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Breadth of specimen of rectangular
cross section.
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Young's modulus.
Orientation function (p. 426).
Rigidity modulus.
Moment of inertia.
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Applied load.
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Radius of curvature in bending.
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section.

Potential energy of strain.
Coordinate axes.
Extensional strains.
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Extensional stresses.
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Direction cosines.

=s's4f/2s'sfs', for a specimen of circular
cross section (p. 4j.7).

Total angle of twist in torsion.
Frequency.
Density.

INTRODUCTION AND SUMMARY

intere
aniso
tion

HE present paper attempts to review the
theoretical and experimental points of
st connected with the el'astic constants of

tropic materials (mainly crystal's). Atten-
is confined exclusively to the "elastic"

range, and such topics as ultimate strength and
plastic slip and glide are automatically excluded.
The aim has been to make the account complete
to the end of. 1944, but, owing to obvious dif-
ficulties imposed by the non-availability of
certain periodicals, it is possible that the period
1939-1944 is not fully covered. The originals of
the most important papers have been seen, but
others are quoted from "Science Abstracts"
(since 1941—"Physics Abstracts" ) of which
journal free use has been made throughout.

The elastic behavior of a completely asym-
metric material is specified by 21 independent
elastic constants, while for an isotropic ma, terial,
the number is 2. In between these limits the
necessary number is determined by the sym-
metry of the material, and is fundamental to the
study of the elastic constants of crystals. Hardly
less important is the eEect of rotating the axes
on the elastic constants; the main mathematical
results relating to these two problems are sum-
marized in Section 1.

Sections 2—6 deal with the methods used to
measure the elastic constants. They contain a
discussion both of the static methods used by
Voigt and others, and of the more recently
developed dynamic methods, which may involve
measurements at sub-sonic, sonic, and super-
sonic frequencies.

The experimental methods commonly used to
measure the elastic constants of anisotropic
materials do not, in general, differ in principle
from those applicable to isotropic materials.
These methods are well known, and details of
experimental technique are therefore only men-
tioned, often incidentally, when they are of
special interest.

Although the experimental variables it is
necessary to measure are as a rule the same,
whether the material is isotropic or anisotropic,
the method of calculating the elastic constants
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from these variables often depends on the nature
of the material. In particular, when working on
specimens of arbitrary orientation, itis necessary
to allow for the coupling which may exist
between shear and extension; this effect and the
associated corrections are discussed in Sections
3—5.

Sections 7 and 8 give the results of deter-
minations at ordinary temperatures and discuss
the main points of interest shown by them. The
table of numerical values (Table V) is believed
to be the most complete so far assembled.

The effect of temperature is 'dealt with in
Section 9. This work has yielded results of con-
siderable importance and interest, notably in the
connection which has been shown to exist
between the temperature variation of elastic
constants and the order-disorder transition in
alloys.

The investigation of the elastic constants of
crystals has proved of significance in other
branches of physics, for example in the study and
development of quartz crystal oscillators, in the
interpretation of diffuse x-ray scattering, and in
the development of the quantum theory of the
crystal lattice. These and other applications are
very brieHy summarized in Section 10.

xz sliXX+s12 FY+$13Zz+s14 Yz

+Sls+X+S16XY&

(1 2)
y, = s4iXx+s42 +Y+s43+z+s44 I'z

+S4@x+S46XY '
z ' ~

where the s,~ are the elastic coefficients. In these
equations, a suffix identical with the principal
symbol (e.g. , x„Xx) implies extension (or com-
pression) while a suffix different from the
principal symbol (e.g. , y„Yz), implies shear.
The quantities c;& and s,& are constants charac-
teristic of the material; the difference between
them may be seen by considering, for example,
cj.g and spy.

If, in (1.1), all the strains except x, are made
zero, then, in general, all six stresses exist. Thus

C11 Xx/Xz~ (1.3)

when the stress system is such that the only
strain is x,. Similarly, if in (1.2) all the stresses
except X~ are made zero, then all six strains.
exist and

The six components of strain may similarjy
be written in terms of the six components of
stress:

1. Resume of Mathematica1 Theory
S11 —33z/ XXp (1 4)

In its most general form, Hooke's law, referred
to a Cartesian coordinate system 026, Oy, Oz,

may be written tLove (73) pp. 99 etc. ; Voigt
(115) p. 568j:

XX= C11Xz+Clsys +C13Zz +C14yz+ Cl 6Zz+ C16362 &

~ ~ z ~ ~ ~

I Z . C41&z+C42ys+ C43Zz+C44yz+ C46Z*+ C46~,
~ i.i

when the only stress is XX.
It would be difficult, if not impossible, to

realize experimentally the conditions under
which (1.3) applies, but it is comparatively
simple to realize the conditions of (1.4). In fact,
for the particular case considered,

sii = 1/Ex, (1 5)

where X~ . Yz. - are stress components,
x' ~ ~ y, are strain components, an'd the c;I, are
elastic parameters. '

' The terminology of the quantities specifying the
elastic properties of anisotropic materials is very confused
and ill defined, in spite of various attempts which have
been made to rationalize it (see Love (73), Note A, p. 614j.
The most frequent usage appears to be that originated by
Voigt (115)according to which the quantities s;I, are known
as "moduli" (moduln) and the quantities c;I, as "constants"
(konstarlteN). In English, at least, both of these words
are open to objection since they have a usage which is
well accepted, and does not convey the special meaning
attached to s;& and c;&, cf. Young's "modulus, " rigidity
"modulus, " both of which are elastic "constants. " In the
present paper, the quantities s;I, are called "coefficients, "

I

where Bx is the Young's modulus in the x
direction.

In view of this direct connection between the
usual experimental tests and the elastic coef-
ficients s,l„numerical values quoted below refer,
as a rule, to s;I, and not to the elastic parameters

and the quantities c;& "parameters. "The word "modulus"
is reserved for such use as Young's and rigidity modulus,
while "constant" is used as a general term covering any
of the quantities defining the elasticity of solid bodies and
includes moduli, coefficients and parameters. Editor' s
Note: An I.R,E. committee has recently defined the c;I,
constants as moduli of elasticity and the s;y, constants as
moduli of compliance.
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c;5, although in some cases (e.g. , in the elastic
theory of plates) the latter are more directly
involved.

It is always possible to obtain one set of quan-
tities from the other by the relations t Love (73)
p. 1067.

C;5 =ESS;/hS; S,S =AC 5;/EC; d CES = 1,

scheme of direction cosines:

X

481 Pl Vl (1 11)
482 PS YS

483 Ps Y3

Since each set of axes is rectangular, 12 relations
of the types:

where '

6$= Spy' ' $y4' ' ' AC= Cyy ' 'CI4' ' '

C41 ; (1.6)

481'+o'8'+483' = 1;

~is+Pl'+el'=1;
~ ~

481c43+plPS+YlYS
4

481P1+482PS +483 PS

(1.12)

Asj„=minor determinant corresponding with sI„,
3 CI,;=minor determinant corresponding with cI„.

The general properties of s;~ are'.

must hold among the direction cosines.
The potential energy of strain TP' is given by

2 W = sllXx'+ 2slsXX &Y+
I

+»i4XX I's+ +344''z'+

(a) 'a =~ai- +»45 &z&x+&66&Y', (1 13)

S;5 ——1/ZS. (1.8)

(c) iQk (neither )3); s;5 relates an extensional
strain to a perpendicular compressional stress
(or vice versa),

These equations reduce the maximum number
of independent coeflicients from 36 to 21.
(b) i=k (neither )3); s;5 relates an extensional
stress to a collinear extensional strain,

and the effect of rotation of axes on the elastic
constants is obtained from the principle that W
is independent of the rotation, i.e.,

S11XX +2S18XXFY+ ' '. '

~11 + X' +2~12 + X' I Y'+
I

It is convenient to deal with the problem
using tensor notation (15, 115, 121),' but this
method will not be described here. Some typical
results may, however, be quoted:

s;5 ———s;5/E; = a5;/BS, —

where 0;~ is the Poisson's ratio

(1.9) S 33 =$11+1 + ' ' ' +(2SSS+S44)'YS YS + '

+ 2(S56+S,4)Y,'YsY3+ . .

extensional strain in k direction
for compressive

compressive strain in i direction

stress in i direction.

(d) i+3; k)3; s;5 relates an extensional strain
to a shear stress.
(e) i=k (each) 3), s,3 relates a shear strain to
a shear stress in the same plane

f

s,5 =1/G,

where G is a rigidity modulus.

(f) i+k (each )3); s;5 relates a shear strain to
a shear stress in a perpendicular plane.
Suppose now the axes 83, y, s are rotated to 88',

y', 2' where the rotation is governed by the

+271 (~15YS+~1672)+ ' ' ' (1~ 14)

S'44=4(S11P1 Yl + )+8(S88PsYsPSY3+ ' ' ')

+S44(P278+ YSPS) +
+2~56 (P173+Yips) (P178+Yips) +
+4$14Pl Y1(P873+P3YS)+ ' ' '

+4(sl kpSl Y +3Ylp 73
+&16/P1YS+71P87)plY1 (1 15)

2Wooster {121}uses a slightly modified notation for
certain of the coeScients as compared with the present
one, which is the same as that of Voigt (115).Wooster's
notation is such that if s;y,(,) denotes the coeKcients as
defined by Voigt and s;&( ) those defined by Wooster, then

s;y,(,) =s;I,(„& when both i and k are 1, 2, or 3
=2s;k( ~ when either i or k is 4, 5, or 6
=4s;y, („~ when both i and k are 4, 5, or 6.

The coe%cients c;& are defined in the same way by both
writers.
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(s'55 is obtained by writing 43 for P throughout
(1.15).)
1
2 S 34 = $11PlYl + '

+ ($23+ 2S44) (P2Y2Y3 +P3Y3Y2 ) + ' ' '

+ ($14+S56) (Pl Yl Y2'Y3

+ 2P271 'Y3+ 2P3Y1 Y2) + ' ' '

+2S15(3Pl Yl 73+P371 )+
+2 $16(3Plyi'Y2+P2Y1 ) + ' ' '

~ (1~ 16)

(-', s'35 is obtained by writing 42 for p throughout
(1 16) )

In each of the above equations, 43,, p;, Y, are
the direction cosines defined by (1.11); the
missing terms are obtained by cyclic interchange
of the sufilxes (1, 2, 3) and (4, 5, 6). Equations
(1.14) and (1.15) are quoted from Voigt f(115),
p. 734$ and Eq. (1.16) from Goens (41).

In the particular case of a rotation through an
angle 0 from x towards y about the axis of z,
the direction cosine scheme (1.11) becomes

/s 23 = s23m' s—36mn+s13n',

s 24 —$24m ($25+$46)m'n

+ {$14+$56)$$m —s15n

s 25 —$14n +(s15 $46)n'm

+ ($24 —$56)m n+ $25m

s 26 2(slln $22m )mn
6—(2$12+$66)mn(m' —n')

+ $16n'(3nz' n—') +.$26m'(m' 3n—');
IS 33 =S3
IS 34 =S34m —S»n;

s 35 = s34tz+$35m;

s 36 ($23 $13)mn+ $36(m 'n )
s'44 ——s44m' 2s45m—n+ s55n

s'45 ——(s44 —$55)mn+ s45(m' —n');
s'46 ———(s25 s15)—2n'm+ (s24 —s14) 2m'n

($46m —$56n) (m n);—

i(1.18)
cored.

