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HERE are three main topics connected with
the subject of this article: Rrst, the funda-

mental theory of thermal diffusion itself; second,
the phenomenological theory of the functioning
of apparatus; and third, the discussion of experi-
ments. The fundamental theory is still in need of
much further detailed development; its founda-
tions are well summarized in the recent book of
Chapman and Cowling (C5). A general de-
scription of the eR'ect is contained in Part I,
together with an account of the predictions of
the theory as they appear when specialized to
the case of isotopic mixtures. The phenomeno-
logical theory of the functioning of apparatus is
the main theme of this paper. It occupies Parts
II and III, and its applications take up an
important fraction of Part IV. Some discussion
of experiments is also included in Part IV. An
exhaustive account of the experimental material .

is not attempted, because the number of experi-
ments which have been described in detail is so
far not very large, and much of the existing
experimental information is summarized in the
long paper of Clusius and Dickel (C10).

A considerable part of the material on the
theory of the functioning of apparatus is new.
The derivation of the transport equation is one
which has not been published previously, and
p1aces the emphasis on an understanding of the
physical processes involved rather than on

mathematical exactness. The most important
new contribution is the complete analysis of the
principles needed for the design and operation of
efficient multi-stage (series-parallel) apparatus.
This analysis should also be capable of applica-
tion to any other separation processes for which
the equations of transport have forms analogous
to that used here.

The main limitation of the present treatment
is its restriction to mixtures of two components
only. Where additional components are present
in extremely small amounts, the present results
will very often be applicable; but there are
undoubtedly many cases whose adequate dis-
cussion would require a general theory of the
separation of many-component mixtures.

TABLE OF NOTATION

A number of symbols which occur only locally
in short series of equations, and are suitably
defined when used, are not included in this table.
Most of the symbols listed are defined more fully
at the point where they are introduced in the text.

A =H/2X.
a = to'Xe/X. .

& =mean circumference =sr(rt+re).
c =either c& or ci (cf. remarks at beginning of Part III).
8=1—c.

c~ =fractional molar concentration of the lighter isotope.
cg=fractional molar concentration of the heavier iso-

tope; c1+cp= i.
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c =c p=initial value of c.
cy=c, g =fina value of c.
c,=value of c in material rejected by scrubber.

c~I = final value of c in the Nth and last stage.
cj,=specific heat at constant pressure, per unit mass.
c„=specific heat at constant volume, per unit mass.
C=Sutherland constant.

C, =specific heat at constant volume, per mole.
D =coefFicient of self-diffusion.

Dz =coefficient of thermal diffusion.
DI~ =coefficient of ordinary diffusion.

f(v) =cf Eq. .(12).
g =acceleration of gravity.

G(T)=cf. Eqs. (61) and (98).
H.= transport coefficient, cf. Eqs. (53)-(111).

Hr =value of H for a single column (cf. Eq. (286)).
Hv=cf. Eq. (136).

J~ ——pc~v~ =flux of species 1, mass per unit area per unit
time.

Js—-pcsvs=flux of species 2.
X=X,+Kg+%„.

Xr =value of X for a single column (cf. Eq. (287)).
X„Ke,Tv=transport coefficients, cf. Eqs. (53)-(141).

I„=relaxation length, cf. Eqs. (121)-(123).
L=length of column, 0&& z« L.
8= total height of a multi-stage apparatus.
m =mass of gas in the positive reservoir.

.m+=mass of gas in the positive reservoir.
m =mass of gas in the negative reservoir.
m~ =mass of a molecule of species 1.
m~=mass of a molecule of species 2, m~&m&,
3II=molecular weight.
BR=the mass of isotope which must be transported into

an apparatus to secure the operating condition.
u=o/H, =rN/tH.

nb=most efficient value of n.
%=number of stages in a multi-stage apparatus.
ut =a/Ht.
+=number of tubes in parallel in a given stage of a

multi-stage apparatus.
P = I/g =reciprocal of separation factor.

ts, =i/g, =e '"s=reciprocal of equilibrium separation
factor.

P =pressure.
g= separation factor, cf. Eqs. (28) and (151).

g, =e~"~=equilibrium separation factor.
Q=conductive heat flow, quantity per unit area per

unit time.
2xQ& =conductive heat flow per unit length of tube, quan-

tity per unit length per unit time.
r =radial coordinate, rg« r &&r&.

r~ =radius of outer tube.
rm=radius of inner tube or of the hot wire.
R=Reynolds number, cf. Eq. (118).
R =reflection coefficient.
R =gas constant per mole.

Rr =ratio of actual value of n to the value (9) it would
have for hard spherical molecules.

t = time.
tb=most efficient value of the time t.

t, =characteristic time for the approach to an operating
condition.

t, =relaxation time for the approach to equilibrium.
t=a reduced temperature, useful in discussing the ex-

treme cylindrical case, and defined by Eq. (112).
t~ ——reduced temperature corresponding to T~,

t2 =reduced temperature corresponding to T~.
T=absolute temperature.

Ti =temperature of cold wa11, or of the outer tube.
T~ = temperature of hot wall, of the inner tube or of the

hot wire, Ti&TI,.f=xs(T&+ Tg).
A, T= Tg- Tj.

u = (T2—Tg) /(Ts+ Tg) =6T/2 l.
v =convection velocity of the gas as a whole = c&v&+cmv2.

v& =convection velocity of the molecules of species 1.
vg =convection velocity of the molecules of species 2.
te = $(rq —rs) =one-half of the distance between the hot

and cold walls, —e&&x&&m.

x =coordinate perpendicular to the walls, -m ~& x~& m.
y=coordinate running around the mean circumference

of the tube, 0~& y&~ 8 (used only in Part II).
y =2AL =HI./X (used in Parts III and IV).

yb=most efficient value of y =2AL.
z =coordinate along the column, 0 && z &&L.
a = thermal diffusion constant.
y =stepping ratio (cf. Eq. (305)).

y„=roots of a transcendental equation (172).
6 =Cy —C4.

q =viscosity.
0=cost per unit length of column.
) =heat conductivity.
A. =total length of tubing in a multi-stage apparatus.

4& = total length of tubing in a scrubber,
p =mass of gas per unit length of column.
v =force index, (cf. Eq. (10)).
5=cf. Eqs. (214) and (215).
p =density, mass per unit volume.
O. =flow of gas through the column or stage in con-

tinuous operation, mass per unit time.
o, =continuous flow of gas through the scrubber.
r =either rq or rs (cf. remarks at beginning of Part III).

~i =transport of species 1 along the column, mass per
unit time.

&/= transport of species 2 along the column.
4(u) =cf. Eqs. (79) and (84).

All quantities are in c.g.s. units, except that in
practical calculations of heat flow the calorie is
the unit of energy.

The subscript k on any of the quantities indi-
cates that they refer to the kth stage of a multi-
stage apparatus.

PART I. THERMAL DIFFUSION

De6nition

The phenomenon of thermal diffusion consists
in the fact that a temperature gradient in a
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ci(vi —v) = —D12 grad ci+(Dr/T) grad T, (2)

where Dr is the coegcient of thermal diffusion.
Unlike the coefficient of ordinary diffusion,
which to a first approximation is independent of
the concentrations ci and c2, the coefficient of
thermal diffusion is proportional to the product
c~c2. We are therefore led to introduce another
quantity, the thermal diffusion constant n, which
is related to Dr by

Dp =Dy2cyc2O' (3)

The constant n is independent of the pressure.
In the case of isotopes, it is to a first approxima-
tion independent of the relative concentrations.
For certain particularly simple molecular models,
a is independent of the temperature, but experi-
ment and more general molecular models indicate
that it does depend on the temperature.

Another quantity found in the literature is the
thermal Ckgusion ratio:

k F DT/D12 Ckclc2 (4)

It might at first be thought that the fact that
D& is proportional to c&c2 would drastically limit
the effectiveness of thermal diR'usion in concen-
trating isotopes with a small initial concentra-

mixture of two gases gives rise to a gradient of
the relative concentration of the two con-
stituents. Provided that the mixture as a whole
is at rest, the equilibrium concentration gradient
is such that the effect of thermal diff'usion is just
matched by the re-mixing effect of ordinary dif-
fusion. Although the existence of thermal diffu-
sion was not discovered until 1911, and was not
demonstrated experimentally until 1917, a mani-
festation of thermal diffusion has been known
since 1857—namely, the Thomson thermoelectric
effect, which consists in a diffusion of the electron
gas caused by the temperature gradient in the
metal. The Thomson effect represents a very
special case of thermal diffusion, however, and
will not be treated further in this paper.

The equation of ordinary diffusion is

ci(vi —v) =cic2(vi —v2) = —D12 grad ci. (1)

The existence of thermal diffusion makes it
necessary to add another term to (1), so that it
becomes

tion. As will be seen in Part III, however, this
form of the thermal diffusion term in (2) actually
has the effect of making the logarithm of the
separation factor proportional to the number of
stages or the length of a separation column (Eqs.
(147), (150) below). The problems of obtaining
desired separation factors and yields are ac-
cordingly found to be of just the same type as
those encountered in the various other methods
of separating isotopes by progressive concen-
tration.

History

The coefficient of thermal diffusion vanishes
identically for Maxwellian molecules —that is,
for point molecules which repel one another with
a force which falls off as the inverse fifth power
of the distance between them. It is perhaps for
this reason that thermal diffusiop was com-
pletely overlooked by the classical workers in
kinetic theory. The phenomenon of thermal dif-
fusion was discovered theoretically by Enskog
(E1)* in 1911; and in 1912 he. gave the exact
value of its coefficient for a special case (E2, p.
750).

The theory of thermal diff'usion appears as a
by-product of any sufficiently complete and
rigorous kinetic theory of the phenomena charac-
teristic of a mixture of two or more gases. The
great mathematical difficulties of such a theory
were not surmounted by the classical workers in
kinetic theory, and for our present detailed
theory of gases we are indebted to two modern
workers, Chapman and Enskog, whose work
culminated in the second decade of this century.
The work of these two men was done quite
independently.

In 1917 Enskog (E3) published as his doctoral
dissertation an elegant and rigorous derivation
of the various gas coefficients, including that of
thermal diffusion. The development was based
on Boltzmann's integral equation for the velocity
distribution function. The results obtained were
expressed in terms of general integrals, however,
and the reduction of the formulae to a usable
form was sketched only brieHy, although the
results of the reduction were presented. The

* References in parentheses are placed at the end of the
article.
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detailed presentation of the reduction was con-
tained in a later article (E4).

In 1916 Chapman published a treatment (C1)
of simple gases which was based on a general
equation of transport. The method was more
intuitive and less rigorous than Enskog's, but
was equally effective. This treatment was fol-
lowed in 1917 by an extension of the theory to a
mixture of two gases (C2). Unfortunately, as was
later pointed out by Enskog (E4, pp. 58—60),
Chapman's treatment of a mixture of two gases
contained algebraic and numerical errors in the
working out of the important special case of the
inverse power model (including the case of elastic
spheres). These errors affected the coefficient of
thermal diffusion, although the error was not
serious as regards order of magnitude. The errors
were corrected by Enskog (E4), and the results
of Chapman were then found to agree with his
own. The corrected results were later published
by Chapman and Hainsworth (C3), and by
Chapman (C4).

Although, as we have remarked, the existence
of thermal diffusion was first demonstrated by
Enskog in 1911 and 1912, the mention of it was
so casual and brief that the existence of thermal
diffusion remained essentially unknown until the
appearance of Chapman's memoir in 1917 and
until the experimental demonstration of its
existence by Chapman and Dootson (C6) in
1917. Furthermore, the theory of thermal dif-
fusion is much more fully developed from the
physical point of view in Chapman's 1917
memoir than it is in Enskog's dissertation. For
these reasons, it seems proper that the 'credit for
the discovery and development of thermal dif-
fusion should be shared equally by Chapman and
Enskog.

There was no great progress in the develop-
ment of the general theory of gaseous mixtures
between 1917 and 1939, in which year the work
of Enskog was generalized by Hellund and
Ueh»ng (Hl) to include the effect of the quantum
statistics. This generalization closely parallels
the presentation in Enskog's dissertation, and is
written in Enskog's notation. In the following
year, the treatment of Hellund and Uehling was
further generalized by Hellund (H2) to include
the case of a mixture. of more than two gases.

This discussion of the history of thermal dif-

fusion is necessarily brief and sketchy. A much
fuller account of the devefopment of the kinetic
theory of gases in general is contained in the book
by Chapman and Cowling (C5, pp. 380—390).

A careful and detailed presentation of Enskog's
general theory is contained in a recent book by
Chapman and Cowling (CS). The reduction of
the general expressions, however, is accomplished
by a method different from that used by Enskog,
although Enskog's m'ethod of integration is
given in an appendix. The general reader will
find this book easier reading than Enskog's dis-
sertation, which is very abstract and difficult to
read. On the other hand, the periodical literature
will probably continue to utilize Enskog's
notation because it is more concise and because
so much of the literature is already written in
this notation.

Qualitative Remarks

To a far greate'r extent than is the case with
the three elementary gas coefficients, the coef-
ficient of thermal diffusion is sensitive to the
type of interaction between the molecules form-
ing the gas. It has already been remarked that
the coefficient is zero for a Maxwellian gas. For a
composite gas whose molecules all repel one
another with a force which varies as the inverse
vth power of the distance, the constant at is
positive for v) 5, whereas it is negative for v(5.
This statement depends upon the convention
that the subscript 1 refers to the lighter mole-
cules, and the subscript 2 to the heavier mole-
cules; this convention will be used throughout
this article. If the molecules behave as elastic
spheres, both the ratio of the radii and the ratio
of the masses of the two types of molecules are
important in determining the value and the
sign of n The lighter particles will in general
become more concentrated in the hotter part of
the gas (n) 0), but if the masses are nearly equal,
the relative size of the molecules may be more
important, in which case the smaller molecules
will become more concentrated in the hotter
region (n)0 if the subscript 1 refers to the
smaller molecules).

The fact that the value of the thermal dif-
fusion coefficient depends so critically on the
nature of the intermolecular forces means that
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the illuminating free-path arguments of ele-
mentary kinetic theory are quite inadequate for
the treatment of thermal diffusion. Chapman
(C4, pp. I—3) has dwelt on the difficulties which
beset any attempt to explain the effect on
elementary grounds. Recently, however, Frankel
(F2) has been able to derive by an elementary
dimensional argument the most interesting
features of the result for molecules which repel
one another with a force which varies as the
inverse vth power of the distance of separation.
Frankel's argument shows that n must be zero
for v=5, that it must be positive for v greater
than 5, and negative for v less than 5. His argu-
ment runs as follows.

Thermal diR'usion tends to establish a partial
pressure gradient of the lighter constituent
which is parallel or anti-parallel to the tempera-
ture gradient. In order to support such a partial
pressure gradient, there must be a constant force
on the lighter particles which restrains them
from diffusing back toward the colder (or
warmer) part of the enclosure. Such a force can
come only from collisions between molecules of
species I (the lighter molecules) and those of
species 2; there must be a steady transfer of
momentum from particles of one species to those
of another. The transfer of momentum from
species 2 to species 1 is proportional to

((p —p )U )

For i = 5, this expression reduces to the difference
of the average velocities of the two species con-
sidered separately. Since we are considering the
equilibrium case, these average velocities are
both zero, and thus for v = 5 the transfer of
momentum is zero, and thermal diffusion cannot
exist.

When v is greater than 5, it is clear that col-
lisions of high relative velocity are more im-
portant in contributing to the average (6). All
of the molecules which are coming from the
warmer part of the gas have, on the average, a

. higher velocity than those coming from the
colder part, but the increase is greater for the
lighter molecules than for the heavier ones. Thus
the collisions of highest relative velocity are
predominantly those in which the lighter mole-
cule is coming from the hotter region, and the
heavier from the colder region. Thus the average
momentum transfer from species 2 to species 1 is
directed toward the warmer part of the gas;
this means that 0. is positive.

For v less than 5, we find by exactly similar
considerations that 0. is negative.

The weakness of Frankel's argument is that it
cannot take into consideration the details of the
asymmetry of the velocity distribution function
itself. In the theory of Enskog, the vanishing of
n for v =5 occurs because the expression for n is
proportional to, among other quantities, the
integral

where V is the relative velocity of two molecules,
one of each species, the y's are the momenta of
the molecules before the collision, and the
average is to be taken over the velocity dis-
tributions of the two species of molecules. The
quantity 0. is the cross section for momentum
transfer between molecules of the two species.
Now in the case in which the molecules interact
according to a law of the type F= ~/r", there is
only one quantity with the dimensions of a
cross section which may be obtained from the
relative velocity V, the reduced mass p of the
collision, and the force constant ~—namely,
(a/pU')~i& 'i. Putting this expression for 0 in (5),
we find that the momentum transfer is propor-
tional to

(6)

where y is a quantity proportional to the relative
velocity V. It is difficult to see the relation
between this integral and the average (6).

For the majority of gaseous mixtures which
are not merely isotopic mixtures, the value of the
constant a lies between 0.2 and 0.02. Larger
values are occasionally obtained when the ratio
of masses of the two constituents is large —for
example, with mixtures of hydrogen and nitro-
gen, or helium and radon. A review of the
experimental literature is given by Ibbs (Il),
and a 1ist of references by Chapman and Cowling
(CS, p. 258). Since we are here concerned pri-
marily with isotopes, we shall from this point on
restrict ourselves to the case of isotopic mixtures.
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Thermal Diffusion of Isotopes

Chapman (C7) was the first to suggest the
use of thermal diffusion for separating isotopes.
Before Clusius and Dickel (C9) devised their
method for greatly enhancing its effect, however,
thermal diffusion had no advantage over other
methods of isotope separation, as was shown by
Mulliken (M1).

The general theory of Enskog is developed on
the assumption that the force fields of the
molecules are spherically symmetrical. He finds

general expressions for quantities which he
indicates by p, , X, A:, and v. The quantities p, and
) are the ordinary coefficients of viscosity and
thermal conductivity; z is simply related to the
coeAicient of diffusion, and v is related to the
thermal diA'usion constant n by

v = —nkncgc2,

where k is the gas constant per molecule, and n
is the number of molIecules per unit volume.

The general expressions for these quantities
involve ratios of infinite determinants, the ele-
ments of which are integrals over the velocity
spaces of the two types of particles. Only the
first approximation to v has been worked out
up to the present time.

The theory of the thermal diffusion constant
is somewhat simpler for a mixture of two iso-

topes than it is for a mixture of two dissimilar
molecules. This simplification occurs because the
intermolecular forces are determined entirely by
the electronic configurations of the atoms or
molecules. If we are willing to disregard the
quantum-mechanical distinction between iden-
tical and non-identical particles, we may con-
sider an isotopic mixture as a mixture of two
species of particles which are identical except for
the fact that the particles of species 2 are slightly
heavier than those of species 1. It is then possible
to develop the general expression for n which is
is given by Enskog (E3) and by Chapman
and Cowling (C5) in ascending powers of
(ms —mi)/(ms+m&). Only the first term of this
expansion is important for most pairs of isotopes.

It was first shown by Furry, Jones, and
Onsager (F1) that for molecules which behave as
elastic spheres, this procedure leads to

ELASTIC SPHERES

105 F2 —my
A=

118 ms+mt

105 m2 —nzi v —5
Q= ~ C(v) .

118 ms+mt v —1
(10)

In this expression, C(v) is given by the relation

59 (»/f)+6
C(v) =— (11)

21 43+16 If 1/(v ——1)+1/(v —1)'I

where f(v) is defined by

f(v) = I1 2/L3(v 1)3IAs " /Ai" (12)

and where A i'"~ and A2("'are certain cr oss-section
integrals which must be evaluated by numerical
integration for each value of v. Chapman (C8)
has evaluated these integrals for v =3, 5, 7, 9,
11, 15, and ~. The quantities Ai'"', As'"&, f(v),
and C(v) are tabulated in Table I.* The quantity
6/5 f(v) is also tabulated because, as we shall
see shortly, it is useful in connection with the
coefficient of self-diRusion. It will be noted that
(10) reduces to (9) for v= ae, and that (10)

TAsLE I. Quantities for the inverse power model.

3

5
6
7
8
9

10
11
12
13
14
15

A1(v

0.796

A2(v

1.584

0.4220 0.6541 1.2918

0.3855 0.5349 1.2335

0.3808 0.4956 1.1930

0.3835 0.4778 1.1631

0.3931
0.5000

0.4642 ' 1.1248
0.5000 1.0000

6f( ) /~

1.592
1,575
1.5501
1.514
1.4802
1.454
1.4316
1.412
1.3957
1.382
1.370
1.359
1.3498
1.2000

C(v)

0.807
0.809
0.8156
0.828
0.8431
0.854
0.8648
0.874
0.8823
0.890
0.896
0.901
0.9064
1.0000

*This table divers from a similar table in (J2) in that
the entries for v =3 have been modified in accordance with
a redetermination of A&&@ and A2&@ by Chapman, Proc.
Roy. Soc. A177, 38—62 (1940).

It was later shown by Jones and Furry (J1) that
for molecules which repel one another with a
force which varies as the inverse vth power of
the distance, the first term of this expansion is

FORCE~A "
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TAsr. E II. Ap as a function of n according to the inverse
power model.

2n+3v=
2n -1 Rg =

2(i —n) C{v)
2n+3 Rg =
2n -1 2(1 -n) C(v)

1.1
1.075
1.05
1;025
1.0
0.975
0.950
0.925
0.9

4.33
4.48
4.65
4.81
5
5.21
5.44
5.71
6

—0.159-0.120—0.081-0.040
zero
0.041
0.082
0.124
0.166

0.85
0.8
0.75
0.7
0.675
0.65
0.6
0.55
0.5

6.71
7.67
9

11
12.42
14.32
21
41

0.252
0.340
0.432
0.529
0.580
0.632
0.74
0.86
1.000

changes sign at v=5. Very few non-ionized gases
correspond to values of v less than 5, however,
so that we may expect 0. to be positive in almost
all cases of isotopic mixtures.

and then from (13),

(15)

Estimation of e from Viscosity Data

Equation (10) is very useful, because it is
possible to obtain an estimate of i from the
equation of state of the gas, or from the tem-
perature variation of the elementary gas coef-
6cients. It was 6rst shown by Lord Rayleigh
(R1) that the relation between the temperature
variation of viscosity and the force index v could
be obtained by a simple dimensional argument.
He found in this manner that the coefficient of
viscosity should vary as T", where n is related
to vby

i = (2n+3)/(2n —1). (13)

This result is confirmed by the precise theories
of Chapman and Enskog.

The substitution of (13) in (10) yields n as a
function of n. The inverse power model thus
gives us a means of predicting n from the ob-
served temperature variation of viscosity. In-
stead of talking about 0,, however, it is simpler
to talk about Rz, where R~ is the ratio of 0. as
predicted or as found experimentally, to the
value of n which is predicted by the theory for a
gas consisting of hard spheres. From (9) and (10),
we have

Now, since nearly all gases correspond to values
of i between 3 and 15, and since C(i) varies
between 0.8 and 0.9 for this range of i, we have
rather closely the simple approximate relation

Rp—1.7(1 n—) (16)

The CoefBcient of Self-Diffusion

The inverse power model is also useful in
another connection. In Part II, where we develop

The more precise relation (15) is tabulated in
Table II.

By using the values of n which have been de-
termined experimentally by Trautz and his
co-workers, Brown (B1) has given in this manner
an estimate of Rr for a number of gases. Brown's
table, with rather extensive changes and addi-
tions, is reproduced as Table III. Caution should
be observed in the use of this table, however,
particularly in those cases where very small
values of Rz are predicted. These very small
values are due to the heavy cancellation which
occurs in the general expression for values of v

near 5. The actual force law, however, is now
believed to depart considerably from a simple
inverse power repulsion; for the inert gases it is
thought to be an inverse 7th power attraction at
large distances, and an exponential repulsion at
short distances; see Fowler and Guggenheim
(F3, pp. 278—295). The cancellation required for
very small values of Rz will probably not occur,
therefore, and we may expect that Table III is

, unduly pessimistic in some of its predictions.
A formula corresponding to (9) was given by

Chapman (C7) in 1919.This formula

WRONG

17 m2 ml

3 m2+mi 9.15—8.25cicm

was derived on the basis of his theory, which,
as we have already remarked, was afRicted with
algebraic errors. The writers have been surprised
to And this incorrect formula still being quoted;
it is given by Clusius and Dickel (C10) as being
an alternative formula to (9), and it is the only
formula given by Walcher (W1) in his review
article on isotope separation. We should like to
stress, therefore, that (17) is clearly wrong, and
cannot be justified on any ground whatever.
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the theory of the separation column, we shall
find that the coe%cient of di6'usion of the one
isotope into the other enters importantly into
the results. This coefficient is not known experi-
mentally, but it is clear that the coefticient must
be nearly equal to the coefficient of self-diffusion
of either isotope separately. It follows by simple
division of the formulae given for D and g by
Enskog (E3, pp. 94 and 102) and Chapman and
Cowling (CS, pp. 218 and 24S) for the inverse
power model that

D = 6f(v)ri/S p,

where f(v) is the function defined by (12) and
tabulated in Table I. The coefficient of self-

diffusion may thus be determined fairly accu-
rately from a knowledge of the coefficient of
viscosity and its temperature variation, or from
the coefficient of viscosity and some other means
of estimating w.

Temperature Dependence of e,
Molecular Models

It will be noted that (9) and (10) indicate that
0. is independent of the temperature and pressure.
The independence of temperature is due to the
over-simplification of'the inverse power model,
and is not confirmed by experiment. The inde-
pendence of pressure, however, is a general
result of the theory, and may be expected to

TABLE III. Values for various gases of n, of Rz according to the inverse power model, and of the Sutherland
constant C.

A 221
333
423
498
979

Gas Reference T'K

0.89
0.80
0.76
0.71
0.62

R2 (n)

0.18
0.34
0.41
0.51
0.70

138
147
142
150
140

Gas Reference

Hg 333
398
448
498

0.666
0.694
0.667
0.679

0.60
0.54

. 0.60
0.57

C

66
96
90

108

He

Xe

HCI

Og

48
123
210
333
423

1022

244
333
423
498

1030

347
425
525

,330
475

293—523

420
482

293-523

294-524

333
398
448
498

0.644
0.646
0.652
0.669
0.667
0.645

0.668
0.657
0.644
0.644
0.623

0.92
0.91
0.83

0.833
0.985

0.92
1.04

0.775
0.735
0.731
0.655

0.64
0.64
0.63
0.59
0.59
0.64

0.59
0.62
0.64
0.64
0.69

0.13
0.15
0.29

0.28
0,02

0.13—0.06

0

0

0.38
0.46
0.47
0.62

6
21
37
66
83

173

34
61
70
82

128

250
303
254

162
496

~400

301
590

350

~400

126
122
132
91

NH3

NO

CH4

CaI-Ie

C3HS

COg

CO

SO2

333
398
448
498

d 291-573

308
498

325
349-551

308
348
398
448
498

308
498

308
498

325
525

347
450
525

287—472

0.737
0.713
0.687
0.645

0.79
0.64

0.97
~0.87

0.860
0.825
0.795
0.769
0.728

0.958
0.801

0.965
0.830

0.92
0.85

0.72
.0.69
0.63

0.46
0.50
0.55
0.64

0.36
0.66

0.05
~0.22

0.23
0.30
0.35
0.40
0.48

0.07
0.34

0.06
0.29

0.13
0.25

0.49
0.55
0.68

r 0

102
107
103
85

128
121

' 277
~255

174
168
166
165
146

260
213

267
244

240
281

96
103
98

a M. Trautz and H. Binkele, Ann. d. Physik 5, 561 (1930).
b M. Trautz and R. Heberling, Ann. d. Physik 20, 118 (1934).
c M. Trautz and H. Winterkorn, Ann. d. Physik 10, 511 (1931).
d M. Trautz and R. Heberling, Ann. d. Physik 10, 155 (1931).
e M. Trautz and K. Sorg, Ann, d. Physik 10, 81 (1931).

f M. Trautz and F. Kurtz, Ann. d. Physik 9, 981 (1931).
g M. Trautz and E. Gabriel, Ann. d. Physik 11, 606 (1931).
h M. Trautz and A. Melster, Ann. d. Physik 7, 409 (1930).
i M. Trautz and W. Weizel, Ann. d. Physik 78, 305 (1925).
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TABLE IV. Values of a determined experimentally by Nier.

Species 2 Species 2 Temp. range Rp

C"H4 C"H4 296'—728'K 0.0080+ 5% 0.30
296'—573'K 0.0074 & 5% 0.27

Ne" 283'—617'K
90'-294'K
90'-195'K

0.0302 & 2% 0.71
0.0188~ 2% 0.44
0.0165~ .8% 0.39

105 mm —mg 1 —0.9679C/T 1+0.9771C/T
A=

118 my+my 1+C/T

105 mr, —mg 1 0.98C/T—
118mn+m~ 1+0.92C/T

1+0.9110C/T
(19)

(20)

where C is the constant which appears in the
Sutherland equation for the variation of viscosity
with temperature:

For a more detailed discussion of this case, and
for a derivation of the value of o. for the Lennard-
Jones model (L1), the reader is referred to the

hold to the same high degree that the coefficient
of viscosity is independent of the pressure. Nier
(N1 and N2) has pointed out that we may
expect n to increase with temperature because
as the molecules penetrate closer to one another,
the eA'ective hardness of the molecules will
increase. This tendency is evident in the vis-
cosity data presented in Table III, where n
usually decreases and R& increases as the tem-
perature rises. Nier (N2) has found that in the
temperature range 140' to 450'K, the constant
0. for neon varies approximately as the square
root of the absolute temperature (Table IV). In
the theory of the separation column which is
presented in Part II, cagnizance will be taken
of the fact that u may depend on the temperature

A temperature dependence for a is predicted
by the molecular model that was first considered
by Sutherland (S1 and S2), which considers the
molecules as elastic spheres surrounded by an
attractive field of force which falls off as the
inverse vth power of the distance. It has been
shown by Jones (J2) that for the case in which
u is taken equal to 7, the expression for a is

SUTHERLAND MODEL

paper by Jones. In this paper will also be found
a derivation of (9) and (10) from the general
theory of Enskog.

Equations* (20) and (21) are derived by
assuming that C/T is small and ignoring all
terms of higher order in 1/T. Equation (21) is
frequently used to approximate experimental
viscosity data even when C/T is not small com-
pared with unity, but there is no theoretical
justification for such usage, and therefore no
reason to suppose that n will be correctly pre-
dicted by (20) when the value of C is obtained
from viscosity data which require a value of C
which is not small compared with T.

Jones' has determined a as a function of tem-
perature for the Lennard-Jones 9,5 model, in
which the Iaw of intermolecular force is

F= a/r' «'/r'—.

The constants ~ and ~' are positive, and a
positive value of F corresponds to a repulsive
force. The results indicate that Rz rises slightly
as T decreases from a high temperature, and then
decreases, passing through zero when kT has
dropped to a value equal to about twice the
potential minimum e of the force law. Rp con-
tinues to drop as the temperature decreases, and
reaches a minimum of about —0.63 when k'1 is
about one-half of e. Rz then rises and approaches
zero as T decreases to zero.

Limitations of the Theory

Use of the First Approximation

It has already been stated that the theoretical
results which we have been quoting are derived
from the first approximation to the exact result
as given by the ratio of infinite determinants.
The first approximation to the exact expression
for the coefficients of viscosity, conductivity, and
self-diffusion of a simple gas are increased only
one or two percent by the higher approximations.
The error of the first approximation to the ther-.
mal diFfusion coeFficient, however, may be much
greater than one or two percent. This is shown

by a discussion of a Lorentzian gas.
A Lorentzian gas is a gas in which the lighter

* This paragraph and the following one were added in
February, 1946.' R. Clark Jones, Phys. Rev. 59, 1019—1033 (1941).



