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The Statistical Problem in Cooperative Phenomena

G. H. WANNIER
Department of Physics, University of Iowa, Iowa City, Iowa

" 'T is in the very nature of cooperational phe-
~ ~ nomena that their statistical treatment is a
difficult problem. For statistics is easily applied to
an assembly of independent units. If such an
approach is invalid even as a first approximation,
then we are faced with a cooperational process.
The general rule is that if an event (crystalli-
zation, magnetization) takes place for one unit of
a cooperational assembly, then this same event
will be favored in other units, because of a strong
internal coupling. The result will be that the
transition from one state to the other will tend to
become more abrupt than would be the case if the
elementary units were independent. This ab-
ruptness manifests itself in nature by the appear-
ance of sharp transition temperatures.

From a mathematical point of view, a transi-
tion temperature means that the properties of an
assembly must be described by a function of
temperature possessing a singular point. Yet we
have no reason to doubt that one of the distri-
bution laws of statistical mechanics is applicable
to such an assembly. These laws involve the
temperature in a continuous, analytic manner.
The question when and how they can give rise to
singular temperatures is, therefore, of consider-
able theoretical interest. This problem has be-
come an object of serious research in the last
decade.

The first case to receive attention was the
problem of condensation of gases. Even an ideal
gas does possess a transition temperature, when
obeying Einstein-Bose statistics. ' This "Einstein
condensation, " however, is of interest for liquid
helium only and has no connection with con-
ventional condensation. Gases condense because
of the attractive forces between the molecules;
hence, we must be able to predict this behavior
for an assembly of such molecules if we use
Boltzmann statistics rigorously. This success has
finally been achieved. ' The calculations are,

fortunately, somewhat reassuring for the tra-
ditional two-phase method. The two-phase ap-
proach, in neglecting intermediate states, cannot,
of course, prove the existence of a phase change.
But if the phase change occurs, a correct descrip-
tion of it will be obtained, provided the statistical
treatment of each phase is adequate.

There are other types of transitions having no
latent heat, sometimes classified as transitions of
the second or third kind. Instances of such
transitions are the Curie point of ferromagnets,
the ) -point in liquid helium, and the order-
disorder change in alloys. For these cases, the
two-phase approach is of little value because the
assembly actually passes through a continuity of
intermediate states as the temperature varies.
Most statistical approximations to this type of
phenomenon can be lumped together as "inner
field" approximations. In other words, they try
to describe the system by a small number of
parameters one of which is assumed to be zero in
the high temperature "phase. " On the low
temperature side, this parameter varies and be-
comes zero at the transition point. These methods
have become so commonly accepted that it is
often not realized that they are approximations
only. An exact statistical treatment of some
special model is thus of twofold interest. It gives
us full information for the model in question and
also helps us judge the value of approximate
methods for similar problems.

I. THE EIGENVALUE METHOD IN STATISTICS

The statistical treatment of cooperation in
crystals is somewhat less forbidding than the
corresponding problem in gases. The task of
enumerating all complexions of an assembly is
simplified if the cooperating units have a definite
location. In addition, the periodicity of the
system permits a simplifying transformation
which was discovered independently by Kramers

' F. London, Phys. Rev. 54, 947 (1938). Born, Physica 4, 1034 (1937); B. Kahn, Dissertation,' J. E. Mayer, J. Chem. Phys. 5, 74 {1937);J. E. Mayer Utrecht (1938).The last paper has the best treatmentof the
and Ph. G. Ackermann, J. Chem. Phys. 5, 74 (1937); M. matter.
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and Wannier, ' Lassettre and Howe, ' and Montroll
and Mayer. '

The transformation can be derived under very
generalized assumptions. Let there be a number
of units identical in structure which are lined up
as beads on a string, and let them be numbered
1, 2, 3, 4, 5, m (Fig. 1). Let the state of each
unit be described by a (discrete or continuous)
variable x», x2, x3 . x . We must further assume
that the kinetic energy is either of no importance,
or else separable from the potential energy, and
finally, that there is interaction between pairs of
direct neighbors only; this interaction is sym-
bolized by connecting lines in Fig. 1.The restric-
tion of the interaction to nearest neighbors is
actually not serious, because the interacting unit
is left undetermined. We denote this interaction
potential by V(x, y). Then the probability for a
given state of the assembly is proportional to the
Boltzmann exponential

I
exp — ( V(xg, x2)+ U(x2, xg)+. . .

kT

+ V(x„, xg)), (1)

from which the partition function is formed by
summation (or integration)

k denotes here Boltzmann's constant and H, the
imposed magnetic held .

