angular momentum out of the
tube is J'M'~ pdS".

Now,
jV= T3,+P,,

where I', t, denotes the external electromagnetic
field. We define a. new field f„„by writing

(PI v) = NOVO 71vl Y«v« 7'3~:3

ivhcrc the y's are small, and so is chosen so that
wt11ch satlsfics the equation of conservation 1B

free space (13)

aT,„/Bx,, =0. Thcll

(v 1$
F,.; =eL1 —(y, v)$

—'*

~

———((v"v —v v") ——L1+(v, v) j(v"v' v'v")—
E8««0 )

4e ( dvp dv'q—v —i,
3 & ds dsi

1 ( dvp dv
~ 2( dvp dv')

+—
l v —v" (+-( v' —v" I, (1~)

2« & ds ds ) 3 & ds ds )

' The conservation of angular mornenturn was first introduced into this method hy H. J. Bhabha, Proc. Ind. '%cad.
Sci. Alo, 324 (1939).



to the required degree of approximation in ~; dots denote diRerentiation with respect to the proper
time, s. Hence

47rTuu =e'I 1 (7 v)] '
I

— —~(&'vuv 'Yu'Yu) (8u8u+8 vuvu)
4~' 4~'

].
+ 71+(Y 8) jl Yu8u'+Yu8u+2(» 8)vuvul -v 'Yu'Yu

26 2e'

f d v'i -f dvu d8u) 2 8
+I 'Y~ „ lvuvu+' ( vu +vu I

—
4gr u

—I1+('Y v)+(» v)'I+
ds" i ( ds ds )

e
+ I (v,v— v'~.—)f:+(v.v. v.~.—)f; a„v.—v.f" I, (16).3

where we have made use of the relations

t dv)
(y, v) =0, v'=1, (v, v) =0,

i
v, i+8'=0.

ds' i
An integral over the three-dimensional surface, dS", may be split up into an integral over the two-
dimensional spherical section of the tube for a particular proper time, and then an integral along
the world-line. If dog stands for the elemental solid angle of this two-dimensional spherical surface,

d S"= —y"Ll —(y, v) ]ed(ods,

Hence,

,
~r

' T„„dS"= —(4ir)
—'

I
e'

~

—+—
~yu

— Ll+-,'(y, v)]v„+ v'f„.—deeds
E e' ~'- i 2e'

(-', e'e '8 ev'f„.)d—s

neglecting terms which vanish with ~. Also

~ My„„dS"= (zi,Tu. zuTi, )dS"+ —(y),,Tu, yuTy„)dS". —

The. first integral in (20) is
~'

(1 8'q 3e' te-'
—(4ir)-', z), e'~ —+—

[yu
———(y, 8)v„ ( v„ ev'f„—.—)—

E2e' 2e i 4 u E2e

p 1 v'~ 3 e' t'e'—z. e'~ —+—
)V&,

———(v, 8)8),—) 8),, ev f&, )——
E2e' 2~i 4 e &2~ i

I zi, ( ', e'e 'v„ev'f-„.) —z —( 'e'e '8), ev'f), .-) Id—s. —t ~

~

The second integral in (20) is

3e2—(4~) ' ' yi, (~ze'e 'v„—ev'f„,) —yu(-,'e'e '8i, ev fq,) (y, 8)—(yi, 8u y—uii)duds=0, —
4&



where we omit terms which vanish with e. Hence

(21)

From the requirement of conservation of energy and momentum (19) must depend only on conditions
at the two ends of the tube, and therefore the integrand must be a perfect differential. Thus

~ps e 8q —Cv fq =Bp

From the form of the left-hand side of (22) we see that B„ is not altogether arbitrary, but must
satisfy the condition

By using (22), (21) becomes
(u, B)=0. (23)

j 3I),„,d S"= (zi,B, s„Bi,—)ds = [syB„—s„Bi],', — (v),B„v„Bi)ds-,
~s& ~81

(24)

where terms which vanish with ~ are omitted. Hence for conservation of angular momentum

V)»BIJ,
—P~B), (25)

must be a perfect differential. Thus the equations of motion are given by (22), where B„ is any
function which is subject to the conditions (23) and (25) but is otherwise arbitrary.

We thus see that the method of derivation of the equations of motion from the conservation
principles does not give the equations uniquely. By choosing various possible forms of B„satisfying
(23) and (25), we can obtain various sets of equations.

A simple form of B„which satisfies the conditions (23) and (25) is

(26)

where a is a constant. By taking
(27)

where m is another constant, Eqs. (22) become

tFl5q = 8Vgfp . (28)

Thus the effective field that acts on the electron is the f„,field. By substituting for f„ from (12), we

obtain as the equations of motion of an electron in an electromagnetic field

mv„——',e'(2&+1) [(d»}„/ds) +i'v„j = ev, F„,„», v2—=v,v& =1.

Equations (29) give a simple generalization of the Lorentz-Dirac equations. They contain an

arbitrary constant. k. By choosing various values of k we obtain different sets of equations of motion,
corresponding to the different radiation fields defined in the theory. We have to apply these equations
to various familiar problems and see which value of k gives the most satisfactory equations.

We note that we have obtained the equations of motion (29) by taking a, particularly simple form

of B„.Other possible alternative, but more complicated, forms of B„have been investigated by the
present author and will be discussed later.

8. Many Electrons

The above theory of a single electron in an electromagnetic field may be readily extended to apply
to any number of electrons, interacting with each other and with an external electromagnetic field.
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The equations of motion of the nth electron are, in an obvious notation,

where
mV»» =&V~nfjun I

f,„»'= F,„,,» +(2s/3)(2k+1)(v„'dv„, »/ds v»—dv„'/ds )+ g (F»',„...,+G,.» ).
(30)

Hence, (30) becomes

mi„„23e'—(2k+1)(dv». /ds+v. 'v»„) =ev..I F„,,+ ~ (F» ...yG»,„)}.

9. Discussion them in the form

2(F,.i+F.a ), (a)

The above equations of motion show that the
effective field on an electron is the f„, field. We
may therefore suppose that the field of a moving
electron consists of two parts:

d'r d'r dr (d't y
' )d'rq '-

6
ds' ds' ds Eds') &ds )

dt dr
= (3/2e) —E+—

&& H,
ds ds

k(F-i —F.~.)+G = (k+5) (F-» —F.~-), (b)

and that as far as the force on the electron which

gives rise to this field is concerned, only the part
(b) gives any contribution. That is, the part (a)
of the field emitted by an electron does not exert
a force on that electron whereas both parts (a)
and (b) inHuence other electrons. We note that
the part (a) contains all the singular terms in the
expression for the field, the part (b) remaining
finite on the world-line of the corresponding
electron.

The sign of the radiation reaction terms
depends on that of 2k+1. Consequently, by con-
sidering the various cases 2k+1&0, 2k+1=0,
2k+1(0 separately, we would have different

types of radiation fields. In the first case the
radiation 6eld is of the same type as in the Dirac
case but with the numerical value altered by a
factor 2k+1, in the second case the usual

radiation damping would be absent, and in the
third case the radiation field is opposite to that
in the first case.

In the next chapter we shall consider various
applications of these different equations.

CHAPTER III. APPLICATIONS OF THE CLASSICAL
EQUATIONS OF MOTION

(i) THE LORENTZ-DIRAC EQUATIONS

10. Physical and Non-Physical Solutions

For the purpose of discussing the Lorentz-
Dirac equations, it is convenient if we express

i2 d'r/ds'—= 1,

where r is the position vector (x, y, s), E and I
are the external electromagnetic field vectors, and
a = (3/2)(m/e'). The equation involving d9/ds'
is not independent of the others and is. therefore
ignored.

Unlike the usual Newtonian equations of
motion, these involve third-order differential
coeAicients. Therefore, in order to determine the
motion we must be given not only the position
and velocity of the electron at one instant of
time but also the acceleration. This is a de-
parture from familiar Newtonian ideas, where it
is only the initial position and velocity that are
prescribed, and the acceleration is automatically
determined by the force acting on the particle.

One can think of two ways of meeting this
new situation. One is to regard the acceleration
also as being entirely arbitrary, so that the
solution which describes the motion of the elec-
tron will have more arbitrary constants of
integration than in the Newtonian case. There
is, however, no evidence to support an assump-
tion that the actual motion possesses these
arbitrary features when the effects of radiation
damping are taken into account. The other alter-
native is to assume that all the mathematically
possible solutions of the equations of motion
need not correspond to motions that are ob-
servable in nature. We thus see that there are
two types of solutions of the equations of
motion, namely, the physical and the non-
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physical solutions. The criterion which dis-
tinguishes these two types of solution will be
considered later.

time loses energy rapidly by the emission of
radiation. This is contrary to the usual energy
changes. This discrepancy has been examined. ,

"
and it has been shown, by considering the
equations of motion, that for a proper interpre-
tation of energy changes the intrinsic energy of
the electron should be regarded as being com-
posed of three parts —kinetic, potential, and
acceleration energies. The acceleration energy is

3e'i 0, which is negative when the acceleration
is positive; and hence as the electron acquires
this negative acceleration energy, it releases an
equal amount of positive energy, which goes
towards increasing the kinetic energy of the
electron and also contributes to the energy lost
by I ad1at1on.

11. Free Electron

The motion of an electron in the absence of an
external 6eld has been considered by Dirac, "
who obtained the solution in a special frame of
reference in which the motion is rectilinear. It is,
however, desirable to know the solution in a
general three-dimensional motion, because when

one solves, by approximate methods, problems
where the electron is subject to forces and where
the motion is three-dimensional, then the motion
may be representable to a erst approximation by
the solution corresponding to motion under no
forces; and this approximate solution can sub-

sequently be used to carry the solution to a
higher approximation.

The equations of motion of the free electr
ale

13. An Electron in a Uniform Electric Field

(a) MoA'on in a Straight Line

c8tt—
dS

on
Vor this simple case, the relativistic equation~

of motion are easily integrable. If h is the
(2) strength of the field and v is the velocity along

the line of motion, the equations of motion give
which has a general solution of the form

v„=A„exp(Ce™)+B„exp(—Ce"), (3)

where A„, 8„, and C are arbitrary except that
they are subject to the conditions

(4)

This solution will correspond to motion in a
plane with the velocity of the electron rapidly
increasing and ultimately tending to the velocity
of light. Further, the electron is losing energy by
radiation at a rapid rate. Such a motion of a free
electron has not been observed in nature, and we

therefore conclude that this motion is non-

physical ~

A particular solution is v„= C„, where C„C&= i,
thus giving a motion in which the electron is
moving in a straight line with uniform velocity.
There is no loss of energy by radiation. This
motion is the one observed in nature and is thus
the physical motion.

12. Energy Considerations

In the non-physical motion above, the electron
increases its kinetic energy and at the same

d~ vP 38
av ——+ — - =—(1+v'):,

ds 1+v 2e

which has the solution

v =sinhp,
where

t = cosh&,

That is, there is no force on the electron caused
by the radiation reaction. The mathematical
solution is exactly t:he same as when the effect
of radiation damping is completely ignored. But
the physical interpretation is different. Energy
is being lost by radiation; the electron has,
besides the usual kinetic and potential energies,
also an acceleration energy. The sum of the
kinetic and potential energies remains constant,
while the energy lost by radiation comes from the
acceleration energy.

P =He~'+8+e8s/m

The motion is non-physical when A is non-zero.
The physical solution, with A zero, is such that

d v~/l& + v v~ =0.

'~ Dirac, reference 3, p. 156. "C.J. Eliezer, Proc. Ind. Acad. Sci. A21, 3I (1945).
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'I'he co&deplete solution is

v =Ae"'+8+eEt/m. (10)

The physical solution occurs for A equal to
zero. The electron then describes a parabola,
the axis of which is parallel to the direction of
the field.