SEPA RATI ON OF I SOTO P ES

~ = 2(v —5)/(v —1) (22)

This result is exact in the limit mi/m2=0, ci ——0.
On the other hand, according to Chapman and
Cowling (CS, p. 254), the first approximation to
n in the same limit is

2 v 1

5 2 (3v —5)(v+1)

2 5 ( —1)'
(23)

Thus in this limiting case, the first approxima-
tion gives 10/13 of the exact value for elastic
spheres (v= ~), and 8/9 of the exact value for
v =9.The ratio of (22) and (23) approaches unity
as v approaches 5.

All of the coe$cients which relate to a mix-
ture of two gases are given rather poorly by the
first approximation in the Lorentz case, however.
For the elastic sphere model, the coeKcients of
diffusion, viscosity, and conductivity are given
with an error (CS, pp. 196—7) of 12, 8, and 15
percent, respectively, by the first approximation,
whereas these coefficients are given with an error
of only one or two percent in the case of a gas
mixture in which the molecules are nearly identi-
cal. It appears likely, therefore, that the value of
a as given by the first approximation is in error
by considerably less than 23 percent for the case
of isotopes. It is not possible to say anything
more definite until the theory of 0. has been more
completely developed.

Use of Classical Theory

The theory of Enskog is, of course, purely
classical, as are all the theoretical results which

particles have a mass which is only a small frac-
tion of the mass of the heavier particles, and in
which furthermore either the number or the
size of the heavier particles is much greater

. (CS, p. 187). The kinetic theory for such a gas
was first developed by Lorentz (L2). The mathe-
matical machinery for the study of this gas is
much simpler than it is in the general case, and
results may be obtained which are exact in the
limit in which the concentration and 'mass of the
lighter particles approaches zero.

It is shown by Enskog (E2, p. 750) in 1912
that for a Lorentzian gas in which the particles
interact with an inverse power field of index v,

the constant n has the value

25 I
( (c2 —ci),

472 d EmkTJ
(24)

where d is the diameter of the molecules, and
m is their average mass. The sign of this term is
such that if it were. the only term, the rarer
constituent would be more concentrated in the
hotter part of the gas. In the case of neon,

we have been quoting. It is of interest to inquire
into the changes that are involved in a quantum-.
mechanical treatment, such as that of Hellund
and Uehling (H1). In the first place, the zeroth
approximation. to the velocity distribution func-
tion is not a Maxwell-Boltzmann distribution,
but is a Fermi-Dirac or Bose-Einstein distribu-
tion, as the case may be. Secondly, the occupa-
tion number of a state enters into the probability
of a molecule's being scattered into it (a change
in the "Stosszahlamsotz"). Thirdly, the scattering
cross sections must be computed quantum-me-
chanically rather than classically. The quantum-
mechanical cross sections will differ from the
classical ones not only because of the ordinary
diffraction effects, but also because of the sym-
metry effect between identical particles, which
will remain eR'ective even for particles which are
sufficiently massive that the diffraction effects
are negligible.

The first two effects can scarcely be important
for gases at ordinary pressures and temperatures.
The third effect is undoubtedly appreciable under
these conditions, although the diffraction eR'ect
is not large; its negligibility depends upon the
smallness of the ratio of the de Broglie wave-
length to the diameter of the molecule. For hy-
drogen at room temperature the ratio X/d has
the value 0.2, and for heavier molecules this
ratio is given very roughly by 0.23II &, where M
is the molecular weight.

Because of the diR'erent symmetry of the wave
functions involved, the interaction between two
molecules of the same species and between a
molecule of species 1 and one of 'species 2 will
differ by an amount which does not depend on
the mass difference of species 1 and 2. The de-
tails of this effect have been worked out by Mott-
Smith (1lII2). For the case of elastic spheres, it is
found that the effect introduces another term
into the right member of Eq. (9); the additional
term is
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Mott-Smith finds that the magnitude of this
term is so small that it can account for only a
small part of the observed temperature variation
of e. The effect is less for other molecular models.

Comparison with Experiment

Very few direct determinations of a for iso-

topic mixtures have been made. Nier (N1 and
N2) has measured the constant n over two tem-
perature ranges for methane, and three tempera-
ture ranges for neon. His results are shown in

Table IV. These experimental results have been
compared with theory by one of the present
authors (J2). The comparison indicates that the
customary molecular models of kinetic theory
are hardly adequate to give a satisfactory ac-
count of thermal diffusion. These models are
quite satisfactory for the free-path phenomena to
which they have been applied in the past, but
they are not sufficiently precise to meet the
test of thermal diffusion. The best check between
experiment and theory is obtained for neon with
the Sutherland model. The use of this model,
however, places the entire burden of accounting
for the decrease of n with temperature on the
attractive part of the intermolecular force,
whereas in view of the smallness of this attractive
force as determined by other methods, it can
hardly be doubted that the decrease is actually
due to the increased "softness" of the repn/sive

force at low temperatures.
Stier' has measured* Rz for neon and argon

over the temperature range 129' to 720'K. The
experimental points all lie very close to the lines
represented by the following empirical relations:

Neon R~ ——0.25 log, T/26. 6,
Argon Rp ——0.25 log, T/86. 9.

The experimental data are all within 0.01 of the
values predicted by these equations.

The results are in approximate accord with
the predictions of the Lennard-Jones 9,5 model,
but there are important differences. The ex-
trapolation of the experimental results to zero
values of R~ yields temperatures, 26.6' and
86.9'K, which are in rough agreement with the
theory, but the linear dependence on the loga-

~ Louis Stier, Phys. Rev. 62, 548—551 (1942).*This paragraph and the following two were added in
February, 1946.

rithm of the temperature is not predicted by the
theory. Furthermore, the coefficient 0.25, which
occurs in both of the empirical equations, should
be perhaps 50 percent larger according to the
theory, although the comparison is difficult to
make because the theoretical curves are not
linear in the logarithm of the temperature.

The experimental values of Rz for both neon
and argon are all within 25 percent of the values
predicted from (16) on the basis of the viscosity
data for these two gases.

Seyaration Factor of a Convection-Free Unit

Before proceeding to a discussion of the separa-
tion column itself, we shall first examine the
separation that thermal diffusion can bring about
in the absence of convection currents. Equation
(2), when written in terms of n rather than Dr,
becomes

ci(vi —v) =Di2(ncic2 grad log T—grad ci). (25)

In the 6nal equilibrium state, we have not only
v=0 (no convection currents), but also vi=0
(steady state), so that (25) reduces to

grad c~ = O.c~c2 grad log l. (26)

This equation is easily integrated, if we re-
member that ci+c2 ——1, and if we assume that n
is independent of the temperature. The integral
of (26) is then

ci/c~=constant T~. (27)

In order to evaluate the constant of integration,
we shall let the subscript 1 refer to one given

IL DERIVATION OF THE TRANSPORT EQUATION

In this part we discuss first the functioning of
a single-stage, convection-free apparatus ("two-
bulb" apparatus). We then consider the Clusius-
Dickel apparatus, in which convection plays an
essential part. The transport equation is derived
by a simplified argument which brings out clearly
the nature of the physical processes occurring
in the apparatus. The results of more precise
calculations for gases of different properties and
for different geometrical conditions are then sum-
marized. The assumptions used in the deriva-
tion are discussed, and the e8ects of asymmetries
in the apparatus are estimated.
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point in the gas, and the subscript 2 to another.
(This use of subscripts should not be confused
with the use of the subscripts 1 and 2 on the
concentrations, where they refer to the lighter
and heavier isotope, respectively. ) We then have

(Cl/C2) 2 (T2 )q=
(Cl/C2) 1 E Tl )

T2 AT—1+n log —1+n . (28)
Tj T

The quantity on the left, which we have in-
dicated by g, is known as the separation factor,
and'is much used to indicate the degree of separa-
tion that is obtainable with the various methods
of isotope separation.

If we accept the value of Rr given in Table
III for N2, we then find from (10) that the value
of n for the mixture of N2'4 and N'4N" —the con-
centration of N2", since N" is rare, is about
-'2C22, and may therefore be neglected —is .0089,
and thus g is 1.0062 for a temperature ratio of
two. This value of q is to be compared with the
typical separation factors obtainable with single-
stage apparatus of other kinds, as given in Table
V. One sees that the separation factor obtain-
able from a single stage by therma, l diffusion is
somewhat less than that obtainable by other
methods.

The relation (27) holds for the final equilib-
rium in the general case of an enclosure in which
the temperature varies from point to point, pro-
vided that the left side of (25) can be set equal
to zero, that is, provided that there are no con-
vection currents in the enclosure. Equation (27)
thus holds also for the case in which a tube con-
nects a hot and cold reservoir with the respective
temperatures T2 and Tl. It is interesting to com-
pute for this case the time required for the con-
centrations in the reservoirs to approach their
equilibrium values.

Equilibrium Time of a Convection-Free Unit

Now, in order to calculate the equilibrium time
in any simple manner, it is necessary to make a
restricting assumption which, since it is also in-
volved in the theory of the separation column
itself, we shall give a special name: The Quasi
Stationary Assumption. In order to determine the

TABLE V. Typical separation factors obtainable in a
single stage by several methods of isotope separation, for
the mixture N'4q and N'4N". With the exception of the
case of thermal diffusion, the values are those given by
Walcher (W1).

Method

Hertz pump
Centrifuge
Distillation
Chemical exchange reaction
Thermal diffusion

1.10
1.05
1.02
1.02
1.006

I. T
The equation of continuity of species 1 by itself is

div pclvi —— Bpci//Bt— (30)

equilibrium time, it is first necessary to compute
the rate of transport of, say, the lighter isotope
to the warmer reservoir, and then to compute
the rate of change of the concentration in the
reservoir from this transport. The quasi-sta-
tionary assumption consists in assuming that the
time rate of change of the processes occurring
within the connecting tube is sufficiently small
that the transport between the two reservoirs at
any given time during the separation does not
differ signi6cantly from the steady-state transport
that would be obtained if the concentrations of
the reservoir's were held constant at the values in
question. This condition is obviously satisfied if
the volume of each of the reservoirs is much
larger than the volume of the tube itself.

Throughout this article we shall neglect the
dependence of p on cl. Not only is this dependence
slight in the case of nearly all isotopic mixtures,
but also the change in cl within any given unit
of apparatus will usually not be very large.

We proceed with the calculation. Since . the
gas as a whole is at rest, v=o. We assume for
simplicity that the temperature gradient is con-
stant along the connecting tube, and is therefore
dT/dz=hT/L, where z is the coordinate along
the tube, and where L is the length of the tube;
this assumption also permits us to change the
independent variable from s.to T. Finally, we
replace the factor c~c2 which occurs in the middle
term of (25) by its average value. This approxi-
mation is permissible since the variation. of c~c~

will be small if 0. is small, as we assume to be
the case. Then (25) becomes

DDT n(clc2)2„dc. l
CiVt= (29)

dT
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pD DT t' dciq
pcivi =

i n(cic2)A& —T
T L E dT)

(31)

Since we are here concerned with a steady-state
problem, by virtue of the quasi-stationary as-
sumption, we have that pc~v~ is independent of x,
and therefore of T. In a gas, p varies inversely as
T, and it is a fair approximation to assume that
D varies as T'. Multiplying both sides of (29)
by p, we have

Here

I m m~ T T2
tg ~ ~ 0 log

pDS m. +m~ hT Ti
(38)

t

is the time required for the concentration di6'er-

ence to rise to a fraction (1—1/e) of its equi-
librium value. Such a time is often called a "re-
laxation time. " The value of (Aci)„;~ in this
approximation is obtained by setting equal to
zero the left side of (32):

This equation can be integrated easily, since

pcivi and (pD/T) are constants. Integrating and

applying the boundary conditions at the two
ends, we find

T2 AT
(Ac 1)equil = ~clc2 log —~ txcic2

Tg T
(39)

( dCib
m,

) )
= pciviS,

I dt),
and in the cold reservoir

(dc2) (dci)
m

I (
= —m( I

=pcvs,
4 dt ) g ( dt ) 2

from which we find

dhc& ]1 1 q
— = pciviS/ —+—f.

dt &m, mg)

(33)

(34)

(35)

Putting in the expression (32) for pcivi, we have
an equation of the form

dAc&/dt =a bAci, —(36)

which indicates a simple exponential approach
to equilibrium. If we let t=0 when the con-
centration difference is zero, the solution of
(36) is

At i = (Aci)~q~u(1 s ")~

PDAT( T2)
pcivi =

~
~(cic2)A„—Dci log —

~, (32)
T I. & T,)

where hc~ is the difference of c~ in the hot and
cold reservoirs. Now the product of the quantity
on the left and S, the cross section of the tube, is

clearly the rate at which species 1 is being de-
livered to the hotter reservoir, in grams per
second. Since the gas as a whole is at rest, an
equal quantity of species 2 is being delivered to
the cold reservoir. Let the masses of gas in the
hot and cold reservoirs be indicated by m~ and
m„respectively. Then clearly we have in the
hot reservoir

It is seen that t„ is independent of the tem-
perature difference hT if AT is small compared
with T. The relaxation time is proportional to
the pressure if the volume of the reservoirs is
constant, whereas it is independent of the pres-
sure if the volumes are varied so that the mass
contained is constant.

A knowledge of t„ is important in the experi-
mental measurement of n, for which Nier (N1
and N2) has used a single-stage apparatus of the
type just discussed.

We have gone into some detail in the treat-
ment of this simple case because the methods
used are similar to those which we shall use in
treating the separation column. In the separation
column, also, we shall find that our formulae
appear more complicated than they are because
of a large accumulation of physical constants
which do not inhuence the nature of the mathe-
matical treatment.

The Separation Column of Clusius and Dickel

It might at first be thought that the addition
of convection currents would always serve to
reduce the separation below the amount indi-
cated by (28). Indeed, this seems to have been
assumed tacitly, and sometimes explicitly, by
many of the earlier writers on thermal diffusion.
It was the great achievement of Clusius and
Dickel (C9), however, to point out that convec-
tion currents could be utilized to secure rela-
tively enormous separation factors. Using 36
meters of separation column, they obtained a
separation factor of 4000 in separating HC1"
from HC1", whereas the g obtainable in a single-



SE PA RAT I ON QF ISOTOPES 165

stage apparatus of the type considered at the
beginning of this section would be about 1.01.
The 36 meters of column were thus very roughly
equivalent to 800 single stages, or about 20
stages per meter.

The apparatus used by Clusius and Dickel
was surprisingly simple. It consisted essentially
of a long vertical tube, closed at both ends, and
containing a gas at approximately atmospheric
pressure; along the axis of the tube was passed a
wire which could be heated to a high temperature
by an electric current. The effect of thermal
diffusion is to drive the lighter molecules toward
the hot wire, so that they enter the rising con-
vection current which exists near the wire. The
lighter molecules are thus carried upward, and
the heavier ones downward, so that a concen-
tration gradient is set up along the tube. On the
other hand, the two convection currents, one
rising near the wire, and the other descending
near the cooled wall of the tube, are essentially
mixing processes, which tend to neutralize any
concentration gradient along the tube. The final
equilibrium concentration gradient along the
tube will therefore result from a compromise
among these two effects and a third, the remix-
ing eSect of ordinary diffusion along the tube.

This situation has received quantitative treat-
ment at the hands of Waldmann (W2, with a
preliminary announcement W3, which, however,
contains numerical errors), van der Grinten (G1),
and Furry, Jones, and Onsager (F1).All of these
treatments ignore the cylindrical aspect of the
apparatus, however, and treat the processes as
though they occurred in the space between two
plane and parallel walls, one of which is warmer
than the other. The treatments of Waldmann and
of van der Grinten are further restricted to the
case in which the temperature difference of the
walls is small, inasmuch as their treatments ig-
nore the temperature dependences of the relevant
properties p, X, it, and D. Furry, Jones, and
Onsager obtain the solution for a fluid whose
properties have any given temperature de-
pendence in terms of certain definite integrals
(Eqs. (57)—(62) below), and present explicit
solutions for a gas in which ), g, and D have the
temperature dependences of a Maxwellian gas,
and also for a gas whose properties have the
temperature dependences characteristic of a gas

consisting of hard elastic spheres (Eqs. (78)—
(94) below).

The treatment of Furry, Jones, and Onsager
was later extended by Furry and Jones (F4) to
cover the cylindrical case. General solutions are
obtained, and an explicit solution is obtained for
the Maxwellian case (Eqs. (100)—(117) below).

The treatment chosen for presentation here is
not one of those mentioned above, however, but
is one which the authors have found suitable for
presentation at seminars and colloquia during
the past year. It was chosen not because of its
exactness, for it is less precise than any of the
treatments mentioned above, but rather because
of its mathematical simplicity and because of
the clarity with which it brings out the nature
of the processes occurring in the separation
column. The more precise treatments all suffer
from the disadvantage that they are somewhat
long and involved, with the result that the reader
is likely to get lost in the mathematics while

trying to understand the purely physical aspects
of the situation.

E1ementary Derivation of the Transport Equation

The derivation presented below breaks natu-
rally into two parts. We shall erst consider the
purely hydrodynamical problem of the convec-
tion current set up between the hot and cold
walls. We shall then rather simply derive an ex-
pression giving the total transport oF the lighter
isotope up the tube.

Two important approximations are used in the
derivation. First, we shall follow Waldmann in

ignoring the temperature dependence of p, g, X,

and D, except that in the computation of the
convection velocity the density p is represented
rather more accurately by a linear function of T.
Second, we shall use a highly schematized model
to represent the convection process. In this model
each of the two columns of gas, one moving up-
ward and the other downward, has a velocity
constant across its cross section. Thus the only
result of the hydrodynamical calculation which
is required in the further considerations is a
suitable value for the velocity 8 of each column.

In the actual apparatus, the processes of con-
vection and diffusion take place in the annular
space between the two concentric cylinders, the
inner one hot, and the outer cold. We shall not,
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however, consider the cylindrical, aspect of the
apparatus, but rather we shall consider that the
apparatus consists of a hot plane wall, with a
cold wall parallel to it at a distance of 2m. The
walls are to have a height I and a breadth B.
The coordinate along the length of the column
is z; the coordinate along the breadth is y; and
the coordinate perpendicular to the walls we

shall call x. We shall assign to x the value to at
the hot wall, and the value —w at the cold wall.

COLD HOt

W X

The IIydrodynum~cal EroMenz

As we shall show later on in this section, the
convective How may be assumed to be free from
turbulence. It will also be shown that the tem-
perature distribution is that determined by con-
duction alone. The hydrodynamical equation for
steady non-turbulent flow under the influence of
gravity is

(div rt grad) v = —(body force)
=grad P pg, (40)—

which in the present case reduces to

(41)

FIG. 1. Showing the form of the convection currents
between the hot and cold walls of the separation column.
The form indicated by the solid curve is correct only when
the temperature difference is small; for larger temperature
differences, the curve is no longer symmetrical. The simple
treatment described in the text involves replacing the
solid curve by the dashed curve.

One sees that this represents an upward flow in
the space on the hotter side of the median plane,
and a downward flow of gas on the colder side.
In order to flnd the velocity 8 which a column of
width m and breadth B must have in our simpli-
6ed model in order that it shall represent the
same Row as one of the actual columns, we must
average v over half of the space between the
walls:

Everywhere else in the calculations we shall

identify p with its mean value p. Here, however,
in order to calculate a non-vanishing value of
v„we must use a better approximation for p.
The best linear approximation is

The approximation A=constant makes the tem-
perature a linear function of x:

T= 7+x'.T/2w. (43)

Substituting these values into (41), we obtain

d'v AT
= —pg-

Qx 2K'T

pgAT
p = x(w' —x').

12gZUQ
(43)

I

where we write p rather than p, since from now

on p is to be regarded as a constant.
Integrating (44) and using the fact that v

vanishes for x= &m, we have

pW .. po

v =m-' vdx = —m-' vdx
~-W

= (pa~'/488) (~T/&) (46)

The schematized model which we shall use from
now on corresponds to replacing the actual flow

by that indicated by the dashed lines in Fig. 1.

Determination of the Transport

The total transport of gas up the tube is zero,
since the cross sections and densities of the two
columns are equal, whereas the velocities are
equal and opposite. If, however, the average
value of c~ is larger in the hotter column than it
is in the colder, there will be a net transport of '

the lighter molecules up the tube; the eKect of
thermal di6'usion is just such as to produce this
variation in c~. Since there will also be a transport
down the tube because of ordinary diffusion, we
may write for the total transport of the lighter
isotope up the tube

ri =p(ci ci )vwB 2wBpD—(Bci/Bz), (4'/)—
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hT
pc»»= pDI ~c&c2

2wF

g II g I)
(48)

w i

and pcrv» expresses directly the transverse flow

of the lighter constituent in grams per unit area
per second. Since the thickness of each column
is w, we see that crrrp is increased at the rate
pcrv»/w, while crrp is decreased at the same rate.

where cr and crr are the mean values of cr in
the hotter and colder columns, respectively, and
cr as used in the last term means the average of
these two values, which differ from each other
by a very small amount.

The time has now come when we must use the
quasi-stationary assumption. A more drastic
form of this assumption than is needed here
has already been used in the computation of the
equilibrium time of a single-stage apparatus. We
assume here that the transport at any point
along the tube depends only on the values of
cr and Bcr/Bs at that point, and does not depend
appreciably on the time rates of change of cr a,nd
Bcr/Bs. This is not really an assumption, but is a
theorem which can be proved, as we shall dis-
cuss in detail later on in this section. The conse-
quence of this assumption is that the result of a
computa, tion of the transport for a steady-state
condition holds also for the non-equilibrium
state. We shall not impede the derivation by
dwelling further on this point here, but we shall
return to it later.

Since we have reduced the problem to one
involving only a steady state, it is clear that the
effects which tend to change the value of crrr —crr

must add to zero. There are two such effects;
the movement of the columns causes c» to
decrease by the amount 8(Bcr/Bs) per second,
and crr to increase by the same amount. The
effect of the convection is thus to increase c»
—cr at the rate —28(Bcr/Bs). The other effect is
the transverse Row of the lighter molecules which
is caused by diffusion and thermal diffusion.
Since the distance between the centers of the
columns is w, we may take (cr' —cr )/w as an
approximate expression for the transverse con-
centration gradient Bcr/Bx Acorre.sponding ap-
proximate value for B log T/Bx is hT/(2wT).
Substitution in Eq. (25) gives

The total rate of change of crr' —crr, which must
be zero, is thus

or by (48)

(2crv»/w) 2—8(Bcr/Bs) =0, (49)

Substitution of this value in (47) then gives

'rr =wBpv ' (0!kT/2 T)crc2
—{wBp8 (8w'/D)+2wB pD I (Bcr/Bs). (52)

Substituting in (52) the expression (46) for 8, we
obtain the following explicit. formula for the
transport of the lighter constituent up the tube:

sr ——Hcr(1 —cr) —(X.+Kg) (dcr/ds), (53)

where H, Z„and Zq are constants defined by

ap'gw'B ]ET~ '
H=

96' ( T ~

p'g'w'B ]b,T~ '
z, =

2304 'rDl( T )
Xg = 2KBpD.

(55)

(56)

In Eq. (53), dcr/ds is written as a total de-
rivative in order to stress the fact that the varia-
tion of cr with x need not be considered in any
of the applications of the transport equation
(53). It is not that the small transverse variation
of c is not important, but rather that its efkct is
taken into account by the coefficients H and Z„
and need not be considered further.

The three terms in the transport equation all
have simple interpretations: the first and positive
term represents the flow contributed by thermal
diffusion; the last two terms represent remixing
due to the corivection currents, and to ordinary
diffusion along the tube, respectively. The physi-
cal meaning of the terms may be seen most
clearly from the way they are written in Eq.
(52). The factor wBp8 is the total convective
transport in a column; (ab. T2/T)c crg is the dif-
ference between the mean concentrations in the
columns caused by thermal diffusion, as limited
by the equalizing effect of ordinary diffusion; and '

(D/w') {c!.crcn(h T/2T) —(c,rr c,r
—8(Bc,/Bs) =O. (50)

Equation (50) may now be solved for c&r —err..

c,'r err —nc&——c2(d, T/2 T) —(8w'/D) (Bcr/Bs) . (51)
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—(8w'/D)(8ci/Bz) is the difference between the
concentrations in the columns brought about by
convection, limited by diffusion. In the last term
the factor 2mB is the cross-sectional area of the
tube, and pD—(8ci/Bz) is the longitudinal flow

per unit area caused by diffusion.
The transport coefficients which have just

been derived become identical with the H&'),

X,&'&, and X&&" of Eqs. (70)—(72) below when

they are multiplied by the respective numerical
factors 16/15, 256/315, and unity. The dis-

crepancy is due entirely to the use of a simplified

picture of the convection process.
The transport equation (53) will be discussed

in detail in Part III. The remainder of this sec-
tion wi11 be devoted to the presentation of the
results obtained by more precise calculations for
the plane and for the cylindrical case, to a dis-
cussion of the assumptions involved in this sort
of treatment of the problem, and to considera-
tions on the effects of asymmetry in the ap-
paratus.

d 1 d rt d 1 d (pD ) dp
(61)

dT) dT) dT)pdT~), i dT

which satisfies the boundary conditions

G(T,) =G(T2) =G'(Ti) =G (T2) =0; (62)

and T2 and T~ are the temperatures of the hot
and cold wall. Equation (61) for G(T) is a very
simple differential equation, since it can always
be solved by quadratures. Without specifying
the manner in which p, ), q, and D depend on
T, the solution cannot be given in any more
explicit form, except in the case in which the
difference of the temperatures of the walls is so
small that the variation in these quantities is
negligible and may be ignored. In this case, the
solution of (61) and (62) is

G(T) = (X4gp/24gD) (T2—T)'(T—Ti)' (63)

where P is the temperature coefficient of the
density:

(64)
I

More accurate Treatment of the plane Case Equ tion (60) reduces to

(65)w = )AT/2Q.

(66)

(68)E & ) =2mpDB.

The derivation of the transport equation which
has just been presented can be improved in two The substitution of (63) and (65) in (57)—(59) now
major respects. In the first place, the sums over leads to the explicit expressions
the columns should be replaced by integrations
with respect to x, and secondly, the properties II(o)—

(2io)'pnPgB(DT) '

0, , p, ), q, and D should be treated as tempera- 6!gT
ture dependent quantities. Both of these steps
wer'e taken by Furry„Jones, and Onsager (F1) (2~)'g'l3'p J3(»)'
in their treatment. The following expressions 9f 2D
were found for ~, &., and Zd.'

r2

II= (8/Q') ~ (pDn/) T)G(T)dT, (57)
Jp,

&.= (&/Q') (pD/)) I G(T) I 'd T (58)
~r1

Xg ——(8/Q) )pDd T,

where Q is defined by

T2

Q = (2io)-' ),d T.
4 pg

the function G(T) is the solution of

These are the expressions for II, X., and X~
for any gas or liquid, provided that the tempera-
ture range in question is sufficiently small, so
that the variations of n, p, )., g, P, and D are
small. They are usually fair approximations even
in the case that hT is not small, if one uses mean
values for the temperature dependent quan-
tities in (66)—(68).

Specialization of the Formulae for Gases

In the case of a gas,

P= p/T,

so that (66)—(68) become



SEPARATION OF I SO TO P E S 169

(2u))'p'agB ()).T) '
H(())—

6!& E T)
(2t())'p'g'8 (hT) '

I(,-, (o)

9!))'D ( T )
~&(o) 2~pDB

(70)

(71)

(72)

A molecular model whose predictions with
respect to the temperature dependences of g, X,
and D are in good agreement with experiment
is the inverse power mode1 which was discussed
in Part I. If all the molecules in the gas repel one
another with a force which varies as the inverse
vth power of the distance of separation, and if c,
is independent of the temperature (a condition
which holds very well for monatomic gases), then
the following five quantities should be inde-
pendent of the temperature and pressure:

(n/T"), &~I/T" ), (pD/T") ' (n/&), (pD/&), (73)

where n is related to ) by Eq. (13).The number
n is unity for a Maxwellian. gas, and one-half for
a gas consisting of hard spheres. The experi-
mental values of n for nearly all gases lie between
0.6 and 1.0, as may be seen from Table III.

Although the inverse power model predicts
that 0. is zero in the Maxwellian case, gases such
as HC! may follow the Maxwellian behavior
quite closely with respect to the temperature de-
pendence of t), X,, and D, but in spite of this have
a non-vanishing 0,. This behavior is traceable to
the fact that the inverse power model is inad-
quate for an accurate description of the phe-
nomenon of thermal diffusion, even though it is
quite satisfactory for the simple free path phe-
nomena of viscosity, heat conduction, and
ordinary diff'usion; this matter has already been
discussed in Part I. The assumption that g, ),
and D have a Maxwellian dependence on tem-
perature leads to much simpler results than any
other assumption, and is in general a better
approximation than the hard sphere model.

The constancy of the quantities in (73)
brings about a great simplification in the dif-
ferential equation (61) for G(T); it reduces to

'
1

~4pg
1 (74)

dT T"dT'T" 'dT T'lr(DT'" '1

where the bracketed factor in the right member
is independent of T. The solution of (61) which

satisfies the boundary conditions is easily written
as the ratio of a 6ve-rowed determinant to one of
its minors, and there would be no difficulty
except great algebraic complexity in obtaining
the explicit expressions for H and X, for any
value of n. We shall present here only the solu-
tions for n=1, and n= —', .

For I=1, the solution of (61) and (62) is
simple in form

G(T) =— ii'g p (Ts —T) '(T—T,) '

12t)D Ts+ Ti
(75)

and the relation between t() and Q is also simple:

w ='Ab, T/2Q, (76)

where X is to be evaluated at the mes, n tem-
perature.

The substitution of (75) in (57) and (58), and
the elimination of Q by means of (76) then lead
to explicit expressions for H and X,. The trans-
port coefficient Zq is of course determined by
direct integration in the light of the constancy
of the expressions (73).

When the various indicated substitutions,
integrations, and eliminations are performed, it
is found. possible to express the results in terms of
correction factors to be applied to H~'&, X,& &, and
Xz(s) as defined by (70)—(72). We introduce the
abbreviation

u = (Ts —Ti)/(Ts+ Ti). (77)

135 1 3.5=H(')1 1+ u'+ u'+ ~ ~
1 (79)

3 5 ' 7 5 7 9

if 0. is independent of T;
13513

H(o)1 1y35724
135135 7

+ u4+".
1 (80))5 792468

3 Equation (75) was in error by a factor of two in F1.
The error was one of copying, and does not inva1idate any
of the fo11owing equations in Fj..

If now the quantities n, p, ti, X, T, and D which
occur in H„X„and E~ are evaluated at the
mean temperature T=-,'(Ts+Ti), we have for
n = 1 (Maxwellian case):

H =H(')y(u)
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if tr varies as T&; and

if a is proportional to 1;
(82)

(83)

for o& ~ T. For ratios (Ts/Ti) (4, neither of these
differs from the values for constant n by more
than one percent. The coefFicients X.and E ~ are
given by'

(91)

E,=X,&''('1+ 4.0612r'+4 7439r' +. ), (93)

and

Es ——Xs &'& (1+r') &/(1+ —s'r')

=Xq&'&(1+ qr' —(13/72)r'+ . ). (94)

g(u) = (5/16u') {10u' —6u
+3(1—u')' log [(1+u)/(1 —u) j } (84)

which enters into H has the value 1.016 for a
temperature ratio of two, the value 1.039 for a
temperature ratio of three, and the value 5/4 for
an infinite temperature ratio (u= 1).

The case in which ii, ), and D have a tem-
perature dependence corresponding to n=-,'is
less simple. We introduce the abbreviation

For (T2/Ti) =2, the values of H, I&, and X'q

for n = ~ are, respectively, 1.069, 1.124, and 0.968
as great as their values for the n = 1 ca,se.

The relations presented here for n = 1 and
n=si represent an extension and simplification
of the results derived by Furry, Jones, and
Onsager (Fi).

