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Y microwave electronics one can refer to the
study of electromagnetic fields in regions of

the order of a wave-length in dimensions, bounded
by reflecting walls, and of the interaction of these
fields with electrons, ions, or other forms of space
charge. This includes the whole high frequency
side of microwave radar; the' nature of wave
guides and resonant cavities; and the nature of
electronic tubes, such as klystrons and magne-
trons, in which transit time is of fundamental
importance. It also includes such devices as
cyclotrons, synchrotrons, linear accelerators, and
other devices for the acceleration of charged
particles. This article presents some aspects of
this field, but is far from a complete treatment.
It represents essentially a set of lecture notes for
a series of seminars delivered by the writer during
the winter. of 1945—46. It is hoped that the
material eventually will be expanded greatly,
into a full-sized book, to be published by D. Van
Nostrand Company, in the series of publications
from the Bell Telephone Laboratories. Since,
however, this publication will not appear for
some time, it was felt worth while presenting this
abridged and incomplete version, on account of
the great present lack of material on the subject.

During the war there was, of course, a very
great development in the knowledge of micro-
waves. The study of wave guides and resonant
cavities, originated before the war by Barrow,
Chu, Schelkunoff, and others, was carried to a
point of great advancement. The klystron, de-
veloped before the war by Hansen, the Varians,
and others, became much better known and

highly perfected. The magnetron oscillator was
improved, first in England and then in this
country, to the point where it was. a generator of
microwave power of very great capabilities. All
of these developments, particularly as they were
carried on at the M. I.T. Radiation Laboratory,
will be discussed at length in the great series of
books to be issued from that laboratory, and
published by the McGraw-Hill Book Company,
Inc. Other version~ of the same information have
been, or will be, contained in publications from
the industrial laboratories in various periodicals,
such as the Bell System Technical Journal. Even
these publications, extensive as they will be,
represent but a small fraction of the great litera-
ture which exists in the form of classified, or
formerly classified, reports prepared during the
war. With this large program of projected publi-
cation, it is worth asking why the present review
article, and its future enlargement into a book,
are necessary.

The answer would be that the author has
tried to introduce into the field a correlation and
unity which are perhaps lacking in most of the
other work. During the war his work was largely
on magnetrons, both at the M. I. T. Radiation
Laboratory and at the Bell Telephone Labora-
tories, of which he was for a time a staff member.
It became clear in the early stages of this work
that a study merely of the electronics of the
magnetron was incomplete and unsatisfactory;
it was necessary in addition to take into account
the resonant circuit, consisting of resonant cavi-
ties and the attached loads, and to consider the
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reaction of this circuit back on the electronic
motions. This in turn led to the development of
a circuit theory of resonant cavities, and of the
wave guides which form the leads of these cavi-
ties, based on the theory of orthogonal functions,
and op the expansion of Maxwell's equations in
a closed region in terms of such orthogonal
functions. This development gives a logically
satisfying foundation for the whole of microwave
electronics, and at the same time proves to be of
great practical value i.n the design and develop-
ment of magnetrons. Later application to reflex
klystrons has shown that the principles are of
wide importance. Work since the war has con-
vinced the writer that in such problems as the
linear accelerator the methods are of just as
much value. The main purpose of this review
article is to present this unified point of view, .

carrying the application to problems such as the
klystron and the magneton only far enough to
illustrate the general method. The later amplifi-
cation in book form will carry these applications
much farther, and to a wider variety of problems.

The work presented in the present article, of
course, represents contributions from a variety
of workers, and no attempt is made to assign
credit for it. The second chapter, on wave guides,
is to some extent familiar. The orthogonal func-
tion development was worked out, not only by
the author, but by Bethe in the Radiation Labo-
ratory, and presumably by others. The material
of the third chapter, on resonant cavities, was
suggested to the author by a treatment given by
Condon in 1941, but in a, much more incomplete
form. At about the same time that the writer
was working it out in the Radiation Laboratory,
Schwinger was also carrying out very similar
expansions in orthogonal functions, and using
them for similar . purposes, though the two
developments were largely independent. Fesh-
bach, of the Massachusetts Institute of Tech-
nology, was also working along similar lines.
Much of the material of the fourth chapter, on
the applications of the theory of resonant cavi-
ties, was common knowledge at the Radiation
Laboratory, the result of work of Lawson, Rieke,
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and others, though its formulation in terms of
the general theory of resonant cavities, and a
number of the specific applications as well,
originated with the author. The fifth chapter,
application to the electronics of the reflex klys-
tron and the magnetron, likewise represents the
ideas of many, both in this country and in
England, though the author was associated with
all parts of the subject, and wrote extensive
reports, much fuller than is suggested here, on
both the electronic and circuit phases.

It seems worth while pointing out that the
theory of expansion of solutions of Maxwell's
equations in orthogonal functions, which is pre-
sented here, can have useful applications in the
theory of quantum electrodynamics, as well as
in microwaves. The scalar and vector potentials,
as well as the fields, can be expanded in these
orthogonal functions, and the Lagrangian and
Hamiltonian of the field can be set up in terms
of these expansion coefficients. By this means we
can set up a classical relativistic Hamiltonian
theory of the interaction of fields and matter in
an arbitrary cavity, which can then be carried
over into quantum theory in a manner similar to
that of Dirac's radiation theory. This frees that
theory from the requirement that the field be
expanded in plane waves, and provides a much
more general form of expansion. While this does
not seem to remove any of the outstanding
difficulties in quantum electrodynamics, it yields
a new point of view which may be useful. The
author hopes to develop this application in a
later paper.

Several books have appeared in the last few
years, treating the pre-war status of the subject
satisfactorily. Among these we list the following:

J. G. Brainerd, G. Koehler, H. J. Reich, and L. F.
Woodruff, Ultra-High Frequency Techniques (D. Van
Nostrand Company, New York, 1942).

S. Ramo and J. R. Whinnery, Fields and Waves in
Modern Radio (John Wiley and Sons, Inc. , New York,
1944).

R. I. Sarbacher and. W. A. Edson, Hyper and Ultrahigh
Frequency Engineering (John Wiley and Sons, Inc. , New
York, 1943).

, S. A. Schelkunoff, Electrornagneti c Waves (D. Van
Nostrand .Company, New York, 1943).

J. C. Slater, Microwave Transmission (McGraw-Hill
Book Company, Inc. , New York, 1942).

J. A. Stratton, Electromagnetic Theory (McGpaw-Hill
Book Company, Inc. , New York, 1941.).
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The book of Sarbacher and Edson contains a
very complete and excellent bibliography of the
pre-war literature of the whole field. Since it is
so complete, it seems unnecessary to give refer-
ences to that literature here. Various review and
other articles have appeared since the books
mentioned above. Among these may be men-
tioned the following:

E. U. Condon, "Principles of Microwave Radio, " Rev.
Mod. Phys. I4, 341 (1942). This article presents a point
of view similar to that of the present one in the matter of
the oscillations of cavity resonators, but does not carry
the application to self-excited oscillators as far as we do
in the present article.

J. B. Fisk, H. D. Hagstrnm, and P. L. Hartman, "The
Magnetron as a Generator of Centimeter Waves, " Bell
Sys. Tech. J. 25, 167 (1946). This is an excellent review
of the rnagnetron development during the war, treating
both the theoretical and the practical side, and can well
be used to supplement the discussion of magnetrons in
the present article.

J. R. Pierce, "Retlex Oscillators, " Proc. I.R.E. 33, 112
(1945).

E. L. Ginzton and A. E. Harrison, "Reflex-Klystron
Oscillators, "Proc. I.R.E. 34, 97 (1946).These two articles
present information on reflex klystrons which supplements
the treatment of the present article, but they are not
complete reviews in the sense that the article of Fisk,
Hagstrum, and Hartman is in its fie1d.

The references which we have just enumerated
will be sufficient to allow the reader rather easily
to become acquainted with the published litera-
ture t,n the field. The main references, however,
should properly be to the unpublished material
which is scheduled to come out within a year,
principally the Radiation Laboratory Series, and
they will contain material far more complete
than anything that has appeared in print so far. .

I. THE FOUR-TERMINAL NETWORK AND THE
TRANSMISSION LINE

1. Definition of the Four-Terminal Network and
the Transmission Line

The principles of microwave electronics can be
developed entirely without using the theory of
lumped constant circuits, and we shall so develop

I ii Zll'4+Z122n+1

V~+I. = —Zg2z„—Z2gz~+ I..
(I.2)

them. Nevertheless, the results are so similar to
those of ordinary circuits that a knowledge of the
fundamentals of circuit theory is an excellent
background for understanding microwave cir-
cuits. For that reason we start by discussing a
number of theorems in circuit theory. First we
consider a fundamental starting point, the theory
of the four-terminal network. This is a collection
of circuit elements whose nature we do not have
to inquire into, except that it is provided with
two input and two output terminals. Let V~, V2

be the voltages across the two sets of terminals,
and z~, z2 the currents Howing, the currents being
positive when flowing in the direction of the
arrows in Fig. 1, and the voltages positive when
the arrows point in the direction of decreasing
voltage. Then if the network is linear, the
voltages will be linear functions of the currents:

&t =Zitst+Zt222,

V2 =Z2121+Z2222i

where it can be proved that Z~2 =Z2~, the so-
called reciprocity relation. The Z s are quantities
of the nature of impedances. By a transmission
line we mean a set of many identical four-
terminal networks, connected together. Each one
is governed by equations like (I.1). For sym-
metry, however, it is more convenient to choose
the convention of signs differently. As in Fig. 2,
we choose all voltages to be positive when the
upper terminal is at higher voltage, all currents
to be positive when they How to the right in the
upper terminals. That is, the sign of the voltage
at the right-hand terminals of a network is
reversed with respect to the convention of (I.1),
but all other quantities are unchanged. In this
case, with the Z's meaning the same as above,
we have the following relations between the
currents and voltages at the nth and (n+1)st
terminals:



J. C. SLATER

Our main problem will be to discuss the solutions
of (I.2); in the process of discussing the trans-
mission line, we shall find the properties of a
four-terminal network as a special case of a line
of one element.

V„= Vpe&", i„=ipe&", (I.3)

where Up, ip, y, are constants. Substituting in

(I.2), we find at once

Uo ——(Z»+Z»e&)io ———(Z»e—
+Z22)$Q (I.4)

Eliminating io from (I.4), we have a quadratic
for e~,

2. Exponential Solution for Voltage and Current

The family of Eqs. (I.2), taken for all the
values of n concerned in the transmission line,
which we assume for the moment to be unlimited
in both directions, can be solved by a simple
assumption: we let both V and i„vary expo-
nentially with n. That is, we assume

real part n positive, the other with a negative.
Henceforth we shall denote only that solution
whose n is positive as p, and shall explicitly call
the other one —y. Then we see at once that the
solution involving e & represents the wave propa-
gated to the right, that involving e& the wave
propagated to the left, since the wave must be
attenuated in the direction of propagation. The
equations above determine not only y; they also
determine the ratio V„/i„ for either of the solu-
tions we have found. Finding V„/i„ from (I.3)
and (I.4), we have two alternative expressions;
adding and dividing by two we get a symmetrical
form,

~11 ~22
~Z&2 sinh y= i azo, (I.S)

2

where we define

~11 ~12
Zo= —Zi2 sinh y.

t'Zii+Z22)
e'&+) ~e'+1=0,z„

whose solutions are

(I.5) In these expressions, the upper sign goes with
the solution e&, the lower sign with e &.

3. The Terminated Line

Zii+Z22 t'Zii+Z22&
(I 6)

2Zi2

In the preceding section, we have found two
solutions of our problem:

We readily find that the product of the two
solutions of (I.6) is unity, so that the two are
reciprocals of each other, and the corresponding
values of y are the negatives of each other.
Remembering that all our quantities of course
must be multiplied by the time variation e&"', we
see that our two solutions, corresponding to the
two signs for y, represent traveling waves, the
imaginary part of p corresponding to a propaga-
tion constant, the real part to an attenuation
constant; the two solutions represent waves
propagated in opposite directions, so that one
may be considered the direct wave, the other the
reflected wave. If we write the complex number

in terms of its real and imaginary parts,

v=~+iP,

then we shall have two solutions, one with the

V =(I+Z )e &" i =e &

V„=(I —Zg)e&", i„=e&" (I.10)

In these expressions, we have seen that the first
corresponds to a wave propagated toward the
right, the second to a wave propagated toward
the left. The general solution can be built up as
a linear combination of these two. With an
infinite line, any linear combination is a possible
solution. On the other hand, if the line is only
semi-infinite, consisting of sections stretching
indefinitely to the left from the 4th terminals,
but is terminated with an impedance ZI, across
those terminals, the wave traveling to the right
can be treated as an incident wave, that traveling
to the left as a reflected wave, and we find that
the amplitude of the reflected wave is fixed if
that of the incident wave is known. Let us
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assume a solution

V„=A (I +Zo) e 7"—+ B(l Z—o)e'",
(I 11)

i„=As &"+Be&

where A, j3 are coefficients to be determined.
Their ratio can be found from the fact that
Zq= Vq/iq T.hus we have

i yz, + (l —z,)(B/A)" ~

Zk
1+(B/A) e'&"

1 —(B/A )e'&"
=t+Zo (I.12)

1+(B/A) s'&"

Solving (I.12), we have at once

Zo+I —Za
g2yk

A Zp —f+ Zy
(I.13)

4. Impedance of the Terminated Line

We now ask the question, what is the im-

pedance V /i„at the eth terminals, if a line is
terminated by the impedance Z& at the kth P

To find the answer, we need merely take the
ratio V„/i„ from (I.11), substituting for B/A
from (I.13).We find easily, denoting V /i„by Z„,

(Zo sinh y(k —n) + (Z~ I ) c—osh y(k —n) qz„—I =Zo!
~

~

(Zocosh y(k —n)+(Zq —t) sinh y(k n))—
(I.14)

z —I —zo= ——8 ~n )
A Z„—I +Zg

(I.16)

where the second form is derived as is (1.12).
The quantity r„ is the negative of the ratio of the
reflected current to the incident current, at the
nth terminals. Its value for n=k is a measure of
the reflection coefficient at the terminal imped-
ance Z~. It is convenient to denote r„as the
complex reHection coefficient, in general. |A'e

then have
rn

e '~&~ "'

Z„—f —Zp

Z„—I +Zo

(Zg: —I —Zo)
&
—~~(a—n)

Ez~ —I+zo&

(I.17)

There are two interesting special cases: Zk —f' = 0,
and Z~ —I = ~. If I =0, a case which we often
meet, the first corresponds to a short circuited
line, and the second to an open circuited line.
In these two cases we have

Z„—I'=Zo tanh y(k —n),
or

Zo coth y(k —n), (I.15)

respectively. Equation (I.14) expresses the prop-
erties of the section of line between the nth and
the kth terminals as a transformer: If an imped-
ance Z~ is connected across the kth terminals,
we find that the line transforms it into an im-
pedance Z„across the nth terminals. This rela-
tion can be expressed in another form which is
sometimes more convenient, by introducing a
quantity r„by the definition

Equation (I.17), which is equivalent to (I.14),
is often more convenient, on account of its very
simple dependence on n. It tells us that each
section of the line which we go through multiplies

the reHection coefficient by the complex factor
e '&. It may be used, for instance to give a
simple solution of the following problem. In
Section 1, we have characterized a single four-

terminal network by three coefficients, Z», Z»,
and Z~~. From (I.6), (I.9), we can write these
in terms of y, I, and Zo

I

Z] y ='Zo coth p+ t, Z22 =Zp coth p —I,
(I.18)

Z~2 = —Zo csch y.

But now suppose we have, not a single network,
but s identical networks connected together.
They still form a four-terminal network, and
can be characterized by new coeAicients, which

we may write as (Z~~)„(Z~2)„(Z~~)., which,
substituted into equations like (I.1), would give
the relationship between the voltage and current
at the input and output terminals of the compo-
site network. It would be a considerable task to
find these coefficients by straightforward manipu-
lation. However, we note from (I.17) that the
only difference between the transformation of
the complex reflection coeAicient produced by a
single section of line, and by s sections, is that p
is multiplied by s in the second case. Thus, by
retracing all our steps, this must be the only
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change introduced into (I.18), so that we have

(Z11),=Zp coth Vs+ I,

(Z22) Zp coth ys —f, (I.19)

(Z12), = —Zp csch ys.

We may then write equations, similar to (I.2),
for the relation between the currents in the nth,
arid the kth, terminals of our line

V„=(Z11) 2i„+(Z12)„1,2(„

Vg = —(Z12) n—2&n (Z22) n—222,
(I.20)

Z„= (Z11)„2— (Z12)n-1

Z1.+ (Z22) n-1.

(Zll) n—2' + (Zl1) n—1(Z22) n 2(Z12) n 1c— —
. (I.21)

Zg, + (Z22) „g
The two forms of (I.21) are often used for
expressing the transformer properties of a four-
terminal network. They are equivalent to (I.14)
and (1.17), as can be shown by straightforward
manipulation.

S. Bilinear Transformations

In (I.14) and (I.21), we have two forms of the
relation between the terminal impedance ZI, of a
finite line of n —k sections, and the transformed
impedance which we see across the nth terminals.
Both equations express Z„as a bilinear function
of Z~„ that is, as a function of the form

where the Z's are given in (I.19), substituting
n —k for s. If the kth terminals are connected by
an impedance Z~, we have V~=Zl, iI, . Making
that substitution, and solving for the impedance
Z„= V„/ 2see nat the nth terminals, we have

sz+As+Az+BB = 0, (I 23)

where a bar indicates the complex conjugate,
represents a circle. For if we let z=R+ jX, this
1s

has three parameters, which can be uniquely
determined from the impedance coeScients. We
observe that (I.22) expresses a transformation
of the complex number s into the complex num-
ber w. If we set up a complex plane for s, another
for m, the transformation maps each point of the
s plane onto the m plane, or vice versa. We can
prove in a trivial manner that the inverse of a
bilinear transformation (that is, the solution for
s in terms of w) is again a bilinear transformation,
so that the mapping of either plane onto the
other is of the same nature. We can furthermore
prove that the result of making two bilinear
transformations in succession is itself a bilinear
transformation. We now notice that since the
function (I.22) is analytic, the mapping must be
conformal, by fundamental principles of the
theory of functions of a complex variable. That
is, the shape of a small figure in the s' plane is
preserved in the corresponding figure in the m

plane, though the scale in general will change,
and the figure will be rotated. As a result of
this conformal nature of the transformation, if
two lines cross at a given angle in the s plane,
the transformed lines will cross at the same angle
in the m plane.

We next prove a property peculiar to the
bilinear transformation: any circle in the s plane
is mapped by the transformation snto a circle in

the m plane, and vice versa. To prove this, we
note that there are two simple ways of expressing
the equation of a circle. First, an equation

w= (as+5)/(cs+d), (I.22)
R'+X'+ (A+A)R+ j(A A) X+BB=0—, (1.24)

where the complex number m stands for Z„, z for
ZI„and a, b, c, d are complex constants which
have different meanings in the two cases. The
properties of bilinear transformations are so
important in our whole theory that we shall
study them in some detail. We note in the first
place that in any bilinear function like (I.22),
we can divide numerator and denominator by c,
so as to reduce the coefficient of s in the denomi-
nator to unity, as in (I.21). Thus such a function

in which A+A, j(A —3), and BB are all real
numbers, and this is obviously the equation of a
circle in the s' plane, in which R and X are
coordinates. Secondly, an equation

w= C+ pe'~, (I.25)

where C is a complex constant, p a real number,

g a real number, represents a circle in the w

plane, with center at C, radius p, provided p
takes on diA'erent values to represent parametri-
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FIG. 3. Circles passing through characteristic irnpedances,
in bilinear transformation.

cally the v'arious points of the circle. Let us now
represent m in this way, eliminate p, and show
that the resulting equation in s represents a
circle. We have

az+b ez+ b
pe&~ = ——C, pe '& = —C. (I.26)

cz+d cz+d

Multiplying these together, p cancels out; ration-
alizing the denominator, we find at once that the
equation for s is of the type described above, so
that we have a circle in the s plane, resulting
from transforming a circle in the m plane. As
another mathematical theorem regarding the
bilinear transformation, we shall prove that there
are two particular values of s which are trans-
formed into themselves, or remain invariant
under the transformation. To find these, we need
only require tha. t w=z in (I.22). Then we have
cz'+ (d —a) z —b = 0, a quadratic for s, whose
solutions are

(g d)2 b
~

i I+- .
2c 0 2c ) c

(I.27)

The physical meaning of these values, in our
case, is simple. They represent the impedances
which must terminate the line, in order that the
impedance across the nth terminals should be

. the same as across the kth terminals. That is,
they must be just the values given by (I.8),
characteristic of having only a direct or only a
reflected wave. We find, in fact, that if we
substitute the proper coeiticients into (I.27) from
either (I.14) or (I.21) we come out with just the
values (I.8). These values are called the char-
acteristic, or iterated, impedances of the line.

6. Graphical Discussion of Bilinear
Transformations

The easiest way to visualize a bilinear trans-
formation is to consider how certain lines in the
s plane are transformed into corresponding lines
in the m plane. Suppose we consider the two
characteristic impedances, and the family of
circles passing through them, in the s plane, as
in Fig. 3. The characteristic impedances trans-
form into themselves in the m plane, and any
circle transforms into a circle. Thus each circle
of this family must transform into another circle
passing through the characteristic impedances,
or into another circle of the same family. Con-
sider similarly the family of circles orthogonal
to these, in the s space. Each one of these must
transform into another circle in the tv space,
which must by the conformal property of the
transformation also be orthogonal to the family
of circles passing through the characteristic
impedances. In other words, each circle of this
second family transforms into another circle of
the same family. We can understand the exact
nature of the transformation better if we consider
the complex reHection. coefficient, defined as in

(I.16). That is, if zi, s2 are the two characteristic
impedances, the two solutions of (I.27), we
define

r = (s—si)/(s —z,), (I.28)

or, considering the actual impedances, we define

(Z f Zo—) /(Z—„I+Zo—) (I.2. 9)

This is again a bilinear transformation. We note
that when s=zi, or Z„=I+Zo, r or r„ is zero,
and when z=z~, or Z„=I —Zo, r or r„ is infinite.
The circles passing through s~ and s2 in the z

plane then transform into straight lines through
the origin in the r plane, and the orthogonal
family of circles transform i@to concentric circles
with the origin at the center. We may call such
a transform of the impedance space a circl'e

diagram. The bilinear transformation (I.14) or
(I.21), when exhibited in the circle diagram,
reduces to (I.17), That is, it corresponds to a
multiplication of r& by the constant factor e '&'.

The medulus of this factor corresponds to a
change of scale along the radii, and the phase
gives the rotation. Having found this interpreta-
tion of the bilinear transformation in the circle
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diagram, we can go back to the impedance plot,
and see that the change of scale, which arises
from the real part of y, corresponds to a process
of expansion of scale around one characteristic
impedance, and a shrinking around the other,
while the' rotation corresponds to a process in
which one of the circles surrounding one of the
characteristic impedances transforms into itself.

I

7. Special Types of Networks and Lines

Let us now consider several special cases of
networks and lines and their corresponding bi-
linear transformations, both in the impedance
plane and the circle diagram. First we consider
a lossless network, containing no resistances. In
this case, a reactance connected across the termi-
nals k must lead to a reactance seen across the
terminals n We c. an draw certain conclusions at
once from this fact, using (I.21). If Zi is infinite,
or the network is. open circuited, Z„must be
pure imaginary; thus (Zii), must be pure imagi-
nary. Similarly, open circuiting the terminals k,
we find that (Zg2). must be imaginary. Short
circuiting the terminals k, Z„must be imaginary,
or (Z»)P/(Z2~), must be imaginary, from which

(Zi2) 2 must be real. An impedance Zi, with a
positive resistive component must transform to
a Z„with a positive resistive component; thus
(Z»), ' must be negative, and (Zi2), is imaginary.
Ndw we consider the transformation geometri-
cally. Any point on the axis of ordinates in the
Zy plane must transform into another point on
this axis in the Z„plane, for all pure reactances
are found on the axis of ordinates. There are
only two ways in which the bilinear transforma-
tion can carry a straight line into itself. The
6rst is that in which the straight line is the
perpendicular bisector of the line joining the
characteristic impedances, and in which the
transformation in the circle diagram is a pure
rotation, without change of scale. That is, the
resistive parts of s~ and s2 are equal and opposite,
so that I in (I.8) is pure imaginary, and Zo is
real. Equation (I.9) then tells us that sinh y 'is

pure imaginary, or that y is imaginary, equal to
jP, and the factor e '&' becomes a pure rotation
in the cirde diagram. The other case arises when
the two characteristic impedances are both
located on the imaginary axis. In that case both
I and Zo are pure imaginary, so that sinh y and

y are real. In that case the transformation is the
type which expands the scale around one char-
acteristic impedance, contracts it around the
other. The first of these two types of lossless
networks is that found for instance in an ordinary
section of wave guide or other transmission line,
where the points in the circle diagram rotate on
passing through a length of line. The second is
-that met in a wave guide beyond cut-off, in
which all impedances in the Z~ plane tend to
shrink toward the characteristic impedance in
the Z„plane.

The general case of a network with losses
cannot be handled in such a simple way. The
general bilinear transformation requires three
complex constants to describe it, which we may
take to be the values of the two characteristic
impedances, and the value of y. If the network
is 'passive, that merely tells us that every value
of Z& in the right half plane (that is, every
impedance with a real resistive component) must
lie in the right half plane of the Z„space. In
general, however, it will transform into less than
the whole half plane. The axis of ordinates in
the Z~ plane must transform into a circle in the
right half plane in the Z„space, so that all

physically allowable values of Zj, will transform
into the interior of this circle in the Z„space.
We find, in general, that the greater the loss in
the network, the smaller is the circle in the Z„
plane. Thus an attenuator in a line results in

seeing almost the same impedance, regardless of
what is attached to its other end.

8. Transformation of Resistance and Reactance
,Coordinates

In the general network with losses it is not
particularly convenient to use the family of
circles which we have so far considered, for the
line of zero resistance does not form one of these
circles. It is often convenient to visualize the
transformation by drawing in the Z„space the
transforms of 'the lines A~=constant, Xi=con-
stant, or the rectangular coordinates in the k

space. These form two orthogonal families of
straight lines; they then transform into two
orthogonal families of circles, as we see in Fig. 4.
The circle R~ =0, bounding the region of positive
resistances, forms a member of one of the families.
The point Zy, = ~ must lie on this circle, and each
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FIG. 4. Transforms of resistance and reactance coordinates,
for general transformation.

of the circles X~ =constant must go through this
point, and must cut the circle 8~=0 orthogo-
nally. Each circle R& =constant must also go
through this point, and must be tangent to the
circle R~=O there. Thus the plot of lines of
constant R~ and constant XI„ in the Z„plane,
must have the form shown in Fig. 4. This, it
must be emphasized, is perfectly general, holding
for an arbitrary network with losses. The three
complex constants characterizing the network,
in this way of exhibiting it, may be taken to be
the coordinate of the center of the ciI'cle; the
radius, and orientation of the point of infinite
impedance Zq (the modulus and phase of a
complex number); and the location, within the
circle, of that characteristic impedance which
lies within.

9. The Continuous Transmission Line

A continuous transmission line, such as a
parallel wire line or a wave guide, can be con-
sidered as the limiting case of the type of line
we have been considering, as the separate ele-
ments become smaller and smaller, and closer
and closer together. * We may get the relations
for this continuous line easily by passing to the
1imit from the various formulas which we have
developed. In such a continuous line, the voltage
and current are given as functions of distance
along the line by formulas like (I.11), in which
we need make only two . modifications: first,
such lines are symmetrical, one end being
equivalent to the other, which means that f is
zero; secondly, we must let n refer to the distance

For a discussion of this limit, see J. C. Slater, 3ficro-
mave Transmission (McGraw-Hill Book Company, ' Inc. ,
New York, 1942), pp. 17-21.

measured along the line, which would be the
case if we regarded each unit length of the line
as one-of the networks of our previous discussion.
In the reference quoted above, it is shown how
the characteristic impedance Zo and the propa-
gation constant y can be found from distributed
constants of the line, by equations which repre-
sent the passage to the limit of (I.6) and (I.9),
but we shall not need to use those equations.
With the small changes noted, the whole discus-
sion of Sections 4—7 applies to continuous lines.
Thus, in particular, we can introduce a reHection
coefficient, by (I.16), equal to (Z —Zo)/(Z+Zo),
where Z is the impedance at an arbitrary point
of the line, and as in (I.17), the reHection
coefficient is multiplied by a factor e—'&' if we
travel backward a distance s along the line. We
can regard a length s of transmission line as a
transformer, with transformer coefficients given
by (I.19), setting (=0.