(c) The Relativistic Fquations, 5olved
A pproxirnately

The equations of motion are

where
av~ dvplds vv =f v—= 1,

f„=,'( h/e)(v -1, vol),

and the three™dimensional vector, 1, gives the
direction cosines of the electric field vector, 8 is
the strength of the electric field, and V is the
three-dimensional spatial part of the velocity
four-vector v„. To avoid the frequent occurrence
of a in the solution, we change the independent
variable from s to a new variable 7-=us. If we
use dashes to denote differentiation with respect
to v. , we obtain

(b) The Non Re-lativistic Equations

For the three-dimensional motion the rela-
tivistic equations cannot be solved exactly; we
therefore consider first the solution of the non-
relativistic equations of motion. I'hese equations
become

is of the form

v„=A„+X(A 1, Aol)as+)Pf —IA. 2 —(A 1)2IA„as

+ I Ao, (A.1)1 I (as+-'a' s') $

+V(A" 1, Aol) P
—2 IAo' —(A 1)",

g (as.+—,'a'-'s'). +as+ —,'a' s'-+ -'„a's' I+, (16)

where A„'"=1. The part of the solutior~ that is
independeiit of P corresponds to uniform motioii
of a free electron. Correct to the first approxima-
tion, the motion is in a parabola whose axis is
parallel to the direction of the field. In the higher
approximations the effect of radiation damping
becomes operative, and the path deviates from
the parabola, but is still confined to a plane. The
direction of motion tends more and more to be
parallel to the direction of the field.

14. An Electron in a Uniform Magnetic Field

(a) The Non Relativisti-c Equations

The relativistic equations of motion cannot
be solved exactly, and we therefore consider
first the non-relativistic case. This will be suf-
ficien for the purpose of knowing the general
nature of the physical and non-physical solutions.

The non-relativistic equations

Qv 2 dv
m———e' =e(v&&H)

dt 3 dt'

have the solution'~

x = e '(A cosP T +B sinP r)

where
vq —vq —v vq=X(v 1, vol), (13) +e "(A~ cosPT+B~ sinPT),

) = 38/2ea'. (14) y=e '(C cosPr+D sinPr)

We solve these equations approximately by
expressing the velocity as a series in ascending
powers of X, X being considered small enough for
the expansion to be valid. We therefore try the
solution

v„=u„+t,u„&'&+. X-'u„&'&+. . . .

By substituting in (13) and equa. ting. the terms
involving the syme powers of t, we obtain dif-
ferential equations to determine successively
n„, u„&", u„&2) . Without giving details, we
merely quote the result that the physical solution

s=Ee'+Fr,
+e~"(C~ cospr+D~ sinpr),

where 7-=at, and where all the letters on the
right-hand side, except ~, denote constants, some
of which are arbitrary. Further n(0, o.&&0, and
exp(ar)~0, exp(ayr)~~ at T~~.

When I' and Ii vanish, the motion is confined
to a plane. When the terms in exp(cx~r) are non-
zero, the motion is non-physical; the electron
then spirals outwards with steadily increasing

"C.J. Fliezer, Proc. Camb. Phil. Soc. 42, 40 (1946).
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velocity and ultimately goes OG to infinity. In
the physical motion the electron describes an
equiangular spiral, with steadily diminishing
velocity, ultimately coming to rest at the pole of
the spiral.

The IioIl-plaIiaI phd s1cal motioii 1s suc11. tha t

on the motion in the equiangular spiral con-
sidered above, there is superimposed a uniforni
velocity normal to the plane, that is, parallel to
the direction of the Inaguetic field. The resulting
path of the electron is in the shape of a corkscrew
which has its axis parallel to the field. After some
time the motion tails off to one of uniform
velocity along the axis of the corkscrew.

(6) The Relativistic Equations, Solved
A pproximately

The equations of motion are of the form

av„—dv„/ds —v'v„= f„,

where f„=(3/2)e '(0, VXH). The physical solu-
tion is obtained as a series in ascending powers of
X, where X =33C/(2ea'-), and is of the form

v„=A„+X(0, AX1)as+A'L —(AXl)'A„as

+ I o, (A Xl) X1 }(as+-'a' s') 1

—X'(0, AX1) j (AX1)'(2asga's')

+as+-'a's'+-'a' s'}+ .
, (20)

where A„ is an arbitrary constant vector such
that A„A~= j..

To see if this motion differs in any appreciable
way from that in the non-relativistic case, we
consider the magnitude, V, of the velocity of the
electron, which is seen to be

V= (v ' —1)i= (ri02 —1)'I1—V(AXl)'a's'/

X (Ao' —1)+0(X4)}. (21)

Hence the velocity begins to decrease as s in-
creases, and after a time, V will be small enough
for the non-relativistic solution to be valid.

15. An Electron Disturbed by a Pulse

Dirac" has considered the behavior of an
electron which is initially at rest and which is
disturbed for a moment by a pulse of electro-

Dirac, reference 3, p. 198.

magnetic radiation passing over it. The equation
of motion is then of the form

v= (h/a+C)e", l&0;

v =.— h/a+ Ce"' t &0.
(23)

The constant. , C, is still arbitrary. A solution
which is such that the electron is at rest till it
comes directly under the inHuence of the pulse is
obtained by taking C= —h/a. Then

v=0, t&0; v=(h/a)(1 —e"), t&0, (24)

But in this solution the motion after t is zero
appears to be non-physical. We can however
have a motion, which after t is zero is physical,
by choosing C=O. Then

v = (h/a)e" t (0 v =h/a, t &0. (25)

This is the solution given by Dirac, and cor-
responds to a motion in which the electron is
gradually building up an acceleration till it
meets the pulse. The difference between this
motion and a uniform motion is too small to be
observable; and hence (25) may be regarded as
a physical solution. But this solution introduces
certain contradictions with some elementary
ideas of causality. As Dirac says, "the electron
seems to know about the pulse before it arrives
and to get up an acceleration (as the equations
of motion will allow it to do) just sufficient to
balance the effect of the pulse when it does
arrive. " Dirac tried to surmount the difhculty of
accepting this situation by interpreting the
result in a more natural way by supposing that
the electron behaved as though it had a finite
size. "There is then no need for the pulse to
reach the center of the electron before it starts
to accelerate. It starts to accelerate and radiate
as soon as the pulse meets its outside. " A close
examination of this explanation shows that it
implies "that it is possible for a signal to be
transmitted faster than light through the in-
terior of the electron. The finite size of the
electron now reappears in a new sense, the
interior of the electron being a region of failure,

adv/dt d'v/—dt'= hti(t).

The solution which corresponds to the electron
being at rest at t = —~, and which satisfies the
boundaI y condltioIls at 7 =0, 1s



I N T E k A O 'I' I 0 N 0 I ELECT R 0 N S A N 13 AN 1.'. l. L'C'l ROMA. GNE'l'Its 1'lEL13 15&)

not of the held equations of electromagnetic
theory, but of some of the elementary properties
of space-time. "

In this way one is led to many departures from
familiar ideas of Newtonian mechanics.

16 The Principle of Field-Balance"

ln Section (10), and in the subsequent; appli-
cations of the equations of motion, we have seen
that the equations of motion have physical and
non-physical solutions. A prominent defect in the
above theory of the electron is that there has been
no adequate criterion to discriminate between
the physical and the non-physical solutions. In
each application that we have considered, we had
to guess which of the mathematically possible
solutions appeared to be physically permissible.

On examination of the solutions of all the
problems we have considered above, we note that
one point of difference between the physical and
the non-physical solutions is that in the physical
motion, after a sufficient lapse of time, a state of
equilibrium is reached between the emitted and
the absorbed radiation fields. The radiation
held consists of two parts: (i) 2, e'dv„/ds, which
corresponds to a reversible form of emission or
absorption of radiation, and (ii), —,'e'v'v„, which
corresponds to an irreversible emission of radi-
ation; 8 being always negative as i„ is a space-
like vector. For the physical solutions above, the
changes in these two fields tend to cancel each
other out, in process of time. That is,

d8„/ds+ v'v„—+0 as s—+ ~. (26)

We may hope that this principle is of general
validity. It implies that the physical solution
should satisfy not only the conservation. laws,
and therefore the equations of motion which are
derived from them, but also a further principle,
namely, this principle of held-balance. This prin-
ciple is similar to that of detailed balancing
widely used in thermodynamics and in theories
of radiation. But whereas in these theories the
balancing is a statistical effect, where a large
number of particles are concerned, in our case
the principle is assumed to apply to a single
electron.

"C. J. Eliezer and A. W. Mailvaganam, Proc. Camb.
Phil. Soc. 41, 184 (1945).

d'r d'r dr )d't q
'-' (d'rp '-'

0-
ds' ds' ds (d.s' ) &ds' I

where t' = 1+r'. By taking scalar product of this
equation with r)&r', we obtain

dr dr dr dr
)

ds ds ds ds

where the square bracket indicates a triple scalar
product. This equation is directly integrable,
thus giving

dr dr
r — =Ca '

dS ds
(28)

where C is an arbitrary constant. If the initial
conditions are such that C is zero, that is, if
initially the position, velocity, and acceleration
vectors are in a plane, then t r, dr/ds, d'r/ds'$ = 0
always, and the subsequent motion is also con-
fined to this plane. If, however, the initial
position, velocity, and acceleration vector are
not co-planar, then the fact that the right-hand
side of (28) increases as s increases indicates that
the motion is likely to deviate more and more
from the motion in a plane.

18. The Hydrogen Atom

With the classical picture of the hydrogen
atom, that is, an electron revolving in an orbit
round a fixed proton, if one takes into account
the eA'ect of radiation damping, then one would
expect that, owing to loss of energy by radiation,
the electron would approach the nucleus closer
and closer and ultimately fall into it. The
Lorentz-Dirac equations have been applied to
this problem, " and evidence has been obtained
that there may be no solutions of these equations
which correspond to the electron spiralling

" C. J. Eliezer, Proc. gamb. I hil. Soc. 39, 173 (1943}.

17. An Integral for Central Fields

When the field on the electron is directed
towards a fixed center of force, and the strength
of the field depends only on the radial distance,
then the equations of motion are of the form
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round and finally falling into the nucleus. A
rigorous proof of this result is possible for the
case when the electron is moving in a straight
1ine, directly towards the proton. The equation
that describes the motion is

3 ()+i')i

d'x di' 3 (1+i')l
OZ — — +-

ds' 1+i'"2 x'
(30)

tide, also of charge e. The charge e may be posi-
tive or negative. The equations of straight line
motion reduce to

its'~ 1+x~
7

X
which can be shown to have an approximate
so1ution, '-' for smal] x, of the form

where i denotes the velocity. The behavior. of
the solution of this differential equation has been
examined in detail in the paper referred to, and
it has been shown that with whatever initial
velocity the electron may be projected towards
the proton, the electron would be brought to
rest before it could reach the proton, The elec-
tron then turns back and moves away from the
proton with velocity and acceleration which keep
on increasing. Ultimately, the electron escapes
to infinity.

The types of possible two- and three-dimen-
sional motions of an electron in the field of a
fixed proton have also been considered, 9/hile a
rigorous treatment of all the mathematically
possible solutions of the equations of motion
appears to be very complicated, the probablc
solutions have been examined, and the weight
of the evidence that has been gathereQ points to
the result that there is no solution with the
electron falling into the nucleus.

One may think that in the above work we are
not justified in taking the proton as fixed, even

by considering its mass to be infinite, because the
proton is subjected to a force which becomes
infinitely large as the electron approaches the
proton, and hence the proton may tend to have
a motion which cannot be neglected. This likeli-

hood has been examined in the paper referred to,
and it has been shown to be not possible, by
considering the straight line motion of two elec-
trons of unlike charges, in which case it is also
found that the two particles do not come into
collision.