+2k ~ 7 gk

(85)
Ts&+ Ti& 1+(1—u') &

In these expressions, H&'&, X,&", and Xq( ) as w(r) = 1 (692/825)r'+(146/2475)r'
defined by (70)—(72) are to be evaluated at the + (4/75)r'+ (17/7425) r', (92)
mean temperature f'. The function'

Here P(r) is given by

17
4(r) =1—r'—

35

16 16

315 1485
~ ~ . ~

if u is independent of T; then

If now H&'&, X,"', and Ks"' are evaluated at the
mean temperature 2', we find for n=-,'(gas of
hard spheres):

(1+r')"V(r)a=II«&
(1+sr')'(1 —sr')

The Cylindrical Case

All of the considerations so far have applied
to the plane-parallel type of apparatus. The
extension of the theory to take accou'nt of the
cylindrical shape of the actual apparatus is
simple in principle, but is much more complicated
in execution. The extension has been carried out
by Furry and Jones (F4), who find as the general
solution

II= (2s/Qis) (pDn/) T)G(T)dT, (95)

H =H'" (1+2.8810r'+ 1.9734r'+ ). (88)

The cases o&o: T& and rr 4c T have also been
worked out. One obtains

p
Tl

E,= (2s./Qir) (pD/X) G'(T)d T, (96)

28 1
P(r) =1— r' — r4——

35 35

for 0. ~ T&, and

(89)
Xs= (2~/Qi)

~

r'XpDd T,
Tg

where G(T) is now the solution of

(97)

2
f(r) =1——r' ——r4

5 25

d 1 died 1 d(pD i dp
(90} — ——— —

I (T) I
= —a—(98)

dTXr'dTXdTXpr'dT & ) ~ dT

4The function p(u) is the same as the f(2N) of Furry,
Jones, and Onsager (Fi).

4 The coefficient of r' in Eq. (92) was incorrectly stated
as 13/7425 in Fi.
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which satisfies the boundary conditions (62),
and where 2mQi is the heat flow per centimeter
of tube length per second. The following relation
holds between Qi and the radii of the inner and
outer tubes:

Z.=Z.«& {1+-',u'+h. ,(u) log (r,/rm)

+hq2(u) {log (ri/r~) }'+ ' }, (102)

hi(u) = 1.010u+0.165u'+0.059u'+, (103)

hm(u) = —0.174+0.496u'+0.088u4+ ~, (104)
T2ri

Qi log —=
r2

(99) h, i(u) = 1.721u, (105)

(106)
The equation (98) for G(T) is formally very

similar to the equation (61) for G(T) in the plane
case, but the presence of the variable r, which
must be considered as a function of T, compli-
cates the nature of the solution to such an extent
that only the Maxwellian case has been treated.
The Waldmann approximation leads to a slightly
simpler solution, but this approximation is par-
ticularly bad in the cylindrical case, where the
range of temperature that may readily be used
is much greater than in the plane case.

The exact solution of (98) for the Maxwellian
case has been obtained. It will not be given here
because it is very complicated in form, involving
exponentials and error functions of two different
arguments. Unfortunately, the integral in (95)
which yields H cannot be evaluated analytically,
but must be performed by numerical quadrature.
This restriction is particularly unfortunate
because the cylindrical case involves two inde-
pendent parameters, the ratio of the radii ri/r2
and the ratio of the temperatures Ti/Tm, so that
many numerical integrations would be required
to cover the range of possible types of apparatus.

h.2(u) = —0.213+1.505u',

4& (u) = —0.333u+ 0.067u',

hd2 (u) = —0.022u'+ 0.01Ou4. (108)

Here H&'&, X,"&, and X&&'& are as given by (70)—
(72), with n, p, q, X, T, and D evaluated at
the mean temperature, and with 2w=r~ —r2,
B=~(ri+r2); p(u) is the function defined by
(79) and (84).

The formula for Hgiven ab'ove is that for n
independent of T. For n ~ T one obtains instead

H=H&'& {1+hi(u) log (ri/rm)

+h (u) {log (r /r )}'+ } (1o9)

(110)

(111)

hi(u) = 0.838u,

h2(u) = —0.174+0.363u'

if n is evaluated at the mean temperature. The
remarkable lack of sensitivity to the temperature
dependence of 0, , which is shown by the results
for the plane case, is not retained in the cylin-
drical case.

The Extreme Cylindrical Case

H=H&0& {y(u)+h, (u) log (r,/r, )

+h2(u) {log (ri/r2) }'+ }, (100)

+h "(u) {log ("/")}'+ "}, (»1)

1&..=K.&0'{1+h.i(u) log (ri/r~)

The Nearly Plane Case

Fortunately, however, approximate solutions
are available for the cases which are of chief
interest in practice. For the case in which the
ratio of the radii is not large (ri/r~~e=2. 718),
the coefficients of the transport equation may be
expressed as ascending power series in log ri/r2.
The derivation is tedious and will not be given
here. The result is

t=(X/QiT)& T. (112)

The specification of t~ and t2 is equivalent to the
specification of ri/r2 and Ti/T2, as is evident
from the following two relations

log (,/, ) =-', (t,' —t, ),

t2/tl = T2/Tl.

(113)
' (114)

If the ratio of the radii is larger than about ten
or fifteen, another approximate method is pos-
sible. For a given value of t~, five numerical
integrations suf6ce to determine II and X, for
all values of t2 which correspond to a ratio of

The case in which ri/r2 is large is conveniently
discussed with the assistance of a reduced tem-
perature, defined by
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TABLE VI. Values of h (Maxwellian gas, n= 1).

r I /r 2

T2/TI
15

0.059
0.091
0.092
0.075

25

0.059
0.098
0.103
0.092

40

0.100
0.109
0.103
0.085

60

0.101
0.113
0.108
0.093

100

0.100
0.116
0.114
0.102

radii greater than ten or fifteen. In case of large
cylindricity, therefore, the problem has been
reduced to one involving only one parameter so
far as the numerical integration is concerned. .

In the extreme cylindrical case, a large part
of the gas is at a temperature not very much
greater than T~. In writing down our defining
equations for the "shape factors" of the trans-
port coefficients H, X., X& we accordingly
specify that the quantities g, p, ), D shall be
evaluated at the temperature T1 of the outer
tube. We write

The subscript 1 emphasizes that the quantities
in question are to be evaluated at T1.

Tables VI—VIII were obtained by graphical
interpolation from the results of numerical
integrations which have been carried out. They
are for the "Maxwellian case, " n=1, and for 0.

independent of temperature.
A rather surprising feature of these results is

the great difference between the dependences of
H and X,on Ts/T& in the extreme cylindrical case
and in the plane case. Whereas in the plane case
both coefficients increase (as (AT/7)') with
increasing Ts/Ti, in the extreme cylindrical case
H is rather insensitive to this ratio and X,
decreases strongly as Ts/Ti increases. In both
cases there is an increase with increasing Ts/Ti
of the ratio IP/X„which may be taken as a
measure of the effectiveness of the separation
process (cf. Eq. (333)).

The nature of the results found for the highly
cylindrical case would scarcely be expected
without calculation, but can be made plausible

H= (2~/6!)(np'g/ii)& ri'h(Ts/Ti ri/rs), (115)

X,= (27r/9!)(p g'/rt'D)i ri

~ h, (Ts/T„r, /r, ), (116)

Xq ——2a (pD) i ri' hg(Ts/Ti, r i/rs) .

by physical considerations. For high values of T2
the gas near the hot wire becomes highly con-
ductive of heat and very viscous. This has the
effect of reducing the convective flow. Now H
depends on both the convective flow, which is
decreased, and on the effectiveness of thermal
diffusion, which is increased; E„on the other
hand, depends only on the convective flow, and
indeed quadratically (cf. Eq. (52)).

This behavior of H and E, should be of con-
siderable importance in practice. It seems likely
that it depends rather strongly on the tem-
perature dependences of the gas coefficients, and
for this reason numerical calculations for the
case n =-'„which is in a sense the other limiting
case, would be desirable.

It seems likely that the value of H would be
rather strongly influenced by any marked tem-
perature dependence which the factor n might
have. Since the assumptions n~ T& and n~ T
are quite artificial and probably decidedly lacking
in verisimilitude, numerical integrations were
not carried through for such cases. Whenever a
temperature dependence of o. for a given gas may
become reasonably well known empirically, it
can be used together with tabulated results (F4)
to carry out an ad hoc numerical integration for
the value of H.

Discussion of the Assumptions Used in
the Treatment

TABLE VII. Values of k, (Maxwellian gas, I= 1).

rz/r2
T2/TI

40 60 100

0.0144
0.0095
0.0045
0.0022

0.0184
0.0130 .0.0162
0.0068 0.0088
0.0034 0.0046

0.0025

0.0183 0.0207
0.0105 0.0128
0.0056 0.0072
0.0031 0.0040

The Question of Turbulence

All of the results derived or presented so far
in this section have depended upon the assump-
tion of non-turbulent convective flow. The
characteristic quantity which is involved in
questions of turbulence is the Reynolds number,
R=vpl/il, where v is a velocity and I a length
characteristic of the problem in question. If on
the basis of our simplified derivation, we takt„
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v = v, and I =m, we have for the Reynolds numbers TABLE VIII. Values of kd (Maxwellian gas, n = 1).

zoagp2 5T
R=

48g' 7'.

In view of the relation D = (6/5) f(v) z/p (Eq. (18)
of Part I), we have the simple relation

R=1 57(.6f(v)/5)(K, &'&/Ks&'&)i (119)

Tg/Ty

2
3

5
6

r1/re 15

0.61
0.75
0.91
1.08

25

0.60
0.73
0.87
1.01

40

0.70
0.83
0.97
1.11

60

0.68
0.81
0.94
1.07

100

0.67
0.78
0.90
1.03

=2 (K."&/Ks &'&) '*. (120)

Onsager and Watson (01), who 6rst pointed out
the existence of a relation of the form (119),
have shown experimentally that with apparatus
of the plane type, spontaneous turbulence occurs
for R greater than about 25. The relation (119)
thus puts an upper limit on the ratio of X, to
X~, in fact, in order to insure that any dis-
turbances caused by slight irregularities in the
tube are quickly damped out, R should be sub-
stantially less than its critical value. If we take
10 as the maximum permissible value of R, it
follows from (120) that Ks must not be made
less than (K,/25). Since the maximum separation
factor for a given length of tube is obtained for
K& equal to 2K. (Part III, Eq. (155)), this re-
striction is unimportant when one is interested
in obtaining a maximum separation factor. We
are usually, however, not interested in getting a
given separation factor in as short a length as
possible, but are rather interested in obtaining
the most efficient production of concentrated
material. As we shall see in Part III, e%cient
operation demands that K's be made sisal/ com-
pared with K,. Equation (120) permits us to
satisfy this condition.

The limitation on the smallness of Ke/K, is
also important in another respect. For a given
ratio 8/w or r~/rs, Ks/K. is inversely propor-
tional to ws or rts The limita. tion on Ks/K, thus
puts an upper limit on ut or rt, and therefore also
puts an upper limit on the value of H, which is
proportional to m' or r14. This limitation on H
will often make it necessary to use several tubes
in parallel for some of the stages of efficient
multi-stage apparatus.

The definition (118) of the Reynolds number is that
given in F1. Onsager and Watson I'01) employ a different
definition of the Reynolds number, with the result that all
of the values of R given by them should be divided by 6.16
to agree with ours. It does not matter, of course, which
definition is used as long as it is used consistently.

The arguments given above apply directly to
'the plane case, or, in practice, to the "nearly
plane" cylindrical case, in which the hot and
cold walls are the surfaces of cylinders of nearly
the same radius. For the extreme cylindrical
case, that of a hot wire along the axis of a tube,
it is evident on dimensional grounds that the
Reynolds number R may be taken to be defined

by (119). There are at present, however, no
direct experimental determinations of the values
of R at which turbulence occurs in extreme
cylindrical cases. It seems highly desirable that
experiments similar to those of Onsager and
Watson should be performed for such cases.

The relation

BIJCy
R.

2'A

tIC„/X = —,
'

(121)

(122)

holds very closely for monatomic gases, and
fairly well for polyatomic gases (C5, p. 241). We
thus find the very simple relation

I, =mR/5. (123)

This "relaxation length" may be compared with
the length of tube necessary to give a separation
factor 1+n(AT/T), which is roughly that of a
single stage apparatus (cf. Eq. (28)). According

The Tenzperoture Distribution

All of the results so far presented or derived
have also depended upon the assumption that
the temperature distribution is that determined

by conduction alone. A crude argument on the
basis of the simple two-column model is suf-
ficient to show that the length of tube at either
end of the column, in which the temperature dis-
tribution differs from that determined by con-
duction, is of the. order
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to Eq. (150) this "length per stage" is given by

(124)lg ——(nhT/T) (X,r'&+Xd &'&)/H &'&

= (2/63) I (pa~'»)/(~& &) I

~
t 1+(Xg &'&/X, &'~) I, (125)

= (32/21)(g/pD) Rrv I 1+(Xg&»/X, r'&) I, (126)

= I 1+(X~&'&/X. &'&) I Rrv. (127)

Thus /„ is only a rather small fraction of /j. It
is reasonable to suppose that this conclusion is
also valid for the extreme cylindrical case.

The Quasi-Stationary Assumption

This assumption is of decisive importance in
the elementary approximate argument by which
we have derived the transport equation. It is
also involved in the work of Furry, Jones, and
Onsager on which are based the more accurate
results which have been quoted. Indeed, these
writers used the assumption in its strongest
possible form: they based their calculation on the
equation

div J~=—div J2—=0, (128)

which says that the concentration at each point
in the tube is precisely constant in time. They
also used two other assumptions for which no
rigorous justification was provided. The first of
these was that the effect of diffusion along the
tube could be ignored in making the calcula-
tions, and taken into account by simply adding
the term Xz(Bc—&/Bs) to the transport equation
after it had been obtained. The second was that,
with the neglect of longitudinal diffusion and in
the absence of any net flow of the gas as a whole
along the tube, the derivative (8'c&/Bent) could
be set equal to zero.

A derivation of the transport equation which
is independent of these assumptions has been
given by Bardeen (B3). Using instead of (128)
the equation of continuity

div J&+Bpcq/Bt =0, (129)

he proves that the transport equation is that
obtained by Furry, Jones, and Onsager, except
that the coefficients are slightly different; the
differences are small, since they amount to a
fractional correction of the order of nAT/F.
Bardeen's work shows that the transport equa-

tion possesses this accuracy even when applied
to the case of a tube which is not connected to
any reservoirs, but is closed at both ends.

where

T=f(r)+ ,'bT cos q-, (130)

q =2my/B. (131)

As a consequence of this azimuthal variation
of temperature there will be superposed on the
convection currents already calculated a para-
sitic current which travels upward on one side
of the tube (y near 0) and downward on the
other (y near m.). The parasitic current thus
consists of two columns, A and B, and the
parasitic transport can be calculated in a way
similar to that used for the simple calculation
of the main transport.

So far as the hydrodynamical problem is con-
cerned, we observe from Fig. 2 that for the
parasitic currents the surfaces on which the
velocity must vanish are separated by a distance
2m, whereas for the main currents this distance
is rv. On the other hand, the driving temperature
difference is BT instead of 4T. By noting the
way in which v depends on rv and hT (cf. Eq.
(46)) we obtain as an estimate of the mean
velocity of the parasitic currents

v, 4(b T/AT) v. — (132)

The parasitic transport of the lighter isotope
up the tube is given by

rg„p(cg cj )v„rvB——. —(133)

Effects of Asymmetry

In practice, there will be other remixing
effects besides those so far discussed, because of
inevitable parasitic convection currents, caused
by small irregularities and asymmetries. In
general, these parasitic currents will add other
terms of the X type to the transport equation,
except that the new terms will involve X's
which, in general, are functions of s. It is, of
course, very difficult to evaluate the effect of
such irregularities. A conception of their pos-
sible importance, however, is given by the
consideration of a very special kind of asym-
metry: that in which there is in addition to the
radial temperature gradient (in a concentric
tube apparatus) also an azimuthal variation of
amount bT:
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The value of cts —ci~ may be calculated in the
same way as that of c» I—c» . From Fig. 2 it is
evident that in computing the diffusion between
the columns we have to use 8/2 as the value for
width of a column and distance between columns,
instead of m. Also, there are two diffusive connec-
tions between columns A and B.Then, replacingI by 8/2, b.T by eT, 8 by 0„, and D by 2D in

Eq. (51), we obtain

ct —ct = (xctcs(6T/2 T)

—(g+'/8D) (rict/ris). (134)

FIG. 2a. Showing the main convection currents, rising
in the region II and descending in the region I. The
diagram represents a horizontal cross section of the sepa-
ration column.

Then from (133) and (134) we get for the para-
sitic transport

r ty =Hsctcs —Ksdct/ds, (135)
where

Hs= npv„wB(bT/2T) =4(bT/AT)'H, (136)

E„=pv, 'wB''/(8D) =2(B/tc)'(bT/AT)'K. (137)

Furry, Jones, and Onsager. (F1) use a somewhat
more detailed calculation and obtain the more
precise result

K„/K, = (315/16s') (8/m) '(e T/6 T) ' (138)

' T(rg, y) = Tg+ (eT/2) cos q, (139)

ignoring the effect of the hot wire and taking ti,

X, and D as constants evaluated at Tt. We obtain

K„/K, = (441/64k, ) (8T/Tt)'. (140)

This more accurate relation differs from (137)
only very slightly, since 315/16s'=1.995.

In practice, bT will always be much smaller
than hT, so that H„will never be important.
Because of the presence of. the factor (8/w)'
however, the ratio K„/K. may rise to very
appreciable values even when BT/hT is small
compared with unity. The relation (138) puts
an upper limit on the values of 8/hatt which may
be used in practice.

In the extreme cylindrical (hot wire) case a
distinction must be made between the effects of
asymmetries in the cooling of the outer tube
and those of improper centering of the wire. As
an example of the former type, we can calculate
the temperature distribution with the bounds. ry
condition

ST
2

Fj.|-. 2b. Showing the parasitic convection currents,
rising in the region 8 and descending in the region A,
which would be caused by the particular type of temper-
ature asymmetry which is indicated by Eq. (130).

Since by Table VII the values of k, which may
occur are of the order of magnitude 10 ', it is
evident that the restrictions on 8T.are roughly
the same as would be obtained by using (138)
with (8/ttt) —20. This must, however, be much
too high an estimate for K„ in this case, because
of the evaluation of X, ti, and D at the tempera-
ture 1». The presence. of a central region of high
conductivity, viscosity, and diffusivity, and low
density, will decidedly reduce the true value of
Xg 0

The effect of inexact centering of the wire can
be estimated by using a linear dipole distribution—a linear source of heat parallel to and very
near to a linear sink —on the axis of the tube.
If X, p, q, and D are again given their constant
values at T», one obtains

K„8169(BTi ') bx
(141)

K, 64k, ( Ttj (rt log (r)/rs))

where bx is the displacement of the wire from the
axis of the tube. Then Ks—K, would occur for
(Bx/rt) —1/30. Again, however, the estimate for
X~ is surely much too high. In this case it might
be more reasonable to use the values of p, ti, and
D at Ts. This would, for a Maxwellian gas,
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introduce a factor (T~/T2)' in the right member
Gf (141).

If Eqs. (140) and (141) were taken literally,
one would have to suppose that parasitic cur-
rents are about as serious a consideration in the
extreme cylindrical case as in the plane case.
Actually both these equations certainly over-
estimate the parasitic effects by large factors. It
seems-likely that, if reasonable care is taken in
construction, parasitics wi11 be of no appreciable
importance in the performance of hot wire
apparatus.

IIL CONSEQUENCES OF THE TRANSPORT
EQUATION

By applying the transport equation we now
discuss the various types of operation: discon-
tinuous operation, continuous operation of
single-stage apparatus, and continuous operation
of multi-stage (series-parallel) apparatus. For
each type of operation the relation between
length, separation factor, and yield is obtained
in exact general form, and also in simple approxi-
mate forms for various special cases. These
formulae, together with the formulae for H and
E which were obtained in Part I I, complete the
description of the performance of an apparatus
of given dimensions and temperatures, run at
a given pressure.

This part also includes a description of the
problems of choosing dimensions, temperatures,
and pressure in such a way as to. obtain the
greatest eSciency in operation. These problems
can be placed in two mutually exclusive cate-
gories. The problems of the first category are
concerned with fixing the lengths and arrange-
ment of columns, which have prescribed values
of H and X, in such a way as to obtain the best
efficiency. These problems are discussed by using
the formulae developed in this part. In the
second category we place the problem of choosing
the radii and temperatures used in a column to
obtain the most advantageous values of the coef-
ficients H and E. This second sort of problems
is discussed in the section on entropy efficiency,
the discussion being based on the material of
Part II.

Generalized Notation

The transport equation which was derived in
Part II may be written in the simple form

7'1 = IIClc2 —Kdcy/ds, (142)

where K is the sum of the coefficients which
account for the various re-mixing effects:

K =K,+Kg+K„. (143)

In this equation v& is the transport of species 1

up the tube in grams per second, c~ is the frac-
tional particle density of species 1, c2 ——1 —cj. is
the corresponding density of the heavier con-
stituent, and s is a coordinate whose positive
direction is up the tube. The transport coef-
ficients H and E are constants which, as we
have shown in detail in Part II, depend on the
nature of the gas or liquid, on the pressure in the
case of a gas, on the dimensions and shape of the
apparatus, and on the temperature difference
maintained in the column; they do not depend
on z~, c~ or s. The transport ~~ and the concen-
trations depend only on s and the time.

ln deriving Eq. (142) we have always focused
our attention upon what happens to the lighter
isotope. It is clear, however, that the physical
situation is symmetrical with respect to the
species 1 and 2. The equation for the transport
of the heavier constituent down the tube is
precisely similar to (142):

7 2 Hclcm Kdc2/ZZ, (144)

where the coordinate s is now considered to
increase down the tube.

The considerations to be developed in the
present section will apply equally well to cases
in which one is concentrating either the heavier
or the lighter isotope. In order to simplify the
language used in discussing the transport equa-
tion, we shall accordingly introduce the symbol
c without a numerical subscript to refer to the
concentration of the constituent we are interested
in concentrating, and we shall refer to the direc-
tion in which c tends to increase as the positive
direction. We shall further refer to the end of the
tube at which c is greater as the positive end of
the column, and to the reservoir, if any, which is
connected to the positive end as the positive
reservoir. The terms negative end and negative
reservoir have corresponding meanings. The
coordinate s is assumed to increase in the same
direction as c, so that the positive direction may
equally well be considered as the direction in
which s increases. We also introduce the quantity
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@=1—C. Thus in the case in which we are con-
centrating the lighter isotope, c is identified with
c~, c with c~, and the positive direction is upward.
Correspondingly, if we wish to concentrate the
heavier isotope, we identify c with cm, e with cq,

and the positive direction is downward.
In either of these two cases, . the transport

equation is now

r =Hcc —Xdc/ds, (145)

where r is the transport in the positive direction
of the species we are interested in concentrating.

In the event that the separation column is to
be used for the separation of chemically dis-
similar gases, the gas which tends to concentrate
in the hotter regions of the gas (in the absence
of convection currents) should be identified with
species 1. In this case, however, we may have the
additional complication that H will depend on
c to an appreciable extent because n is not inde-
pendent of the concentrations in the case of
mixtures of greatly dissimilar molecules.

~ For the case of continuous operation Clusius and
Dickel (C10) describe an extremely simple procedure for
the complete design of apparatus. Like t'he treatment given
here, it is based on the characterization of a separation
tube by two parameters. Our two parameters are H and
y =2' L=HL/E;; Clusius and Dickel use the initial trans-
port (=Hc;0;) and the equilibrium separation factor (=e&).
Unfortunately their very simple discussion is based essen-
tially on the false assumption that the equilibrium separa-
tion factor can be realized while at the same time one
removes concentrated material at a rate corresponding to

The Two Types of Operation

The type of operation which was contemplated
during the derivation of (145) was that in which
one places the gas in the separation column,
which may or may not connect with reservoirs
at the ends, and then waits until the concen-
tration difference has reached a suitable value,
at which time the contents of the apparatus are
removed; the performance is repeated if more
rnateria1 is desired. This type of operation we
shall term discontinuous. There is also available
a continuous type of operation, in which the gas
is removed at a small steady rate from the
positive end of the column. Continuous operation
will be more important in practice than discon-
tinuous operation, and the mathematical dis-
cussion of continuous operation is slightly less
complicated. ~ Even with continuous operation,

however, the apparatus must first reach a
suitable condition before we can begin to with-
draw concentrated material from the positive
end, and the discussion of the approach to this
condition is the same as in the case of discon-
tinuous operation.

Our discussion of continuous operation is more
complete than the corresponding discussion of
discontinuous operation, because of the greater
importance of the former. Because of considera-
tions of logical order, however, the treatment of
discontinuous operation is given first.

Equilibrium Separation Factor

The final equilibrium state is that in which r
is zero all along the tube. Putting r = 0 in (145),
we have

dC C II—=d log- —=—dz=2Adz,
cc c X

(146)

the integral of which is

c/c =exp I 2A(s —s,)],
or equivalently

c(s) = s I1+tanh A(s —so) I.
The quantity A defined by

(147)

is important in all that follows. If we use the
subscript f to refer to the positive end of the

the full initial transport. Thus they ignore the fundamental
question as to how much the equilibrium is disturbed by the
removal of the material one is interested in producing, so
that their treatment, though simple, can be of no use in
practice.

The criticism just given applies directly to the discussion
of the numerical example (C10, p. 436). The same error
shows up in a rather di6'erent form in the abstract discus-
sion (pp. 432—435). Here (Eq. (35)) it is assumed that the
difference between the concentrations of the two columns
(cf. our Fig. 1, or Fig. 16 of C10) is determined by diffusion
and therma', 1 diffusion only, and is not a+ected by the
presence of a concentration gradient or by a net transport of
gas along the tube. This is equivalent to setting X=O,
which means, if one is to be consistent, an infinite equi-
librium separation factor.

D ISCONTI NUOUS OPERATION

Discontinuous operation may be defined as
operation in which the total transport of gas
through the tube is zero. This condition is
already written into Eq. (145).
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column (the end where c is greater), and the
subscript i to refer to the other end, we have from
(147)

g e2AL (150)

where L is the length of the separation column,
and where g, is the equilibrium value of the
separation factor

(c/c)f

(c/c);

We shall find it convenient to introduce also the
reciprocals of q and q, :

(152)

the concentration of He' from its natural value
of 10 7 to 50 percent. On the other hand, the
equilibrium time of the single tube just described
may be estimated from Eq. (174), and is about
350 years. We shall see in Part IV how to design
an apparatus which can be made to yield results
within a more reasonable time.

Equi1ibrium Time in Columns with One or
Both Ends Closed OB

These cases have been treated by Bardeen
(B2), some of whose results we quote here. The
case of a tube closed at both ends has also been
treated by Debye (D1).

P g
—1 —c 2AE— (153) Tube Closed at Both Ends

In this case c is a function of both s and the
time t, so that the derivative in (145) should be
replaced by a. partial derivative. The conserva-
tion of the species whose concentration is c
requires that

gite/t&t = ar/Bz— (156)

or, by substitution from (145), that
(154)A =H"'&/2(K, &"+Kg&").

In order to secure the largest equilibrium
separation factor with a given length of tube, it
is clear that we must make A as large as possible.
If K„is set equal to zero, A is given, as we have
seen in Part II, rather closely for the plane case
by the expression

It is easily shown that A is maximized with
respect to a variation of m, if m is adjusted so
that K&&'& =2K,"& (see Eqs. (70)—(72)). We then
find that the maximum value of A is given by

y (~Z l ' (13PR I 'y
(lss)

180 & 7' ) &&Di

Since (p/r&D) is proportional to the square of the
pressure, there is no limit in principIe to the
value of A which may be attained. For pressures
which amount to more than a few atmospheres,
however, the values of m required may become
so small that serious constructional difficulties
arise.

For the separation of He' from He4, we note
that a =0.076, p/r&D =0.127, at atmospheric
pressure and T'=450'K (see Part IV); therefore
the value of A, in an apparatus with 12 ——2T~
is about 0.0058 cm ' so that in all those parts
of the separation column in which c is less than
say 0.2, the concentration of He' will double
every 60 cm. With such a large value of A, a
column working at atmospheric pressure with a
length of only 14 meters would su%ce to raise

and that
7. =0 at @=0 and s=L,

v =Hco at t =0

(158)

(159)

where co is the constant initial concentration. By
using the standard theory of linear equations,
Bardeen finds that the solution of (157)—(159)
IS

c(z) Pc2Az+cAz P $~ (cos (n&z/L)

+(AL/nrr) sin (nrrz/L) } e "'", (160)

5 1 $ 2 )

in which the constants k, b„, and t„are defined by

pic/r&t = Hr&(cc)/r—&z+Kr&'c/r&z', (157)

where p is the mass of gas in unit length of the
tube. The treatments of Bardeen and Debye
apply only in the case that c is everywhere small
compared with unity, so that c in (157) may be
set equal to unity. This approximation has the
merit of making the equations linear so that
superposition may be used. The genera1 case is
much more difficult and has not been solved.

Equation (157) must be solved subject to the
boundary conditions that
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From (160) we have for the separation factor
which is actually realized at the time t:

c ]1+0-'P b (—1)"e-"~-'~")
g=—=s'"~) ~. (162)

c; 0 1+0—'g„b„e 'i'

The first term of (160) represents the equi-
librium concentration distribution, and the re-
maining terms are the transient terms, each of
them decaying with a characteristic time t„. For
cases in which AI. is rather small (~2), ti will

be much longer than any of the remaining t„'s;
after a time of the order t&, which is only a frac-
tion of t&, the only important transient term in

(160) will be the first. Thus if AI is not too
large, the approach to equilibrium is character-
ized by a relaxation time

t„=ti —(2p/AH)—/ i 1+n'/(AL)' j. (163)

For large values of AI., it is necessary to use
more than one term of the series (160).

The case in which AI is small compared with
unity has been considered in more detail by
Debye (D1). In this approximation, the quan-
tities 0, b„, and t„ take on the simple form

k—cp

b„4cpAL(1 —(——1)")/(nm)2
t„—(pL'/s'K) /n'.

With the use of the approximation

s'"z—1+2AL,

(164)

(165)

the expression (162) now reduces to the form

c~/c; = 1+2AI ( 1—(8/m')

Xgq exp t —(20+1)'t /t ij/(2k +1)'J (166)

k=0, 1, 2, ~

For values of t large compared with ti, the ex-
pression on the right clearly reduces to 1+2AL,
whereas for t=0, the well-known series (special
case of the zeta function)

1+3-'+5 '+ =pr'/8 (167)

Lp = 2A Lcp/(e'"~ 1—),

b„=4cp(nmg 2/ApLp) (1—(—1 )&s—&L)/
(161)

(1+n'~'/A 'L') '

t„=2 (ti/AH)/(1+n'm'/A'I. ').

indicates that the value of the curly bracket is
zero.

For small values of x=t/ti, Debye has shown
that

If we retain only the first two terms of (168),
and insert the specific value of ti, (166) may
now be written:

cg/c; = 1+4H(t/m tiK) &+ ~ ~ (169)

This result is striking in two respects. In the
first place, it indicates that the concentration
difFerence increases initially as the srLuare root of
the time. This result is of special importance in
application to liquids; in such apparatus the
equilibrium. time is very long, of the order of a
year. The result (168) indicates that a period of
operation as short as ten hours would neverthe-
less achieve 1/40 of the equilibrium concentra-
tion difFerence. In practice, this relation will
break down for extremely small values of t, since
the space at the end of the column in which the
convection current turns around will constitute
a small reservoir.

