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1. INTRODUCTION

N a recent paper! C. F. v. Weizsicker has pro-
posed a new theory of the origin of the solar
system which appears to merit consideration.
Weizsicker's principal idea is to regard the
formation of a planetary system around a star
as a possible last stage in the formation of the
star itself. Before we describe in detail the
manner in which Weizsicker expects this to
happen it may be of advantage to state briefly
the picture he has in mind.
Weizsicker imagines that stars are formed by
a process of condensation from an interstellar
medium in turbulent motion and that during the
last stages the newly formed star finds itself
surrounded by a cloud of gas with a definite
angular momentum. Under certain circumstances
this rotating mass of gas will be in the form of a
disk with a definite structure (see Fig. 1). Such
a disk is, however, expected to be unstable and
in consequence dissipate into space. But, and
this is the central part of Weizsicker’s theory,
certain states of motion in the rotating disk of
gas are relatively more stable than others and
~ consist of what may be described as a “‘quan-
tized arrangement of vortices’? (see Fig. 2).
Finally it is made plausible that this arrangement
of vortices may lead to the formation of planets
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1 C. F. v. Weizsicker, Zeits. f. Astrophys. 22, 319 (1944).

2 To avoid possible misunderstanding, it may be stated
that the arrangement arises from considerations which have
nothing whatever to do with the quantum theory.

along certain concentric circles the successive
radii of which fall into a sequence of the form

(1

where 7o and e are constants. In other words
Weizsicker believes to have obtained a theo-
retical interpretation of Bode’s law.

With this brief outline of the new theory we
may pass on to a more detailed consideration of
the various steps which are involved.
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2. THE STRUCTURE OF A ROTATING MASS
OF GAS AROUND A STAR

The equation governing the equilibrium of an
atmosphere in rotation and under the gravita-
tional influence of a central star of mass, M,
can be written in the form

)=wzs, (2)
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‘where p and 7" denote the density and tempera-
ture at a point distant » from the center, w the
angular velocity at the point under consideration,
and s the position vector at right angles to the
axis of rotation, and the rest of the symbols
having their usual meanings. It may be noted
that in writing Eq. (2) we have supposed that
it is permissible to neglect the mass of the
atmosphere in comparison with the mass of
the central star. In integrating Eq. (2) Weiz-
sicker supposes that

T=ar*

3)

corresponding to the assumption of local thermo-
dynamical equilibrium of the material with the
radiation incident on it and that the reduction
in the density of radiation by absorption can be
neglected.

From Egs. (2) and (3) it follows as in Poin-
care’s theorem for rotating compressible masses
that

(e =constant),

w?=fI)r?, (4)
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where f(IT) is a function of the distance II from
the axis of rotation only. Writing the foregoing
equation in the form

w?=q(I)(GM /1) (11 /7)}, ()
Weizsiacker assumes that
g(I) =1 T <Tlmax
=0 H>Hmax}' ©)

This assumption corresponds to supposing that,
in the equatorial plane and for II <IIgax, the
material is “fully supported”’ by the combined
action of the gravitational and centrifugal forces,
while for II > ITn.x we have an atmosphere under
the sole gravitational influence of the central
star. With these assumptions Eq. (2) can be
integrated to give the law of density distribution

7 b
pP= Po( )
Minax

ak r:
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According to Eq. (7), for II <II,n.x, We have an
atmosphere in which the density remains con-
stant on the equatorial plane and falls off
exponentially at right angles to it, while for
II > s, the density distribution is spherically
symmetrical and falls off exponentially with in-
creasing 7.

At a distance II(<Il,.x) from the center
the height, z, of the ‘“homogeneous atmosphere”’
above the equatorial plane is to a sufficient
approximation given by

ak i
zﬁH[ZH%( ) ]
GMuH

If we choose a in Eq. (2) by the condition
that at »=10® cm (i.e., at the distance of
Venus), T=300°K, and assume further that the
mean molecular weight u~4 (corresponding to a
mixture of hydrogen, helium, and oxygen in the

(8)
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proportion 5 14:1 by weight), we find that

z/II~1/30, (9)

at planetary distances.
In his further estimates Weizsicker assumes
that ‘

Dnax=4X10% cm and pe=10"° g/cm?. (10)

With these values the mass of the entire gaseous
envelope amounts to about a tenth of the solar

mass. The general picture of the rotating gaseous
envelope is therefore as illustrated in Fig. 1.