19. Like Charges

Having found that two unlike charges do not
.collide with each other, it is of interest to see
what happens when the two charges are of a like
nature. We shall consider the motion of a par-
tide of charge e in the presence of a fixed par-

g = —(3 logx ')"

Thus the moving particle approaches the fixed
particle with increasing velocity and ultimately
falls into it, with velocity that tends to that of
light.

In the two-dimensional motion there is also a
collision possible. The equations of motion are

d'r d r dr- pd't y' (d'r~'-
(32)

ds' ds' ds Eds' ) &ds' )
where t'=1+r'. We can show that a possible
solution is one in which the particle spirals
inwards into the nucleus with velocity which for
small r is approximately of the value (3 logr ')'

Hence we see that when the two charges are
alike, a collision can take place, whereas when
the two charges are unlike a collision cannot
take place. In both cases, the result is the op-
posite of what we should expect from elementary
physical considerations.

20. Discussion

Several interesting points arise out of tlie
results of the last two sections.

(a) As a result of certain experiments on the
scattering of electrons, as for example those done

by G. P. Thomson, it has been suggested that,
when an electron is close to a nucleus, the force
on the electron is given by the Coulomb inverse
square law. It appears that in these experiments
the electron behaves as though at points near
the nucleus, the nucleus exerts a repulsive force
on the electron, instead of the usual attractive
force. It is now seen that this behavior of the
electron may be interpreted as being caused not
by any alterations in the field of the nucleus but
by the eA'ect of radiation damping on the motion

2' C. J. Eliezer, Ph. D. thesis, submitted at Cambrir]ge
(1945).
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of the electron. Ke saw above that when an
electron is projected towards a nucleus, whatever
the initial conditions may be, as the electron
approaches the nucleus it starts acquiring an
acceleration which is away from the nucleus.
This acceleration is what has been interpreted
as being caused by a repulsive force that is
exerted by the nucleus, but it is now seen that
this may be interpreted as being caused by
radiation damping.

(b) Attempts to study the structure of an
atomic nucleus, on the basis of the quantum
theory, have led to the belief that the electron
is not a nuclear constituent. If an electron is
packed into any region as small as that which the
nucleus is believed to be, then Dirac's relativistic
quantum-mechanical equations of an electron
require that the electron should escape from this
region by jumping into a state of negative energy.
There is a strong similarity between this result
obtained on the basis of the quantum theory and
the classical result we obtained above. It appears
that in the classical theory too the electron can-
not be a nuclear constituent, because an electron
cannot be contained within a small region in
in which the potential energy varies rather
steeply, since the electron then escapes, as we
saw earlier. According to the classical solution
above, the total energy of the electron, which
consists of kinetic energy, potential energy, and
acceleration energy, becomes eventually negative.

(c) In the problem of the hydrogen atom it
appears that the radiation held which is emitted
by the electron has a strong repulsive effect
which exceeds the Coulomb attraction of the
nucleus and so prevents a collision. In the final
motion the electron escapes to infinity with
increasing velocity and acceleration. The radia-
tion held has thus the effect of accelerating the
motion instead of damping it. Furthermore, the
presence of the external force has the effect of
increasing the velocity and acceleration in the
opposite direction! One would be inclined to
consider that such a motion, which is so strikingly
different from known ones, should bq looked upon
as a non-physical motion, which arises only
because of certain non-physical initial conditions.
One may assert that in the above motion the
acceleration is opposite to the force, a non-
physical characteristic which is responsible for

the non-physical nature of the solution. But in
the case of the electron that is moving in the
field of a proton this circumstance cannot be
avoided, because even when initially the electron
is projected towards the proton with an acceler-
ation which is in the same direction as the force,
then it is found from the equations of motion
that the acceleration eventually changes sign
and becomes opposite to the force. It may be
that such a reversal in the direction of the
acceleration, and the subsequent escape of the
electron to infinity, occurs only after the electron
has approached very close to the nucleus, and
that such electrons are not observed but only
those which have not been too near the nucleus.

It appear's that we have two possible ways of
viewing these results. One is to consider that the
above motion, which is the only one allowed by
the equations of motion, is the appropriate
physical motion. The other is to conclude that
the Lorentz-Dirac equations of motion are not:
exact, and do not give an adequate description
of the radiation forces in regions within atomic
distances from particles.

21. An Electron in the Field of a Thin In6nite
Charged Plate"

As a final application of the Lorentz-Dirac
equations, we consider an electron moving in a
straight line along the x-axis in the field of a thin

infinite-charged

plate in the ys-plane. The
velocity, v, is then given by equations of the form

av —(d~v/dsz)+v v2/(] + vz) =u(] +v~)'* x (0-
av (d'v/ds') +vv'/(1+—v')

= —n(1+v') 1, x)0.

where we shall take a to be positive. We solve
these equations by transforming to @ where
v =sinhp. The equations then become

and the solution is of the form

v =sinh(A e"+8+as/a)

,Suppose that initially the electron is moving
towards the origin, 0, from the left, and reaches

"C. J. EHezer, Bu11. Calcutta Math. Soc. 3V, 125 (1945).
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v = sinh(A 1e™+81—ns/a), s) 0, (37)

as long as x&0. The velocity and acceleration
should be continuous at x=0, and, therefore,
+0++0 +1++1 a@40+n =aA 1 —a. If 2 1 is non-
zero, the motion after s = 0 is non-physical, Hence
following the method of Section (13), we take
A ~

=0, thus obtaining a solution which cor-
responds to a physical motion after s=0. Then
we have

v=sinh(sinh 'vo —ns)

and, . therefore

x =a 'I cosh(sinh 'vo) —cosh(sinh —'vo —ns) I. (39)

Hence as s increases from s=0, v gradually
decreases and vanishes and then becomes nega-
tive. That is, the electron moves towards the
right with decreasing velocity, comes to rest, and
commences to move backwards towards 0 with
gradually increasing speed. It reaches 0 again at
s =2o. ' sinh —'vo = sy, say, and then goes over into
the region of space x&0. The motion in this
region will be given by a solution of the form

V =Sinh(Ave '+82+as/a), S)$1. (40)

where A2 is non-zero, and will, therefore, be a
non-physical motion.

22. Conclusion

Much of the evidence that has accumulated
from the work of the last few sections suggests
that the signs of certain terms in the Lorentz-
Dirac equations do not fit in appropriately. This
same point was arrived at by Dirac when he first
derived these equations and applied them to
consider the motion of a free electron. The solu-
tion he obtained for this problem is of the form

i =sinh(e" +b), t =cosh(e"+f1), (41)

where the notation is obvious. Dirac's comments
on this solution are relevant to our discussion
and are quoted below. "One would be inclined to

0 when s=0 with velocity vo. Till s=0 the
velocity will be of the form

v = sinh(Roe" +Bo+ns/a).

As s increases from s =0, the electron will begin
to move into the region x&0, and thereafter the
velocity will have the form

say that there is a mistake in sign in our equa-
tions and that we ought to have e ' instead of
e" in (41). With this alteration we should have
a theory in which, if an electron is disturbed in
any way and then left alone, it would rapidly
settle down into a state of constant velocity, with
emission of radiation while it is settling down.
This would be a reasonable behavior for an
electron according to our present-day physical
ideas. However, it is not possible to tamper with
the signs in our theory in any relativistic way to
obtain this result, without getting equations of
motion which would make the electron in the
hydrogen atom spiral outwards, instead of
spiralling inwards and ultimately falling into the
nucleus, as it should in the classical theory. We
are, therefore, forced to keep the signs in (41)
as they are and to see what interpretation we can
give to the equations as they stand. "

It is now seen from our results outlined in
Section (18) that the part of the above statement
of Dirac that concerns the hydrogen atom needs
revision. The fact that there is now every indica-
tion that the Lorentz-Dirac equations of motion
do not allow the electron in the hydrogen atom to
spiral inwards and fall into the nucleus gives
added reason to suppose that a change in sign is
necessary.

While the Lorentz-Dirac equations can be
given up as inadequate only after they have been
taken over into the quantum theory and then
found to fail, nevertheless, it appears desirable to
investigate possible modifications within the
frameworks of the classical theory.

(11) ALTERNATIVE EQUATIONS I

23. Introduction of Higher Differential
CoefBcients

When we look out for modifications of the
Lorentz-Dirac equations there are two possible
methods of approach. One is to keep to the
assumption that the f1eld of a moving electron is
given by its retarded field and to obtain equa-
tions of motion different from the Lorentz-Dirac
equations by introducing higher differential coef-
ficients of velocity than the second. The other
method is to abandon the assumption that the
field of an electron is its retarded field, and to
consider a combination of retarded and advanced
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fields. In this section we shall follow the hrst
method of' approach.

The equations of motion obtained from the
conservation principles are of the form

A, ', e—'(-dv»/ds+v'v„) =ev.F„.g',

where A„ is not entirely arbitrary, but is re-
stricted by the relation (v, A. ) =0 and the con-
dition that vgA„—v„A), should be a perfect dif-
ferential. The choice A „=0 corresponds to
particles of zero rest mass which are not of
interest in the classical theory, and the choice
A„=mv„ leads to the Lorentz-Dirac equations.
I have examined" various forms of A„, and
shown that A„cannot have the form

The author's hope, when developing these ideas,
that the erst alternative may be possible, thus
giving scope for the introduction of Planck's
constant, h, into the framework of the classical
theory, has not proved to be promising. It is the
second alternative, that is, that k can be ex-
pressed in terms of e and m, that has to be fol-
lowed. It is easily seen that k has the dimensions
of (mass) X(length)', or in terms of e and m
has the dimensions of e'/m. Hence we can take

k=o-e4m ',

where r is a dimensionless constant whose value
can be determined by comparison with experi-
mental results.

A» =&v»+Qv»i

but can be of the form

(43) 24. Applications

(a) A Free E/ectrorl,

I'=constant —23Rv2, Q=0, R=constant. (45)

Thus we take

A» =mv»+k(3dv»/ds+ v v»), (46)

where I and k are constants.
Hence we obtain as a possible set of equations

of motion

A„=Pv»+ Qv»+Rd v»/ds, (44)

where, from the conditions to be satisfied by A„,
we obtain

For the purpose of determining in a general
way the nature of the solutions, it is suAicient to
consider the non-relativistic equations. Then the
equations giving the three Cartesian components
of velocity, V, are

dV 2 O'V 2 d'V
m——C y-u =0,

dt 3 dt2 3 dt'

where the (x, y, s, t) notation is now being used.
These equations may be written as

2 (dv»
mv„e'~ +v'v—„—[

&ds ")
where

d'V d'V dV—2n +P—=0,
dP dt

(50)

/2dv»
+&—

I

— "+v'v»
I
=ev„F„".

ds &3 ds ") (47)

2' C. J. Eliezer, Proc. Camb. Phil. Soc. 42, 278 (1946).

The first question that arises concerns the
physical interpretation of the two constants in
the equations, namely, m and k. Comparison
with the Lorentz equations shows that m is the
rest mass of the electron. In the classical theory,
a point electron has associated with it two
constants, the rest mass and the charge, and no
other. The extra constant, 0, has either to be
interpreted as describing an additional physical
property of the electron, or has to be regarded
as expressible in terms of the constants e and m.

p=-,'mk '.

The nature of the solution depends on the value
of 0. in Eq. (48). If 0 (0, then

0.&0

n+ (0.' —P)&) 0, n —(n'- —P)& &0,

and the solution is

V= A+e 'IB expL(n' —p)'*t$

+C exp[ —(~ —p)&t]I. (S&)

When 3 is non-zero the motion is self-accelerat-
ing, and when 8 is zero and C non-zero, the
motion is self-retarding. This latter motion is
such that any initial acceleration the electron
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may possess gradually diminishes and dies cut,
with the velocity tending to a finite constant
value. Such a motion would be in keeping with
our present-day physical ideas. When 8 and C
are both zero, the motion is one of uniform
velocity.