A reasoning from probability calculus' 4 leads
one to associate the following eigenvalue problem
with the problem formulated in Eq. (2):

Q exp
V(y, s)

a(y) = Xa(s).
kT

The formula developing the kernel in terms of
the eigenvectors is also generally known for
integral equations:

exp
V(y, s) = Z. ~.~.(y)~.(s). (7)

It obviously must apply to matrices too, because
. the two sides of Eq. (7) have identical eigenvectors

and eigenvalues.
lf we substitute Eq. (7) into Eq. (2), the

summations over x~, x2, x3, . . .x can be carried
out explicitly with the help of Eq. (6).The result
ls:

may have a series of different eigenvalues A,„.To
each, there belongs one eigenvector a„ if multiple
values are counted as often as they arise. The
orthogonality relation for the a's is well known

(6)

f(T) =+*'Q*, f(~) =2 &" (8)

exp
1

(V(xg, xg)+ V(x, xg)) . (2)
kT

and

8ln f
U=k 1'

81
Bin f

M =kT'
BII

(3)

Many physical questions can be considered
solved iff(T) is known. We note here the formulas
for the total energy U and the total magnetiza-
tion 3II (for an assembly assumed to have mag-
netic properties)

Relation (8) becomes particularly useful in the
case where the number m of cooperating units is
very large. We m ay then neglect all bu t the
largest eigenvalue X» .'

f(T) —) m

This is usually the case in applications.
The eigenvector a» going with this largest

eigenvalue has also a particular significance. If it
is normalized, then its square equals the proba-

' H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252
and 263 (1941).' Edwin N. Lassettre and John P. Howe, J. Chem.
Phys. 9, 747 and 801 (1941}.

6 E. W. Montro11 and J. E. Mayer, J. Chem. Phys. 9,
626 (1941}.
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FIG. f. A chain of m cooperating units.
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X X

X X X
&= —V 2 I *I. v~—Z'I",

&i, k)
(10)

definitions, the interaction energy E tal es the
form

X- -X

X

X X X

X X X
Fit-. 2. The Ising square net. The crosses represent spins,

the connecting lines coupling forces.

where P means that the sum is carried out
&i, k)

over all pairs g, k) which are direct neighbors. A
more generalized form of this model assumes
several diBerent interactions J~, J2, ~ corre-
sponding to different mutual positions. Such
models are of interest to study the effects of
anisotropy. But no basically new idea has evolved
from the use of such models, and only results will
be quoted for them in the following.

The partition function connected with Eq. (10)
reads

bility that the internal coordinate has a particular
value s. Also, in the case of a chain with free ends,
a& itself measures the probability for a state s in
the end member. Both propositions may be
proved directly from Eqs. (1), (6), and (7), if we
follow the reasoning that led to Eq. (8) and
thence to Eq. (9).

II. THE ISING MODEL

Among the systems to which the previous
calculation applies, the model proposed by Ising'
is probably the simplest one. It has been con-
sidered a schematic representation, sometimes of
ferromagnetism, sometimes of order-disorder
phenomena in alloys. Taking the former view, we
can explain it as follows:

Assume a set of spins p~, p2, . p~ arranged in
some regular order. Let each of the spins be
capable of two orientations which we characterize
by p, ='+1 and p;= —1. Then the Ising model
assumes that there is an energy difference be-
.tween the two. orientations of a given spin which
depends on the orientations of its direct neighbors
and, in addition, perhaps on an applied magnetic
field. In particular, if all direct neighbors of one
spin are equivalent, the model contains only two
parameters, namely, the magnetic moment u of
each spin, and a quantity J which is the energy
gained if two neighbors change from an anti-
parallel to a parallel position. With these two

E. Ising, 7eits. f. Physik 31, 253 (1925).

with

and
L= J/2kT

C= vtI/kT.