We are often interested in the lossless line. In
that case, as we saw in Section 7, there are two
possible cases. First, we can have Zo real, y pure
imaginary. In that case there is real propagation
along the line, with no attenuation, and the
elfect of traveling along the line a certain distance
is to rotate through a certain angle in the circle
diagram, a rotation of 360' corresponding to a
half-wave-length. The rotation is positive, or
counter-clockwise, as we go away from the
generator toward the load, or negative as we go
toward the generator. In the impedance plane,
we may set up circles like those in Fig. 5. The
circles surrounding the characteristic impedances
represent circles on which the magnitude of the
reHection coe%cient r is constant, and the circles
passing through the characteristic impedances
are circles of constant phase of reHection coefh-
cient. Traveling along the line toward the gener-
ator, we travel in a negative direction about
the first family of circles. Once in a half-wave-
length the impedance goes through a maximum
real value (we shall presently show that this
corresponds to the standing wave maximum),
and a quarter-wave-length further along it goes
through a minimum (the standing wave mini-
mum). The axis of ordinates forms a limiting
case of these circles, corresponding to the case
where the terminal impedance is purely reactive.
In that case, the maximum impedance is infinite,
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FiG. 5. Circles of constant reRection coe%cient and phase,
in the impedance plane.

the minimum is zero. All real loads lie in the
right half plane, corresponding to positive re-
sistive components. Correspondingly, in the circle
diagram, as in Fig. 6, all real loads correspond to
reflection coefficients within a unit circle, the
circle into which the axis of ordinates in the
impedance plane transforms. To see this, we

need only notice that if we set Z = 0 or Z = ~ in

the expression r = (Z —Zo)/(Z+Zq), we' find
r= —1 and +1, respectively, so that these are
two points on the circle representing a purely
reactive load. Corresponding to Fig. 4, we can
draw lines of constant resistance and constant
reactance in the circle diagram. Since we have
just seen that the point Z = ~ transforms to the
point r=1, the circles of constant X all pass
through this point, and the circles of constant R
are tangent to unit circle there. This diagram
can be used as a very convenient way for finding
the transformation produced by a length of
lossless line on a given terminal impedance. If
the lines of constant R and X are properly
labeled, we can at once look up on the diagram
the point corresponding to a given terminal
impedance. If we choose, we can find the
modulus and phase of the reflection coefficient,
by measuring the radius and phase angle of the
radius vector out to the corresponding point,
from the center of the circle. To travel a given
distance along the line, we then merely rotate
the radius vector through an appropriate angle,
and read off the transformed values of R and X.
This construction is made the basis of a con-
venient rotating slide rule for calculating im-

pedances.
The other case of a lossless transmission line

is that in which Zo is imaginary„p real. This
corresponds, for instance, to a wave guide beyond

cut-off. There is only attenuation, no propagation,
down the line, and the effect of traveling along
the line is to shrink the scale in the circle dia-
gram, without rotation, so that after traveling
such a distance down such a line, no matter
what the terminal impedance may be, the im-

pedance seen looking into the guide is very close
to the characteristic impedance, which we re-
member is purely imaginary. In Fig. 7, showing
the impedance plane, the e8ect of passing down
the line away from the load is to travel along
the circles passing through the characteristic
impedance, as shown by the arrows. In the circle
diagram, the role of R and X is interchanged
with respect to the case of propagation on 'the

lossless line. The horizontal axis becomes the
line R=O, the positive resistances lying in the
lower half plane, and the unit circle becomes the
line X=O, so that we need the area outside as
well as inside the unit circle to describe all real
terminal impedances. We can again use the circle
diagram to represent the effect of a length of
line: traveling down the line a certain distance
away from the load shrinks the radius vector by
an appropriate factor, without rotation, so that
as we have mentioned before all impedances
approach closer and closer to the characteristic
impedance as the length of the attenuating line
becomes greater.

10. Standing Wave Ratios

The case of a lossless continuous line is a very
important one practically, for wave guides are
used in practice for measuring standing wave
ratios, and hence terminal impedances. We,
therefore, next consider the definition of standing
wave ratios in a continuous lossless line in which

Z=o )
Z=Zo I .Z, c (gl

X=0

R = CONSTAI&T

A=g
Cb

FiG. 6. Circles of constant resistance and reactance, in
the reflection coe%cient plane.
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there is real propagation. The measurement of
standing wave ratio involves a measurement of
voltage as a function of distance along the line.
What essentially is done is to put a very high
impedance shunt across the line, and measure
the power generated in that shunt; the power
will be the square of the modulus of the voltage,
multiplied by the conductance of the shunt.
From (I.11), the voltage as a function of distance
n along the line will be

V =Z (Ae & Be&—") =Zo(Ae 't'" Be'&—") (I.30)

Introducing the reHection coefficient

FIG. 8. Diagram for interpreting standing wave ratio.

points, as we have mentioned earlier, are the
standing wave maxima, or points at which maxi-
mum power is delivered to the standing wave
detector; and the minimum length comes when
r is real and negative, when its value is 1 —

l
r l,

and these points are the standing wave minima.
We now define the standing wave ratio in voltage
as the ratio of maximum to minimum voltage

r = —(B/A) e"t'" (I.31)

from (I.16), we see that the voltage can be
written

1+lrl
SWR(voltage) =— (I 34)

V„=ZOAe» (1+r), (I.32)

lv. l
=z. lAl (1+r) (I.33)

and the magnitude of the voltage is proportional
to l(1+r) l. In Fig. 8 we see the locus of the
points 1+r as we go along the transmission line.
It is clearly a circle of radius

l
r l, with center at

the point 1. The radius vector from the origin
out to this circle then has a length proportional
to the voltage, so that the square of its length i.s
proportional to the power delivered to the shunt,
as in (I.33). It is now clear that the maximum
length of this vector comes when r is real and
positive, when its value is 1+

l
r l, so that these

FIG. 7. Transformation produced by lossless line
beyond cut-off'.

so that the power delivered to the shunt is
proportional to

We furthermore define the standing wave ratio
in power as the ratio of maximum to minimum
power

(I+ lr I ) '
SWR(power) =

l (I.35)

?t is often convenient also to define a standing
wave ratio in decibels, as the number of decibels
by which the power delivered to the stariding
wave detector at standing wave maximum must
be attenuated to make it equal to the power
delivered at standing wave minimum. We h'ave

SWR(db) = 10 Iogyp SWR(power)
=20 log~o SWR(voltage). (I.36)

It is now clear that by a measurement of the
standing wave ratio we can find the magnitude
of the reHection coefficient, lrl. Also from the
position of the standing wave minima and max-
ima along the line, we can find the phase of the
reHection coefficient: in the circle diagram, r has
a phase angle of zero at standing wave maxima,
and of 180' at standing wave minima. Thus a
measurement of standing wave ratio and position
of standing wave minimum allows us to find the
impedance seen across any arbitrary plane of the
continuous transmission line. A given standing
wave ratio corresponds to a given radius in the
circle diagram, as we see from (I.34), and the
phase angle of rotation corresponding to a given
plane is simply found by measuring the distance
from standing wave maximum to the given plane,
and noting that a half-wave-length rotates by
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360'. It is interesting to note that the impedance
at standing wave maxima and minima is easily
found from the standing wave ratio. Solving the
equation r = (Z —Zo)/(Z+Zo) for Z/Zo, we have

C J

FiG. 9. Four-terminal network with transmission lines.

At standing wave maximum, r =
~

r ~; thus, com-
paring with (I.34), we see. that Z/Zo at standing
wave maximum equals the standing wave ratio
in voltage. At standing wave minimum, r = —

~

r ~;
thus Z/Zo at standing wave minimum equals
the reciprocal of the standing wave ratio in
voltage. We note, then, that the characteristic
impedance Zp is the mean proportional between
the values of impedance at standing wave mini-
mum and maximum.

11. Transformers between Transmission Lines

In many microwave applications, two sections
of wave guide are connected together by a lossless
section of some sort, acting as a transformer
between the two guides. It can be merely an
iris or a change of cross section, or a much more
complicated object, such as a resonant cavity
with two separate wave guide outlets. The corre-
sponding circuit is a four-terminal network, with-
out losses, with a continuous transmission line
connected to each of its pairs'of terminals, as
shown in Fig. 9. We can get interesting and
valuable results by considering the impedance
transformation between points 1, 2, arbitrary
points of the two guides. The whole circuit
between 1 and 2 is, of course, itself a four-
terminal network, which can be handled by the
same methods we have already employed. We
shall, however, write the impedance transforma-
tion in a different form from what we have used
before. In the first place, we shall make a trans-
formation, not of the impedance, but of the
reHection coefficient. We shall set this up, how-
ever, in a way which differs essentially from that
used, for instance, in Eq. (I.17). In that case,
we defined the reHection coefficient with respect
to the characteristic impedances of the whole
network between terminals 1 and 2. Here, on
the contrary, we shall define r1 as the reHection
coefficient with respect to the characteristic im-
pedance of the transmission line to the left of the
network, and r2 as the reHection coefficient with

respect to the characteristic impedance of the
line to the right. That is, if Zp1, Z02 are the
characteristic impedances of these two lines, we
have

Z1 Zpl

Zl+Zol
r2—

Z2 Z02
f

Z2+Z02
(I.38)

(I.39)

where p~, p2, and D are three real constants. Let
us check that this transformation has the re-
quired properties. First, it is clearly a bilinear
transformation, with three independent param-
eters. Next we must show that it transforms
unit circle into unit circle. If r2 is a point on
unit circle (that is, if its magnitude is unity),
then clearly r2e &», which simply amounts to the
same vector rotated through angle —@2, is also
on unit circle; similarly if r1 is on unit circle,
r1e &» is on unit circle. We must then merely
prove that if r2 is on unit circle, (D+r2)/(1+Dr2)
is also on unit circle. We note first that the

where Z1, Z2 are the impedances at the two
points. We now know that there must be a
bilinear transformation conriecting Z1 and Z2.
Since r1 and Z1, arid r2 and Z2, are connected by
the bilinear transformation (I.38), we know that
r1 and r2 are connected by a bilinear transforma-
tion. Furthermore, the transformer is lossless;
thus a point on the unit circle in the r2 space
must transform into a point on unit circle in the
r1 space, since the unit circle in each case repre-
sents a pure reactance. A lossless transformer is
characterized by three parameters, as we saw for
instance in Section 7, where for the lossless case
the three parameters Z11, Z12, and Z22, which in
the general case are complex and hence amount
to six independent numbers, are pure imaginary.
We shall now set up a bilinear transformation
between r1 and r2 which satisfies all these condi-
tions, and which thus is a general expression of
the transformation. This is
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&i' = (D+r2')/(1+Drm').

Ke can easily prove from this that
I

1+ri' 1+D 1+r2'

i —ri' i —D 1 —r2'

(I.40)

(1.41)

FK'. 10. Mu)tiplication of impedance by real constant, in
reRection coefficient plane.

points ~1 are invariant under this transforma-
tion: if r2= &i, rl= &i also. Thus the transform
of unit circle in the r2 space, into the r~ space,
passes through these two points. Furthermore,
the transformed circle in the r& space is' sym-
metrical about the axis of abscissae. We can see
this by noting that the transforms of the points
&j in the r2 space are (D&j)/(1&jD) .in the ri
space, which are complex conjugates of each
other, and hence are located symmetrically with
respect to the real axis. This fixes the transform
of unit circle into the r~ space uniquely, and
shows that it is again unit circle. The transfor-
mation (D+r2)/(1+Dr2) is in fact the sort in
which there is a motion along those circles
passing through the fixed points of the transfor-
mation (which in this case are &1), without
rotation, as shown in Fig. i0; such a transforma-
tion must always carry the circle passing through
the two fixed points, and with its center at the
point midway between the two fixed points, into
itself. Now that we have justified the form
(I.39) for the transformation, we can give it a
very interesting physical interpretation. In the
first place, r~e '&1 represents the reHection coeffi-
cient, not across the point 1, but across another
point of the same transmission line; for we re-
member that the reHection coefficient is multi-
plied by the factor e '&&' in moving a distance s
toward the generator. We may call the reHection
coef6cient across this point r&', which is equal to
r ie &&1. Similarly r~e &» is the reHection coefficient
r2' across another point in the other transmission
line. The transformation between these quanti-
ties is then

But by (I.37), this is equivalent to

Zi' 1+D Zg' fZoi 1+D)
, or Zi' ——

~

IZ2'. (I.42)
Zoi 1 D—Zou KZo2 1 D)—

In other wordk, between the points i' and 2', the
transformation is one of multiplying the imped-
ance by a real constant. We have then the
valuable general theorem: if we have any type
of lossless network, with two outputs in the form
of transmission lines, we can find sets of points
on each of the lines, such that the impedance
across one of the points is a real factor times the
impedance across the other.

12. Determination of Transformer Constants

It is often very important to determine experi-
mentally the three constants characterizing a
lossless transformer connecting two transmission
lines, such as we have just been discussing.
There are several ways to do this. For example,
we may place the characteristic impedance Z02
across the terminals 2, or match the right-hand
line. Then r2 will be zero, and we shall have
ri'=De~'&1, so that measuring the standing wave
ratio and position of standing wave minimum in
the left-hand line, we measure D and pi. Simi-
larly we can match the left-hand line and measure
the standing wave ratio and position of standing
wave minimum in the right-hand line. We must
be careful how we apply the formulas to this
case, for we have set them up only for the case
where the power is Howing to the right; but it
turns out, as we should expect, that from this
measurement we can determine D and @2. An
experimental check is to see whether the values
of D obtained in the two cases agree. This
method of finding the constants, though some-
times convenient, is not ideal, in that both
transmission lines have to be equipped so that
we can insert matched loads into them, and so
that we can measure standing waves in them. .

Often a more convenient measurement is that of
inserting a short circuit (that is, using wave
guides, a plunger) at an adjustable point along
the right-hand transmission line, and measuring
the position of .standing wave minimum in the
left-hand line as a function of the plunger posi-
tion. Let us analyze this experiment. We assume
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e—2 jP2d2
2 (I.43)

the short circuit to be located a distance d2 to
the right of the point 2. Then we shall have

1 —r1e &» 1 —r2e &&'

+is1+r,e & «1'+r2e &
«' (I.47)

transformer equations in either of the forms

where P2 is the value appropriate to the right-
hand line. In this case we can show easily that

Z2'
=j t»

I

—+P2d~ I

1+r,e '«1+r~e &
«'

+jx
r1e '» 1 —r2e &&'

(I.48)

Z02
(I 44)

In the left-hand line, there will be an infinite
standing wave ratio, or a reHection coefficient of
unit magnitude, since we shall be seeing a purely
reactive impedance. Thus at a standing wave
minimum the impedance will be zero, or there
will be an eAective short circuit. Let a standing
wave minimum be located a distance d1 to the
right of the point 1. Then by an argument just
like that used above we have

Zl (4i=jt»
I +Pidi—I.Z„&2 )

(I.45)

We then have, as a result of (I.42),

(A l 1+D (42t»
I

—+p~d~ I
= t»

I +P2d2 —
I

(I.46)
1 —D &2 i

13. A Lossless Transformer as a Shunt or
Series Reactance

In Section 11 we have shown that a lossless
transformer between two transm'ission lines can
be described as an impedance multiplication by
a real transformer ratio between certain definite
points in the two lines. There is another equally
legitimate way of considering an arbitrary loss-
less transformer, which is sometimes useful.
Using the same diagram of a transformer that
we have given in Fig. 9, we may write the

This equation is in a convenient form for practi-
cal use. If we plot P~d~ as a function of P2d2, we

get a curve of the form shown in Fig. 11, some-
times called an 5 curve on account of its shape.
The coordinates of the points of maximum and
minimum slope determine g~ and @g, as shown,
and the slope at these points determines D: the
maximum slope is (1+D)j(1 D), and the mini-—
mum is its reciprocal.

These relations are both bilinear transformations
(we can see this easily if we solve them for r~ in
terms of r2); they have three arbitrary constants,
if p&, p2, and y or x are real. Furthermore, they
transform reactances into reactances. To show
this, we let the magnitude of r1 be unity. That
is, we let r2=e &'~2, where 02 is real. Then the
expression on the right of (I.47) becomes

j tan (82+&2)/2, which is pure imaginary. Add-

ing jy, we sti11 have a pure imaginary. Reversing
the argument, this shows that r1 has unit magni-
tude, or that the impedance Z1 is a pure react-
ance. The meaning of (I.47) or (I.48) is simple.
The quantity on the left of (I.48) is the ratio of
the impedance, to the characteristic impedance,
at a certain point on the line, as we see from
(I.37). The quantity on the right has a similar
interpretation. Thus we see that there is a
certain point on the right-hand line, and a corre-
sponding point on the left-hand line, such that
the impedance seen at the point on the left line
is a series combination of the impedance at the
point on the right, and a fixed series reactance jx.
Similarly the quantities in (I.47), being the
reciprocals of the impedances, are admittances:
there are corresponding points on the two lines
such that the admittance across the left-hand
point is the shunt combination of the admittance
across the right-hand point, and a fixed shunt
admittance jy. It is to be understood that the
phase angles &I and p~ are in general different in

(I.47) and (I..48), and in turn different from
those in (I.39); that is, there are different sets
of corresponding points in the two lines, with
respect to which the transformer is an ideal
transformer (that is, the impedance is multiplied

by a given ratio, as in (I.41));or a shunt reactance
(as in (I.47)) or a series reactance (as in (I.48)).
It would be possible to get the relations between
the various sets of constants, but it is not very
profitable to do so. The expression of a lossless
transformer as a shunt reactance is particularly
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FiG. 11.An 8 curve.

appropriate in such cases as the transformer
produced by an iris in a diaphragm in a wave
guide. In such a case, provided the hole in the
iris is small, we can show that, if points 1 and 2

are immediately on the two sides of the dia-,
phragm, the angles gi and p2 are practically zero.
In other words, the diaphragm acts just like a
shunt reactance, without any correction terms.
I~ more general cases, however, a transformer
will act like a combination of a shunt reactance,
plus an effective lengthening or shortening of the
line on each side. It is interesting to realize, as a
result of the discussion of the last three sections,
that any desired impedance transformation can
be secured in many ways, including shunt and
ser'ies reactances plus appropriate change of
length of lines. For instance, suppose we have a
change of characteristic impedance between two
guides. We can always insert an iris in such a
way as to match the guides into each other, in
the sense that a matched load (r2 ——0) in one
guide transforms into a matched load (ri ——0) in
the other.

14. Power Flow in Networks and Transmission
Lines

- So far, our discussion has dealt almost entirely
with the impedance, the ratio of voltage to
current. Of almost equal importance is the power,
or product of voltage and current. From the
two together, we can work backward and find
voltage and current separately. We shall find,
in our microwave work, that it is more con-
venient to deal with impedance and with power
flow than with voltage and current; for imped-
ance and power How are more readily measurable.

P = ', (V„i,-+ Vp, ). (I.SO)

This can, however, be written in another way.
If we take the product Us, we have

(V„+jV,) (i„—ji;) = (V„i„+V,~,+j(V,i„V,.i;)). —

The real part of this quantity leads to the power
as in (I.SO). Thus we have

I' = -', Re V~. (I.51)

This is the standard formula for average power,
in terms of complex amplitudes of voltage and
current. If V=Zi =(R+jX)i, we then have

(I 52)

where ~i
~

is the magnitude of the current.
The formula (I.51) or (1.52) can be applied at

once to the flow of power in a transmission line.
Let us assume the solutions (I.11) for voltage
and current at the nth terminals of a line, taken .

together with the definition (I.16) for the com-
plex reflection coefficient. We may then write
voltage and current in the form

V = t'i„+Zo(Ae «" Be&")——
= gi +ZOAe «"(1+r„), -

i„=Ae «"+Be«"=Ae «"(1 r). —' (1.53)

Let us first find the formula for power flow into
a pair of terminals between which there is a
voltage U, and a current i, the sign convention
being the one we have been continually using.
We must remember that when we write V as
the voltage, we really mean that the voltage is
the real part of Ve&'"'. That is, if V is written in
terms of its real and imaginary parts, as V,+jV;,
the voltage is V„cos cot —V; sin oit. Similarly the
current is i„cos ~t —i, sin ~t, writing in a corre-
sponding way. The power How is the product of
voltage and current; that is, it is

Power = V„i„cos' &et+ Vp, sin' art
—( V„i,+V,i„) sin ~t cos cot. (I.49)

This is the instantaneous power, which as we
see involves squares and products of sin ~f and
cos cot. Ordinarily we are interested only in the
time average of the power. Averaging, the
average of cos'cot and of sin'cot is 2, and of
sin cot cos cot is zero. Thus if I' denotes the
average power, we have
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where y=n+jP, as before. Let us see what
(I.54) becomes in certain simple cases. In a
network without losses, which is propagating
the wave, we have seen that 1 is imaginary, and
Zo is real, so that XO=O. Furthermore 0.=0.
Thus in this case we have

P =-', ZpAA. (1 r„r„)=—-', Zp(AA BB).—(I.55)

Thus in this case the power How is simply the
difference between the flows of power in the
direct and reflected waves. The quantity r„r„ is
independent of I; for if we let

r„=pe
—'&1'", (I.56)

where p is the magnitude of the reHection coeffi-
cient, we see that r„r„=p'. On the other hand,
in a network without losses in which there is
attenuation, we have seen that t is again imagi-

nary, Zo is imaginary, and p is real, equal to n.
Thus in this case we have

I' = ,'Xpj (AB A—B). —(1.57)

The power How is again independent of ri„but
in this case there is no How unless A and 8 are
both different from zero. In other words, a
purely attenuated wave, in for instance a wave
guide beyond cut-off, carries no power. The
reason for this is simple. At one end of the guide,
at infinite distance, the amplitude is attenuated
to zero, and obviously no power can be flowing
there. But since there are no losses along the
guide, all the power that flows in one end must
flow out the other. Thus there can be no power
flow anywhere. On the other hand, if the guide
is only of finite length, both A and 8 must be
different from zero, to satisfy boundary condi-
tions, as indicated for instance by Eq. (I.13).
Power will then flow; and this is reasonable
physically, since a certain amount can pass
through such a guide beyond cut-off into a
terminal impedance. The problem mathemati-
cally and physically is like that met in total

If we let Zp=Rp+jXp, we then have

I'=-', ~~„~'Rei+ ,'Ro-(AAe '~" B—Be'~")

+-',Xoj (A Be '» A—Be"~"),

= —,
' ~~„~'Ref'+ ', R -ApAe '~"(1 r„r„—)

+-'XpAAe ' "j (r„r„)—, (I.54)

internal reflection in optics. The totally inter-
nally reflected wave results in an exponentially
damped wave in the rare medium. If that
medium extends to infinity, the exponential wave
carries no energy, and all the energy is reflected.
If, on the other hand, there is only a thin sheet
of rare Medium, then another dense medium,
we shall have to have both sorts of exponential
waves to satisfy the boundary conditions, and
we shall find that power is transmitted through
the rare medium to the adjacent dense medium.

Another interesting case is the guide or other
transmission line with a real characteristic im-
pedance, or Xp=0, but with a slight attenuation,
so that a is different from zero. If (=0, as it is
in a guide, then we have

P =-',Zo(AAe '"—BBe'~"). (I.58)

This has a simple interpretation: the first term
is the power How in the direct wave, which varies
as e ' " on account of the decrease of amplitude
of this wave as n increases; the other term is the
flow backward in the rejected wave, which
decreases as n decreases. In this case the magni-
tude p of the reflection coefficient depends on n.

15. Power Flow from a Lossless Line into a
Terminal Impedance

If we have power Howing from a lossless trans-
mission line into a terminal irhpedance, we have
seen in (I.55) that the power How is -', ZpAA (1 rr). —
By (I.38), r=(Z —Zp)/(Z+Zp). If Z=R+jX,
we find easily that

I' (R —Zp+ jX)(R—Zp —jX)
-', ZoAA (R+Zo+ jX)(R+Zo —jX)

4RZO.
(I 59)

(R+Z )'+X'
The expression (I.59) tells how the power ab-
sorbed in the terminal impedance varies with R
and X, provided AA remains constant. This
means that the power flow in the direct wave is

constant, independent of the power flow in the
reHected wave (for of course that changes, as the
load changes). We can secure this situation in

practice by taking a generator of power, then
inserting an attenuator of high attenuation, then
our transmission line and load. This is called
padding the generator with an attenuator. The
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object of the attenuator is to absorb practically
all of the reflected wave before it gets back to
the power source, so that the reflected wave will
not react back on the source, and change its
power output. Put another way, we have found
that if there is an attenuating section in a line,
the input impedance seen looking into the at-
tenuating section is almost independent of the
output impedance. That is, the impedance seen
by the generator is almost independent of the
load impedance; so much of the power is ab-
sorbed by the attenuator that the small remain-
ing power absorbed by the load is negligible.
Since the power output of a generator depends
on the load which it sees, this means that the
power output is practically constant as Z is
varied, so that the incident amplitude A is
practically, constant. We must note at the same
time, however, that A represents the amplitude
of the power delivered by the generator through
a high attenuation, so that this procedure is very
wasteful of power. When we have this condition,
which is often used for measurement, we then
have an output power proportional to (I.59).
It is interesting to consider this function as it
depends on R and X. Obviously as far as X is
concerned, the power is a maximum when X=0,
or when the load is purely resistive. If further-
more we vary R to make the power a maximum,
we find by differentiating with respect to R and
setting the derivative equal to zero that the
maximum comes when R=ZO, or when the load
impedance equals the characteristic impedance
of the line, or is a matched load; in this case the
function equals unity. It is interesting to consider
the contours of constant power in a Z plane,
in which E. and X are plotted as variables. Since
the power depends on the magnitude of the
reflection coefficient, the power will be constant
on a circle of constant magnitude of reHection
coefficient, or constant p. In Fig.- 5 we showed a
diagram of these circles, a family of circles sur-
rounding the characteristic impedances of the
line. The function (I.59) is unity at the right-
band characteristic impedance, and decreases as
we go away from that point, becoming zero
along the imaginary axis, or for a reactive load,
which of course can absorb no power. In the
left-hand half plane, the function is negative;
such loads have negative resigtivg compont:nts„

P2 Rt, ( U2z~)

Pi Re( Uizi)
(I.60)

The circuit efficiency will always be less than
unity if there are losses in the network; it will
be zero if the output load is reactive, and can
absorb no power; and it is a measure of the
effectiveness of the network as a carrier of power.
Sometimes we are interested in a network as an
attenuator, and in that case we are interested in
the amount by which it decreases the power
passing through it. In that case we define an
insertion loss, a measure of the decrease of power
in passing. through the network, measured in

and correspond to generators, rather than passive
loads, so that in the presence of such a terminal '

impedance the power would How to the left, or
(I.59) should be negative. The function is nega-
tively infinite at the left-hand characteristic im-

pedance; the meaning of this is that at that
characteristic impedance the wave is Howing
entirely to the left, so that the wave traveling
to the left is infinite if A, the amplitude of the
wave traveling to the right, is finite. These
features of the left-hand half plane are not of
physical interest in ordinary applications. In the
reHection coe%cient plane, the contours of con-
stant power are of course circles concentric with
the origin, the power being a maximum at the
origin, going down to zero at unit circle, and to
a negatively infinite value at infinity.

16. Circuit EfHciency and Insertion Loss of a
Resistive Network

If we have a network of the general type
characterized by transformer coefficients Z», Z»,'

Z» in the manner of Eq. (I.2), and terminated
by an. impedance Z, we shall find that some of
the power fed into the left-hand terminals of the
network (which we shall call terminals 1) is
absorbed in the network, and some in the im-
pedance Z. If we let P~ be the power flowing
across the terminals 1, and p2 the power across
the terminals 2 (the terminals connecting the
right-hand side of the network to Z), then the
fraction P2/Pi of the input power will be de-
livered to the load. If the object of the network
is to deliver power, as it is in some practical
cases, we may call this ratio the circuit efficiency,
and denote it by q, . Thus we have
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decibels. That is, we have

Insertion loss = 10 log12 P1/P2
= 10 log12 (1/21,). (I.61)

Writing the output impedance as Z=. R+jX,
and writing Z11 ——R11+jX11,etc. , and remember-
ing that V2=~2Z, we have

Ke shall now calculate the circuit efficiency as a
function of the terminal impedance Z; from it
the insertion loss can be found from (I.61).

From (I.2) and (I.21)'we have

Riz, '
21C

«l Z» ———
I

fz11'
z+z.,&

(I.63)

t' Z12 I z2 —Z12
V1 ——

l
Z11— lz1 —. =—— (I 62)

E Z+Z22) z1 Z+Z22
Taking the values of the complex quantities,
we have

(
Z+Z22&

(R12 X12 ) (R+R22) +2R12X12(X+X22)

(R+R22) '+ (X+X22)'

(R12'+X12')

l
z1l' (R+R22) '+ (X+X22)'

(I.64)

Substituting these values in (I.63), and combining terms, we finally have

R(R12 +X12 )/R11

R12X12 R12 +X12

R11 2R11

QC

R12 X12
R+R22 —— + X+X22—

2R11

(I.65)

While this is a rather formidable expression, it represents a function not greatly diff'erent in its prop-
erties from (1.59). We can show without trouble that the contours of constant circuit efficiency, in
a Z plane, are circles, all orthogonal to the family of circles passing through the two points

.2R112R] 1

R12 X12
—2 R122+X 2- 2

R= ~ R22 —— R12X12
X= —X22+——.

R11
(I.66)

The circuit eAiciency has a maximum at the
point corresponding to the positive sign, and
decreases everywhere from there until it is zero
on the axis of ordinates, or for a reactive load.
We shall have occasion later to consider circuit
efficiency, in connection with the power output
of magnetrons, klystrons, and other microwave
generators, and shall postpone more detailed
discussion of these formulas until then, when we
shall put them in simpler form.