If 0&o(~, then the solution is of the same
form as with

n+ (n' —P)') 0, n —(n' —P) **)0.

The physical solution should have both B and C

zero, all other motions being self-accelerating.
If o- =-'„ then

V = A+e~'(Bt+ C) (52)

and the physical solution should have both 8
and C zero.

If o-&-,', then

giving for non-zero 3 or C, an oscillatory motion,
the amplitude of which increases with time.
Such a motion is quite foreign to the classical
theory and also cannot be compared to the wave
packets of the quantum theory.

Thus we see that when o- is negative there
exists, apart from the motion of uniform velocity,
another physically understandable motion in
which the velocity rapidly becomes uniform. For
other values of o, the physical motion is only of
one kind, namely, the uniform motion.

(b) Arl, Electron Disturbed by a Pulse

V = A+ e ' {B cos[(p —n')'t ]

+C sin[(p —n')'*t jI, (53)

finite always is

iv
n= ——{1—n(n' —p)-lI exp{n+(n' —p)l{t,

2P

7=—[& —k{~+n(n' —p) ') I

Xexp {n —(n' —p) i
I t,

t &0
(55)

t&0..

For sma11 frequencies v, 8, is approximately
—,e'e'/m', which is in agreement with the classical
formula of Thomson. For large values of

This solution corresponds to a motion in which
for large negative values of t the electron is at
rest, to a high approximation, but as t approaches
zero the electron gradually acquires a velocity,
when t is zero the electron is acted upon by a

. pulse, and thereafter the velocity gradually
increases, and for large positive values of t the
electron has uniform motion with the velocity
v/p.

We note that this solution is more sym-
metrical than the corresponding solution given
by the- Lorentz-Dirac equations, in which case
the electron is supposed to accelerate until I is
zero and then to move with uniform velocity.

It is of interest to obtain an expression for the
energy emitted by the electron per unit frequency
range and compare with the result given by the
Lorentz-Dirac equations. The rate of emission of
energy is —,e'(dv/dt)' and its spectral distribution
is obtained from the Fourier resolution of dv/dt.
We readily obtain that the energy emitted per
unit frequency range is

I'."„=6eV/ {9(nt —4~'k v')'+167r'e'v'I . (56)

We consider the problem which was examined
in Section (15) on the basis of the Lorentz-Dirac
equations, using now this new set of equations.
The equation of motion is then of the form

E, ~~eVk '(2vrv) 4.

Thus it is seen that. the cross section for scattering
of light is in agreement with Thomson's formula
when the frequency is small, and decreases as
v ' for large v.

With the Lorentz-Dirac equations of motion
24

cP'v d 8 dp
— —2n +P =y8(t), —

dt' dt' dt

"Dirac, reference 3, p. 160.

where n and p are as before, and y = 23eek ', where the expression for E, 1s

e is such that eb(t y) is the x comp—onent of the E =6e'e'/{9m'+16m'e'v'I (58)
electric field of the pulse.

The nature of the solution of the Eq. (54), which agrees with (56) for small values of v, but
like that of the Eq. (50)., depends on the value
of o. When o is negative the solution that remains
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differs from it for large frequencies. The value
of (58) for large v is approximately 32''(2v. v) '.

We thus obtain a point of difference between
the equatio'ns of motion (47) and the I orentz-
Dirac equations. Cross sections which vary as
I ' for large I, though not so common as those
whic4. VaI y as - do, however, occur ln pI pva111Ilg

classlca) thcoI1cs Ioi eel talii scattcrlllg pi oc'essed,

as, for example, in thc scat. tcl.iiig of ocutl a'I,

longitudinally polarized nicsol& waves by heavy
particles. "

The above solution was obtained for the case
when 0. is negative. For other values of 0., the
method of solution proceeds in the same way.
The solution obtained, however, is not sym-
metrical, but is such that after the action of the
pulse the electron moves with uniform velocity.
In these cases also, F„is found to he given by the
same expression (56).

(e) Tke FIydrogen Atom

It appeared in Section (15) that the motion
of the electron in thc hydrogen atom, as given by
the Lorentz-Dirac eq&1ations, had the charac-
teristics of a non-physical motion. It is, there-
fore, very desirable to examine the motion as
given by Eqs. (47).

For the sake of simplicity we shall consider
the straight line motion of an electron towards
a fixed proton. The equations to be solved are

2 d v 2
m v ——e' ——e'(v02 —v') v

3 dS' 3

d ~2d'v
+k—— +(vo' —v')v =e'(1+1')ix ', (57)

dSI3dS
Ip 2 p2

Ke transform the dependent variable to y, where

y = (1+x')&, and the independent variable to x. If
dashes now denote differentiation with respect to
x, the equations become

(y' —I»'"+yy Y' —ly" +2 (y' —1):y"
+Py'+3nx '=0, (58)

where a and P are as before.
The author has examined the solution of these

equations in the paper referred to above, and

H. J. Bha,bha, Proc. Roy. Soc. A178, 314 (1941).

shown that for small values of x the following
approximate solutions are possible:

If o (0, y=1+2(—o,x)'*,

if o )0, y = C+3(C' —1)—'nx logx.

(59)

(60)

In both cases the electron falls into the protol&.
The natul-c of thc motion is in conformity with
oui pIcscllt ()ay physical icjcas. .ft appears theft
that in some respects these equations of Irnotioii,
though mathematically much more complicated
than the Lorentz-Dirac equations, are plcfcrab1c
from the physical point of view.

F,1 = F„.,+k(F„,—A.g„)

were shown to be

mv„——',e'(2k+ 1) t (d v„/ds) +v'v„j

=ev.F„,,„„. (61)

If 2k+1 is negative, then the value of the radi-
ation reaction would be opposite in sign to that
as given by Lorentz-Dirac equations. Conse-
quently we may expect that the behavior of the
solutions of these equations would differ sub-
stantially from the corresponding solutions of
the Lorentz-Dirac equations. We shall therefore
consider a few applications of these equations
with 2k+1 negative. What corresponds to self-
acceleration in the Lorentz-Dirac case would
now correspond to self-retardation, and what
corresponds to emission of radiation would now
be absorption of radiation.

26. Apylications

(a) A Free Fteetron

If we choose a Lorentz frame of reference in
which the initial velocity and acceleration are in
the same direction, that of the x axis say, then
the subsequent motion will be always con6ned

(111) ALTERNATIVE EQUATIONS I I

25. Discussion of the Equations

In Chapter II it was shown that a simple
generalizatiori of the Lorentz-Dirac equations
could be obtained by taking the field of an elec-
tron to be a combination of retarded aI&d

advanced fields. The equations of motion cor-'

responding to the assumption



to this axis, and the equations of motion will give

dv/ds+(vo' —v') v+nv = 0 vP = 1+v', (62)

where n = —3m/2e'(2&+1) )0. Eliminating vo

we obtain

dv/ds+niI vv—'/(1+v') = 0,

the solution of which is easily seen to be

and eventually dies out. Ultimately, the motion
is one of uniform velocity. Hence when we use
Eqs. (61) the solution is entirely satisfactory.
The total momentum acquired by the electron
agrees with the result of Dirac's theory, as also
with that of the elementary theory which neglects
I adlation damping.

v =-sinh(Ae ""+8). (63) (c) The Flydrogen Atoiu

This solution is such that with whatever initial
conditions the electron may be projected it
rapidly settles down to a motion of uniform
velocity. Such a motion is in conformity with
familiar notions in mechanics, in contrast to the
self-accelerating motions of the Dirac theory.
Further, in the Dirac theory, the data that are
necessary to solve the equations of motion and
the appropriate physical solution are the initial
position, velocity, and the final acceleration.
With the Alternative Eqs. II, however, the initial
position, velocity, and acceleration sukce.

di/ds+nv = zS(t),

and hence the solution is of the form

(64)

v=Ae ~'+J3, t(0, -
v = Ce ~'+D, t) 0, — (65)

where A, 8, C, and D are constants which have
to be determined from the initial conditions and
the boundary conditions at time t =0. If we

suppose that the electron is at rest till the instant
t =0, when it comes under the inHuence of the
pulse, then the solution is

v=0, t(0; v=(z/n)(1 e "), t—)0—. (66)

This solution is such that the pulse imparts an
acceleration ~ to the electron, the velocity of the
electron thereby gradually increasing from zero
to ~/n while the acceleration gradually diminishes

(b) An Electron Disturbed by a Pulse

A problem for which the Lorentz-Dirac equa-
tions do not give an altogether satisfactory
solution is that of an electron disturbed for a
moment by a pulse of electromagnetic radiation.
We shall therefore consider this problem using
Eqs. (61). It is easily seen that the motion is
given by an equation of the form

If the motion is confined to a plane, then the
electron can fall into the nucleus by describing
a spiral whose equation at points close to the
nucleus is given, approximately, by

8 =Arf log(1/r) j l.

Thus these applications show that there are
many respects in which these equations give
results in harmony with our usual notions of
physics. It is somewhat surprising that in a theory
which uses advanced potentials, and where, there-
fore, the physical mechanism is by no means clear,
the equations derived from the theory lead to
physically understandable results, whereas when
the theory uses retarded potentials alone, the
corresponding equations lead to many unex-

pected results.

(iv) ALTERNATrvE EgIIxnoxs III

2V. Discussion of the Equations

An interesting particular case of the gener-
alized classical equations of Chapter II occurs
when k= ——,', Then

~.i= ~(E-s+E.e ), (67)

and the corresponding equation of motion for a

2" C. J. Eliezer, Phys. Rev. '?l, 49 (1947).

I have examined" the motion of an electrori
in the hydrogen atom on the basis of these
equations. It is seen that it is possible for the
electron to fall into the nucleus. For the case of
rectilinear motion of the electron towards the
proton, the velocity of the electron at points clost

to the proton is, approximately
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single particle is

m'V p
= 8Vo ~p, exp y (68)

and for a system of n particles is

~&&pi = &&ui j &p, ext + Q (~yj, ret +~p j, adv ')
I ~ (69)

l hese equations 4.ave been considered by & okkei
who chose this particular form in order to
express the equations of motion in variational
form. We have here obtained it by deducing the
equations from the conservation laws by fol-
lowing Dirac's method of subtracting infinities
in a Lorentz invariant way.

We observe that Eq. (68) does not contain the
usual radiation reaction terms. Thus for a single-
electron problem these equations are the same
as those in a theory which neglects radiation
damping altogether. Hence this theory would
allow the existence of stationary states unlike the
other theories in which it is impossible for an
electron in the presence of an electromagnetic
field to describe the same orbit continually. The
fact that Bohr's semiclassical methods of de-
scribing the motion of the electron in the
hydrogen atom has met with such remarkable
success might be taken to lend support to the
view that Eq. (68) has a certain range of ap-
plicability.

These equations for the single-electron case
have been extensively applied to all problems of
interest; and the equations for the many-body
problem, while they may be formally written
down easily, are dificult to solve, except in the
form of very rough approximations. We do not,
therefore, consider here any applications of these
equations.

28. Discussion of the Results

2~A. D. Fokker, Zeits. E. Physik S8, 386 (1929).

The evidence gathered from the above work
shows that if we keep to the assumption that the
field of a moving electron is given by its retarded
field, the corresponding equations of motion,
namely, the Lorentz-Dirac equations or their
modifications containing higher diRerential coef-
ficients of velocity such as the Alternative Eqs. I,
do not always have physically understandable
solutions. But the correspondence between the

classical and the quantum theories is not always
very close, and therefore one cannot conclude
that this theory is unsatisfactory without first
translating it into the quantum theory and inves-
tigating its consequences there.