(12)

(13)

~&=+1 S2=+1 e&=+&

Once f is known, the energy and magnetization
follow from Eqs. (3) and (4):

U= —3IH ——,
' J(B ln f/BL), (14)

M=v(B ln f/BC). (15)

If the Ising model is interpreted in terms of
superstructure, the quantity 3f retains its meao-
ing as "long range order" even though JI and C
have no significance.

To any Ising system of spins showing perio-
dicity, the general theory of Part I can be
applied. The simplest among them is the linear
chain, preferably closed so as to form a ring
(Fig. 1). In this case, formula (11) becomes

f(T) = X exp )L(IJ,,p, +p2p3+ y3p4
pg= &I

+ +~-~~)

+C(+1+@2+@3+' ' 'p )). ' (16)

The bold face summation sign Z is to be
u"=~1

understood to extend over all possible states of
the system; i.e., it would have to be written
explicitly as
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This 6ts easily into the pattern explained in
Part I, if the repeating unit is taken to be the
individual spin. The variable denoted there by x;
is our spin p,;. It is only capable of two discrete
values +1 and —1.It follows that the eigenvalue
problem (5) becomes a two-dimensional matrix
problem. Comparing Eq. (16) with Eq. (2), we
see that the interaction potential U(p, p, ') must
be taken as

or, in explicit matrix notation

&e'+' e ' & &~(+) &&(+)~
g
—L gI -0 g g

Equation (8) reduces in the present case to

f(2 ) 7 m+7' m (18)

If Eq. (9) can be used, then the larger root Xi is
the partition function per spin. It equals

Xi ——e cosh Cy(e' sinh' C+e—' )&. (19)

It has been pointed out by Ising hims'elf that a
linear Ising chain is not ferromagnetic. This can
easily be verified by calculating the magnetiza-
tion with the help of Eq. (15)

M=mv sinh C/(sinh' C+e 4~)',

an expression which, because of Eq. (13),vanishes
with H. In the absence of a magnetic field we
have

Xy= 2 cosh I,
which, through Eq. (14), gives for the energy as
function of temperature

U= —-', mJ tanh I..
This is a smooth increase from —-', rn J to 0 as the
temperature i ises.

U(~, ~')
=Iuu'+ s C~+ s Ci",'

kT
/

where the abbreviations (12) and (13) have been
used on the right-hand side. We thus get for
Eq. (5)

exp LJpp'+ ,'Cp+ ', C-p'Ja(I"-)

=Xa(p); (17a)

x——&--

+&'
X

~~/
l

IYly
)C~

+~
x-~x
2

X—— —X- --X

x

— X
0

FIG. 3.Adaptation of Ising square. net to eigenvalue method.

IIL THE ISING SQUARE NET

The case of the linear Ising chain is an ex-
ceptional one, for we cannot usually assert that
a statistical problem is solved by bringing it in
the form of Eq. (5). This equation will only have
a standard form known in analysis if the system
is infinite in one dimension only. Unfortunately,
no such system can exhibit temperature singu-
larities. The reason is that singularities are con-
nected with the appearance or disappearance of
long range order. Long range order, however,
cannot exist in one dimension only, because the
disarrangement of just two nearest neighbors is
sufficient to destroy it. This reasoning is con-
firmed by another one-dimensional c'alculations in
addition to the one carried out in Part II.

The Ising square net has been the sample case
which has led to a good understanding of two-
dimensional Ising models. It is shown in Fig. 2.
The crosses are to indicate the location of the
spin s, and the lines are drawn to connect
interacting neighbors. Peierls' has shown that
this model possesses a non-zero spontaneous
magnetization at absolute zero and, hence, that
it must possess a critical temperature separating
regions with and without spontaneous mag-
netization (or long range order, when considered

.as a model for superstructure).
The statistical calculation for the Ising square

net is indicated formally in Eq. (11). It can be
transformed into an eigenvalue problem of the