17'. Resume of Network Theory

In this chapter we have given a discussion of
some phases of network theory; we have omitted
many important points, but have taken up those
which we shall most particularly want to use in
our later work. Before going on, we should

emphasize that our results How merely from the
assumption (I.1) or (I.2) that the various volt-
ages are linear functions of the corresponding
currents. We have such relations for lumped
constant networks, but we shall find as well that
we have such relations for the oscillations of
resonant cavities. We shall now proceed to derive
the properties of wave guides and of resonant
cavities from Maxwell's equations, and to show
that we can define quantities analogous to volt-
age and current, which satisfy these same rela-
tions. We shall then be able to apply all the
analysis of this chapter to the results of our
theory. We shall not be merely using analogies
with ordinary circuit theory; we shall be deriving
results directly from the mathematical nature
of our solutions. We turn in the next chapter to
wave guides, and show that they form a perfect
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analogy to the continuous transmission lines of
Section 9.

II. WAVE GUIDES

1. The Electromagnetic Field in a Wave Guide

By a wave guide we mean a cylindrical pipe,
bounded by a conductor (of high conductivity),
filled with a dielectric (of low loss). It may have
arbitrary cross section; the two commonest cases
in practice are the rectangular and circular guide.
lt may have more than one bounding surface,
as the coaxial line, which consists of the annular
space between two concentric circular cylindrical
conductors. Its object is to transmit electro-
magnetic power. We shall first consider the
guide without losses, either in the conducting
walls or the dielectric, and shall show that in
that case a disturbance can be propagated down
the guide, closely analogous to the disturbance
in a lossless continuous transmission line. Our
problem is to find E and H, solutions of Max-
well s equations, within the guide, satisfying
suitable boundary conditions at the surface of
the guide. Within a perfect conductor, no fields,
electric or magnetic, can exist. Thus, since the
normal component of B and the tangential
component of E must be continuous at a surface,
the boundary conditions are that E is normal,
H tangential, to the surface. We shall now show
that we can set up solutions of the problem 'of

the form

We shall use rationalized m. k.s. units; that is, E
is measured in volts per meter, D in coulombs
per square meter, .I in ampere-turns per meter,
B in webers per square meter (one weber per
square meter = 10' gauss), J in amperes per
square meter, p in coulombs per cubic meter,
distances in meters, and times in seconds. The
quantities 6p and pp are

oo=8.85X10 "farad per meter
p, p=4x&(10 ' henry per meter

and satisfy the relations

1 O'E 1 O'H
7'E —— =0 7'H —— = 0. (II.6)

c2 l9t2 g2 8

We shall first ask under what conditions the
fields (II.1) will satisfy the wave equations.
Substituting, we have at once

l9 Eo 8 Eo (co
+ +i ——P' )Eo=O

gyo
(II.7)

with the same equation for Ho. We shall rewrite
this in the form

(po/eo)' = 3'76.6 ohms,

(oooo)
*' =c=3.00 X 10' meter/sec.

From Maxwell's equations, in the usual way,
we can derive the wave equations,

E=Eo exp Lj(sit —Ps) j,
H =Ho exp Lj(oot —Ps) j, (II 1)

BoEo BoEo (2~) o

+ +I —
f

Eo=O
ax' ay' &li, )

(II.8)

where Ep, Hp are vector functions of x and y, the
coordinates in the plane of the cross section of
the guide, which themselves satisfy the condition
that Eo is normal, Ho tangential, to the surface.
To prove this statement, we must show that the
expressions (II.1) satisfy Maxwell's equations

where we have

oi (2m'p (2n g (2xP (2T't

co &X, i LX, ] &Z, ) &~, i
or

8B
curl E+ =0, div B=0,

Bt

1—=—+-
Ap' ) g~ X2

(II.9)

curl H— =J, div D=p

(II.2)

where we assume that the guide is empty, so that
within it we have

D = &oE B=poH, J=0, p=0. (II.3)

Here we have introduced a quantity ) p, which is
clearly the free space wave-length, or the wave-
length which a disturbance with angular fre-
quency co would have if propagated in free space.
We have also introduced X„equal to 2m/P. This
quantity will be called the guide wave-length;
from (II.1) we see that it is the wave-length with
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which the wave is propagated down the guide.
The quantity X. will be called the cut-off wave-
length. The reason for this is simple. If the free
space wave-length is smaller than the cut-off
wave-length, then 1/Xo' is greater than 1/X,2, so
that (II.9) tells us that 1/X, ' is positive, and X,
is real. On the other hand, if the free space
wave-length becomes larger than the cut-off
wave-length, 1/X,2 becomes negative, and the
guide wave-length A,, is imaginary. Inserting an
imaginary wave-length into (II.1), we see that
the solution represents an attenuated rather than
a propagated wave. This corresponds to the case
of the wave guide beyond cut-off mentioned in
Section 9, Chapter I, and leads to no transfer of
power down the line. Thus the guide acts like a
high pass filter, only wave-lengths shorter (or
with higher frequency) than the cut-off wave-
length being propagated.

A,g
TM: grad E,=2m j—E~.

(II.10)

In these expressions, II, and E, represent the
magnitudes of the corresponding vectors. Since
they are functions of x and y, their gradients are
in the xy plane, as is proper for Hi or Ei. We
find that there is a relationship between the

2. Transverse Electric and Transverse
Magnetic Nodes

The fields E and H must satisfy not only the
wave equation, but Maxwell's equations as well.
When we write these equations down, we find at
once that two separate types of solutions are
possible: solutions for which Z, =0, and solutions
for which II,=0. The first type has E transverse
to the guide, and is called a transverse electric
mode (abbreviated TE), and the second has H
transverse, and is called transverse magnetic
(TcV). We shall let Ei, Hi, refer to the transverse
components of E and H, and E, and II, be the
components along the guide. Furthermore we
let k be unit vector along the s direction, or
along the guide. Then from Maxwell's equations
we find directly that these components must
satisfy the following relations:

)g
TE: grad JI,=2m j—H&,

transverse components of E and H, as follows:

AXE)

(II.11)
(yo) * &O=

f

—
/

—for T2lI.

This means, since k and Eg are at right angles to
each other, that Hi is at right angles to Ei in
the xy plane, and is equal in magnitude to the
magnitude of E&, divided by the quantity ZQ.

Using (II.10) and (II.11), we can find all the
components of E and H from H, (in the '.TZ
case) or from E, (in the TcV case). These quan-
tities, like the transverse components, satisfy the
wave equation (II.8), and are scalar solutions of
that differential equation. Furthermore, Z, is
zero on the boundary of the guide (since E must
have no tangential component on the surface);
while II, has a vanishing normal derivative on
the boundary (since H must have no normal
component on the surface, and H, is proportional
to the gradient of H, ). We may draw lines of
II.=constant (in the TZ case) or of Z, =constant
(in the TM case) in the xy plane. Then by (II.10)
the orthogonal trajectories-of these lines will be
along the direction of Hi (in the TE case) or of
E& (in the TM case). Finally, since by (II.11)
the direction of Hi is perpendicular to that of
E~, the lines of constant H, will be along the
direction of Ei (in the TZ case), and the lines of
constant Z, will be along the direction of Hi (in
the TM case). Proceeding in this way, we may
draw lines of force, for the transverse components
of E and H, in the xy plane, finding of course
that the electric lines of force meet the surfaces
at right angles, while the magnetic lines of force
are tangential to the surface.

For every scalar solution of the two-dimen-
sional wave equation satisfying the condition
that it vanishes on the boundary, we get a TM
wave, and for every solution whose normal
derivative vanishes we get a TE wave, as we
have seen above. There will be an infinite num-
ber of solutions of each type, each corresponding
to a particular cut-off wave-length. These wave-
lengths may be arranged in order of decreasing
magnitude; they start with a largest cut-off
wave-length, associated with the lowest mode of
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oscillation, and extend inde6nitely toward shorter
and shorter wave-lengths, so that we have an
infinite number of modes of oscillation. For
instance, in a rectangular guide of dimensions
a, b, the cut-off wave-lengths are given by the
formula

),= ((m/2a) '+ (n/2b) '$ '*, (II.12)

where m, n are integers. If the dimension a of
the guide is greater than b, the longest cut-off
wave-length is given by m = 1, n =0, and is equal
to 2a. In general, it is more convenient to describe
the modes of a guide by a single index n, which
we shall take to be the number of the mode
when arranged in order of descending wave-
length. We shall denote the functions E&, B„H&,
H„ZO, X., X„ for the nth mode by an additional
subscript n.

In some cases, the first mode has an infinite
cut-off wave-length; in this case we call it a
principal mode. We should have such a case in

(II.12) if m and 5 were both zero, but it turns
out that this mode does not exist in this case,
for the field described by these integers becomes
equal to zero identically. Such a situation does
not occur always, however. We find that a
principal mode exists if the wall of the wave
guide consists of at least two separated con-
ductors, as for instance in the coaxial line. When
a mode of infinite cut-off wave-length, or princi-
pal mode, exists, it has great practical impor-
tance, because it can be used to propagate any
wave-length, no matter how long. The commonly
used mode of the coaxial line is a principal mode,
and the familiar parallel wire transmission line,
ordinarily used for low frequencies, can also be
considered as a wave guide with a principal mode.
It is proved quite generally, on the other hand,
that any wave guide whose wall consists of only
one conductor has no principal mode. The
physical reason for this is quite clear: we can
put a very low frequency, or direct current, into
a transmission line consisting of two or more
conductors, and they will be insulated from each
other, and suited to conduct the current. If there
is only one conductor, however, as in an ordinary
hollow pipe, there would clearly be a short
circuit for a low frequency or direct current, and
no propagation is possible until we get to a
wave-length short enough so that something like

real wave propagation occurs. For a principal
mode, the cut-off wave-length is infinite, so that
(II.10) tells us that grad H„or grad Z„must
be zero. That is, the longitudinal components of
both B and H are zero, and such a wave is
simultaneously transverse electric and transverse.
magnetic. It is sometimes called a transverse
electromagnetic wave (TE3f) for.. this reason.
Furthermore for such a wave, as we see from
(II.9), the guide wave-length becomes equal to
the free space wave-length, so that the velocity
of propagation becomes c. Finally, from (II.11),
the quantity Zo for a principal wave becomes
(po/eo)~, which can be shown to be the ratio of
the magnitudes of B and H in a plane wave in
free space. Thus a principal wave has many of
the properties of a wave in free space.

At any given frequency, or free space wave-
length )0, a given wave guide will in general
support disturbances corresponding to all the
modes. We now see, however, that some of these
disturbances will be really propagated, but others
will be attenuated. In fact, the only disturbances
which are propagated will be those for the finite
number of modes whose cut-off wave-lengths are
greater than the free space wave-length; the
remaining infinite number of modes with cut-off
wave-lengths shorter than the free space wave-
length will be attenuated. There will be a certain
range of free space wave-lengths, between the
longest and the next longest cut-off wave-lengths,
in which only the lowest mode, often referred to
as the dominant mode, will be propagated, and
wave guides are generally used in this range, so
as to avoid the difficulty of having many modes
simultaneously present. Guides, in other words,
are ordinarily used only over' a rather limited
range of wave-lengths. A coaxial line, on the
contrary, is used in its principal mode, or for
wave-lengths greater than the next cut-off wave-
length beyond that of the principal mode. Thus
the coaxial line is used as a low pass device, but
the ordinary wave guide as a band pass device.

3. Standing Vfaves and Reaction CoeRcients

In addition to the solution (II.1) of Maxwell's
equations, corresponding to a wave traveling
along the positive s direction, there is of course
a wave traveling along the negative s direction,
characterized by the opposite sign for P. Formally
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this brings about a change in the sign of )„and
hence, in (II.10) and (II.11),a change in the sign
in the relation between E( and H(, and in the
relation between II, and H~, or between Z, and
E(. If we choose to keep the signs of (II.10) and
(II.11),we must then change signs appropriately
in writing the formulas for E and H. Doing this,
and superposing waves traveling in both direc-
tions, with appropriate amplitudes, we may
write the Geld as

B„
2 jPnz

A„
(II.14)

(We must note. that the subscript n here refers
to the nth mode of the wave guide, a completely
different meaning from that in Chapter I, where
we were using it to refer to the nth set of termi-
nals in a transmission line made of discrete four-
terminal networks. ) This reHection coefficient
has the same properties as that of Chapter I:
its magnitude represents the ratio of reflected
amplitude to incident amplitude, and its phase,
as we go along the line, rotates through an
angle of 2w in a half-wave-length, assuming that
P is real, or that we are dealing with real propa-
gation. If on the other hand we have attenuation
the transformation of going along the line corre-
sponds to a shrinking of all points toward the
origin in the reHection coefficient space. Mathe-
matically, we can set up standing wave ratios in
voltage, in power, and in decibels, as in (I.34),
(I.35), and (I.36). We must ask how we measure
these standing wave ratios, however. In the
experimental measurement of standing waves in
a guide, a small probe is inserted th~ough a slot

+E (A e (( e'')—+g e ( (+P ))

H =H(„(A„e'&"' e"*)+8 e'("'+e".))

(A eg(~t pn~) —g ej(e(en*)) (II 13)
L

where the relations between the various quanti-
ties are just as in (II.10) and (II.11). By com-
parison for instance with (I.11) we recognize
the behavior of the transverse components of E
and H as being analogous to the voltage and
current in a transmission line. Just as in (I.31)
we can introduce a reflection coefficient

in the wall of the guide, the slot being located at
a point in the cross section where no current
must flow, so that the field inside the guide is
not disturbed appreciably by the slot. The probe
is connected to a coaxial line or other type of
line terminated by a power measuring device.
The amplitude of the wave set up in this coaxial
line is proportional to the component of E along
the direction of the probe, or transverse to the
guide, and the power absorbed by the power
measuring device is proportional to the square
of the transverse component of E. Thus Et, plays
the same part in finding the power measured in
standing wave measurements with a guide that
the voltage does in the transmission line of
Chapter I, as discussed in Section 10,

Z/Zp ——(1+r) /(1 r)— (II.15)

This defines the ratio of impedance to character-
istic impedance uniquely in terms of reHection
coefficient. Using this definition, we can intro-
duce a ratio of impedance to characteristic im-
pedance uniquely for a wave guide. We shall
refer to this ratio as the reduced impedance. The
properties of it are of course just as in Chapter
I, since it is defined in the same way. There is,
however, no unique way of defining the char-
acteristic impedance for a wave guide, and hence
no unique way of defining the impedance itself.
From (II.13), we may take the ratio of the
magnitude of E~ to the magnitude of H, (where
we mean magnitude in the sense of three-dimen-
sional vectors in space, not in the sense of com-
plex vectors representing the sinusoidal time
variation). Using (II.11), we have

where Zo now is as de6ned in (II.11).We see, in
other words, that if we choose to interpret that
quantity as a characteristic impedance, the ratio
of magnitudes of tangential components of E
and H will play the part of an impedance. On
the other hand, if we choose to use any multiple
of the quantity Zo of (II.11) as the characteristic
impedance, and the corresponding multiple of the

4. Impedance and Power Flow

In Chapter I, for instance in Eq. (1.37), we
have found the relation between impedance and
reflection coefficient:
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ratio of E& to H& as impedance, we shall equally
well have agreement with (II.15). We shall use
the quantity (II.11) as a characteristic imped-
ance; for as we shall show shortly, there is no
other definition of characteristic impedance of a
wave guide which is more universally sensible.

For comparison with the results of Chapter I,
we should consider not merely the impedance,
but the power flow as well. This is of course
uniquely determined, since it can be directly
measured, by terminating the guide by a power
measuring device, as a bolometer or thermistor
or water load, whose temperature rise indicates
the total power absorbed by it, and by assuming
that all power flowing down the guide is absorbed
in the power measurer. Mathematically, we can
find the power flow by integrating the normal
component of Poynting's vector over a cross
section of the guide. Poynting's vector is EXH,
and its normal component, or s component, is
k (EXH). The time average is easily seen to be
computed as the time average power was in

Chapter I, Section 14: it is —',Rek (EXH). In
Poynting's vector we encounter the vector quan-
tity k (E~XH~): the other quantities k (E,XH)),
k. (E~XH,), and k (E.XH,) are all automati-
cally zero. We notice that as a result of (II.11)
we have

ZQ

Using these relations, we may then write the
time average Poynting's vector, 5, in the form
appropriate for the case of real propagation,

To get the total power fiowing through the guide,
we must integrate this quantity over the area of
the guide, so that we have

P=—
2 Zon

(A „A„B„B„), .
—

(II.19)

=—Zp„' iH)„i'da(A„A B„B)—
2

S=—— (A„A„BB„)—
ZQn

= -', Zo„i H,
i
'(A„A„B„B„). (II.1—8)

(II.20)

so that
P= ', Zp (A„A—B„B„).— (II.21)

It is now clear that our values of impedance
and power flow in a wave guide are analogous to
the corresponding quantities for a transmission
line, if we determine the magnitude of H&„by
(II.20) (called a normalization condition), and
if we postulate a voltage V„and current i„
given by

V„=Zo„A„e&'"' &n' —8 e~("'+~n

(II.22)
~ j(&o5 Pn~) +B &j(iat+Pn~)—

so that V„ is proportional to the transverse E,
f„ to the transverse H, in the nth mode. Since
these equations are entirely analogous to those
of Chapter I, we have mathematica11y justified
the results of that chapter, as applied to the
wave guides. By entirely similar methods, we
can justify. formulas like (1.57) with correspond-
ing interpretation of voltage and current, for the
case where the guide is beyond cut-off, so that
there is only attenuation, not propagation, and
where the characteristic impedance is pure
imaginary.

While we have suggested a particular way of
setting up a voltage and current, this is by no
means the only possible way. In fact, it is
obvious that we can assume that the voltage is
any constant times the transverse E, and the
current any constant times the transverse H.
This gives two arbitrary constants in the inter-
pretation of the behavior of the guide as a

We have so far left the values of the integrals of

~
E)„~' or

~

H, „~
' over the guide arbitrary; obvi-

ously in (II.13) we can multiply the quantities
Z&„and H& by an arbitrary constant, and divide
A„and B„by the same constant, without
changing B and H, which alone have physical
significance. The value which we choose for these
constants is purely a matter of convenience.
Since we have already decided to make Z0
analogous to a characteristic impedance, com-
parison with (I.55) suggests that we make the
A„'s and 8„'s analogous to the A's and 8's
introduced in Chapter I, which by (I.53) are
current amplitudes. To accomplish this, we may
assume



transmission line. On the other hand, if the power
is to be determined by the relation P = —,'Re Ui,
this imposes a relation between the definitions
of voltage and currents, so that only one arbi-
trary constant is left. We may still use this
arbitrary constant to make the characteristic
impedance, or the voltage, or the current, any-
thing we please, but if one of these quantities is
determined, the others are also. In a few cases
there is an obvious way to define voltage and
current. For instance, in a coaxial line, or other
line possessing a principal mode, the voltage is
uniquely defined: for in that case (11.7) shows
that the transverse E obeys Laplace's equation,
so that its integral from one conductor to the
other, being independent of path, forms a unique
voltage. Similarly there is a unique current, the
actual current Howing in either conductor. The
voltage and current so defined do not agree with
our value (II.22). Again, in the lowest mode of
a rectangular wave guide, reasonable definitions
of voltage and current can be given. These
definitions again do not agree with (II.22), but
neither do they have a simple relation to those
used for coaxial lines. In fact, it seems to be
impossible to set up any general definition of
voltage and current which reduces in a reasonable
way to the natural values met in these simple
cases. For that reason we adopt our definitions
(II.22), which are the simplest ones. It is a
fortunate fact that this ambiguity in the defini-
tion of current, voltage, and -impedance really
does not affect us at all; for the quantities which
actually are important are the ratio of impedance
to characteristic impedance, or reduced imped-
ance, and the power How, which are uniquely
determined, quite apart from this ambiguity.

S. Expansion of the Field in Normal Modes

So far, we have assumed that the field consists
of a single normal mode only, but of course on
account of the linear nature of Maxwell's equa-
tions the general solution of our problem is a
superposition of all normal modes, each with its
appropriate amplitude and phase; that is, E and
H are given by summations over n of the quan-
tities given in (II.13), rather than just the nth
term. In the present section we sha11 take up
those properties of the field that depend on the
fact that ordinarily all modes are simultaneously

I (gV'/+grad p grad f)« = p—ds, (II.23)
an

where the integral on the left is over an area (in
this case the area of the cross section), the inte-
gral on the right. is over the perimeter, and 8$/Bn
is the normal derivative in the direction of the
outer normal to the area, and where p, f, are two
scalar functions of position. We let p be E, , P
be E, , and remember that on account of (II.8)
we have

V'E,„+(2ir/X, „)'E,„=0.

Thus we have, using (II.10),

(II.24)

I
2s ) '

r zg.xg
E,~E,„da 4'' —E&„E& da

Ey,.) a

E,„(n grad E, )ds. (II.25)

Since E,„=o on the perimeter, the line integral
on the right is zero, and we thus see that-. if
J'E,„E, «=O, J'E~„.Ei da=O as well. That is,
we show that theorems (I) and (II) are equiva-
lent, as far as E is concerned. To show the same
thing for the H's, we proceed in the same way
but now the line integral in (II.25) vanishes
because grad II, is parallel to the surface, since
H~ has no component normal to the surface.
Next we use Green's theorem in the form

excited. The discussion is made possible by the
proof of several theorems related to the orthogo-
nality of the normal modes. We shall .first prove
these theorems. They are as follows:

(I) The integral over the cross section of the
guide of the scalar product E~„E~, or H&„H&,
where n and m are different, is zero.

(II) The integral over the cross section of the
guide of the product B,„B, , or H,„II, , where
n and re are different, is zero.

(III) The integral over the cross section of the
guide of the quantity Ir (Ei~ XHi„), where n and
m are different, is zero.

The proofs follow easily from two-dimensional
forms of Green's theorem. We first use Green's
theorem in the form
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and let p=E, , Q=Z. T. he right-hand side
vanishes as before, and the left-hand side gives

) 1 1
B,„B, dc=0, (II.27)

x,.') ~

so that, if n and m are different, and the first fac-
tor is not zero, we have J'E,„Z,„da =0, proving
theorem (II), and hence theorem (I). The corre-
sponding proof for the H's follows similarly. To
prove (III), we need only note that, by (II.11),
Hi~ = (k XEi~)/Zo~, from which we show at once
that

k (E&„XH& ) =(E&„'E& )/Zo, (II.28)

so that (III) reduces to (I).
We shall first use these theorems to prove that

when we consider the flow of energy, or the total
energy in the guide, we may handle the various
modes separately, the total energy flow or energy
being the sum of the corresponding terms for the
various modes, without cross terms. For the
energy flow, we must compute the integral over
the cross section of the quantity —',Rek (EXH),
where E and H are given by summations over n
of the terms as in (II.13). This will involve
terms k (E,~XH&~), whose integrals over the
cross section are zero, by (III), if n and m are
different. The only non-vanishing terms are then
those for e =m, and these a,re simply the terms
computed for the various modes separately, as
in Section 4. Thus the total flow of power is the
sum of the flows of the various modes. Similarly
the total energy is the integral over the volume
of 4iRe(ooE E+poH. H). The quantity E E or
H H is again the product of two sums from
(II.13), and we again write it as a double sum.
The terms involved are of the form E~„E~,
E,„E, , H&„.H&, or H,„H, , all of which inte-
grate to zero over the cross section of the guide,
as we see from theorems (I) and (II), if n and m

are different. The only remaining terms again
are those for n =nz, which are the terms relating
to the individual modes, so that the total energy
is the sum of the energies of the modes, without
cross terms. The superposition of modes, in other
words, brings about no complications when we
consider energy and its flow.

The more interesting application of our theo-
rems I to III comes in setting up the expansion
of the field in the guide, subject to certain

boundary conditions. We may well ask, how
much information about the field in a guide is
necessary to determine it uniquely? The answer
is simple: we must know the tangential compo-
nents of E and H as functions of x and y across
a single cross section. We shall prove this by
setting up the expansion coef6cients uniquely in
terms of that information. For the sake of
simplicity, we shall choose the plane on which
we know the tangential values of E and H as the
plane s= 0. In that plane, then, using (II.13),
the tangential components of E and H are

E,e&"' = P„E&„(A„+B„)e&

H, e&"' = P„H,„(A„—B„)e&'"'.
(II.29)

In this expression, Ei and Hi are assumed to be
known functions of x and y, the factors e&"'

expressing their variation with time. If the field
is not sinusoidal with time, we first make a
Fourier integral analysis in time, and apply our
discussion to a single sinusoidal component. We
now take the first equation of (II.29), take its
scalar product with one of the E& 's, and inte-
grate ever the cross section of the guide. Using
our theorem (I), all terms except the mth will

drop out. We may then use the normalization
condition

(II.30)

which follows from (II.17) and (I-I.20), and find

Ei ~ Ei„dpi

ZOn

=A„+B„. (II.31)

Similarly we multiply the second equation of
(II.29) by one of the H&~'s and integrate. Using
the normalization condition (II.20), we have

H, H]„du=A„—8„. (II.32)

From (II.31) and (II.32) we can find A„and B„
in terms of integrals of the known functions E&

and Hi. Thus we can set up the summation of
terms (II.13),and hence the complete field within
the guide, showing that the tangential compo-
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nent of field over a single cross section deter-
mines the complete field.

8= (2/gypsy)' (II.33)

We notice that' as the conductivity becomes
infinite, the distance 6, sometimes called the skin

depth, becomes zero, so that we approach the
case we have treated earlier. We also find that
there is a small tangential component of E at
the surface, proportional to the tangential com-
ponent of H, which measures the surface current,
and at right angles to it, or in the same direction
as the surface current. If n is the outer normal
to the guide, we find that the tangential compo-
nent of E at the surface is given in terms of the
tangential H by the equation

E= (H Xn)

(gapa&/2o)

l(1+j), (II.34)

so that as the conductivity becomes infinite, the
tangential E goes to zero. As a result of (II.34),
there is a How of energy into the surface, which
we can find by computing the normal component
of Poynting's. vector. The time average is

—,'Ren. (EXH) = &(ppcv/20)'lHl'. (II 35)

For a given tangential H, this How of energy
goes to zero as the conductivity becomes infinite.
We can now use this discussion to give an
approximate treatment of the effect of surface
losses on the behavior of a wave guide. Clearly,

* See Slater, 3IIicromave Transmission, Section 12, for a
detailed discussion.

6. Losses in the Wave Guide

In our treatment so far, we have assumed that
the walls of the wave guide were perfect con-
ductors, so that E had to be normal to the walls.
In that case there is no power fIow into the walls,
and the guide is a lossless transmission line. If
the walls have a finite conductivity, however,
power will be dissipated in them, and the guide
will show attenuation. From the theory of the
skin effect, which we shall not go into, * we find
that a disturbance of angular frequency co, in a
good conductor of conductivity o-, with the same
magnetic permeability p, o as free space, penetrates
only a short distance into the conductor; the
amplitude of both electric and magnetic fields
falls to 1/e of the value on the surface in a
distance 8 equal to

with the boundary conditions (II.34) at the
surface of the guide, the solutions for E and H
which we have found in the preceding sections
of this chapter are not correct. However, when
we insert numerical values for ordinary metallic
conductors, we find that the tangential E re-
quired at the surface is so small that the correct
field is a very small perturbation of the field we
have calculated earlier. Thus we are justified to
a first approximation in assuming that the tan-
gential II which we have found is that actually
present, and that it can be used in computing
the energy loss (II.35).

We may now, by simple calculation of power,
find an approximate value of the attenuation
constant n„which is present in the nth mode, on
account of the losses in the walls. In an attenu-
ated wave, traveling along the positive s direc-
tion, the magnetic field H, by analogy with
(II.13), will be

H = (H(„+H,„)A„e'~"' &"'e ~"* (II.36)

By analogy with (II.19), the power flow will be

P=-,'ZO„A„A„e ' "') (II.37)

X A„A„e—'~"' (II.38)

in which the line integral is to be taken around
the perimeter of the cross section of the guide.
At the same time, using (II.37), we have

dP/dh = 2n„P. (II.39)

Using (II.37), (II.38), and (II.39), we then find

~ =
p (1/~p ) (u p pp/2 &) '

x L l
~.l'+

l
Il..l']&~. (I1.40)

This gives us a formula for a in terms of an
integral of the square of the tangential compo-
nent of H„around the surface of the guide.
This, it should be repeated, is correct only if we
assume that the tangential H in the presence of

in which we have also used (II.20). The loss of
power into the walls, in unit length of the guide,
will be —(dP/ds). By (II.35), this will be

dP 1 (pp&u) '
LIII~ I'+ l~ I'1d~

ds 2&2~) &
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absorption is almost equal to that in the lossless
case, for which it is assumed that it is calculated.
We shall not give detailed examples of the
application of this formula, but such examples
are worked out in the various texts on micro-
waves. The one fact is obvious, that a guide in
which the tangential II (and therefore the surface
current) rises to high values at some points in

the metallic surface will have high losses.
In thi:s calculation of n„ from the power flow,

we have assumed that one mode only was
excited, and that there was only a direct wave,
not a reflected wave. Ke may not assume here,
however, that if we have a number of modes
coexisting, the losses are simply a sum of the
losses in the various modes. The integral of the
square of the tangential H over the-surface of
the guide, which we And in (II.40), has no
orthogonality property, and there is no way of
disentangling the effects of the various modes.
The losses, being a quadratic rather than a
linear function of the amplitudes, have no princi-
ple of superposibility, and the presence of one
mode can affect the losses experienced by another
mode propagated through the same guide with
the same frequency. The detailed study of this
situation would be necessary to find the behavior
in any particular case.