In the Alternative Eqs. II, the advanced field
contributes more than the retarded field but the
resulting equations seem to be satisfactory in

many respects. ln II I there is a perfect symmetry
betweeii the retarded and the advanced fields,
and for a single electron there is no radiation
damping. This may be regarded as a contra-
diction with experiment, as it is generally ac-
cepted that the phenomenon of radiation reaction
is well borne out by experimental results. The
Lorentz equations have been supposed to explain
satisfactorily, within the limits of the classical
theory, certain phenomena such as the line
breadth of spectral lines, dispersion, the potential
needed to drive a wireless antenna, and so on.
But the view may be taken that because certain
of these phenomena (as for example dispersion or
line breadth) are explainable in thv. quantum
theory by taking over classical equations which
«lo not contain the radiation damping terms,
similar procedure may be possible for all the
other phenomena.

Furthermore, it may be that in microscopic
regions the notion of a single electron-in an
external field considered as "given" may be an
unjustifiable abstraction, and that only the
many-body problem has physical significance.
Unfortunately, Eq. (69) for the many-body
problem are very involved, with the past and
future of all particles interconnected in a com-
plicated manner, so that it is difficult to extract
any information from them. It may be that the
effect of these interconnections is the experi-
mentally observed damping.

From the various results obtained above the
author is inclined to the view that for those
problems where the classical theory is applicable
the Alternative Eqs. III appear to be the most
satisfactory. As far as the passage to the
quantum theory is concerned, it is likely that
whatever form of the classical theory one starts
with would not substantially affect the mathe-
matical formulation in the quantum theory,
provided the classical theory is consistent with
the conservation laws and with the special theory
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of relativity. In the remaining chapters of this 30. The Hamiltonian Form of the Classical
paper we shall discuss the method of taking over Equations of Motion
the generalized equations of motion into the

A convenient method of expressing the equa-
quantum theory, and then apply the resulting

tions oi motion in Hamiltonian form is by
theory to a few important problems.

making use of the action principle of classical
electrodynamics in the form given by Fotter"
Bnd Dirac. The actloo integral 18 of the for tA

29r Difficulties in the Quantum Theory of
Radiation

The equations which describe the behavior of
electrons in the quantum theory correspond to
classical equations based on the point charge
model of the electron. Hence the difficulties in

classical electrodynamics arising from the occur-
rence of infinities and which were removed by the
methods given in Chapter I I also exist in

quantum electrodynamics. In addition to the
infinities of classical origin there may also be
infinities which are purely quantum effects. In
the quantum theory the infinities appear when

we solve the wave equation that describes the
interaction of particles and an electromagnetic
field. The I'ourier components of the field xvhich

correspond to very short wave-lengths give rise
to divergent integrals in the solution of the wave

equation. Methods which avoid these infinities

by arbitrarily cutting off these short wave-

lengths have met with some success when applied
to certain elementary problems, such as the
emission and absorption of radiation whose wave-

length is not too short. Nevertheless the limita-
tions of the theory are of a fundamental nature,
and many attempts have been made to for-
mulate a quantum theory of radiation free from
these divergent integrals.

The infinities of classical origin having been
satisfactorily removed as in Chapter II, the next
step is to take over this modified form of clas-
sical electrodynamics into the quantum theory.
This may be accomplished by expressing the
classical equations of motion in Hamil tonian
form, and replacing, in the usual way, the
momenta by certain Hermitian operators which
satisfy appropriate commutation relations. The
wave equation thus obtained is then solved by
means of the perturbation method. One has then
to interpret physically the mathematical solu-
tion.

5= Q re;, )~(vP)i(Lt,

+g P e,e;~r
~

b(s ; s;)'.d—s,ds;
i jNi

+P e, 3E„(s;)v,t'ds;, (1)

where

dv;I"
mi

dsi

~RA,' BA,"

Xg zi

sj'
r1 '(x) = CV (~) +Q e b(~ —s .)'v 'ds;. (3)

jgi ~ sje

We should take A, to be the potential function
corresponding to the effective field f; in the
classical electrodynamics of Chapter II. If I'„,.&

denotes the actual field at any point, then

Defining the fields F; and Ji, t (as Dirac does but
with certain modifications here as we are con-
sidering a combination of retarded an6 advancecl
fields) by the relations

where 3II„(x) is the vector potential which for the
present shall be taken as an arbitrary function
of the field point x„, and the rest of the notation
is as before. The condition v,'=1 should not be
used before the variation. Suppose that the
limits of integration for each si are s and s
and let the corresponding si and v; be z, s,.' and
v, ', 8,'. We restrict s and s, ' so that the points
z,', s all lie outside each other's light cones. By
making variations in the world-lines of the par-
ticles, we obtain the equation of motion of the
ith particle in the form
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we obtain

fi = 2 (+in+ ~ms») + 2 Q (+j,re»+ +j, sdv) ~

Hence for A;, ;„we take

A;=-', (A;„+A.„,)+-', g (A,;..»+A;, ,g.), (5)
j Qz

which is the same as in the Dirac case except that
A;„and A, „& are defined differently here.

A;„and A.„» given by (4) both satisfy A =0,
and much of the mathematical formalism to
follow will be independent of what particular
value we assign to k. For the sake of definiteness,
however, we shall take k equal to zero in the rest
of this paper. It seems appropriate that we first
consider in detail the particular theory with the
assumption that the field of a moving electron
is given by its retarded field and investigate i.ts
chief consequences, and then proceed to extend
the theory to include other values of k. Such an
extension would be straightforward as seen from
the above work and will not be considered here.
In the remaining part of this paper we shall
therefore restrict the discussion to Dirac's
quantum electrodynamics.

Equation (5) may be written

The expressions (7) and (8) do not differ in the
region inside the future light cones from the
points s and past light cones fr'om the points sj',
and it is the field in this region which con-
tributes to the equations of motion, the points
being subject to the conditions

(s ' —s o) ' &0, (s,' —s ) -' &0

The ) -L,imiting Process.

When using the action principle in the above
work, it was assumed that 3I(x) is a continuous
function in the neighborhood of the world-lines,
but (8) has discontinuities. Dirac has shown that
this diAiculty of discontinuity may be eliminated
by employing a certain limiting process known
as the )-limiting process which was first intro-
duced by Wentzel.

A small four vector, )„, is taken which is such
that X')0, Xo)0. We replace 8(s, —s;)-'of (1) by
»i(s, —s;+X)' if (s,—s;)o) 0, and by b(s; s;—X)'—
if (s,—s;)«0. Then interaction between pairs of
particles will occur at points on the world-lines
that lie one just outside the light cone from the
other. The expression for M(x) is correspondingly
modified and is

A,'=-', (A;„'+A.„»')+P e;

and hence

3I'(x) =-', (A;. +A.„, )

pg
~ 0

—00

8(x —s.)'v ~ds;, (6)
3r (x) =-', (A';.+A .„,)

+-,'P e; j»(x —s,+X)v ds,
7 —00

j» (x —s, —k)

voids

j, (10)
+Pe; + 6(x —s,)'v,'ds . (7)

where

(s,' —sj»+)) &O, (s —sj W)) &O. (11)It is however preferable to take

M (x) =-', (A;„+A„„')

+-', P e, ~
— j» (x s;)vj'dsj, (8)—

—00 8j

which is independent of i and therefore makes
it possible to derive the equations of motion of
all the particles from the same action integral;
further, (8) satisfies the equation

M'(x) =0,
since the Jordan-Pauli j»»-function satisfies

A(x) =0.

Ihe result of this alteration is that the singu-
larities in M(x) are now displaced a little from
the end points on the world-lines. The variation
principle can then be applied provided the
variations in the world-lines are smaller than ).
The resulting equations of motion will then be
exact only in the limit 1 tending. to zero. In
practical applications, one is usually interested
in all the times so, being equal, and the condition
(11)is then equivalent to saying that the distance
between the particles should not be smaller than
the order of X.

We treat M (x) for each point in space-time as
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x„(x)=Q e; &(xo —z,o) ~(xi —z„)

a coordinate depending on s,'. If ~„(x) is its
conjugate momentum,

there being one such equation for each particle.
The E's may then be used as Hamiltonians in
determining the law of variation of a dynamical
variable according to the equation

i ds. o

dkld~'=[5 ~~], (23)
X b(x2 z„)—8(x, z„)—v„,ds,

The held function

(12) where the condition Ii; equal to zero should not
be used before evaluating a Poisson bracket.

'~ J J

gdxp dxi dx2 dx3 (13)

=-,'P e; A(x —z,)v„,ds;
st', o

31. The Passage to the Quantum Theory

The Hamiltonian formulation given above
makes it possible to pass over from the classical
to the quantum theory, in the usual way, by
replacing the momenta by operators satisfying
certain commutation relations. The wave equa-
tions will be

satisfies the equation
[Ip, —eA (z.;) }2—m;27' =0, (24)

Also
N„(x) =0. (15)

The particle momenta P;& are given by

p i'=m v i'+e, (3I~(z')

+zi g e;~ h(z z,+h)v—,&ds;'
g~O

=m,v, '"+eAi'(z ),

[N„(x), M, (x') j= -', g„.h(x —x'),
(16)

[N„(x), N, (x') j=0, [M„(x), M.(x')j=0.

the wave function, P, being a function of the
coordinates s, of all the particles and of the
field variables, M(x). Corresponding to the
Poisson bracket relation (19) we now have the
commutation relations to be satisfied by the
potentials

[A„(x),A..(x)j
= —,'g„.[A(x —x'+) ) +A(x —x' —X)$. (25)

The particle variables, z;, p, , satisfy the usual
commutation relations

where
A.~(x) =M~(x)+N~(x+1~).

[z„;,z.;j=[P„,, P.;j=0; [P„,, z„,]=g„„S;;, (26)

A„=O,

BA„(x)= —-', P e, }a(x—z,+Z)

(2o)

A„(x) then satisfies the Poisson bracket relations

[A„(x),A, (x)$

=;g„.[~(x—x'+ X)+A(x —x' —1)1 (19)

an. d also the equations

and the particle variables commute with the
field variables. Equations (26) can be taken over
unchanged into the quantum theory as they are
consistent with the commutation relations. This
shows that the field, 2, may be resolved into
waves travelling with the velocity of light.
Equations (21) must be taken over as supple-
mentary conditions

aA„(x)
+-', Q e, IA(x —z;+X)

Since v =1, we have

+h(x —z, —X) }. (21) yA(x —z, —I ) j y=o. (Z7)

[IP,—eA(z;) }'—m,2j =0,
2m'

It is easily verified that the wave equations and

(22) the supplementary conditions are all consistent
with one another.
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the u„.;, P, being the usual Dirac spin variables.
Since

A„(x) = M„(x)+X„(x+X),

M„=O, X„=O,
(M„(x), M.{x')]= LX„(x),N (x')] =0, (29)
LM„(x), X.(x')]= —,'g„.h(x —x'),

there are now eight functions of position instead
of the four A„. This shows that some redundant
variables have been introduced, and it is easy
to see that

B„(x)= 3II„(x)—X„(x—X) (30)

gives the redundant variables, as these commute
with all the variables that occur in the wave
equations and the supplementary conditions.
Hence the wave function represents a Gibbs
ensemble, and appropriate weight function
should be chosen for the purpose of physical
interpretation,

32. Difhculties in Physical Interpretation—
Negative Energy and Negative

Probability

The methods of the previous sections show
how a theory of quantum electrodynamics may
be formulated. The next stage of the develop-
ment concerns the physical interpretation of the
solution of the quantum electrodynamical equa-
tions.