3. THE FORMATION AND DISSIPATION OF
THE GASEOUS ENVELOPE

The question now arises as to whether the sun
could have had surrounding it at any time a
rotating disk of gas of the kind discussed in the
preceding section. It does not exist today and it
almost certainly would be unstable under the
present interstellar conditions. On the other
hand the present interstellar conditions do not
suffice either for the formation of the sun itself
by initial condensation and subsequent accretion
in a time of the order of 10° years. We infer that
the sun must have originally been formed under
conditions of greater mean densities than those
prevailing at present in interstellar space. If we
suppose then that the sun was formed out of
such a “primeval’’ nebula, it does not seem im-
probable that under those conditions the newly
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formed sun would find itself surrounded by a
cloud of gas with a definite angular momentum.?
Regarding the nature of this primeval nebula
during these early stages it would be difficult
to say very much except that the material was
probably in a state of turbulent motion with
mean eddy velocities of the order of 25 km/sec.
as indicated by the peculiar motions of stars.
Once a gaseous envelope of the kind described
in Section 2 is formed, it cannot be expected to
be a permanent configuration. For, according to
the assumptions of Section 2, the angular velocity

in the equatorial plane varies, and indeed accord-

ing to Kepler’s third law (cf. Egs. (5) and (6)).

And in consequence of this variation of w,

viscous stresses will come into operation and
this, as is well known, will have a tendency to
bring about a state of rotation with uniform
angular velocity. In other words, the viscous
stresses which would be set up will tend to
decelerate the inner parts of the rotating disk
of gas, and at the same time accelerate the outer
parts. This in turn would entail mass motions in
the envelope resulting in the outer parts of it
dissipating into the space outside, and the inner
parts of it falling on to the sun. The energy
available for this process will of course be the
gravitational energy released by the matter
falling on the sun. Thus, if we suppose that a
-fraction « of the total mass of the enveloping
material falls on the sun while the remaining
fraction escapes to infinity, the available energy
will clearly be (see Fig. 1)

mes GM /22
“_ f . (—)H(Zwl‘[)dﬂ
. om \ 11

OImax GM /23
+-a) [ o ——)n(zvrmdn,
re 7’0 H

(11)

where as in Eq. (8) 2z denotes the height of the
“homogenous atmosphere’” above the equatorial
plane at II. Further, in Eq. (11) 7 denotes the
radius of the sun. In Eq. (11) we can substitute
for g/ according to Eq. (9) and obtain after
some elementary reductions that

E~Q27n/45)(1 —a) poG M (Inax®/7 o),  (12)

3 Similar ideas have been expressed by B. M. Peek
J. Brit. Astronom. Assn.
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where use has been made of the fact that
Monax/7 o> 1.

Now if the instability of the gaseous disk
brings about a state of turbulence, energy will
be transported by eddies and the resulting con-
vective flux of energy must be expressible in the
form

) ] GM
convective ﬂux=—( ——po——)wl, (13)
aIl 211

where w denotes the mean velocity and ! the
mean free path of the eddies. The transport of
energy, S, per unit time across II is, therefore

3 GM 3

S=2711X2z X—-( —po~—)wl,
JIl 211 .
{ (14)

where use has again been made of the approxi-
mate relation (9).
Equations (12) and (14) imply a mean life, 7,
for the gaseous disk of the order of
E 2l (1—a)

o=

S 3rowl

™
ﬁ'—*poG]l[‘wl,
15

. (15)

The fraction « in the foregoing equation can
be estimated by the following considerations:
At II the material has an energy (kinetic+ poten-
tial) —GM /211 and an angular momentum ITw?
per unit mass where it might be recalled that w
denotes the angular velocity for a circular orbit
through II. If we suppose that a fraction « of
the mass at II escapes to infinity then it must
acquire an angular velocity of at least V2w
corresponding to its receding along a parabolic
orbit with its vertex at II. Accordingly, if we
suppose that the matter which escapes to infinity
carries with it the entire angular momentum,
it is clear that a~1/v2=0.71.%

Returning to Eq. (15) we still need estimates

4 In order that this process be energetically possible, it is
necessary that
GM GM
—7H—+ ( Ol)‘;(—a- >0,
or, alternatively
21l —a)I>7rp.