III. RESONANT CAVITIES

I. Orthogonal Functions for a Hollow Cavity

Just as a wave guide forms the microwave
analogy for the transmission line of ordinary
circuit theory, so a hollow cavity forms the
analogy for a circuit element. A cavity can be
provided with one or more output leads, in the
form of wave guides of some type: rectangular
guides, coaxial lines, etc. If it has only one lead,
it serves as an impedance terminating that lead;
if it has two, it serves as a transformer or
transducer, allowing powder to flow into one
lead, out the other. In the present chapter we
take up the general theory uf resonant cavities
and the electromagnetic fields within them. We
consider the case of an arbitrary number of
output leads, and find the relation between the
electromagnetic fields in these various leads, each
of the form taken up in Chapter I. We shall be
able to use these results later in discussing trans-

formers and transducers, oscillators, and in fact
all types of microwave problems.

Our first problem will be to solve Maxwell's
equations in a hollow cavity, subject to certain
boundary conditions around the surface. As with
the problem of the wave guide which we have
taken up in Chapter II, this solution will be in
terms of a summation over certain normal modes,
which possess orthogonality properties. The de-
tails of the process are quite different from the
case of Chapter II, however, and we shall start
from the beginning with our discussion. We shall
start by postulating the properties of the normal
functions, shall expand the electric and magnetic
fields in terms of them, and shall then find what=

conditions must be satisfied to solve Maxwell's
equations. We wish to solve Maxwell's equations
within a volume bounded by a certain surface
(nothing in our treatment will prevent this
surface consisting of several parts, as the inner
and outer surface of a hollow spherical shell).
We shall find that we can set up orthogonal
functions for two types of boundary conditions:
the 6rst, which we may call short circuited
boundary conditions, requires that the tangential
component of E, and the normal component of H,
be zero on the surface, while the second, which
we call open circuited boundary conditions, re-
quires that the normal component of E, and the
tangential component of H, be zero on the
surface. The reason for the names is simple: a
perfect conductor has zero tangential component
of E, and forms the analog of a short circuit;
while a perfect insulator carries no surface cur-
rent, and hence, if H is zero within it, it demands
a zero tangential component of H, and forms the
analog of an open circuit. We shall discuss these
points more in detail later. We shall find that
we can use mixed boundary conditions, and that
on occasion we shall want to: over part of the
surface (which we denote by S) we shall have
short circuited boundary conditions, while over
the rest of the surface (which we denote by 5')
we shall have open circuited boundary condi-
tions. Our object is now to set up orthogonal
functions within the volume V bounded by S
and S', suitable for expanding our fields within
the volume.

Our first step is to notice that by general
principles of vector analysis, any vector field can
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be broken up into two fields, one of which is
solenoidal, or has zero divergence, and the other
of which is irrotational, or has zero curl. We
shall consequently. set up two sets of orthogonal
functions, one set solenoidal, the other irrota-
tional, using the solenoidal functions to expand
the solenoidal part of any vector field, and the
irrota. tional functions to expand the irrotational
part of a field. As a matter of fact, we go further:
we set up two independent sets of solenoidal
functions, one adapted for expanding the sole-
noidal part of E, the other adapted for expanding
H (which is itself solenoidal, if we assume, as we
shall, that the magnetic permeability po is a
'constant). We use only one type of irrotational
function, used for expanding the irrotational
part of E, and do not need another type only
because H has no irrotational part. We shall
denote the solenoidal functions used in expanding
E by the symbol E, and the solenoidal functions
used in expanding H by the symbol H . Similarly
we shall denote the irrotational functions used
in expanding E by the symbol F,. We shall now
set up the equations used in defining these
functions.

The functions E and H, having no divergence,
must be the curls of certain other vector func-
tions, and we assume that they satisfy the
equations

k,E,=curl H„k,H, =curl E„(III.1)

component of E around this contour, which is
zero since the tangential component of E is zero
on S according to (III.2). By Stokes' theorem
this line integral equals the surface integral of
the normal component of curl E„or of k,H,
which is then zero, which is impossible, since we
are dealing with an arbitrary contour, unless the
normal component of H, n-H„ is zero on 5.
The second statement of (III.3) is proved in a
similar way.

We may easily set up separate differential
equations for E and H, instead of having them
defined in terms of each other as in (III.1). We
see at once that these equations are

curl curl E,=k,'E„curl curl H, =k,'H, . (III.4)

Using the vector identity that curl curl A

=grad div A —V'A, and that div E =0, div H,
=0, these become the familiar wave equation

V'E.+k,'E, = 0, V'H, +k 'H, =0. (III.5)

These equations may be assumed to have an
infinite set of solutions, corresponding to different
values of k„subject to the boundary conditions
(III.2). It is clear that corresponding to each k,
we have both a function E, and an H, ; both
sets of functions correspond to the same set of
characteristic numbers.

We shall now prove that the functions E, and
H have orthogonality properties of the form

where k is a constant, which will later prove to
be the propagation constant (2ir divided by the
wave-length) associated with the uth mode. We
assume that E and H, furthermore satisfy the
following boundary conditions:

~ E. Etdv=0 if a~b,
"v

H Hbde = 0 if a/b.
(III.6)

nXE, =O on S, nXH, =O on S' (III.2)

where n is. the outer normal to the surface; that
is, E has no tangential component over S, and
H has no tangential component over S'. From
(III.1) and (III.2), and Stokes' theorem, we can
then prove that

n H, =O on S, n E,=O on S'. (III.3)

To prove the first of these, we take a small
closed curve lying in the plane of the surface 5,
and integrate the line integral of the tangential

To prove the first, we use the vector identity

div (E|,Xcurl E,) —div (E~Xcurl Et,)
=curl E curl Eb —Eb.curl curl E,
—curl Et, curl E +E, curl curl Ei,. (ill. 7)

Cancelling terms, and using (III.4), we can
rewrite (III.7) in the form

div (Eb Xcurl E,) —div (E~Xcurl Et,)
= (kP —k,')E, Et, . (III;8)

Integrating over the volume V, and using
Green's theorem to convert the left side into a
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surface integral, we have

n (k.E»XH. —k»E. XH )da

= (k,2 —k 2) E E»dv.
Jy

(III.9)
kP', =grad P,. (III.13)

at once that Ji H'dv=tyZ, 'dv, so that each
can be set equal to unity.

We shall next set up our functions F„which
have zero curl. On account of that property,
they can be set equal to the gradient of a scalar
function. We write

We may now easily show that the surface integral
on the left vanishes on account of the boundary
conditions. Over S, we may rewrite the integrand
in the form k,H, (nXE») —k»H» (nXE.), which
is zero on account of (III.2), while over 5' we

may rewrite it in the form k»E, (n XH»)
—k,E» (nXH. ), which is likewise zero. Thus, if
k~' —k ' is different from zero, which will be the
case if a&b except in case of degeneracy, we have

E, Egdv=0 if a&b, (III.10)

4 y
E, Ebdv=b g, H, H»dv = 8,», (III.11)

where as usual h, ~ is unity if a=b, zero if aWb.
Since E, and H are related by (III.1), we may
not simultaneously assume that E and H are
normalized in this way, without proof that the
two conditions are consistent with each other.
To prove this consistency, we have

which we wished to prove. In the case of de-
generacy we can prove, as in quantum mechanics,
that we can always introduce normal functions
E and E& in such a way as to secure the orthogo-
nality we desire, though it is no longer necessary
that the functions have that property. The proof
of the orthogonality of the H 's, stated in
(III.6), follows in an entirely analogous manner.

In addition to the orthogonality, we shall
assume that the E 's and H 's are normalized in
such a way that J'B,'dv and J'H, 'dv equal unity,
so that the normalization and orthogonality
conditions can be written in the form

$,=0 on Sand 5',
nXF =0 on S and S'. (III.15)

These conditions, in which the second obviously
follows from the first, are not the most general
boundary conditions which can be applied to
these functions, but they will be suf6cient for
our purposes.

We can now prove that the functions F and
P, have orthogonality properties of the form

F, .Fgdv =0 if a~b,
~v

P,P»dv=0 if a&b.
~v

(III.16)

To prove this, we have

div (f.grad P»)
=f 7'P»+grad f, grad f»
= —k»'f, f»+grad f, grad P» (III.17.)

Interchanging the order of a and b, we set up
another equation like (II I.17), and subtract.
We then integrate over V, obtaining

an an)

We assume that the scalar P, satisfies the wave
equation

'PP, +k '$, =0, (III.14)

from which we immediately see that F also
satisfies the wave equation. As boundary condi-
tions we assume

div (E,Xcurl E,)
= (curl E )' —E, curl curl E,
=k,'(H~' B,') . —

The surface integral vanishes on account of the
condition (III.15), so that, if k.Wk», the volume
integral must vanish, leading to the orthogonality

Integrating over V, the left side again transforms condition (III.16) for the f's If we integra. te
into a surface integral which vanishes, showing (III.17) itself over V, the surface integral again
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vanishes, so that, if Jr p,fbdv=0, we must also
have Ji grad p, .grad fbdv =0, so that we prove
the orthogonality of the F's. Finally we assume
normalization of the form Jr I','dv =Jr P,'dv=1,
so that we can write the normalization and
orthogonality in the form

F Fbdv = p,pbdv = 0 b (III.19)
v ~v

To prove the consistency of these two conditions,
we take (III.17), set a = b, and integrate over V.
Using (III.13), we find at once that Ji P,'dv

= Jv F,'dv, so that we are justified in setting
them each equal to unity.

As a final step in setting up our orthogonal
functions, we prove that one of the F,'s is
orthogonal to one of the E,'s:

F~'Eydv = 0.
6 p.

(III.20)

To prove this, we note that

div (P,Eb) =f, div Eb+grad f, Eb
= kZ Eb, (I I I.21)

since div E~ ——0. Integrating over V, the surface
integral vanishes, proving our result (II I.20).

We have now set up two orthogonal families
of solenoidal functions, the E 's and H, 's, and
one family of irrotational functions, the F,'s. It
seems intuitively reasonable to suppose that the
E 's and the F 's, or the H, 's and the F 's, form
complete sets of functions, in the mathematical
'sense, such that any artibrary vector function
of position within V, satisfying certain not very
stringent conditions of continuity, must be
capable of being expanded in a series in the
functions. It is a problem for the mathematician
to prove rigorously the completeness of these
sets of functions, and we shall not attempt it.
There are two points which are clear about this
expansion. In the first place, we certainly do not
need both the E,'s and the H 's for any given
expansion; an E and an H~ are not orthogonal
to each other, but on the contrary one of the
E's can be expanded in series in the H's, or
vice versa We choose .either the E 's or the H, 's,

in any given case, according to convenience. The
general situation to be expected is that if the

A = Pa eaEa+ ga faFa~ (III.23)

where the e, 's and f,'s are coeKcients, and where
the first summation is over the normal functions
of the solenoidal, the second of the irrotational,
type. If we multiply A by one of the E 's, and
integrate over V, then on account of the orthogo-
nality relations the integral of the product of
this E with every other term of the summation
(III.23) except itself will be zero, and the integral
of its square will he unity on account of normal-
ization. Thus we have

e, =) A E.dv. (III.24)

There will be a similar result for f,. Hence we

1

function which we wish to expand has boundary
conditions which more closely resemble the
boundary conditions satisfied by the E,'s than
by the H 's, then its expansion in terms of the
E,'s will converge better than the expansion in
terms of the H 's, and vice versa. This is analo-
gous to the situation according to which a func-
tion in the range 0 to m can be expanded either
in a sine or a cosine series of period 2m, but if
the function we are expanding satisfies the same
boundary conditions as the sines (function zero
at 0 and ~), the expansion in sines will converge
better than that in cosines, in the sense that the
derivative of the sine series will also converge,
while the derivative of the cosine series will

diverge. The other point which we wish to make
about the expansion is that the characteristic
numbers k, for the solenoidal functions are not
the same as for the irrotational functions. In
each case, for instance in the summations over
a which we shall soon set up, we are to under-
stand that we use the k appropriate for the type
of function under consideration.

If we may expand an arbitrary function, say
A, in terms of the E,'s and F,'s (or the H, 's and
F 's), it is then an easy matter from the orthogo-
nality and normalization conditions to find the
expansion coefficients. Let us assume that

A=A, +A„ (I II.22)

where A~ is the solenoidal, A2 the irrotational,
part of A. Then A~ can be expanded in series in
the E,'s (or the H, 's), and A2 in the F,'s:
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may rewrite (III.23) in the form

r
A=+, E, A.E.dv+F,

,
A F,dv. (III.25)

,v»v
method. We have

div (EXcurl E )
=curl E.curl E,—E-curl curl E,
=k H, curl E—k,'E.E,. (III.28)

There will be an analogous formula in terms of
the H 's. Our method of expansion, which we
take up in the next section, is based on this
result. In expressing the volume integrals in the
future, we shall omit the subscript V for sim-
plicity, assuming that all volume integrals are
~ver V unless it is stated to the contrary.

Integrating over V, and transforming the term
on the left into a surface integral,

n (EXH.)da

curl E H,dv —k, E.K,dv. (III.29)

r
E» )

H=Q H H Hdv,

J=P.
~

E. J E.dv+F. J F.dv ~,

(III.26)

2. Maxwe11's Equations in a Hollow Cavity

Our object in the present section will be to
expand the electric and magnetic fields, and
other related quantities, inside a hollow cavity
in terms of the orthogonal functions set up in
the preceding section, and by means of Maxwell's
equations to find relations between the expansion
coefficients. In Maxwell's equations, as given in
(II.2) and (II.3), we shall expand E in series in
the E,'s and F,'s; H in series in the H, 's; curl E
in the H, 's; curl H in the E,'s; J in the E,'s and
F,'s; div D and p in the f,'s Thus we. have

In the surface integral, we may write the inte-
grand in the form H, (n XE) or E (H, Xn). The
second form shows that it vanishes over S'.
Then, substituting in (III.27), we have

curl E=Q, H,
~

k, I E.E.dv

+ (nXE).H da ~. (III.30)

In other words, in addition to the sum of terms
involving volume integrals, which we got by
taking the curl of the series for E, we also have
a sum of terms involving surface integrals. These
integrals will be zero if E is normal to the surface
S, but we shall later find cases where E has a
tangential component over S, so that the surface
integral does not vanish. We shall shortly con-
sider the significanc of these surface integrals.
In a corresponding way we find that

p = Qa 4'a p4'adv curl H=P. E.
~

k.) H. H.dv

The other expansions take a little more thought.
For curl E, we might think at first sight that we
could take the expansion (III.26) for E, and take
its curl directly, obtaining Pk,H, J'E E,dv. On
the other hand, we might consider the function
curl E, and expand it directly in terms of the
functions H, . We then have

curl E=Q H curl E H,dv. (III.27)

Similarly for div D, using the relation

div g,D) =f, div D+ D grad P,
=f.div D+k,D F„(III.32)

we have

div D=Q, P,
~

—k D F,dv

We may evaluate the integral by the following
(D n)P.da I. (III.33)
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The surface integral in (III.33) vanishes because
P, is zero on S and 5'.

We have now set up the series for.the various
quantities concerned in Maxwell's equations. We
next substitute these series, and equate coefh-
cients, so as to get the differential equations
satisfied by the various coe%cients. From curl E
+BB/Bt =0 we have

k,
~

~K.E,dv+ po— H H,dv
dt

"s (n XE) H.da. (III.34)

From curl H —D =J we have

d
k. "H.H.dv —eo— E E.dv

dt ~

J E.dv —, (n XH) E,da, (III.35)

d—co— i E F,dv= 3J F dv. (III.36)
dt~

The equation div B=0 is automatically satisfied.
The equation div D =p gives

—k, eo ~E F.dv =
~
fpP,dv. (III.37)

k. J F.dv =— pP.dv.
d

dt
(III.38)

The integral on the left may be rewritten by
using the relation

div (P,J) =f, div J+J grad P,. (III.39)

We may show from the equation of continuity
that (III.36) and (II I.37) are equivalent. Taking
the time derivative of (III.37), and multiplying
(III.36) by k„ the left sides of the equations are
identical. The two equations will then lead to
the same result if we have

(III.38), at once leads to

div Jf.dv =— pf.dv. (III.40)
dt ~

But (III.40) is true on account of the equation
of continuity,

div J+Bp/Bt =0. (III.41)

aopp— E ' Egdv+kg E 'Egdv
dt~ ~

d( p= —po—(
' J E dv (nXH) 'E+dg

dt E~

Thus we need use only (III.36) or (III.37), not
both.

In discussing Maxwell's equations, we have
two very distinct problems. First there are the
Eqs. (III.34) and (III.35). These will concern us
most in the future. They are the equations
determining the solenoidal part of E, and'H. It
is this part of the field that shows properties of
wave propagation, and that is usually regarded
as the radiation field. These equations determine
the coefficients J'E.E,dv and fH H,dv as func-
tions of time; they are determined in terms of
the integrals which appear on the right side
of the equations. The quantity J'J'E dv
—J8 (nXH) E,da appearing on the right side
of (III.35) is easy to interpret. It is one of the
components of J (the volume integral), supple-
mented by the surface integra1. In this surface
integral —(nXH) is the tangential component
of surface current connected with the discon-
tinuity in the tangential component of H at the
surface, so that the surface integral gives us the
contribution of surface currents. Similarly the
quantity —J's (nXE) H,da would have to be
interpreted as the integral of —(n XE), a surface
density of fictitious magnetic current, which
appears at a .surface of discontinuity of the
tangential component of E. Thus we have the
interpretation of the surface integrals appearing
in (III.30) and (III.31).

We can easily combine (III.34) and (III.35), to
get separate equations for J'E E.dv, J'H H dv,

as in the conventional derivation of the wave
equation. Thus we have

Integrating (III.39) over V, the surface integral
is zero, and the volume integral, substituted in

—k, , (nXE) H.da, (III.42)
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ootio— H H.dv+k, ' H H„dv
dt'~ J

(=k,
~

~ J E.dv — (nXH) E.da
~

~s, )

—oo— (nXE) H,d~t. (III.43)
dt ~s

curl Ei+B=0,
curl H —Di ——Ji,

4—Do= Jo,

div 8=0,
div Pi ——0,
dlv D2=p

These two equations will form the basis of most
of our later treatment of resonant cavities. They
show that J'E.E,dv and J'H H,dv are deter-
mined as functions of time by the type of differ-
ential equations encountered in elementary prob-
lems of simple harmonic motion. The terms on
the right-hand sides take the place of the external
force in the problem of simple harmonic motion,
so that we may get solutions of (III.42) and
(III.43) showing the properties of forced oscilla-
tions and resonance, the forced motion resulting
from the currents within the cavity, or from
disturbances propagated from the walls. We
shall take up these motions in later sections.

The remaining one of Eqs. (III.36) or (III.37)
refers to the irrotationa1 part of E, the part
whose curl is zero, or which is derivable from a
scalar potential. To understand its interpreta-
tion, let us go back to Maxwell's equations,
writing the vectors E and J as sums of a sole-
noidal part (Ei and Ji) and an irrotational part
(Eo and Jo). We have

is taken in the problem of retardation, or of
finite velocity of propagation of the disturbance.

3. Free and Damped OsciHations of a
Resonant Cavity

As a first example of the use of Eqs. (III.42)
and (III.43), let us consider the free oscillations
of a resonant cavity. We assume that the cavity
contains no current density, so that J=0.
Furthermore we assume that over the part of
the surface S the tangential component of E is
zero (which would be the case if that part of the
surface were formed of a perfect conductor, or
formed a short circuit) and that over S' the
tangential component of H is zero (which would

be the case if that part of the surface were
formed of a perfect insulator, in which no surface
current could flow, so that it formed an open
circuit). Then all integrals on the right side of
(III.42) and (III.43) would be zero, and the
equations would have solutions

E E dv =constant s'"~' oi o ti =0 (III.45)

with similar solutions for J'H H,dv. Thus the
~,'s are the angular frequencies of the resonant
modes, and the general solution of the problem
of free oscillations would be a superposition 6f
the various normal modes, each oscillating with
arbitrary amplitude at its resonant frequency.
From Maxwell's Eqs. (III.34) and (III.35) we
can find the relation between the coefficients
J'E E,dv and J'H H,dv for the normal modes.
By substituting, and using (III.45), we find

easily that
in which the last two equations are equivalent
as a result of the equation of continuity. Re-
membering that curl K~=0, we may write

Eo = —grad g, Pg = —p joo. (I I I.44)

E E,dv

H. H,dv

i (p, o/oo) '— (III.46)

That is, E2 is derivable from a scalar potential,
which satisfies Poisson's equation. The problem
of finding E2 is then identical with the electro-
static problem of finding the field of a known
distribution of charge, subject to a condition
that the potential is zero on the boundary. The
only difference between this and an electrostatic
problem is that the charge distribution, and
hence the field, varies with time; but no account

That is, the magnitudes of the coefficientsfE E dv and J'H H,dv are in the same ratios
to each other as the values of E and H in a plane
wave in empty space, but the electric and mag-
netic fields are 90' apart in phase, a character-
istic of standing electromagnetic waves. We
readily find that as a result of (III.46) the time
average electrical energy, integrated through the
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cavity, equals the time average magrietic energy.
The phase difference, however, results in the
magnetic energy being large when the electric
energy is small, and vice verse, just as with the
kinetic and potential energy in simple harmonic
motion, with the result that the total energy
remains constant.

The solution for free oscillation which we have
just found is analogous to the free oscillation of
a simple L-C series circuit. 9/e shall now look
for the analog to damped oscillation, which
occurs when the circuit contains resistance as
well as inductance and capacity. The equation
for a series circuit containing inductance I,
resistance R, and capacity C is

The decrease in energy per unit time is pip/Q
times the energy, or we may write

2x g total energy
(I I I.51)

decrease of energy per period

where the period concerned is 2m. /&op, as deter-
mined from the angular frequency which would
exist if the damping were absent.

The description of a rate of damping of a
circuit by means of a Q is one which is con-
venient in microwave work as well as with ordi-
nary oscillating circuits. We shall adopt for Q a
definition which is equivalent to (III.48): an
oscillation whose angular frequency is determined
by the equation

dg dg QI. +R—+—=0,
dt dt C

(I I I.47)
(III.52)

if we use the charge g on the condenser as the
variable. If we assume an exponential solution,

q varying as e&"', this becomes

which may be rewritten in the form

03 Mo R————j—= 0, where cop' ——1/L C. (I I I,48)
Mo 6) L coo

Equation (III.48) is a quadratic for the fre-
quency, whose solution is found to be

will be referred to as having a given Q. This
definition is equivalent to that of (III.51). In
most of our applications, Q will be large enough
so that the distinction between &up and the cor-
rected angular frequency a&pt'1 —(1/2Q)']l can be
neglected. The advantage of introducing Q and
a&p is that Q and pi/pip are dimensionless quanti-
ties, easily measured, and easy to transfer to
microwave problems in which I., R, and C have
only a rather uncertain or ambiguous signifi-
cance. In many cases we shall find that the
angular frequency coo is nearly equal to one of
the resonant frequencies pp, defined in (III.45);
this will be the case if the motion differs from a
free oscillation only by a small perturbation. In
such a case, we may let

where (III.49)
pip = p~e+&p~a (I I I.53)

Using the value (III.49) for the frequency, we
see that the charge varies as

where her is a small quantity. In this case,
(III.52) may be rewritten in several forms, cor-
rect to the first order of small quantities, as
follows:

exp (—(~p/2Q)~) exp (~j~pLI —(I/2Q)'j'~)

(III.50)

(pp R~r 1
ji ——I+—2j

EM~ CO ) COg

=0,

This represents a damped oscillation, with angu-
lar frequency equal to p&pal —(1/2Q)'j', and such
that the energy, which is proportional to the
square of the amplitude, decreases with time
according to the expenential function e ' 0'~&'.

07~2.

pi Gpp =J + 2ppg, kppg, ,

M~
pi=&a +hp~, +j—.

2
(III.54)
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We see from (III.54) that the real part of the
quantity cv' —~ ' leads to a shift of resonant fre-
quency, and the imaginary part to a damping
of the oscillation.

We now ask what sort of perturbation of our
problem of the free oscillation of a cavity is
necessary to produce damped oscillations. Three
types of perturbation are most common. First,
the walls of the cavity, instead of being perfect
conductors, may have only finite conductivity,
resulting in resistive losses. In this case, the
tangential component of E over the surface S
will not vanish, and the integral J's (nXE) H
in (III.42) will be different from zero. Secondly,
the cavity may have certain windows, or wave
guide outputs, which allow the escape of energy,
with consequent decrease of the total energy. In
this case, the tangential component of H over
the surface S' will not be'zero, and the integral
JB (nXH) E~da will not vanish. Thirdly, the
cavity may contain currents in phase with the
voltages producing them, as if they contained
resistive mater'ial obeying Ohm's law. In that
case, the integral J'J E,dv will not vanish. In
all these cases, in order to have damped oscilla-
tions, the various integrals must be proportional
to the amplitude J'E.E,dv of the field compo-
nent, and must oscillate with the same period.
In such a case, we may assume a solution of
(III.42) varying as e&"', where o& will in general
be complex. Substituting this time variation,
and using (III.54), we find

~ (nXE) H,da

nXE=H(goo~/2o)l(1+ j)
=H-,'biioid(1+ j) (I I I.56)

at the surface, Thus the first term on the right
side of (III.55) becomes .

oi~(&ohio) '

~
.(n XE) H.da

S

E E,dv

—,'8H H da
~8= —j(u o/«) '(1+j)

~
EE,dv

(III.57)

If the oscillation is taking place with almost the
frequency of the ath mode, we may assume that
to a first approximation the field distribution
will be that of the ath mode as well. Thus we
shall approximately have

H=H, H Hdv

4. The Unloaded Q
I

First we consider the losses in the cavity
resulting from the finite conductivity of the
walls. In (II.34) we have found that there is a
tangential component of E over the surface 5,
in case of finite conductivity. From that equation
we find at once that

her,——22
Q

gaia

~a(&ohio) '

~E E,dv

(nXH) E.da
~s

~E E,dv

f'

J E.dv

6{)M~
E E,dv

. (III.55)

= j(«/~o) 'H. E E.d~ (III.58)

in which we have used (III.46) for the ratio
between J'E E,dv and J'H H.dv; a value which
strictly holds only for the free oscillation, but
which would be a good approximation for
damped oscillation. . Substituting, we have

h

1/Q —2 j(A&u /o~„) = (1+j) —', 6II,'da. (III.59)

We shall now consider the various terms on the
right-hand side, showing how they lead to damp-
ing and to displacement of the resonant fre-
quency.

We see from (III.59) that the surface losses
result in a shift of wave-length, as well as a
contribution to Q. The value of Q given in
(III.59) is generally ca,lied the unloaded Q; we
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shall denote it by Q, . We note that it really
should also have a subscript a to denote the ath
mode, but we shall omit this when it is not
necessary. We may get an idea of the order of
magnitude of the unloaded Q as follows. We
remember that from the normalization condition
(III.11) the integral J'H, 'dv is equal to unity.
That is, if U is the volume of the cavity, and if
(H, ')A„ is the mean value of H, ', we have (H, ')All

= 1/ V. If we assume, to get orders of magnitude,
that b is constant over the surface, and that the
value of II,' on the surface equals 'its average
over the volume and that furthermore the surface
area is A, then we should have 1/Q, =SR/2V.
That is, Q, would be the ratio of the volume, to
the volume of a thin shell of thickness 8/2
surrounding the volume. It is interesting to see
how the Q, of a cavity will change with the
wave-length. Of two cavities of the same shape
but different sizes, the wave-length will be pro-
portional to the linear dimensions, so that the
volume will vary as X', and the area as V. The
skin depth, by (II.33), is proportional to (X)*.
Thus if the conductivity is independent of wave-
length, Q, will be proportional to ('A)', decreasing
as we go to shorter wave-lengths. The actual
magnitude of Q, will of course depend on the
shape of the cavity, and the material of which
it is made.

S. The Input Impedance of a Cavity

We next take up the effect of coupling the cavity
to an outside system by an output lead, which
will be assumed to take the form of a wave guide
or coaxial line. We assume that there is such a
line attached to the cavity, and that the surface
5' is a surface at a cross section of the line. The
volume in which we are solving Maxwell's equa-
tions then includes not merely the cavity, but
the part of the output lead out to the surface S'.
The normal resonant mode is that which arises
when there is an open circuit at 5', that is,
when there is an infinite standing wave ratio in
the output line, with a standing wave maximum
at 5'. This would correspond to a voltage maxi-
mum, and current node, at this surface. Our
problem is now to substitute other boundary
conditions at 5', and to find what effect that
has on the oscillations in the cavity. If the
boundary condition consists of stating that the

impedance or admittance across S' has a certain
definite value, so that the voltage is proportional
to the current (or E is proportional to H), the
result will be a contribution to Q and the fre-
quency shift. The more general case, however,
is one in which there are arbitrary impressed
voltages or currents across 5'. In such a case,
power can How in as well as out through the
guide, so that we have the possibility of forced
oscillation of the cavity as well as damped
oscillation. We take up this general case, later
obtaining the case of damping as a special case
of our general treatment.