Secondly, the result indicates that the initial
rise of the concentration difference is independent

of the Length of the coLumn This res. ult seems more
plausible when we consider that the rapid in-

crease in the concentration difference occurs only
in a small length near each end. The length of
the column does enter into the result in the sense
that (1'69) holds only as long as t/ti is suitably
small, and ti is proportional to the square of the
length L The fact th. at the rapid changes in c
are restricted to a small space near the ends,
moreover, means that the result (169) must hold
even when AL, is not restricted to small values.
In this case, however, it is not so easy to say
for how long a time the relation (169) will be
valid.

In an apparatus of this type, closed at both
ends, the concentration cannot rise at one end
without its falling at the other. Thus only a part
of the equilibrium separation factor can be re-
alized as a displacement of the concentration

(8/~') Qi, exp L
—(2k+1)'x$/(2k+1)'

= 1—(4/s &)x&

+(32/m')x& exp (—~'/4x)+ ~ . (168)
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from its original value. If, however, the negative
end of the column (the end where c is smaller) is
connected with a reservoir whose value of c is
maintained at its original value, then all of the
equilibrium separation factor may be realized as
an increase of c above its original value. This
case is treated next.

AL y1 y2 tt1 8S e A~ —1 C1 CS

0.50
0.75
1.00
1.50
2.00
2.50

2.33i
1.125i
0
0.8586
0.9575
0.98560

9.20$
6.07i
4.50i
2.92i
2.14i
1.67i

0.718
1.321
2.19
5.36

12.40
28.5

0.621 0.05
1.177 0.07
2.00 0.09
5.07 0.14

12.03 0.18
28.0 0.21

1.72
3.48
6.39

19.09
53.6

147.4

1.53 0.09
3.20 0.14
6.00 0.19

18.52 0.27
52.8 0.32

146.4 0.35

TABLE IX. Quantities for a separation column which is
closed at one end and is connected with an infinite reservoir
at the other.

Tube Closed at One End and Connected with an
Infinite Reservoir at the Other

The equivalent of an infinite reservoir, as far
as the maintenance of c; at a constant value is
concerned, is obtained by running a stream of
fresh gas past the negative end of the column, or
more efhciently by means of a short scrubbing
column, as we shall discuss in detail later on.

The treatment of Bardeen shows that for this
case, with the restriction that c be everywhere
small,

must be transported into 'the tube, divided by
the initial transport from the reservoir into the
tube. The value estimated in this way is

t,' = (Hc;) ' t2LC; e2Atds 1 1,

(174)= (I L/H) I ((e'"'—1)/(2AL)) —1}

For purposes of comparison we introduce the
numbers

g (o /o)e2AL ,P C e t/t„—(170)
8„=(H/ttL) t„, 8„'= (H/I2L) t„'. (175)

Here, C„, t„are defined by

t„=(2I /AH)/(1 q„s), —

and the y„are solutions of

tanh yAL =y,

(171)

(172)

where, however, the root y=0 is not to be in-

cluded unless it is a multiple root. These rela-
tions may be obtained from the results given by
Bardeen by taking the limit as R—+0, 3II—+~.
(Bardeen's Eq. (49) contains misprints which
have been corrected (B3).) As in the previous
case, the derivation is subject to the restriction
that c must remain small.

For all values of AL which are not extremely
small, Ct is much larger than any other C„, and
is nearly equal to e'~L —i; also t& is much larger
than any other t„. Thus, for AL not too small,
the main part of the approach to equilibrium
follows rather closely a simple exponential law,
of the form

(a —1)=(V.—1)(1—e "') (173)

with t„=t1. Now, if one assumes a law of the
form (173), it is physically reasonable to take as
an approximate value for the reIaxation time I,„
the quotient of the tota1 mass of the isotope which

Table IX shows that even for quite small AI.
the estimate t„' obtained by physical reasoning
is in rough agreement with tt, and for larger AL
the agreement becomes good. We see also that
82 is much larger than 82, and Ct is much larger
than C2. Moreover, C& is only slightly smaller
than e'~L —1, so that all but a smail fraction of
the concentration change takes place according
to the simple law (173).The fact that very simple
physical considerations enable us to give a quite
good account of the approach to equilibrium is
of importance: it justifies us in applying similar
considerations when c is not everywhere small,
and also in the case of multi-stage apparatus, '
where precise treatment would entail many
complications.

Since PC„/t„diverges, the initial rise of con-
centration at the closed end again has a vertical
slope. We see, however, from the seventh and
eighth columns of Table IX, that this sharp
initial rise cannot cover more than a small frac-
tion of the total shift of concentration, if AL
&0.50. For AL«1, the series (170) can be put

' In Part II the term single-stage was used to refer to the
type of apparatus in which there was no compounding of
the fundamental separating eEect. Henceforth, however,
we shall use the term single stage to refer to a single length
of separating column. By multi-stage apparatus, we shall
understand the type in which several single stages are
connected in series or series-parallel.
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in the form (166), with a value of ti four times
as large as in the previous case. Debye's result
(168) for the value of the series then gives

cg/c; =1+2H(t/s pK)&+ .. (176)
The physical reason for the factor one-half in
the coefficient of the second term of (176) as
compared with (169) is that in the present case
c; remains fixed, and only cf changes.

The reason that the initial change of concen-
tration at any closed end of a separation column
is proportional to the square root of the time,
may be seen from very elementary considera-
tions. As long as there is no concentration gradi-
ent, the transport equation (145) indicates that
there will be a transport of isotope to the very
end of the column. The material collecting at the
end will bring about an equilibrium concentra-
tion gradient in a short length of column adja-
cent to the end. The additional amount of iso-
tope required is proportional to this length and
to the increase in concentration at the end, and
therefore to the square of the increase of con-
centration. Thus the square of the increase of
the concentration is proportional to the time, or
the increase of concentration is proportional to
the square root of the time. This method of
argument is adequate to yield a derivation of
(169) and (176), apart from a numerical constant
factor in the term proportional to t'.

Equilibrium Time in Columns with Both Ends
Connected with Reservoirs

This case is not so important in practice as
the case in which the positive end of the column
is closed oR and does not connect with a reser-
voir. The present case, however, may be treated
much more completely in a theoretical way,
since we need not restrict ourselves to the case
in which c is everywhere small compared with
unity. This case also possesses considerable theo-
retical interest, as we shall show in the section
on entropy eSciency.

We shall here, as in the previous case, suppose
that the reservoir at the negative end of the
column is effectively infinite, although the gen-
eralization to the case in which it is large but
finite is often very simple (cf., e.g. , Eq. (186)).

We shall further suppose —and this is the re-
stricting assumption which makes the present

c(s) = 2{1+btanh bA (s —so) I,
where

b = (1 4r/H)'. —

Eliminating so by the boundary conditions

(177)

(178)

c(0) =c,,

we have
c(I.) =cg, (179)

where

1 (b tanh bAL) —bo
cg ——— 1 —b

2 (bo tanh bAL) b—(180)

bp ——1 —2c;. (181)

By the same argument which led to Eq. (33) of
Part II, the time variation of cf is given by

dcf/dt = r/rn. (182)

treatment so much simpler than the previous
cas" that the volume of the reservoir at the
positive end of the column is large compared
with the volume of the tube, or equivalently
that the mass of gas m in the positive reservoir
is large compared with the mass of gas pL in the
separating column. In this case it is clear on
physical grounds that at any given time during
the approach to equilibrium the transport of the
desired isotope between the two reservoirs will
not differ appreciably from the transport which
would be obtained if the concentrations in the
reservoirs were held constant at the values which
they have at the given moment. The present
treatment will thus hold rigorously in the limit
in which the harmonic mean of the volumes of
the reservoirs becomes infinite compared with
the volume of the separation column, but will
hold quite well in the case in which this ratio is
only several times unity.

The reader will recognize the restriction made
in the last paragraph as a strong form of the
quasi-stationary assumption, which was used in
a weaker form in the derivation given above for
the transport equation itself, but which Bardeen

, has shown to be actually unnecessary for the
derivation of the transport equation.

Exact General Solution

The mathematical significance of the assump-
tion that m is large compared with IJL is that we
may take the transport v to be independent of s,
and to depend only on the time t. The solution
of the transport equation (145) with r constant is
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If the reservoir at the negative end of the column
is effectively infinite, c, will not vary in time, and
the time required for the concentration in the
positive reservoir to rise from c; to any required
value c„ is given by

most easily by writing it in the form

d, =h, (1—e "'")
where

(192)

(193)

AC@

t(c,) =m ' dc'/r, (183)
is the equilibrium value of 6, and

t, =my/H (»4)

whence

dc'/dt = r/m~,

dc;/dt = —r/m,

(184)

(185)

where the relation between cf and r is given by
(180).

If the mass of gas m in the negative reservoir
is not electively infinite, the time variation of
c; and c~ is given by the simultaneous equations

is the relaxation time for the separation.
If the negative reservoir is of finite volume,

the only change to be made in (190)—(194) is to
replace m by the quantity m+m /(m++m ).

The chief practical value of this result lies in

the case in which c varies within the range 0.3
to 0.7. In this range cc is never far from ts. This
result will also be useful in connection with the
discussion of entropy eAiciency.

where
da/dt=r/Im~m /(m++m )I, (186)

Solution for c«1
h=cj —c (187)

The integration indicated in (183) and the
one resulting from (186) cannot be done ana-
lytically, but must be done numerically. In
nearly all of the cases which will arise in practice,
however, some approximate treatment will suf-
fice. The remainder of this section on discon-
tinuous operation will be devoted to a statement
of various approximate solutions, and to a dis-
cussion of the most eflicient mode of operation.

Solution for cc = constant

In those cases where the equilibrium separa-
tion is sufficiently small that cc=c(1—c) does
not change appreciably along the column, the
approach to equilibrium may be treated simply.
With r and cc constant, the solution of (145)
which satisfies (179) is

For the case in which c is everywhere much
less than unity, so that c may be set equal to
unity, we find the same procedure as that used
in the previous section, that'

where
(g —1) =(g,—1)(i—e '~'") (195)

(196)

t„=(m/II) (e" 1). —(198)

Solution for c((1
For the case in which c may be set equal to

unity, we have

is the equilibrium separation factor, and

Q =cy/c;

is the separation factor which is realized at the
time t. For this case,

is
1=0, (189)

t(cq) = —(my/H) log (1—6/ycc). (190)

r =H(cc (c~ c;)/2AL), — —(188)

and the integral of (182) which satisfies the ini-

tial condition

where

and

(1—p) = (1 —P.) (1— "")

P = 5/0'

t„=(m/H) (1—e-s).

The General Linear Approximation

(199)

(200)

(201)

We have here introduced the abbreviation

y =2AL =HL/Z. (191)

Equation (190) represents a simple exponen-
tial approach to equilibrium, as may be seen

The fact that cc is quadratic in c is the diffi-

culty that leads to the complication of the
s Equation (60) of Fi, which corresponds to (195), was

subject to the unstated condition that g and g. were 1arge
compared with unity.



SEPARATION OF I SOTOPES

general treatment. In many of the cases which,
arise in practice, however, the increase of c
along the column will not be greater than about
0.2. In such cases, the function c(1—c) can be
closely approximated in the range of c in ques-
tion by an expression linear in c. A linear ex-
pression which is never greater than cc in the
range c=r to c=s, and which is exact at r and s,
may be obtained by using the chord drawn be-
tween c=r and c=s on the parabola c(1—c).
This procedure means replacing c by

rs+ (1—r —s)c.

By the same procedure as that used in the
previous sections, we find that the approach to
equilibrium is of the type (192), where the re-
laxation time is now given by

t„=( m/H)( q' " ' —'1)/(1 r s—) —(20. 3)

Sotntion for c;«1 and cy Unrestricted

In cases in which the range of c is larger than
about 0.2 or 0.3 the approach to equilibrium is
of a more complicated type, which cannot be
characterized even approximately by a relaxa-
tion time. This may be shown by a treatment of
the case in which c; is small compared with unity,
but cz is not so restricted.

It is clear from Eq. (145) that r/H can never
be larger than c;. For c,«1

b = 1 2r/H—(204)

is accordingly a good approximation. A slightly
more stringent assumption about the smallness
of c;, namely

4AL, c;«1 (205)
enables us to set

tanh bAI. tanh AI. =(q.—1)/—(q.+1). (206)

The substitution of (204) and (206) into (180)
leads to the result

The results derived in the three previous para-
graphs are all special cases of this result. In this
case also, the generalization to the case in which
both reservoirs are finite is accomplished by
replacing m by m+m /(m++m ).

It is clear that the result is not sensitive to
the values chosen for r and s as long as the range
of c to be covered is small.

II q, (1+c;—cy) —(1—c,+cy)

r q,ci(1—cr) —cr(1 —c;)
(20'7)

This expression may now be substituted in (183)
and the integration can be performed. We
obtain

q, +1m
t(cx) =—' Cy

—C~II 1+c;(q,—1)

(q,c 2+ c 2) (q, —1) c;c;(q.—1)
)log . (208)

(1+c;(q, 1))(q—,+1) c cfq cfc;I

We see that this approach to equilibrium is not
of the form (192), since the quantity cy appears
outside the argument of the logarithm. If c;q,«1,
however, then the term cr —c; can be neglected
in comparison with the logarithmic term, and
(208) gives the results (195) and (198) which
were obtained for c«1.

The Most EfBcient Mode of Operation

The questions of eEficiency may be placed in
two distinct categories. Suppose first that the
constants of the column, H and X, are given.
One may then obtain the same amount of ma-
terial concentrated to the same extent, either
by using a shorter column and running close to
equilibrium, or by using a longer column and
removing the contents of the positive reservoir
long before the apparatus has approached equi-
librium. The problem immediately arises, what
is the most efficient length of a given type of
tube for the obtaining of a given change of con-
centration? This problem belongs to the first
category.

There is the further question of how to choose
the most eScient values of the constants H and
X. This problem in turn involves the question
of choosing the most efficient values of the tem-
perature Ti and T2 and the best value of nr in
the plane case, or the best values of ri and r2 in
the cylindrical case. We place these problems in
the second category. Such questions are inde-
pendent of those in the first category, and are
independent of the type of operation, whether it
be continuous or discontinuous, and are also in-
dependent of whether the apparatus is of the
single- or multi-stage type. The independence of
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the problems in the two categories has been
given a formal proof by Krasny-Ergen (K1).
Krasny-Ergen has also obtained independently
a number of the considerations we shall present.
His discussion is much less detailed than ours,
and, in the case of multi-stage apparatus, is
confined to what we shall call the ideal multi-
stage apparatus.

The questions of efficiency which fall into the
first category are treated in this section and in
the following section on continuous operation.
Problems in the second category are treated in

the section on entropy efficiency.
Throughout the discussion of efficiency in this

and the following section, it will thus be assumed
that H and Z are given constants, and that the
only variables are the lengths of the columns,
the rate at which concentrated material is ob-
tained, and in the case of multi-stage apparatus,
also the numbers of tubes which are used in paral-
lel in the various stages.

Both the initial cost and the cost of operation
of a separation column of given dimensions and

'given temperature difference will be approxi-"
mately proportional to the length, and therefore
to y=2AL. The rate of production of material
with a given concentration is just m/t, where t is
the time allowed for the apparatus to approach
equilibrium. With a given type of tube, the rate
of production is proportional to the dimension-
less quantity

n =m/&II. (209)

It would appear that a suitable measure of the
efficiency when the final concentration and the
type of tube are already chosen, is the quantity
n/y Under .these conditions, the larger I/y is
made, the greater is the yield per unit cost of
production.

For the case previously discussed in which cc
may be considered constant, we have from (190)

n—'= —y log (1—6/ycc),

or upon multiplication by y,

(210)

y/n = —y' log (1 b,/ycc). (211)—
I

The condition that y/n be stationary with A

held constant is

(d, /ycc)/(1 d, /ycc) = —2 log (—1 6/ycc). (212)—

The substitution

P = (1—b/ycc) —'

carries (212) into the simple form!

2(~ —1) =log k.

(213)

(214)

This transcendental equation for t will also be
met in the corresponding discussion for con-
tinuous operation. Its solution is

$ =3.51286
log $= 1.25643, (215)

from which we find that the "best" values of
y, m, and t are

yt, = ($/2 log $) (6/cc) = 1.39795(h/cc), (216)

n~ (2/——$) (cc/6) =0.56934(cc/6),

ti, = t„ log $ = 1.25643t„,

(217)

(218)

Bb/ys = (4 log $/g') (cc/6) ' =0 40726. (cc/&) ' (219.)

( 1 Pl-
y/~= —y(1 —e—) log

~

1 — ~. (221)
E 1—e-~&

The conditions that I/y be stationary are easily
obtainable for these cases, but the conditions
take such a form that they are not easily usable.
Because of the small practical importance of
these cases with relatively large reservoirs, it
was not thought worth. while to prepare a table
of the best values of n and y as functions of g,
as will be done for the corresponding cases in
continuous operation.

For purposes of comparison, however, the
maximum values of n/y as given by (220) and
(221) have been determined for two special
values of g

—namely 10 and 50. The results will
be presented in the section on continuous
operation.

CONTINUOUS OPERATION

The distinction between continuous and dis-
continuous operation was made in the introduc-
tion to this part. In continuous operation the

For the cases in which c«1, and in which
c«1, we have, respectively,

( g —1
y/n= —y(e"—1) log (

1 —
~, (220)

e~ —1J'
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Generalization of the Transport Equation

The initial increase of concentration is that of
the case in which the positive end of the column
is closed off, and has already been treated. A
more practical discussion of this preliminary
phase of the operation will be given later. In
this section we shall treat the steady-state situa-
tion in which concentrated material is being
drawn olf at the constant rate 0, in grams per
second.

The transport equation (145) which has been
used up to now provides for no such transport of
the gas as a whole through the tube. It was
shown by Furry, Jones, and Onsager (Fl) that
the presence of a total transport 0 introduces the
term Oc into the transport equation (145), so
that in the case of continuous operation it
becomes:

r =Hcc+ ac Kdc/dz. — (222)

It is clear that at the positive end of the column,
the relation between ~ and 0 must be simply

r/o =cg (223)

We are here concerned with' a steady-state prob-
lem, however, so that v and 0- are constants inde-
pendent of both t and z. The boundary condition
(223) thus holds not only at the end, but also
defines the ratio ~/)J all along the tube. This
boundary condition may be substituted right
into the transport equation itself, so that it
becomes

H(rc —n(cq —c)) =Kdc/ds, (224)

apparatus is opera, ted as in discontinuous opera- .

tion until the concentration at the positive end
of the column has risen to a suitable and usually
predetermined value. After this time, concen-
trated material is removed from the end of the
column at such a rate that the concentration
rises no further. In practice the concentrated ma-
terial will probably not be withdrawn in a truly
continuous manner, but will more likely be with-
drawn in small amounts at frequent intervals. ,

If the time between withdrawals is short com-
pared with the characteristic time of the appa-
ratus, (cf. Eq. (300)), the yields and con-
centrations obtained will not differ significantly
from those which would be obtained in truly
continuous operation.

where
(225)

has the same physical interpretation as the
quantity introduced in Eq. (209). The concen-
tration cy which appears in (224) is the value of
c at the end where the material is being with-
drawn, and is not to be confused with the value
at the positive end of one of the intermediate
tubes in a multi-stage apparatus.

The Scrubber

Both in the section on discontinuous opera-
tion, and in the present section on continuous
operation, it is assumed that the concentration
at the negative end of the column remains at a
fixed value c;. Such a fixed value may be secured
by continuous Rushing of a small reservoir with
fresh gas; this method is wasteful, however, and
it is much more economical with respect to the
amount of gas used to employ a scrubbing column.
A scrubbing column, or "scrubber, " is simply an
additional column used in such a way that the gas
leaving it is reduced in its concentration of the iso-
tope in question. For convenience of description,
the scrubbing column and the separation column
itself may be considered as a single column, with
the gas entering somewhere in the middle of the
tube and Rowing toward both ends. The gas will
leave the positive end enriched in the desired
isotope, and it will leave the other end with a
concentration c, which is smaller than c;.

The conservation of the mass of each isotope
means that we must have in the steady state

(0'+0',)C„=aCy+O'))C))) (225.j)

cy —c&

Os=0
C' —C8

(225.2)

where c„ is the concentration of the entering gas,
and where 0, is the rate of Row of gas, considered
to be positive, through the scrubber. Now in
general, the concentration of the gas in the col-
umn at the point of entry, c;, will not be equal
to the concentration c„of the entering gas. It
will usually be desirable, however, to adjust the
rates of How in the separating column and in the
scrubber so that c; is equal to c„.That is to sa,y,
it will be desirable to adjust 0., so that it satisfies
the relation
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which follows from (225.1) upon setting c„equal
to c;. This adjustment may be accomplished in a
straightforward manner: the separating column
should first be completely designed on the basis
that c; is equal to the concentration of the gas
that will be introduced, so that c;, cf, and 0 are
determined. One should next decide upon a suit-
able value of c,. The relation (225.2) then de-
termines o, uniquely. The length of the scrubber
is now determinate.

The scrubber is a device for concentrating the
undesired isotope. In applying to the scrubber
the formulae to be derived in the following sec-
tions, it is therefore necessary to remember that
c and e exchange their identity as we pass from a
consideration of the separating column to a con-
sideration of the scrubber. In order that the
following formulae apply to the scrubber, it is
necessary only to substitute c; for c;, c, for cf,
and 0-, for 0.

Because this change is easily made, we shall
not give any specific formulae for the scrubber,
except in the single instance of the ideal multi-
stage apparatus.

A scrubber can also be used in discontinuous
operation, but even in this case the scrubber
itself would probably be operated continuously.

Single-Stage Apparatus

We shall first treat the case in which all of the
separation takes place in a single stage; the
formulae for multi-stage apparatus will be de-
veloped in the next section.

therefore, as in the case of discontinuous
operation, have recourse to a rather large num-
ber of diff'erent kinds of approximate solutions.

Solution for cc —constant

The integral of (224) with cc held constant
which satisfies (226) is

6 = cc(1 e —"~)—/n (229)

For the important case in which c is everywhere
within the range 0.3 to 0.7, and in which there-
fore cc is never far from 4, this becomes

a = (1 e—")s-/4n

Solution for c«1

(230)

Solution for c«1
For the case in which cc may be replaced by

c, we have

g= c;/ = ( '—"—)/(1 —). (232)

The General Linear A pproxintation

The last three approximate solutions are all
special cases of the treatment in which cc is
replaced by the linear approximation (202) in

the manner there discussed. The solution for
this case is

For the case in which cc may be replaced by
c, we have"

p =c;/cq (e ——&&'+"&+n)/(1+n) (2.31)

(1. r s+n)c, +—rs—(1 equi' r ~+~&—)
cf = (233)

n+(1 r s)e s(1—r—s+n)—
Exact General Solution

The integral of (224) which satisfies the
boundary conditions

c(0) =c;, c(I.) =cr,
1s

b'(cf c,)—
cf+c~ —n (cy —c;)—2c~c;

tanh ~~b'y=

The approximations so far treated are such
(226) that the validity of the result is restricted only

by the condition that the range of c must be

(22') small. The results are otherwise exact; in par-
ticular, n is arbitrary.

where

b' =
I (1+n)' —4ncr} l =

I (1—n)'+4nc~ I &. (228)

This equation gives the important relation be-
tween n and cf, it tells us what final concentra-
tion may be obtained at a rate of withdrawal of
o.=nII. Its form is too complicated to be very
helpful or illuminating, however, and we shall

Solution for c;«cf
The approximate solution for this case will

be obtained by making suitable approximations

' Equation (231) was simplified to an unwarranted
extent in F1 (Eq. (55) of that paper). We are indebted
to Professors A. 0. Nier and J. Bardeen (University of
Minnesota) for pointing out this fact,
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in the exact solution (227), rather than by start-
ing anew from the transport equation (224) as
in the previous cases.

It follows directly from the transport equation
(224) that

n (~c,(1—c,)/(cy —c,), (234)

where the equality holds only when dc/dz is
zero. The condition

c;/ct((1

therefore has a consequence that

m&&1.

(235)

(236)

The right member of (227) may now be reduced
to the form

1 —2(p —net). (237)

p.= e-~(&1

so that the left member of (227) may be written

2p 1+m(1-2') (239)

The equating of (237) and (239) now yields

p p 1++(1—2')+nc (240)

subject only to the restriction (235).

A Solution for ct«c,
No decided simplification is possible without

further restrictions on the quantities involved.
The restriction

4c&n/(1 —n)'«1 (241)

It also follows from (235) that p«1, and a
fortiori

(238)

This can be written in the form

p='(1 —n)p ' "+'"'»(' ")+ctn/(1 n—) .(246)

The validity of this result is subject not only to
the restriction c)/c, «1, but also to the restric-
tions (241) and (243).

The Most Ebb cient Mode of Operation; Comparison
of Egciencies in the Tioo Types of Ope'ration

It is clear from the results which have been
presented that there is no unique choice of n and

y for the obtaining of a given separation factor q.
The yield factor n and the length factor y may
be varied simultaneously in such a way tha, t q
remains constant. The question then arises, is
there any "best" value of y for a given separa-
tion problem? If the apparatus constants H and
X are already fixed, we may give a simple an-
swer to this question.

Just as in discontinuous operation, both the
cost of construction and that of operation will be
roughly proportional to L„and therefore to y,
whereas the yield of concentrated material is
proportional to 0-, and therefore to n. From this
point of view, the best choices of n and y are
those values which maximize n/y. The quotient
n/y we call the efficiency.

The condition that n/y be a maximum is
easily written down for the general solution
(227), but it is of so complicated a form that it
is useless in practice.

For the case in which the entire change of c
along the column is sufficiently small that cc
may be considered constant, we have from (229)

enables us to write

b' = 1 n+2n—c) /(1 n)— (242)
y/n = n' log—(1 nA/cc). —

The condition that y/n be stationary is

(247)

We must also require

p b'«1. (243)
(nh/cc) /(1 —nA/cc) = —2 log (1 nh/cc) —(248).

The substitution
The left member of (227) can be written

P = (1 nt), /cc)— (249)
tanh b'AL = (1—p,b')/(1+p, b'). (244)

If we substitute (242) and (244) into (227), clear
fractions, and use (241), (243), and ct/c;(&1 to
justify the omission of certain terms, we obtain

(245)

now reduces (248) to the same transcendental
equation that occurred for the corresponding
case in discontinuous operation, namely Eq.
(214). The relations among $, nb and yb are quite
different in the two cases, however. From (215),
(247), and (249) we have

yb=g$(d/cc) = 1,75643(h/cc),
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TABLE X.The most efficient values of n and y in continuous relations determine nq and yq with sufficient
operation for a single stage with c((1 throughout. accuracy.

1
1.25
1,5
2.0
2.5
3.0
4.0
5.0
6.0
8.0

10.0
12.0
15.0
20.0
25.0
30.0
35.0
40.0
50.0

0
0.39
0.70
1.18
1.54
1,83
2.29
2.63
2.90
3.32
3.64
3.90
4.21
4.59
4.89
5.10
5.30
5.49
5.75

3.0
1.5
0.74
0.50
0.38
0.26
0.-195
0.158
0.113
0.090
0.074
0.058
0.043
0.035
0.029
0.025
0.022
0.0175

0

I

nb = (2 log $/$) (cc/6) =0.71533(cc/6), (251)

n&/y& ——(4 log P/P) (cc/A)' =0.40726(cc/6) ~. (252)

Comparing these results with (216)—(219), we
have the important result that although nb and
yq are somewhat different in the two cases, the

maximum egciency n&/y& is the same in con-
tinuous and discontinuous operation. This result,
of course, applies only to the cases in which cc
may be considered constant.

For the case in which c is everywhere small,
we have from (231)

0 =e"'/(1+ y )

nb =gb8

(257)

(258)

The case in which c is everywhere small is
formally very similar to the case just treated.
From (232) the value of y/n is given by

1
log tg —n(g —1) Ie n(1 —n)

(259)

(260)nt, =xe*/((2x 1)—e +1),
yg =x/(1- nb), (261)

(262)q = (e' —ng)/(1 —nt, ).
As x is varied from —log ( to plus infinity, g
varies from unity to plus infinity. Just as in the
previous case, a table of n& and y& as functions of
g has been prepared (Table XI). For values of q
greater than those given in the table, the fol-
lowing relations are quite accurate

I

nt, ———,'+-,'/(log —,'g), (263)

yg
——2(log -',g)+1. (264)

For g= j.0 and g =50, the best values of n and

y in discontinuous operation have been obtained
from (220) and (221). The results are given in

and the values of n and y which minimize y/n
may be related by the parameter x, where now

TABLE XI. The most efficient values of e and y in contin-

n(1+n)
og IP N(1 P) I ( 5 ) uons operation for a single stage with P«1 throughout.

The condition that y/n be stationary cannot be
expressed so simply as in the previous case. The
best values of n and y are given by the following
relations involving the parameter x

nq=xe */(1 (1+2x)e *), —

yg =x/(1+'ng),

(254)

g = (1+ng)/(e —*+ng). (256)

As x varies from log $ to plus infinity, g varies
from unity to plus infinity. A plot of nb and yb
as, functions of g was prepared by the use of the
above parametric relations; the values of nb and
yt, in Table X were then read off this plot. For
values of g greater than 50, the following simple

1
1.25
1.5
2.0
2.5
3
40
5.0
6.0
8.0

10.0
12.0
15.0
20.0
25,0
30.0
35.0
40.0
50.0

0
0.39
0.73
1.26
1.66
2
2.53
2.95
3.30
3.86
4.30
4.65
5.10
5.65
6.10
6.47
6.77
7.03
7.50

3.55
2.06
1.40
1.14
1
0.87
0.81
0.77
0.72
0.69
0.67
0.65
0.63
0.62
0.61
0.60
0.60
0.59
0.5
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TABLE XII. The most efficient values of n and y in
discontinuous operation.

c«1

a

10

50

10

50

2.75 X10-'

3.36X10 3

1.20X10 '

4.77X10 2

3.1

5.1

2.9

4.6

Table XII. These values were obtained by the
elementary procedure of trying a few values of
y in (220) and (221) and looking for the maxi-
mum of n/y. The values of n&/y& are thus quite
accurate, whereas the corresponding values of
y& are only approximate.

Exactly the same data obtained from Tables
X and XI for continuous operation are collected
for convenience in Table XIII. A comparison of
these two tables shows at once that for the case
in which c is small, discontinuous operation is
slightly more efficient. When c is small, on the
other hand, we see that continuous operation is
more efficient, and that the advantage is quite
appreciable. We have already seen that when q
is not far from unity, the efficiencies of con-
tinuous and discontinuous operation are equal.

We may thus conclude that the only case so
far discussed in which discontinuous operation
is more efficient, is that in which c is everywhere
small. Even in this case, the advantage is not
very large. Inasmuch as the sort of discontinuous
operation we have been considering has the
serious practical disadvantage that a much
longer time must elapse before one may begin
to obtain concentrated material, the writers feel
that few occasions will occur in which it will be
preferable. If the total production envisaged is
very small, an apparatus without reservoirs can
be operated discontinuously.

By far the most important conclusions which
may be drawn from the numerical relations pre-
sented above, is the fact that in continuous
operation the ratio of yq to log g is nearly constant
in all of those cases in which g does not become

greater than, say, ten The value of. this ratio is
1.756 when g is very near unity, and for g=10
is 1.58 when c is small, and 1.86 when c is small.
The ratio y&/log g approaches unity in the former

case, and two in the latter case, as g becomes
infinite.

As we shall see in the next section, it will
almost never be desirable to obtain a separation
factor of as much as ten in a single stage when
c is small. We shall also see in the next section
that even ig the case in which a length of column
is only part of a multi-stage apparatus, the best
ratio of the y of that stage to the log g of that
stage will be near two if the q in question is not
larger than about ten.