With «=1/v2 the foregoing condition requires that
II>1.770; in other words what we have considered in the
text can take place for all material outside I =1.7r0.
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for / and w. From general considerations we may
expect the mean free path / to be of the order of
a tenth of the linear dimension of the system in
turbulent motion while the considerations to be.
set forth in Section 5 indicate values for w of
the order of 1 km/sec. Using then the values

a=0.7, Ilnx=4X10"cm, (16)
=108 cm, and w=105cm/sec.
we find

(17)

T=>~107 years.

Now, so long as matter from interstellar space
falls into the sun, the gaseous envelope around it
will not disappear in spite of its instability.
However when the addition of further mass
ceases, the star will have attached to it a gaseous
cloud and it is during these last stages that
Weizsicker anticipates the formation of a plane-
tary system.

4. A QUASI-STABLE CONFIGURATION
OF VORTICES

We have seen in the preceding section that a
rotating disk of gas of the kind considered in
Section 2 is unstable and that in consequence a
state of turbulent motion is likely to be set up.
But the question arises, whether in conformity
with Kepler's laws we cannot construct a state
of motions in which the viscous stresses would
operate the least. If such a state could be found,
we may expect the dissipation to be less for this
state of motion than for others. We shall now
show following Weizsicker how such a state of
quasi-stability can be found. -

Consider first two particles (elements of gas
in the present context) one of which is describing
a circular orbit with radius II, and the other a
nearly circular orbit, both with the same constant
of areas. If we arrange that at time =0, the two
particles are along the same radius vector with
a separation ITjg, and further refer the particle
describing the nearly circular orbit to the particle
describing the circular orbit (i.e., refer the nearly
circular orbit to a frame of reference rotating
with an angular velocity w.), then it is well known
that second particle describes an ellipse centered
on the first.® In fact if X and Y denote the

5 Cf. S. Chandrasekhar, Principles of Stellar Dynamics
Chicago, 1942), pp. 154-160.
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Cartesian coordinates in the rotating frame of
reference and along the radial and the transverse
directions, respectively, then (Chandrasekhar,
reference 5, Eqs. (4.333)—(4.337))

0.
X=1I0 cos nt; Y= —2——sinni, (18)
Ho’ﬂx

where 6, denotes the rotational velocity in the
circular orbit through I, and

0,700, O,
n2=2— +—) . (19)
Ho oIl II =1y
Accordingly
Iy y06, O
re— () reme (o)
20\ o011 1 /u-n,
For an inverse square field of force,
GM II, 06, O, 1
0p=——and ——( -— =— (21)
I 20,\0Il I /u=n, 4

The ellipse (20) is therefore one with a ratio of
the axes 2, the major axes being in the transverse
direction. Moreover, according to Eq. (18) the
ellipse (20) is described in a sense contrary to
that of O..

It is now apparent that if we consider a family
of nearly circular orbits, all with the same
constant of areas® (and therefore with slightly
differing eccentricities) then in the rotating
frame of reference, we have a set of similar
elliptical orbits all described with the same
period and about a common center. For such a
state of motion no viscous stresses can operate.
However this will cease to be true when it should
become necessary to take into account second-
order terms to describe the nearly circular orbits,
i.e., when the deviations from a circular orbit
become appreciable. Under these circumstances
the orbits in the rotating frame of reference will
also cease to be strict-ellipses though they will
continue to be closed curves so long as we con-
sider particles with the same energy. Actually,
orbits which deviate substantially from circular
orbits describe in the rotating frame of refer-
ence orbits such as those shown in Fig. 2. In

% Weizsacker considers particles with the same energy.
But in the first order the two assumptions are equivalent.
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any case it is clear that so long as we consider
nearly circular orbits, we can construct motions
of the nature of a vortex cell in which the viscous
dissipation will be appreciable—if at all—only
in the outer most parts of the cell. Consequently
an arrangement of vortex cells such as that
shown in Fig. 2 has a certain stability. For, with
the arrangement as shown, a particle belonging
to any one vortex never encounters directly a
particle belonging to any other vortex. Each
vortex continues its motion independent of the
others and interfering with none.