The general outline of our derivation will be
as follows. We assume a given distribution of H
over the surface S', or a given current Rowing in
the guide. We can then calculate the integral
J'(n&&H) E,du over S'. From (III.42) we can
compute the electric field everywhere within the
cavity, and in particular within the guide, and
at the surface 5'. From this electric field we can
find the voltage at S', and can take the ratio of
voltage to current, and hence the impedance at
the plane 5', the input impedance leoking into
the cavity. First we must consider the nature of
the held in the wave guide. In the guide, the
function II must have the general form given
by a summation over the modes n of the guide
of terms as given in (II.13); for any solution of
Maxwell's equations in the guide must have
that form. Thus at the surfaceD' the transverse
component of E, must be expressible in the form

E.=Q„E,„(v. /Zp„) (III.60)

whele Zo is the characteristic impedance of the
guide in the nth mode, for an angular frequency
~„and where the v,„'s are coeScients (inde-
pendent of time, as E, is) which as we see from
(II.22) represent the voltage at plane S' and in

the nth wave guide mode set up by the resonance
E in the cavity. The transverse component of
H is zero at 5', by hypothesis; that is, as we
mentioned earlier, the corresponding current
components are zero at this plane. If the trans-
verse component of H, is zero, then by (II.13)
the normal component of E, will automatically
be zero on 5'. It is interesting to consider the
effect on the v,„'s of choosing the surface 5' at
different points along the output line, If we go
a half guide wave-length along the guide, for
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H=&„H,„i„ (III.61)

where the i„'s can be interpreted, as in Chapter
II, as the currents associated with the various
modes of the guide. AVe assume that H varies
as e'"', each of the i„'s having this variation. We
may now compute the integral over 5' of
(nXH) E„which appears on the right side of
(III.42). We shall take the positive direction in

the guide (the direction of the unit vector Ir of
Chapter II) as being into the cavity, so that the
unit vector n will be —k. From (II.11), we then
have nXH =p„ i„E,„/Z0„. Multiplying this by
the value of E, from (III.60), and integrating
over the surface S', the cross terms in the double
sum integrate to zero on account of the orthogo-
nality properties of Section 5, Chapter II, and
the result, using the normalization condition
(II.30), is

(nXH) E,da = Q„ i v,„. (III.62)
S'

If now we use this value of the integral in

any of the propagated modes, the disturbance
will come back to its initial value. Thus v,„,
though it will vary with the position of 5', will

be a periodic function. We shall discuss the
implications of this periodicity at a later point.
For the attenuated modes, on the contrary, the
disturbance will generally fall off exponentially
as we go along the guide away from the cavity
(there is normally no reason to expect the other
exponential term, which increases exponentially
as we go away from the cavity, to be present).
Thus if we take S' some little distance away from
the cavity, the values of the v,„'s for the attenu-
ated waves will have fallen to very low values,
and may be neglected. As a rule we shall assume
that our surface 5' is far enough from the cavity
for us to have this situation. Then our summation
over n really has non-vanishing terms only for
the propagated waves. In case we are considering
an angular frequency co, for which only the
dominant mode in the guide will be propagated,
the summation will reduce to a single term.

We shall now assume that over the surface S'
we impose a tangential magnetic field which in
accordance with (II.13) and (II.22) we may
write

(III.42), and assume that J'E.E,dv varies as
e&"' we find at once that

E E.dv =Q„.(III.63)
iL(~/~. ) —(~./~)j

The voltage corresponding to the nth guide mode,
if E=E„or if J'E E de=1, is v,„. Thus the
whole voltage corresponding to the nth guide
mode is P, v,„J'E E,dv. If we call this voltage
U, we have

Vn = Pm &mZam,

+adam/&0&a
Z„„=Q.

iE(~/~-) —(~./~) j

(III.64)

That is, there are linear relationships between
the V„'s and the i 's, and we have been able to
write down the coefficients, of the nature of
impedances, in an explicit manner.

There are a number of remarks which can be
made about this important result. In the first

place, suppose that we are applying it in a region
of wave-lengths where the guide can propagate
only in its dominant mode. Then in the summa-

tion over m, we shall have only one term, that
related to the dominant mode; all the other Z„'s
will vanish. If this mode is called the 1st mode,
we shall have

Ug =~iZgg)

V &a& /&0&a
Z 11

ir (~/~. ) —(~./~) 3

(III.65)

This then represents the impedance seen looking
into a cavity through a wave guide which propa-
gates only in the dominant mode. We observe
that it is a sum of resonant terms, the impedance
becoming infinite when the frequency equals the
resonant frequency of any one of the modes. At
frequencies near co„ the term in this frequency is

much greater than any other, and varies rapidly
with frequency, whereas the other terms are
small and slowly varying. It is often convenient

to lump these other terms together, using a
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notation Z l to represent them, so that

~al / ~a&a2/

Zll ——— —+Z.l. (III.66)
jL(M/M. ) —(M./M) ]

We may now ask what will be the damping if
the guide is terminated by an impedance Zl. The
quantity Zll in (III.66) is the impedance looking
into the cavity, or is the negative of Zl, the
impedance looking out. Making this substitution,
we have from (III.66)

Mal &at /&pMa

+ =o.
(Ma M J Zl+Zal

(III.67)

This is in the form of the first of Eqs. (III.54),
and shows that we have

1 AMa Val /CPMa 1 ZP1——2j
Q Ma Zl+Zal Qext, al Zl+Zal

where
l

&al 2

Qext, al &PMaZP1

(III.68)

g+ jb =Zpl/(Zl+Z. l) (III.69)

In this case, we have

.1. g
t

ext, al

Aced, b—2—=——. (II I.70)
~a ext, al

In terms of the external Q, we may rewrite

In this formula, we have introduced a quantity,
Q, t, ,l, which we may call the external Q of the
ath mode of the cavity, and the 1st mode of the
guide. Its meaning is simple; if we make Zl+Z, l

=Zpl, it is the Q of the resonant mode. If we
neglect Z, l, this means that there is to be a
matched load in the guide. We shall see presently
that if we choose the position of 5' properly, we
can make Z l equal to zero, so that in this case
Q, t is exactly the Q which we should have with
a matched load. The external Q is clearly a
measure of the coupling of the ath mode to the
output, through the j.st mode of the guide. In
case v, l is very small, the external Q is large,
or there is very small coupling. It is convenient

' to define an admittance g+j b by the relation

(III.65) in the form

Zll 1/Qext, al

jDM/M. ) (M—/M) jZ01

1/Qext, al Zal
+ . (III.71)

jL(M/M. ) —(M./M) j
In the treatment we have just given, we have

neglected the other terms on the right side of
(III.42), coming from losses in the walls and
other forms of losses. If however we have the
situation of Section 4, we may easily take account
of the losses in the walls. When the external
frequency is near the resonant frequency of the
ath mode, the term in a in the summation
(II1.65) will be much greater than any other,
which means that the field is almost like E„ the
assumption underlying Section 4. In setting up
(III.63), we then see that we must put additional
terms as given by (III.59) in the denominator.
We then have in place of (III.71)

Zol

1/Q. t, .i
(II I.72)

jL(MIM.) —(M.'/M)1+ (1/Q. )

i 1 g—=—+-
L a ext al

(III.73)

We next consider the case where there are
several output leads for the cavity. In (III.62),
the integration must be carried over each of the
surfaces 5' closing the various leads, and the
summation- over n will include terms for each of
the propagated modes in each of the leads. This
same situation will carry through to (III.64), in

where we have used co
' to refer to the resonant

frequency as modified by the correction term
hM, derived from (III.59). We see that the'input
impedance is no longer purely reactive, but that
it has a resistive term, the resonance term be-
coming purely resistive at resonance, just like
the input impedance of a parallel resonant circuit
in ordinary circuit theory. Proceeding as in the
derivation of (III.68), we now find that if there
is loss in the walls, the quantity 1/Q —2jhM /M

is the sum of the quantities (III.59) and (III.68)
arising from the losses in the walls, and from
the effect of the output lead. The resulting Q is
called the loaded Q:
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V„=g, v E E dv, (III.74)

which we can formally use the same expressions
we have already derived, but in which we must
now understand that the summation over rn

involves a summation over each mode of each
lead. We see then that a res'onant cavity acts
like a network with as many pairs of terminals
as there are propagation modes of the various
leads. A cavity with two leads, each propagating
only the dominant mode, acts like a four-terminal
network, such as we have discussed in Chapter I.
Furthermore, the impedance coefficients are as
found in (III.64). We note that the denominator
in this expression is to be modified as in (III.72)
in case we consider the losses in the walls. Our
present result proves the existence of linear rela-
tions between the various voltages and currents,
and hence justifies the whole treatment of
Chapter I in its application to problems of reso-
nant cavities. Beyond that, however, we now
see how the impedance coefficients vary with
frequency, a feature which we omitted from our
discussions completely in Chapter I.

In case there are a number of output leads, we
can treat the problem, as we have just seen, like
a network with an appropriate number of pairs
of terminals. If power is being fed in only through
one. lead, and in only one mode, however, and if
all the other leads and modes are terminated with
passive impedances, they will contribute merely
to the Q and to the displacement of the resonant
frequency of the cavity, and the problem may be
handled as that of a cavity with one output.
Following back over the argument, we see that
we can handle these terms as in the last para-
graph. Suppose that a particular mode of the
particular lead in which power is being fed in is
denoted by the mth, and that each other mode
of each lead, say the nth, is terminated by an
impedance Z„. We wish to find the input imped-
ance V /i =Z looking into the mth mode.
We have

for any value of I, including m. The impedance
looking into the eth mode is

V„v,„
E E.dv.

i„ i„ ~
(I II./5)

As in (III.64) and (III.65), if we are in the
neighborhood of the ath resonant frequency, the
term in a in (III.75) will be large and rapidly
varying with frequency, while the other terms
will lump together to a slowly varying term. Let
us assume that we are near the ath resonant
frequency, and as in (III.66) lump together all
these slowly varying terms, rewriting'$(111. 75)
in the form

V„v „
E E,dv+Z„„

&n &n ~
(III.76)

where Z,„ is simply defined as the sum of all
terms of (III.75) except that with index a. We
now have, since the output impedance at the
nth mode is Z„, for n&m, the relations

~an—Z =— E Edv+Z

&an

Z„+Z.„

(I I I./7)

Ke then wish to find

(III.78)

and to get it we must know an accurate value of
J'E E,dv. To find this, we use (III.42) aga, in, as
in the derivation of (III.55). Replacing the inte-
gral f(nXE) .H,da by the value found in Sec-
tion 4, for the case where B is almost exactly
proportional to B„and replacing the integral
J'(n XH) E,da by the value (III.62), rewriting
the i„'s in that expression from (III.77), we have

J E,dv=
COGOg ~

(o& cg i f 6 (v „/eoM)
i+(I+/) ~i

—H 2da+ Q ) E E dv+
(o) & 2 ~ Z +Z.. i „,v,„. (II1.79)

Introducing the unloaded Q from (III.59), the modified resonant frequency +,' from (III.72),
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and the external Q from (III.68), we then have

) E E,dv=
&mvam/popish

(I II.80)

J E.dv
(0 M ) 1 1/Q i, 1

/+ —+2 — +(pi. ' cp ) Q. ~a~ Z„+Z,„popi
E Ed@

and, substituting in (III./8),
1/ ext, am

,

t'J E.d.
( op pr, ') 1 1/Q, o, ,„1

I+——+—2 — ' +-
(Ma pi ) Q~ "&'"Zn, +Zgn &opia r'

J
E 'Egdv

(II I.81)

Equation (III.81) exhibits the input iinped-
ance in a mode of the output leads as a resonance
term, plus a slowly varying term. In the reso-
nance term, we see the eBect on the resonance
frequency and the Q of all the types of perturba-
tion which we met in (III.55): the losses in the
walls, the losses in the windows, and the losses
on account of current in the cavity. We see that
each mode of each output lead furnishes a
correction to the frequency, and a contribution
to Q, just like the value given in (III.68) for a
single mode of a single lead. We sha11 discuss the
term involving currents in the next section. In
Eq. (III.81), we have a formula correct near
the ath resonance frequency, when the resonance
term becomes large. We may reasonably assume
that the slowly varying term Z „may be approx-
imated, as for instance we saw by comparison of
(III.65) and (III.66), by a sum over a of terms
like the resonance term of (III.81). Such a sum
will have the correct behavior. near each .reso-
nance. Furthermore, far from resonance the first
term in a resonance denominator will be large
compared to the others, and this erst term is just
as given in (III.65), in which we showed that
the sum of all the resonance terms except the
ath was equal to Z, ~. In other words, we are
justi6ed in assuming that Z is approximately
given by a sum, over all values of a except a
itself, of resonance terms like that in (III.81).
The only case in which we may assume that this
formula is not very accurate is that in which two
resonant modes are close together, so that the

breadths of the two resonant peaks are great
enough so that they overlap. In such a case,
more elaborate methods than we have used are
necessary to get valid approximations to the
input impedance. If all resonances are well sepa-
rated, however, (III.81) should be accurate
enough for ordinary purposes.

——22

J E.dv

t E E.dv

(III.82)

The simplest application of these terms is the
case where the cavity is uniformly filled with a
material which conducts according to Ohm's

law, with a conductivity |T, and which also has a
dielectric constant e, rather than the value 6p

characteristic of empty space. From the con-
ductivity, there is a current density J=o.E, and
from the polarization P = (p —pp) E there is a
current density given by the time rate of change
of P, or by jop(p —pp)E, if there is a sinusoidal field.
In that case, from (III.82), we see that we have

1 '

p Api 1(p—ppq
(111.85)

Q pppi. pi. 2 ( pp

6. Currents within the Cavity

Ke have not so far considered the contributl011
of currents in the cavity to the losses and fre-
quency displacement. From either (III.55) or
(III.81) we see that this contribution is
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The first of these indicates greater and greater
losses as the conductivity becomes larger, and
the second gives the first-order correction -to the
frequency if the cavity is filled with a dielectric;
the correct formula for the change of frequency,
as we can see by substituting e for eo in (III.45),
is that the frequency is proportional to 1/ge,
from which the frequency change of (III.83)
follows at once.

As a next more complicated case, we may
imagine that there is conducting or dielectric
material distributed through part of the cavity,
but not everywhere. In that case, the distribution
of E and H might be violently altered, and in this
case our assumption that the field is nearly E,
in the neighborhood of the ath resonant fre-
quency, on which parts of our deduction are
based, would not hold. If the effect of the con-
ductor or dielectric material in the field distribu-
tion is not great, however, so that we can
approximately replace E by E,J'E E,dv, (II I.82)
becomes

1 Aw, 1
2j —=— (o+ju(e eo))E.'dv.—

07~ CpGDg ~

That is, the effect of a conductor or dielectric is
large at places where E is large, small where it
is small.

A different type of problem is that in which
the cavity acts like an oscillator, the currents
leading to the generation of power. In such a
case, in (III.81), the impedance Z would corre-
spond to having a load impedance in the mth
mode. That is, we could change the sign of the
right side of (I I I.81), and regard Z as an
external impedance. A simple transformation
then leads to the result

~
J E.dv

1

fE.E dg

~u' i 1 1/Qext, an=jl ——I+—+Z- («I 84)] Q. z„+z.„
In this expression, the summation over n includes
all modes of the output leads; they are all on the

same basis. This equation furnishes the funda-
mental basis for all discussions of microwave
oscillators. There are important cases in which
the left side can be transformed into a form
suggesting lumped constants. In various types
of oscillators, such as the magnetron and the
klystron, the current is largely confined to a
region smal1 compared to a wave-length, and
the electric field is likewise confined to such a
small region. For instance, in the klystron, both
electric field and current are in the region be-
tween the grids, which acts almost exactly like a
lumped capacity. Thus there is a definite vo1tage
U between the grids. Similarly there will be a
current I flowing in the direction opposing the
field (if the current is generating power). If we
treat the condenser as having an area A, distance
of separation between the plates d, then we shall
have 8= V/d, J= I/A, if—positive current is
in the same direction as positive voltage. We
shall furthermore have E a constant over the
volume of the condenser, where alone E and J
are different from zero. Thus we shall be able
to rewrite the left side of (III.84) in the form

J E.dv
1 I g+jb.

(III.85)
ep(o, p (eoA/d) o), V C(u,

IE E,dv

in which g+jb is written for I/V, the ratio of.
current to voltage, and C= eoA/d is the capacity
of the condenser. This same formula can be
justi6ed in another perhaps more general form,
by considering the definition of Q in terms of
energy loss. Thus suppose the current, instead
of acting as a generator, is acting as a load, and
is contributing to the energy loss in the cavity.
In this case the term on the left of (III.84) should
have a real part which is the contribution of these
losses to 1/Q. Let us suppose that the complex
voltage is V, the complex current I= (g+jb) V.
Then the decrease of energy per unit time is
~ReIV = ~ g ~

U
~

', and the stored energy is 2 C
~

V
~

',
where C is the capacity, so defined as to give
the stored energy properly in terms of the
voltage. The contribution to 1/Q is then given
by (III.51), from which we see at once that it is
g/C&u„as we should deduce from (III.85), This
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formula then holds, so long as it is possible to
define a voltage, current, and capacity, satisfying
the correct energy relations. Using (I I 1.85), then,
the final result is

g+jb ((o ~ ') 1 1/Q i
=&~ ——~+—+g. i

. (III.86)
C(a, (a) '

co ) Q, Z„+Z,„
We shall use this formula in the next chapter
for giving a general discussion of the properties
of microwave oscillators.

7'. Perturbation of Boundaries

One more use of (III.42) is frequently very
valuable: the problem of the change of frequency
of a resonent cavity, when its boundaries are
perturbed, as by pushing a small part of the
wall in or out. Thus let us start with a cavity,
entirely enclosed by a perfect conductor, in
which we have found functions E, H, . Now let
the mall be pushed into the cavity by a small
amount, and let us consider the solution of the
problem with the perturbed walls. In the small
volume between the original wall and the per-
turbed one, the final functions E and H will be
zero. Thus there will be a discontinuity of the
tangential component of H at the perturbed
wall. This corresponds to a surface current, and
hence, in (III.42) and (III.43), we must include
an integral J'(nXH) E,da over such a surface,
even though it is not part of a surface 5'. The
perturbed field H will be very nearly equal to
the unperturbed H over the surface, so that the
term can be approximated as J'(nXH ) E d&,

integrated over the perturbed surface. This may
be rewritten J' —n (E,XH,)da. But we may
transform this by using

div (E,XH,) =H, curl E,—E, curl H
=k,(H,' —Z '). (III.87)

We integrate this quantity over the small volume
between the original and perturbed boundaries.
The integral of the left side, by the divergence
theorem, equals the surface integral of the normal
component of E,)&H, over the boundary. Over
the original surface, we may replace the quantity
n (E XH,) by (nXE,) H„ in which nXE, is
zero over the surface, and hence the contribution
vanishes. Over the perturbed surface, the contri-
bution is just J' —n. (ENXHa)da, the quantity

desired above, since n is the inner normal into
the volume enclosed between the two surfaces.
Thus we have

' (nXH) E,dc=k
~

(II,' Z'—)dv, (III.88)

where the surface integral is over the perturbed
surface, the volume integral over the volume
between the surfaces. If the field H, instead of
being H„ is a constant times this, or H, J'H H,dv,
then we must multiply the right side of (III.88)
by J'H. H,dv. We may then introduce this inte-
gral into (III.43), finding

Eg4 M +k = k (II B' )/&

'i 1+ (H' E')dv —l.)

(III.89)

This very valuable formula gives the perturbed
frequency co, resulting from a mode of reso-
nant frequency co„ in terms of an integral

J (II,' —Z,')dv over the volume which is re-
moved from the volume of the resonant cavity
by the perturbation of'the surface. We see that
when the surface is pushed in, the frequency
increases if the magnetic 6eld is strong at the
part of the surface perturbed, and is decreased
if the electric field is strong there. As a simple
illustration of this formula, let us start with a
cylindrical cavity, in the mode in which E runs
axially from one face to the other, and let us
consider the charge in frequency when posts are
extended down from the two faces toward each
other, as in constructing a klystron. The electric
field is strong at the place where the posts are
introduced; thus th'e effect is to decrease the
frequency. As another illustration, consider the
effect of making a hole in the cylindrical face of
such a cavity. Here the magnetic field is strong,
the electric field zero; pushing in the wall would
increase the frequency, whereas pushing it out
decreases the frequency. Finally, there can be
simple cases where the effects cancel; thus in the
same cylindrical cavity, pushing down the whole

top face of the cavity decreases the frequency on
account of the center part, where the electric
field is large, but increases it on account of the



M I C ROWA VE ELECTRON I CS

outer part, where the magnetic field is large. A
calculation of J'(H, ' B—,~)dv over the cylindrical
face would show that these eRects just balance,
and actually such a change of dimension, with
that particular mode of the cavity, does not
change the frequency at a11. We shall meet other
examples of the use of this theorem later on. It
must be remembered that it is strictly correct
only for a'n infinitesimal distortion of the surface.

IV. APPLICATIONS OF THE THEORY OF
RESONANT CAVITIES

I. The Tuning of Resonant Cavities

As a first and very instructive example of the
application of our general theory of resonant
cavities, we consider the following problem: a
resonant cavity is provided with 5 wave guide
output of some form, and the guide is closed with
a movable short circuiting plunger. We ask, how
do the frequencies of the various resonant modes
vary with plunger position? This is the problem
met when we try to tune a cavity by connecting
with a tunable wave guide, and it furnishes a
simple example of the general problem of two
coupled cavities, one of which can be tuned
through the resonant frequency of the other. At
the same time, as we shall see later, it has a very
close relationship to the problem of determining
the input impedance of a cavity, as a function
of frequency, by measuring the standing wave
ratio and position of the standing wave minimum
as functions of frequency. We shall assume for
the present that there are no losses in the system,
and no damping of any sort. We consider the
surface S' of the preceding chapter as being a
definite cross section of the wave guide output,
between the cavity and the plunger. Let the
distance from S' out to the plunger be d. Then
the impedance looking out across S', assuming
that the guide will propagate only in its dominant
mode, is jZo tan 2md/X„where Zo is the char-
acteristic impedance of the guide, X, the guide
wave-length. This must be the negative of the
input impedance seen looking into the cavity
across the same plane, which is given by (I II.71).
Thus we have

(IV.1)

or

m = integer. (IV.2)

This equation determines the wave-length (&u,

and X„which is of course related to it), as a
function of d, the plunger position, or more
directly d as a function of the wave-length. The
curves determined by (IV.2) are similar to those
given in Fig. 12. Far from a resonant frequency,

, the summation over a is small (equal to Z„, of
(III.71)), so that d is approximately nag/2, shown

by a set of straight lines through the origin in
the figure. As the frequency goes through a reso-
nant frequency, however, the summation goes to
infinity, changes sign, and again becomes small
far from the resonance on the other side; the
inverse tangent in the process increases by x, so
that d increases by ),/2, or the curve crosses
from one of the straight lines to the next. Just
at resonance, d= (e+~~)X,/2. In the figure, only
two resonances are shown; but actually there
will be an infinite set, stretching down to shorter
and shorter wave-lengths without limit.

A number of observations can be made about
this tuning curve, as we can call it (since it
shows how the frequency of the cavity is tuned
by moving the plunger). In the first place, a
position of the plunger can be found by which
the resonant frequency has any desired value.
A mode which has, for instance, the frequency ~&

for one position of the plunger, will tune con-
tinuously into a mode with frequency ~2, simply
by moving the plunger. The resonant frequencies
are, of course, periodic with plunger position,
increase of d by a half guide wave-length bringing
the whole set of frequencies back to their original
values. We observe next that the resonant be-
haviors are essentially tied up with the inter-
sections of the dotted lines d=n), /2, and the
dotted lines representing the various resonant
frequencies. That is, they come when a resonant
frequency of the wave guide itself coincides with
a resonance of the cavity, so that we have
essentially a coupled system. We notice -further-
more that a resonance with a small external Q,
or a tight coupling, has the eRect of pushing the
tuning curve far from the intersection of the
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dotted lines (as with the resonance ~i in the
figure) while a resonance with large external Q
or loose coupling, like ~2 in the figure, has the
effect of letting the tuning curves approach each
other very closely at the resonance. In the case
of a loose coupling, then, as we move the plunger,
we find that over wide ranges of plunger position,
the resonant frequency is almost independent of
plunger position; we find definitely non-tuning
resonances of this type, which are resonances of
the cavity, and also other resonances, which tune
greatly, following the dotted lines nX, /2, which
are the resonances of the output wave guide, ,
and do not a6'ect the cavity at all. Only when
these frequencies coincide do we get appreciable
tuning of the cavity resonance. Thus this situa-
tion is not suitable for an actual tuner for a
cavity resonance. With the tight coupling, how-

ever, the cavity resonance tunes strongly over a
wide range of tuner positions, so that this is the
situation actually desired for a tuner for a cavity.

An interesting insight into the nature of the
tuning curves is found from the relation (III.89)
of the last chapter, in which we studied the
change of resonant frequency of a cavity when
we push in a section of mall. From that equation,
we find that if the field is large near the movable
section of wall (which in this case may be taken
to be the plunger) a small displacement will make
a large frequency change, while if the field is
small it will make a small frequency change. We
notice that in the vertical part of the tuning
curve, a large displacement makes only a very
small frequency change; that means that the
field at the plunger, and in the wave guide in
general, is very small in this case. In other words,
that corresponds to a resonance of the cavity,
the field being such that only a small amount of
it is located in the wave guide output. On the
other hand, in the approximately horizontal
parts of the curve, a small displacement makes
a large frequency change, showing that the field
is strong in the wave guide, as we should expect
if it is the guide that is resonating, rather than
the cavity.

Suppose we take the intersection of the tuning
curve with the straight line d =X,/4. That is, we
ask for the resonant frequencies when there is a
short circuit a quarter-wave down the line from
the surface S'. In this case, there must be an

d,
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Flr.. 12. Tuning curve of a resonant cavity.

open circuit at S', that is, these resonant fre-
quencies are just the resonances co . Furthermore,
from the slope of the tuning curve at these
intersections we can find the external Q's. If we
differentiate d, in (IV.2), with respect to 'A„and
set the frequency at such a value that co=co,
so that the ath term of the summation becomes
infinite, we easily find

dd (n+1/2) Q,„»,, d In &d

d)g 2 d In X,
(IV.3)

which shows at once, as we have already pointed
out, that the vertical part of the tuning curve is
very steep for a case of loose coupling, or large
external Q, but which also shows that from this
slope we can find the external Q directly. Un-
fortunately, though this gives in principle a way
of finding the external Q, it is not accurate in

practice, on account of the very large slope,
which is hard to measure.

We may now consider a question which has
been disregarded until the present: how has the
surface S' been chosen? We have stated merely
that it is an arbitrary surface in the wave guide
output. We could, then, equally well have chosen
another surface. If we had done this, however,
the distances d to given plunger positions, meas-
ured from the new surface S', would have been
different. In other words, the tuning curve would
have been moved up or down in the figure, by
the amount of displacement in S' from its original
position. The straight line d=X,/4 would then
intersect the tuning curve at different places, so
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that with the new S' the resonant frequencies
would be different; and the slope of the tuning
curve at the intersection would be different, so
that the external Q would be diferent. This is
the most direct way of seeing the fact, which we
mentioned in Chapter III, Section 5, that the
external Q's were a function of the position of S'
along the line.

It is now natural to ask, is there some particu-
larly correct way of choosing S', which leads to
more sensible results than any other? We have
drawn the figure in a particular way: with one
of the branches of the tuning curve lying close
to 2 =0, and others close to d =nX, /2. Clearly a,

change in S' would change this situation. At
least in the neighborhood of one of the reso-
nances, we can always secure this situation,
though the same choice of S' will not always be
correct for different resonances. Suppose we are
considering a resonance of high Q. Near the
resonance frequency, by (111.71), the sumination
can be replaced by its ath term, plus the slowly
varying quantity Z . If we entirely omitted the
resonance term, then the tuning curve would go
right through the resonance frequency without
showing a resonance phenomenon. If we wished
this tuning curve to coincide with the line d =0
in the neighborhood of the resonance, we should
then have tan 2nd/X~=Z =0. We can do this,
on account of the fact that Z is a function of
the choice of S'. We can give a physical meaning
to the process of omitting the resonance term.
Suppose that our cavity is tunable, as for instance
a wave-meter cavity. Then by tuning it, the
resonance frequency ~ can be shifted around at
will. The process of tuning, however, will have
relatively small effect on Z, made up as this is
of contributions from an infinite number of reso-
nant modes. We may then tune the resonance
away from the frequency co in whose neighbor-
hood we are considering Z„and the remaining
input impedance of the cavity will be Z . But
now this impedance, as seen across an arbitrary
plane, will vary, just as any impedance takes on
different values across diR'erent planes in the
transmission line. Thus if we find that Z =0
across the plane S', we should then find across
a plane distant d from this plane that Z,
=.—j tan 2nd/X, . In other words, there is an
infinite standing wave ratio (since we have a

purely reactive load), and S' is the plane of the
standing wave minimum. We may, then, choose
S' to be the plane of the standing wave minimum,
when the resonance is tuned away fr'om the
frequency at which we are working; then Z, will
be zero, and if we tune the resonance back to
the frequency at which we are making our meas-
urements, the input impedance will consist of
just one resonance term. We can make this even
more correct, if we notice that Z, will always be
a function of frequency, by choosing S' to be a
plane whose position depends on frequency,
taking at each frequency the position of the
standing wave minimum looking into the cavity,
when the resonance is tuned out of the way.