0
m

0

0
0

. s 55 =$44n +2$45mn+s55tÃ

(1 17) s'56 ——(s25 s15)2—m'n+ (s24 s14)2—n'm

+ (s56m+ s46n) (m' n');—
where ns=cos 0, n=sin 8, and the set of equa-
tions of which (1.14)—(1.16) are exa,mpies be-
comes:

s'll ——slim'+ (2s12+ s66) m'n'+ $22n'

+2$16m n+ 2$26mn

S 12 = (Sll+S22)m'n'+s12(m'+n')

+ (s16 —st6) mn (m' —n') —s66m'n',

S 13 $23n +$36mn+$13m

s 14 = $14m ($15 $46)m n

+ ($24 —$56)n tn —s25n
(1.18)

s 15 $24n + (s25+ $46)'n m

+ (s14+$56)m 'n+$15m

s 16 = —2(slim —$22n )mn

+ (2s12+ s66) mn(m' —n')

+s16m'(m' 3n') +s2—6n'(3m' —n');

s 22 = sDn + (2s12+$(6)m 'n +s22m

—2s16s sl —2s26m Q;

S 66 =4(S11+S22—2S12)m n

—4(s26 —s16)mn(m' —n') + $66(m2 —n') '.
,

The above equations can now be used to find
the effect of the symmetry elements characteristic
of the various crystal systems on the number of
independent elastic constants which must exist
in that system. Thus, suppose a crystal possesses
a g-fold rotation axis of symmetry, which is
taken as 1ying in the s direction. The substitution
8=2$r/g $i.e., nz=cos (2$r/g), n=sin (2$r/g) j is
then made in (1.18) and the resulting expressions
equated to those obtained by substituting 8=0.
If, for example q=4, then 8=2r/2 and m=0,
n= 1. The first Eq. (1.18) therefore gives:

S 11(8 'll/2) $22 S 11(8 0) =Sll and ~ ~ $11 $22 ~

Similarly the remaining equations give:

S13= S23 f S44 —S66 f S26 S16 f

S14=S16= S24 S25 = S34 S35—S36= S46 = S46 = Saf6 =0.

These equations among the coeScients must
therefore hold for a material having a fourfo1d
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TABLE I. The coeiiicients s;3 in the various symmetry systems ($1=2(sll $12$).

Full designation

Shortened designation
Triclinic system

(21 coefficients)
Monoclinic system*

(13 coefficients)
Orthorhombic system

(9 coefficients)
Trigonal and hexagonal

systems
(a) 7 coefficients
(b) 6 coefficients
(c) 5 coefficients

Tetragonal system
(a) 7 coefficients
(b) 6 coefficients

Cubic system
(3 coefficients)

Isotropic system
(2 coefficients)

$11 $12 $13 $14 $15 $16
'

S22 $23 $24 $25 $26 $33 $34 $35 S3B $44 $45 S4B SS5 $56 $66

Sll $12 S13 0 0 $16 $22 $23 0 $26 $33 0 0 $36 $44 $45 0 S55 0 $66

$11 $12 $13 0 0 0 $22 $23 0 0 0 s33 0 0 0 s44 0 0 s55 0 see

sll $12 $13 $14 —s25 0 sn s13 -s14 s25 0 s33 0, 0 0 s44 0 2s25 s44 2s14 sl

$11 $12 $18 $14 0 0 $11 $18 $14 0 0 $83 0 0 0 $44 0 0 $44 2$14 $1

$11 $12 $13 0 0 0 sil si3 0 0 0 s33 0 0 0 s44 0 0 s44 0 $1

$11 S12 $13 0 0 $16 Sll $18 0
Sn $12 $13 0 0 0 sil $18 0

-sle s33 0 0 0 s44 0 0 s44 0 see

0 s33 0 0 0 s44 0 0 s44 0 see

$11 $12 s12 0 0

$11 S12 $12 0 0

0 sll s12 0

$11 $12 ' 0

0 sn 0 0 0 s44 0 0 s44 0 s44

$11 0 0 0 $1 0 0 $1 0 $1

Ãz: Ãz:X» Xg X» Sg gy gy gy gy gy Sz Sz Sz S» g» gz P» S~ Sz Ãy

Xx Yr Zz Yz Zx Xr Yr Zz Yz Zx Xr Zz Yz Zx Xr Yz Zx Xy Zx Xy' Xy
11 12 13 14 15 16 22 23 24 25 26 33 34 35 36 44 45 46 SS 56 66

EdBtor's Note: If the Y axis of a monochnic crystal is taken as the binary axis b to agree with the notation of the crystallography, the elastic
constants would be sll $12, $13, s15, $22, $23 $25 s33 $85, s«, s46, s55, see rather than those in the table.

rotation axis, i.e., one belonging to the tetragonal
system. The other systems can be dealt with

by similar methods [(37a), (73), (115)]; the
results are given in Table I.

The trigonal and hexagonal systems are closely
interrelated, and are classed together in Table I;
the majority of trigonal crystals, however, have
either seven or six independent coefficients, while

the. majority of hexagonal crystals have five. In
these two systems, as in the tetragonal system,
the smaller numbers of independent coefficients
are appropriate to crystals which possess certain
symmetry elements over and above the minimum

required to place the crystal in a particular
system.

The scheme for the parameters c;~ is obtained
simply by writing c,for s throughout Table I,
with the following exceptions [Voigt (115), p.
588]. If ss3=2(sll —sls), then css ———,'(cll —c12). If
s46 ——2s25, s56=2s14, then c46=c25, c56=c14.

The existence of the relations embodied in

Table I produces a considerable simplification of
all the equations hitherto quoted in connection
with the elasticity of anisotropic systems. For
example, in the hexagonal system, Eqs. (1.6)
become [Voigt (115), p. 747]:

Cll+C12 S33/S i Cll C12 1/($11 S12) i

c13 s13/s; c44 ——1/s44, ~(1.19)

C33 = (Sll+S12)/S q

where s' = s33(sll+s12) —2sls'.

In the cubic system [Voigt (115), p. 741]:
'I

Sll+ S12

C12 =

($11—$12) ($11+2$12)

—$12

($11 $12) ($11+2$12)

(1.20)

2. General Discussion of Methods

In theory, the elastic coeScients of crystals can
be obtained by suitable measurements involving

the four constants familiar in the elastic theory
of isotropic solids —compressibility, Poisson's

ratio, Young's modulus, and rigidity modulus.

Thus, the linear compressibilities in the direc-
tions of the coordinate axes are:

X3/8 =Sll+ S12+S13 i

ys/+ $22+ $23+$21 i

Z*/P =$33+$31+$32'

(2.1)

and the cubic compressibility is therefore:

(xs+$3+»3)/P sll+s22+s33

+2 (s12+s23+ ssl), (2.2)

where 2' is a uniform hydrostaf;ic pressure.
I

c44 = 1/s44.

Equations (1.14)—(1.16) are similarly greatly
simplified; for examples see Eqs. (2.3), (2.4),
(3.6), (3.7), (7.3), (7.4), (7.9), and (7.10).
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If, therefore, the compressibilities and the
Young's moduli corresponding to s~~, s», s~3 are
known, s12, s22, and s21 can be calculated from
the above equations [reference (18)j.

The three coefficients s&2, s23, and s3~ can also
be obtained from the results of the familiar
methods normally used to measure Poisson's
ratio; for example, if the direct stress Xx produces
a lateral strain y„, then s» = —y„/Xx. Similarly,
if in a material of Young's modulus Z, a prin-
cipal curvature R is accompanied by an anti-
clastic curvature R~, then s12= —R~/RZ.

The Young's and rigidity moduli may be
measured by any of the accepted methods for the
determination of these constants (see Table II).
By far the most popular methods of any have
been those involving static or dynamic bending
for Young's modulus, and static or dynamic
torsion for rigidity modulus. Young's modulus
is also measured fairly often from the frequency
of longitudinal vibration, and from static com-
pression or tension experiments. More recently,
the tendency has been to apply supersonic
methods to measuring the elastic constants;
these and other methods are discussed in

Section 6.
Equations (1.14) and (1.15) contain between

them all of the coefFicients and it is therefore
possible, by measuring Young's modulus and
rigidity modulus on a sufficient number of
specimens, each of different but known orien-
tation, to obtain a set of simultaneous equations,
the solutions of which yield values for each of
the coefficients. For example, in the cubic
system, Eqs. (1.14) and (1.15) reduce to

S 32 = Sll 2($11 S12 2S44)

X (yi'y2'+y2'y2'+ps'yi'); (2.3)

S 44 = S44+4($11—S12 —2S44)

& (P12V1'+P2'V2'+P2'y2') (2.4).
1

These equations show that s» and s44 can be
obtained directly from specimens for which the
direction cosine brackets are zero. A measure-
ment of s'33 or s'44 on a specimen for which the
direction cosine bracket is known, but diR'ers

from zero, then enables s», the only unknown
principal coefficient, to be calculated. In prac-
,tice, some modifications of the above method

are usually necessary, but the principle remains
the same, as will appear later. I,t is also usual to
make measurements of.s'33 and s'44 on the same
specimen, so that in the cubic system, a minimum
of two specimens is necessary to determine all
three coefficients. Naturally, by the use of a
greater number of specimens, the results can be
cross checked, and hence established with greater
certainty.

As the complexity of the symmetry system
increases, so does the number of specimens
required to determine all the principal coeffi-
cients. It appears that no complete measure-
ments have been made in the triclinic or mono-
clinic systems, ' but, for example, in the ortho-
rhombic system, at least six specimens are
needed. These would most conveniently consist
of three specimens cut with their lengths in the
three perpendicular directions characterizing the
system and three with their lengths in the prin-
cipal planes, at an angle of 45' with the two
principal directions contained in the plane.
Bending and torsion measurements on the first
three specimens yield s~&, s», s33 s44 s55 s66

directly, while bending or torsion measurements
on the remaining specimens enable SIQ s23

to be calculated from the appropriate equations
in (1.18).

In some cases, the equations for calculating
the Young s and rigidity moduli from the experi-
mental observations are the same whether the
specimen is isotropic or not. In other cases, the
equations differ, but are usually given in such a
form that the modulus for a crystalline material
is obtained by combining the usual isotropic
equation with a factor which expresses the eEect
of the anisotropic nature of the material. It is
therefore convenient, before dealing with aniso-
tropic materials, to summarize the equations for
calculating the constants of isotropic materials
from the experimental observations (Table II).

In addition to the quantities defined in the
body of the above table, the following notation
is used:

A =cross-sectional area.
b =,breadth of specimen of rectangular cross section.
@=depth of specimen of rectangular cross section.

(b&dl

' Values of s11, s22, 2s12+s66, s16 and s26 have been given
for the monoclinic crystal gypsum by, Reimers (94).
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8=Young's modulus.
G =rigidity modulus.
I=moment of inertia of load about long axis of specimen.
J=moment of inertia of cross section.

(Rectangular cross section J=bd'/12; circular cross
section J=sr4/4. )

l =length of specimen (f»b; l»r)
ni;4 is given by the following table LRayleigh (93)j

i= 1 2 3
123' 4853 3gP4

""'""""
m;4 is given by the following table LRayleigh (93)$
'j= 1 2 3

5pp 4 3gp3 1459p
after which m; —s (2j+1)w

i and j are both integers; f (or j)= 1 is the fundamental
and the successive values give the overtones.

M'=mass attached to free end of specimen.
&0=mass of specimen.

n=1, 3, 5 ~ ~; n=1 is the fundamental
%=twisting couple about long axis of specimen.
r =radius of cross section.
u is a function of M/Mo, often taken as

M 33e=3 —+,see below.
0

P = 1+(M'srs/12I).
p. is a function of the dimensions and elastic constants

of the specimen; see Table III below.
v =resonant (natural) frequency of vibration.
p =density of specimen.
&=angle of twist at free end of specimen.

The derivations of the majority of the above
equations can be found in most standard text
books. Equations (2.7) and (2.8) assume that
Ms is negligible in comparison with Ps/g and
P /g, where g is the acceleration due to gravity.
Equation (2.9) is subject to a correction for the
effect of lateral vibration (93) and for the fact
tha, t the lateral dimensions may not be negligible
in comparison with the length (26, 28, 91).

The value of o, (Eq. (2.10)) given in the above
list of deFinitions is a first approximation due to
Rayleigh. It is usually sufFiciently accurate if
M/Ms and i are both large, but it takes no
account of shearing in the bar or of rotatory
inertia in the system. Exact expressions for 0.,
in which these effects are allowed for and the
limitations on M/Ms and l are removed, have
been given by Davies (27).

Equations (2.11) and (2.12) are subject to cor-
rection for rotatory inertia and shear effects;
these corrections as applied to the latter equation
have been discussed by Goens (40, 41).

The quantity li in Eqs. (2.13) and (2.14) is,
according to St. Venant (99), given by Table' III

for a specimen in which the x', y', s' axes are
taken as coinciding, respectively, with the direc-
tions of d, b, and /. For an isotropic solid s'ss = s'44

and p is therefore a, function of d/b only. It is
given above as a function of (d/b)(s'ss/s'44)i for
convenience of reference when dealing later
with anisotropic materials.