We may next ask as to what governs the size
of a vortex cell. Weizsicker argues in the follow-
ing manner: If we consider a very small vortex
cell, the particles with the maximum eccentricity
which occurs in it and which will be describing
the outermost orbit in the rotating frame of
reference will be characterized by a small eccen-
tricity. If such a vortex should encounter another
particle (with, say, the same energy) the chances
are that its eccentricity will be greater than the
maximum present in the vortex. It is therefore
possible for the intruder to be captured: for, it
can ‘“‘attach’ itself to the vortex without de-
arranging the already existing arrangement since
on account of its greater eccentricity it will
describe an ellipse outside all the others. A small
vortex will accordingly have a tendency to grow.
But it cannot grow indefinitely, for once it has

7
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grown to a certain size it would more often en-
counter particles with eccentricities less than the
maximum already present, than otherwise, and
the capture of such particles would only tend to a
disruption of the existing structure. Weizsicker
therefore concludes that the vortices of the kind
we have been considering will grow to an
optimum size characterized by a certain maxi-
mum eccentricity emsx which will occur in it.
(Later considerations (Section 5 below) suggest
that emax~3.) It would further appear that,
along any given circle, we will have an integral
number of vortices in near contact. The condition
that there be an integral number of vortices
along a circle would further limit the possible
values of en.x to a certain discrete sequence.
Such an arrangement is shown in Fig. 2 where
there are five cells in each ring. For this arrange-
ment emax = 0.31. ‘

It would appear then that an arrangement of
cells which may be expected to materialize is
one which would consist of an integral number of
cells in each ring and such that the common
aphelion distance for the particles in the inner
ring is very nearly equal to perihelion distance
for the particles of the outer ring. If each ring
be assumed to contain the same number of cells,
then it is not difficult to find the ratio of the
radii, 7,/7._1, of the series of concentric circles
defining the various rings. For,

7,  Aphelion distance for a particle with e =eémnax

‘771,—1

1+ emax

1— €max

Hence,

1+emax\ ™
rn=ro(————) . (23)
l‘emax

For the case illustrated in Fig. 2 (five cells in
a ring)

€max=0.307, (24)
and the law (23) becomes
rn=r0(1.894)". (25)

Perihelion distance for the same particle

(22)

5. ON A THEORETICAL INTERPRETATION
OF BODE’S LAW

While the arrangement of the vortices de-
scribed in the preceding section has been de-
signed primarily with a view to minimizing the
dissipation due to viscous forces, it appears that,
whatever dissipation there is, will occur prin-
cipally along the circles 7, where the vortices in
one ring pass those in another. At 7, for example,
the particles belonging to the vortices of the
inner ring are at their aphelion while the par-
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ticles belonging to the vortices of the outer ring
are at perihelion. Accordingly, in the fixed frame
of reference, the velocities (tangential to the
circle of radius 7,) of the particles belonging,
respectively, to the inner and the outer rings are

GM\¢?
Vinner = (_—') (1 —emax)%,
¥nd

GM\* '
Vouter = (—) (1 +emax) %y
7nd

For emax=1% and at the distance of the earth,
the difference between vipner and vouter amounts to
as much as 10 km/sec. ; while for the same value
of emax the difference amounts to 3 km/sec. at
the distance of Jupiter. This difference of veloci-
ties along the circles of contact 7, is therefore
quite considerable and turbulence is to be ex-
pected. Secondary eddies will therefore form
along these circles and since outer > Vinner, the
sense of rotation of these secondary eddies will
be contrary to that of the principal vortex cells
and accordingly in the same sense as that of 0.
These secondary eddies (in contrast to the small
vortices considered in Section 4) will have no
tendency to grow since the direction of rotation
of these eddies is in the same sense as O,.

It is thus seen that with the arrangement of
vortices as shown in Fig. 2, dissipation is localized
along the circles 7, and Weizsicker anticipates
that here, if anywhere, are the chances most
favorable for the formation of planetary bodies
(see Section 6 below). If this be accepted, we
have a means of interpreting the law of planetary
distances. We now turn our attention to this
matter.