2. Measurement of the Properties of a
Cavity Resonance

The input impedance looking into a cavity,
in which we can no longer neglect the losses, can
be written

Z I/Q. „,. Z
+—, (IV.4)

iL( / .) —( ./ ) j+(&/Q. )

in the neighborhood of the ath resonance. We
shall now ask how the parameters describing
this resonance can be found by measurement of
the standing wave ratio and position of standing
wave minimum looking into the cavity, 'as a
function of frequency. In the first place, if the
losses are negligible, so that Q, is infinite, the
standing wave ratio will be infinite at all fre-
quencies, and the position of the standing wave
minimum in the line will represent a plane of
zero impedance, which could be closed by a short
circuiting plunger without change of conditions.
In other words, the curve of position of standing
wave minimum as a function of guide wave-
length is just the same as the tuning curve
which we have already shown in Fig. 12. As we
go through a cavity resonance frequency, the
position of the standing wave minimum rather
suddenly. shifts by a half wave-length, 'while.
between resonances the positions of the standing
wave minima move along gradually and regu-
larly.

In case the losses must be considered, the
problem is more involved. Let us first consider
the form of the curve of impedance versus fre-
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FIG. 13. Impedance of a resonant cavity, for frequencies
near resonance.

quency in an impedance plane. If the frequency
takes on all values, the first term of the right
side of (IV.4) is a circle in the impedance plane;
for Z/Zo is a bilinear function of the quantity
j(~/~, —M /s&), which takes on only pure imagi-
nary values, and hence traces out a straight line,
the imaginary axis, in its own complex plane,
so that its transform into the impedance plane
must be a circle. Corresponding to frequencies
far from resonance, where the denominator be-
comes very large, the impedance goes to zero,
so that the circle passes through the origin; at
resonance, the impedance is again real, and we
see immediately that Z/ZO=Q, /Q. ~, at reso-
nance. Thus the two intersections of the circle
with the real axis are determined, and since the
circle is clearly symmetrical with respect to the
real axis, it is completely fixed in position by
these two conditions. We see that there is a
special case when the loaded Q equals the ex-
ternal Q: the cavity forms a matched load at
resonance, so that all power fed down the line is
absorbed by the cavity. If the unloaded Q is
greater than the external Q, the impedance at
resonance will be greater than the characteristic
impedance, and if Q, is less than Q,„~ the imped-
ance wi11 be less than the characteristic imped-
ance. When now we add the quantity Z, /Zo, as
a first. approximation we simply shift the circle;
if Z, /Zo is purely reactive, we shift it vertically,
but Z mill actually have a small resistive compo-
nent, so that we shift it slightly away from the
imaginary axis. On the other hand, Z mill actu-
ally be a function of frequency, though a slow'ly

varying one; as we see from (III.71), for instance,

each term of Z varies with frequency. Most of
the terms come from high resonance frequencies
so that the terms of (III.71) can be approxi-
mately written in the form (j/Q, „&,,)(ao/ra, ), so
that, since each of these varies proportionally to
the frequency, the same is the case with Z .
Thus as the frequency increases, we not only
traverse the circle in the impedance plane, in

the clockwise direction as we readily verify, but
the circle also moves bodily upward. Thus the
curve of impedance is similar to that shown in

Fig. 13. As the frequency continues to increase,
the point representing the impedance will travel
upward. from the loop shown, and at the next-
resonance will traverse another loop, and so on
indefinitely. We now notice that the procedure
of the end of the last section, in which we
measured the impedance, not across a fixed

plane, but across a plane S' which varied with
frequency, such that it always formed a standing
wave minimum when the resonance was tuned
out of the way, corresponds to disregarding the
gradual vertical motion of the circle in the figure
above, replacing (IV.4) by the first term, repre-
sented by a circle with center on the axis of
abscissas, as we first described it.

To find the standing wave ratio and position
of standing wave minimum, we wish the plot of
the impedance as a function of frequency, 'not in
the impedance plane as in Fig. 13, but in the
reHection coefficient plane. This will be as in

Fig. 14. From p, the magnitude of the reHection
coefficient, we can find the standing wave ratio
in voltage, power, or decibels, from (I.34), '(1.35),
or (I.36); it can be calculated by using the
relation r = (Z —Zo) /(Z+Zo), in combination
with (IV.4). 'We see that the standing wave ratio

FiG. 14. Impedance of resonant cavity, in reflection
coefficient plane.
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goes from a very large value oE resonance, down
to a minimum value at resonance. At the same
time the distance d from the plane S' (which is
fixed in the form of diagram shown above) out
to the position of the standing wave minimum
is given by

4ird/X, =y, (IV.S)

&0 = a ext &l. (IV.6)

where p is the angle in the figure. Thus we see
that, as we go through the resonance, p increases
by 2s, so that d increases by X,/2. In other
words, d, the position of the standing wave
minimum, as a function of )„behaves in a
manner similar to that of Fig. 12, which repre-
sents the limiting case of no losses. The situation
is quite different, however, in case Q,/Q. „» is
less than unity. For in that case, the loop does
not encircle the origin in the reflection coefficient
plane, so that P, instead of incr'easing by 2ir as we
go through a resonance, merely goes through a
maximum and minimum, but ends up at almost
the same value at which it started. In such a
case, the behavior of d, the distance from S' to
the standing wave minima, behaves as in Fig. 15.

For the accurate determination of the con-
stants of the resonance, measurement of d, the
position of the standing wave minimum, is not
nearly as good as a measurement of the magni-
tude of the standing wave ratio, as a function of
frequency. A formulation of the equation of this
curve, which has been found convenient in
practice, is the following. First, we tune the
resonance we are interested in away from the
frequency range we are considering, and. measure
the standing wave ratio as a function of fre-
quency. We choose the plane S' as the plane of
the standing wave minimum under these circum-
stances, so that S' varies with frequency. The
impedance as observed across S' is then purely
resistive. Remembering, as in (1.37), that the
standing wave ratio in voltage is the reciprocal
of the value of Z/Zo at standing wave minimum,
we may define Z /Zo as 0 i, the reciprocal of the
standing wave ratio in voltage off resonance.
Next, we tune the resonance back to the point
we are interested in, and measure the standing
wave ratio on resonance. From (IV.4), this is
Q~/Q, ~»+oi. We define this standing wave ratio
in voltage as ao, so that we have

FIG. 15. Position of standing wave minimum. as function
of wave-length, for resonant cavity with large losses.

where

z
+ (rii

Zo i&+ (1/(~o —~i)]
(IU.7)

((d N (~ —~0)
8 = Q.„, i

———
) -2Q,„, —. (IV.8)

( (dg, (4 . )
Defining the reflection coefficient from (IV.7),
we may solve for the magnitude of the reflection
coefficient, and find without difficulty

(0 i —1)'((ro —o'i) 'Ii'+ (ao- 1)'

(~i+1)'(~0 —~i)'&'+(~o+1)'
(IV.9)

From this quantity, we find the standing wave
ratio in voltage by the equation

1+)r[
SWR(volt) = (IV.10)

There is one qualification to be made to this
definition. If we have the case shown in Fig.. 14,
where Q,/Q, „» is greater than unity (we may call
this Case I), then 00 will be greater than unity
in (IV.6), and it will be the standing wave ratio.
On the other hand, if we have the other case,
wher'e Q,/Q, „, is less than unity (which we may
call Case II), 00 will be less than unity, and will
be the reciprocal of the standing wave ratio in
voltage at resonance. We may distinguish experi-
mentally between the two cases by examining
the position of the standing wave minimum d as
a function of frequency; if it resembles Fig. 12,
we have Case I, while if it resembles Fig. 15, it
is Case II.

With the definitions of 0.0 and 0~, we can then
rewrite (IV.4) in the form
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and the standing wave ratio in decibels from it
by (I.36). The most accurate way to use this
equation, in practice, is to observe a complete
curve of standing wave ratio as a function of
frequency; this curve will resemble Fig. 16. From
the frequency of the minimum we find or, , from
the standing wave ratio at the minimum, we
find op. The asymptotic value which o(db) ap-
proaches at some distance from the resonance,
or the value which it has at the resonant fre-

quency when the resonance itself is tuned out of
the way, gives pi. From these values, and (IV.9),
we may plot a curve of SWR(db) as a function
of b. Then we choose a horizontal scale, deter-
mining frequency in terms of 8, and hence from
(IV.S) determining Q,„t, which leads to the best
agreement with experiment. For rapid testing,
we can observe the breadth of the resonance
curve at a definite height above the minimum;
one such measurement will give Q,„t. Various

types of charts have been set up, giving conveni-
ent points at which to determine this breadth.
One convenient chart gives the height of
SWR(db) at which the breadth should be deter-
mined, in order that the frequency width will

give Q, t directly, by the relation Dtp/&p =1/Q. t.
By the type of analysis of resonance curves

which we have indicated in this section, we can
find values of the three parameters Q, t, Q„and
co, characterizing each resonance of a cavity. It
has proved in practice to be a very powerful
method of analyzing resonant oscillations, first
to use our general theory to indicate the form of
the input impedance, in terms of these constants
for each resonance; and then to use experimental
measurement of input impedance to determine
the constants experimentally for the resonances
which are actually of interest. Of course, we
have given in the preceding chapter general
directions from which the values of these con-
stants can be computed purely. theoretically, by
suitable solutions of Maxwell's equations, and
integrations over these solutions. Such calcula-
tions have been made in a very few cases, with
agreement with experiments. The semi-experi-
mental approach suggested here is very valuable
in the much greater variety of problems in
which exact calculation is too difFicult to
attempt.

4R/Zp
(IV.11)

-,'ZpA A (R/Zp+1) '+ (X/Zp) '

where R, X, are the resistive and reactive compo-
nents of input impedance. From the assumption
above, we have

R+jX
ZQ jr+ 1/o'p

(IV.12)

Substituting from (IV.12) in (IU.11), and carry-
ing out a little algebraic manipulation, we find
straightforwardly that

4/Q. Q-t. i (IV.13)

~2ZpAA ( tp pp, q
2 f1'

Ma Cp I (Qa Qsxt1Qsxt2), ,

3. Power Flow Through a Cavity

Another way to investigate the resonant
properties of a cavity is to use it as a transmission
device, allowing power to fiow in through one
lead, out through another, and measuring the
transmission as a function of frequency, as the
frequency is varied through resonance. We shall
then show that the breadth of the resonant peak
is a measure of the loaded Q of the cavity. To
carry out this process, we must feed power into
the cavity from an oscillator through a line with
much padding or attenuation, as described in
Section 15, Chapter I; for only in this case will

the output of the oscillator be independent of
the load. Ke note that in this case the input line

. from the oscillator to the cavity will be practi-
cally matched, so that, as we see from Section 5,
Chapter III, the contribution of the input lead
to the loaded Q will be 1/Q, t. As we see from
that section, the contribution of the output lead
to the loaded Q will be a similar term computed
for that lead, if the output is matched as well,
which we shall assume that it is. The input
impedance into the cavity can be written in the
form (IV.7), but we shall neglect the correction
term o&, which is generally small, and we shall
lump the loading by the output lead in with the
unloaded Q in the term 1/op. Thus we sha. ll

assume that the input impedance is 1/(jr+1/op).
We now find, from (1.59), that the power flowing
into the cavity will be given by
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swR (db)

FIG. 16. Standing wave ratio as function of frequency,
through resonance.

where Q,„», ~ is the external Q of the input lead,

Q.„», 2 of the output lead. This equation shows
that the power flowing into the cavity follows
a resonance curve, the power flow at resonance
being

where

I' 4Qz, '

2ZpAA Q.Q.„», g

1 1 1—=—+ +
L e ext, 1 ext, 2

(IV.14)

The maximum value which this factor can have
is of course unity, when the cavity is matched to
the line; this is the case when Q, », 2 is infinite,
and when Q,„», ~

——Q, = 2QI, . We can find the
width of the resonance curve at once; the half-
power point is found when

»0»0, 2(a) —(u,) 1

(Og CO COg

(IV.15)

That is to say, the frequency difference between
the two half-power points is given by hen/&u

= 1/Ql. . This calculation of power represents
that flowing into the cavity. On the other hand,
this power wi11 be divided up between the losses
in the cavity, and the 'power flowing out the
output lead, in proportion to their contributions
to the loaded Q. That is, a fraction

1/Q. », 2

(1/Q.)+(1/Q-», 2)
(IV.16)

of the input power wi11 flow out through the
output lead. Thus a curve of transmitted power

as a function of frequency will have the same
form as (IV.13), so that a determination of its
width will lead to the loaded Q of the cavity.
If the degree of coupling to both leads can be
adjusted, as it can if the coupling is through
irises of variable sizes, or through a coupling
loop whose intrusion into the cavity can be
varied, then we may reduce the coupling as far
as possible, so that the contribution of the
loading of the leads to the loaded Q is negligible;
in this limit, the resonance curve will approach
a limiting breadth, determined now by the un-

loaded Q, which can thus be measured by
transmission.

4. Properties of a Self-Excited Oscillator

One of the most important uses of the theory
of resonant cavities which we have developed is
in discussing the properties of self-excited micro-
wave oscillators, such as klystrons and magne-
trons. These all operate on essentially the same
principles, which we can discuss in general terms
without detailed study of the electronic flow

within the cavities, which of course leads to
their operation. We shall give the general dis-
cussion of their circuit properties here, post-
poning until later a treatment of the electronic
motions underlying them. In very simple lan-

guage, a self-excited oscillator consists of an
electronic discharge and a resonant cavity, which

plays the part of the "tank circuit" of an ordi-
nary oscillating circuit. The electronic discharge
consists of certain currents flowing within the
cavity. These currents, by the principles of
Chapter III, set up voltages. The voltages in
turn are what maintain the discharge. The rela-
tion between current and voltage is set by the
properties of the discharge, which is always non-
linear, so that for only one amplitude will there
be a given ratio between current and voltage.
On the. other hand, this ratio between current
and voltage must also be set up by the resonant
circuit. On account of its resonant properties,
the correct ratio can be set up only at one
frequency, near resonance, so that the resonant
cavity has the effect of stabilizing the frequency
of oscillation at a definite value.

The theory of the oscillator is essentially
contained in Eqs. (III.84) or (III.86). We re-
write (III.86) with the following changes. First,
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we assume that there is only one mode of the
output in which power can escape from the
cavity; secondly, we assume that the surface in,
the output line across which the impedance is
measured is such that Z, is zero, as we have
explained in the earlier part of this chapter.
Finally, we write the load in terms of its ad-
mittance G+j B, which is equal by definition to
1/Z. Then we have

(to &u p 1 G+jB
=P ———~+—+, (IV.17)

a a ext

which may be written in two parts, the real and
imaginary parts of the equation:

g 1 G
=—+

Q. Qt
(IV.18)

Bta Caa 2 (ta —(da )
/

GOa &&a Qext
I

GOa CO

In this equation, we are assuming a steady
oscillation, and a real cv,. the case of an expo-
nentially increasing or decreasing amplitude,
with a complex ~, will be taken up later, in
connection with the problem of starting of oscil-
lations. In (IV.18), we have the relation between
the electronic admittance g+jb and the load
admittance G+jB and the frequency which is
demanded by the circuit properties. In addition
to this, however, we have to know certain
information about the electronic behavior.

Looking back to Chapter III, the relations
(IV.18) give a calculation of the voltages arising
from the currents present in the electronic dis-
charge. On the other hand, the purely electronic
part of the problem is that which predicts the
currents arising from .certain voltages; we find
this, as we shall show in later chapters, by
apphcation of the mechanical laws to the motions
of electrons in the assumed 6elds. If there is a
well-defined voltage in the regional where the
electrons are Howing, as is assumed in the deriva-
tion of (IV.18), then we may regard the ampli-
tude of this voltage as an independent variable
in solving the electronic problem; and we shall
6nd the electronic current as a function of the
voltage. We must note in this that it is the
component of current having the same frequency

of oscillation as the applied voltage in which we
are interested; there will in general be other
Fourier components of current, with all multi-
ples of this fundamental frequency, including a
constant component, and for the present we can
disregard these other Fourier components. The
result of the electronic discussion is then a curve
giving the electronic current as a function of
voltage. Since the discharge is not in general
linear, this curve will not in general be a straight
line through the origin; and since there is in
general a phase difference between voltage and
current, there will be both a real and an imagi-
nary component of current, assuming the voltage
amplitude to be real. The quantity g is then the
ratio of the component in phase with the voltage,
to the voltage; b is the ratio of the component
out of phase, to the voltage. We may then find
as a result of the electronic computations curves
for g and b as functions of voltage. No restriction
on the shape of these curves is imposed by
general considerations; if the problem is linear
for very small voltages, g and b will approach
constants as the voltage approaches zero, but
even this situation does not always hold, notably
in magnetrons. We shall find that in important
cases g decreases with increasing voltage, the
current increasing less rapidly than the voltage.
We may well have a situation like that shown in

Flg. 17.
Given these curves for g and b as functions of

V, which we may arrive at as a result of electronic
theory, we may then combine them with (IV.18).
The first of those may be rewritten g/Car = 1/Ql. ,

where the loaded Q includes the loading resulting
from the conductance G in the output lead. We
now see that if G is determined, and hence Qq,
the value of g is fixed, and hence of the voltage V.
For the type of curve of g vs. V which is shown
in Fig. 17, we see that an increase of loaded Q
increases the voltage at which the oscillator
operates. If the curve of g es. V crosses the axis
for a certain 6nite voltage, as it often does, a
sufficiently great decrease of loading will tend to
approach this condition. We can never reach it,

, however, as we see from (IV.18); for with a
given resonant cavity, we may decrease G by
changing the loading, but we can never get rid
of the term 1/Q, , so that we can never make g
approach zero: In the other direction, by in-



M I CROWAVE ELECTRON I CS

g, b

V

FIG. 17. Electronic conductance and susceptance as
functions of voltage, for self-excited oscillator.

creasing the tightness of coupling, which amounts
to increasing G or decreasing Q, i so as to de-
crease the loaded Q, g increases, and if the
situation is as in Fig. 17, a quite finite value of
g corresponds to zero voltage. Thus a given
quite deFinite tightness of coupling suffices to
load the cavity down so that it ceases to oscillate,
and at any higher loading than that it cannot
operate. For a reHex klystron, this, happens at
quite ordinary loading; for a magnetron, on the
other hand, the curve of g vs. V rises much
higher, and ordinarily this limit is not reached.

From the conductance 6, then, we can fix g,
and hence the voltage U. In turn, Fig. 17 shows
that b is determined in terms of V. The second
equation of (IV.18) then suffices to define the
frequency at which the oscillator must operate,
for a given load susceptance B. With a given
value of voltage, and hence of b, we note that
(IV.18) states that the frequency is displaced by
an amount proportional to B.This phenomenon
is the so-called frequency pulling, resulting from
load susceptance. We note that its magnitude is
inversely proportional to the external Q; thus
the method of decreasing frequency pulling is to
decrease the coupling, or increase Q, i. We shall
see presently, however, that this has compen-
sating disadvantages. In some cases the quantity
b can be controlled by certain subsidiary condi-
tions of the discharge. Thus in a reHex klystron
it depends on the reHector voltage, and in a
magnetron it depends on the anode current.
Changing such a parameter will change the
frequency, with a constant load, as we see from
(IV.18). In the case of a reflex klystron, this is
the phenomenon of electronic tuning and in a
magnetron it is the frequency pushing. These
phenomena can be used to modulate the fre-
quency of an oscillator electrically, and hence

(IV.19)

This is a hyperbola, rising to infinite values when
U=O (corresponding to the fact that i is a finite
value, 8/R, when V=O), a,nd crossing the axis
when V=B. It forms, in fact, not a bad approxi-
mation to the curve for the magnetron, where i
has large values near V=O, and where g rises to
very high values in this neighborhood; it j.s a
poor approximation for the reHex klystron, how-
ever. For this simple case, the power is given by

P, i ——-', (1/R) (Z V—V') (IV.20)

a parabola with maximum at V=8/2, or half
the voltage at which the value of g goes to zero.

furnish the foundation for a method of frequency
modulation.

Ke have seen how from the external load we
can find the voltage V, and the conductance g,
of the electronic discharge. We know, however,
that the power produced by the electrons, which
we may call P,&, is equal to -,'ReiV, where i is
the current, V the voltage; or is ~gV'. Multi-
plying g as given in the curve of Fig. 1.7

by V', . this gives a curve starting off as a par-
abola for small U, but falling again to zero as
g approaches zero. The curve will not have a
simple analytic form in general, unless we can
derive a simple theory (as we shall find that we
can for the reflex klystron) for g as a function of
V. We see, however, that as G is changed, varying
V, the power will change: as G is increased from
a small to a large value, the power will rise from
a small value (on account of the low g value at
high voltage) through a maximum, and down to
a small value again (as the voltage becomes small
for high G). It is to be noted that the position
of maximum power output cannot be found from
any simple rules, such as are used for instance
with constant voltage generators; a generator in
general does not satisfy the simple postulates of
a cog.stant voltage generator. It is not hard to
see how a constant voltage generator would
behave, however. The voltage across the termi-
nals of such a generator equals its e,m. f. minus
the iR drop in the generator. That is, we have
V=E—iR, so that
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The power produced by the electrons is not
all delivered to the external load, on account of
the losses in the cavity. We can discuss the losses

by the general method given in Section 16 of
Chapter I, finding the circuit efficiency, repre-
senting the fraction of the electronic power
delivered to the load. In terms of it, the output
power is then

gcI el- (IV.21)

This quantity rises from a value of zero when
G=0 (corresponding to the maximum voltage at
which the oscillator can be made to operate) to
unity when G= ~, a value which can ordinarily
not be reached; at the value corresponding to
V=O, the circuit efficiency will still be less than
unity. Clearly the circuit efficiency will become
greater, as Q, becomes greater (that is, as the
losses in the cavity are d'iminished) or as Q,„i
becomes smaller (that is, as the coupling between
generator and load increases). This bears out
our statement that increasing Q,„i to decrease
the frequency pulling of a generator has a com-
pensating disadvantage: it decreases the circuit
eAiciency, and hence the output power.

5. Output of Oscillator as a Function of Load

We have seen in the preceding section how the
behavior of an oscillator depends on the imped-
ance of the load. The value of G, the load
conductance, determines g, and in turn the
voltage, the electronic power, and the circuit
efficiency, and hence the output power. As G goes
from zero to infinity, the power goes from zero

On account of our simple circuit, however, we
can give an elementary derivation of the circuit

efficiency, at least in case we can neglect the
quantity Z, . The power P,~ must all be dissipated
in the various losses in the circuit, by conserva-
tion of energy. These losses are of two sorts,
those arising from resistance in the cavity, and
from the external load. The power delivered to
each of these 1osses is proportional to its contri-
bution to 1/Qz„by the fundamental definition
of Q. Since these contributions are 1/Q, and

G/Q, &, respectively, the circuit efficiency is given

by
G/Q-~

(IV.22)
1/Q. +G/Q-~ G+Q-~/Q.

(on account of the vanishing of circuit efficiency),
through a maximum, and down to zero again
(on account of the vanishing of voltage), this
second zero value being reached generally at a
finite rather than infinite value of G. For any
value of G, the frequency in turn is determined
by 8, as we saw in (IV.18). The value of G fixes
b, and this determines the frequency when 8 =0,
or for a purely resistive load; changes in 8 from
this value then displace the frequency, by an
amount inversely proportional to Q, &. We may
then draw curves of constant power, and of
constant frequency, in an admittance plane, in
which G and 8 are plotted as abscissa and
ordinate. The constant power contours are verti-
cal lines. The constant frequency contours are
all obtained from the contour corresponding to
co = co

' by vertical displacement. That contour is
determined by the simultaneous solution of
the two equations g/C~, =1/Q, +G/Q, „&, b/C&d,

8/Q, i, =—0. Each value of G leads to a value
of g; by Fig. 17, this leads to V, hence to b, and
hence to J3. We may write the equations

G=Q,„i(g/Ccd. —1/Q ), B=Q, i(b/Cid. ). (IV.23)

- Thus the curve of 8 vs. G is like that of b vs. g,
except for a change of scale given by the factor
Q,„i/C&0, and a horizontal displacement given
by the term —Q,„,/Q, . Often in practical cases
a good enough approximation to this relation is
a straight line, which is not in general horizontal.
The frequency contours are then such a family
of parallel straight lines.

A plot of contours of constant power and
constant frequency in the reflection coefficient
plane is generally called a Rieke diagram. Since
the transformation from admittance plane to

. reflection coe%cient plane is a bilinear transfor-
mation, the contours will be circles. The power
contours all pass through the point of infinite
admittance, or zero impedance, and are all
parallel to the line of zero resistance at that
point; thus in the reflection coeScient plane they
will be circles tangent to unit circle at the point
of zero impedance. The frequency contours also
pass through this point, but at a different angle.
Thus the Rieke diagram has the appearance
shown in Fig. 18. It should be remembered that
this is on the assumption that Z, =O; that is,
that we are measuring load admittance across a
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FIG. 18. Idealized Rieke diagram, FIG. 19. Actual Rieke diagram.

plane in the output line across which the standing
wave minimum is located when the resonance is
removed, as by tuning out of the way; this plane,
we remember, is a function of frequency. It is a
plane which is electrically a whole number of
half wave-lengths away from the electronic dis-

charge, so to speak. If we take a Rieke diagram
across a fixed plane at-a distance from the tube,
there are various complications which we shall
not go into; they result in having the frequency
contours cross in the neighborhood of a point
inside the unit circle, as shown in Fig. 19. We
must also remember that we cannot in general
choose a plane across which the real as well as
the imaginary part of Z, vanishes; there are
inevitably losses included in this term. When we
analyze the effect of these losses, we find that
they affect the dependence of both electronic
power and circuit efficiency on G and B. The
result is that the output power no longer depends
on G alone, but also on 8, in such a way that
the power contours are deformed in the way
shown in Fig. 19.

The Rieke diagram, or corresponding plot in
the admittance plane, determines the power and
frequency of operation of an oscillator when

operating into a given load. Often, however, the
load may have an admittance which is not con-
stant, but which is a function of the frequency.
In such a case, we cannot specify the load
admittance in advance. To find the operating
point, we may draw the locus of the load admit-
tances for different frequencies in the admittance
plane, draw the contours of constant frequency
as before, and ask for what frequency the two

' coincide. If the load is a resonant cavity with a
resonant frequency near that of the oscillator,
its input impedance will be like Fig. 13, and the
corresponding reHection coefficient like that of
Fig. 14. The corresponding admittance will be
like that shown in Fig. 20. We see that there
can well be more than one point of coincidence
of frequencies on the two curves. In other words,
it can well happen that the oscillator has a
choice of operating in two different frequencies,
with a single load. This is closely related to the
existence of two resonant frequencies when two
circuits of about the same resonant frequency,
the tank circuit of the oscillator and the external
load, are coupled together. The weaker the
coupling, or the larger the external Q, the smaller
will be the frequency separation of the two modes
of oscillation.