A' general discussion of torsional vibrations
may be found in Davies' paper (28). The quan-
tity P in Eq. (2.17) is due to Goens (39); it is
usually negligibly diHerent from unity, and for
this reason its effect in Eq. (2.18) is ignored.

3. EBects Introduced by the Anisotxoyic Nature
of the Experimental Material; Free and

. Pure Elastic Constants

The measurement of the elastic coefficients of
anisotropic materials is, in general, complicated
by the existence of the coefficients si (where
I&3, m) 3), which relate an extensional stress to
a shear strain and vice versa. Their existence
implies not only that an anisotropic specimen
subjected to a, pure extension undergoes both
extensional and shear strain, but also that the
bending of such a specimen is normally accom-
panied by torsion, and mice versa The ex. istence
of this effect was predicted by Voigt (115) and
conHrmed experimentally by Reimers (94) in
1913.In dealing with crystals, it is often possible
to choose orientations for which such effects
vanish, a procedure which should be followed if
at all possible. This cannot always be done,
however, particularly when the crystalline speci-
men is artificially grown, and it is therefore
necessary to take the above effects into account.

For various reasons, specimens of circular
cross section are a,lmost invariably used, and at-
tention will therefore be concentrated mainly
en such specimens, although for completeness
some reference to rectangular cross sections will

be made.
Owing to the existence of the coefficients s~,

a distinction has to be drawn between "free" and
"pure" elastic constants (22, 41, 53, 123). As
already mentioned, anisotropic specimens in
general both twist a,nd bend 'under the inHuence
of either a bending moment or a twisting couple.
If a twisting couple is applied, the free rigidity
modulus (Gs) corresponds to conditions such
that the associated bending can take place, while
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TABLE II. Summary of methods for measuring Young's modulus and rigidity modulus of isotropic materials.

Method
Equation for Eq,uation

elastic constant number

A. Young's modulus —any cross section

Notes

Stat'ic tension or com-
pression

Static uniform bending

(2.8)

(2 6)

P =applied tensile or compressive force.
hl =change in length.

C=applied bending moment.
E.=radius of curvature.

Static non-uniform.
bending

Static non-uniform
bending

Longitudinal vibration

Flexural vibration

Flexural vibration

Flexural vibration

P$3
3jxo

4l2v2p

n2

4m'2 l'v'p

Jo.

4x Mol3v'

Jm

4x 3folsv'

m

(2 7')

(2.9)

(2.10)

(2 11)

(2.12)

Specimen forms a cantilever, fixed at one end.
Po= load applied to free end.
x'0=deflectio of free end.

Specimen supported on knife edges distance l apart and loaded at
middle of span.

P =load applied to center of span.
x'~ =deflection of center of span.

Specimen clamped at middle point of length and free at both ends.

Specimen clamped at one end and loaded with mass M at the other.

Unloaded specimen, clamped at one end, free at other.

Unloaded specimen, free at both ends.

B. Rigidity modulus —rectangular cross section

Static torsion

Torsional vibration

Nl
ybd3$

4m'2Ilv~

pbd3

(2.13)

(2.14)

Specimen clamped at one end and twisted through angle @ at other.

Specimen clamped at one end and loaded with moment of inertia I
at other. .

Static torsion

C. Rigidity modulus —circular cross section

(2.15) Specimen clamped at one end and twisted through angle @ at other.

Torsional vibration
4Pv2p

n2 (2.16) Specimen unloaded and clamped at middle point.

Torsional vibration

Torsional vibration

4~iIv P
r4

8mlIv'
r4

(2.17)

(2.18)

Specimen clamped at middle point and loaded at each end with
moment of inertia I.

Specimen clamped at one end and loaded at other.

the pure rigidity modulus (Gz) corresponds to
the application of a bending moment as well as
the twisting couple, such that the associated
bending is entirely suppressed, and the distortion
is therefore purely torsional.

A similar discussion applies to

Young�'s

modulus; in bendiag, Ep corresponds to the
application of a bending moment only, so that
the distortion is a combination of Bexure and
torsion, while EI corresponds to the application

GF = 2/(& 44+~ 55) = &/& 4 (3.1)

while G~ is given by

G5 =Gp/(1 —5), (3.2)

of a stress system, such that the distortion is
purely Aexural.

The free rigidity modulus of a specimen of
circular cross section with its length in the s'
direction is
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where
8 —S 34 +S 33 /S'33(S'44+ S'88).

L(22) (41)]
The free Young's modulus is

EF 1/S——'33,

(3.3)

(3.4) .

TABLE III. Ualnes of 44 (Eqs. (2.13) and (2.14)).

(d/b) (s'gg/s'44)& 1.0 0.909 0.800 0.714 0.625 0.556 0.500
JE 0.141 0.154 0.172 0.187 0.203 0.217 0.229

(d/b) (s'ss/s'44)& 0.400 0.333 0.250 0.200 0.100 0.050 0
Ja 0.249 0.263 0.281 0.291 0.312 0.323 0.333

while the pure Young's modulus

Ep =EF/(1 —8). (3.5)

The quantity e is necessarily positive, and there-
fore Bp&Ep, Gp&Gp.

It follows from (1.16) and '(1.12) that in the
cubic system,

S 34 +S 88 4(S11 S18 3S44) L( Yl + Y8 + Y8 )

-(Yi'+Vs'+V3')'j, (3 6)

Goens (41) has shown that s'343+s'888 is in-

variant for rotation about the s' axis, and,
further, that an orientation exists for which s'3q

vanishes. s'34' is then a maximum, and, for a
specimen of circular cross section, the x' and y'

axes are chosen so that these conditions are ful-

filled (i.e., the plane of the torsion coupled
bending is taken as the x's' plane). 8 for a circular
cross section Eq. (3.3) can then be written

e =S 34 /2S 33$ 8. (3.8)

For a specimen of rectangular cross section, s' is
taken as coinciding with l, y' with Ji, and x'

with d; it is further assumed that b))d. Then (53)
I

EF/Ep =GF/Gp = 1 —8; (3.9)

EF 1/S 33,
. ——

GF ——1/S 44.,

8 = S 34 /S 83S 44.

(3.10)

(3.11)

(3.12)

4. Young's and Rigidity Moduli of Arusotropic
Materials by Static Methods

The equations given in Table II for calculating
Young's modulus from the results of static ex-
periments (Eqs. (2.5)—(2.8)) are equally ap-
plicable whether the material is isotropic or

while in the hexagonal system,

S 84 +S 85 =473 (1 Y8 ) C Sll(1 'Y3 )
—(S13+3S44) (1—2Y8') —S33Y3'$'. (3.7)

anisotropic. The calculation of s'33 from the
Young's modulus will, however, obviously de-
pend on whether the experimental conditions
correspond to EF or Ep, and it is thus necessary
to be perfectly clear on this point. If EF is
involved, then s 38 ——1/E, while if Ep is involved,
s'33=1/E(1 —8), E being the Young's modulus
calculated from the appropriate equation in
Table II.

Similar remarks apply to rigidity modulus for
a specimen with circular cross section; if G~ is
involved, s', (Eq. (3.1))=1/G, while if Gp is
involved, s', =1/G(1 —s), G being the rigidity
modulus obtained directly from Eq. (2.15)
(Table II).

For rectangular cross sections, a general equa-
tion expressing the angle of twist in terms of the
applied couple, the dimensions of the specimen
and the elastic coefficients has been given by
Voigt L(115), p. 644]. This equation, if valid,
would be applicable to any orientation of the
specimen, but its validity does not seem to be
definitely established, and, moreover, it is
somewha, t complicated. A full discussion of the
problem will be found in Voigt, Sections 320—323,
369, but with one or two exceptions, an accurate
measurement of rigidity modulus is only possible
on anisotropic specimens of rectangular cross
section if (43) the specimen length lies in a four-
or a sixfold symmetry axis, or (b) if two of the
specimen edges lie in symmetry axes. These
restrictions on orientation are very, stringent,
and are, in fact, one of the reasons why specimens
of rectangular cross section are so seldom used.
If the specimen fu161s the conditions, then torsion

' flexure coupling is absent, and GF is given by
Eq. (2.13) Table II with y found from Table III.

When the length lies in a four- or sixfold axis,
s44=s» and p, is a function of b/d only, just as
for isotropic materials.

In the remaining case (2 edges in symmetry
axes) s'44 and s'88 may not be equal and I4 must
then be found from the value of (d/b)(s'88/s'44) &.
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This involves a knowledge both of $'44 the
quantity it is desired to measure, and $'22, but a
procedure of successive approximation can be
used which leads tq a final satisfact'ory value for
$'44 L(52) (56) (57)j.
S. Young's and Rigidity Moduli of Anisotroyic

Materials by Dynamic Methods

The general equations of motion of a cylinder
of circular cross section of radius r and density p
have been given by Voigt L(115), p. 673j, Goens
(41), arg Brown (22). According to Brown, they
are:

82' 1 84' 82$ '

p = ——r'Ep +2C
4 g4z ()z2

A treatment of this type has been applied to
specimens of rectangular cross section, clamped
at one end and loaded at the other (53). The fol-
lowing is a modification of the treatment, ap-
plicable to specimens of circular cross section.

Since the specimen will both twist and bend
under the action of a simple end force, P, or a
simple twisting couple, K, assume that

4211&+42124' y 4212&+4222$ i (5.3)

P11++P12+t 4 P12I +P22+y (5 4)

where x is the end displacement, @ is the end
twist. If Eqs. (5.3) are solved to express x and p
in terms of I' and X, and the resulting coef-
ficients equated to those of (5.4) we obtain

82$ 1 84' 82$
p = ——r'C +Gp

Bt2 4 Bz4 Bz2

(5.1)
CX22 &12

Pll & P12
0'1122 &12 &12 &1322

2' 2

where
C = (eEpGp/2) &; 2 =$'242/2$'23$', ;

22=
— &11&22 &12

q = (bending mOment OVer a CrOSS SeCtiOn)/4'2rr4;

f= (twisting moment over a cross section)/212rr4.
If s'34=0, a=0 and we obtain two independent
equations

But by Eqs. (2.7) and (2.15)

3Epmr4
&11 2 22

4l'

Gpirr4

2l
821t 1 84' 8'P 82/

p = -r'E,—and p =G, (5.2)
Bt2 4 Bz4 Bt2 Bz' Pll. P22 =

3E per' Gpmr4

(5.6)

the usual equations for bending and torsion,
respectively. Solutions of (5.1) have been given
(a) by Goens (41) for the torsional vibrations of
a loaded rod and the flexural vibrations of an
unloaded rod, and (b) by Brown (22) for the
torsional vibrations of an unloaded rod.

The derivation of rigorous solutions is a com-
plicated matter, and approximations have to be
introduced in order to apply the results to experi-
mental cases. It appears justifiable, therefore,
to attempt to derive- results on the basis of ap-
proximate differential equations (53). Such a
procedure is not without its dangers, and, in the
last resort, can only be justified by comparison
with rigorous solutions. It has the advantage,
however, that it not only allows the final equa-,
tions to be developed more simply and in a more
straightforward form, but it also allows the
effects of the torsion-flexure coupling in vibration
experiments to be more clearly seen.

Now, from the first Eq. (5.5)

AI2
4222(P114211 1)

(5.7)

and therefore, from (5.6), (3.2), and (3.8)

AI2

3x2r' x2rsS 342

Gp(Ep Ep) = — . (5.8)
8/4 4/4($'242 —2$'22$'2) '

Inserting this value of +122 into the second Eq.
(5.5):

122=
8l4(Ep Ep) 4P$'242—

0

3m2r'G E ' 3x2r'
(5.9)

Assuming that the mass of the specimen and
rotatory inertia eR'ects in the z'x' plane are
negligible, the equations of motion of the
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attached mass are:

~llx &124
+ +

dt' M M

~12x 0'224

+ +
dt~ I I

ficients, we obtain

16m Mg vg'l3
(5.10) =8

3r4

(5.11)
m~l&s'342

(5.17)
(3Is', —2MEl's'38) s',

d x IA»+MA» d x All&22 %12

+ x =0. (5.12)
I3E dt' I3fdt4

or, solving the first equation for p and substi-
tuting in the second'.

where Z is the Young's modulus calculated
directly by the usual isotropic equation from the
experimental results, no account being taken of
the effects of the torsion-bexure coupling.