In the early attempts to extend the non-
relativistic quantum mechanics to make it
conform to the requirements of the special theory
of relativity, the necessary mathematical methods
were readily found; but there arose several ob-
stacles in interpreting adequately the physical
implications of the theory. The chief difFiculty
was that if one follows the same method of
physical interpretation as in non-relativistic
quantum mechanics, particles are found to have,
in addition to the usual states of positive energy,
also states of negative energy. These negative

The above Hamiltonian as it stands applies to
spinless electrons. The corresponding equations
for particles of spin —', 5 will be of the form

LPO;. —eA p(s;)

+Q a„}p,.,—eA, (s;) }+/,m;]&=0, (28)

energy states in the quantum theory cannot be
excluded as in the classical theory, because even
if initially the particle is in a state of positive
energy, there is the possibility of a quantum
jump into a state of negative energy. Under the
action of suitable perturbing forces such quantum
transitions do, in fact, take place.

An additional difficulty concerns the sign of
the expression for the probability of the particle
being in a certain state. In non-relativistic
quantum mechanics if P(xo, x~, x~, x3) denotes
the wave function, then

~ P ~

' gives the probability
of the particle being in the neighborhood of the
point (xz, x2, x3) at the time xo. This expression
for the probability is always positive. For a
relativistic theory this scalar expression for
probability will not be valid, since probability
should transform under Lorentz transformations
like the time components of a four vector. The
proper relativistic expression for probability was
suggested by Gordon and Klein and is

which is easily seen to transform like the time
component of a four vector.

This expression, however, unlike
~ P ~', is not

definitely positive; and thereby arises the dif-
ficulty that in some cases the probability value
may be negative. It is found that particles whose
spin is an integral number of quanta have states
of negative energy with probability values which
are negative. In this way there arise the two
chief difficulties —negative energy states and
negative probability.

33. Particles of Half-Odd Integral Spin

Most of the well-known particles that occur
in nature come under this group of particles,
the chief among them being the electron, posi-
tron, proton, and neutron. It has also been
speculated whether some type of meson that has
been identified in cosmic rays also belongs to
this group. This group of particles is believed
to obey the Fermi-Dirac statistics. All their
states occur with positive probability and the
difficulty is only over the existence of negative
energy states. In order to resolve this difficulty
Dirac introduced the idea of unoccupied states.



The Dirac "hole theory, " which uses this idea,
has met with substantial agreement with experi-
ment. In the original form of this theory all the
negative energy states were supposed to be
occupied, and then an unoccupied negative
energy state would appear as a hole which can be
identified with the positron. The theory removes
the difficulty of negative energy states but meets
with other diHiculties. A recent modification of
the theory is to make it: apply to a hypothetical
world in which nearly all the states of' negative
energy are unoccupied, that is, to a world which
ls almost satui ated with positrons. I his m.ass
possible to & alculate the probability of any col-
lision process taking place in this hypothetical
world, whereas with the previous form of the
theory the calculations required unreliable ap-
proximations, even for the simplest type of
collision processes. We then assume that the
probability coefficients for the actual world are
the same as for the hypothetical world. This
assumption, equating the probability coeKcients
of the actual and hypothetical worlds, now
replaces the old assumption in the former theory
concerning the non-observability of the vacuum
distribution of negative energy electrons.

34. Psxticles of Integral Spin

Particles which have spin whose magnitude
is an integral number of quanta are believed to
satisfy the Einstein-Bose statistics, and cannot
be considered by tile method of the previous
section. For these particles both the dif6culties,
namely, that of negative energy states and of
negative probability, occur. Among this group of
particles is the light-quantum, the photon. I.t is
believed that the cosmic-ray particle, the meson,
also comes in this group.

The method of second quantization may be

applied to this group of particles. This method
uses certain operator~ of emission into, and. of
absorption from, states; and it is found that
these operators hive the same transformation
equations and the same equations of motion as
certain wave functions and their conjugate
functions. The difficulty of negative energy states
and of negative probability may then be got over

by following the method which was introduced
by Pauli and Weisskopf to deal with spin1ess

particles. -' They allowed only positive energy
states and removed the difficulty of negative
energy states by replacing the operators of
emission into, and absorption from, negative
energy states (which occur in the application of
second quantization) by the operators of ab-
sorption from, and em. ission into, positive eilergy
states, respectively, for particles having. the
opposite charge, Such a replacement does not
convict with the principles of conservation of
energy, momentum, and charge.

The method of Pauli and Keisskopf may be
applied in a degenerate form to photons. Since
photons -have Ilo charge, orle has to stai t with a
one-particle theory in which the wave functions
are real. The part of the wave function referring
to positive energy states is then replaced by
absorption operators from positive energy states,
and the part referring to negative energy states
is replaced by emission operators into positive
energy states. These operators are then put into
correspondence with the classical theory of elec-
trodynamics by the usual rules. The resulting
quantum electrodynamics thus involves only
positive energy states, and is therefore free from
the difficulties of negative energy and negative
probability. It is the quantum electrodynamics
of Heisenberg and Pauli. "

Although the theory of Heisenberg and Pauli
removes the difhculties of negative energy and
negative probability, it encounters a difhculty
when we proceed. to solve the wave equation. The
difficulty is caused by the occurrence of divergent
integrals in the solution of the wave equations.
If we consider the motion of an electron. and an
electromagnetic field, and follow the method of
the perturbation theory and try for the wave
function a solution of the form

0 =4 o+&4i+&'p~+

a series in ascending powers of the charge, e, of
the electron, then it is found that $0 and Pi are
finite, but Pq contains divergent. integrals. This
makes it impossible to pass on to the higher ap-
proximations of the solution, and imposes severe
restrictions on the range of application of the
theory.

2s%. Heisenberg and AV. Pau1i, Zeits. f. Physik 50, 1;
~7i:d.. S9, 168 (19Z9).
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The divergent integrals that appear' in the
quantum electrodynamics of Heisenberg and
Pauli are of the form

f(kp)dkp, .

whele f(kp) kp' foj large kp, and the values
n= —1, 0, and 1 occur frequently. When the
theory of Heisenberg and Pauli is modified by
the use of the X-limiting process, then instead of
(32) one obtains

f(kp) cos) pkpdkp (33)

I f(kp) exp(ikpXp)

+f( —kp) exp( ikp&p) I dkp (34)

When f(kp) is a rational algebraic function and
when the upper and lower limits of integration
are approached at the same rate, which is jus-
tifiable on physical grounds, the integrals become
~.onvergent, There is, however, no guarantee that;

f(kp) will be a rational algebraic function for all
the integrals that occur in quantum electro-
dynamics. For the interaction of an electron and
an electromagnetic field it is found that up to the
second order of approximation in the perturba-
tion method f(kp) is an algebraic function and
the divergences are eliminated to this order. It
is also found that the higher approximation
terms of the general sol'ution Jo involve non-
rational functions, but the divergence i11 this
case may be eliminated by taking an appropriate
solution, as will be shown in the next chapter.

Tvvo SI~ecial features in which Dirac's form of
quantum electrodynamics differs from that of
Heisenberg and Pauli are:

Dirac has examiiied these integrals and showii
that when n has even values the factor coshlpkp

secures the elimination of divergence. AiVhen n
is odd the divergence still remains. This may be
because of the unsymmetrical treatment of the
photon states of positive energy and of negative
energy. Dirac's form of quantum electrodynamics
treats the photon states of positive and negative
energy symmetrically, and one then has instead
of (33)

(i) lt. involves a limiting process corresponding
to 'I,ll aIla, logous linlitiBQ pl ocess necessat y ail

classical electrodynamics to express the equa-
tions of motion in Hamiltoniari form.

(ii) The representation used is diAerent in that
the wave function involves certain field functions
as roordinates. This new representation requires
for its physical interpretation both positive
energy and negative energy photons, whereas in
the representation of Heisenberg and Pauli,
positive energy photons alone suffice. The wave
function is expressed as a power series in certain
variables $~ and t, which correspond to positive
energy photons and negative energy photons,
respectively. The coefficients of terms such as
P+ $ "will enable us to calculate the probability
of a state with tn+n photons, m photons with
positive energy, and n with negative energy.
This probability is then reinterpreted as the
probability of m photons having been emitted
and I photons having been absorbed. In this way
the negative energy difficulty is removed without
conAicting with the principles of conservation of
energy and momentum.

The negative probability difficulty still remains
and has then to be circumvented by a rather
artificial device. The probability of a process in
which an odd number of photons are absorbed is
found to be negative, This is caused by the fact
that according to the above scheme the prob-
ability of there being r photons in the initial dis-
tribution is

(35)

This probability distribution has no physical
meaning but has to be used as a mathematical
weight function for interpreting the Gibbs
ensemble which as mentioned earlier arises from
the use of the redundant variables. This weight
function may be instrumental in securing con-
vergence. We have to suppose that this dis-
tribution applies to a hypothetical mathe-
111atlcal world and. calculate the probability coef-
ficients for radiative tlansition processes in this
hypothetical world by using Einstein's laws of
radiation. The probability coefficients obtained
by this niethod are then seen to be positive. Ke
have then to assume that these roeAirients also
hold for the actual world.
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CHAPTER V. THE INTERACTION OF AN ELECTRON AND A RADIATION FIELD—THE HIGHER
APPROXIMATIONS

35. The Wave Equation and Its Solution. First- and Second-Order Terms

Let us consider the motion of an electron in an electromagnetic field. "Suppose that initially the
electron is at rest. The problem in which the electron is initially not at rest can be reduced to this
case by means of an appropriate Lorentz transformation. The wave equation is

[po eA—o e —(p . eA—) —mP]P =0,

where the energy and momentum operators are given by

po =&(l/(lxo& p = 2(j/Bx&

and (xJ (lo (x3 P are the usual Dirac matrices. The wave function, tl, is taken as a matrix with
four rows and four columns and not as a column matrix, because this representation is more con-
venient for averaging over the initial states. The units are so chosen that the velocity of light, and
also 0, Planck s constant divided by 2x, is unity. The four-vector potential A„ is expressed as a
Fourier expansion by

A„(x) = 2 l(2n) ' Q)I I ]k„exp[i(k, x)j+Pk„* exp[ ~(k—, x)] I(Ik, (2)

where (k and &k are, respectively, the operators of emission and of absorption of a photon with

energy and momentum given by the four vector, k„, these operators being defined only for
k'=ko' —k'=0; P means a summation over both values &(kko+koo+ko2)' for ko, and

Bk = ko dkydk2dk3.

The potentials satisfy the commutation relations

[A„(x),A.(x') 7 =-,'g„.f~(x —x'+X)+~(x —x' —) ) I.

These commutation relations for the potentials lead to the following commutation relations for $

and P.
$Icjl gk'a $k'rrgkP 0k /k' Pk'a $k'a /k'

(k„*Pk . &k .$k„*= ——,'—g„.(ko+ko') 8(k —k') exp[ —i(k, ) )],

where 8(k —k') stands for 8(k& —k(')5(ko —ko')8(ko —ko'). The vector, X„ lies within the future light.
cone, so that

&o&0, ~'- =&o' —&'&0,

and is eventually made to tend to zero.
We may divide the field, A„, into longitudinal and transverse parts, and then eliminate the longi-

tudinal waves from the Hamiltonian formalism by means of an appropriate transformation. The
supplementary conditions are then automatically satisfied. In the rest of this work we shall, there-
fore, take Ao to be zero. The commutation relations" for t and P will, after elimination of the
longitudinal waves, read

$k.*$k"*—$k"*4 *=0,

(k„*gk,—(k, &k,„*——- —-', (g,„+k,.k,./koo) (ko+ko') 8(k —k') exp[ —i(k, X)].
(6)

' C. J. Eliezer, Proc. Roy. Soc. A18V, 197 {1946).
"By an oversight the term k„k,jk02 in Eq. {6)had been omitted in reference 29. A few expressions there h;ive to be

Inodified but the finaI concIusion is the same.
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To solve the wave equation we follow the method of the perturbation theory and try a solution
of the form

4 =Pp+ePi+e'Pp+

assuming that e is small. Substituting. in (1) and equating coeAicients we see that the successive
terms, Pp, f&, are connected by the equation

When n=o, we have
(Pp —n p —mP)4-= —(n A)4"-i

(pp —n p —mP)gp ——0.