As is well known, Bode’s law of planetary
distances can be expressed in the form

(26)

rn=a-+2"b, (27)

with ¢=0.4 and $=0.3 when 7, is measured in
units of the distance of the earth from the sun.
For the outer planets ¢ can be- ignored and
we have :

ra2b- 2,

(28)

which is the form Eq. (23) will have for emax=13.
It is therefore remarkable that this value of enax
should be so near to a wvalue, namely 0.31,
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required for an integral number of vortices in a
given ring. However, as Weizsicker goes on to
show, the formula (25) actually provides a
better representation of the distances of Mars,
the average of the asteroids, Jupiter, Saturn,
and Uranus than does even Bode’s law. But the
point at issue here is clearly, not that Eq. (25)
provides a better interpolation formula than
Bode's law; it:is, rather, that a physical inter-
pretation of Bode's law has become possible.
Indeed Weizsicker regards this as the greatest
argument, a priort, for his theory.

6. ON THE FORMATION OF THE PLANETS

We next turn to the question of how probable
it is for planets to be formed along the circles
where secondary eddies are being created by the
viscous shear between the successive rings of
vortices.

It is not difficult to grant that at the low
temperatures at which most of the gaseous
envelope finds itself, we would already have fine
dust particles or tiny droplets of colloidal or sub-
colloidal sizes. But it is more difficult to visualize
how such particles can coalesce to form larger
particles and eventually particles of planetary
dimensions. A full discussion of this problem is
obviously a matter of considerable complexity
but Weizsicker puts forward the following tenta-
tive considerations to estimate the orders of
magnitude involved.

When dust particles of similar or comparable
sizes collide, the chances are that they fragment
each other into still finer pieces. But when two
particles of widely different sizes collide, it is
likely that the larger particle increases its mass
since on account of its larger presentation area
the fragmentation pieces of the smaller particle
will adhere to it. In other words, we may expect
that it is only the largest particles that have a
chance to grow and since in an assembly of #
particles the largest may have sizes log # times
the average, it is not improbable that particles
of the size necessary for growth are already
present. We assume, then, the existence of such
particles and find that they will grow, in the first
instance, by straightforward capture of the much
smaller average sized particles. The cross section
for such captures will simply be the average
presentation area of the particle. However, once
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the particle has grown to an extent that its
gravitational radius

R=2Gm/v,? (29)

(where m denotes the mass of the particle, and v,
the root mean square velocity of the gaseous
elements relative to it) becomes comparable to its
linear dimensions, the particle will begin to
increase its mass more rapidly on account of
gravitational attraction. For such gravitational
‘accretion, we may expect a radius of capture R§
where § is a factor of order .7 It appears, then,
that we can distinguish two stages in the growth
of a particle: the stage of direct capture and the
stage of gravitational capture. Assuming for the
“sake of simplicity that the particles are spherical,
capture by gravitational attraction will set in
when (cf., Eq. (29))

r=(2G/v,") ((4/3)77*p,)0,

where p, denotes the density of the particle and 7
its radius. Accordingly the radius 7« at which

(30)

direct capture gives place to gravitational cap-

ture is given by

( : )%
Vo= V.
* 8méGp, ¢

On the ideas outlined in the preceding para-
graph it is not difficult to follow the growth of a
particle. Again, restricting ourselves to spherical
particles, the equation of growth during the stage
of direct capture is

d 4

—7rr3

) =mr2pqg,
dt

where pg is the mass per unit volume of the
medium which is in the form of fine dust par-
ticles, and v is the mean relative speed between
the larger particle and the fine dust particles.
From Eq. (32) we obtain

(31)

(32)

r—ro=1(pa/ pp)0t, (33)

where 7, is the initial radius of the particle at
time {=0. From Eq. (33) we conclude that the
time, tx, required for the particle to grow to

7For a comprehensive theory of capture by gravita-
tional attraction see W. C. H. Eakin and W. H. McCrea,
Proc. Roy. Irish. Acad. 46, 91 (1940).
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the size 74 is

4py 74 ( 6pyp )% Vg
t* = = _
pa v wdG/ pav
After this time the particle will:begin to grow by

gravitational capture and the corresponding
equation of growth can be written as (cf., Eq.