Similarly, the second Eq. (5.14) gives

Writing x = e "', we obtain

x=2 sin (2~uit+ei)+B sin (2irvmt+82), (5.13)

where A, 8, b&, and b2 are arbitrary constants
governed by the boundary conditions, and v& and
u2 are frequencies.

Putting for brevity 6 = aaa2/(Inii —Mn»), then
approximately

1 (0'» l~ 1 (&»»=—
i

—+~ (, »=—
I

——~ ), (5.14)
2n iM ) 2s i I )

as can be verified by substituting in (5.12).These
expressions give the perturbation of the fre-
quencies due to coupling. If the mass of the
specimen, and rotatory inertia eEects in the s'x'
plane are not negligible, then M must be replaced
by Mz where

Mg= + Mo,
1 —9E'/4l' 140

(5.15)

1 (~»)' 1 (~»q'
and

2ir iME) 2 iz) (5.16)

appropriate, respectively, to fiexural and tor-
sional vibrations, and in agreement with Eqs.
(2.10) and (2.18).

Squaring the first Eq. (5.14) and inserting the
values of O.~j and 6, in terms of the elastic coef-

(53), where X is the radius of gyration in the z'x'

plane of M about its point of attachment to the
specimen.

If s'34=0, then +~2=0 =0, and we obtain two
independent frequencies,

8' vm'Il
=G

4

3Is'34'
(5 18)

(3Is', —2 MEl's'33) 2s'33

s'g ——sr(1 —y) /(1 —e), (5.19)

where sr is the coefficient calculated directly
from the equation appropriate to isotropic
materials ((2.17) for. Goens' experiments).

y is a complicated third-order determinantal
function involving, among other quantities, the
elastic coeScients and dimensions of the speci-
men, and the mass and moment of inertia of the
end loads.

Since sr = 1/G, and s', = 1/GE, Eq. (5.18) is of
the same form as (5.19) and both can be written

s p =sip,I (5.20)

where G is the rigidity modulus corresponding
to Z.

These equations show that by making l suf-
ficiently large, the constants measured directly
are ZE and GP, whereas by making l sufFiciently
small, the constants measured directly are ZE
and GE. Some of these facts have been utilized
in the measurement, by vibration methods, of
the elastic constants of- strips of wood cut at an
angle to the grain (53).

These findings are qualitatively in agreement
with those of Goens (41) and Brown (22). Goens
gives an exact solution for the case of a loaded
specimen executing torsional vibrations and
quantitative comparison is therefore possible.

Goens' equation is:
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TABLE IV. Correction factors in torsional vibration.

Crystal number 7
1/(1 —~) 1.040
q (Goens and Weerts) 1.032
g (Eq. (5.18)) 1.041

10
1.140
1.118
1.148

6
1.078
1.078
1.084

5
1.076
1.079
1.083

(1) Copper
9

1.032
1.036
1.035

4
1.024
1.028
1.028

2
1.030
1.036
1.034

3
1.019
1.031
1.056

8
1.008
1.014
1.009

Crystal number 8
1/(1 —e) 1.105

g (Goens and Weerts) 1.078

g (Eq. (5.18)) 1.145

(2) Gold
9 14

1.112 1.045

1.090 1.041

1.117 1.048

1 6
1.013 1.004

1.015 1.005

1.015 1.005

1.031

(
1.045
1.023
1.032

(3) Lead
6 5

1.189 1.154
1.118

086 io 116

1.193 1.160

9a 9b
1.030 1.030
1,033 1.064

1.033 1.038

Crystal number
1/(1 —a)

g (Goens)

g (Eq. (5.18))

Sii Sii S5
1.002 1.002 1.003

1004 0 996 1.0041.013
1.003 1.003 1.003

S21
1.003
1.013
1.008
1.005

(4) Aluminum
S25 S16 S16 S'4 5'4
1.004 1.001 1.000 1.001 1.001

1.002 0.999 1.011 $0.997
1.000 0.995 1.007 '(0.93

1.001 1.001 1.000 1.004 1.004.

t/t/12
'1.002
i.039
0.921
1.006

8'6 8'6
1.001 1.007
1.017 0.998
1.008 0.985
1.003 1.010

where q is a correction factor to be applied to the
isotropic equation.

The following quantities are given in Table IV.
(1) 1/(1 —«).
(2) ii as calculated by Goens (42) for certain

aluminum crystals, and by Goens and Weerts
(44) for certain copper, gold, and lead crystals,
using Goens' accurate Eq. (5.19). An entry of
two values in a single space indicates the limits
between which q lies.

(3) ii as calculated from Eq. (5.18) using
Goens' and Goens and Weerts' primary data.

These figures show that, as a rule, the value of
i) calculated from (5.18) does not differ from the
value given by Goens' equation by more than a
few parts in a thousand. Unfortunately, how-

ever, this is not always the case, and some of the
discrepancies are of the order of a few percent.
Thus, in work of high accuracy, it appears
necessary to use Goens' equation rather tha, n

Eq. (5.18).
A very good approximation to the accurate

value of q is given for many of the crystals by
1/(1 —e). This implies that the torsional vibra-
tions are approximately pure, a result which

appears to be generally true for specimens of the
length normally used (22). On the other hand,

the flexural vibrations of such specimens are

approximately free, and, with an error less than
that of the experiments, s'ss=1/Z where 8 is

the Young's modulus calculated directly from

the appropriate isotropic equation (41), (43).
It will be seen from (5.18) that in order to cal-

culate s'„ the values of s'33 s g and s'34 must be
known. This paradox is more apparent than
real, since the three coefficients enter into the
correction terms y and e (Eq. (5.19)) which are
usually small compared with unity. The coeffi-
cients need not therefore be known with great
accuracy. At the same time, it is desirable to
have available a set of provisional fundamental
constants for the material involved. when
measuring s', at an arbitrary orientation.

If a torsional frequency occurs near a flexural
frequency, a state of aA'airs termed "inner reso-
nance" by Goens (41), then the corrections may
become very large, as pointed out both by Goens
(41) and Brown (22). According to Brown, this
state of affairs would at once be obvious, and the
specimen rejected as useless.

6. Discussion of Some Experimental Points

Throughout his work, Voigt (115) used ex-
clusively static methods, and in this he has been
followed by Bridgman (18, 19), Mandell (77,
78), Hanson (51), Hinz (54), Swift and Tyndall
(112), and others.

The majority of these workers used bending
and torsion experiments to obtain the elastic
coeSc~ents. 'Hinz' experiments are, however, an
interesting exception, since he obtained the com-
plete set of 9 coefficients for Rochelle Salt from
direct compression measurements only. This he
did by observing the longitudinal and lateral
strains in compression of specimens cut in the
directions of the principal axes and also the
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longitudinal strains on specimens cut in the
principal planes, at angles of 45' to the principal
directions. In connection with static experi-
ments, the use by Kantola (64) of an electrical
capacitance ultramicrometer to measure com-
pressional strain should be mentioned.

Direct application of vibration methods to
crystals have been made by Wright (123),
Davies (26), Qoens (42, 43), Balamuth (3), Rose
(98), Mason (81, 82), Hunter and Siegel (59),
and others. The usual vibration methods nearly
always depend on the following principles. An
alternating driving force is applied to the
specimen so as to excite the appropriate vibra-
tions (longitudinal, flexural, or torsional) in it.
The response, or some function of response, is
measured over a range of driving frequencies;
the elastic constant is then calculated from the
dimensions ef the specimen, and the frequency
at which the response is a maximum (the resonant
frequency). In practice, the situation is com-
plicated by the existence of harmonic modes of
vibration; when a resonant frequency has been
observed it is often not easy to decide to which
harmonic it belongs (see e.g. , Kammer and
Atanasoff (63)j. A further complication is the
tendency of some systems to exhibit "subhar-
monics" and "multiple resonance, " i.e., a
tendency for the specimen to execute a sub-
integral or integral number (&1) of vibrations
during one forcing cycle LLudeke (74)j. What-
ever the reason for the effect (e.g. non-linear
response, or the existence of harmonics in the
forcing vibration), its occasional occurrence
appears to be established and may have to be
borne in mind in interpreting the spectrum of
resonant frequencies observed on any specimen.

The methods used to excite the vibrations and
to detect the response are described in the
papers cited above. There is, however, one
method of comparatively recent development
which is specially applicable to crystal specimens,
over a wide range of temperature —the method
of the piezoelectric oscillator LBalamuth (3),
Rose (98), and numerous later papers by other
workers in The Physical Review'j

This method depends on having a suitably cut
quartz rod, provided with gold leaf electrodes.
The crystal specimen on which measurements are
to be made is of the same cross section as the
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Fro. 1. Piezoelectric oscillator (Balamuth).

quartz, and is cemented to it end to end. The
electrodes are disposed relative to the quartz in
such a way that when an alternating potential
of constant amplitude is a.pplied to them the
piezoelectric effect in the quartz tends to set up
the required vibrations in the composite oscil-
lator.

Balamuth's arrangement for longitudinal vi-
bration is shown in Fig. i. The resonant fre-
quency is found by observing the variation with
frequency of the electrical impedance between
the electrodes. The elastic constant involved in
the vibrations can then be found from the
resonant frequency, the dimensions of the
crystal specimen, and certain constants of the
qual tz I'od.

Other methods which have been applied to
crystals include the use of sonic (32) and super-
sonic waves (4, 6a, 8, 9, 10, 32, 75, 102) and the
calculation of the constants from the frequencies
of vibration of plates (1, 63, 84 see p. 433).

The supersonic method described by Schaefer
and Bergmann (6a, 102) is noteworthy for the
fact that all the constants can be determined on
a single sample of the material. A beam of light
is passed through the specimen, which is-set into
vibration by a piezoelectric oscillator. The light
is diR'racted by the ultrasonic "grating" in the
crystal, and tPe diffraction pattern is photo-
graphed. The elastic constants are determined
from certain dimensions of the di6'raction pat-
tern, and a factor containing the exciting fre-

quency, the wave-length of the light, and the
distance of the crystal from the plane of the
picture. Although the pra, ctice of the method is
simple, the theory is somewhat complicated; for
details, reference may be made to Bergmann's
book (6a). As described above, the method is
obviously only suitable for transparent solids,
but in a later development (6a) the light is
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reflected from the surface of the vibrating speci-
men instead of passing through it, and in this
way, the method can be used for opaque bodies.

Another supersonic method has been applied
by Bhagavantam and co-workers (8, 9, 10). The
crystalline specimen in the form of a pla, te is
excited by a quartz wedge driven by alternating
current of variable frequency, thus providing a
continuous supersonic spectrum. The specimen is
in contact with a liquid through which a beam of
light is passed. As the exciting frequency is
varied, the resonances of the specimen are de-
tected by the maxima in the difFraction effects
on the light produced by the supersonic "grating"
in the liquid. It has so far proved possible to work
only with longitudinal vibrations in the thickness
direction of the crystal, and the supersonic
measurements have therefore to be supplemented
by others in order to determine all of the con-
stants. In the work under discussion, static
torsion experiments were made to measure the
shear -constant of the materials, all of which

belonged to the cubic system. '
The preparation of the crystalline specimens

is of obvious importance, but forms almost a
subject on its own. 3 Voigt cut his specimens from
large natural crystals and this method is still in

use. Recently, however, the practice has become
common of making monocrystalline rods by
cooling the melted poly-crystalline material
under suitable conditions Lsee e.g. , Bridgman
(18, 19); Hanson (51)$. The orientation of the
resulting single crystals can sometimes be con-
trolled by "seeding" with a small crystal of the
required orientation during the formation of the
main crystal Lsee e.g. ; Gruneisen and Goens
(50)g. Metal crystals prepared in this way
(whether with or without seeding) require careful
annealing before the measurements are taken
(see Fig. 4 and p. 425).