We thus find that under widely varying condi. -
tions, the most efficient value of y is about twice
the logarithm of the separation factor obtained
with the stage in question. We'shall call this
guiding principle the "two-log-g" rule, for con-
venience of reference.

This rule has an interesting physical inter-
pretation. By (196), the relation between y and
the equilibrium value of g is

Multi-Stage Apparatus

In order to stress the fact that the .c~ which
appears in the transport equation (224) is the

TABLE XIII. The most efficient values of n and y in
continuous operation.

c«1
10

10

50

2.48X10 ~

3.04X10 3

1.61X10 '

7.9 X10 2

3.63

5.75

4.29

7.50

y=log g, .

Thus when a short column is operated according
to the two-log-q rule, the average concentration
gradient is just one-half of the equilibrium con-
centration gradient, or, equivalently, the separa-
tion factor obtained is just the square root of the
equilibrium separation factor. In the section on
entropy efficiency, it will become apparent that
the two-log-g rule is a special case of a. general
theorem due to Onsager, cf. Eq. (323).

As we shall see in the section which follows
immediately, on multi-stage apparatus, the
two-log-g rule is the foundation upon which the
design of multi-stage apparatus will be built.
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final va1ue of c in the last stage, we shall here
rewrite this equation in the form

Hjg (cc—ny(c~f —c)) =Kgdc/dz. (265)

Here the k's indicate that the quantities are
those of the kth stage, and c~~ is the final value
of c in the Nth (and last) stage; correspondingly,
the initial and final values of c in the kth stage
will be denoted by c&; and ci,f. The quantity ni,

is, of course, defined by

ni, a/IIi, .—— (266)

The only boundary condition needed is that c
must vary continuously from one stage to the
next —that is,

cqf=cq+i. .. k=1, 2, . . . , N 1. (2—67)

The relations between separation factor and
transport which were presented in the last
section are easily generalized to cover the case

in which c~j and cN~ are not identical. The solu-
tions which we present below withoutcomment
are the solutions of (265) which satisfy the
boundary conditions

c(0) =ci,;, c(Li,) =ci,f. (268)

The approximations involved in each case are
the same as those previously described. In those
cases where there are restrictions on the value
of c, the restrictions apply only to the values of
c lying between c&; and cj,~, for example, in the
"Solution for c«1," both ci,; and cif must be
small, but c~f is not so restricted.

The expressions given below will often admit
a considerable simplification in application to
specific cases. The simplification to be used will
always become apparent as soon as one begins
to use the expressions, however, and we do not
feel that it would be worth while to indicate all
of the special cases of these formulae.

where

tanh 2bg'yg =

Exact General Solution

l'k (Ckf —Cki)
t

citf+cQj+SQ(c/gf + cjoy, —2c~'f ) 2';c~f—
(269)

bg' {(1+st)'—4n——gc~f }'={(1 np)'+—4ni, e~f I .
Soluti on for CC —Constant

cif —(cc/sq+c~; c+f) ex—p (y&n&)+c&f cB/ng.

Solution for c«1
(1+ST,)c&f {(1+n——i,)ci,; ni, c~f—I exp [yi,(1+ni,)g+ni, cNf.

(270)

(271)

(272)

Solution for C&(1

(1 SQ) 0/cf {(1 n/g) 8j'c +SJocirf I exp'[ y&( 1 n&)—] na—dxf. — (273)

The General Linear A pproximation

(1 r s+ si)—cp f —{(1 r s—+ni )—cz, —+rs ni c&f I ex—p [(1—r s+ ni) yi,]—rs+—ni c+f.
It is understood that the values of r and s are those appropriate to the kth stage.

(274)

Solution for ci,&&ci,f
p, =p ~'+" ' "+n~e~f(cvf/c—i,f). (275)

A Solution for cif&(8i,;
It is not possible to get a simple formula without other restrictions in addition to Lf((ci,; If we.

require

and
4c~fsi,/(1 ni)'&&1—

exp [ yi(1 si, +2nic~f—/(1 —si))]&&1,

(2/6)

(27/)
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we can show that

pi, ——(1—n~) exp P —y~(1 nI—,+2n~c~y/(1 n~—))j+ n~(PI q c~—q) /cI, ;+nl c~f/(1 —n~) . (278)

dc (Ac)1, (b,c)g
=2Ap

d2 I I, yl,
(279)

The transport equation (265) then takes the form

Considerations on ERciency in Multi-Stage

Apparatus

The Two-log-g Rule

In the section on single-stage apparatus it was
found possible to present tables giving the best
values of n and y for various q's and under
various conditions on the order of magnitude of c.
In multi-stage apparatus, however, there is the
additional complication that the best values of
nI, and yj, depend not only on the desired separa-
tion factor qI„but also on the value of c~y. We
thus have a two-parameter problem (q, and czar)

in place of the previous one-parameter problem
(only q). Because of the large amount of labor
that would be involved, no tables have been
prepared for this more general case. We shall

therefore content ourselves with a general
proof of the two-log-q rule for a short stage
which is part of a multi-stage apparatus, and
with a few numerical examples to indicate the
greater generality of the principle.

Suppose that the kth stage is sufficiently short
that the gradient of the concentration may be
approximated by

II Given:

~~=10,
(Ny, /yy, ), =4.19)&10 ',

yes =3.&9
= 1.65 log pic.

(283)

Then:
c~;——0.4, cI,y ——0.6, c~~ ——1.0.

Q = 2.25,
(ng/yI, ) =0.1542,

ygy = 1.58
= 1.95 log gIc.

(284)

rule cannot be given, because it is only an ap-
proximate rule. Indeed, we know that in the case
of a single stage apparatus in which c is every-
where small and in which q is large, the rule does
break down (cf. Table X). This is just the case
par excellence, however, in which single-stage
apparatus is inefficient, and in which multi-stage
apparatus must be used in order to secure good
efficiency and short equilibrium times.

The following numerical examples are given
to indicate the validity of the two-log-g rule in
cases which are not included in the proof just
given.

I Given:

cI,;=10 ', cg,g=10 ', c~y=0.5.
Then:

cy;=10 ', cAg=10 ', c~f=0.

(285)gIc = 1.1,
(n~/yj, ) . =0.1085,

yI p=4.60
= 1.92 log Q.

The maximum value of nI, /yi, was determined
from (272), (271), and (273), respectively.

It becomes obvious after a certain amount of
numerical manipulation of the formulae for ii/y
that the efficiency e/y decreases quite slowly as
y/log q rises above its optimum value near two,
but that on the other hand it decreases rapidly
to zero as y/log q falls toward unity. This means
that in practice it will be advisable to "play safe"

e&/y& ——
I cc/y& (Ac) I,/yz2 I

—/(c&y c). (281)—
If cc and (c~~—c) are considered constant, the
condition that nI, /y& be stationary is just

y&
——2 (hc) &/cc = 2 log q& (282)

which is the two-log-q rule.
A completely general proof of the two-log-q

c8—(Ac) i/yg —Ny, (c~y —c) =0.

We assume further that (Aci,) is so small that Then:

the fractional changes in cc and in (cNy —c)
within the stage are small. The last condition
means of course that the stage in question must
not be too near the positive end of the apparatus.
From (280), we have
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by designing the apparatus with a value of
y/log g which is greater than two, until a certain
amount of experience with the gas and with the
column has been obtained. If then it turns out
that A is less than expected, because of uncer-
tainties in the values of 0. and the gas coef-
ficients, or because of an unexpectedly large
value of X„, the efficiency will not suffer. If no
such margin of safety is a1lowed, the efficiency
will suffer badly in such a case. It might at first
be thought that one could compensate for a
smaller A by operating the apparatus with a
smaller c&f', this is not a real remedy, however,
because a multi-stage apparatus is efficient only
when the concentrations are those contemplated
in the design.

The considerations just presented mean that
in the design of multi-stage apparatus, one should
always use a pessimistic value of A until a
reliable value of A becomes known experi-
mentally.

The Idea/ Multi Stage A-pparatus

The advantage of multi-stage apparatus over
that of the single-stage type is that in the former
the value of H mav be varied along the column
in such a way that the two-log-q rule is satisfied
not only by the column as a whole, but also by
every short section of it. The value of H may,
of course, be varied in a large variety of ways.
Because there will usually be a type of column
which is most efficient for a given gas, however,
it will usually be best to vary H by varying the
number of columns which are used in parallel.
We shall suppose therefore that the entire ap-
paratus is to be constructed of separation
columns with the same values of IIr and Xr, the
subscript I is added in order to indicate that the
values are those of a single tube. In terms of gi„
the number of tubes in parallel in the kth stage,
we now have

provides a measure of the total How 0. which has
the same value in every stage. The parameter
ni, o——/Rq is also useful because it is exactly in-
versely proportional to the number of tubes in
each stage.

The two idealizations involved in the appa-
ratus now to be discussed are as follows: (1) Each
stage is to be so short that the two-log-g rule is
equivalent to the condition that the concentra-
tion gradient is one-half of the equilibrium con-
centration gradient; this requirement is equiv-
alent to the requirement that the fractional
change in cc within the stage be small compared
with unity. On the other hand, the length of each
stage must be long compared with twice the
relaxation length. defined by (121). There will

always be a large range of lengths over which
these two conditions on the length are com-
patible. (2) The value of %& for every stage is to
be large compared with unity.

Since both of these idealizations may be very
closely realized in large scale apparatus, the ideal
multi-stage apparatus is of considerable prac-
tical interest.

By (265) the equilibrium value of It.&dc/dk is
H&cc Setting X&.dc/dk equal to half of this value,
we have from (265)

or
IIy,

= 2a (err r c)/cc'—
2nr (crrr c) /——cc. —

(290)

(291)

This formula shows the manner in which 9lq
should vary with c in order that the two-log-g
rule be satisfied in each stage.

Since the concentration gradient is everywhere
just one-half of the equilibrium concentration
gradient, the total length of the apparatus is of

- course just twice that of a column whose equi-
librium separation factor is equal to the separa-
tion factor obtained in the ideal apparatus. Thus
the total length is given by

IIi =&rJIr,

Ea ='RAr,

ni =nr/94= ~/RWr,

nr =e/IIr =ni,%i,

(286)

(287)

(288)

(289)

2 = P~ I i,= (log q)/A (292)

A = gs 9'-~ (293)

where q is the total separation factor.
The total length of tubing in the apparatus is

The quantity nr which is introduced in (288) is
a particularly useful quantity, because it Since '5& is a large number and there are many
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4o'Ki t
~ '~~ c~y —c

A = 9ti,ds= dc,
60 Hi' ~BB,. [C(1—c)]'

(294)

40Kr (1—2ci~)(c~g —ci,)

ci;(1—ci;)

stages, the summation may. be replaced by an
integral:

number of tubes in the scrubber as in the first
stage of the separation apparatus. In this case,
the use of a scrubber means in practice tha. t the
length of the first stage is increased somewhat,
and that the fresh gas is introduced at a point
somewhere between the ends of the columns.

Equation (295) may also be written in the
form

=4(asin (295) }, (298)

This is a very important formula. It shows that
the total length of tubing required is propor-
tional to the rate of production of concentrated
material 0 and to a factor which depends only on
the i:nitial and: fina concentrations, and is in-
versely proportional to Hi'/Kz. The quantity
Hp/Ki is accordingly the measure of the effec-
tiveness of a unit length of column.

If- we assume also that the scrubbing column
is an ideal multi-stage apparatus, we find from
(295) for the total length of tubing in it,

40,Kr (1 2ci;)—(c, ci,)—
Hg' ci,(1—ci,)

+(1—2c,) log g. , (296)

4oKi (1 —2c,)(c~g —ci,)
log ggA+A, =

IIr' (Cli CB)

—(1 —2c~~) log q, (29'I)

where 0, has been eliminated by means of
(225.2).

It is easiIy shown that the number of tubes at
the beginning of the scrubber is the same as the
number at the beginning of the actual separation
apparatus. There is usually very little advantage
in operating the scrubber as a multi-stage
apparatus, however. If a single-stage scrubber is
used, it is very convenient to use the same

where g, is the separation factor obtained in the
scrubber. Adding (295) and (296), we have for
the total length of tubing in the multi-stage
apparatus and in the scrubber

where 2AA/nr has the same significance in rela-
tion to efficiency as the y/n which was used in
the discussion of single-stage apparatus. The last
equation permits us to make a direct comparison
of the eSciencies of single-stage and multi-stage
apparatus. Suppose that both ci; and c~y are
much less than unity, and that we desire a
separation factor of ten. From Table X, we find
that the maximum value of n/y in a single-stage
apparatus is 1/40. 5, whereas, according to (298),
a value of n&/2AA of 1/26. 8 may be secured with
an ideal multi-stage apparatus. The multi-stage
apparatus thus increases the eSciency by a
factor 1.51. The corresponding increase in effi-
ciency for a separation factor of 50, with c
everywhere small, is 1.82, and for a separa. tion
factor of 10', which would be needed to raise
the concentration of He' from 10 ~ to 10 ', the
multi-stage apparatus is 3.6 times as efficient as
the single stage apparatus.

These increases in efficiency, although very
worth while, are not striking. The real advantage
of multi-stage apparatus is that the time required
before continuous operation may begin will in
many cases be very much shorter than the cor-
responding time for a single-stage apparatus.
This is true, as may be seen from (291), because
the number of tubes in parallel decreases as the
concentration increases. Thus in the multi-stage
apparatus, a smaller amount of the desired
isotope will have to be concentrated inside the
apparatus to bring it to the point at which con-
tinuous operation may begin.

We may easily obtain a simple expression for
the mass of desired isotope which must be
transported into the column in order to secure
the concentration distribution required for con-
tinuous operation. This mass is clearly given by
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OR=ted Pp (cg —ci,)%pLg

4o+r r~w (c—ci,) (c~~—c)
dc

III' &.„[c(1—c)]'

40.&r
[(ci~+C~J' 2cijcÃf) log gHl'

(299)

extreme cases, the initial transport for the ideal
apparatus will be as much as twice that of the
single-stage apparatus. ) For simplicity, we ex-
amine only the case in which c is everywhere
small. Then it is easily shown the value of BR for
the single-stage apparatus is P times the value of
OR for the ideal multi-stage apparatus, where P
is given by

—2(c~g —c„)j.
When the apparatus is first put into operation,
the desired isotope will be transported into the
column at the rate 9liHrci;ci;, since there is no
concentration gradient. As the apparatus ap-
proaches the time at which continuous operation
may begin, however, the transport will be
reduced to one-half of this value. The time
required before continuous operation can begin
is therefore greater than

t.=m/(StiHrci, ci~) (300)

and less than 2t, Becaus. e of the Debye effect
(cf. Fqs. (169) and (176)) the concentration at
the positive end will probably rise to the desired
value before the characteristic time t. has
elapsed, but it will not be possible to obtain
concentrated material at the full computed rate
until a time somewhat greater than t, has
elapsed.

Equation (300) is very similar in appearance to
(174), which is the equation for the relaxation
time of the approach to true equilibrium. The
physical meaning of (300) is quite different,
however, because there the mass in question is
the mass to be transported into the column in
order to secure' equilibrium, whereas 9K is the
mass computed for a state which is very far
from equilibrium. Indeed, the separation factor
obtained in the ideal multi-stage apparatus is
just the square root of the equilibrium separation
factor. The characteristic time 5, will usually be
very much shorter than the relaxation time of
the approach to true equilibrium.

We may now also compare the characteristic
times of single- and multi-stage apparatus. Since
the initial transport of both types of apparatus
will be approximately the same if they are
designed for the same rate of production r, we
may compare these times by comparing the
values of OR for the two types of apparatus. (In

HQ
—1)(1+ny) —y }/ In(1+n) }

(301)
4 I (9+1)»g I—2(Q —1) }

The Design of Practical Multi Stage Appar-atus

In this section we develop formulae for the
design of actual multi-stage apparatus which will
approximate very closely the behavior of the
ideal apparatus discussed in the previ'ous section.

In practice, the number of tubes in parallel
cannot be varied continuously, nor can the
separation e8ect of each stage be infinitely
small. We shall therefore examine the questions
of e%ciency and equilibrium time in multi-stage
apparatus in which the number of tubes in
parallel changes discontinuously, and in which
the stages are of finite length.

This examination falls into two rather distinct
parts. We shall first give a complete treatment,
based on the two-log-g rule, but one which holds
only for stages in which the restricting conditions

cI„., cA:J'&&c~y (302)

are satisfied. We shall then give a treatment
which is not subject to any restriction of the
type (302), but which on the other hand is in-
complete in one respect and must fall back on
the first treatment for completion. The second

In this expression, n and y refer to the single-
stage apparatus, and are related by the condition
(231) that the separation factor must be g. If
we use the values of n and y given in Table X,
which maximize the ratio n/y, we find that for
separation factors of ten and fifty, respectively,
the values of P are about three and seven; for
values of g so large that log q&&i, we find from
(257)—(258) that P has the approximate value
q/(4 log g), so that for a separation factor of 10',
the single-stage apparatus will have a charac-
teristic time about 2000 times that of the ideal
multi-stage apparatus .'
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treatment does not invoke the two-log-g rule,
although a modi6cation of it is implicitly con-
tained in the treatment.

We proceed with the first treatment; we select
for consideration the kth stage, and postu1ate
that

TAsLE XIV. Comparison of the stepped and
ideal apparatus.

9Ra/K;deaI
C14/Cki =0 Cis%7ss =I~Is/~ ideal

1.000
1.045
1.112
1.201
1.284
1.366
1.571
1.689

1.000
1.040
1.099
1.155
1.207
1.254
1.337
1.407

1.000
1.041
1.107
1.176
1.246
1.314
1'.447
1.570

1
2
3

5
6
8

10

94 i= v%s, 94=v94pi (k&1) (303)9ti=vRs (k=1)

where v is a number, the stepping ratio, which
will usually be between one and ten. The restric-
tion (302) makes it possible to use Eq. (272),
and to simplify the latter equation, so that
we obtain

It is interesting that this value of 1/ni„obtained
by using the two-log-g rule, is equal to that ob-
tained by finding the values of 1/n in the ideal
apparatus at the concentrations ck; and ckf and
taking their average.

Correspondingly, the average value of 1jn in
the ideal apparatus, obtained by averaging with
respect to s between the points at which the
concentration is ck; and ckf, is

Ckf —SkCN f
=exp (3' ). (304)

Ck i 'PSkCN f

The assumption used here, that nk is a small

quantity of the order of csy/ciir~, is verified ex-
plicitly by Eq. (307) below.

Application of the two-log g rule now gives,
by Eqs. (302) and (304): 2(v-1) c s

(1/n)A„——
log p ckf

(308)
Csy —nsCN j (Ckf )
Cs i nyCNf (Cs i)

This leads to the result

Ckf

Csi+ Cs/ 1+ps

Ckickf
C~fSk =

Equation (303) is equivalent to

(304.1) The quantities 1/ni and (1/n)A, are proportional
to the total length of tubing in the kth stage of
the stepped apparatus and in the corresponding
part of the ideal apparatus, respectively. The

(305) length of tubing in the stepped appa, ratus is thus
greater than the length in the ideal apparatus
by the factor

vni, i ni. ns+i/v—— (k——& 1),

ni =ns/v (k =1).
(306)

~ideal

(v+1) log v

2(v —1)
(309)

its =Csr /Ck; =V. (306.1)

From Eqs. (305) and (306.1) we now obtain
the result

Relations similar to (305) can also be written'
for the (k+1)th stage, and the (k —1)th (if k&1).
These relations, together with Eqs. (267) and

(306), make it evident that in order to obtain a
simple treatment which takes the same form for
all three stages —or for both the first two stages
if k=1—we must give to all of the separation
factors qs i(k&1), gs, ~s~i, the same value v;
accordingly

v+ 1 civf
(309.1)

whereas the number of tubes in parallel at the
negative end of the ideal apparatus is

97i, ideal

Sg Cgf—2%7
+1, ideal

(309.2)

This factor is tabulated briefly in Table XIV.
From* (307), the number of tubes in parallel

in the first stage is

1 v+1 c~y ~ civy= (v+1)
7 Ck' Ckf

(307)
from (291) and (302). Thus the maximum

* This paragraph was added in February, 1946, in order
to provide a satisfactory reference for Eq. (376).
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number of tubes in parallel is less in the stepped
than in the ideal apparatus by the factor

9|1,ideal

'ni, ideal 7+ 1

nl 2p
(309.3)

94-2 71%—1 9tk-1 71&

K 72%+1~ %+1 72%+2
(311)

Since the (0—1)th and the (0+1)th stage satisfy
the conditions (305) of the previous problem, we
have by (307)

and
72+ 1 CN/

(312)

(313)
nb+1 +2Ãk +2 ckf

Solving the last two equations for ckI/ck;, we find

7i(72+1)
ilk = ckf/cki

7i+1
(314)

According to the last three relations, the design
of the 0th stage is Nniglely determined by the
fact that the stages before and after are designed
in accordance with Eq. (307). It is thus not

If now we compute for the stepped and for the
ideal apparatus the mass of the desired isotope
which is present between the points at which
the concentration is cI,; and cj,y, minus the mass
present initially, we find that the mass in the
stepped apparatus is greater by the factor

5Kk 1 7' —1+2(7—(7+1)ci;/ck~) log 7
. (310)

Midesl 4 7 10g 7 (7 1)Clv'/Ck;

This factor is also tabulated in Table XIV for
c»/ck; equal to unity and to zero.

It is evident from Table XIV that neither the
efficiency nor the characteristic time is seriously
affected when y is not more than two or three.

Any number of stages of the type indicated by
(307) may be used in series, and as long as the
condition (302) is satisfied, they will satisfy the
two-log-g rule exactly, provided that the stepping
ratio 7 is the same for each successive stage.
Suppose, however, that we wish to change the
stepping ratio after a certain number of stages.
Specifically, we assume

possible to add the further condition that the
kth stage satisfy the two-log-g rule. Instead, we
find by further calculation

yk log (7172)
(315)

log a»g I7 (7 +1)/(7 +1) I

Provided that 71)72)1, this expression has a
value which is always greater than two. It is
tabulated in Table XV.

We may also compare the efficienc of this
stage with the efficiency of the corresponding
part of an ideal apparatus. A short calculation
gives:

(7i+1)(72+1) log 7i72yk/nk
. (316)

f ides 1(1/n )Av A idesl 4 (7172 1)

This ratio is also tabulated in Table XV.
The design of stages of the type (307) is based

on the two-log-g rule. For large values of y, how-

ever, this rule is no longer valid. For example, we
see from (283) that for 7= 10, the most efficient
operation is obtained for y=1.65 log g. Our de-
tailed considerations on stepped apparatus are
thus valid only when the p's are small, say not
greater than ten. The formulae are still correct
for larger values, of course, but the stepped ap-
paratus so designed will not be the most efFicient
one possible with the given stepping ratio.

The conditions (302), on which the present
treatment is based, obviously break down in the
last few stages 6f every apparatus. The formulae
to be developed: in the second treatment will
hold for every stage of the apparatus.

We procede with the second treatment. It has
already been pointed out that the ratio 2AA/nr
has the same significance with relation to eK-
ciency as the y/n which was used in the discus-
sion of single-stage apparatus. For the. stepped
multi-stage apparatus, this ratio takes the form

2AA/nr = (1/ni) gk 94yk

=Zk (Kk/nr)

X (317)
c(1—c) nr (c—c~q)/9L—

We assume that the values of cl; and c~j are
pre-assigned, and also that the number of tubes
in each stage, Rk, has been specified. That is to
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say, we assume that the initial concentration
and the desired final concentration have been
decided, and also that the type of stepping has
been determined.

In order to obtain the maximum efficiency
with such an apparatus, it is now necessary to
maximize (317) with respect to a variation of nr,
and' of each of the cI,f's. It is apparent at the
outset that the maximization with respect to n»
will not lead to any simple relations, and this is
the respect in which this second treatment is
incomplete. On the. other hand, the maximiza-

. tion 'with respect to each of the c~f's may be per-
formed very simply. Let y =9tI,/9t&~t be the step-
ping ratio between the kth and the (&+1)th
stage. Then (317) may be written in the form

(s elf dc
22 A/ni —— ~ +-

n, ~.s; c(1 c) —n, (—c c~,—)

TABLE XV. Comparison of the stepped and ideal apparatus
for a stagy of the 'type (311).

3

5
6
8

10

5
6
8

10

2.25
2.40
2.50
2.57
2.67
2.73

3.20
3.33
3.43
3.56
3.64

ya/log q/o

2.210
2.375
2.513
2.631
2.827
2.986

2.135
2.249
2.346
2.505
2.635

»/AIdeaI

1.075
1.119
1.151
1.186
1.248
1.301

1.129
1.161
1.190
1.244
1.290

(269) or one of its approximate forms. The de-
sign of the multi-stage apparatus is thus com-
plete except for the determination of the most
e%cient value of e».

Probably the safest way to determine the best
value of nr is to design the apparatus for several

10 5.45 2.306 1.317

+ ~, (318)
c(1—c) —ynl, (c—c~/)

where have been included only those terms in
(317) which depend on cI/. Setting the derivative
of (318) with respect to c&q equal to zero, we find
the important relation

cs/ci/+ (y+ 1)ns(c~q csf) =0. —(319)
I

Solved explicitly for c&q, this equation becomes

c~~ = s I1+L(v+1)n.j
—(1+2 (1—2c~/) ((y+ 1)n~g

+uv+1)n. j')'I (32o)

Equation (319) may be looked upon as a gen-
eralization of (307), but the interpretation of
these two equations is quite differ'ent. Whereas
(30/) was considered as an equation giving ns
in terms of 7 and c&f, Eq. (3-19) must be con-
sidered as an equation giving c~/ in terms of y
and RIc.

Let us suppose for the moment that the value
of nr, which of course determines the values of
all of the nI, 's, has been determined in some
manner. The values of cs; and cI,f for every stage
is then determined by (320), and the value of
each. of the y&'s may then be determined from

different values of nr, and then to determine by
graphical interpolation the value of n» which
maximizes nr/2A/t. This maximum is not at all
critical, as we shall see in the numerical ex-
amples of Part IV. A very good first guess for
nr may be obtained by operating the first stage,
which contains the largest number of tubes in

parallel, according to the two-log-g rule. When
the value of c in the first stage is everywhere
small compared with c~f, this may be done very
simply by giving ni the value (307); When the
conditions (302) do not hold for the first stage,
however, -it will be necessary to determine n&,

cjf and y& so that they simultaneously satisfy
(269), (319), and the condition yt ——2 log gt, in
order that the first stage obey the two-log-g rule.

When, as often happens in practice, the condi-
tions (302) hold in several of the first stages of
the apparatus, the first guess obtained in the
above manner will be very close to the best
value of n», because in such a case a large part
of the tubing will actually be operating accord-
ing to the two-log-q rule.

It is easily shown that the mass of the desired
isotope which must be transported into the
stepped multi-stage apparatus in order that it
reach its continuously operating condition, is
given by
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(c—ci;)dc
mt= P&94

2A ~ .„cd n—&(c c—~q)

gg%g (1—np —2ci;)yi
4A

(cc)I q nI, (—cif cn y—)
1—log

(cc)s; ns(ci„——cay) I

(321)

is valid. Here 8„is the rate of increase of entropy
in the volume caused by mixing of the two con-
stituents, and 8, is the rate of increase of entropy
caused by the conduction of heat through the
volume. The result (322) is a rigorous conse-
quence of the general equation of transport '(25)
and the equation of continuity (30). The sign
of equality holds in (322), if and only if

—S /S. (&4in'cc(PD/) T) (322)

where yi, is defined by (269).
.In using this value of BR in order to obtain a

value of t, to compare with the ideal character-
istic time, one must be careful, however. We
have already pointed out that the transport of
the desired isotope drops to half of its initial
value in the ideal apparatus. It is clear that this
behavior cannot hold for the stepped apparatus,
because, since the initial number of tubes is less
for the stepped apparatus, the initial transport
of the stepped apparatus will be less than that
of the corresponding ideal apparatus; on the
other hand, the steady-state transport of both
apparatuses is the same, namely, equal to oc+f.

In order to obtain a value of t, which may be
compared with the value (300) for an ideal ap-
paratus, we should thus divide OR by a transport
which is somewhere between the initial transport
of the stepped apparatus, and the initial trans-
port of the corresponding ideal apparatus. Be-
cause of our ignorance of the details of the
approach to equilibrium in such apparatuses, the
best that one can do is to use the average of the
two initial transports. The exact choice is not of
great importance, since one is interested mainly
in finding out whether there is a large difference
between the characteristic times, and this could
come about only through a large difference be-
tween the values of OR for the stepped and for
the ideal apparatus.

The use of the considerations presented in this
section will be illustrated in Part IV, where we
shall give numerical examples of the design of
multi-stage apparatus.

ENTROPY EFFICIENCY

The Onsager Theorem

It has been shown by Onsager that for any
small volume of gas the inequality

1D =
g lap (323)

where R is the gas constant per mole.
I

Consider now an inflnite reservoir connected
by a short separation column with a positive
reservoir containing ns grams of gas. Then we
have

no. of moles transferred =mA/M, (325)

where M is the molecular weight of the gas in
question. Equation (324) may now be written

DS„=—', (R/M) m(h'/cc), —(326)

from which we find

—8 = (R/M)m(h/cc)dd/dt. (327)

The substitution of the value (192) for 5 yields
finally

R II'L,—S =—
3f X

where Jiz is the contribution of the ordinary
diffusion term to the flux vector Ji, and Ji is
the contribution of the term corresponding to
thermal diffusion.

It is interesting to inquire what fraction of this
theoretical upper limit may be obtained in actual
thermal separation apparatus of the type we
have been discussing. We first state an ele-
mentary thermodynamic relation. Consider two
chambers A and j3, each of which contains ini-
tially a mixture of gases with the same relative
concentration; and then suppose that a small
number of moles of species 1 is transferred from
A to 8, and that an equal number of moles of
species 2 is transferred from 8 to A, with the
result that the values of c in the two chambers
now differ by the amount h. Then if 6/cc is small
compared with unity, the total change of en-
tropy is given by

hS = —-', R(A/cc)
&((no. of moles transferred), (324)
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The rate of increase of entropy caused by the
degradation of heat in the separation column is

8,=BL (lihT/2w) (DT/TiT2) (329)

in the plane case. If now we insert in (328) the
values of H and X for the plane Maxwellian case
(Eqs. (78) and (82)), and note that the maxi-
mum value of the bracketed expression in (328)
is ~, we find

t 8.q 1 PD»7
=—0, CC

LIES, j, 4 'AT 10

( Xg) ' TiTg
I

1+—
I

4'(~) . (330)
X,) V'2

The last two factors in (330) approach unity as
AT becomes small. The restriction (119) which
prevents our making Xd/X, as small as we wish

is not a thermodynamic restriction. One thus
sees that the ideal efficiency of the thermal
separation column is 70 percent of the funda-
mental thermodynamic efFiciency (322). This re-
sult was first stated by Onsager (02).The factor
7/10 represents the best average fit that may be
made to the relation (323) in the space between
the walls of the separation column.

The entropy efFiciency given by (330) is
reached at only one time during the separation,
at the time t=(log 2)t„. The greatest average
efliciency which may be obtained in either con-
tinuous or discontinuous operation is easily
shown to be that given by (330) with the addi-
tional factor

8 log $/P =0.81453. (331)

The factor PD/XT which occurs in (330) is
independent of the pressure and temperature,
and on the basis of the inverse power model is
given by

PD/XT= (4/15) ~ (6/5)f(v) (332)

for a monatomic gas, where (6/5)f(v) is the func-
tion tabulated in Table I, Part I.

ES.ciency of the Column Itself

It was mentioned in the section on efficiency in
discontinuous operation that the problems con-
nected with efficiency could be placed in two
categories. We here consider those in the second

category, which are concerned with the efficiency
of the column itself, without reference to the
manner in which the column is used.