(34)

(29))

d (4

—( =73 )=7r62R2p v,

a\3 " ’

: . (35
641352 (55)
= G?ppPpar’e,

97,*

or,

- 1 dr 16x252 vG2 )
——=————G"pypa. (36
vt di 9 oyt ?

Integrating this equation we have

30,4 1
7= 37

16m262G%pppav (T"—1) , _

where T is a constant of integration to be deter-
mined by the condition that at time t=0, 7 =7x.
Accordingly,

30, 1

- @)
167w28%G%pppav 74 °

or, substituting for s from Eq. (31), we have
(cf., Eq. (34))

2p iy 1
T=( ") R
3r6G/ pav 3
But according to Eq. (37) r—« as t—7T. We

may therefore expect, on the basis of these ideas,
that in a time of the order of

—'t (321319 b,
3roGG pdv

(39)

(40)

bodies 6f planetary dimensions could be formed.?
With the values

pp=3g/cm? and pg=10""g/cm? (41)

8 It may be noted that our formula (40) for ¢, does not
agree with the formula given by Weizsicker. For §=0.1 the
difference amounts to a factor 5 with Weizsicker over-esti-
mating the time.
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Eq. (40) becomes
1 o,
to=4.2 X10™—— — years.
(&) v

(42)

In order that we may use the foregoing formula
to estimate f,, we still require to know the
relevant values for the relative motions v, and v.
If these velocities are simply those to be expected
in consequence of thermal motions only, the
values of £, which would follow are so large as
in fact to rule out the present theory. But if
instead we suppose that the gaseous medium in
which the process of planetary formation is
believed to be taking place is in a state of
turbulence and that, further, the fine dust par-
ticles are being carried with eddies, we may
expect values for v, and v of the order of
kilometers per second, and the resulting values
for ¢, will not be incompatible with the estimated
mean life of the order of 107 years (Eq. (17)) for
the rotating disk of gas. But before we can make
these assumptions, we must verify if, under the
conditions envisaged, the dust particles will in
fact be carried with the eddies and thus share in
the turbulence. In other words, we have to
determine whether or not the mean free path, A,
of the dust particles is comparable to the size of
the eddies as indicated by their mean free path J.

We can estimate the mean free path, A\, by the
following elementary considerations: During a
time ¢, a dust particle of radius 7 will sweep out
an amount of gas of mass mr%p,wt, where p, de-
notes the density of the gas in the medium and w
the mean relative velocity between the dust
particle and the gas. This mass of gas, m72p,wt,
will on the average be endowed with an addi-
tional velocity of the order w so that the work
done by the particle during a time ¢ will be of
the order =7?p,w?. And if this should become
comparable to the initial momentum of the dust
particle, namely (4/3)7r*pw (where p is the
density of the particle), we may expect that the
particle has suffered substantial changes in the
direction and magnitude of its motion. The
“time of relaxation’ is therefore

4
—wr3pw
3 4 pr

3 pgw

time of relaxation=

(43)
wr2pgw?
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Accordingly for the mean free path, A\, we may
write

4 p
A=time-of relaxation Xw=-—r.

(44)
3 py
With
p=3g/cm®* and p,=10""g/cm?, (45)
we have
A4 X 10%. (46)

In order then that particles of radius 7 be carried
with eddies of size /, and share in the turbulence,
it is necessary that

1>4X10°%. (47)

For fine dust particles of radii 10~%—10~% cm,
1~10*—10% cm. But particles which have grown
into_bodies of any reasonable size (r>10* cm),
cannot be carried along with even the largest of
the vortices present.