~ The splitting of the C-term in two halves is not neces- K. F. Herzfeld and Maria Goeppert-Mayer, J, Cheri&.
sary; the advantage is purely aesthetic, the symmetry of Phys. 2, 38 (1934).
V(p, p') is maintained. ' R. Peierls, Proc. Csmb. Phil. Soc. 32, 477 (1936).
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type (5) in several different ways. The most
fruitful approach is shown in Fig. 3. Ke think of
the net as being composed of circular tiers of n
spins each, forming a circular cylinder. This
cylinder becomes a torus when the first and last
of the m ti'ers are joined in the manner outlined in

Part I. The tier is the elementary "unit" men-
tioned' there, and, consequently, its coordinate x
is a variable capable of 2" different discrete
values, corresponding to the 2" different con-
figurations of spins p~, p, 2, p, 3, . p, . The potential
U(y, s) entering Eqs. (1) and (5) becomes thus
the interaction between two tiers. It must con-
tain the coupling within the tiers also, as the sum

V(xq, x2)+ V(x2, x3)+ . . is to equal the total
interaction. It is preferable to allot to V(y, s) one-

half of the interaction within y, and one-half of
the interaction' within s. This gives

V(yi s) = 2~ E (pili +2pipit-&+2V i' pi't &)

N

,'vH g (v +—p—'').

As in (17a), the y's of the two tiers are dis-

tinguished here by calling the ones p, &, p, 2, p,
the others p, ~', p2', - p '. The conventions

p„+~=p~, p„+~' ——y~' are to be assumed in agree-
ment with Fig. 3. Thus, our eigenvalue problem

(5) reads
(20a)

this new form, it transcends by far the original
limitation and applies, in fact, to any net which
can be spread on a simply connected surface (like
a sphere) without crossing of lines of interaction.
Figures 4—7 show four examples of such nets, two
of which are finite, two infinite. They are to be
interpreted the same way as the earlier figures,
the dots representing spins, the lines representing
interactions between the spins. Each figure con-
tains, in addition to this net, another one which is
obtained from it by placing spins (shown as
circles) into every elementary polygon and
drawing lines of interaction between them so that
each old line is crossed by a new one (dotted
lines). We shall refer to the new net as the "dual"
of the original one; it is immediately observed
that this duality relation is a reciprocal one: the
number of polygons in one net equals the number
of corners (spins) in the other while the number
of sides is the same. In Figs. 5 and 6, the dual net
happens to be topologically identical with the
original. Such nets we shall refer to as "self-dual. "
This duality enters now, in the following way:

The general expression to be evaluated is given
by formula (11). If we assume zero magnetic
field, i.e. , C=O, then it is a sum of terms each of
which is a product of factors of the type e~»'

where p, and p' are neighboring spins. This
exponential is only capable of two values because
the product pp' can only be +1 or —1. It follows
that the exponential can be replaced at will by
some other expression, provided it yields the
same two values e~' and e ~. We do just this if we
set

+ 2L P' p'pi+z+2L P' o' v'+z

where the quantities I and C are defined by
Eqs. (12) and (13).

IV. TEMPERATURE SYMMETRY AND CURIE POINT

e~ = (~~sinh 2L) & (e~*+pp, 'e L*)

where the parameter I* is given by

e'~= coth I,*,

or more symmetrically

sinh 2L, sinh 2I.~=1
or also

(21)

(22a)

(22b)

The Curie point of the Ising square net was
first located by Kramers and Wannier. ' Reasoning
on a matrix problem similar to Eq. (20), they
discovered that it possesses a symmetry between
high and low temperatures. The argument as
presented in the following is due to Onsager. '0 In

' L. Onsager, private communication.

cosh 2L, tanh 2I*=cosh 2L* tanh 2L, =1. (22c)

This gives for the sum (11)

8

f(T) =(-,' sinh 2L)'' X g (e *+p„y,„'e ~*)
Ps=&I r=1

Here the product over v extends over all coo-
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FIGs. 4—7. Two-dimensional Ising nets and their duals.