Another matter of obvious importance is the
determination of orientation, but this again is
too wide a subject to be dealt with adequately
in the present paper. Methods which have been
used include measurement of cleavage or fracture
angle (18, 50); etching the crystal and observing
the reAection of light from the etched surface

Cl

4 More recently (1945) the shear constants have been
measured by the high frequency method.

'See several papers in The Reviezo of Scient@c Iestrl-
ments (1933-9).

(18, 112, 119);the use of x-rays (44, 45, 50); and
measurement of the linear coefFicient of thermal
expansion (50).

s'33 ——12mr4x„/P„P, -

and (Eqs. (3.1) and (2.15))

2s'3 = s'44+ s'33 = rr 4&3/Nt

(7.1)

(7.2)

Further, for cubic crystals, to which group the
alkali halides belong, Eqs. (1.14), (1.15), and
(2.2) give, respectively,

s 33 —sn 2 (sii —si2 —($44)

X (vl v2 +72 "r3 ++3 Yl ) ~ (7 3)

7. Results at Ordinary Temperatures

Voigt's work covered the period roughly from
1875—1910. Before the end of this time, the
theory of the elastic coefficients and their meas-
urement had been established, mainly by Voigt
himself, and was in a form susceptible only of
refinement (7, 61) and extended application (22,
41). Nevertheless, apart from Voigt's own
measurements (115, 116, 117) no experiments
appear to have been reported until 1924, with
the exception of isolated and incomplete deter-
minations such as those of Reimers (94), Sieg and
Miller (105), and Perrier and Mandrot (89).

In 1924, complete results for a number of
metals were published by Griineisen and Goens
(50) and by Bridgman (17) Lsee also Bridgman
(18)$. A little later, the measurements of Mandell
(77, 78) on Rochelle salt, of Masima and Sachs
(80) and Karnop and Sachs (65) on copper
alloys, and of Bridgman (19) on a,lkali halides
were published. In this latter work, the coef-
ficients were obtained by measuring statically
the Young's and rigidity moduli of artificiall
grown specimens and combining the results with
Slater's measurements (108) of compressibility.

The specimens were of circular cross section,
and the methods used correspond to Eqs. (2.8)
and (2.15), Table II. Although the coupling
between torsion and flexure had previously been
pointed out by Voigt (115) its importance had
not been emphasized at the time these measure-
ments were made, and Bridgman, in effect,
assumed that 'the conditions of his experiments
produced free bending and free torsion.

Thus (Eq. (2.8))
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s 44+ s 25 =4 ($11 $12)

—4($» —$12—2$«) (vi'+v2'+v2'); (7 4)

Z =3 ($11 2$12) i (7.5)

where E is the cubic compressibility.
Now, s'22 can be eliminated between (7.1) and

(7.3), and (s'44+s'44) between (7.2) and (7.4).
Equation (7.5) can be used to eliminate s12, the
expressions resulting from these operations can
be written

Gllsll+G12$44 1 q

Q21$11+4412$44 1~

(7.6)

(7.7)

The quantities a are functions of orientation,
specimen dimensions, and compressibility; in
addition, 4411 and @12 are functions of P and x,
while a21 and u22 are functions of X and @.
Equations (7.6) and (7.7) must obviously be
identical, since they refer to s» and s44 which are
constants of the material. They can therefore be
written

441$11+442$44 1 i (7.8)

a,nd, for any one substance, the points obtained
by plotting a» against c2 should lie on a single
straight line irrespective of whether a» arid a~
were obtained from bending or torsion.

Bridgman's results reduced in this way are
plotted in Fig. 2; the intercepts of the straight
lines on the axes give, respectively, 1/sii and
1/s44. It appears that Bridgman's results in
themselves would have been sufhcient to deter-
mine the principal coe%cients, and, in view of
the method adopted, it is difficult to decide to
what extent the 6nal accuracy depends on
Bridgman's measurements, and to what extent

X
cLg & XO

FIG. 2. Bridgman's results for potassium halides. Each
point belongs to line nearest to it.

on Slater's. Figure 2, however, shows that all the
points fall 'reasonably close to the appropriate
straight lines, thus justifying to this extent the
reliability of the results.

In 1930, some measurements on tungsten were
reported by Wright (123).These are interesting,
not only in themselves, but also as being ap-
parently the first for which all the coefficients in

a system were measured by vibration methods.
The possibility of using these methods was

realized by Voigt, who set up the differential
equations of motion of' thin crystalline rods, but
did not pursue the matter any further. Sieg and
Miller (105) in 1921 obtained the rigidity mod-
ulus of selenium single crystals and Griineisen
and Goens (50) in 1924 the Young's modulus of,
zinc and cadmium crystals, by vibration meth-
ods. At that time, however, there was no exact
theory in terms of which the-vibration results
could be interpreted, except in particular cases;
this deficiency was later remedied by Goens (41),
Kimura (68), and Brown (22). It so happens
that tungsten, in spite of belonging tq the cubic
system, cannot be distinguished experimentally
from an isotropic material as far as elastic prop-
erties are concerned (see p. 430). Thus torsion-
flexure coupling is absent at all orientations, and
the vibration results are not complicated by this
eKect, although Wright realized the possibility
of such complication, and was in a position to
apply the necessary corrections, had they been
required.

Wright's paper was followed by others from
Bridgman (20); Rohl (97); Kimura (66); Goens
(42, 43); and Davies (26), some of whom used
static and others dynamic methods. From this
time onwards, dynamic methods began to come
more into favor, a process which was furthered, at
least in America, by Balamuth's description (3)
in 1934 of the piezoelectric oscillator (see p. 421) .
This device was originally applied to the meas-
urement of Young's modulus; Balamuth carried
out a series of tests establishing the validity of
the method, which was later extended to the
measurement of rigidity modulus by Rose (98)
and Durand (30). Since this time many measure-
ments have been made by vibration methods in

America, . and in the great majority of them the
piezoelectric oscillator has been used. Other
vibration methods have also been developed and
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Fla. 3. Stress-strain curves of zinc single crystals (Hanson).
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used, mainly outside America; one rea,son for the
recent popularity of such methods is undoubtedly
the variety of rehable and accurate apparatus,
such as valve oscillators, cathode-ray oscil-
lographs, etc. , which are now available. Another
reason for the popularity of vibration methods
is their convenience and adaptability; they have
proved particularly useful in studies of the effect
of temperature on the elastic coeKcients.

It may perhaps be pointed out here that sur-
prisingly little fundamental information has been
published regarding vibration methods as applied
to crystal specimens. For example, little, if any,
data are available concerning the e6'ect of such
quantities as amplitude and frequency of vibra-
tion on the measured constants. Further, direct
comparisons of dynamic with static methods are
very rare; a few such comparisons have, how-
ever, been made by Goens and Weerts (44) on
gold and copper crystals in torsion and by
Kimura (68) on iron crystals without obtaining
any signihcant difference between the two
methods.

Although the majority of measurements made
since, say 1936,have employed dynamic methods,
static measurements are still made, a,nd in fact,
the bulk of the information regarding the fun-
damental elastic behavior of crystals has been
gained from static .experiments. The utility of

static methods is particularly well shown in some
work by Hanson (51) on zinc crystals. In the
hexagonal system, to which zinc belongs, the
equations for reciprocal Young's and rigidity
modulus of a, specimen of circular cross section
are:

s 33=su(1 —73 ) +s3373

+ (2sls+S44) (1 —ys') ys', (7.9)

s g 3(s 44+s 33) s44+ (sll sls ss44) (1 Y3 )
+2 (sQ+s33 2$]3 s44) (1 y3 )y3 p (7.10)

where ys is the cosine of the angle between the
specimen axis and the hexagonal axis.

Hanson was one of the first workers to take
account of Goens' work (41) on the coupling
between Hexure and torsion )see, however,
Kimura (66)j, and his experiments were carried
out in general so as to minimize' the errors intro-
duced by this coupling.

Stress-strain curves, obtained by Hanson, are
shown in Fig. 3. It will be seen that the curves
for uniform bending is not reversible, but the
hysteresis shown in the 6gure was found to be
perfectly reproducible and was not removed by
annealing. ' The ascending part of the curve is

~ Later evidence shows. that the hysteresis is probably
caused by the apparatus used, and is not an inherent
property of the zinc crystals. See %'ebb (119}footnote 26,
p. 3P3,
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straight, and was used by Hanson in calculating
the. Young's moduli. The torsion curves show the
importance of proper annealing. The upper
curve, for the unannealed crystal, is neither
straight nor reversible. Moreover, it has a con-
siderably different average slope from that of
the lower curve. This latter refers to the annealed
crystal and is both straight and reversible. The
necessity for annealing is again brought out by
Fig. 4 on which the experimental results are
compared with the theoretical curves. The values
for the unannealed crystals, obtained from the
average slope of the stress-strain curve show that
errors of considerable magnitude may be intro-
duced by failure properly to anneal the speci-
mens.

Hanson used two varieties of zinc, each 99.99+
percent pure, yet, as Fig. 4 shows, still obtained
corisiderable differences between them (see also
Table V, 4). According to Hanson, the differences
are larger than can be accounted for by experi-
mental error, or by di6'erences in treatment, and
he concludes that the elastic coefficients of zinc
are quite sensitive to small amounts of impurity
(see, however, p. 430). Hanson points out that
the coeKcients of the Evanwall zinc are closer to
Goens' values (42), while those of the Horsehead
zinc agree better with Bridgman's determina-
tions (17). He therefore suggests that the dif-
ferences between the results of these two workers
are genuine, and are caused by the material.

The compressibility of the Evanwall zinc,
computed by Hanson from his coefFicients, is
14.18X10—"and that of the Horsehead 18.40
&(10 "cm'/dyne. The compressibilities of these
two materials have been measured directly by
Bridgman (21), who, could detect no difference,
and says that the computed differences probably
originate in small internal strains. A further
attempt to account for the differences has been
made by Tyndall (114), who claims that a satis-
factory set of coefficients can be based on
Bridgman's compressibility measurements, and
Hanson's coefficients for the Horsehead zinc.

Following this work, further results for other
materials were published by Goens and Weerts
(44), Goens and Schmid (45), Michaelow (84),
and Mason (81), while Kimura (68) has made a,

comprehensive study of the coefficients of iron,
a substance which is of particular interest in
view of its ferromagnetic nature.

Before 1938, measurements of the elastic coef-
ficients made in America by vibration methods
had been carried out on specimens for which the
torsion Bexure coupling was zero. This was not
so for the sodium specimens used by Quimby and
Siegel (92), nor for the CusAu alloy specimens
used by Siegel (106, 107).

The longitudinal frequencies were interpreted
on the assumption that the modulus involved
was the free Young's modulus (EF) and the
torsional frequencies on the assumption that the
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modulus involved was the pure rigidity modulus

(Gz). These assumptions had virtually been jus-
tified by Goens (41), but it was not until Brown
(22) derived and extended the results by a more
compact method that the full significance of the
torsion flexure coupling was realized in America.

The effect of this coupling may be seen from
Fig. 5, taken from a paper by Good (47). The
results were obtained on p-brass, using the
composite piezoelectric oscillator. The open
circles represent reciprocal rigidity modulus
uncorrected for effects of torsion flexure coupling,
while the solid circles represent the same quan-
tities after correction, i.e., they are values of s', .
The figure shows that large errors may be intro-
duced by failure to take the effects of coupling
into account.

P-brass is a cubic crystal, and Eqs. (7.3), (7.4),
and (3.8), which apply to the cubic system, can
be rewritten

s 33=spy —2$F;

s', = s44+4sF;

(7.11)

(7.12)

e =2S'(F 4F'+3x)/S'33S'0, — (7.13)

where the following abbreviations have been used

s = (sii —sim —2s44);

( Yl 72 +VS 73 +73 71 ) i

X 7& 72 73 ~

(7.14)

(7.15)

(7.16)

Thus, if s'33 is plotted against F, the slope of the
line should be —2s, while if s', is plotted against
F, the slope should be +4s. The slope of the
heavy line A; through the corrected points was

, determined not from any consideration of best
fit, but from the value of s obtained by Rineha, rt

. (95, 96), who measured s'&3 of P-brass as a func-
tion of orientation also using the piezo electric
oscillator. The fit between the solid circles and
the straight line A in Fig. 5 not only substan-
tiates this method of handling the data, but also
provides' some indirect proof of the accuracy of
the torsion flexure correction. The experimental
points and the line A refer to room temperature;
the line 8 refers to a temperature of about 460'C.