It was also mentioned in the same place that
the problems in the two categories had been
shown to be independent by Krasny-Ergen.
Strictly speaking, his proof is valid only when
one makes the same assumptions that are in-

volved in defining the ideal multi-stage ap-
paratus.

We have already pointed out that the value
of H2/X is the real measure of the effectiveness
of a unit length of separation column. This may
be seen from Eq. (295). It may also be seen in

Eq. (328), where S /L is proportional to H'/X,
and to nothing else which depends on H or X.
A third method of demonstrating this fact is
illuminating. The fundamental problem of eK-
ciency may be described as the problem of maxi-
mizing o/L0', where 0 is the rate of production
of concentrated material, I is the length of
column required, and 0 is the cost of construc-
tion and operation per unit length of column.
We may write

0 II2 n

LO XO y
(333)

The problem of maximizing n/y has already been
treated, and we have seen that the solution is
independent of the values of H and X. In order
to maximize o/LO~, therefore, we must maximize
the ratio of H'/X to the cost per unit length.

The one Case

We shall first suppose that the temperatures
T~ and T2 are held fast, and determine the
best value of m. We have

H2/(XQ&) ~ 1/(BrQ&(1+g/~6)) (334)

where a/e6 is equal to Xd/X, . According to (76),
the power consumption Q due to conduction
varies inversely as m. Thus if the cost is chieHy
that of supplying power to maintain the con-
ductive heat flow, the maximum value of H'/XO
is obtained by letting w increase without limit.
The restriction imposed by turbulence, however,
means that w'/u may not be made greater than
25. We may obtain 96 percent of the efficiency
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which would be possible if longitudinal diffusion
did not exist.

The cost of operation may, however, be mainly
due to the transfer of heat by radiation. The
transfer of heat per square centimeter per second
by radiation is

(1 —Ri) (1—R2)
Q„g ——a (Tp' —Ti') (335)

(1 —RiR2)
/

where 8» and R~ are the reHection coefficients of
the cold and hot wall, respectively, suitably
averaged over solid angle and the frequency
spectrum involved, and where r =5.7 X 10 "
watt/cm'-deg. ' = 1.36 X 10 " calorie/cm'-deg. 4-

sec. is here the Stefan-Boltzmann radiation con-
stant. Both Q„q and the cost of construction are
independent of m. If these factors form the chief
contribution to 0', it is easily found that H /XO
is maximized when w is adjusted so that X./Zz is
made equal to 5.

In the general case in which all of these factors
are important in contributing to the cost, the
optimum value of X,/Xq will be somewhere be-
tween 5 and 25. Since a value of X,/Xq=10 will

always provide operation at very nearly the
maximum of efficiency, it does not seem worth
while to carry the maximization procedure
further.

We now consider the dependence of efficiency
on the temperatures T» and T&. It follows from

(70), (71), and (76) that for the plane Max-'

wellian case the value of II2/X, Q is proportional
to AT/T', and for given Ti is therefore maxi-
mized when T2/Ti 3. (Since E~ is a——small frac-
tion of E„ it is sufficient to consider only X, in
the present connection. ) The consideration of
the cost of construction would tend to raise this
ratio above three, whereas the consideration of
power consumption due to radiation would tend
to reduce this ratio. The difhculty with radiation
losses will almost certainly make it advisable to
reduce the temperature ratio below three, at
least in the usual case in which T» is about room
temperature. The best value of T2/Ti should be
determined by carrying out the maximization
for each case as it is encountered; the general
formulae are cumbersome.

The above procedure is an approximate one,
of course. One should really write out 0 as a

function of w, Ti, and T2, and maximize H'/XO~
with respect to a simultaneous variation of zv,

T», and T2. This procedure, however, leads to
very complicated and unilluminating formulae
when carried through in general. In the above
we have merely tried to pick out the simple con-
clusions which can be drawn.

Qi,.a =«2T2'(1 —R2). (336)

This expression is probably a fair approximation
when ri/r2 is greater than about ten, and when

T2/Ti is greater than about two. The former
condition we shall consider to be the definition

of the extreme cylindrical case.

The Cylindrical Case

We shall reverse the order of discussion used
in the plane case, and treat the dependence on
temperature first. We propose to show that in
the extreme cylindrical case, the hot wire should
always be operated at as high a temperature as
possible in order to minimize the transfer of heat
by radiation. The proof will actually be given
only for the Maxwellian case, because this is
the only case for which we have developed for-
mulae, but it will be evident from the method
of proof that the conclusion is also valid when
the temperature dependences of the gas coeffi-
cients diR'er somewhat from those of the Max-
wellian case.

We want to maximize H'/X(Qi+Qi „q), where

Qi,.q is 1/2ir times the radiative transfer of heat
per unit length of column. The expression (335)
for radiative transfer in the plane case was de-
rived by considering the fate of the heat which
left the two walls as it was reflected back and
forth between them. Such a procedure is not
'easy to carry through in the cylindrical case,
because of the much more complicated situation
from the point of view of geometrical optics,
particularly when the wire is displaced from the
axis of the tube by even a small fraction of its
radius. In the extreme cylindrical case, however,
where the wire occupies only a small part of the
solid angle as seen from the wa11, it is a good ap-
proximation to assume that very little of the
radiation ever gets back to the wire; it is eR'ect-

ively radiating into a nearly blackbody. We then
have as an upper limit to Qi,~q
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We shall now hold Qi, ri, and Ti fast, and
examine the behavior of FP/Z(Qi+Qi, .a) as Ts
is increased and as rs is correspondingly de-
creased. It follows from (112)—(113) that this
procedure is equivalent to holding ti fast and
increasing ts. It then further follows from (113)
that the upper limit (336) is proportional to

r,T,4 ~ t,' exp( ——',ts'). (337)

Since the expression (337) has a maximum at
ts =2, Qi „a will always decrease as ti is held fast
and ts is increased, provided that ts is greater
than two; from (113), however, we find that for
all apparatus for which ri/rs is greater than ten,
the value of ts must be greater than (2 log 10)&

. =2.14. Thus Qi,&a will always decrease under

the stated conditions because r2 decreases more
rapidly than T24 increases.

Although the data given in Tables VI and VII
are not in the best form to demonstrate the fact,
it may be shown from them that the ratio H'/Z,
increases monotonically as t& is held fast and t&

is increased. Indeed, we should always expect
this to be the case, because under these condi-
tions the ratio of 8. to Qi will always increase
(cf. Eq. (322)).

We therefore see that the hot wire should

always be operated at as high a temperature as
the stability of the gas will permit, in order to
minimize radiation losses. The fact that the re-
flection coeflicient Rs will in general decrease as
Ts is increased, will have the e8ect of making the
advantage of a high T2 somewhat less than is
indicated by (337), but even so the exponential
will always be the dominant factor.

If, however, we choose to ignore the existence
of a transfer of heat by radiation, it is interesting
to inquire what is the most efficient choice of
ri/rs and Ts/Ti. At the present time, we are
able to answer this question only for the Max-
wellian case. Let us suppose that we have a given

gas, and that the lower temperature 11 is fixed,
as will usually be the case. Then according to
Eqs. (115)—(117), the ratio H'/Z, is proportional
only. to li'/k, . Furthermore, we see from (112)
that under the same conditions the power con-
sumption due to conduction, Qi, is inversely
proportional to t&'. The power efficiency of the
column, as measured by H'/Z, Qi, is thus pro-
portional to 1'i'tis/k, ; The latter ratio is tabulated
in Table XVI.

TxsLE XVI. Values of k'tP/k, for the Maxwelliau case.

r1/ra 1
Te/T1

0.46
0.54
0.54
0.51
0.48

15

0.44 0.41
0.59 0.59
0.68 0.67
0.58 0.67

40

0.57
0.66
0.71
0.61

60

0.57
0.66
0.71
0.65

100

0.56
0.64
0,69
0.68

The Egect of Changing the Pressure

The pressure of the gas within the column

may readily be varied within wide limits, so
that it is interesting to inquire what changes
may be produced by a variation in pressure.

Perhaps the most interesting feature of the
results presented in Table XVI is the fact that
the entries vary as little as they do; the largest
entry is only 1.73 times the smallest. The table
further indicates that with a small temperature
ratio, the concentric tube type of construction is
the more efficient, whereas for gases which per-
mit a large temperature ratio, the hot wire type
of construction is more efficient. The latter re-
sult is a pleasant one, since the difficulty with
transfer of heat by radiation compels us to use
the hot wire type of construction for large tem-

perature ratios.
Suppose now that ri/rs, Ti, and Ts have all

been determined, so that the only quantity left
to vary is the radius of the outer tube. Now

whereas in the plane case the quantity Q was

proportional to 1/to, and Q „s and the cost of
construction were independent of m, in the cylin-
drical case Qi is independent of ri, and Qi „a and

the cost of construction are proportional to rI.
On the other hand, however, in the plane case
the ratio H'/Z, was inversely proportional to to,

whereas now the ratio H'/Z, is independent of

ri Just as .in the plane case, therefore, the ratio
Z, /Z~ should be made as large as possible

(namely, about 25) when the chief cost is that
of supplying power to maintain the conductive
transfer of heat, and should be made equal to
five, if the radiative transfer and cost of con-

struction are the chief cost. A value of Z, /Zq
equal to ten will yield nearly the maximum of
efficiency in all cases.

A comparison of the advantages of the con-
centric tube and the hot wire type. of construc-
tion is given at the beginning of Part IV.
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Two remarks may be made at once. By (328),
(330), and (332), the fundamental efficiency of a
separation column, as measured by the ratio
H'/KQ, is independent of the pressure, so that
we shall not expect any very large changes in

the efficiency to be produced by a change in

pressure. Secondly, as may be seen from (70)—
(72) and (138), the constants H and K depend
on the pressure always in the combination P'g,
so that any change in these coefficients which
could be produced by a/change in the effective
value of g could also be produced by a change in

the pressure.
In the following discussion, we shall assume

that ri/r2 and T2/Ti have pre-determined values
in the cylindrical case. For the plane case, we
make the corresponding assumptions that 8/w
and T2/Ti have fixed values; it is desirable to
make 8/w large in order to obtain a large trans-
port from a single tube, but on the other hand
8/w may not be made too large or there will be
difficulty with parasitic convection currents (cf.
Eq. (138)); there will therefore be an optimum
value of 8/w. We shall consider as variable the
total length of tubing A, the length of the ap-
paratus 2, the pressure P, and the radius ri of
the outer tube.

According to (295), it is necessary that
AHi2/Kr have a given value in order to secure a
given rate of yield with a given increase in con-
centration. Since the most efficient value of
K,/Kz is approximately a constant, we see from
(70)—(72) that w or ri must be proportional to
(P'g) '*. We then find that AHi'/Kr is propor-
tional only to A. Under the same conditions, the
heat transferred by conduction in the entire
apparatus is proportional only to A.. We have
thus confirmed that the fundamental efficiency
is independent of the pressure. The cost of con-
struction, as measured by the area of tubing,
and the heat transferred by radiation are pro-
portional to Ar~ or Am, however, and are therefore
proportional to h(P'g) '; they may accordingly
be reduced by increasing the pressure above at-
mospheric pressure. This apparent advantage is
more or less completely onset by other considera-
tions, however.

The smaller value of m or r~ will mean that it
will be more difficult to obtain adequate pre-
cision in construction; the tubes will require

more care in fabrication, and the cost will there-
fore not be proportional to the surface area.
Furthermore, if a really appreciable increase of
pressure is contemplated, it will be necessary to
increase the wall thickness of the tubes. This will
also add to the cost on construction. For these
reasons it seems unlikely that the use of pres-
sures much greater than one atmosphere will

very often be profitable.
Although the ratio Him/Kr is independent of

the pressure when K,/K~ is maintained at a
constant value, the ratio A =Hr/2Kr is propor-
tional to (P'g)&. The length of the apparatus 2
is therefore proportional to (P'g) &, since the
length is inversely proportional to A. The total
length of tubing required A. , is independent of
the pressure, so that the number of tubes in
parallel in each stage is proportional to (P'g)~.
The characteristic time t, is proportional to
Ari2P/Hi, and thus varies as (Pg') &. This is the
only case in which P and g occur otherwise
than in the combination P'g.

CC

Kite w'(1+a/w')
(338)

where w may be considered to be either w or r„
as the case may be. This expression is maxi-
mized when K,/Kq ——2.

The characteristic time does not depend
strongly on this ratio, however. For example,
when K,/Kq has the value 10, which as we have
already remarked provides nearly the maximum
of efficiency in every case, the characteristic time
has a value which is only 25.3 percent greater
than its value for K,/K~ ——2.

Minimization of the Characteristic Time t,

We have seen that the best value of K./Kq
from the point of view of efficiency is between 5
and 25 in every case. We shall show immediately,
however, that in order to secure the shortest
characteristic time, this ratio should be given
the value 2.

It follows immediately from (299) and (300)
that in order to minimize t„ the ratio Hr /Klti
should be maximized. With fixed r, /r2 or fixed

8/w, p, is proportional to r i2 or w', so that we have
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PART Iv. APPLICATIONS OF THE THEORY

Very little new theoretical material will be
developed in this part, which is devoted to a
comparison of the advantages of the concentric
tube and hot wire type of separation column,
constructional considerations, some numerical
examples of the design of apparatus, and a dis-
cussion of the experimental literature.

Comparison of the Concentric Tube and Hot
Wire Types of Column

Advantages of the Hot Wire Type

(1) The hot wire type of apparatus is less
subject to difficulties with parasitic convection
currents which serve no useful purpose and
increase the value of E. Our computations on
this matter (cf. Eqs. (139)—(141)) a.re not very
apposite to the question, but it is clear that the
parasitic currents must be of less importance in
the hot wire type of apparatus.

(2) When very large separation factors are
desired, the ideal multi-stage design will often
demand an impossibly large number of tubes in
parallel for the first stage, or else a number of
tubes for the later stages which is less than unity.
If the concentric tube type of column is con-
sidered as the unit tube, the hot wire type of
column makes it possible to realize a "frac-
tional" tube. This matter will be discussed in
more detail in the design of the helium apparatus.

Less important advantages:
(3) The hot-wire type of construction permits

one to obtain an appreciably greater H'/X for a.

given power consumption per unit length. This
is true because a much larger temperature dif-
ference may be obtained without incurring
prohibitive radiation losses.

(4) The hot wire type of apparatus is simpler
in construction, and requires less precision in its
construction.

(5) Clusius and Dickel (C10, p.' 449) have
pointed out that in some cases desirable exchange
reactions are facilitated by the hot wire. For
example, in concentrating 0", the reaction

2Q16Q18~Q 16+Q 18

will occur in the gas near the wire, so that one
may obtain nearly pure 02'8 instead of the nearly

pure Q' Q" that would be obtained with a con-
centric tube column.

(6) The thermal diffusion constant a will
usually increase at high temperatures, and H'/&
is proportional to n'.

Advantages of the Concentric Tube Type

(1) In the initial stages of multi-stage appa-
ratus, it is often necessary to obtain very large
values of H. The value of H which may be
obtained from one column of the concentric tube
type is several times the value obtainable from
one hot wire column, so that the number of
columns which it is necessary to use in parallel
may be substantially reduced.

(2) In many (probably in the majority) of the
cases which arise in practice, the possibility of
undesirable chemical reactions will reduce dras-
tically the value of T2 which may be employed;
the gas may decompose, or it may react with the
material of the tube or wire if the temperature
exceeds a certain limiting value, which may be
quite low. In some cases also T& cannot be very
low because the gas would condense. Now if the
temperature difference is rather small, one simply
cannot put much power into a hot wire apparatus
because of the small area of the hot surface. Our
discussion of entropy efficiency in Part III has
shown us that in efficient apparatus, the output
in terms of separation factor and yield is propor-
tional to the increase of entropy due to con-
duction, and therefore to the power put in to
maintain the conductive heat flow. The use of a
hot wire column with a small temperature dif-
ference would therefore mean that very many
columns would be required. This would mean
elaborate and expensive construction, and would
probably bring with it the attendant difficulty
of long equilibrium times. In these cases, the
concentric tube construction is indicated in order
that one be able to put a satisfactory amount of
power into the apparatus.

(3) When the inner cylinder is simply a wire,
electrical heating is required. The concentric
tube type of construction makes it possible to
use other means of heating the inner cylinder,
such as condensing vapor or circulating liquid.
For large scale apparatus, concentric tube con-
struction thus makes it possible. to use an inex-
pensive kind of power.
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Constructional Considerations

Under this heading we shall discuss some of
the implications of the preceding theory with
respect to the manner in which the apparatus
should be constructed. The material is neces-
sarily somewhat miscellaneous.

(1) Our considerations on the effect of a small
azimuthal variation in temperature, and on the
effect of a lack of perfect centering of the wire,
show that these imperfections should be avoided
as much as possible. To insure accurate aline-
ment, the inner tube or wire should be held in
position by spacers placed at frequent intervals
along the tube. The wire, if heated by alternating
current, will tend to vibrate in the earth's mag-
netic field, if it is not restrained.

. Metal tubes are to be preferred, because their
good conduction will minimize the azimuthal
variation in temperature. Metal tubes are also
advantageous because when properly polished,
they will reduce radiation losses, and because
greater precision in construction may be realized
with them. In the case of concentric tubing,
heating by condensation of a vapor or by rapidly
circulating liquids is probably better than
heating by resistance wire. The water cooling of
the outer tube should also be efficient in order to
minimize temperature asymmetries.

(2) We have seen that both the true equi-
librium time (cf. Eq. (174)) and the characteristic
time which one must wait before continuous
operation may be begun (cf. Eq. (300)) are
proportional to the mass of the desired isotope
which must be transported into the column. Any
dead space in the column or connecting tubes
will increase this mass, and will thus increase the
equilibrium or characteristic time.

In the operation of multi-stage apparatus, it
is necessary to connect the bottom of one column
to the top of the one following or preceding it.
In order to prevent a reverse concentration
gradient, it is essential that a good circulation be
maintained in the connecting tubes. It has been
customary, we understand, to maintain this
circulation by the simple means of applying a
heater to one of the two connecting tubes.
Because of the small pressure difference obtain-
able by this method, however, it is necessary to
use rather large connecting tubes to obtain

adequate circulation, and this means that the
tubes will contribute appreciably to the dead
space. The- writers recommend that a more
effective method be used to secure the necessary
circulation, so that smaller connecting tubes may
be employed with a consequent reduction in the
equilibrium time. Since the resistance to the flow
of gas through a tube is by Poiseuille's law in-
versely proportional to the square of the. cross-
sectional area, it is clear that a large increase in
the driving pressure will be necessary in order to
realize a substantial decrease in the column of the
connecting tubes. It is further necessary that the
pumping device be inserted in such a way that
it does not interfere with the pressure gradient
which is causing the gas to flow through the
separation columns at the rate a-.

When very large separation factors are to be
obtained, it may be necessary to purify the gas
at several points along the apparatus, because
the impurities may be concentrated far more
effectively than the isotope itself. In order to
keep the dead space small, it is very important
that the volume required by the purification'
apparatus be made as small as possible.

(3) When two or more separation columns are
connected in parallel in such a way that the
upper ends are connected freely together, and
the lower ends likewise, the inevitable tem-
perature differences among the columns will
produce parasitic circulating currents rising in
some of the columns and falling in others. These
large circulating currents will more or less com-
pletely obliterate the concentration gradient
that would otherwise be obtained. It is therefore
vitally necessary that such circulating currents
be suppressed.

Before we indicate how this may be accom-
plished, it will be convenient to clarify our
language. We shall suppose the scrubber to be of
the single-stage type, with the same number of
tubes in parallel as in the first stage of the
apparatus. The first stage and the scrubber
together will then consist of a number of columns
in parallel, with the fresh gas flowing in at a
point somewhere. between the ends of the
columns, and flowing out at the rate 0- and con-
centration c~J at the positive end of the last
stage of the multi-stage apparatus. We shall
refer to the point in each of the columns of the
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first stage where the fresh gas flows in as the
inlet of that column. We shall further consider
the end of the scrubber at the inlet as the nega-
tive end, so that the gas flows out of the positive
end of the scrubber at the rate o, and with the
concentration c„where '0 and-o, are related by
(225.2).

Another way of saying that parasitic circu-
lating currents of the type just described must
be avoided, is to say that the Row of gas through
the tubes in a given stage must be approxi-
mately the same in each tube. The equality of
flow in the tubes of the last stage, and the
equality of flow in the tubes of the scrubber,
may be secured easily by connecting all the'
inlets together with a path of low resistance and

by providing the positive end of each of the
tubes in the scrubber with matched capillary
tubes, through which the gas must How as it
leaves the scrubber; exactly similar remarks
apply to the last stage. If the resistance of the
capillaries is large compared with the resistance
of the columns, and if further the pressure dif-
ference between the ends of the capillaries is
large compared with any pressure difference
which might be produced by differences in the
mean temperature of the columns, then the
flows in the separate tubes must be alike to the
extent that the resistances of the capillaries are
matched.

Unfortunately, this simple method of sup-
pressing circulating currents cannot be used
except in the last stage and in the scrubber,
because the insertion of a capillary in one of the
intermediate stages would very seriously inter-
fere with the transport of the two isotopes in
opposite directions which occurs at the point of
juncture of two stages; a large reverse concen-
tration gradient would build up in the capillaries
which would largely offset the separation ob-
tained in the columns. Rather, one needs some-
thing which will present a large resistance to
convective How, but which will nevertheless
permit good diffusive equilibrium to be estab-
lished across it. A plate of suitably chosen porous
material seems well adapted to accomplish this
task. One porous plug inserted at one end or the
other of every column in the apparatus except
those in the last stage and in the scrubber, would
insure the equality of How in all of the tubes of

each of the intermediate stages, and would not
interfere with the necessity of maintaining the
concentration at the positive end of one stage
equal to the concentration at the negative end
of the next.

It is possible to connect the tubes in such a
way that it is necessary to provide only the
tubes of the first stage with porous plugs, in
addition to the capillary tubes at the positive
ends of each of the tubes in the scrubber and
last stage. This is accomplished by using integral
stepping ratios only; integral stepping ratios
make it possible to connect each tube of the
(k+1) stage to the same number of tubes of the
kth stage. If each tube is connected separately
to the number of tubes in the preceding stage—
that is to say, if there is no connection between
the negative ends of the tubes in each of the
stages (except the first), then it is clear that
there will be no "loop" circuits in the apparatus
except those which involve part of the first stage
as part of the circuit. This method is practical,
however, only for those apparatuses in which

each stage is actua. lly above the preceding one; in

the usual type of multi-stage apparatus, in which

the respective stages are beside one another a,nd

in which it is necessary to provide connecting
tubes between the stages, this method would

involve as many pairs of connecting tubes be-

tween the kth and (k+1)th stages as there are
tubes in the (0+1)th stage. It is clear that it is

usually simpler to provide every column with a
porous plug.

It may at first be thought that in the apparatus
described in the last paragraph, it would be pos-
sible to eliminate even the porous plugs in the
first stage by providing also the inlets with

matched capillaries. Closer examination shows,

however, that in order to equalize the Rows in

the tubes of the first stage by this method, it is

necessary that the fractional deviations in the
resistances of the capillaries at the inlets (and
also in the resistances of the capillaries at the
outlets of the scrubbing tubes) be small com-

pared with 0/n, (cf. Eq. (225.2)); since o/s, will

always be small compared with unity in multi-

stage apparatus, it is clear that the capillaries
would have to be matched with prohibitive
accuracy. '
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The Methane APParatms

Since methane is not stable at very high tem-
peratures, it is desirable to use a concentric tube
type of column. We shall assume that the tem-
peratures of the inner and of the outer tube are
the same as in the apparatus of Nier (N3):

Tg = 300', T2 = 573',
T=436.5', AT = 273'. (339)

At the temperature 436.5'K we find from the
recent work of Trautz and Sorg (reference e of
Table III) that the coefficient of viscosity of
methane is

g=1.51&10 4 poise, (34o)

and either from this reference or from Table III
we find that at this temperature the viscosity
varies as T"'. We have further

p =4.47 X 10 4 g/cm' (341)

if we consider that methane is chieHy C"H4.
The value n=0. 78 corresponds to v=10.4,

according to Eq. (13) which is based on the
inverse power model. From Eq. (18) and Table
I, we then have

D = 1.406rl/p =0.474 cm'/sec.

If necessary, we could now obtain an estimate
of n from Eq. (10) and Table I; this procedure

Numerical Examples of the Design of ERcient
Multi-Stage Apparatus

In this section we propose to design two multi-
stage apparatuses on the basis of the theory which
has been developed in the first three parts of
this article. The first apparatus will be for the
concentration of C"H4, and the second for the
concentration of He'.

The material in this section will be valuable
in several respects. In the first place, it will
serve to demonstrate the concrete meaning of
the formulae which have been developed.
Secondly, it will indicate how a rough estimate
of the possibilities of the Clusius-nickel method
may be obtained for any given problem in a
short time. Finally, it will illustrate how the
formulae may be used to obtain the complete
design of an efficient multi-stage apparatus for
the accomplishing of a given task.

gives the value a=0.0104. The value of n has,
however, been determined experimentally by
Nier (N1), who finds:

n = 0.0077. (342)

cg.;=0.0108. (343)

We may now substitute these data in (70)—
(72). For simplicity, we assume that the ratio
8/2w has the same value as in the apparatus
used by Nier:

We then have
8/2w = 18.53. (344)

H&'& =1.006X10 '(2w)' g/sec. , (345)

X,&" = 1.575 X 10 '(2w) ' g-cm/sec. , (346)

Xq'" = 3.94 X 10 '(2w)' g-cm/sec. (347)

In order to obtain a rough estimate of the pos-
sibilities of the thermal diffusion method, we
need only to determine w so that X,/Kg=10,
and then to substitute the resulting values of
(H&")'/(X, "&+Xq'") in (295), in order to deter-
mine how much tubing will be necessary in order
to obtain material of concentration c~~ at the
rate of 0. grams per second.

We shall proceed in a more precise manner,
however, and determine the correction factors
which are to be applied to (70)—(72) in order to
take account of the finite temperature difference
and the cylindrical shape of the column. From
(77) and (339) we have

Q =0.3125, (348)

and from (344) we have,

log ri/r2 =0.342. (349)

Substituting these values of u and log ri/rq in

These data are all for a pressure of one atmos-
phere. To a very high degree of precision, g and
n are independent of the pressure, p is propor-
tional to the pressure, and D is inversely propor-
tional to the pressure. Since it is convenient to
work at a pressure near one atmosphere, and
since the use of a pressure of one atmosphere
leads to a column of reasonable dimensions, we
shall base the design on a pressure of one at-
mosphere.

The carbon isotope of mass 13 occurs with a
natural abundance of one part in 92 (Vi):
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(100)—(108), we find

H/H'Oi = 1.109,

X,/X. &'& = 1.176,

Xg/Xg&'& =0.998.

We then have finally

H=1.116'X10 4(2w) 4 g/sec. ,

(350)

(351)

(352)

(353)

2m =0.712 cm (357)

for the column which we are hypothetically de-
signing. We then have from (353)—(355)

H'=2. 866X10 4 g/sec. , (358)

X,. = 1.224 X 10 ' g-cm/sec. , (359)

X4 =1.992 X 10 ' g-cm /sec. (360)

As we shall see later on when we compare our
theory with experiment, Nier's experimental
results indicate that there was present in his
column a parasitic convection current given by

X„/X,=0.283. (361)

Whether such a large value is due to an avoidable
asymmetry of Nier's column, or whether such a
value is as low as can reasonably be obtained,
can be determined only by future experimental
work. In the latter case, it may be desirable to
reduce the value of B/2m, since X„/X, is pro-
portional to the square of this ratio.

We now have

%=X,+X4+X~
= 1.'171 X 10 ' g-cm/sec. , (362)

X.= 1.852 X 10 '(2ui) s g-cm/sec. , (354)

X4 =3.93)& 10 '(2m)' g-cm/sec. (355)

We must now choose m so that the column
operates with maximum efficiency. It has been
shown (section on entropy efficiency, Part III)
that the most eKcient value of X,/Xq always
lies between 5 and 25, and that the value 10
always provides operation at nearly the maxi-
mum of efficiency. Setting X,/X&= 10, we have

47.1(2w) ' = 10 (356)

or 2m =0.772 cm. This is very near the value
2m =0.712 cm which was actually used by Nier.
Since the wall separation 0.712 cm is known to
represent a practical type of construction, we
shall assume

whence

and
A =H/2X=0. 810X10 'jcm

H'/X =4.64&(10 ' g/cm-sec.

(363)

(364)

BQ = 2.54 watts/cm, (366)

which is in fair agreement with experiment. The
discrepancy is perhaps to be attributed to the
uncertainty in the value of A. , since this ought
to be a good method of measuring the thermal
conductivity.

The mass p of gas in unit length of the column
may be computed with fair accuracy from the
formula

p—2pKB (367)

if we use the value (341) for p. In this manner
we find

t4—4.21X10 ' g/cm. (368)

We have now. completed the design of the
column itself, and it remains only to determine
how the tubes should be connected in series-
parallel in order to realize efficient operation.
W'e shall suppose that methane containing 20
percent C'4H4 is desired:

c~g =0.20 (369)

so that the total separation factor is 22.9.
We shall first determine what could be done

with an ideal multi-stage apparatus. Substi-
tuting (343), (364), and (369) in (295), we find

A/0 = 1.33 X 10' cm-sec. /g. (370)

If we require one gram of the 20 percent ma-
terial per day (o =1.16X10 ' g/sec. ), we find
for the total length of tubing

A. = 154 meters. (371)

Since the column requires 3.77 watts per cen-
timeter, the total power consumption will be 58

Nier's column required 3.77 watts per cen-
timeter of length. Only 1.03 watts/cm were
required when the apparatus was evacuated.
The difference 2.74 watts/cm is to be attributed
to conduction through the gas. Using the value

X = 1.20)& 10 ' cal. /cm-sec. -deg. (365)

obtained by extrapolation from the International
Critica/ '10,Mes, we find
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~ (hidey)

(1)

0.634

(2)

0.694

(&)

0.746

(4)

0.793

ng 0.2560 0.2800 0.3013 0.3200

Txi3LE XVII. Design of the methane apparatus for several
values of nI.

The performance of this ideal apparatus will

serve as a standard of excellence with which to
compare the performance of the following
stepped apparatus.

The relation (309.3) suggests that for an
apparatus with a stepping ratio of two, the value
of n for the first stage should be 4/3 of the value
for the first stage of the ideal apparatus, or

ng =0.03767. (376)

ng
ng
n4

Cli
C1f

C8y

C4/

g1
g2
gs
Q4

0.0320
0.0640
0.1280
0.2560

0.0108
0.0178
0.0331
0.0579
0.2000

1.661
1.890
1.793
4.067

0.0350
0.0700
0,1400
0.2800

0.01080
0.01934
0.03577
0.06185
0,20000

1.806
1.881
1 777
3.792

0.0377
0.0753
0.1507
0.3013

0.0108
0.0207
0.0380
0.0652
0.20000

1.936
1.870
1.763
3.582

0.0400
0.0800
0.1600
0.3200

0.0108
0.0219
0.0400
0.0680
0.2000

2.047
1.864
1.751
3.427

Correspondingly, the number of tubes in parallel
in the first stage should be just 4s the number in
the first stage of the ideal apparatus, or 9ti = 10.7
if we require one gram per day as before. In
order to use a stepping ratio of two, however, it
is necessary that the number of tubes in each
stage be an integral power of two. Accordingly,
we choose

(377)

y2
ys
y4

y, /log g&

y2/log a2
y3/log g3
y4/log q4

0.920
1.278
1.176
2.080

1.81
2.01
2.01
1.48

1.1285
1.2684
1.1635
1.9874

1.91
2.01
2.02
1.49

1.324
1.258
1.143
1.912

2.00
2.01
2.02
1.50

1.506
1.251
1.129
1.852

2.10
2.01
2.02
1.50

nI/~7% J,ya 0.015146 0.015206 0.015202 0.015124

L 4 (meters) 5.68I 2 (meters) 7.89
L,3 (meters) 7.26
L4 (meters) 12.84

2 (meters) 33.7

h. (meters) 104.3

6.96
7.82
7.19

12.26

34.2

113.8

8.17
7.76
7.06

11.80

34.8

122.4

9.30
7.72
6.96

11.43

35.4

130.7

kilowatts. From (292) and (363), the length of
the apparatus is

2 =38.6 meters. (372)

By (291), the number of tubes in parallel in the
first stage is

gi ——14.3. (373)

Finally, the mass BR is

(374)

according to (299), so that by (300) and (358)
the characteristic time for the approach to the
operating condition is

t.=2.96 days. (375)

With the value (376) for nt, this means that o.

is not one gram per day, but is rather only 0.75
gram per day,

The apparatus will thus have 8, 4, 2, and 1
tubes in parallel in the first, second, third, and
fourth stage, respectively. The complete design
of a multi-stage apparatus with the value (376)
for n~ is given in the third column of Table
XVII. The values of the various c's were deter-
mined from (320), with y=2, and the y's were
obtained from (269). The g's were computed by
Eq. (151).The Z, 's were obtained from the rela-
tion I.s =ys/2A, 2 is the sum of the I' s, and A.

is the total length of the columns used = gs94I s.
It is evident that the design is straightforward.