necting rods in our net, and s is the total number
of such connections. In developing the product,
we get a sum of p products each of which can be
represented in our net by a polygon running along
the connecting rods. Only closed polygons give a
non-zero contribution because an open polygon
means that some spin is preqent in an odd power;
this is sufhcient to make the term equal to zero
when it is summed over all values of the p, 's. The
magnitude of the term is such that every con-
necting rod not included in the polygon con-
tributes a factor e~* to it, and every connection
included a factor e ~*. Since it is a topological
property of every closed polygon to divide a
simply connected surface into two regions, we can
characterize every term in our product develop
ment by one- or more exactly two-spin arrange-
ments u, =~1 in the dual net, namely, an ar-

rangement having positive spins on one and
negative spins on the other side of the closed
polygon. The value of the term can, by this
device, be written in the form

exp P I.*v„v,' .

To obtain all terms in the above product ex-
pansion, we must sum over a11 possible configura-
tions of the dual spins v, and divide by two. The
sum over p, ;. is then trivial and gives a factor 2~
where X is the total number of spins in the
original net. In this manner, the partition func-
tion over the original net has been transformed
into a partition function for the dual. If we
denote by f*(T) this. dual partition function, and

by T* the temperature which, through Eq. (12),
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sinh 2I,=1,
L„=0.4407.

(24a)

(24b)

This argument applies for instance to the infinite
square net (Fig. 6), and thus locates its Curie
point.

Even if the net is not self-dual, the argument
can often be completed with little additional
labor. Assuming, as an example, that f(T) refers
to the triangle, net shown in I'ig. 7, we see
that f*(T*) refers to the honeycomb. Now it is
possible to remove from the latter state sum all
the spins represented by circles in Fig. 8. This is
done by carrying out for them the summation
(11) ahead of the others (star-triangle trans-
formation). Taking as an example the spin po in
Fig. 8, we can apply the same reasoning that
led to Eq. (21) to justify the following trans-
formation':

Z exp LL*~O(~i+~2+~3)j
= 2(cosh 3L,* cosh' L*)l

Xexp [L+(p,p, +p2IJ3+p, IJ~) j,

is associated with L* then we may write

f(T) =2 ' l'(sinh 2L)' 'f*(T*)

With the help of Eq. (22) and the topological
relation

%+X*=s+2,
we can bring this equation in the symmetric form

f*(T*)
(23)

2v~ (cosh 2L) '~ 2~ ~ (cosh 2L+) '

In the general case, Eq. (23) represents a
reciprocity relation connecting the partition func-
tions of the two-dual lattices. In the special case,
however, where the net is self-dual, f and f* refer
to the same assembly, and therefore,

f(T) =f*(T)

The equation represents then a symmetry prop-
erty of f connecting the value of f(T) with the
value of the same f at the "dual" temperature T*.
One sees from (22b) that these two temperatures
form a pair, one of which lies high if the other lies
low. All singularities of f(T), if existing, would
thus have to exist in pairs unless we have a
singularity at the temperature T, for which

/
/

/
/t

I rG. 8. Illustrating the star-triangle transformation con-
necting honeycomb and triangle nets.

by dashed lines, also conform to that pattern,
with the parameter L* replaced by L+ Thus, th. e
temperature symmetry now evolves around
Eq. (25) instead of Eq. (22). Hence, the Curie
point is given by

g4Lg 3 (26)

The same calculation furnishes also the Curie
point for the honey comb lattice. We find

cosh 2L„=2. (27)

The formulas (24), (26), and (27) can be united
into a single statement by the use of the
Gudermannian function gdx:

gd2L, = m/Z. (28)

Here Z stands for the number of nearest neigh-
bors of one spin in the lattice. In our three cases,
Z equals 3, 4, and 6, respectively.

Onsager" has succeeded in extending the sym-
metry reasoning to'systems containing several
different interactions J, J', J".The reasoning
ceases then to be one of temperature symmetry
because f*(T*) refers to a net with different
interactions. The generalized argument is based
on the proof that if the dual transformation (23)

(g4L 1)(g4r+ 1) 4

The remaining spins p&, p2, pz, etc. , shown by dots
in Fig. 8 will again form a triangle net equivalent
to the original one. The new interactions, shown
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FIG. 9. Specihc heat curves for rectangular Ising net,
with various degrees of anlsotropy. ———— J'/7=1.