In Fig. 20, the straight lines represent the
curves of 8 vs. G for constant frequency, as
described in the preceding paragraphs. The fre-
quencies are numbered from 1 to 10. The curve
represents an admittance curve for the external
resonant load, as a function of frequency, again
with the frequencies numbered. It is clear that
the two sets of frequencies coincide, so that a
resonance exists, for the frequencies labeled 4,
5, and 6. It can be shown that of these resonances,
one is unstable, and would not really exist,

6. Starting of an Oscillator

We have spoken of the stable operation of an
oscillator, in which the frequency is real. It is of
interest to ask, however, how the oscillations
build up from zero amplitude. For a short time
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interval during the build-up, we may assume that
the amplitude is increasing exponentially with
the time, so that formally we may treat the
frequency as being complex, the imaginary term
representing the exponential increase, and thus
having the opposite sign to that which we have
previously used in discussing exponential damp-
ing, and the dissipation of power in a cavity.
Thus suppose co=co&—j~2, where co& is the real
frequency, and where the amplitude is building
up according to the exponential e"2'. Substituting
this value in (IV.17), we see that

C02 g
2

M~ Cld~ Qg
(IV.24)

We can see the interpretation of this equation if
we use a diagram like that of Fig. 17. Plotting
g/C~, against U, we see that the difference
between this curve and the straight line at height
1/Q~ determines the rate of increase of the
voltage. Starting at a given voltage, in the case
shown in Fig. 21, where the curve of g/Ca&, lies
above that of 1/Ql„ the voltage will then increase,
more or less exponentially, with the time. As
the curves then draw closer together (assuming
that the curve of g/C~, slopes downward), the
rate of increase will Hatten off, until finally a
steady state will be reached when the two curves
intersect. Clearly, if the curve of g/C&o, slopes
upward, the amplitude will increase without
limit, and no stable operation will be possible.
Also clearly if the curve of 1/Ql, lies entirely
above that of g/Cco„cv2 will be negative instead of

J
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FIG. 20. Admittance plane, for operation of self-excited
oscillator into resonant load.

positive, so that even if we start with a finite
voltage amplitude, the amplitude will decrease
exponentially, and the electronic discharge will

act like a load, not a generator.
Clearly the voltage as a function of time is not

a simple exponential, but we can give an analytic
evaluation of the relationship. We note that if
instantaneously the voltage is increasing as
e"2', we have a&2=d ln U/dt. Substituting from
(IV.24), and integrating, we have

dV
(IV.25)

~ ~, ~.U )R(U) 1 l
2 ( C&o, Ql.)

where we assume that U= Uo when t =to. Over
a range of voltage for which g may be treated as
a 'constant, this shows that t varies logarithmi-
cally with voltage, or voltage exponentially with
time, as we have already seen. This has a bearing
on the initial process of build-up. With a curve
like that of Fig. 21, in which g approaches a
finite value when U=O, we have this situation
of exponential build-up for small voltages. In
other words, it would take an infinite time to
build up from zero voltage; all we can do in a
finite time is to start with an already existing
voltage, and amplify that. In practice, in oscil-
lators having such a characteristic, like the reflex
klystron, the oscillation starts from the noise, or
fluctuation, voltage always present in an elec-
tronic discharge. It is interesting to note that
the rate of build-up is greater, the greater the
loaded Q, or the greater the final voltage. Quite
a different case is that of Eq. (IV.19), in which
the current is a linear function of the voltage,
so that the conductance becomes infinite at zero
voltage. In that case, the term in 1/U in g(U)
cancels the factor U in the denominator . of
(IV.25), so that for small values of U the inte-
grand is constant, and U increases linearly with
time. In this case it is not necessary to start from
noise. The characteristic of having a finite current
for zero voltage is obviously discontinuous; for
it is also naturally possible to have zero current
for zero voltage. Such a situation is found ap-
proximately in the magnetron, where the state
of zero current is inherently unstable, and breaks
at the slightest provocation into a state of large
current. This then builds up linearly, finally
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the oscillations. Unfortunately comparatively
little use has been made of this method for

investigating the characteristics of microwave
oscillators. Rieke and his collaborators have used
it to some extent for magnetrons, but no thorough
study has yet been made of the characteristics
of any type of microwave oscillator as a function
of the various parameters, such as d.c. currents,
voltages, etc. , which control the oscillation. In
the next chapter we shall, however, find the
general form of behavior to be expected, for the
reOex klystron and the magnetron.

approaching asymptotically to its limiting value.
In fact, if we insert the value (IV.19) for g, and
integrate (IV.25), setting U=O when t=0, we

find at once that

RCcv. (1/RCa), +1/Qr)

Cd@,

1 —exp ——(1/RCco +1/Q') t . (IV.26)
2

That is, the voltage increases in a way like that
of the voltage in a condenser being charged
through a resistance in ordinary circuit theory.
The time of build-up is related to the loaded Q,
as modified by the term 1/RC"„which acts like
an additional form of loading as far as the
mathematics is concerned. Clearly, then, a mag-
netron with a high loaded Q, or with a low

frequency, will take a relatively long time to
reach its full voltage.

V. ELECTRONICS GF THE REFLEX KLYSTRON
AND MAGNETRON

7. Experimental Investigation of Electronic
Admittance

In Fig. 17 we postulated a form for the curves
of g and b as functions of U, and have asked how
the oscillator would behave with such values. In
the next chapter w e shall see that in simple
cases, like the reHex klystron, we can actually
calculate these curves, and obtain a relatively
complete theory of their operation. %ith more
complex cases like the magnetron, however, such
calculation is extremely difficult, if not impos-
sible. In these cases, we can work backward from
observed operating behavior, and find the curves
of g and 5-from experiment. We ordinarily meas-
ure two quantities, power and frequency, as
functions of the load admittance G+jB. The
output power is of course g, (~g U'). Knowing the,
load admittance and the circuit constants, we
can find g from (IV.18), and q, from (IV.22).
Measuring the power we can then compute U,
the vo1tage. Hence we get a curve of g as a
function of voltage. Next we measure the lines
of constant frequency in the admittance plane.
From these, as in Section 5, we can find b as a
function of g, and hence as a function of voltage.
Thus the complete information can be found
experimentally. The curves so found can then
be used in (IV.25) to investigate the build-up of

calcu.

U

FIG. 21. Conductance curve for starting of oscillator.

1. The Re6ex Klystron

The resonant cavity of the reflex klystron, or
refiex oscillator, is shaped fundamentally like a
short length of coaxial line, with a gap in the inner
conductor (Fig. 22). This gap acts like a lumped
capacity, so that in the mode in which it operates,
the electric lines of force run between the faces
of the gap, and the magnetic lines are in circles
surrounding the axis of the cavity. As a result
of the loading by the capacity, the length of the
cavity is much less than the half wave-length
which it would be if the inner conductor were
continuous. On the other hand, the diameter of
the cavity is also much less than it would be
for a cylindrical cavity without inner conductor,
operating in the corresponding mode, with E
along the axis, H in circles around it. This may
be easily seen by considering how the frequency
would change if we started distorting such a
cylinder by allowing posts to protrude from the
opposite circular faces, and approach each other.
The posts would push into the cavity at points
of high electric field; thus, by Eq. (III.89), they
would have the effect of decreasing the resonant
frequency, and to restore it to its original value
we should have to decrease the diameter of the



J. C. SLATE R

cavity, thereby pushing in the walls in a region
of high magnetic field. The whole cavity is then
rather small compared to a half wave-length,
particularly so if the gap between posts is narrow
and its capacity is high, so that even more the
gap itself is small compared to a half wave-
length, and hence the field in its immediate
neighborhood can be treated rather accurately
by electrostatics. It forms, in other words, a
condenser, whose capacity C can be easily found.
For a small gap and high capacity, the resonant
frequency of the cavity can be rather accurately
computed by a simple approximation of assuming
a length of coaxial line to be terminated by a
capacity.

The two condenser plates, instead of being
solid, are made of grids, so that the effect of the
oscillation is to impress an r-f voltage between
these grids. Thus the resonator forms the sim-
plest form of diode, in the microwave region. An
electron gun then shoots a beam of electrons, of
a fixed energy, at the pair of grids. These elec-
trons are speeded up or slowed down in passing
through the grid system, depending on the phase
of the r-f field. The resulting velocity modulation
results, after passing through a certain drift
distance on the other side of the gap, in a
bunching of the electrons: the electrons which
have gained energy speed ahead, those which
have lost energy lag behind, until at a certain
distance they meet and form periodic bunches.
In the ordinary klystron, a second resonant
cavity and grid system, called the catcher, is
located at such a distance from the bunching
cavity that the bunching is formed approxi-
mately at the grid system of the catcher. If an
r-f voltage is impressed on the catcher, the
bunches of electrons will either deliver energy,
or absorb it, from the cavity oscillations. If they
deliver energy, they will maintain the oscillation,
and by a proper feedback system between the
two cavities the device will act like an oscillator,
much as in an ordinary triode oscillator, the
buncher fulfilling the function of the grid circuit,
the catcher of the plate circuit. On the other
hand, if the phase is such that the electrons
absorb energy from the catcher, the oscillation
will not be maintained, but the electrons will
absorb energy on the average in the catcher. By
arranging a number of cavities in succession,

I'
I

I

I

I
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FK;. 22. Scheiuatic diagram of klystron cavity.

with suitable distances, and phase separations
between, it is possible to have the bunches of
electrons 'reach each grid system in such phase
as to absorb energy, and thereby to gain more
and more energy with each cavity which they
traverse. This device is the linear accelerator,
by which r-f power is converted into d.c. power,
in the production of high energy particles. Our
present interest, however, is the inverse of this,
or the oscillator, in which d.c. power is converted
into r-f.

In the reHex oscillator, one cavity and grid
system is made to fulfill the function of both
buncher and catcher, by having an electrode,
called the reHector or repeller, negatively charged,
which reverses the electrons after traversing the
grids once, and causes them to traverse them
again in the opposite direction. The time of
transit from the grids back to the grids again
depends not only on the dimensions, but also on
the repeller or reflector voltage. If this is adjusted
properly, the electrons re-enter the grid in such
phase as to deliver power, and the oscillations
are maintained, the tube operating as a micro-
wave generator. On the other hand, for other
adjustments, the electrons enter in such phase as
to act as a load, and the oscillation cannot main-
tain itself; such operation can be observed only
by feeding power into the cavity from outside.
We find that there are a number of different
values of reHector voltage for which oscillation
is possible; these differ by such amounts that
the transit times of the electrons in the drift
space differ by whole periods of the r-f. The
power shows a maximum for each of these re-
flector voltages; they are called different elec-
tronic modes of the oscillator. As the voltage is
changed from each of these values, the power
decreases, and in between them oscillation does
not occur. At the same time that the power
changes, the phase of the bunched electrons
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Fro. 23. Schematic diagram of reflex klystron electrodes.

introduces a reactive component of r-f current,
which results in a change of frequency of opera-
tion of the tube. This is the electronic tuning
which makes the reflex oscillator such a con-
venient power source for any purpose requiring
frequency modulation.

We shall now examine the details of this
electronic process. Our fundamental object, as is
clear from the preceding chapter, must be to
determine r-f current, as a function of r-f voltage.
The voltage is simply that which is impressed on
the grids. To find the r-f current, we shall ex-
amine the current carried by the electrons which
have been bunched by traveling through the
drift space. We shall find that superposed on
their d.c. current is an r-f Huctuation. It is this
which we must compute, and which forms the r-f
current which we must use in computing g and b.
We shall find that we can get explicit formulas
for those quantities, in a certain limiting case of
small amplitude operation, so that we can set up
a theory of the operation of the reflex klystron,
along the lines of that sketched in the preceding
chapter.

2. Electronic Operation of the ReQex Klystron

In Fig. 23 we show the various electrodes of
the reflex klystron, in a schematic manner: the
cathode, from which the electrons are emitted,
being accelerated by a d.c. voltage Up before
reaching the grid system; the grids, on which the
r-f voltage Ve&' ' is impressed, by the oscillations
in the resonant cavity; .and the reflector, which
repels the electrons, the retarding voltage be-
tween grid system and reflector being U„. We
shall treat Vp and V„as positive numbers, in
case the voltages have the usual sign, and shall
take V as positive when it slows down the elec-
trons between the grids. We shall make a number

of simplifying assumptions. We assume a one-
dimensional problem, neglecting all transverse
motions of the electrons, or departures of the
fields from the one-dimensional case. We assume
the r-f voltage amplitude U to be small compared
to the incident voltage Vp of the electrons, so
that we can neglect powers of the ratio U/Uo.
We assume the grid separation to be so small that
the transit time through the grids can be neg-
lected (it is not hard to remove this restriction,
and investigate the effect of transit time).
Furthermore, we neglect the possibility of colli-
sions of the electrons with the grids, with their
consequent loss from the beam; and we neglect
multiple transit electrons, which are not caught
by the electrodes a'fter their first transit through
the grids.

Let us now consider the motion of an incident
electron which strikes the grids at time to. If e

is the magnitude of the electronic charge ( = 1.60
X 10 "coulomb), and m is its mass ( = 9.0)& 10 "
kgm), its incident' velocity vo (in meters per
second) is given by

I
—,mvp =eVp. (V.1)

After emerging from the grids it will have a
kinetic energy e(V0 —Vcos &uto), so that its ve-
locity v& will be given by

-,'nwi2 =e( Vo —V cos s&to) (V.2)

2mvod, p 1 V
=to+ (

1 ———cos &oto (. (V.5)
eV„& 2 Vp

Solving for v&, expanding the square root by
binomial expansion, and rejecting higher powers
of U/ Uo than the first, we have

vi = vpL1 —
~ ( V/ Vo) cos Nfo j ~

' (V.3)

The electron now emerges, with velocity v&, into
the drift space, where it is acted on by a deceler-
ating force of eV„/d„. That is, its equation of
motion in the drift space is

dv —e V„ e V„
m—=—,v =vi ———(t —to). (V.4)

dt d, m d„

The electron will return to the grids at the time
t& at which its velocity has reversed, or has
become —v~. That is, we have

2mv~d &

ti = to+
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We shall de6ne the average transit angle of the
electrons, from the grid back to the grid again,
as 8. This is co times the time required for this
transit, for the case V=O, and is given by

8 = 2m p)vpd, /e U, . (V.6)

In terms of 8, we may rewrite (V.S) in the form

(z)ty = p)tp+ 8 —p(8 U/:Up) cos Mtp. (V 7)

dn/dt p Ip/e. —— (V.S)

These same eIectrons strike the grid in the re-
verse direction on their return from the reflector
in a time interval dt». Thus the returning current
ls

dn I» . dn dtp —Ip dtp

dt» e dtp dt» e dt»
(V.9)

1

Determining dt~/dtp from (V.7), we see that the

We are now ready to find the current as it
returns to the grids. Let the cathode current be
Ip, which we take to be positive when electrons
flow from the cathode, or positive current flows
to it. Then the number of electrons per' second
striking the grids from the cathode is i = —e-& "I)(t))dt)

2~ ~
.period

ao p dtp
Ip—e 7""dt»

2x ~ dt»
'period

07Ip
e &"'&dtp.

2m.
period

(V.11)

In (V.11) we have converted our integral into
one over tp instead of t~ Inser. ting t) from (V.7),
we have

returning current is

I) I——()/—(1+', (8 U-/ Up) sin pptp). (V.10)

On account of the sinusoidal function in the
denominator of (V.10), we see that I) has an r-f
component of frequency (p. Equation (V.10) is
not, however, a convenient formula from which
to determine the r-f component, for it expresses
I» in terms of tp rather than in terms of t», the
time at which the electrons return. We can
easily get around this difhculty as follows. To
And the r-f component of I», the standard pro-
cedure is to multiply by e &"'&, and average over
a complete period. That is, we have

p= Ip ' exp [——j(cotp+8 —p(8U/Up—) cos Gptp)jdtp.
2'

period

(V. 12)

We shall introduce the abbreviations

0 V
s=——

2 Vo
p)tp=P.

Then (V.1.2) becomes

Ipi= ——e—&'

2m
period

e-z'($ —z ooz p)dQ

and

eg'z ooz pe jn@dp

I--(&) = (-1)"I-(s)
* See Jahnke-Emde, p.. 149.

Using Sommerfeld's integral relation*

(V.13)

(V.14)

(V.15)

(V.16)

where n is integral, we then have

i=Ipe-&(P-' tP) Jg(s). (V.17)

In Eq. (V.17) we have the formula for the r-f
current amplitude; the complex current is ie&"',

associated with the complex voltage Ve&"'. The
sign is so chosen that when the current opposes
the voltage, or when the electrons are acting as
a generator, i and V are in the same phase. We
recall that (V.17) involves a number of approxi-
mations, as we have enumerated above.

In addition to the r-f current p of (V.17), we
shall want the r-f admittance introduced across
the grids by the electrons. This is

Ip 8 J&(s)
g+p e—j(p—pz/2) (V 18)

Vo 2
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a function of 8, the transit angle. This in turn is
a function of the reflector voltage, as we see
from (V.6).

g, (zl

I 2 3 z.

FIG. 24. Dimensionless representation of current, ad-
mittance, and power of reRex klystron, as function of
voltage.

where we have used (V.13). Separating real and
imaginary parts, we have

Ip 8 ( 3~q Jg(s)
g=—-cos

)
8 ——

i

Vp2 & 2) s

Ip 8 ( 3~1 A(s)
b= ———sin

I
8——

f

Vp2 ( 2) s

(V 19)

el IO Up sJ,(s) . (V.20)

Remembering that IpV0 is the input power, we

may write the electronic efficiency as the quan-
tity (V.20) with the factors IpUp left out. The
three functions Ji(s), J&(s)/s, and sJ~(s) then
represent in a dimensionless way the r-f current,
admittance, and power, as functions of the r-f
voltage, which is represented dimensionlessly by
z. We show these three functions in the curves
of Fig. 24, and observe that the middle one,
proportional to g, is similar to the schematic
curve which we gave in Fig. 17. We notice from
(V.19) that the curves of g and b as functions of
U are both of the same form; for we have

( 3sp
b= —g tan I

8——l.2i (V.21)

That is, the two quantities are proportional to
each other, the constant of proportionality being

We shall also need the electronic power I',~,

which is -', g V', or is

( 3m/

2i

8/2m =n+-,', (V.22)

where n is an integer. We shall see in a moment
that these values of 8 correspond to power
maxima of the various electronic modes, and we

, shall refer to the corresponding modes as the
1~, 24, etc. , modes. We observe that as the
reflector voltage increases, 8 decreases, or the
line rotates counterclockwise, or in a positive
direction.

Next we can draw contours of constant power.
First let us consider the curve corresponding to
z =0, or vanishing r-f voltage. This curve is
obviously a contour of zero electronic power, and
may be called the small signal curve. Since it
can be shown that J~(s)/s approaches —', as s
approaches zero, the equation of this curve is

g = (Ip8/4 Vp) cos (8—3m-/2),
(V.23)

b = —(Ip8/4Vp) sin (8—3s /2).
J

That is, if we let r = (g'+b')', the length of the
radius vector, we have

r = (I,8/4V, ) (V.24)

as the equation of the small signal curve, in

3. Power and Frequency of Re6ex Klystrons

From the curves of g and b as functions of r-f
voltage, which we have just derived, we can
carry out a discussion of the power delivered by
the tube as a function of load, and of the fre-
quency of operation, as in the preceding chapter.
The curve of 6 vs. g, which determines the nature
of the frequency contours in the admittance
plane, or in the Rieke diagram, is a straight line,
as we have just seen in (V.21); furthermore, the
slope varies with 8, or with reflector voltage.
We shall now show that we can summarize the
information about both power and frequency,
for all values of 0, in a single simple diagram.
This is a figure in which g is plotted as abscissa,
b as ordinate. First we can draw a line of constant
8 in this space. By (V.21), it is a straight line
through the origin, with a slope of —(8—3s/2).
We notice that a horizontal line corresponds to
(8—3m./2) =27r times an integer, or to
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FIG. 25. Dimensionless representation of power as function
of admittance, for reflex klystron.

polar coordinates. It is then a spiral, the larger
loops corresponding to larger 0, or smaller re-
Hector voltage. We may now consider how the
electronic ek.ciency varies as we go along a
radius, from the origin to the small signal spiral.
We note that the radius vector is proportional to
Ji(s)/s, and that the electronic efficiency is pro-
portional to sJi(s). To show the relationship
between these, we plot sJi(s) as a func'tion of
Ji(s)/s, in Fig. 25. We see that as we go out
from the origin to the small signal spiral, the
electronic efficiency increases from zero to a
maximum, which it reaches at a value equal to
about 43 percent of the radius of the spiral, and
then decreases to zero again at the spiral.
Further, on account of the factor cos (8—3m/2)
in (V.20), the electronic power decreases as 8

goes in either direction from the value (V.22)
representing a horizontal line; and the maximum
power decreases as 0, or n increases. The power
is negative for negative g; that is, in the left half
plane the tube is a passive load, not an active
oscillator.

Before we can draw contours of constant
power, we must consider the circuit efficiency.
We saw in (IV.22) that this depends on G, or
on g, It is zero for 6=0, or for

g = C~0,/Q . (V.25)

As G increases, the circuit efficiency increases,
becoming unity for large G. The vertical line
denoted by (V.25) will then be a contour of zero
power, and tube operation can only occur to the
right of this line, between the line and the spiral.
We can now compute the power at any value of
g and b, using (V.19) to find Ji(s)/s, from this
finding sJi(s), and getting the electronic power
from (V.20), and the circuit efFiciency from
(IV.22). In Fig. 26 we show contours of constant

efficiency, for the 14, 2~, and 34 modes, computed
for a case similar to those met in practice. The
contours are simple to interpret. As we approach
either the vertical line of zero circuit efficiency,
or the small signal spiral, the efficiency goes to
zero, and it reaches a single maximum in the
middle of the operating range, approximately on
the horizontal axis. For the modes of small n
values, the maximum efficiency is low because
the maximum comes for low g, where the circuit
efficiency is low; for large n values, the maximum
efficiency is low because of the factor 0 in the
denominator of (V.20). In between, there is an n
value for which the peak efficiency has its largest
value, in this case the 24 mode. Clearly the
question of which mode has the highest power
will depend on the value of Ccv /Q; the. smaller
it is, the higher the efficiency of all modes, but
the greatest improvement will come about in

the modes of small n value.
We may now use these figures to discuss the

operation of the oscillator. First we consider
oper'ation into a matched load, and ask what
will be the power and frequency as functions of
reflector voltage Co.mbining Eqs. (IV.18),
(V.19), and (V.21), we have

Io tt ( 3iri Ji(s) ( 1 G )
g=——cos

i
0——

i
=Ceo,

i
—+

VO2 & 2 i s (Q. Q. ~i

(V.26)

2(~ —~.) t 3~y p1 G y 8' = —tan( e—))
—+

co, ( 2i (Q. Q, ii Q.„,

For a matched load, we have G= 1, 8=0. Thus
by the first equation of (V.26) the operation will

be at points of a vertical line, g=constant. As
the reHector voltage changes, 0 changes, and the
intersection of the radial line corresponding to
the reflector voltage, and the vertical line corre-
sponding to the value 6= I, will give the oper-
ating point. As the reflector voltage changes, the
power will go from the maximum value corre-
sponding to the horizontal axis in the figure,
down to zero, and the tube will go out of oscilla-
tion, starting up again when the reHector voltage
reaches the value at which the next mode starts
up. Correspondingly, from the second equation
of (V.26), the relation between frequency and 0

will take the form of a tangent curve. This is
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the relation describing the electronic tuning of
the oscillator. We notice that, the smaller the
external Q, or the tighter the coupling to the
load, the greater is the g value corresponding to
a matched load. For a very tight coupling, the
vertical line in the figure below on this page
may well be so far to the right that it does not
intersect the spiral at all, for lower modes. These
modes then do not operate with tight coupling.
We should realize that not only does this set a
limit on the lowest mode which will operate, but
there is also a limit set on the highest mode, by
the condition that the reflector voltage U„must
clearly be greater than the beam voltage Vp, or
the electrons will strike the reflector and be
absorbed, rather than being reflected. From
(V.6), this means that the maximum value of 0

is definitely determined, by the condition

2m
Q,„.= ~52(e/m) V,jld,

eVp
(m$ ' cud,

(V.2~)
hei (V)

showing that the lower the beam voltage Up, the
higher is the maximum usable mode.

'
In addition to studying the operation of the

oscillator when. looking into a matched load, we
may study the operation as a function of load,
with fixed reflector voltage. This leads us to the
Rieke diagram, as in the preceding chapter.
There is nothing unusual about the individual
diagrams, but it is interesting to see how they
change from one reflector voltage to another.
The slope of the lines of constant frequency in
the admittance plane is the same as the slope of
the corresponding radius in Fig. 26, being hori-
zontal at the position of maximum power, and
rapidly becoming steeper and steeper as the
reflector voltage is varied on either side of this
value. We note that G can vary from zero only
to a certain. maximum value, related to the g
value of the small signal spiral; thus operation
in the admittance plane is possible only out to a
certain horizontal line, and in the reflection
coefficient plane in to a certain circle. As the
reflector voltage is shifted away from the value
for maximum power, over to the edge of the
mode, the maximum value of G decreases toward
zero, so that the forbidden circle in the reflection

coefficient plane grows until it finally includes
the whole region of loads with positive resistive
components. Outside that region the oscillator
cannot operate. Our formulas for g and 6 continue
to be valid, however; the only difference is that
g has the opposite sign, so that the tube acts as
a non-linear load rather than an oscillator. We
may feed power into a reflex klystron whose
reflector voltage is in this non-operating region,
and may measure its input impedance. From
Eq. (III.81) we see that the electronic term
(which may be rewritten by (III.85)) has the
effect of modifying the apparent loaded Q, and
resonant frequency of the cavity. The term g+j b

has such a sign that in the non-oscillatory region,
where the electrons act as a load, they increase
the value of 1/Qi„or add to the loading; in
actual cases they reduce the loaded Q to a low
value. As the reflector voltage is varied toward
the operating range, however, the effect of the
electrons on the loading decreases, becomes zero
when g =0, then changes sign, and helps to cancel
the losses resulting from the unloaded Q of the
cavity. As the operating range is reached, the
apparent Q of the cavity increases without limit,
until 6nally oscillation occurs. Along with this
change of the apparent Q with reflector voltage,
there is also a change in the apparent resonant
frequency of

'

the cavity, as we can at once
compute. If only a small amount of power is
being fed into the cavity to make the impedance
measurement, we may assume that we have a

~~/4 HOOE

FIG. 26. Ef6ciency contours in admittance plane, for
reflex klystron.
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Fig, 27. Schematic diagram of' two-anode magnetron.

small signal, and may compute the value of b,

and hence of the frequency, from the small signal
values (V.23). We have then an electronic means
of tuning a resonant cavity, the non-operating
klystron. An electronic reactor, a reactance which

can be tuned by electrical means, is a very useful

device, and in a sense the reflex klystron in its
non-operating range forms such a reactor. On

account of the very large losses which are associ-
ated with the g, however, this use as a reactor is

not of practical importance. Other types of tubes
can be designed, however, in which there is an
electrically controlled reactance, without accom-

panying large resistive losses.

4. The Magnetron

The multi-segment magnetron oscillator is a
much more complicated problem than the reflex

klystron, for two principa1 reasons. First, its
oscillating circuit, or resonant cavity, is of a
more complicated shape, and it is considerably
harder to make approximately correct theories
explaining its resonant modes. Furthermore,
there is a difficulty arising in the circuit, on
account of other resonant modes than the desired

one, which come at nearly the same frequency,
unless special means are taken to remove them.
The second reason for the complication of the
magnetron is the electronic motion. The presence
of the magnetic field makes a one-dimensional

treatment, such as we used for the klystron,
impossible, and the existence of large space
charge makes any analytical treatment of the
motion a very difficult thing. For these reasons,
we shall not be able to give a very complete
treatment of the theory of, the . magnetron.
Nevertheless we shall be able to go far enough

to indicate the reasons for the high efficiency and
high power characteristic of this type of oscil-
lator.

The magnetron oscillator, in its present form,
consists of a cathode and anode in the form of

concentric cylinders, with a constant magnetic
field along the axis of the cylinders. The anode,
which is outside the cathode, is split into an
even number, of segments, say X, and forms part
of a resonant cavity such that, in the resonant
mode in which the magnetron is operated, suc-
cessive segments are positively and negatively
charged. The electrons move, after emission from
the cathode, under the action of the magnetic
field; an impressed d.c. electric field accelerating
them from cathode to anode; and the r-f field
between oppositely charged segments of the
'anode. This r-f field leads to the r-f voltage V
which appears in our theory, as in the preceding
chapter. .As a result of the combination of these
fields, the electrons move in a complicated way
which we shall describe. They eventually reach
the anode, but not with the kinetic energy which

they would have acquired if they had fallen
directly from cathode to anode under the d.c.
difference of potential. Instead, on account of
the interaction with the magnetic and r-f fields,
they have very small kinetic energy on reaching
the anode, so that they dissipate only a small
fraction of the input power at the anode. The
rest of the input power goes into sustaining the
r-f oscillation, and is the electronic power, I',~,

about which we have previously spoken. We
can compute the r-f current amplitude i, which
we need in the theory; it is here not at all clear
at first sight how we are to find this current, and
it is necessary to go 'back to the definition in
terms of the integral J'J.E,dv to find how to
compute it. When we find i as a function of V,
we find that the general situation is similar to
that of the preceding chapter, so that we can
compute output power and frequency as func-
tions of load as in that chapter. We also can
consider the dependence of power output on the
d.c. parameters, the d.c. voltage between cathode
and anode, the magnetic field, and the d.c.
current which flows. We shall now give a short
discussion of,the nature of the cavity resonator
which produces the r-f oscillations in the magne-
tron, and shall then consider the electronic
motions which lead to its operation.

S. The Resonant Circuit of the Magnetron

For a good many years the split anode magne-
tron, having an anode of two segments, has been
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used as an oscillator. Treated from the stand-
point of lumped constants, the two anode seg-
ments, charged to opposite potentials, form a
condenser, and they must be connected by an
inductance, as shown in Fi:g. 27, to make them
into a resonant circuit. To increase the power of
such an oscillator, it is natural to increase the
number of circuits, having many anode segments.
By connecting each pair of adjacent segments
by an inductance, such a system can be made to
resonate. The geometry then allows a large
cylindrical cathode, instead of the linear cathode
of the split anode magnetron, and this permits
the How of a large anode current, with conse-
quent high power. If the magnetron is to be used
in the microwave range, it is natural to use
resonant cavities instead of lumped constants '

for the inductances, and the problem of heat
dissipation requires that the anode be made of
solid metal. The simplest structure embodying
these principles is shown in Fig. 28, and was the
type of magnetron which, at the beginning of
the war, first showed the possibility of really
large power generating capacity. The larger part
of the capacity between adjacent anode segments
is here concentrated in a slot between the seg-
ments, and a hole in a solid copper block forms
the inductances. Magnetic lines of force from the
inductances thread through the spaces above and
below the block, to complete the magnetic
circuit.