In 1942, Swift and Tyndall (112) carried out
a study by static methods of the elastic properties
of lead single crystals. They obtained some par-
ticularly interesting results in their torsion
experiments ! see Goens (42), for an earlier
discussion of this subject). The fixed ends of
their specimens were embedded in Wood's
metal, while the movable ends were held in jaws
on a torsion head, which was free to rotate in
ball bearings. The stress-strain relations of
specimens with no torsion-flexure coupling (e = 0)
were straight lines and the slopes were consistent
to I percent. For crystals with appreciable tor-
sion flexure coupling (0 & e &1), the results were
more complicated. The ball bearings in the
torsion head had just about sufficient play to
permit free torsion. Thus, a slope corresponding
to the free rigidity modulus (Gp) might be
expected. If, however,

'
the bearing reaction

produced a partial restraint, the slope should
correspond to something between Gp and G~.
In the extreme case, where the torsion head was
initially definitely in contact with one side of the
bearing, torque in one sense would produce no
bending (i.e. , the torsion would be pure), while
torque in the opposite sense would produce the
bending requisite for free torsion. The stress-
strain relation would then be two straight lines,
one with slope corresponding to G~ and the
other to Gg.

Broadly speaking, if e was greater than 0, the
following results were obtained. Either single
straight lines, with slope corresponding to Gp,
were observed, or else the curve showed two
distinct slopes. Some typical results are shown
in Fig. 6 in which p is the angle of twist, and X
the applied torque. A is a single slope curve and
8 a double slope curve, each obtained on the
same specimen. Curve C is for a diferent speci-
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men and shows the double slope more markedly
than does B.

From the various stress/strain slopes obtained
in the course of from 5 to 20 runs on a given
specimen, the extreme values were picked out.
The minimum slope was assumed to correspond
with Gp and the maximum with Gp. Gp was
then calculated from the latter values by means
of the equation

So
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Gp ——1/s'g ——Gp(1 —«). (7.17)
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FIG. 6. Stress-strain curves of lead single crystals in
torsion (Swift and Tyndall). Unit of torque=1960 dyne-
cm; unit of twist=5. 6X10 ~ radians.

In the Young's modulus measurements, Swift
and Tyndall used a static tension method, and
obtained straight-line load —extension curves,
with no appreciable hysteresis or permanent set.
They also obtained results which further em-
phasize the need for careful annealing. Thus, two
of their specimens gave 1/Z = s'ss ——97.1 and
94.7X10 " cm'/dyne before annealing, while
after annealing, for 3 hours at 200'C, the re-
spective values were 94.7 and 93.1 The dif-
ferences due to annealing are considerably
smaller than those observed by Hanson (51) for
the rigidity modulus of zinc crystals (see p. 425),
but they are still appreciable.

The procedure adopted by Swift and Tyndall
was to measure the Young's modulus on the
unannealed specimen, and if the values differed
noticeably from that indicated by the results of
Goens and Weerts (44), the specimen was an-
nea, led, and Young's modulus redetermined. On

150
~x

0'1 o.k

FrG. 7. EKect of orientation on reciprocal rigidity
modulus (A) and reciprocal Young's modulus (8) of lead
single crystals. X, Goens and Weerts; Q, Swift and
Tyndall; 8, Swift and Tyndall (min. slope); , Swift and
Tyndall (max. slope and l —«):f

8. Discussion of Results at Ordinary
Temperatures

Theoretically, static experiments yield the
isothermal elastic coefficients and dynamic ex-
periments the adiabatic coefficients, provided the

this basis, it was only found necessary to anneal
the two specimens quoted above out of a total
of five.

The final results are plotted in Fig. 7, in which
the notation is the same as that of Eqs. (7.11)
and (7.12). Goens and Weerts' results are also
plotted; the agreement throughout is very close,
a fact which is reflected in the excellent agree-
ment obtained by the two pairs of workers for the
principal coefficient (see Table V, 2).

It will be seen that slope of curve A = —2

Xslope of curve 8, as predicted by Eqs. (7.11)
and (7.12).

Numerical values of the independent principal
coeScients for at least the majority of systems
on which complete determinations have been
made are given in Table V; the results quoted
are all at room temperature (20'C). A similar,
but less exhaustive, table has been published by
Seitz and Read (104). One or two sets of results,
for which it has not been possible to identify
the original authority, are quoted in Table V
direct from Seitz and Read's paper.
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TABLE V. Principal elastic coefficients at room temperature (unit= 10 "cm'/dyne).

Material $11

(1) Cubic system (3 coefficients) alloys

$12 Authority

Cu3Au
72% Cu, 28% Zn
P-brass (CuZn)
5% Cu, 95% Al
75% Ag, 25% Au
50% Ag, 50% Au
25% Ag, 75% Au

13.4
19.4
38.8
15
20.7
19.7
20.5

15.1
13.9
5.78

37
20.5
19.7
20.6

—5.65—8.4—15.2—6.9—8.91—8.52—9.09

Siegel (106, 107)
Masima and Sachs (80)
Rinehart (96); Good {47),
Karnop and Sachs (65)
Rohl (97)
Rohl (97)
Rohl (97)

Material $11

(2) Cubic system (3 coefficients) metals

$12 Authority

Aluminum
Copper
Copper
Gold
Gold
Gold
Iron
Iron~
Iron&
Iron
Lead
Lead
Potassium
Silver
Sodium'
Tungsten
Tungsten

15.9
12.9
14.9
22.7
23.3
22.9
7.65
7.72
7.73
7.57

93.0
92.8

833
23.2

571
2.534
2.573

35.2
16;4
13.3
22.9
23.8
23.4

. 895
9.02
8.98
8.62

69.4
69.4

380
22.9

235
6.55
6.55

—5.8—5.2—6.3—10.3—10.7—10.4—2.89—2.85—2.72—2.82—42.6—42.4—370—9.9—248—0.726—0.729

Goens (43)
Kimura (66)
Goens and Weerts (44)
Rohl (9'7)
Goens and Weerts (44)
Seitz and Read (104)
Kimura and Ohno (67)
Kimura (68)
Kimura (68)
Seitz and Read (104)
Goens and Weerts (44)
Swift and Tyndall (112)
Seitz and Read (104)
Rohl (97)
Quimby and Siegel (92)
Bridgman (17)
Wright (123)

(3) Cubic system (3 coefficients) minerals and artificial crystals

Material

Diamond
Fluorspar
Fluorspar
Lithium fluoride:
Magnesium oxide
Potassium alum
Potassium bromide
Potassium chloride (sylvine)
Potassium chloride
Potassium chloride (sylvine)
Potassium iodide
Pyrites
Pyrites
Sodium bromide
Sodium chlorate
Sodium chloride (rocksalt)
Sodium chloride (rocksalt)
Sodium chloride (rocksalt)
Sodium chloride (rocksalt)
Sodium chloride
Zinc blende
Zinc blende

$11

1.47
6.91
6.94

10.59
4.01

54
31.7
27.4
29.4
25.9
39.2
2.88
2.86

40.0
24.6
24.4
23
22.5
22.8
24.0
19.4
20.0

2.4
29.6
27.7
15.92
6.46

117
161
156
127
158
238

9.48
9.61

75.4
83.6
78.22
78
78.7
78,1
84.0
22.9
24.3

$12

—0.45—1.49—1.53—2.85—0.93—16—4.7—1.37—5.3
305—5.4

+0.44
+0.39—11.5

+12.5—5.23—5—4.67—4.5—5,0
703—8.0

Authority

Bhagavantam and Bhirnasenachar (8)
Voigt (115)
Bergmann (6a)
Bergmann (6a)
Durand (30)
Voigt (117}
Bridgman (19)
Voigt (115)
Bridgman (19)
Durand (30)
Bridgman (19)
Voigt (115)
Bhagavantam and Bhimasenachar (9)
Bridgman (19)
Uoigt (115)
Voigt (115)
Bridgman {19)
Durand (30}
Hunter and Siegel (59)
Bergmann (6a)
Voigt (116)
Bhagavantam and Suryanarayana (10)

—T&~&s/p+z, (8.1)

frequency of vibration is sufBciently high. The
difference between the two has been dealt with
by Voigt L(115) Sections 392—393$, whose
equation can. be written:

where

A;s ——(adiabatic s, s —isothermal s,s),
T=absolute temperature,

a;, a~ = thermal expansion coeScients,
p =density,
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TARSI.E V.—Continued

Material $11

(4) Hexagonal system (5 coef6cients)

$12 $13 Authority

Beryl
Cadmium
Cadmium
Magnesium
Magnesium
Z1nc
Zinc
Zinc .

Zinc
Zinc

4.42
12.3
12.9
22.3
22.1
8.23
8.0
8.4
8.08
7.70

4.70
35.5
36.9
19.8
19.7
26.4
28.2
28.7
26.3
27.7

15.3
54.0
64.0
59.5
60.3
25.0
25.0
26.4
25.1
24.4

—1.37—1.5—1.5
7 07—7.7

+0.34
' —0.5+ii
+1.6
+0.45

—0.86—9.3—9.3—4.5—4.9—6.6—6.1—7.7—79—6.4

Voigt (115)
Griineisen and Goens (50)
Bridgman (17)
Seitz and Read (104)
Goens and Schmid (45)
Bridgman (17)
Griineisen and Goens (50)
Goens (42)
Hanson (51)
Hanson (51) %t

(5} Tetragonal system (b) (6 coefficients)

Material

Tln

$11

18.5 11.8 57.0

$66 $12

—9.9

$13

2 05

Authority

8ridgman (17)

(6) Trigonal and hexagonal systems (b) (6 coefficients)

Material

Antimony
Bismuth
Calcspar
Haematite
Quartz
Quartz
Tellurium
Tourmaline

$11

17.7
26.9
11.3
4.41

13.0
12.79
48.7
3.98

$33

33.8
28.7
17.5
4.43
99
9.56

23.4
6.24

41.0
104.8
40.3
11.9
20.0
19.78
58.1
15.1

$12

—3.8—14.0—3.7—1.02—1.66—1.53—6.9—1.03

S13

—8.5—6.2—4.3—0,23—1.52—1.10—13.8—0.16

$14

—8.0
+16.0
+9.1
+0.79—4.30—4.46

d

+0.58

Authority

Bridgman (17}
Bridgman (17)
Voigt (115)
Voigt (115)
Voigt (115)
Mason (82)
Bridgman (17)
Voigt (115)

(7) Orthorhombic system (9 coefficients)

Material $11 $22 S44 $66 $12 $13 Authority .

Aragonite
Barytes
Barytes
Rochelle salt
Rochelle salt'
Rochelle salt
Rochelle salt
Topaz
Wood (Beech)
Wood (Oaltl
Wood (Pine)
Wood

(Spruce)

6.95
16.4
172
47,
56
52.3
51'.8
4.43

878
1040
iiio

1580

13.2
18.9
19.9
32
38
34.3
34.9
3.53

72.6
175
61.0

12.2
10.6
10.9
28
37
32.4
33.4
3.84

447
468
770

24.2
84.0
85.5
61
88
96.3
79.8
9.25

640
828

1110

39.0
34.8
35.8

305
360
338
328

7.52
2250
2740

13400

23.4
36.0
39.2
80

118
118
101

7.64
965

1320
1190

59.9 1230 1600 28400 1170

—3.0—9.0—9.9—8.0
9

...—21;8—15.3—1.38—37.9—88.4—24.6

+0.4—1.9
7—22—34—16.9—21.1—0.86

-325
—303—461

—34.0 —527

—2.4—2.5—3.0—17

—13.3—10.3—0.66—32.7—59.4—24.0

Voigt (115)
Voigt (115)
Bergmann (6a)
Mandell (77)
Mandell (78)
Hinz (54)
Mason (81)
Voigt (115)
Horig (55, 56)
H6rig (55, 56)
Horig (55, 56)

—22.0 Horig (55, 56)

Static measure'inents.
b Dynamic measurements.

Extrapolated values at 20 C.
& Not measured.

s Potassium ion replaced by ammonium.

C~ ——specific heat at constant pressure in

mechanical units.