The design was then repeated for a value of
ni slightly smaller than (376), and also for a
slightly larger value. The result is given in the
second and fourth columns of Table XVII.
The quantity nr/+s94ys is a dimensionless
measure of the efficiencies of the several designs.
When it was observed that the eSciencies were
substantially the same for the designs in the
second and third columns, the design was
repeated for a still smaller value of ni, the result
is presented in the first column.

It is interesting to compare the performance
of these practical multi-stage apparatuses with
the performance of the corresponding ideal ap-
paratus as given by Eqs. (370)—(375). For the
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A/0 = 1.42 &(10' cm-sec. /g, (378)

which is to be compared with (370). It is evident
that the stepped apparatus achieves 93 percent
of the efficiency of the ideal apparatus. The mass
gR has been computed from Eq. (321):

sake of definiteness, we shall base our further
remarks upon the design in the second column
of Table XVII. For this apparatus, we have

in the scrubber, however, as we pointed out in
the section on the scrubber, so that the formula
for the scrubber in the present case is Eq. (232).
If we substitute c~; for c;, c, for 8g, and n, for n,
we have from (232)

q, = c&~/c, = (e" &' ~*i n)/(—1 n—). (380)

Since the value of R is the same for the scrubber
and for the first stage, (225.2) may be written:

5K= 1.02 g. (379)

The characteristic time is thus about 4 or 5

days; that is to say, perhaps 50 percent greater
than the characteristic time (375) of the ideal
apparatus. Since the power consumption as
determined experimentally by Nier is 3.77
watts per centimeter, the apparatus will require
43 kilowatts.

Perhaps the most striking feature to be ob-
served in Table XVII is the fact that the eK-
ciency depends so slightly upon the initial choice
of nI, as n~ is varied from 0.256 to 0.320, the
efficiency passes through a very Hat maximum.
It is pleasant that the maximum is so broad,
because this means in practice that only a very
few trial designs will have to be made in order
to find one of nearly maximum efficiency. In fact
the application of Eq. (307) to the first stage may
be expected to give at once an acceptable design.
Indeed, Eqs. (306.1), (307), (343), (369), and
(3'77) give ni=0.036, which lies between the
values in the second and third columns of
Table XVII.

It is interesting to note that all of Table XVII
except the first row and the last six rows can be
computed without knowing H and E'. The design
as given by the c's, n's, and y's is the most effi-
cient design of any apparatus of the 8, 4, 2, 1 type
of staging which is to raise the concentration of
an isotope from 0.0108 to 0.200.

It remains to design a suitable scrubber for the
apparatus. The ideal scrubber has the same
number of tubes in parallel in the first stage of
the scrubber as in the first stage of the separation
apparatus. We shall therefore postulate eight
tubes in parallel for the scrubber.

The value of c in the scrubber will be less than
or equal to 0.0108, so that we are certainly
justified in using the approximation c«1. The
concentrations c and c exchange their significance

cxJ' —cli
ns nfl

cia —cs
(381)

c, = ~~cg; =0.0072,
gs = 1.5,
n, = 1.839,
y, =0.649,
0.=36.4 g/day,
I,=4.00 meters

and for the second case
I

c = xci;=0.0036,
gs =3)
n, =0.920,
y, = 1.85,
0;=18.2 g/day,
I,= 11.41 meters.

(382)

(383)

In both cases, we find by comparing the values
of n, /y, with those obtained from Table XI that
the values of n, /y, are within one percent of the
maximum. The use of eight tubes in parallel for
the scrubber is thus very well justified.

It is apparent that the more efficient scrubbing
of the second case is obtained at the expense of
a much longer scrubber. Since methane is cheap,
the first scrubber is probably the more practical.

where of course c~f = c4f in the present apparatus.
The specification of c, now determines n, by
(381), and then y, by (380).

We have computed a scrubber for two values
of c„ the first corresponding to removing ~ of.
the C"H4 from the methane which is used, and
the second to removing —,

' of the desired isotope.
The multi-stage a,pparatus to which the scrubber
is to be attached is taken to be that described by
the second column of Table XVII (ni=0.0350).
By the method described in the last paragraph,
we find for the first case
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The Helium A pParatus
5K =Q (c—ci;)ds,

It has recently been demonstrated that He'
exists as a stable isotope with a natural concen-
tration of the order of 10 ~ or 10, according to
Alvarez and Cornog (Ai). The concentrating of
this isotope is a matter of considerable interest,
because of the use which could be made of it as
a cyclotron particle. Its precise atomic weight
would be of theoretical interest.

The thermal separation column should be
e8'ective for the concentration of He' because of
the relatively large value of o. for the mixture
He' —He4. We sha11 present here the design of
an apparatus with very moderate dimensions
which is to have a separation factor of 10', that
is to say, it will raise the concentration of He'
to somewhere between j.0 ' and 10 ', the exact
value depending on the initial concentration.

An efficient multi-stage apparatus for the
accomplishing of this task would require at
least 10' tubes in parallel in the first stage. Such
a construction is clearly out of the question. On
the other hand, a single column used to obtain
the entire separation would require several years
to reach an operating condition. Some com-
promise is therefore necessary. As we shall see,
the dimensions and power consumption of the
apparatus will be so modest that the cost of con-
struction, and operation will be a rather small
item. We shall accordingly direct our atterition
to the problem of securing a reasonably short
characteristic time in a simple manner.

We have seen that the characteristic time
required to put an apparatus into steady opera-
tion is equal to the mass of isotope which must
be transported into the column divided by the
initial transport. As long as we restrict the ap-
paratus to have only a few tubes in parallel in

the first stage, it is clear that the main con-
tribution to BR will come from the positive end
of the apparatus. Furthermore, in such an ap-
paratus the transport Hcc near the positive end
will always be so much greater than its value at
the negative end, that the part of the column
near the positive end will be running very close
to equilibrium. Since c is everywhere small in the
proposed apparatus, we may thus compute the
mass OR very simply:

—pC~y
~0

g2Azdg (384)

=(tic/2A )~g.

The characteristic time is then given by

(tic/2A )~f
~c=

(Hc) i,
(385)

B/2u =20,
T~ =300'K,
T2 =600'K.

(386)

The viscosity data of Trautz and Binkele
(reference a of Table III) yield for helium at the
temperature 450'K,

g= 2.60X10 'poise, (387)

and indicate that the viscosity varies rather
closely as the —', power of the absolute tempera-
ture. From Table I and Eq. (10) we then have

0.=0.0758. (388)

At five atmospheres and 450'K the density of
helium is

(389)p=5.40&&10 4 g/cm',

We see from (385) that the simplest possible way
of reducing the characteristic time is to use a
two-stage apparatus, each stage of which com-
prises only one column; the column in the first
stage is to have a value of H as large as possible,
while the column in the second stage is to be
designed to have the smallest possible value of
ti/A. We shall find that this simple procedure is
adequate to reduce the characteristic time to a
reasonable value.

We now address ourselves to the task of
designing the two kinds of column, the first with
a large H, and the second with a small ti/A. In
order to save space, we remark at the beginning
that the use of a pressure of one atmosphere
would involve columns of such large dimensions
that the use of a higher pressure seems desirable.
We accordingly base our design on a pressure of
five atmospheres. In order to obtain a large H,
we require the column for the first stage to be of
the concentric tube variety;
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and then from Table I and Eq. (18) we have

D = 1.370'/p =0.660 cm'/sec. (390)

We may now determine H&", X,&", and
Kzioi as functions of w, and ' m may then be
evaluated by requiring that K, '0)/K&"i = 10.The
result of this procedure is

2m =0.975 cm; J3= 1.9.5 cm,
H'" =0.928X10 ' g/sec. ,

K,io' =0.677 X 10 ' g-cm/sec. ,

Kzi" =0.677 X 10 ' g-cm/sec.

the design will not be too far removed from the
correct design.

It is easily shown that for a Maxwellian gas,
the mass of gas in unit length of the column is
given by

y, = xpiri 2t& exp (t&') exp (—t')dt ~, (396), 1

where the curly bracket is a factor analogous to
k, k„and kq which depends only on the ratios
ri/r2 and T2/'ri. For fixed values of these ratios,
we have

If we assume a parasitic transport given by
Ki,/K, =0.30, we have

p pKg ( Kc)
I

1+—
1

A HEKg)' (397)

K =0.947 X 10 ' g-cm/sec. (392)

We have omitted making any corrections for the
fact that the walls are not plane. We know these
corrections at present only for a Maxwellian gas,
and the properties of helium differ rather greatly
from those of a Maxwellian gas.

We have

p—2p~B = 1.03 X 10—' g/cm, (393)

so that if this column were used to obtain the
entire separation factor of l0', we should have
by (385)

c~f pK

cq H2'

= 10'X (1.13X10' sec.),
=3.6 years.

(394)

(395)

Such a time is clearly out of the question.
On the basis of the concentric tube type, of

column, p/A is proportional to 8, so that we are
led directly to the hot wire type of column in
order to obtain a small p, /A. In attempting to
give a theoretical design of a hot wire column for
helium, however, we are met b'y the serious dif-
ficulty that we know the corrections only for a
Maxwellian gas. The procedure which we shall
follow is to pretend that helium is Maxwellian
during the entire design; when we finish, we
shall indicate how rough corrections may be
apphed to take into account the actual behavior
of helium. The procedure will thus serve as an
illustration of how apposite tables may be used
when they become available, and in any event

y~=1.983&10 4 poise,
pi =8.13X 10 ' g/cm ',

Di =0.334 cm'/sec. ,

n =0.0758.

(398)

The result of substituting (398) in (115)—(117) is

H/hri4=2. 16X10 ' g/sec. -cm4,

K,/k, ri8 =0.679 g/sec. -cm', (399)
Kg/kiri'= 1 70 X 10 ' g/sec. -cm.

Inspection of Tables VI and VIII indicates that
k/kq has a very Hat maximum at about

r i/r 2 100, T2/'l——i =4.

For these values we find from Tables VI, VII,
and VIII:

k=0.116, k, =0.0128, kg =0.78. (401)

Substitution of these values in (399) and the
determination of r& by the condition K,/K& ——-',

leads to
r~=0.560 cm,
H =2.46 X 10 ' g/sec. ,

K.=0.838X10 'g-cm/sec. ,

Kg=0.417X10 ' g-cm/sec. ,

(402)

where pKq/H is independent of ri, and where
K,/Kq is proportional to ri . In order to minimize
p/A, therefore, we should make K,/K~ saba/l'

compared with unity. There is little value in
carrying the matter to extremes, however.
K,/Kz ——

5 is probably a good choice. Reducing
this ratio to 1/40 would reduce p/A by 15 percent,
but would reduce A to half of the value it has if
K./Kz ——5, so that it would be necessary to use
twice as long a column.

At T=300'K and five atmospheres, we have
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whence

t, = 1.4 years. (405)

Suppose now, however, that the latter column
is used as a second stage, and that the column
with the design (391) is used for the first stage.
We then find according to (385)

t, =14 days. (406)

This time is not an unreasonable one. It could,
of course, be reduced still further by using
several columns in parallel in the First stage in
order to increase the initial value of H. If five
tubes of the design (391) were used in the first
stage, the characteristic time /. would be reduced
to less than three days.

It remains to determine what the lengths of
the two columns should be. The value of II for
the hot wire column is only 1/37. 7 of the value
of II for the column used in the first stage, so
tha, t if we match the initial transports of the two
stages, we have as a first approximation

g g ——38, g p
——2630. (40/)

K=E.~+Kg = 0 501X 10 ' g-cm/sec. (403)

For the ratios (400), the curly bracket in (396)
has the value 0.686, from which we find

p =0.549 X 10 ' g/cm. (404)

If a column with these specifications were used
to obtain the entire separation factor of 10', we
find according to (394)

l%. =4.84X 10 ' cal. /cm-deg. -sec. ,

T=450'K,
X =3.69X 10 ' cal. /cm-deg. -sec. ,

T—300'K.

(412)

and then according to (76) and (99) the power
consumption of the concentric tube column is
12.1 watts per centimeter, and that of the hot
wire column is 4.8 watts per centimeter. The
total power consumption is then found to be 7.7
kilowatts, exclusive of the scrubber.

If the column used for the scrubber is of the
same design as that used in the first stage, the
relations (380)—(381) still hold, and we find by
the same procedure as used for the methane
scrubber:

=2ca = pcs~~

I~=5.50 meters,
12=2.10 meters,

~ =6 77 .X 10 4 g/day.

The value of o corresponds to 3.80 cm'/day of
helium at N.T.P., with a concentration of He'
between 10 ' and 10—'.

In computing the power- consumption it is
necessary to consider only the heat transferred
by conduction because of the high conductivity
of helium. Helium, as well as the other noble
gases, obeys the relation

X = 15gR/4M (411)

with considerable precision (C5, p. 241), where
R is the gas constant per mole, and M is the
molecular weight. From (387) and (398) we have

If now we use as our criterion that the values
of I/y for each stage should be individually
maximized, we find by a rough numerical
examination that the values of n for the two
stages should be

Qg = 1.5,
n. =2 53,
y, =0.951,
o, =203 g/day,
I„=0.9/ meters,

(413)

ni ——0.845/q=0. 845X10 ',
n2 =0.910/g2.

The condition that the total How o be the same
for each column then yields as a second ap-
proximation

—1ce = 3cliy

gal=3,
n. =1 27,
gg =2.77,
o, =102 g/day,
I.,=2.83 meters.

(414)
(409)gi ——35, g2 =2860,

nz=0. 845X10 ',
n =3.18X10-,
y&

——5.39,
y2 ——10.35,

This completes the design of the apparatus.
The design of this apparatus, based on tables(410)

(408) and for a scrubber which removes more of the
He' from the gas which is passed through the
apparatus:
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and formulae which are known not to be really
applicable to the case of helium, has been given
in full for two reasons. It provides an illustration

,of the, use of the concepts and data of the theory,
and also, we believe, provides a sufficient basis
for, proceeding with attempts to separate the
helium isotopes even without any further
theoretical information.

The helium problem is, in certain respects, a
case par excellence in which trial and error con-
struction of apparatus without the use of theo-
retical principles would have practically no
chance of producing a successful result. This is
true because the initial concentration is so small
that, unless the apparatus at once produces a
large separation factor after a reasonably short
waiting time, one will have no way of measuring
its effectiveness, or of determining the conse-
quences of tenta, tive changes in the conditions.

We believe that the design we have given can
overcome this difficulty, and make possible the
successful preparation of helium enriched in
Hel. To make it suitable for this purpose the
design must be changed in such ways as to allow
roughly for the differences which we know exist
between helium and a Maxwellian gas.

If suitable tables of h, k„and kg for helium
were available, we should of course construct
the design de novo. Such a complete reconstruc-
tion could also be given on the basis of estimates
of the differences between the behavior of helium
(n= 3) and a Maxwellian gas (n=1) in the ap-
paratus. Because these estimates are uncertain,
however, and also because changes may be neces-
sary after experimental tests are made, we do
not give such detailed considerations. It sufFices
to indicate certain general changes in the desig'n

as given.
First, the lengths of both stages should be in

creased by about twenty percent. This is enough
to offset any difFerences between H&"; K', i'&, and
X~"' and the correct coefficients for the con-
centric tube column; this is evident from the
sizes of the Maxwellian cylindricity corrections
and of the differences between Maxwellian (n = 1)
and hard-sphere (n=-,') results for the plane
case. For the hot wire column this increase in
length provides a useful factor of safety, but
the other changes which we describe next are of
primary importance.

Second, the diameter and temperature of the hot
wire must be increased, th. e radius of the tube for
the hot wire column remaining the same. This is
necessary in order to make the actual values of
h, k., ke, and ti roughly the same as were used in
the design. The reasoning is as follows: In the
theor'etical model used, the quantities it, X, D
are, throughout the tube, taken to be larger
than they actually would be. This is because
they are given their correct values at ri, Ti, and
assumed to increase with the temperature more
rapidly than they actually do. Throughout most
of the volume the difference is not large, but in
the immediate neighborhood of the hot wire it
amounts to a factor of 4&=1.59. Both the tem-
perature distribution and the convection currents
are thus taken to be different from what they
actually are.

The errors in the estimates of ti and ke are
not very great, because of the small volume. in-
volved. The same is true of'h, since H varies
only as g '. For k„however, the difference is
probably quite large. Not only do the smaller
values of it and D which actually occur mean
obviously a great increase in X„but also it
must be remembered that, owing to the smaller
value of X, the high temperature itself is confined
to a smaller region. It is probable that k, is larger
by a sizable factor than the value taken from the
table. The purpose of making the wire larger and
hotter is to provide a more effective viscous,
highly diffusive "core" to limit the remixing
effect of convection.

The size of the changes required is hard to.
estimate precisely. It is reasonable to suppose
that they are about the same as those which
would make (Qi/Xi) take the same value as it
has for the original Maxwellian design. Computa-
tions based on Eq. (99) indicate that this could
be done either by increasing Tm/Ti from 4.0 to
4.8, or by making rm four times as large. Since H,
Xe, and ti are not very sensitive to these changes,
they should be taken amply large. Thus, it seems
reasonable to suggest that the mire should be
tnrice as large in diameter as previously indicated,
and about Z00' hotter. Actually, the wire orig-
inally specified might be inconveniently small in
diameter.

The design as given, with the changes indi-
cated in italics, should form a satisfactory basis
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for the separation of the helium isotopes. Mod-
erate readjustments of the pressure and of the
temperature of the hot wire should su%ce to
adjust the apparatus for satisfactory routine
operation.

Since the initial concentration of He', believed
to be between 10 7 and 10 ', is so very small, it
is important to consider the effect of possible
impurities. There is only one which can cause
difficulty, namely, hydrogen, because this is the
only molecule which is lighter than He'.

The presence of hydrogen will not interfere
with the concentration of the light helium isotope
as long as the concentration of hydrogen is small
compared with unity. The value of n for the
H~ —He4 mixture will be slightly more than
twice that of the He' —He' mixture, so that in
continuous operation the ratio of the concentra-
tion of H2 to that of He' at the top of the column
will be several times, say about four times, the
value of this ratio in the gas forming the starting
material. We therefore see that the concentra-
tion of hydrogen in the original helium must be
reduced to at least 2)&10 '. With this initial
concentration, the concentration of H2 at the
top of the apparatus will be about 10 percent
when a separation factor of 10' for He' has been
obtained.

The usual method of removing hydrogen from
a gas is to pass it over a hot metallic oxide, such
as copper oxide. A temperature of 600'C is
probably the best compromise between the op-
posing considerations of reaction velocity and the
equilibrium concentration of H2 in the reaction

2H2+02~~2H20.

The addition of a few percent of oxygen to the
helium would displace the equilibrium further in
the desired direction, and would eliminate the
necessity of replacing the copper oxide at fre-
quent intervals. , The added oxygen could do no
harm, since it would be eliminated by the
scrubber along with all other heavy impurities.

It may well be, however, that the simple pro-
cedure just suggested will not reduce the con-
centration of H2 to as low a value as 2X10—'. In
this case, two further methods of purification
suggest themselves. One could insert a copper
oxide purification tube between the first and
second stage, where the concentration of the

hydrogen will be much higher. Or after the hy-
drogen concentration is reduced by the method
described in the last paragraph, one could add
approximately one percent of D2 to the helium
and pass it through another heated tube con-
taining copper oxide. The hydrogen concentra-
tion would then be reduced to its previous value,
but almost all of the hydrogen remaining would
be D2, which would not be concentrated by the
column because of its greater mass. The D20
resulting from the oxidation in the second purify-
ing tube could be recovered by a liquid air trap.

initial transport ~ r j'E' (415)

for a constant temperature of the hot wire. This
relation is in good agreement with our theory;
according to (145), the initial transport for a
given initial concentration is proportional only
to H; and by (115), the essential dependence of

Comparison rvith Exyeriment

The most detailed experimental study of the
operation of the thermal separation column
which has yet been published is that of Clusius
and Dickel (C10, C11). They have examined in
considerable detail the dependence of initial
transport and separation factor upon variations
in the tube diameter, pressure, and temperature
difference. The natural oxygen-nitrogen mixture
found in the air was used in these measurements.
The separation columns were all of the hot wire
type, although unfortunately the authors do not
state the diameters, of the wires.

In the authors' Fig. 5 the initial transport is
plotted against the pressure for columns of three
different radii. The current through the hot wire
was maintained at 2.3 amperes. The experi-
mental points for the two smaller tubes fit very
accurately a curve whose ordinate is propor-
tional to the square of the pressure. The scatter-
ing of the points for the largest tube is to be
attributed to errors in the measurement of the
changes in the oxygen concentration, which were
very small.

In Fig. 6 of their article Clusius and Dickel
show that the experimental points for the de-
pendence of the initial transport on tube radius
can be fitted very well by a curve whose ordinate
is proportional to r~4. The authors are thus able
to conclude the empirical relation
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10g g~=
1+5/P4

(417)

where the ratio of a to b can be predicted from
theory. This relation follows from (150) if we
note that H, X„and Xg are proportional to I",
I", and I", respectively. The coefficient X„ob-
viously must have the same pressure dependence
as X., since they both represent convective
phenomena. "Ihe values of a and b separately

H on rt and P is of the form (415). There is also
a small dependence on rt/rs through the factor
h. For large ratios of. radii this factor is insensi-
tive to rt/rs, (cf. Table VI), and since we do
not know r2, the importance of this effect can
not be estimated.

In Fig. 7 of C10 it is shown that the initial
transport increases about 20 percent as the tem-
perature of the hot wire is increased from 600'
to 750'. The authors state neither the tube
radius nor the pressure, so that the most we can
conclude is that the observed insensitivity of 'the

initial transport to changes in the temperature
ratio is in accord with the predictions of Table
VI, where the factor h actually passes through a
maximum as the temperature ratio is increased.

The authors show in Figs. 8 and 9 that the
equilibrium concentration digererlce is inversely
proportional to r~' for large values of r~, but that
for smaller values of r~ the points fall under the
r& 4 curve. Our theory predicts a relation of the
for IH

log q, =art '/(1+brt ') (416)

(cf. Eqs. (115)—(117) and (150)), if we ignore
the dependence of h, k„and k~ on rt/rs. It would
thus appear that the experimental values for
smaller values of r~ are under the r~ ' curve not
only because of the presence of the second term
in the denominator (which is just Xq/X, ,), but
also because the logarithm of the separation
factor is not proportional to the concentration
difference for larger values of the latter.

Perhaps the most exacting test of the theory
is the prediction of the dependence of the equi-
librium separation factor upon the pressure of
the gas in the column. Our theory predicts that
for any type of column, whether it be of the con-
centric tube or the. hot wire variety, the de-
pendence of g, on P is exactly of the form

cannot be predicted theoretically because of our
inability to predict X„with any accuracy.

The most careful check which has been made
of the relation (417) is that of Nier (N3), who
used a column of the concentric tube type for
the concentration of C"H4. The design of the
column is exactly the same as that used in the
preceding section for the methane multi-stage
apparatus.

'

The theoretical predictions for this
column are given by (358)—(360). Using the fact
that the column was 7.30 meters long, we have
according to the theory

log q, =2AI. =
1.710/P'

1+0.1628/P'
(418)

1.72s/P'
log Qt,

=
1 283+0 161s/P'

(420)

Comparison of (420) with (418) shows that the
assumption of a parasitic remixing given by

X„/X,=0.283 (421)

leads to a discrepancy between experiment and
theory of about 0.6 percent. "The excellence of
this check is of course fortuitous, since the physi-
cal constants used are not known to such an
accuracy; in particular, the probable error in the
measurement of 0, is several percent. The ex-
cellence of the check may be taken to indicate,
however, that all of the relevant properties of
the column have been taken fully into account
by the theory.

An experiment very similar to that of Nier
has been performed by Taylor and Glockler.
Their column was also of the concentric tube
type and was used to concentrate C"H4. By the
same procedure as was used to obtain (358)—

"Nier's values for Xs/K, and the difference between
experimental and theoretical results mere both consider-
ably larger than those given. here; his comparison was based
on the formulae for the plane case.

where I' is measured in atmospheres.
Nier found that his three experimental points

could be fitted exactly by the formula

1.34/P'
log gg =

1+0.126/P4

If now we multiply numerator and denominator
of this relation by l.283, we have experimentally
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TABLE XVI I I. Comparison with theory of the pressure
dependence of q. as observed by Taylor and Glockler.

I'
(atmospheres) (log g&) pbs (&og C.)].sq. Di6er ence (x ~z'~)&

0.97
0.66
0.37
0.25

0.77
1.61
2.22
1.85

0.76
1.51
2.44
1.74

1%
6

+ 10%
6'Fo

39.
8.4
0.82
0.172

(360), we find for their column at atmospheric
pressure:

H=0.979X10 4 g/sec. ,

E.=1.38'5X10 ' g —cm/sec. ,

Ad=2. 75 X10 'g —cm/sec.
(422)

Since their column was l0.90 meters long, we
have theoretically,

0.771/P'
log gg =

1+0.0199/P4
(423)

The four experimental points obtained by Taylor
and Glockler do not fall exactly on a curve of the
form (417). We have fitted a curve of the form
(417) to their points by the method of least
squares, with the result

0.739/P'
log g~ =

1+0.0227/P4
(424)

The extent to which this curve fits the points is
indicated in Table XVIII.

The reason for the scattering is suggested by
Taylor and Glockler. The negative reservoir was
not so large that the concentration of C"H4 in
it did not fall considerably. It was thus necessary
to measure also the reduced concentration of
C"H4. We have been informed by Professor
Nier, who made the measurements of the con-
centration of C"H4, that the mass spectrometer
was not working properly at the time the meas-
urements were made, and that the measurements
are therefore of very questionable accuracy.

Clusius and Dickel also give data on the de-
pendence of separation factor on pressure. In
their Fig. 10 they show that with a tube of large
diameter and for pressures greater than 40 cm,
the concentration difference is inversely pro-
portional to the square of the pressure, as is
predicted by (417) when Xq/E, , is small, and in'
Fig. 11 they present several curves for tubes of
smaller radius. We have 6tted a curve of the

form (417) to the curve in their Fig. 11 which
covers the greatest range of pressure, that for a
tube with a radius of 0.69 cm; the data for this
curve are also given in their Table 9.

Table XIX shows the extent to which the
data are fitted by the formula

0.378 P2
( )

r
log gg =

1+0.0657/P4

This formula does not represent the best fit in
the least squares sense, but is merely the result
of a few trial formulae.

Additional comparisons between theory and
experiment are given in the next section.

2. K. Clusius and G. Dickel, Naturwiss. 27',

148(L) (1939).
The authors describe the use of the thermal

diffusion column with liquids. The apparatus
consisted of two parallel plates, 2 cm wide and
I.S meters long, separated by a distance of 0.4

cm. This apparatus produced a change in the
concentration of a NaCl solution by a factor of
3.6 and a change in the concentration of an
acetone-water solution by a factor of about seven.

The authors observed that with the acetone-
water mixture, the water was concentrated at
the bottom of the column, and interpret this be-
havior as evidence of the associated nature of
water.

3. K. Clusius and G. Dickel, Naturwiss. 27,
148(L) and 487(L) (1939).

These letters contain the advance report of
the results with HC1 which are described in
detail in the following reference.

4. K. Clusius and G. Dickel, Zeits. f. physik.
Chemic 44, 397—473 (1939).

This article consists of two parts, the first of
which is devoted to a detailed study of the opera-
tion of the thermal separation cglurg. n with gase-

Discussion of the Exyerimenta1 Literature

1. K. Clusius and G. Dickel, Naturwiss. 26, 546
(L) (1938).

This is the letter in which Clusius and Dickel
announced the discovery of their new method of
separating isotopes. They present results in
separating several gaseous mixtures, and also in
the concentration of HC1'~ and Ne".
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ous mixtures; in the second part the authors
describe their work in separating the chlorine
isotopes.

We have already discussed in some detail the
general experimental results given in the first
part, and have found that they are in good agree-
ment with theory. The experimental work of
Clusius and Dickel is of high quality and pre-
cision, and the results are reported in satisfying
detail.

We have remarked in a footnote that the dis-
cussion of continuous operation given by the
authors on pp. 431—438 is based on incorrect
physical premises. It further contains algebraic
errors. We have not been able to find any simple
way of carrying through the procedure suggested
so that it leads to a correct result; the difficulty
probably lies in the fact that the correct result is
rather complicated in form.

We should like to remark again that the ex-
pression for the thermal diffusion coefficient
which is given in Eq. (22) of C10 and which is
attributed to Chapman, is based on a treatment
which Chapman has long since acknowledged to
be in.correct. The Chapman-Enskog theory of
thermal diffusion in gases leads to the result
given in our Eq. (9) and in Eq. (23) of Clusius
and Dickel.

In the second part of the paper the authors
report in detail their work in separating the iso-
topes of chlorine. 500 cm' of HCI containing 99.6
percent of HC1" and 600 cm' of HC1 containing
99.4 percent of HCP~ were obtained. These re-
sults were obtained with a three-stage apparatus
20 meters long, and with a four-stage apparatus
29 meters long, respectively.

All of the columns (except one) which were
used in the concentration of the chlorine isotopes
had the specifications

r~ ——0.42 cm, r2 ——0.02 cm, (426)
Tg =300'K, T2 ——960'K

and the gas was at a pressure of one atmosphere.
The authors observed a very interesting phe-

nomenon: the value of A depended upon the
concentration of the gas to an easily measurable
extent. The extent of the dependence is shown in
»g. 8 and Table 5 of the second part; for values
of c equal to 0.05 or 0.95 the apparent value of
»s 1.38 times the value of A for c equal to 0.50.
The authors state that they have traced the

0.935
0.780
0.666
0.579
0.488
0.358

0.416
0.525
0.631
0.680
0.703
0.631

0.398
0.525
0;638
0.711
0.733
0.590

—45%

+1.
+4.5
+4 3'Fo—6.3'%%uo

11.6
5.7
3.0
1.71
0.87
0.25

effect to the platinum disks which were placed
at intervals of 60 cm along the column for the
purpose of centering the wire. In a note added in

proof they further state that they have a theo-
retical explanation of the effect of the "Scheib-
chen. "

Now the spacers would certainly disturb the
convective flow in their neighborhood, and would
thus be expected to affect the values of II and E
to some extent. But it is clear on the basis of
the present theory that there is no way a dis-
turbance of the convective flow could influence
the coeAicients II and E in a manner which
would depend on the concentrations. We are
therefore sceptical of the validity of the "Sckeib-
cken" effect, and we believe the observed results
are to be attributed to the apparatus' nest being
in equilibrium at the time the measurements
were made. Our reasons are stated in the follow-

ing seven paragraphs.
According to the results of Trautz and Narath

(T1), the viscosity of HCl is very nearly propor-
tional to the temperature in the range 294'—
523'K; that is to say, the temperature depend-
ence of q is very closely that of a Maxwellian
gas in the given temperature range. We may
therefore expect that our theory of the Max-
wellian cylindrical case will apply to the ap-
paratus of Clusius and Dickel with some pre-
cision.