Now, as we have already stated in Sections 4
and 5, in the regions where the vortex cells in
the successive rings pass each other, we may
anticipate the formation of a large number of
smaller secondary eddies—‘‘lubrication eddies”
as Weizsicker calls them. It is hardly likely that
the secondary eddies will have mean free paths
greater than 10*-10% cm. Thus, while the second-
ary eddies may be large enough to carry along
with them the fine dust particles they will be
unable even to ‘“move’’ any of the particles which
have grown appreciably beyond the colloidal
size. And moreover, since in the regions where
the secondary eddies are being formed, shearing
velocities of the order of 3-10 km/sec. are
present (cf. Eq. (26)) we may suppose that
under these circumstances

(48)
With these values and with §=0.1, Eq. (42)
yields :

v,~v~3 km/sec.

to =108 years. (49)

It would appear, then, that the mechanism sug-
gested is adequate for the building up of bodies
of planetary dimensions though it might seem at
first sight that ¢, is rather too large with a mean
life of the order of 107 years estimated for the
gaseous envelope (Eq. (17)). But as Weizsicker
points out, one might adduce empirical evidence
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for believing that when the formation of the
planets is approaching the stage of completion,
most of the material in the envelope has already
been dissipated. The reasoning is this: The
elements which constitute more than half the
weight of the earth, for example, are higher up
in the periodic table than oxygen, while in the
sun the elements hydrogen, helium, and oxygen
alone constitute probably as much as 99 percent
of its total weight. This difference in the consti-
tution of the sun and the planets generally can
perhaps be understood if, when the planetary
bodies have grown to a size when they can retain
an atmosphere of their own, most of the gases
have already escaped. In other words, the differ-
ence of a factor 10 in £, and 7 may just exactly
be what is needed to account for the relative
poverty of the planets in ‘the lighter gaseous
elements.

Since ‘our discussion of the formation of the
planets depends so much on the ‘“‘quantized’’ ar-
rangement of the vortices described in Section 4,
we might ask the following questions: How stable
really is the arrangement of vortices described in
Section 4? How long can we expect such a
structure to continue its existence? And what is
it which determines the scale of the arrangement
(i.e., 7oin Eq. (23))? It is difficult to answer these
questions, but as Weizsidcker points out, for our
purposes it is strictly not necessary that the
arrangement of the vortices (essential as it is
for the interpretation of the law of planetary
distances) be stable for a period of the order of
108 or 107 years. For, once such a system of
vortices comes into existence, in the regions
where the secondary eddies are being formed
particles of sizes sufficient not to be carried along
with the largest of the eddies present will be
formed in a period of a ten or a hundred years.
And once such large bodies have been formed the
system of the vortices can gradually disperse
without any substantial changes in the picture
which has been presented. But it is essential
for Weizsicker’'s theory that the quasi-stable
arrangement of the vortices come once into being
and continue to exist for a period of the order of
a hundred years at least in order that we may
account for Bode's law. Conversely, the inter-
pretation of Bode’s law - which Weizsicker's
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theory makes possible may be taken as an argu-
ment a posteriori for the coming into existence
at one time of such a system of vortices.

7. CONCLUDING REMARKS

We may . conclude by referring to certain
related matters. '

First, regarding the sense of rotation of the
planets: As has been pointed out, the sense of
rotation of the secondary eddies is contrary to
that of the larger quasi-stable vortex cells and
accordingly is in the same sense as the rotation
of the gaseous envelope. And if, as has been
suggested, the planets are formed in the regions
of the secondary eddies, it would follow that the
sense of rotation of the planets will be in the
same sense as that of the secondary eddies and
therefore in the sense of the orbital rotation.
This is in agreement with observation.

Second, as regards the formation of the satel-
lite systems, it is not difficult to imagine that
the whole complex of events which we have
considered in connection with the formation of
the planetary system around the sun could take
place, on a naturally reduced scale, with respect
to each of the planets. For the planets are also
formed in a turbulent medium and during the
last stages of their formation they may be also
surrounded by clouds of gas in rotation about
them. And the dynamics of such clouds of gas
around a planet may be expected to have all
the qualitative features which we have en-
countered in connection with a cloud surrounding
the sun. However, we may expect that the
quasi-stable arrangement of vortices in a gaseous
disk rotating about the planets may not have
the same ‘‘perfection’’ we may expect around the
sun. This may account for the “irregularities’ in
the satellite systems such as occasionally retro-
grade orbits, high inclination of the orbits, and
the not too strict a form of Bode’s law which is
valid for the satellite distances.

Finally, it is clear that, if the broad outlines
of Weizsicker’s picture of planetary formation
should be substantiated, the underlying ideas
will have applications to a large number of other
problems such as the origin of the meteorites,
double star formations, and the like.