Table Vl is based on Voigt's data, with the
exception of the results for lead LSwift and
Tyndall (112)j and aluminum LGoens (43)j.
The quantity entered in the table is 100 6;&/s;&,
and represents the difference between the adia-
batic and isothermal s;~ expressed as a percentage
of the isothermal s;~.

The figures in Table VI are almost invariably
smaller (some of them considerably smaller) than

the error involved in measuring the associated
s;A, , even by modern methods and, for this
reason, the difference between isothermal and
adiabatic coelcients is ignored in Table V; in
special applications, however, it is necessary to
take the difference into account.

A comparison of the coefficients measured on
a single chemical substance can be made in a
limited number of cases. For the three materials
lead, magnesium, and tungsten, the results ob-
tained by diR'erent workers are so close as to.be
indistinguishable; further, for at least two of
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TABLE VI. Percentage difference between adiabatic and isothermal coeScients.

Material

Fluorspar
Rocksalt (NaC1)
Sylvine {KC1)
Lead
Aluminum

Beryl

Quartz
Calcspar
Tourmaline

System

Cubic
Cubic
Cubic
Cubic
Cubic

Hexagonal

Trigonal (b)
Trigonal (b)
Trigonal (b)

$11

—0.48—0.82—0.93—0.17—0.43

—0.23—0.04—0.03

$12

2.2
3.8

18
3.8
1.2

1.8
0.11
0.10

$13

(2.2)
(3.8}

(18)
(3.8}
(1 2}

Negligible

1.0—0.45
1.2

(—0.48)'
(—0.82)
(—0.93) '

(—0.17)
(—0.43),

—0.08—0.49—0.08

Other relations

644 ——0

~44 ~66
~14

these substances (lead and tungsten), one set of
coefficients was obtained by static and theother
by dynamic methods.

For other substances, as pointed out by
Zwicky (125) differences of the order of 5—10
percent are not uncommon, even when the
measurements are made by a single worker,
using a single method.

Bridgman (19), for example, obtained the fol-

lowing results on specimens cut from two
crystals of natural rocksalt;

CRYsTAL A CRYsTAL 8
21.6, 20.9, 20.2 23.0, 23.2

78.2 74.2

s~~X 10"cm'/dyne
s44&(1043 cm'/dyne

% Zinc by
weight

1

1
1.6
2.3

23'45'
46'30'
74'45'
78'15'
85'30'

s'33 ~ 10"
21.4
23.1
22.3
22.3
22.1 .

a 10»

+0.1
—0.1
—0.3
—0.1
—00

The differences observed by Hanson (51)
between two samples of zinc, each 99.99+ per-
cent pure have already been discussed (p. 425;
see also Table V, 4), but they show differences of
the same order as the above. The elastic coef-
ficients of crystals cannot therefore always be
regarded as invariable quantities, but are affected
to some extent by such factors as mode of origin
or preparation of the specimen, and, possibly, by
the presence of impurities.

'Little information is available, however, re-

garding the effect of impurities, but the indica-
tions are that this effect may be smaller than has
sometimes been supposed. The following results,
due to Goens and Schmid (45) refer to mag-
nesium contaminated with known amounts of
zinc.

/

(s44 =2[sty —s42j;

and tungsten

s11 s83)

(s44 = 2[s44 —s42])'.

A further confirmation of the elastic isotropy of
tungsten is provided by the work of Wright
(123), who measured s'44 of this element at a
number of orientations and found that none of
the differences exceeded 0.5 percent. There is
some evidence that a material may be isotropic
at one temperature and anisotropic at all others
(see p. 432 and Fig. 8).

The occasional occurrence of positive values
of the coefficients s~2, ,s23, sal is of interest, since
it implies that the Poisson's ratio associated with
these values is itself negative. In the case of
pyrites, Voigt (115) obtained spaz

—+0.44&(10 "

p is the angle between the hexagonal axis and
the axis of the specimen; s'33 is the value as
measured; b is the difference between s'33 and
the value calculated for a pure magnesium
crystal of the same orientation [Eq. (7.9);
ya=cos Pj. The entries under 5 above do not
exceed experimental error.

A further factor which may affect the values
of the elastic constants is the presence of imper-
fections in the crystal. Zwicky (125) has shown
that if the crystal is ideal and the forces purely
electrical, the elastic parameters should be
numerically of the order of 10" dynes/cm'. He
has also given a short qualitative discussion of
the effect of such imperfections as holes and
fissures, "knots" and twins.

Some of the materials in Table V, although
belonging to a non-isotropic system, are approxi-
mately isotropic as far as elastic properties
are concerned, e.g. , haematite, magnesium
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cm'/dyne. It has been suggested (73) that this
result may have been caused by twinning in the
specimen used by Voigt, but Bhagavantam and
Bhimasenachar (9) using a combination of
supersonic and static methods (see p. 422),
obtained +0.39X10 " and conclude that the
possibility of twinning is ruled out by this
agreement.

The constants measured on galena by Bhaga-
vantam and Bhimasenachar (9) have been
omitted from Table V. The values quoted in the
original paper are c11=2.65, c1g=6.99, c44=4.47
allX10" dynes/sq. cm, and these values check
with independent measurements made by the
authors, who suggest that the low value of c» may
be caused by the ea,sy cleavage of galena along the
(100) plane. If, however, the above parameters
are put into the conversion equations analogous
to (1.20) the following values are obtained for
the coefficients: sii ———13.4, s44 ——22.4, s,2 ——+9.7,
all X10 "cm'/dyne. The coefticients thus lead
to a negative principal Young's modulus, which
is impossible, and to a principal Poisson's ratio
of 0.72. It would seem that the results for galena
are caused to some peculiarity of the material
rather than by the method, since the measure-
ments on pyrites (9)-and zinc blende (10) gave
good agreement with Voigt's values (see Table
V, 3). Whatever the explanation, the results for
galena should be accepted with caution until
they are either confirmed or superseded by better
valueso

The only non-crystalline material included in
Table V is wood. There is now a considerable
support for the identification of wood with a
rhombic system, at least as a first approximation
(52, 53, 55, 56, 62). In spite of its defects, such as
imperfect structure and elasticity, some im-

portant aspects of the elasticity of anisotropic
materials may be brought out by a study of
wood quite apart from its technical importance
(48, 49, 53).

A question which at one time caused con-
siderable controversy is that of the so-called
"Cauchy relations" LLove (73), pp. 14, 99—100,
616—628; Voigt (115), Sections 292—303, 369,
etc.$. It is now accepted that these relations are
not valid, but a consideration of them is still
instructive.

According to Eqs. (1.7), s;& ——s&;, and similarly

C23 C44 y C31 —C55 ', C12 = C66 ',

C14 C56', C25 46 ) 45 36.
(8.2)

If these relations were true they would reduce
the maximum possible number of independent
coefficients from 21 to 15. Table I shows that in
designating the coe%cients s;~ with two su%xes
only, a contraction has been made, and the same
is true of the parameters c;~. Thus, in full, c1g'is

c(xxyy), c2& is c(yyxx), and c« is c(xyxy). The
equations c;&——CI,; imply that if the parameters
are written in full, the order of suAixes, taken in
pairs, is immaterial. The Cauchy relations go a
step further and imply that the order of suffixes,
however taken, is unimportant, so that, for
example, c(xxyy) and c(xyxy) are equivalent, i.e. ,

C12 C66 ~

When applied to particular systems, the rela-
tions become:

In the cubic system: cim=c44.

In the hexagonal and trigonal (b) systems:

C13 C44 ) C11 3C12

(since c6g
——-', (cn cia)).

In the rhombic system:

(8 3)

C23 —C44 ) C3] —CSQ ) CQ C66 ~

Some results are given in Table VII which
show that the relations are only obeyed in
isolated cases. Bridgman (19) however, con-
siders that the relations, though not generally
true, may nevertheless hold for the alkali halides.
Voigt's values for sylving appear to contradict
this view, but these values had been previously

c;~ = ci,;. These equations reduce the maximum
possible number of independent coe%cients or
parameters from 36 to 21 and are necessary if
the strain energy function IV (Eq. (1.13)) is to
exist LLove (73), p. 99j. They are, therefore,
independent of any molecular hypothesis. If,
however, it is assumed that the crystal is made
up of a number of material points which act on
each other at a distance, and that the Field of
force of each point possesses spherical sym-
metry, then certain new relations appear among
the elastic constants. Expressed in terms of the
parameters, these "Cauchy" relations are
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TanLz VII. Test of the Cauchy relations. Unit 10"dynes/cm'.

Material

Fluorspar
Rocksalt
Sylvine
Sodium chlorate
Pyrites
Copper
Gold
Lead.
Aluminum

C18

4.48
1.29
0.194—2.10

-4.74
12.3
15.7
4.09
6.2

A. Cgbic system

3.38
1.27
0.642
1.19

10,52
7.53
4.20
1.44
2.84

Authority

Voigt (115)
Voigt (115)
Voigt (115)
Voigt (115)
Voigt (115)
Goens and Weerts (44)
Goens and Weerts (44)
Goens and Weerts (44)
Goens (43)

B. Hexagonal and trigonal (b) systems

Material

Beryl
Zinc
Cadmium
Calcspar
Quarts
Tourmaline
Haematite

C18 C44

6.60 6.53
4.37 4.00
4.42 1.85
4.51 3.42
1.41 5.70
0.88 6.67
1.57 8.52

C11 3C18

27.0 28.8
16.1 13.0
12.1 14.4
13.7 13.7
8.5 2.1

27.0 20.7
24.2 16.5

C. Rhombic system

Authority

Voigt (115)
Griineisen and Qoens {50}
Griineisen and Goens (50)
Voigt (115)
Voigt (115)
Voigt (115)
Voigt (115)

Material

Topaz
Barytes
Aragonite

Aa C46

8.8 10.8
2.68 1.20
1.57 4.27

C81 C66

8.4 13.2
2.69 2,87
0.17 2.56

Clg C66

12.5 13.1
4.59 2.78
3.72 4.12

Authority

Voigt (115)
Voigt (115)
Uoigt (115)

re-examined by Forsterling, (33), who concluded
that one of the specimens used by Voigt was
faulty, and that the- relation c~2 —c44 does
actually hold for this material. More recent
measurements on sylvine (30) and rocksalt (6a,
30, 59)/have confirmed Bridgman's suggestion.

9. The Effect of Temperature on the
Elastic Coefficients

A number of papers have appeared within
recent years, dealing with aspects of the effect
of temperature on the coefficients. Durand (30)
working with na, tural crystals of MgO, NaCI,
and KCl found that his results for the isothermal
parameters were represented with an error prob-
ably less than that of the experiments by the
equations

cis =constant; c» ——X& exp (—bifi);

c44=Xs exp (—bsfs),

The data necessary for the calculation of the
parameters at any temperature are shown in
Tables VIII and IX. Since fi ~fs =0 at T= 0, Ei
and E2 are, respectively, the values of the iso-
thermal cI~ and c44 at absolute zero.

Brjukhanov (23) found the anisotropy of
rocksalt to be affected by temperature, and
stated that at 713'K this crystal becomes elas-
tically isotropic. In Fig. 8, part of the data of
Hunter and Siegel (59) for rocksalt is plotted
against temperature. For isotropic materials,
s44= 2(sii —sit), and Fig. 8 shows that, according
to the data used, this relation is true at 680'K.
Brjukhanov's main finding is thus confirmed, but
there is a difference of some 30' between the
temperature as found by him, and the one
derived from Hunter and Siegel's results.

The elastic constants of quartz as affected by
temperature have been discussed by several

TABLE VII I.

where X~, b~, X2, and b2 are constants different
for each substance; fi and fs are functions of
T/t) (T=absolute temperature, 8= Debye critical
temperature), and are the same for all three
substances.

Sub-
stance K1 X10-» K2 XTO-» bI

MgO 28.89 15.679 0.230
Na 5.85 1.339 0.210
KC1 4.95 0.669 0.168

bu e('K) C18 XiO-11

0.0920 946 8.57
0.0601 320 1.17
0.0440 246 0.60
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t0$

lOO

90

85
E0

80

J~~( 680 K.

)(

70
500 55 6OQ 650 7GO f/0

Tem per a ture K

800 65& .QOO

Frr. 8. Hunter and Siegel's data for NaC1.