Using the results of Trautz ancl Narath for
the viscosity, we find the following data for
HCl at T=300'K:

g = 1.46 Q 10—4 poise,
p = 1.48 X 10 ' g/cm',

D=1.45'/p =0.143 cm'/sec.
(427)

From these data, (426) and (115)—(117) we find

H/hn=4. 00X10 ' g/sec. ,

X,/&, = 1.71X 10 ' g-cm/sec. , (428)
E~/P~ 2.34 X 10 ' g-cm/s——ec.

TABLE XIX. Comparison with theory of the pressure
dependence of g. as observed by Clusius and Dickel.

P
(atmospheres) (log q&) obs (log qs) cz&c Difference (K/Kz) c~&c
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The form factors h, k„and k~ must be deter-
mined by interpolation in Tables VI, VII, and
VIII. Using logarithmic interpolation, we find
for T2/T&=3. 2 and r&/rm

——21

h =0.096,
A. =0.0103,
kg=0.77,

whence we have finally

The first stage of the apparatus consisted of a
column with a higher transport than the other
stages, so that the point of smallest initial trans-
port occurred at the negative end of the second
stage, where the concentration was 0.31 or less
during the approach to equilibrium. Thus the
transport past this point was never greater than

H'X0. 31X0.69=8.22X 10 'n g/sec. (435)

II/n=3. 84X10 'g/sec. ,

Z, = 1.76X10 'g-cm/sec. ,
X"=1.80X 10 ' g-cm/sec.

The mass of HCP' which was transported into

(430) the last three stages may be found by a rough
numerical integration of p(c —0.24) along the
ordinate of the authors' Fig. 8, and is found to be

2A/n=H/nX= 1.08/cm. (431)

log 3.63
2A = =2.15X10-'/cm

600 cm
(432)

Clusius and Dickel base the exposition of the
"Scheibchen" e8ect on their fourth experiment,
in which the concentration of HCl'~ was raised
from its natural value 0.24 to 0.994. In this ex-
periment, the concentration increased from 0,31
to 0.62 in the second stage of the apparatus.
By (151), this increase corresponds to a separa-
tion factor of 3.63, so that since the stage was 6
meters long, we have experimentally

~2000 cm

(c—0.24)ds= p(10.1 meters),

=0.58 g.

Here use was made of the value

p=D 57X10 'g/cm, (437)

computed from Eq. (396).
We now take, the product of the initial trans-

port (435) and the time (17 days) during which
the apparatus was allowed to approach equi-
librium, and equate it to 0.58 g. Solving for n,
we find as a lower limit

~=1.99X10 ' (433)

if we assume that the apparatus had reached its
equilibrium. Comparing (431) with (432), we
have

~&4. 8X10 ',

Rz ~& 0.194.

(438)

(439)

or since the value of n for the elastic sphere
model is 0.0247 (cf. Eq. (9)), we have

Rz =0.081. (434)

This value of Rz is surprisingly low, and in itself
would lead one to suspect that the apparatus
was not in equilibrium.

We have just computed the value of a in the
second stage of the apparatus by assuming that
the observed concentration gradient was the
equilibrium concentration gradient. This is not,
however, the only way that we may obtain an
estimate of a. We may obtain a lower limit to o.

by the observation that the initial transport
must be su%.cient to tiansport the observed
amount of isotope into the column during the
time that the apparatus was allowed to ap-
proach equilibrium.

This lower limit to n is more than twice the
value (433) obtained by assuming that the ap-
paratus had reached equilibrium. We may there-
fore conclude that the apparatus had not reached
equilibrium.

The explanation of the apparent variation of
A with the concentration is now clear, since the
concentration gradient near the positive end of
a column will always reach its equilibrium value
before it does in the remainder of the column, as
is shown by the Debye effect (cf. Eqs. (156)—
(176)).

S. G. nickel and K. Clusius, Naturwiss. 28,
461(L) (1940).

In this letter the authors again indicate the
great effectiveness of the thermal separation
column b'y obtaining 2.5 liters each of "pure"
Ne' and "pure" Ne". The lighter, more abun-
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dant isotope was obtained at the rate of 600
cm'/week, and the heavier isotope was obtained
at the rate of 300 cm'/week.

The actual purity of the gases obtained cannot
be estimated, because the relative abundances
were determined by measuring the density of
the gas, and because there were contaminations
of He and N2. It is unfortunate that these authors
do not have available a mass spectrometer for the
determination of isotopic abundances, since it
would be pleasant to know more accurately how
complete the purifications were. This difficulty
affected also their work on HC1, in which the
relative abundances were measured by atomic
weight determinations. Determinations of iso-
topic abundances either .by .density or, atomic
weight measurements have the difficulty that
the concentration of isotopes present in small
quantities cannot be measured with adequate
precision.

6. H. Korschning and K. Wirtz, Naturwiss. 2V,

110(L) and 367(L) (1939);Abhand. Preuss.
Akad. Wiss. Berlin, No. 3 (1939).

The first of these references contains the first
report on the separation of liquids by the method
of Clusius and Dickel. Two apparatuses are de-
scribed, each with a wall separation of only
0.025 cm, and each of the concentric tube variety.
The authors report separation factors of about
1.2 in the separation of the zinc isotopes in
solution.

7. W. Groth, Naturwiss. 27, 260(L) (1939).
This author applied the method to xenon,

using two different columns of the hot wire type.
The first had a diameter of 1.2 cm, and the second
a diameter of 0.5 cm. The diameter of the wire
is not stated.

It was observed that with the larger column,
the equilibrium separation factor decreased as
the wire temperature was increased from 1000'C
to 1650'C. This effect is almost certainly to be
attributed to the onset of turbulence. With the
column of smaller diameter the separation factor
increased monotonically as the wire temperature
was raised. Our theory predicts that a monotonic
increase will always occur in the absence of
turbulence.

Groth was. able to displace the atomic weight
of xenon 1.57 units with a column 2.5 meters

long and with a diameter of 0.5 cm. He concludes
that one meter of such a column is as effective
as 12 Hertz pumps for xenon.

f

8. W. Groth and P. Harteck, Naturwiss. 27,
584(L) (1939).

The authors describe a partial separation of
the mercury isotopes with a hot wire column 2.2
meters long and 0.7 cm in diameter. The outer
tube was maintained at a temperature of 350'C
in order to prevent the condensation of the mer-
cury vapor, and the wire was heated to 1800'C.

The lighter fraction was condensed at the' top
of the column. In order to reduce sufficiently the
rate of condensation, a small amount'of argon
was introduced into the column. Because of the
large difference in mass, the argon was immedi-
ately concentrated at the top, and formed a
cushion through which the mercury vapor had
to diffuse.

It was found possible to demonstrate the ab-
normal density of the light mercury so obtained
by placing it in a barometric column designed to
employ only a small volume of mercury. The
increase in the barometric height was 0.04 cm.

9. A. Bramley and A. K. Brewer, J.Chem. Phys.
V, 553(L) (1939); Brewer and Bramley, J.
Chem. Phys. '7, 972(L) (1939);Bramley and
Brewer, Science 90, 165 (1939).

Of these references, the last is the most ex-
tensive presentation (two pages).

The writers feel obliged to report that they
are in substantial disagreement with the conclu-
sions which are presented by these authors. The
two conclusions which we regard as most mis-
leading are (a) that the thermal separation column
used by them does not depend on thermal dif-
fusion for its operation, and (b) that the pro-
duction of turbulence, or of "swirls, " is an asset
in the operation of the column,

The authors describe only one experiment in
sufficient detail to make possible a comparison
with theory: using a column containing a mix-
ture in equal proportions of ammonia and meth-
ane with the specifications rI ——1.2 cm, r2=0.5
cm, hT =350', they report that the separation
was a maximum for a pressure of about one-
fourth of an atmosphere. Now the wall separa-
tion of this column is almost exactly the same
as that of Nier's column, and physical properties
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of the ammonia-methane mixture are very simi-
lar to those of methane. Further examination
shows that the effect of the slightly larger d T is
offset by the larger correction to be made be-
cause of the larger r&/r2, as far as the ratio
K,/Kq is concerned. Thus, just as with Nier's
column; we have approximately

K./Kg 6P4— (440)

(cf. Eqs. (359) and (360)), where I' is in at-
mospheres.

We have seen that according to the experi-
mental results of Onsager and Watson (01),
turbulence does not set in until this ratio reaches
about 150. We therefore conclude that for pres-
sures of the order of, or less than one atmosphere,
there is no possibility of turbulence in the column
in question. Furthermore, if we assume no para-
sitic currents, the pressure of maximum separa-
tion factor is given by 6P4=1, or P=0.64 at-
mosphere. This prediction is in rather poor
agreement with the observed pressure of maxi-
mum separation factor: P =0.26 atmosphere.
The maximum is broad, however, and the de-
termination may have been rough. Furthermore,
parasitic convection currents may have been
important because of the poor conduction of the
glass of which the columns were constructed,
and these would reduce the pressure for maxi-
mum separation factor.

The authors describe a column with a wall
separation of 2 cm containing the ammonia-
methane mixture, and note that the separation
factor is increased by the addition of washers
placed at intervals of 2.2 cm along the inner tube.
The authors conclude that the baSes increased
the definition of the "swirls" and in this manner
increased the separation factor. It seems to us
more probable that this actually came about
because the washer decreased the effective wall
separation. A smaller wall separation would in-
crease the value of A, and would suppress the
turbulence which was probably present before
the washers were introduced. It is not possible
to be definite on these points because the authors
state neither the temperatures nor the pressures
used.

The writers feel it is worth stressing that in
an apparatus whose essential properties depend
upon the first, third, and seventh powers of the

wall separation (or in the hot wire case, on the
second, fourth, and eighth powers of the radius),
it is not too easy to draw correct general conclu-
sions from apparatus which is put together with-
out a theoretical estimate of what the optimum
value of these dimensions should be.

10. T. I. Taylor and G. Glockler, J. Chem. Phys.
7, 851 (1939);J. Chem. Phys. 8, 843 (1940).

Using a column 12.2 meters long, tht: authors
obtain a separation factor of nine in the con-
centration of C"H4. The results have already
been compared with our theory.

11. W. W. Watson, Phys. Rev. S6, 703 (L)
(1939);Phys. Rev. 57, 899 (1940).

In the second of these references there is de-
scribed a two-stage apparatus for the con-
centration of C"H4. A separation factor of 2.77
was obtained. One of the stages was also used
separately at a higher pressure for the concentra-
tion of Ne22, and a separation factor of about
eight was obtained.

The operation was found to be in good quali-
tative agreement with the theory presented in

Fi, but no detailed numerical comparison is
made by the author.

12. A. O. Nier, Phys. Rev. S7, 30 (1940).
We have already discussed the results pre-

sented here in the section on comparison with
experiment. The approach to equilibrium is dis-
cussed by J. Bardeen (B2) in the article im-

mediately following the one referred to, and is
found to be in good agreement with theory.

13. G. T. Seaborg, A. C. Wah1, and J. W.
Kennedy, J. Chem. Phys. 8, 639 (1940).

These authors performed an experiment to de-
termine whether the prediction that a is inde-
pendent of the concentration was true for very
small concentrations. With a hot wire column
7.5 meters in length, the concentration of deu-
terium in a deuterium-hydrogen mixture was
raised from 0.18 to 0.87, as determined by meas-
urement of the thermal conductivity of the mix-
ture. This change of concentration corresponds
to a separation factor of 30. The experiment was
repeated under identical conditions using a mix-
ture of deuterium and radioactive H', the latter
having an initial concentration of 10 ". The
equilibrium separation factor was 5.0, as de-
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termined by measurement of the activity with
a counter.

A precise interpretation of these results would
require a more detailed account of the experi-
mental conditions, and also improvements in
our theoretical calculations, since the fractional
differences of molecular weights were not small.
It is clear, however, as the authors state, that
there is no marked effect of the extreme difference
in concentrations.

14. Milton Farber and W. E. Libbey, J. Chem.
Phys. 8, 965—969 (1940).

The authors describe a series of experiments
whose stated purpose is to determine the effects
of varying the effective acceleration of gravity
on the performance of a thermal separation
column. In order to vary the effective value of g,
the "column" was given the form of two parallel,
coaxial circular plates, with a temperature dif-
ference maintained between them. The gas was
placed in the space between the plates, and the
entire system was rotated about the axis of the
plates, at a speed calculated to provide the de-
sired acceleration. The convective How thus took
place in a radial direction.

The published report contains detailed in-

formation about the dimensions of the apparatus
and the temperatures of the two plates. Detailed
results are given for a variety of operating con-
ditions. No comparison with theory has been
made, because the theory of the system is rather
special, inasmuch as the values of both 8 and g
vary along the radial direction —that is to say,
along the length of the column.

It has been pointed out in the section on en-

tropy eSciency, that there is no change in the
performance of a given column which may be
accomplished by a variation of.,g, which may. not
also be accomplished by a variation in the operat-
ing pressure of the column, and a change in the
time-scale. Indeed, except for the expression for
the characteristic time, all of the performance
parameters depend on the pressure and the ac-
celeration of gravity in the single combination
P'IJ. Accordingly it seems to us that any ad-
vantages to be obtained by using rotat'ing sys-
tems would not be worth the considerable prac-
tical dif6culties involved.

~ Added in February, 1946.

REFERENCES

Al. L. W. Alvarez and R. Cornog, Phys. Rev. 56, 613(L)
(1939).

Bl. Harrison Brown, Phys. Rev. 57, 242(L) (1940).
B2. J. Bardeen, Phys. Rev. 57, 35 (1940).
83. J. Bardeen, Phys. Rev. 58, 94(L) (1940).
C1. S. Chapman, Phil. Trans. 216A, 2/9 (1916).
C2. S. Chapman, Phil. Trans. 21'TA, 115 (1917).
C3. S. Chapman and W. Hainsworth, Phil. Mag. 48, 593

(1924).
C4. S. Chapman, Phil. Mag. 7', 1 (1929).
C5. S. Chapman and T. G. Cowling, The Matheesatk, al

Theory of Non- Uniform Gases (The Cambridge
University Press, New York, 1939).

C6. S. Chapman and F. %'. Dootson, Phil. Mag. 33, 248
(1917).

C7. S. Chapman, Phil. Mag. 38, 182 (1919).
C8. S. Chapman, Memoirs and Proc. of the Manchester

Lit. and Phil. Soc. 66, No. 1 (1922).
C9. K. Clusius and G. Dickel, Naturwiss. 26, 546(L)

(1938).
C10. K. Clusius and G. Dickel, Zeits. f. physik. Chemic

B44, 397 (1939).
C11. K. Clusius and G; Dickel, Zeits. f. physik. Chemic

B44, 451 (1939).
Dl. P. Dehye, Ann. d. Physik 36, 284 (1939).
El. D. Enskog, Physik. Zeits. 12, 56 and 533 (1911).
E2. D. Enskog, Ann. d. Physik 38, 731 (1912).
E3. D. Enskog, Einetische Theoric der Uorgange in

3fassig Verdunnten Gasen, Doctoral Dissertation,
Uppsala, 1917.

E4. D. Enskog, Arkiv f. Mat. , Astron. , och Fysik (Stock-
holm) 16, No. 16 (1922).

Fl. W. H. Furry, R. Clark Jones, and L. Onsager, Phys.
Rev. 55, 1083 (1939).

F2. S. P. Frankel, Phys. Rev. 5'/, 661(L) (1940).
F3. R. H. Fowler and E. A. Guggenheim, Statistical

Thermodynamics (The Cambridge University
Press, New York, 1939).

F4. XV. H. Furry and R. Clark Jones, Phys. Rev. 69,
459 (1946).

Gl. W. van der Grinten, Naturwiss. 2/, 317(L) (1939).
Hl. E. J. Hellund and E. A, Uehling, Phys. Rev. 56, 818

(1939).
H2. E. J. Hellund, Phys. Rev. 57', 319 and 328 (1940).
I1. T. L. Ibbs, Physica 4, 1133 (1937).
Jl. R. Clark Jones and W. H. Furry, Phys. Rev. 57,

547(L) (1940).
J2. R. Clark Jones, Phys. Rev. 58, 111 (1940).
Kl. W. Krasny-Ergen, Phys. Rev. 58, 1078 (1940).
L1. J. E. Lennard-Jones, Proc. Roy. Soc. 106, 441

(1924).
L2. H. A. Lorentz, Proc. Amst. Acad. 7', 438, 585 and

684 (1905).
M1. R. S. Mulliken, J. Am. Chem. Soc. 44, 1033 (1922).
M2. H. M. Mott-Smith (private communication).
N1. A. O. Nier, Phys. Rev. 56, 1009 (1939).
N2. A. O. Nier, Phys. Rev. 57', 338(L) (1940).
N3. A. O. Nier, Phys. Rev. SV, 30 (1940).



R. C. JONES ANI3 W. H. FURRY

01. L. Onsager and W. XV. Watson, Phys. Rev. 56, 474
(1939).

02. L. Onsager, Phys. Rev. 55, 1137(A) (1939).
R1. Lord Rayleigh, Proc. Roy. Soc. 66, 68 (1900}.
S1. W. Sutherland, Phil. Mag. 36, 507 (1893).
S2. W. Sutherland, Phil. Mag. 17, 320 (1909).
T1. M. Trautz and A. Narath, Ann. d. Physik 79, 637

(1926).
V1. A. L. Vaughan, J. H. Williams, and J. T. Tate, Phys.

Rev. 46, 327(A) (1934).
XV1. W. Walcher, Ergeb. d. Exact. lVaturmissenschaften

(Verlagsbuchhandlung Julius Springer, 1939) p.
155

W2. L. Waldmann, Zeits. f. Physik. 114, 53 (1939}.
W3. L. Waldmann, Naturwiss. 27, 230(L} (1939}.

BIBLIOGRAPHY, THERMAL DIFFUSION, 1940-45

(Added in February, 1046)

The following bibliography contains the refer-
ences to articles, abstracts, and letters on the
subject of thermal diffusion and its use in separat-
ing isotopes, which were published during the
years j.940—45, inclusive, and which were ab-
stracted either by Chemical Abstracts or the
Industrial Arts Index during the years j.940—45,
inclusive. The references contained in the ab-
stract journals in the years 1940—43 were as-
sembled by the Technical L'ibrary, Bell Tele-
phone Laboratories, New York City. A few
references not given in the abstract journals are
also included.

J. Bardeen, "Concentration of isotopes by thermal
diffusion; rate of approach to equilibrium, " Phys. Rev.
57, 35-41 (1940); Phys. Rev. 58, 94-95(L) (1940).

A. I. Brodskii, "Theory of the separation of niixtures
and its applicability to the thermodiffusion method, "
Acta Physiochimica, U.S.S.R. 13, 294-304 (1940} (In
German); J. App. Chem. U.S.S.R. 13, 663—668 (1940)
(In French).

Harrison Brown, "Thermal separation ratios calculated
from viscosity data, " Phys. Rev. 5'7, 242—243(L) (1940).

Harrison Brown, "On the temperature assignments of
experimental thermal diffusion coef6cients, " Phys. Rev.
58, 661-662(L) (1940).

S. Chapman, "The characteristics of thermal diffusion, "
Proc. Roy. Soc. A177, 38—62 (1940).

S. Chapman, "Dependence of thermal diffusion on the
concentration ratio, " Nature 146, 431(L) (1940).

Klaus Clusius, Separating gaseous mixtures, German
Patent No. 701,016. December 5, 1940.

K. Clusius and G. Dickel, "Separation of a mixture of
Kr" and Kr" from normal krypton in a separation tube, "
Naturwiss. 28, 711(L) (1940).

K. Clusius and H. Kowalski, "The further development
of the separating tube method, " Chemische Fabrik, 304—
305 (1940).

Milton Farber and W. E. Libby, "Effect of gravitational
field on the thermal diffusion separation method, " J.
Chem. Phys. 8, 965—969 (1940).

S. Phillips Frankel, "Elementary derivation of thermal
diffusion, " Phys. Rev. 57, 661(L) (1940).

W. H. Furry and R. Clark Jones, "Theory of isotope
separation by thermal diffusion; the cylindrical case, "
Phys. Rev. 57, 561(A) (1940).

J.W. Hiby and K. Wirth, "Application to liquids of the
Clusius separation method, " Physik. Zeits, 41, 77—82
(1940).

R. Clark Jones, "On the theory of the thermal diffusion
coefficient for isotopes. I.," Phys. Rev. 58, 111—122 (1940).

R. Clark Jones and W. H. Furry, "On the calculation of
the thermal diffusion constant from viscosity data, " Phys.
Rev. 57, 547(L) (1940}.

H. Korsching, L. Wirtz, and L. W. Masch, "The separa-
tion of liquid mixtures by thermal diffusion, " Ber. d.
chem. Ges. B79, 249—269 (1940).

Wilham Krasny-Ergen, "The optimal dimensions of a
Clusius-Dickel isotope separator, " Phys. Rev. 58, 1078—
1085 (1940}.

Alfred Nier, "The concentration of carbon 13 by thermal
diffusion, " Phys. Rev. 5'7, 30—34 (1940).

Alfred Nier, "The coefficient of thermal diffusion of neon
and its variation with temperature, "Phys. Rev. 57, 338(L)
(1940).

Lars Onsager, "Separation of isotopes by thermal dif-
fusion, " Phys. Rev. 57, 562(A} (1940).

N. G. Schmahl and J. Schewe, "The thermal separation
of gas mixtures. II. Thermal diffusion, " Zeits. f. Elektro-
chemie 46, 203—212 (1940}.

C. T. Seaborg, A. C. Wahl, and J. W. Kennedy, "lher-
mal diffusion separation of radioactive and ordinary hy-

drogen isotopes, " J. Chem. Phys. 8, 639—640 (1940).
Duncan Taylor and Mowbray Ritchie, "Demonstration

of thernial diffusion in liquids, " Nature 145, 670(L}
(1940).

T. I. Taylor and George Glockler, "A confirmation of
the theory of thermal diffusion, " J. Chem. Phys. 8, 843-
844 (1940).

F. T. Wall and C. E. Holley, "Thermal diffusion separa-
tion of different gases of the same molecular weight, " J.
Chem. Phys. 8, 348(L) (1940).

F. T. Wall and C. E. Holley, "Separation by thermal
diffusion of mixtures of gases having the same molecular
weight, " J. Chem. Phys. 8, 949—953 (1940).

William W. Watson, "Thermal separation of isotopes, "
Phys. Rev. 57, 899—902 (1940). .

K. Clusius and H. Kowalski, "The separation of niole-
cules of equal masses in a diffusion tube, " Zeits. f. Elek-
trochemie 47, 819 (1941).

Klaus Clusius, Separation of gas mixtures by thermal
diffusion. U. S. Patent No. 2,268, 134. December 30, 1941.



SEPARATION OF I SOTOPES

L. J. Gillespie and Samuel Breck, "Thermal diffusion in

ternary liquid mixtures, particularly aqueous solutions
containing ferrous chloride, " J. Chem. Phys. 9, 370—374
(1941).

K. E. Grew, "Thermal diffusion in hydrogen-deuterium
mixtures, " Proc. Roy. Soc. A178, 390—399 (1941).

H. R. Heath, T. L. Ibbs, and N. E. Wild, "The diffusion
and thermal diffusion of hydrogen-deuterium with a note
on the thermal diffusion of hydrogen-helium, " Proc. Roy.
Soc. A1'78, 380—389 (1941).

Kozo Hirota, "Thermal diffusion of binary salt solutions,
A note on the paper of Gillespie and Brecl-, " Bull. Chem.
Soc. Japan 16, 232-234 (1941).

Kozo Hirota, "Researches on. chemical reactions with
the thermal-diffusion apparatus of Clusius and Dickel.
1. Thermal polymerization of methane, " Bull. Chem. Soc.
Japan 16, 274—278 (1941).

Kozo Hirota, "Research on a chemical reaction by use
of the thermal-diffusion column. Thermal polymerization
of methane, " J. Chem. Soc. Japan 62, 392—395 (1941).

Kozo Hirota, "The thermal diffusion of solutions. I.
Measurement of the thermal diffusion constant, "J. Chem.
Soc. Japan 62, 480-484 (1941).

J. A. Hveding, "Thermodiffusion in separating tubes, "
Tidsskrift for Kjemi, Bergvesen, Metallurgi I, 110—112
(1941).

H. Jensen, "The Clusius separation tube and the physi-
cal-mathematical theory of its operation and efficiency, "
Angew. Chemic 54, 405—412 (1941).

R. Clark Jones, "The effect of var der Waals forces on
the thermal diffusion coefficient of gaseous isotopic mix-

tures, " Phys. Rev. 59, 688—689(A) (1941).
R. Clark Jones, "On the theory of the thermal diffusion

coefficient for isotopes. II.,
" Phys. Rev. 59, 1019-1033

(1941).
Hirosi Kitagawa, "Thermal diffusion. III. Measurement

of thermal diffusion in a mixture of H~ and HD, "J. Chem.
Soc. Japan 61, 1243-1248 (1941).

Hirosi Kitagawa and Matube Wako, "Thermal diffusion.
IV. Measurement of thermal diff'usion in the mixture of
carbon monoxide and carbon dioxide, " J. Chem. Soc.
Japan 62, 100-106 (1941).

J. Meixner, "The thermodynamics of thermal diffusion, "
Ann. d. Physik 39, 333—356 (1941).

A. N. Murin, "Thermodiffusion method for the separa-
tion of isotopes, " Uspekhi Khim 10, 671—679 (1941).

Alfred O. Nier and John Bardeen, "The production of
concentrated carbon 13 by thermal di8usion, " J. Chem.
Phys. 9, 690—692 (1941.).

William W. Watson, "Heavy carbon production by
thermal diffusion, " Science 93, 473—474 (1941).

S. Weber, "Thermal diffusion in gases, " Physica 8, 113-
123 (1941).

S. B. Welles, "Partial separation of the oxygen isotopes
bv thermal diffusion, " Phys. Rev. 59, 920(A) (1941}.

1942

H. E. Carr, "Thermal diffusion tube for liquids, " Phys.
Rev. 61, 726(A) (1942).

S. R. deGroot, "Phenomenological theory of the Soret
effect, " Physica 9, 699-707 (1942).

S. R. deGroot, "Phenomenological theory of the thermo-
gravitational separation mechanism for liquids, " Physica
9, 801—816 (1942).

S. R. deGroot, W. Hoogenstraaten, and C. J. Gorter,
"An effect neglected in the theory of the Clusius-Dickel
method, "Physica 9, 923—924 (1942).

Andre Fournier, Enrichment of CC14 in C187 by thermal
di8usion, " Comptes rendus 215, 529-530 (1942).

W. H. Furry, "Elementary explanation of thermal dif-
fusion, " Phys. Rev. 61, 388(A) (1942).

R. Fiirth, "An elementary theory of thermal diffusion, "
Proc. Roy. Soc. A179, 461—469 (1942).

K. E. Grew, "Change of sign of thermal diffusion fac-
tor, " Nature 150, 320 (L) (1942).

G. E. Harrison, "The thermal diffusion of radon gas
mixtures, " Proc. Roy. Soc. A181, 93—100 (1942).

James Kendall, "Separation of isotopes and thermal
diffusion, " Nature 150, 136-140 (1942).

Boris Leaf and F. T. Wall, "Separation of gas mixtures

by thermal diGusion, "J. Phys. Chem. 46, 820—826 (1942).
K. C, Niyogi, "Separation of liquids from binary mix-

tures by the method of thermal diffusion, " Science and
Culture (Calcutta) '7, 567—568(L) (1942).

H. Steinwedel, "Energy consumption in a Clusius

separation column which is run continuously, " Die Chemic
55, 152-153 (1942).

Georg Stetter, "The separating tube effect, " Oesterr.
Chem. -Ztg. 45, 130—134 (1942).

Louis Stier, "The coefficients of thermal diffusion of
neon and argon and their variation with temperature, "
Phys. Rev. 62, 548—551 (1942}.

1943

D. G. Alkhazov, A. iX. Murin, and A. P. Ratner, "The
separation of liquid mixtures by thermodiffusion, " Bull.
Acad. Sci. U. R.S.S., Classe Sci. Chim. 1943, 3—7 (1943).

B. N. Cacciapuote, "An elementary explanation of the
phenomena of thermal diffusion, " Nuovo Cimento [9j 1,
126-136 (1943).

S. R. deGroot, D. J. Gorter, and W. Hoogenstraaten,
"Thermo-gravitational separation method applied in the
case of an aqueous solution, " Physica 10, 81—89 (1943).

Horst Korsching, "Separation of C6H6 and C&D6 by
thermal diffusion in the liquid, " Naturwiss, 31, 348—349
(1943).

A. N. Murin, "Theory of concentration process caused

by thermal diffusion in solutions, " Comptes rendus

U.S.S.R. 41, 291—292 (1943).
R. N. Rai and D. S. Kothari, "A note on the elementary

theory of thermal diffusion. " Ind. J. Phys. 17, 103—106
(1943).

L. Waldmann, "The diffusion thermal effect, " Natur-
wiss. 31, 204 (1943).

L. Waldmann, "Diffusion thermoeffect, "Zeits. f. Physik
121, 501-522 (1943).

W. W. Watson and D. Woernley, "Thermal diffusion

with ammonia, " Phys. Rev. 63, 181—184 (1943).



R. C. JONES AND W. H. FURRY

K. Wirtz, "Kinetic theory of thermal diffusion in a
crystal lattice, " Physik. Zeits. 44, 221-23I (1943).

K. VA'rtz, "Direction of thermodiffusion in alcohol-
water mixtures, " Naturwiss. 31, 416 (1943).

K. Wirtz, "Isotope separation by thermal diffusion in
liquids according to kinetic theory, " Naturwiss. 31, 349
(jI.943).

K. Wirtz and J. W. Hiby, "Kinetic theory of thermo-
diffusion in liquids, " Physik. Zeits. 44, 369-382 (1943).

1944

Howard E. Carr, "Thermal diffusion in liquids, " J.
Chem. Phys. 12, 349 (1944).

Andre Fournier, "Thermal diffusion of gases. Method of
Clusius and Dickel, " J. Phys. Rad. 5, 11—16 (1944).

Andre Fournier, "Thermal diffusion in the liquid phase, "
J. Phys. Rad. 5, 45—48 (1944).

K. E. Grew, "Thermal diffusion in mixtures of molecules
of small mass difference, " Phil. Mag. 35, 30—36 (1944).

L. Gurevich, "Theory of thermal diffusion. I.,"J.Exper.
Theor. Phys. (U.S.S.R.) 14, 60—62 (1944).

L. Gurevich, "Theory of thermal diffusion. II.," J.
Exper. Theor. Phys. (U.S.S.R.) 14, 121—124 (1944).

Thomas H. Osgood, "Physics'in 1943," J. App. Phys.
15, 89—107 (1944). Thermal diffusion, pp. 98—101.

1945

M. C. Fox, "Thermal diffusion as adjunct of electro-
magnetic processes, " Chem. Metall. Eng. 52, 102—103

. (1945).
K. E. Grew, "Thermal diffusion and its application to

the separation of gases, " Gas Journal 245, 221(A) (1945).
K. E. Grew, "Effect of pressure on thermal diffusion in

gases, " Nature 156, 267—268 (1945).
S. R. deGroot, L'Epee Soret, Thesis, Amsterdam, 1945.
W. M. Spicer, "Demonstration of thermal diffusion, "

J. Chem. Ed. 22, 593 (1945).