This is the wave equation of a free electron; and since the electron is supposed to be at rest initially,
we take as the solution

Pp ——u exp[ zm—xp],

where u is a matrix with four rows and columns and satisfies the equation

(1—P)u =0.
i/i is giveil by

(pp —n p —mP)gi= —(n A)u exp[ zm—xp]

which, when we substitute for A, gives

(Pp n' p —mP)P& = —2~(2zr) ' g n, .$&„exp[z(k, x) —zmxp]u&k, (12)

where we have used the relation

Pu=0,

the initial state being one in which no photons are present. Hence

fi ———2 '*(2zr) ' Q I (m kp)' —k' m—'I '—(m kp n—k+—mP)n„gi„exp[z(k, x) —zmxpju8k

= —2—l(4zrm) —' P (1+1.,n, )n„P„„exp[z(k, x) zmxp]—uBk,

where (li, lp, lp) are the direction cosines of k. We have used the condition (11).
Pp is given by

(Pp —n p —mP)0p= —(n. A)4i

When the expressions for A and Pz are substituted in the right-hand side, and the result simplified
the application of the commutation relations (6) and Eq. (13), we obtain two terms, one of the
second degree and the other of zero degree in the g's. Let us denote by P„, that part of P„which is

of the mth degree in the g's, that is, the part tha, t refers to m photons. When zz is even, m is even;
and when n is odd, m also is odd.

Pz, p satisfies

(P, — p —mP)y, , , = —(32m ')- QQ ",(1+t, ,) „(g„+/„l,)(k,yk, ')~(1 —1')

yexp[z(k —k', x) zmxp z—(k, X)j—u&kBk',

.= —(16mzr') ' Q ni(1+1,n, )n, (g„,+/„li) exp. [—zmxp —z(k, X) jzzpik.



C, I A YARATXAM ELIFZER

tll evaluating Bf1 integral of the forIll

f(kp, k)dkzdkzdk:,

~ve take

{f(kp, k)+f( kp, —k) }—dkzdkpdzp
o

and integrate over the k-space by using polar coordinates so that

dk~dkzdkp ——kp'dkpd (? = kp' sm Odkpd 8d P.

The right-hand side of (15) is then

ko sinko(~o —1 &)dko=
kp coskp('Ap 1'2) sinkp(ho —1'2)—+

(Xp-1 2)z (Xo' —1 X)'

which can be taken as zero, according to the usual procedure in quantum mechanics where one
takes for the value of an oscillating function its mean value. Hence

lgz, z ls given by

2, o=o. (16)

(Po —u'p mP)A z=(32mzr') ' ZZ I {u~(1+~.u.)u +u.(1+4', u')u~}~J
X $~,$t„., exp {z(k+k', x) zmxp }zz&k—Bk', (17)

where the right-hand side has been made symmetrical. Operating on (17) from the left by
pp+u p+mP, we obtain

(po'-' —p'- —m')pz ~
——(32mzr') ' Qp r) {m(1+p) kp k, ' ——u (k—+k') }

X {u, (1+1,,u, )u, +u„( I +1,,'u,,)ug } (z,&g, exp[ z(k+,k', x) zmxp]u8k8k'—. (18)

In solving an equation of the form

(Po' —p-' —»z-')P = I exp[z(aoxo —a x) J,

v ~;: note that apart fron~ the solution

(ao —a' —m ) ~ J' exp[z(aoxo —R x)j
there also exist solutions of the form

because
5(ao' —a' —m') F exp[z(apxp R'x)]

(ap'- —a' —m') b(ao' —a' —m') = 0

Hence the complete solution of (19) is

+C S(ap' a' »z-') &exp—[z(a—oxo —a. x)],
e()' —a' —m'

(20)



aoo —a' —m'= —2m(kp+kp')+2kpkp'(1 —1 V)

'PBko

(21)5(n.oo —a' —m') = -5 k,'-j—
2}m —ko(1 —1 1')

~

m —kp(1 —I I')

where 4 is an arbitrary function of integration, which must be chosen to suit the special physical
conditions of each problem under consideration.

Equation (18) is of the form (19) with co=kp+kp' —m, a=k+k'. Therefore,

the result being expressed in this form because we are going to integrate first with respect to ko .
The simplest possible choice for 4, namely, 4 is zero, leads to divergences as will be shown later.
The next simple choice is to take C equal to a constant. But when we proceed to evaluate Pp we
obtain integrals of the form

~
w

~

' exp( —ikon ')dzv

where the range of integration includes the point m equal to zero. This integral does not tend to a
finite value as I~p tends to zero. If, however, we take 4 = +C according as m —ko(1 —1.1') 0, then
the corresponding integrals in Po are of the form

I w 'exp( —iXpw ')dw

which tends to a hIllte value as A, o tends to zero. This choice has the physical lnterpretatlon that
4& = +C for positive energies of the electron and 4 = —C for negative energies of the electron, because
the electron's energy m kp ko' h—as th—e same sign as m —ko('l —I 1') when k, k' are such that the

fuilcfion ill (21) does liot: vanish, that is, wlleil

m(ko+ko') = koko'(1 —1 I').

The particular case when C is equal toom turns out to be an important one, as the divergent integrals
then disappear, to any order of approximation in the perturbation theory. The solution then cor-
responds to outgoing waves of the electron, as will be shown later.

It is convenient to employ the following notation: If b„denotes a, four vector (bo, b), let

yp—= (m —bp)' —1'—m', Rp=m (1+/) —bp. —e b.

The solution of Eq. (18) is then taken to be

(»m-')-i ZZj ~
{v+'--«(v i- )}Rf' {-(I+I.-.)-+-(1+I -)- }

X fp i)i„exp{i(k+-.k', x) —imxo} NgkBk', (23)

where the sign in ~ is determined by

m&o
+&(vkpp ) =—— -8 kp'+

2{m—ko(1 —1 1') } m —ko(1 —1 1')

36. The Higher Approximations

Pp consists of two terms: Po, p and Pp, i. The term Pp, o can be readily evaluated We obta. in

I t r
leap, p

= —2 *(64mpr ) QgQ {'r1„~ &+i'' &CB&(rk+1'.+i„")j { Yl'+1" &C6( Yk+L ) }Rk+i. +p NpRk+I,

X {&xi(1+I,n, )a,+n, (1+1,'n, )oig j gp .oPg„,P,„exp{i(k+k'+k,", x. ) imxp }uBkBk'Bk—" (25).
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Po, , is given by

(pp —n p —mP)go, g
——2—'*(128mor') ' QQP, ~~

{yl~p '+-C8(pl~a ) }u,Radio

X {u((1+3,u, )u„+u, (1+3,'n, )n( I {(g„+I,l„)(ko"+ko) 8(k" k—)e

+ (go~+&o'&~') (ko"+ko') 8(k"—k') e '&' » (g,„}exp{ i(k+ k' —k",x) jmx—p]uakdk'ak",

where the right-hand side has been reduced by the use of the commutation relations (6) and Eq.
(13). Integrating with respect to k" and using the symmetry in k and k', we obtain

(Po u P™i)A. &
2 (32m~ ) KEJ J~ {Vls I I." +C8( Yolk') }npRk+k {u't(1+iona)ur+us(1 +Is As)nt }

Hence,
X (g«+/, 'I,') $o, exp {i(k, x) im—xp i(k—', ) ) }u8kBk' (26).

where

Po ) ——2—&(32m7r') ' Q)" yI,
—'RpI&p„exp {i(k, x) imxp} —uBk, (27)

I=—Q t {yg+& -'WC5(go+& ) }n,Rg, g {n,(1yl,u, )n„+u„(1+3,'n ,)n, }(g.„yl,'I,')e '"o'"oa-k' (28.)

We have taken A„= (Xo, 0) which is permissible from the inequalities (5).To evaluate I we note that
if f(kp') is any polynomial and a is independent of kp', then

~co f(k I) ao e—ikp'xo eipp'xp
e'"o'—"odkp =f(a) — ——— — dkp'

~ „ko' —e „kp' —a kp'+a

=2f(a) a —dkp' —i ' dk, ' = 2imf(a)—e "".0-
ko"—a' & „kp"—a'

(29)

We have here used the result

xe'~ d=x0

where n is any positive integer. Again

Hence

' f(ko')&(ko' a)e "—p'"'dko'=2f(a)e ' "o

+C8(kp' —a) f(kp')e '"o'"'dkp' ——2(C i~)f(a)e-
ko' —c

(31)

Thus on integrating (28) with respect to kp', we obtain

mk p(l, 'i('no n()—I= ', (C—jm)
~

-m(1+P) —kp(1+l, n,)+
& o =o& p =o {m —ko(1 —1 1')}'

mkp(1+/, 'n, )

m —ko(1 —1.1')

imko~o
X {ng(1+7,n, )u, +n, (1+3,'n, )n, } exp sin8'd8'dP'. (32)

m —kp(1 —1 I')

When integrating over p it is convenient to take the direction of 1 for the polar axis, and then to
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express the resuit in tensor form. Thus

21r

l,'dy' = 2orool (, ) 1,'1,'dy' =or(1 oo—') og, +~(3oo' 1—)le. . (33)

writing

1 1' =costt' = oo, (op = 1 m—jk ,p

7r .2'
I= ', (C i-or)— 4m(lr'l, 'n, —n„) —ko I 2(col, 'n& —1)(1+l,n, )n„

~o'=o "o =o ko(oo &o)-

2m SmXp

+n.,(1+l,n, )n, (1+l,'n, ) (l, ' —n, ) I
—— (1—l,'n, ) (n„+ l,n, n, +2l„') exp—

.M Mp

sin 8'd 8'd@'

mm.

4m(1 —oo) ( imago )—(l.„n,, —o)) n,„exp~ —
Idoo, (34)

07 pop ( (a1
—ooo i

I

=,'(C —ior) — —4m(1+oP) +2ko(1 —oo') (1+l n )
y kp(oo Gop)

where we have omit:ted certain terms in l,. and (1 —P) owing. to the relat:ions l„$1,,=0, (1—P)u=0..
Hence we obtain

2'I= —(C—ior) mor 1+l,n, +
kp 6) —GOp

2m 2mo ( ~lnl
kp'-E ko&

+
ko(cv —ooo)

7m 2m' pm ) 2m' fm ') im)~+=+) ——4 [t.n. + (
——1+in

I
n exp-

kp kpP Ekp "
koan(oo

—cgp)' (ko ) — ~ —ceo

du). (35)

We may integrate with respect to co and substitute for I in (27) and show that fo ~ is free from
divergent integrals. But in using its value to determine &4, o and P4 p it seems more convenient to
postpone the integration.

To proceed to terms of the fourth order, we note that P4 consists of P4, 4, P4, &, and f4, p. 1/4, 4 can be
written down easily, the expression for it being similar to that of po, o in (25). The term 11 4, o is given by

(po —n p mP)$4 —
o

—2—l(——2or)
—' Q I n„I &o",e'&'"' '&P. o g+$g,. *e "'"*&Po, oI&k'",

and it may be seen without much difhcuIty that the right-hancI siRe is free from divergence. The
term lj/4, o Is given by

(Pp —e P mP)$4, p—= —2='*(2m-) ' Q n„$p „*e '&" *&Po &8k'

(36)
l= (2'mor') ' P (n„—l,l„n„)Im(1+P) —ko(1+1,n, ) IIu exp( —imxo —ikpXp)kp 'Bk,

where we have used the commutation relations (6) and Eq. (13) and integrated over k'-space.



i80

Operating on this equation by p, +&&. .p+mP from the left we have

(Po' —p' —m') $4, 0
—— m—(1+P)(2'm~') ' P (&&,

—L,l„&&.„)(1+ In, )Iu exp( —imxo —iko),„)Bk.