The problem of the nature of the field in such
a cavity may be divided into two parts: the
field in the interaction space (that is, the cy-
lindrical region between cathode and anode, in
which the electronic discharge is located) and the
field in the separate hole and slot resonant ele-
ments. The first of these problems can be handled
by solving Maxwell's equations in cylindrical
coordinates. We may get an approximate physi-
cal idea of the problem, however, by imagining
the anode and cathode flattened out into planes,
as shown in Fig. 29. Then, for the mode in
which we wish to operate, the electric lines of
force will run as in Fig. 29: the field will be the
fringing field of the slots, regarded as condensers.
The field will be periodic along the direction
parallel to the anode and cathode faces (the s
direction in the 6gure), the effective wave-length
being twice the spacing of the segments. This,

FIG. 28. Anode of multi-segment magnetron.

in actual cases, is much' less than the free space
wave-length, so that, the effective velocity of
propagation of this wave along the z axis is much
less than the velocity of light. We may regard.
the field drawn in the figure as a standing wave,
a superposition of two traveling waves moving
in opposite directions along the +s axis. We
can show in a very simple manner that if the
effective wave-length along z is less than the free
space wave-length, the field must fall off expo-
nentially as we go away from the anode; this
expresses the way in which the fringing field falls
off with distance. To see this most simply, we
may regard the interaction space as a wave
guide, with propagation along the s axis. Using
the expression (II.9) for the relation between free
space wave-length, guide wave-length, and cut-
off wave-length, we see that if the guide wave-
length is smaller than the free space wave-length,
as it is here, the cut-off wave-length must be
imaginary, corresponding to an exponential
rather than sinusoidal variation of the field at
right angles to the direction of propagation. Such
a, variation of course cannot satisfy the boundary
conditions in a closed wave guide, for if the field
iricreases exponentially as we approach the anode
surface, there will be a tangential electric field
at that surface, which would be impossible if we
had a conducting surface for the anode. In our
case, however, the anode surface is broken by
the slots leading to the resonators, a,nd there
can be a tangential component of electric field
across imaginary surfaces closing these slots. We
can, in fact, get. a simple and fairly accurate
approximation to the actual solution by com-
puting the ratio of tangential B to tangential H,
or the impedance, along the anode surface, from
the solution holding in the interaction space, and
equating this to the corresponding input imped-
ance of the resonant cavities.

For a wave traveling in the +s direction in
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FIG. 29. Electric lines of force in linear magnetron.

the interaction space, we find easily that
solution of Maxwell's equations is

;78 =Ae e &"' &') 8 =0 Z = —j-Z

where

&'/c' =P' —&' a/c = 2~/go, P = 2x/Xg. (U.28)

The standing wave formed by superposing two
traveling waves like (V.28) in opposite directions
has much the form of that shown in Fig. 29. At
the cathode, the field is small, if it is large at the
anode, on account of the factor e&, which in-

creases rapidly as we approach the anode; by
superposing a similar wave in e ~', we can make
the tangential field exactly zero at the cathode,
without making app'reciable change in the field

near the anode. At the anode, there is clearly a
tangential component of B, Z, . The wave could
be propagated in a guide, if the anode surface
had a surface impedance, given by the ratio

E,/II„, or—

as we find easily from (V.28). The series of slots,
with their attached resonators, can simulate a
surface with this impedance. Looking into one
of the slots, a single resonator will have an input
impedance which may be written

1/Q-», .
Z„=Zp Q (V.30)

iT(~/~. ) (~./~)j—
as we have seen in previous chapters, where Zp

is the characteristic impedance of the slot, re-
garded as a transmission line. If we now have
resonators spaced a distance D apart, and if each
slot has a width d, we shall find in the anode
surface that actually there is a tangential compo-

nent of E in each slot, while there is no tangential
component along the metallic segment. The
average field is then d/D times the field in a slot.
The current, and hence the magnetic field, how-
ever, are continuous along the face of the anode,
so that they are not affected by the slots; current
flows along an anode segment, into a resonator,
out again, and along the next segment, as if the
slot were not there. Thus the average impedance
of the surface with the slots is (d/D)Z„(where
to make this expression comparable to (V.29) we
must assume that the height of the anode is
unity; if it is not, it is simple to correct for it).
We may then equate this quantity with the
value of (V.29). Writing Z, =jX„ this gives
easily

j. 1—=—11+(&-d/D)'(«/Po) )"' (V 31)
Xg Xp

Remembering that the input reactance X„of a
resonator acts like an inductance at long wave-
lengths, or is proportional to the frequency, we
see that, for large values of Xo, (V.31) shows us
that ),= A, p. As the frequency increases, how'ever,

and we approach the first resonant frequency of
the resonator, X„ increases to infinity, so that
1/X, becomes infinite. It. is this first resonance
which concerns us at present, so that we need
not consider further resonances. We may then
easily plot 1/X, as a function of 1/XO. . For our
purposes, as we shall see presently, it is better
to plot 1/Xo as a function of 1/X, . We show this
function in Fig. 30. It is clear that as the fre-
quency approaches the resonant frequency, and
1/X, becomes large, or the guide wave-length
becomes small, we approach the situation which
is actually present in the interaction space of the
magnetron.

A formula of the type of (V.31) takes no
account of the fact that the anode is made of
segments of finite size, and is a periodic structure.
When we consider this fact, the theory becomes
much more involved. We must represent the
field in the interaction space, not by a single
wave like (V.28), but by a superposition of.an
infinite number. of waves, satisfying certain
periodicity relations, so that a superposition of
them, with appropriate coefficients, can actually
satisfy the 'boundary conditions at the anode
surface, with zero tangential E, along the seg-
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ments. Carrying out such a calculation, we find
two differences in the results, one minor, the
other fundamental. The minor result is a small
change in the curve of 1/Xo as a function of 1/X„
for all values of 1/X, . The fundamental result is
that the curve now becomes periodic in 1/X, .
We find that there is a minimum value of the
guide wave-length for which we can have a
solution: twice the distance between slots, or 2D,
using our notation. If the guide wave-length has
this value, we have just the solution shown in
Fig. 29. If we try to make the guide wave-length
less than this, or 1/X, greater, we find that we
merely repeat the solution already found for a
smaller value of 1/X, . The situation is identical
with that met in the theory of the weighted
string, or of electric filters composed of a succes-
sion of identical four-terminal networks. As a
result of this, we find that the true curve of 1/P o

as a function of 1/X, has the form shown in
Fig. 31, resembling the curve of Fig. 30 for small
values of 1/X„but then becoming periodic. The
value of 1/P, corresponding to the maximum
1/Xo, or the maximum frequency, is then the
type of oscillation in which we are interested.

In the solution of the type shown, we can
compute the frequency for a wave of arbitrary
guide wave-length. The fact that the curve
connecting frequency with 1/X, is not a straight
line shows that there is dispersion; the velocity
of propagation is a function of frequency. For a
linear structure, like that of Fig. 29, any wave-
length and any frequency would be possible.
For the cylindrical magnetron structure, as
shown in Fig. 28, however, the situation is quite
different. The anode now closes on itself, and is
of finite length; since the field must be continuous
in going completely around the anode, we see
that the circumference must be a whole number
of wave-lengths. This can be automatically
handled by using the correct solution of the
problem, in terms of Bessel's functions, but we
can treat it approximately, from our linear
model, merely by demanding that the circumfer-
ence 2xR, divided by the wave-length X„should
be an integer n. That is, we have,

discrete values. Such values are shown in Fig. 31,
for the case of eight segments. For this case,
2+R=SD, where D is the width of a segment.
For the maximum value of n, we have 1/2D
=e/8D, or n=4; in general, as we see from this
example, the maximum value of n is X/2. We
now see from the figure that each value of n
gives a different frequency. Thus we have made
an approximate calculation of several of the
resonant frequencies of the cavity. Experimental
measurement, or more accurate theory, shows
that this type of theory is qualitatively correct.
It is now obvious from the curve that the modes
n = 3 and n =4 lie close together. Since it is n =4
in which we wish to operate, this means the
presence of a disturbing mode, and for this reason
this type of anode is not very satisfactory for
actual magnetron operation.

It would take too long to go into the theory of
the various means which have been used for
separating the resonant modes of the magnetron
anode, so that the desired mode (which is often
called the x mode, since in it the phase of each
segment differs by x from that of the adjacent
segment) shall have no other modes very close
to it. The simplest method is called strapping,
and may be described in one of its forms as
follows. In Fig. 29, we imagine two parallel wires
or straps located over the segments of the anode,
parallel to the anode 'surface. One of these straps
is connected, by short wires or posts, to all the
segments marked + in the figure, and the other
strap to all segments marked —.It is then clear
that, in the mode shown, one strap will be
positively charged, the other negatively. Thus
the strap will act like an added capacity in shunt
with the capacities of the slots, hence increasing
the capacity, and decreasing the resonant fre-
quency of the m mode. For the other modes,

1/) 0 n/27rR—— (V.32)

In other words, we do not have all values of
1/X~ allowed, but only a set of equally spaced

r

FIG. 30. Frequency as function of reciprocal wave-length,
for linear magnetron.
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FI(y. 31. Frequency as function of reciprocal wave-length,
for' eight segment magnetron.

however, each strap is charged positively over
part of its length, negatively over the rest, and
thus the system of straps is less effective as a
condenser. When we 'examine the theory, or
measure the position of the modes experimen-
tally, we find that the displacement of modes to
lower frequency, or longer wave-length, decreases
regularly as we go from the x mode to modes of
lower n value. This effect is much greater than
the mode separations present in an unstrapped
magnetron, which are shown in Fig. 31, and
which are in the opposite direction. Thus the
order of modes is reversed, and in a strapped
magnetron the m. mode has the lowest frequency-,
or longest wave-length, the frequencies of the
other modes coming at higher and higher fre-
quencies as n decreases, and being separated far
enough from each other so that there is no
interference between them.

The reason why other modes are undesirable
in a magnetron is mainly that with two modes
nearby, the electronic discharge may be unable
to decide which of the two modes to operate in,
and there may be power emitted in two or more
frequencies. It is unlikely that simultaneous
operation in two modes is possible; more often,
in a pulsed magnetron, either successive pulses
are in different modes, or the magnetron shifts
mode during a pulse from one mode to another.
Either of these phenomena decreases the power
in the mode in which operation is desired. These
difhculties of modes have been among the most
troublesome and least understood features of
magnetron operation and construction. We have
not time to go into them further, and shall
assume in our discussion of the electronic motions
in the magnetron that the resonant cavity has
only one mode, the x mode. The simple theory
of Eq. (V.28), and Fig. 29, give a fairly satis-
factory description of this mode.

6. Electron Motions in the Magnetron

Now that we have a fairly correct picture of
the r-f field inside the interaction space of the
magnetron, we can ask how electrons move, in
the combined d.c. electric field, along the x axis
of Fig. 29, the magnetic field along the y axis,
and the r-f field. Here, as in discussing the
resonant oscillations, it is convenient to use the
linear model with a plane cathode, rather than
the actual cylindrica case. As a first step, we
consider the motion of an electron in the d.c.
fields, without the presence of the r-f field.

An electron of charge —e, moving in a con-
stant field of magnitude E. accelerating it along
the +x axis, and a magnetic induction B along
the y axis, has an equation of motion

mS' =eE+eBe, my = 0, me = eBi. —(V.33)

e eB
i+(a~'x = E, wh—ere (u~ ———.(V.34)

m m

Solutions of these equations, satisfying the
initial conditions, are

mE
x = (1—cos (oII/),

eB'
(V.35)

Bt mE
e = + sill GDHf,

8 8B

where t is the time measured from the instant
when the electron leaves the cathode. We see
that the electron describes a circle, of radius
mE/eB', with angular velocity &o~, about a point
x=mE/eB', s= Et/B. We readily se—e that the
resulting path is a cycloid. For we remember
that a cycloid is the path made by a point on the
rim of a rolling wheel. The wheel is rotating
about a point whose height is its radius, and
whose linear velocity. is the product of the radius
and the angular velocity, as our value E/B is the
product of (mE/eB') and (eB/m) Thus the path.
is as shown in Fig. 32. The maximum height of

We may satisfy the second by setting y=0, and
' the third by setting nsi= —eBx, which is con-
sistent with the initial condition that the electron
starts from rest, or has i =0, i =0, when it leaves
the cathode, which we take to be x=0. Substi-
tuting in the first equation, we then have
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c

B )p
(V.36)

the orbit above the cathode is 2mE/eB'. If this
distance is less than the distance to' the anode,
the electrons will never reach the anode, and the
magnetron will not pass a d.c. current. If how-
ever the height is more than this, all electrons
leaving the cathode will reach the anode, so that
there will be a d.c. current. The value of voltage
for a given magnetic field, or magnetic field for
a given voltage, for which the electrons just
reach the anode are called the cut-oR voltage
and cut-oR magnetic field respectively. The
range of values of E, and 8 for which the magne-
tron can act as an oscillator are those for which
the electron would fail to reach the anode in the
static case; in fact, ordinarily those for which it
fails by a large margin. That is, it acts as an
oscillator for magnetic fields large compared to
the cut-o8 value.

With this knowledge of the motion of an
electron in the static electric and magnetic fields,
it is not hard. to see how electrons move in the
actual field of the magnetron. In the type of
operation which leads to an efficient oscillator,
there proves in the first place to be a resonance
relation occurring between the average drift
velocity of the electrons, on account of the
motion of the center of the cycloid, and the
velocity of the electromagnetic wave in the inter-
action space. We have seen in the preceding
section that this wave consists of a superposition
of two traveling waves, traveling in opposite
directions. Each of these waves travels with a
velocity less than the normal velocity of light;
in fact, in practical cases, much less, perhaps a
tenth of the velocity of light or less. The drift
velocity of the electron, by (V.35), is 2/B. The
resonance condition we have mentioned is that.
these two velocities should agree. That is, there
is a linear relation between P and 8 required for
good operation of the magnetron. We can readily
find the constant of proportionality. If D is the
spacing of the segments, the effective wave-
length of the disturbance in the interaction space
must be 2D, so that the ratio of wave-length to
the free space wave-length is 2D/Xo, and this
must equal the ratio of the velocity, to the
velocity of light. Thus we must have

FIG. 32. Cycloidal orbit of electron in magnetic and
electric 6elds.

We can, as a matter of fact, satisfy resonant
conditions similar to this for the other modes of
the resonant cavity. From (V.32) we see that
the wave-length of the disturbance is inversely
proportional to n, the index of the mode; thus
the velocity varies in the same way, and we have

8 n, 2D

8 n 'Ap
C) (V.37)

where n, is the maximum value of n, which we
have for the x mode. This relation. is not quite
as simple as it seems, for we must remember
that A, p, the free space wave-length connected
with the frequency of oscillation, is itself a
function of n. For the unstrapped tube, as shown
in Fig. 31, 1/Xo is proportional to n for small n
values, so that E/B is constant for these values,
and in fact is approximately equal to the velocity
of light; it is only for the higher n values that
1/Xo becomes small enough, and neo big enough,
to reduce the velocity well below the velocity of
light. On the other hand, with strapped tubes,
we have seen that Xo becomes considerably
greater than for unstrapped tubes, so that the
velocity becomes considerably less than the
velocity of light.

We have stated that the resonance condition
must be satisfied, according to which the drift
velocity of the electrons equals the velocity of
the traveling wave. Now we must ask why this
is so. If the condition is satisfied, then as the
electron moves along, the r-f field which travels
along with it will appear to it to be a constant
field. Then we can immediately find its motion
in this field. We need merely take the vector
sum of the d.c. field, and of the r-f field which
appears to be constant, and find the motion of
an electron in this constant field. If the phase of
the electron is such that the r-f field following
along with it is in the x direction, or from the
anode to the cathode or vice versa, then this r-f
field will merely add in magnitude to the d.c.
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field, and the result will be that the drift velocity
of the electron will be increased or decreased.
On the other hand, if the r-f field is along s, or
at right angles to the d.c. field, then the vector
sum of the r-f and d.c. field will be in a different
direction from the d.c. field. The motion will

then be similar to the cycloid of Fig. 32, but the
direction will be different. Depending on the
phase, the path will either carry the electron
down into the cathode, in which case it will

strike the cathode after its first revo'lution, and
be lost; or it will carry it away from the cathode,
in which case the electron will move in a diagonal
path toward the anode. It is electrons of this
type which act as generators. For they move
from cathode to anode, and yet at the anode
they do not have a very large kinetic energy.
Since they would have acquired a large kinetic
energy falling from cathode' to anode in the
absence of an r-f field, it must be that the
remaining energy was used up in working against
the r f field, and therefore must have been
delivered to the resonant circuit as electronic
power. Thus it is not surprising that the magne-
tron can have high efficiency.

Let us first consider electrons leaving the
cathode in different phases, and see how they
act. Referring to Fig. 29, we see first that those
electrons for which the r-f field is in the direction
of the d.c. electric field, and which therefore
drift faster than the velocity of the field, will

then catch up with the field, and enter a region
where the r-f force is opposite to the drift
velocity. This combines with the d.c. force to
give a net force such that the electron drifts
toward the anode, in the manner described
above. On the other hand, those electrons which
have the r-f field opposite to the direction of the
d.c. field will tend to be slowed down, and will

likewise enter a region where the r-f force is
opposite to the drift velocity. There is, in other
tvords, a tendency toward bunching of the elec-
trons, into the phase in which they can operate
as efficient generators of power. The only elec-
trons which do not work in this way are those
which start out with a component of r-f force in
the direction of their velocity. They will immedi-
ately start to drift further toward the cathode,
and will be lost at the end of their first cycle.
They will dissipate some power at the cathode;

g, i
——1—(2m/e) (Z/B'X). (V.38)

We may put this in a convenient form in terms
of the cut-off voltage and magnetic field. At
cut-off, the maximum height of the cycloid,
2mB/eB', equals the distance X from anode to
cathode. Thus we have

(2m/e) (8,/B, ') =X, (V.39)
I

where E„B,are cut-off electric and magnetic
fields. Substituting this value for X in (V.38),
and using the fact that the cut-off voltage is
B,X, we have

This very simple formula is surprisingly accurate
for giving the general form of the electronic
efficiency of a magnetron. It shows that the

for the r-f force will have worked on them during
the one cycle of their motion, and they will have
accumulated some kinetic energy, instead of
returning to the cathode with exactly no kinetic
energy, as in the static case of Fig. 32. This
dissipated power is far less, however, than that
delivered to the r-f field by all the other elec-
trons, which finally reach the anode.

We can make a simple approximate calculation
of the efficiency to be expected from the magne-
tron, as a function of the d.c. voltage and mag-
netic field. Let the distance from cathode to
anode be X. Then an electron gains potential
energy of eEX, or of eVO, where VO=BX is the
d.c. voltage, in falling from cathode to anode.
Part of this appears as kinetic energy of the
electron, which is dissipated in the collision with
the anode, and lost. The rest is delivered to the
r-f field. We can easily find the average kinetic
energy of the electrons. The electrons are most
likely to strike the anode when at the top of
their cycloidal path. At such a point, we can
find easily, from (V.35), that the kinetic energy
is 2m(Z/B)'. Thus the energy put into an elec-
tron by the d.c. field is e Vo, the energy dissipated
is 2m(Z/B)~, and the useful energy delivered to
the r-f circuit is the diHerence of these quantities.
The electronic efficiency, or ratio of electronic
poorer to input power, is thus (e Vo —2m(B/B)')/
e Vo. This may be rewritten in the form
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efficiency is zero at cut-oR, but increases as the
magnetic field is increa, sed or the voltage de-
creased, so that we are farther and farther from
cut-off. Furthermore, no upper limit is indicated
for the efFiciency; it appears from (V.40) that
it can become arbitrarily close to unity, for
sufficiently high magnetic fields. As far as is
known experimentally, there is nothing to contra-
dict this feature of the theory. Magnetrons have
been operated with electronic efficiencies in the
neighborhood of 90 percent, in striking contrast
to reflex klystrons, in which efficiencies of a few
percent are common.

7. Operating Characteristics of the Magnetron

We have seen in the preceding section some-
thing of the type of electronic motion in the
magnetron, and the physical reason for its high
efficiency. To proceed further, however, we wish
to find the r-f current as a function of r-f voltage,
to find the quantities g and b, and to discuss
operation as a function of load. Furthermore,
we wish to understand the particular sort of
operating curves convenient for practical dis-
cussion of magnetron operation, in which we are
concerned with the relations between d.c. cur-
rent, voltage, and magnetic field. The ordinary
experimental test of a magnetron is conducted
with a matched output, and consists of an
observation of the relation between d.c. current
and voltage at diferent values of magnetic field
as a parameter. The power, or efficiency, are
observed as functions of current and voltage.
The commonest type of plot, the performance
chart, has d.c. current as abscissa, d.c. voltage
as ordinate, and consists of lines of constant
magnetic field and of constant power or effici-
ency, in such a plane. We shall now try to
understand the theory underlying such a per-
formance chart.

First let us inquire what is the d.c. current
Howing to the anode, with a given d.c. voltage,
magnetic field, and r-f voltage. It is clear from
the discussion of the preceding pages that the
r-f voltage makes electrons drift across from
cathode to anode, even when the magnetic field
is beyond cut-oR, or when the d.c. electric field
is so small that it by itself would not carry
electrons to the anode. Furthermore, the tilt of

the orbit, and hence the drift velocity of the
electrons, will be roughly proportional to the
r-f voltage. The d.c. current will then be propor-
tional to the density of space charge times the
drift velocity. If the discharge is space charge
limited, a'more elaborate discussion than we can
give here indicates that the total space charge
density is roughly independent of the r-f voltage.
Thus we conclude that the d.c. current will be
proportional to the r-f voltage. Furthermore,
the nearer the d.c. voltage is to cut-oR, the
larger will be the d.c. current. This is partly on
account of the natural increase of space charge
density as the voltage increases, since the space
charge limited current would be proportional to
the 3/2 power of the voltage in the absence of a
magnetic field. It is partly also on account of
the fact that as we approach cut-off, the cycloids
become nearly as large as the distance between
cathode and anode, and a small drift of the
cycloid toward the anode will cause the electron
to strike the anode. Using these principles, we
may then deduce that the curves of d.c. current
as a function of d.c. voltage, for a variety of r-f
voltages, and a given magnetic field, have the
form shown in Fig. 33. At zero r-f voltage, no
current theoretically will flow until the voltage
reaches its cut-off value. At this point the current
will suddenly jump to a value determined by
space charge theory, as influenced by the mag-
netic field. It will then increase rapidly with
increasing voltage, not just according to the 3/2
power law given by space charge theory, but
somewhat more rapidly, as one can find by
considering the effect of magnetic field. With a
finite r-f voltage, current will begin to How at a
smaller d.c. voltage, and will increase rapidly
with d.c. voltage. The exact form of the curves
is not known either from detailed theory or from
experiment, but it presumably is much as shown
in the figure. We can see clearly from the figure
that at constant d.c.voltage the current increases
with r-f voltage, as it should.

A graph like that above gives only part of the
information we need to interpret magnetron
operation. We need also a curve giving r-f
current as a function of r-f voltage. By knowing
that, and using the principles of the preceding
work, we can find the r-f admittance g+j b

coming from the electronic discharge. Then if we
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FIG. 33. D.c. current as function of d.c.
'

voltage, for
magnetron with various r-f voltages.

know the load, we can find the r-f voltage.
Going back to the curve of Fig. 33, this locates
us on a definite curve of d.c. current vs. d.c.
voltage, so that if we know one of these quanti-
ties, we can find the other. We must then con-
sider the r-f current Rowing in the magnetron.
This is less simple to understand than in the
reflex klystron; we must really go back to the
fundamental formula involving J'J E,dv to find

what it is. The quantity Z is the field in the
mode we are interested in; that is, it is the
fringing field as shown in Fig. 29. The current
density in the neighborhood of this fringing field,

as we have seen in our earlier discussion, is
located in bunches, in the part of the 6eld

opposing the direction of drift of the electrons.
The component of current density in the direc-
tion of this field is parallel to s. That is, it is
proportional to the product of component of
drift velocity in that direction (which is relatively
independent of r-f voltage) and charge density
(which is also roughly independent of r-f voltage) .
Thus it arises that there can be a large r-f
current even for very small r-f voltages. As long
as the r-f voltage is large enough to produce
bunching, which may require only a relatively
few volts, the bunches will have as much charge
density, and will be moving with the same drift
velocity, as if the r-f voltage had been much
greater. This is the situation which was men-
tioned in earlier sections as the peculiar property
of the current in the magnetron, in which a small
r-f voltage almost discontinuously produces a
large r-f current. As the r-f voltage increases,
however, and becomes comparable to the d.c.
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Frc. 34. R-f current as function of r-f voltage, for
magnetron with various d.c. voltages and currents.

voltage, the electrons tend more and more to
drift straight across to the anode, the angle of
tilt of the orbit getting greater and greater. They
are then less favorably inclined to the r-f field,
and as a matter of fact when calculations are
made the r-f current proves to decrease, appar-
ently approaching zero for r-f voltages suffici-
ently great. This applies only to the component
of r-f current in phase with the r-f field; the
component out of phase, the reactive component,
is large at all values of r-f voltage, and results in
a reactive tuning of the magnetron. The problem
of determining the Rieke diagram of a magne-
tron, then, is not greatly diferent from the
other cases we have previously considered, and
we need not give a separate discussion for it.

The curve of r-f current vs. r-f voltage of
course will depend on the d.c. parameters. As
the d.c. ;voltage incr'eases, the space charge
density will. increase, and the r-f current will

increase, as does the d.c. current. Thus we find
that curves of r-f current vs. r-f voltage, for a
set of d.c. voltages or of d.c. currents, have the
appearance of the curve of Fig. 34. We can read
off from these curves the decrease of r-f current
with increasing r-f voltage at a constant d.c.
voltage, the r-f current approaching a constant
value at small r-f voltages; and also the rapid
decrease of r-f current, at a given r-f voltage,
with decrease of d.c. voltage. Furthermore, we
see the corresponding decrease of d.c. current,
and as a result see that the lines of r-f current as
a function of r-f voltage, at constant d.c. current,
are much more sloped than those at constant
d.c. voltage. The ordinary Rieke diagrams of
magnetrons are usually taken at constant d.c.
current, and it is accordingly these strongly
sloping curves which must be used in discussing
them.



M I C ROQlA VE ELECTRONICS

O.C CURREN f

0 CO%OFF

~PJ'S RF. VQ

Sl1AI L

-SrWLL R,F VOLTAGE

LARt"E

'D. C VOLTA% K

FIG. 35. D c. current as function of d c. voltage, for
magnetron with various load conduqtances.

From these curves of r-f current as a function
of r-f voltage, we can now find the r-f voltage
with which the tube will operate, with a given
load and given d.c. conditions. If we know the
load admittance, then by methods that we have
often used we can find the ratio g+jb of r-f
current to r-f voltage. The curves of Fig. 34
show the component of r-f current in phase with
the voltage; thus a line of constant g is a straight
line through the origin. Knowing the load ad-
mittance, we draw such a straight line. Its inter-
section with the line of constant d.c. voltage, or
constant d.c. current, appropriate to the circum-
stances, shows the r-f voltage and current at
which the tube operates. One corollary of this is
clear. For a given load, we are always operating
on a given straight line through the origin. We
then see, from the way the curves are arranged,
that as either the d.c.' voltage or the d.c. current,
increases, the r-f voltage and r-f current will

increase. Since the electronic power is propor-
tional to the product of r-f current and r-f
voltage, the power will also increase with increase
of d.c. voltage or current. All these considerations
assume that the magnetic field is constant during
the discussion.

We can now return to Fig. 33, and find the
curve of d.c. current vs. d.c. voltage, not for
constant r-f voltage, but for constant load, as
in an ordinary test of performance. Since the
d.c. current increases rapidly with r-f voltage,
the curve will cut across the curves of constant
r-f voltage, falling at higher and higher r-f
voltage, and higher d.c. voltage, as the d.c.
current increases. That is, the curves of constant
load will look as in Fig. 35, where we give two
curves, one for small g, one for large g (that is, .

the first one is for a loose coupling, for which the
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FIG. 36. Magnetron performance chart.

r-f voltage is large, a,nd the second for tight
coupling). We see that the increase of g decreases
the r-f voltage at constant d.c. current, and
hence increases the d.c. voltage. A curve of
constant load, and constant magnetic field, is
then, as this figure shows, approximately
straight line, starting at small d.c. currents from
a value of d.c. voltage somewhat below cut-off,
and with the d.c. voltage increasing slightly with
increase of d.c. current. Of course, as the mag-
netic field is changed, the d.c. cut-off voltage
changes, increasing as the magnetic field in-

creases, so that the line representing operation
at constant load shifts to higher d.c. voltage
with increase of magnetic field. We thus see the
origin of the performance chart of the magnetron,
which takes the form shown in Fig. 36. It is
usual to interchange the axes, plotting d.c. volt-
age as a function of d.c. current, and drawing
lines of constant magnetic field (and constant
load) on the chart. In addition, the lines of
constant power are plotted on the chart (and
sometimes also the lines of constant efFiciency).
We can find the power from the information
already stated. Since we have seen that, at
constant magnetic field and load, the power
continuously increases with increasing d.c. volt-.

age or current, the lines have the general form
shown in the figure. To find the ef6ciency, we
must divide the power (which will be the elec-
tronic power times the circuit efFiciency) by the
input power, the product of the d.c. current and



J. C. SLATER

d.c. voltage. When we do this, we find that the
efficiency has its maximum values at low d.c.
currents, but high voltages, as shown in the
figure. The curves shown above agree with the
actual performance charts of magnetrons, except
in the very low current region. In that range, as
we see from the preceding page, the r-f voltage
is very small, and many disturbing features can

come into the operation, in particular the inter-
ference of other modes. These interferences have
the eRect of decreasing the power and efficiency,
so that as a rule the eSciency, rather than
having its maximum value for low current, is
low at that point, rapidly increases as the current
increases, and then decreases again with still
further increase of current.