J'/7=1/100. ——————J'=0.

is applicable to a matrix problem of the type (20)
then it always does convert order and disorder
into each other. Hence, if there exists a tempera-
ture for which the partition function of a two-
dimensional net can be transformed into itself
using the dual transformation only once, then
such a temperature must be the Curie tem-
perature.

U. COMPLETE SOLUTION FOR RECTANGULAR NET

Even in its most powerful form, the symmetry
reasoning does not tell us much about the thermal
behavior of an Ising net in the neighborhood
of the singular temperature. Fortunately, the
missing information has been supplied to us by
Onsager" who derived the complete solution for
the Ising rectangular net. The reasoning, which
uses the methods of operator algebra familiar
from quantum mechanics, is too intricate to be
contained in a survey of this type. We shall
restrict ourselves to a short description and
quotation of results.

The basic matrix equation which is to be
solved is Eq. (20) minus the C-terms referring to
an applied magnetic field. The vector space in
which it is formulated possesses 2" dimensions.
Two types of operators form a complete gener-
ating basis of the corresponding matrix algebra.
They are defined as follows:

s 'ii(81 Iii» ' . ~-) =u'rl( l, ~-), (29)
and

Ciii(Ply its' ' '
g Iui»

' ' ' pn)
=~(~l is . —~ u) (3o)

"Lars Qnsager, Phys. Rev. 6S, 117 (1944).

These 2n operators satisfy the algebraic relations

s.2 C,2

sp'A, —sA;s. =0&
S,cd:—CAS =0,

s;C;+C,s;=0,
C~Cs —CsC;= 0,
if iAk-

It is a relatively straightforward matter to ex-
press the operator 3'. in terms of our s's and C's.
Within our matrix algebra, Onsager was able to
construct a subalgebra containing K which is
invariant with respect to rotation of the cylinder
shown in Fig. 3.This subalgebra can be generated
as a direct product of mutually commuting
quaternion algebras. This quaternion basis has
the property that 3C can be written as a direct
product of operators belonging to each basis:

=~X2X3X. X3'.~

It follows that the logarithm of the partition
function wi11 appear as a sum, or, in the limit
when the number n of spins fitting one tier be-
comes very large, an integral. This integral looks
as follows

—ln f(T) = In (2 cosh 2L)

1 t'"" 1+(1 —ir' sin' p) '*

In dy (31)
?f' 0 2

where X=mn is the total number of spins in the
net and ~ is an auxiliary parameter defined
through

2 sinh 2L 2 sinh 2L ~

K=
cosh' 2I cosh' 2l * (32)

One sees from Eq. (22c) that ir has the same value
for the two dual temperatures rand T*.Thus the
symmetry property (23) is explicit in (31).

The nature of the temperature singularity is
readily deduced from Eq. (31) and Eq. (32).The
parameter K is contained between 0 and 1. It
reaches its minimum value 0 either for very large
or very small temperatures. It takes up its

Since each quaternion basis is two-dimensional,
the problem demands only the solution of a
series of quadratic equations. The eigenvalue ) is
thus obtained as a product of the form

) =) gX.) g.
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maximum value when

sinh 2I c= ~

i.e., at the critical point as de6ned by Eq. (24).
Now from Eq. (14) and Eq. (31) we get for the
energy U of the system

2
U(T) = ', NJ coth—2L—1~—(1—~')'E(~), (33)

the + sign holding below the Curie point, the
—sign above. Here X(k} is the complete elliptic
integral of the first kind according to standard
definitions. The singularity is contained in the
second term in the square bracket. The term
equals zero at the Curie point and behaves as

—(T T,} ln (T T—,)—
in its immediate neighborhood, because of the
logarithmic singularity contained in X(a). From
this, we find by differentiation that the specific
heat is logarithmically in6nite at the critical
point.

These conclusions are not basically altered if
we have to deal with a rectangular rather than a
quadratic Ising net. If we denote the two inter-
actions by J and J' and associate with them I.
and I,' through Eq. (12), then we find the Curie
point from the formula

shows a plot of the specific heat versus tempera-
ture for three different ratios J'/J; including the
value 1 of the quadratic case.