Substituting for I from (35), using the commutation relations satisfied by 0; and P, and the relatio»
Pu =u, we obtain

m 1 ( m 2m ) m (m
-)p, , .=(C-'~)(4~)-'Z

i
1+ + I 2+, I+,

aJ J J ko M —
&do ( ko ko ) ko (&&& &&&0) E ko

+
ko («& «&0)'

im)
14 exp ———N'psxp —zkphp kpdkpd QdQ)

Gg Mp

ao ~g—1—

=(C—im)m'(Sm) 'ue '"*o x+2+
x'+x —4 2 —3x 1—+ +

xy x'y' x'y'

Xexp —.', imXOI ——x
I dxdy, (37)

Ey

after integrating with respect to 0 and substituting kp ———,mx, ~ —up=2y. This integral has been
examined by the author. It is divergent. The discussion is rather long and involved and is not
reproduced here. It is clear that as we proceed to the higher approximations, the integrand becomes
non-rational and therefore there is no reason to expect convergence. The integrand becomes more
and more complicated as we continue the solution step by step to higher orders of approximations,
especially due to the factor expI —i(k, X) } in the commutation relations (6), and one would expect
that divergence would naturally arise at some stage of the calculations. The hope expressed by some
authors" that the integrand would always remain a rational algebraic function is therefore not

justified.

If, however, we take the particular case when C has the value i7r, then we see that owing to the
factor C —iver in I, $3 & and P4 0 vanish. It is easy to see that the integral in any term such as f,
with m not equal to n, is of the type (31) and, therefore, the factor C i~ will occu—r in each such
term. Hence by taking C equal to im, we obtain a particular solution with

$„,„,=0, all m/n. (38)

The value of P,„,„can be written down easily as

P„„=2 "~'(—2x) "gP Q I R&:+.&; y &&" »0«" »R&":y.&... --
(7;, u expLi(k+k'+ k &" '&, x) imx ]B—k &" ' & .8k'8k. (39)

Ke should now consider the physical signi6cance of the condition C equal to ix. It will be seen that
this condition is equivalent to taking only those solutions which correspond to outgoing waves of
the electron. To show this we follow a method given by Dirac" for the treatment of collision problems,

31%. Pauli, Rev. Mod. Phys. 15, 175 (1943)."P.A. M. Dirac, Qucntum Mechnmcs (Oxford University Press, New York, 1935), second edition, p. 198.



where he shows that for outward moving particles the solution has a factor

1/(W' —W) —kr 8(W' —W). (40)

In the case considered by Dirac, the proof applied only to positive energies and we must verify
that it also applies to negative energies. When W' is negative, some alterations in the equations
given by Dirac will have to be made. On the right-hand side of his Eq. (27), instead of W we would
have —W' which is equal to

~

W' ~, while in his Eq. (28) there would still be W'. Then the condition
(40) above means that the coefficient of exp[iP'r j vanishes and the term with exp[ —iP'r j remains,
P' being positive. The phase factor thus will be exp[i( —P'r —W't) j which is expi[ —P'r+

~

W'
~

tj.
Hence the solution corresponds to outgoing waves of the electron for both positive and negative lV'.
It remains to show that the condition (40) leads to the value i~ for C. If we consider the solution of
Eq. (18) and write

(41)

then we see that

Vz+x '~i~~(Vs+a) = ——i7rh(W' —W)
W'+W W' —W

The result may then be extended to any equation of the form (18) involving any number of photons.

37. Discussion

The above work shows that whereas the general solution involves divergent integrals, there exists
a particular solution corresponding to outgoing waves of the electron and which is free from divergence
to all orders of approximation in the perturbation theory. The wave function in this particular
solution may be written down explicitly, to any required order of approximation. One may therefore
hope that this solution may be applied to calculate exactly the probability coeFhcients of transition
processes involving any number of photons, whereas previously this was not possible owing to the
divergence of the higher order terms.

CHAPTER VI. FURTHER APPLICATIONS

38. Hydrogen-Like Atoms

The results of the last chapter on the interaction of a free electron may be extended to apply to
any one-electron problem. In particular, we may consider the interaction of hydrogen-like atoms
with a radiation field. The quantum electrodynamics of Heisenberg and Pauli gives an infinite dis-
placement of the spectrum lines of hydrogen-like atoms, owing to the divergent terms in the wave
function. It is therefore of interest to investigate this question on the basis of Dirac s quantum
electrodynamics.

We take the nucleus as fixed and obtain the wave function of an electron of charge e bound to a
nucleus of charge —Ze. The wave equation is

(po —n (p —eA) mP+Z—e'/r)/=0,

in the same notation as before. We try a solution of the form

0 =$0+pi+f.+. (2)

where $0, 1t q, are in decreasing order of magnitude. The Born approximation which treats the
Coulomb field as a perturbation is not valid for our purposes here, and we must therefore retain the
term Ze /r in the Hamiltonian of the unperturbed system, and treat only the radiation field as a,
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perturbation. The term $0, f&, are connected by the equation

(Po —0. p m—P+Ze'/r)P„= —e(e A)P„,.

Taking n=0, we have

(Po —n p —mP+Ze'/r)Po ——0, (&)

which is the relativistic wave equation giving the stationary states of the atom. Supposing that
initially there are no photons present and that the atom is in a stationary state of energy F„„we take

4o=u exp( —iZ xo).
f~ is given by

(po —n p —mp+Ze'/r)IIq ———2 '(2m) 'e
Q~ n„gq„u exp( —iE xo)gk, (6)

where we have used the relation Pu =0, there being no photons in the initial state. We solve" for
f& by expanding in terms of the eigenfunctions of the unperturbed system, obtaining

y, = —2—:(2)-'s g &~I I(Z„—Z„—k,)- —i S(Z„,—Z„—k,) }

} }

X i
' u, *~,u„e '~ "dxgdx dx3 gg„u„expLi(ko —B„)xo]8k, (7)

we take the solution which corresponds to outgoing waves. The factor

(2 —Z„—kp) ' —Arb(E —8„—ko)

ensures that when we proceed to evaluate f2, o, (after using the commutation relations for g and g~),
we obtain integrals of the form

L(C kp) —imB(g —ko) 'jkoe '~kodko,

where a and b are independent of ko, and this integral has the value zero. Hence p2 o is zero. lt is
easy to see that the integrals that arise in the higher approximation terms have also the same form
as (8), and hence we have the general result

=0 for mWn

Thus all the divergent terms are eliminated.

39. A Note on the Interaction of Two
Moving Particles

The methods of the previous section cannot be
applied if both the particles are moving. It would
be very desirable to evaluate the interaction of
moving particles, without having to use Born's
approximation, but so far this has not been
found possible. Although the Born approxima-
tion is sufhcient for certain purposes, it is, how-

ever, unreliable for heavy particles and for low
energies.

For the present we have to restrict the calcu-
lation to this approximation and so consider an
expansion in ascending powers of e. The Coulomb
interaction then appears as a perturbation of
the second order. On this basis of approximation,
the interaction has been evaluated by Moiler, '4

correct to the terms of order e'. From the work

@33C. J. Fliezer, Bull. Calcutta Math, Soc. {to be pub-
l jshecl).

'4 W. Heitler, Quantlm 1heory of Radiaf'ion {Oxfor&]
University&press, &New York, 1936).
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of Chapter V where all the terms of the type
, where m is not equal to n, were shown to

vanish, one may hope that Moiler's formula has
a wide range of applicability.

40. The ComIjton EÃect and Radiation Damping

The scattering cross section in the Compton
effect, where an incident photon is scattered by
a free electron with a change in the frequency
of the photon, is given by the Klein-Nishina
formula. '4 This formula is in excellent agreement
with experiment even when the incident photon
is of fairly high energy. The derivation of this
formula does not take into account the effect of
radiation damping. It is therefore of much in-
terest to investigate the effect of radiation
damping on this process, on the basis of Dirac's
quantum electrodynamics.

In terms of the notation of Chapter V, the wave
function from which the scattering cross section
is calculated is

4 =e'P~, a+e'44, 2+ +e'"P2, ~+

where the terms after the first give the effect of
radiation damping. In the derivation of the
Klein-Nishina formula, only the part e'P2, 2 is
used. According to the theory we have been con-
sidering, P„ is zero when m is different from n,
and it therefore follows that on the basis of this
theory radiation damping has no effect on this
process, indicating that the Klein-Nishina for-
mula gives the exact cross section,

There is, however, the possibility of certain
other terms contributing to the cross section and
which should not be ignored. The wave function
e4$4, 4 will apply to a process in which four.

photons take part. If two of these have the same
frequency and direction, and one of them is
absorbed and the other is emitted, then one
would have a process which is physically indis-
tinguishable from one in which only two photons
take part. Similar contributions would arise
from terms of higher order also. Calculations of
such contributions are in progress, but they are
rather long and involved and not yet completed.

41. Multiy1e Processes

The wave functions obtained in Chapter V
may be used to calculate the probability coef-

ficients of certain multiple processes. These
multiple processes are of interest for the following
reasons. They are typical quantum e8ects and
their probability cannot be estimated from the
classical theory by using the correspondence
principle. Also, the existence of showers in cosmic
radiation makes it desirable to know if in photon
showers the quanta are emitted simultaneously
or one after another in a short range.

If we consider a process in which an incident
photon is scattered into two photons in the
presence of a free electron, the wave function
that is applicable to such a process is

p=e'$3, 3+e'fg, a+ +e'" +p „2+(,g+

which in our theory becomes

4 =e'A, 3

We have to choose an appropriate form of P in

order to have a probability with a physical
meaning. The expression for probability so ob-
tained will then be proportional to the time, and
we may therefore define the probability per unit
time. The diagonal sum of the matrix Pp, where

p is the Hermitian conjugate of P, gives the
density of electrons, which when divided by the
initial density gives the transition probability.
This has been calculated by the author. " It is
found that if the emitted protons have fre-
quencies of the same order of magnitude, the
probability of the double scattering is at least
1/137 times smaller than that for the single
scattering. But if one of the emitted photons is
allowed to have low energy then the probability
of the process could become large, the transition
probability varying inversely as the frequency of
the low energy photon. This result could be
generalized to apply to any number of photons,
and one would infer that showers in which the
photons are emitted simultaneously are not dis-
allowed by quantum electrodynamics.

The probability which is of physical sig-
nificance in processes involving low energy
photons would be obtained by integrating the
probability expression over the low energy
photons. Preliminary calculations done by the
author seem to suggest that the integrated prob-
ability is not finite. If this be the case it would

3~ C. J. F.lieder, Proc. Roy. Soc. A18/, 210 (1946).
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imply that the theory given above is not free
from the "infra-red catastrophe" of the previous
theories. To deal with such problems one would,
therefore, have to give up the expansion in

powers of e'/hc, and for the present make use of
the Bloch-Nordsieck transformation. "

42. Conclusion

This paper gives an account. of some methods
which have been developed recently in formu-
lating a scheme of electrodynamics which is
consistent with well-established principles of
physics, such as the conservation laws and the
special theory of relativity, and which is free
from the divergence diAiculties which are charac-

36 F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

teristic of theories of point particles. It is too
premature to suggest that the above theory is
satisfactory in all essential respects. It seems
reasonable to suppose that those infinities which
are of classical origin would be satisfactorily
eliminated by the methods outlined above. Some
of the purely quantum infinities would also be
eliminated, and one may hope that the other
difhculties which still remain may be solved by
an appropriate extension of the above formalism.
It appears to the author that an important line
of advance would be to obtain solutions of the
wave equation without making use of expansions
in powers of the fine structure constant. Such
solutions are likely to show closer correspondence
between the classical and the quantum theories,
and may pave the way for future development.