Txsr.E IX.

O.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0.007
0.062
0.148
0.247
0.362
0.480
0.605
0.735
0.865
1.000
1.136
1.280
1.427
1.577
1.730

0.007
0.052
0.123
0.210
0.311
0.424
0.553
0.6os
0.845
1.000
1.146
1.296
1.447
1.597
1.750

)

workers. At ordinary temperatures, this material
belongs to the trigonal (b) system and has, there-
fore, 6 independent coefficients, s», s», s$3 S$4,

$3/ s44 This form is stable up to 846'K, at which
temperature a transition to P-quartz takes
place; the coefficient s~4 disappears, and the
symmetry becomes hexagonal.

Early contributions to the problem of the
effect of temperature near 846'K on the coef-
ficients were made by Perrier and Mandrot (89),
Freederickz and Michaelow (34), and Mandrot
(79), but a complete set of coefficients for
P-quartz was not available until the work of

Kammer and Atanasoff (63) at a temperature
of 873'K, was published.

The method used was essentially that origi-
nally described by AtanasofF and Hart (1) and
applied by Atanasoff and Kammer (2) to the
measurement of the c44 parameter of P-quartz. lt
depends on the frequency of vibration of plates
of the material, use being' made of high har-
monics in order to eliminate eEects due to the
finite dimensions of the plates. Kammer and
Atanaso6's results are given in Table X under
K and A, and compared with the previous results
of Perrier and Mandrot [P and M (89)g, and
Lawson [L (70)]. Perrier and Mandrot's
measurements were made statically, while the
remainder were made dynamically. This intro-
duces some uncertainty into the comparisons; a
further uncertainty arises from the fact that the
values given as Perrier and Mandrot's are actu-
ally their results interpolated to 873'K.

The quantities s(45') and s(50') are inverse
Young's moduli of specimens having angles of
45' and 50, respectively, between the specimen '.

axis and the hexagonal axis. Kammer and-
Atanasoff's values at these angles were not
measured directly, but were calculated from
their principal coeHRcients and the transforma-
tion Eq. (7.9). Lawson's s(45') was measured
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TABLE X. Elastic coefficients of P-quartz at 873'K,
unit = 10 13 cm'/dyne.

CoeKcient

$11
$1'
S13
$33
S44
s($5')
s {50')

K and A

9.257—0.802—2.52
10.85
27.89
10.73
10.57

9.345 {Pand M)

—2.26 (L)
10.50 {P and M)

10.67 (L)
10.75 (P and (M)

directly from the frequency of longitudinal
vibration of a specimen cut in this direction,
using th'e piezoelectric oscillator; Lawson calcu-
lated s» from s(45') using as supplementary data
the results of Perrier and Mandrot (89), and
Atanaso8 and Kammer (2).

The value of c44 corresponding to Kammer and
Atanasoff's s44 is 10"/27.89 =30.85 &(10";Oster-
berg and Cookson (87) give 19.36&&10" dynes/
cm' for this parameter, a value which is regarded
as untenable both by Kammer and AtanasoR
and by Lawson.

Some extremely interesting work has been
carried out in America on the temperature
variation of the elastic coe%cients as affected by
the order-disorder transition in alloys. For a
complete account of this transition, reference
may be made to a paper by Nix and Shockley
(86), but it has been briefly described by Good
(47), as it occurs in P-brass, as follows: "Whether
ordered or disordered, P-brass (approx. ~CuaZn)
is body centered cubic in structure. In the
ordered state, the Cu atoms occupy the corners
of the cubes, and the Zn atoms the centers. In
the disordered state, the Cu and Zn atoms have
equal probabilities of appearing either at the
corner or the center lattice positions, as is shown

by x-ray experiments. "
Figure 9, which is taken from Good's paper,

is based on Good's own measurements of s'44 and
Rinehart's measurements of s'~~ (95, 96). The
change in the slopes of the curves at 468'C, the
critical temperature for the order-disorder tran-
sition, will easily be seen. Similar but perhaps
even more pronounced breaks have been ob-
tained by Siegel (106, 107) at the critical tem-
perature of Cu3Au alloy.

The effect of temperature on the elastic coef-
ficients of the piezoelectric substances Rochelle

i3
lO 5~»

-50

16

x5

10 S~q
8.0

1o0 200 300 +00 goo
Temperature 'C

FrG. 9. Eff'ect of temperature on elastic coefficients of
p-brass (Good).

salt and potassium di-hydrogen phosphate has
been investigated by Liidy (76). Specimens of
these substances, cut at various orientations,
were provided with suitable electrodes to which
a frequency modulated alternating voltage was
applied. If a resonant frequency lies within the
range of the frequency modulations, vibrations
are induced in the specimen, and are detected by
the beats they produce with the driving fre-
quency. LOdy's main results are summarized in
Table XI. The unit is 10 "cm'/dyne. Rochelle
salt, of course, belongs to the orthorhombic
system, but potassium phosphate belongs to the
tetragonal (b) system, in which s~~

——s~~, s23 ——s~3,

s44=s55. The figures in Table XI have been read
oR' from small scale graphs, and are therefore not
very accurate; the change in all the quantities
with temperature is approximately linear. The
numerical values are iri satisfactory agreement
with those obtained in static tests.

Ludy discusses at some length the anomalies
observed in the particular case when the exciting
field is parallel with the electric axis, and the
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electrodes are in close contact with the specimen.
These anomalies had been observed previously

C
see e.g. , Muller (85)) and consist in a broaden-

ing of the resonance curve, a departure of the
frequencies of the harmonics from the usual
integral relationships, and an extremely irregular
variation of resonant frequency with tempera-
ture. The coefficients calculated from the fre-
quencies observed under these conditions differ
materially from those obtained in static tests,
but the anomalies disappear, and the agreement
is restored if an air gap is introduced between
each electrode and the face of the specimen with
which it was formerly in contact.

Ludy explains the eRect theoretically in terms
of the interaction between elastic, piezoelectric,
and electric properties. For details of this ex-
planation, and for a bibliography, Liidy's
original paper should be consulted.

Papers not specifically referred to in the above
discussion, but which deal with the effect of
temperature are contained in the following list:
(3, 6, 29, 39, 68, 92, 110, 119, 125).

10. Miscellaneous Applications of Experi-
mental Results

A full discussion of the actual and potential
uses of experimental values of the elastic coef-
ficients would form too much of a digression,
faut, for completeness, a brief summary of some
applications, additional to those already referred
to will be made.

The velocities of propagation of elastic waves

(46, 100) have been calculated as a function of
orientation for the hexagonal zinc and cadmium
crystals by Gruneisen and Goens (50), and for
certain cubic gold-silver crystals by Rohl (97).
These velocities are connected with the x-ray
diffuse reflections (16, 72) and also with the
Debye theory of specific heat. They therefore
furnish a link with the quantum theory of
crystals; attempts have been made by Fuchs
(35, 36, 37) to calculate the elastic constants of
some of the simpler crystals from quantum
mechanical consideratiens. In his original papers,
Fuchs concentrated on the monovalent cubic
metals, Cu, Li, Na, and K. The calculations were
supported by the results for copper, which, at
that time, were the only ones available. Later

TABLE XI. Effect of temperature.

Substance
Temperature 'C Rochelle salt—40 +20 +40

Potassium
phosphate—180 +20

S11

$33
2S23+S44

2S18+s55
2s1a+S66

47 54 56
32 37 38
33 34 34
41 44 45

300 330 340
54 55 56

(16)
20
80

(80)
136

29
(19)
22
80
(80)
153

determinations on sodium (6, 29, 92) have
further confirmed Fuchs' calculations. The
problem for hexagonal crystals is far more com-
plicated, but Huntington (60) has endeavored
to evaluate some of the factors involved, while
Saksena (101) has succeeded in estimating the
constants of n-quartz from Rarnan eRect data;
the attempts of Wasastjerna (118), Bruggeman
(24), and Zdanow (124) to calculate certain
constants of cubic metals may also be mentioned.
For further details, reference may be made to a
book by Seitz (103).

The single crystals on which the measurements
are made are the exception, rather than the rule.
Industrial materials are usually polycrystalline,
though some "preferred" orientation may be
present [see e.g. , Wood (120)j. For this reason,
the connection between elastic constants as
determined on single crystals and those of the
polycrystalline material has been much dis-
cussed. General contributions to this question
have been made by Kuntze (69), Huber and
Schmid (58), Boas and Schmid (12), and Boas
(14). The three latter papers have developed a
method of finding values of the constants for a
multiple cubic or hexagonal crystal by forming
the average value of the single crystal constant
over the whole range of orientation. This method
has been applied to the special case of tin, and
the results compared with experiment by Boas
(13). Other discussions dealing with similar
topics have been made by Srinavasan (109), and
Birch and Bancroft (11).

The elastic constants of crystals are obviously
of major importance in determining the fre-
quencies of vibration of crystalline prisms.
Mention has already been made (pp. 422, 433)
of some investigations in which these frequencies
have been studied in order to measure the elastic
constants. Sometimes, however, the emphasis is
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shifted, and the elastic constants are used in
order to interpret the observed frequencies.
Early theoretical and experimental contributions
to the subject included those of Lissutin (71),
Wright and Stuart (122), Giebe and Scheibe (38),
Colwell (25), Straubel (111),Petrzilka (90), and
Osterberg and Cookson (88). This interest was
stimulated partly by the use of quartz and to a
lesser extent tourmaline, for the production of
frequency control crystals. In recent years, the
use of quartz for this purpose has increased
enormously, and has been accompanied by a
considerable increase in the volume of research,
some of which has been reviewed by Bergmann
(6a), Mason (82), and Sykes (113).

Five main types of vibration are recognized:

(1) Extensional vibration in the length direction (longi-
tudinal vibration).

(2) Extensional vibration in the thickness direction.
(3) Shear vibration in the width-length plane (face shear

vibration).
(4) Shear vibration in the thickness-length plane (thick-

ness shear vibration).
(5) Flexural vibration.

Most crystals vibrate in complex modes, with
one mode predominating; the frequency of the
crystal is determined by its dimensions, elastic
constants, and mode of vibration. It is important
for some purposes that the coupling between
certain modes shall be a minimum, and a crystal
orientation is therefore chosen for which the
elastic coefficient governing the coupling is a
minimum. If, for example, the length of the
crystal lies in the x' direction, the width in the
y' direction, and the thickness in the s' direction,
and it is desired to minimize the coupling between,
face and thickness shear modes, then an orien-
tation will be chosen for which s 56 is a minimum.
Similarly, if it is desired to minimize the coupling
between longitudinal and face shear modes, an
orientation will be chosen for which s «6 is a
mln1mum.

Another important factor governing choice of
orientation is the temperature. coeScient of fre-
quency, which, for highly accurate frequency
control, must be as small as possible. One way of
achieving this end is to choose an orientation for
which the temperature variation of the elastic
coeScient principally involved in the vibration

is a minimum or zero. For instance, if a low
temperature coe%cient crystal vibrating in a
longitudinal mode is required, an orientation will
be chosen for which the temperature coefFicient
of s'«« is a minimum or zero. In some cases, an
orientation may be deliberately chosen for which
the vibration consists of two coupled modes,
hav'ing tempe| ature coeRicients of opposite signs,
thus leading to a low over-all temperature coef-
ficient.

The above discussion does no more than indi-
cate some of the factors governing choice of
orientatioo; for further details, reference should
be made to the papers of Mason and Sykes,
already quoted, and to other papers in the same
series. It is apparent that the various considera-
tions must sometimes conflict, and under these
cir'cumstances, a compromise orientation must be
adopted.

On the theoretical side, the problem is ex-

ceedingly complicated, although some progress
has been made by Eckstein (31), McSkimin (83),
and others in dealing with special cases. Eckstein
has applied a modification of the perturbation
method used in quantum mechanics, and has
obtained good agreement with earlier experi-
mental results, notably those of Bechmann $(5)
and other papersj. At the moment, however, the
practical side of the work is considerably in

advance of theory, as is perhaps only to be
expected in view of the complexity of the
problem. The approach, in fact, appears to be
largely empirical, supplemented by semiquan-
titative appeal to such theory as is available.
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