VL CONCLUSIONS

The main importance of the numerical results
of the last section consists in the fact that they
were obtained rigorously, assuming only a plausi-
ble mechanical model and Boltzmann's distri-
bution law. Thus, they form a proof that
Boltzmann's law may result in a temperature
singularity without latent heat if the mechanical
interactions are favorable. The detailed structure
of our singularity, on the other hand, is not of as
much signi6eance. The logarithmic in6nity of the
specific heat, for instance, is probably due to the
fact that the model is two-dimensional. It is not
likely to show up in three-dimensional cases.

Beyond this fundamental importance, the cal-
culations have a certain indirect value. By
applying various approximate methods to the
same Ising square net, we can form an opinion as
to the accuracy and usefulness of such treat-
ments. We may dispense here with a detailed
discussion of these methods as this is done amply
elsewhere. ""The necessary numerical work has
also been carried out."%e may bring these older
surveys up to date, however, by mentioning the

sinh 2L„sinh 2I„,'= 1. (34) "F.C. Nix and %. Shockley, Rev. Mod. Phys. 10, 1
(1938).

The type of singularity stays the same. Figur~ ~ '3 Reference 3, Sections 7 and 8.



PROBLEM I N COOP ERATI VE PHENOM ENA

FI('. 11. Approximate
specific heat curves for
Ising square net.
Approximation of Kram-

Cers-Wannier.
Bethe method.
Method of Kirkwood.
——.——Finite matrix ap-
proximation.
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approximations devised by Montrolli4 and by
Fuchs. "The former proposes several perturbation
methods based on the matrix approach, the latter
is an application of the Mayer cluster method to
the present problem, a method which had

Nk

FIG. 12. Specific heat curves for Ising square net. Exact
curve and typical approximation in comparison.

"Elliott W. Montroll, J. Chem. Phys. 9, 706 (1941),and
10, 61 (1942)."K.Fuchs, Proc. Roy. Soc. A179, 340 (1942); Gregory
H. %'annier, Proc. Roy. Soc. A181, 409 {1943).

originally been devised to discuss the condensa-
tion of gases. '

We shall restrict ourselves here to actual com-
parison and interpretation of results. Figure 10
shows an energy versus temperature plot for the
Ising square net. The result of formula (33) is
shown in heavy outline, and the other curves
refer to various approximate procedures. It is
interesting to observe that all these procedures
are qualitatively in error in their result concerning
the nature of the temperature singularity. This
error shows up best in the specific heat curves
shown in Figs. 11 and 12. Figure 11 shows the
result of three well-established approximatioo
methods. They agree with each other in pre-
dicting a jump in the specihc heat. Yet this
result is incorrect as c'an be seen from Fig. 12
which shows the best of them in comparison with
the exact curve. The source of this error is not
dificult to trace. All three approximations are of
the "inner field" type, as explained in the
introduction. This means that they have an
extra parameter on the Iow temperature side.
Actually, the state of disorder is just as compli-
cated to describe as the state of order (see
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Part IV) and the use of an extra parameter for
one of them means a more accurate description.
Consequently, the specific heat of the ordered
phase comes out higher simply because it is
calculated more accurate1y. Thus the specific
heat jump is a spurious effect which is due to the
approximation method only. Another incidental
effect which may be mentioned here is the tend-
ency of the ordered phase to extend too far.

This result is somewhat disturbing because a
specific heat jump is also the customary result of
these same approximations when applied to more
realistic three-dimensional models. The result is

generally considered in good agreement with ex-
periment. Yet we have just seen that the theo-
retical evidence for such a jump is not conclusive.
On the contrary, it would be surprising if the
specific heat remained finite at the Curie point
for a three-dimensional Ising model. It is con-
ceivable, on the other hand, that we may find a
curve which is more asymmetric about the
singularity than our test case. The reason is that
the symmetric behavior, as discussed in Part IV,
is specific to two dimensions. It is to be hoped
that a three-dimensional calculation will, before
long, furnish the answer to these questions,


