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I. INTRODUCTION

'HERE exist a number of relations pertaining
to irreversible processes —the symmetry of

the tensor of heat conduction and Kelvin's rela-
tions between thermoelectric quantities are
among the best known examples —' that appear
to be universally valid although they cannot be
proved by thermodynamics or by considerations
on macroscopic symmetry. Yet when a theory of
the irreversible process based on a particular
model is worked out, these relations are always
confirmed. N. Bohr' was the first to demonstrate
this clearly in the case of Kelvin's relations, and
he found that their validity was ultimately
owing to the circumstance that the fundamental
equations governing the motion of individual
particles are symmetric with respect to past and
future, or, mathematically speaking, that they
are invariant under a transformation t~( —t).
More recently Onsager' has tried to show that a
general class of reciprocal relations can be derived
from this principle of microscopic reversibility
without having recourse to any particular model,
and he has applied his theory to numerous
examples, including those mentioned above, thus
adding a new and very fundamental principle to
macroscopic thermodynamics. But although we
do not doubt the essential truth of Onsager's
ideas, his application of these ideas to particular
cases is in our opinion not always entirely satis-
factory. In this paper we shall endeavor to treat
a few simple cases somewhat more explicitly, but
for completeness sake we shall first give a short
summary of the general theory. In this way we
shall also have an opportunity of discussing the
essential assumptions involved in Onsager's
analysis. *

where S;I, is a positive definite form. The prob-
ability distribution for the a' is given by

W(a', , a")da' .da"

e~~~do.'. dn"
(2)f. . .J' eke sdal. . .dan

where k is Boltzmann's constant. Define

y, =ps Sga', (3)

then it is easily shown that

(y,a')A„——h 8,'

(5,'=0 wheneveri&l; 5 =1).

According to the fundamental notions of statis-
tical mechanics this average may be interpreted
either as an average over a microcanonical
ensemble of systems, or as a time average for
one single system.

By solving Eq. (3) for a', we have

a'=pt S"Vt,

where S'& is the reciprocal matrix to S;;, we find

2. GENERAL THEORY

(a) Theory of Fluctuations

Let us consider an adiabatically insulated
system and a number of variables x' (i = 1, , n)
which in the equilibrium state assume values xo'.
We put

x'=x '+a'
The entropy in a state differing from the equi-
librium state will be S=So+AS, where AS is of
the form

65= —-,'Q So,a'as,
i, k

N. Bohr, Studher ooer Metollermes Eletttrolteore (Copen- (a'a& )=hS". '
(6)

hagen, 1913).' L. Onsager, Phys. Rev. 3'7, 405 (1931);38, 2265 (1931).
*The whole subject was extensively discussed in a would like to express his thanks to many of those present,

colloquium organized during the spring of 1944 by the especially to Professor H. A. Kramers and Mr, B. D. H,
"Nederlandsche Natuurkundige Uereeniging;" the author Tellegen for valuable discussions.
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The variable y& defined by (3) will in the
following be designed as conjugate variables.

(b) Microscopic Reversibility

( '(t) '(t+ ) =( '(t) "(t—)) (8)

where the average is now again over the total
microcanonical ensemble and may also be inter-
preted as an average over t.

Similarly, if a number of variables p" are odd
functions of the velocities, we have

(P"(t+r)P~(I), " 0"(I))A~

=( P"(t )—ti ()—-tI (),)~ ~

and again we find

(P"(t)P"(t+r));=(P'(t)P"(t —r))A, . (10)

Let us now combine a number of even quantities
n' (i=1, , v) and a number of odd quantities
p" (X=1, , v). Then

n ('+r)- (I).",-.(I) P (I), "~, I (I))"
kfs= n (" r)a~(I), ",a"(I)' P~(I)", —

t(I))I+,I—
p (t+ r) a &(t}, w([)ai p, 1(I), "~,I)v(I})g

P"(t r)a ~(I), ",aa(I) ' —I) i(I), " —tI~(I))Av

from which it follows

( '(t)p"(t+ ))"=(— '(t) p "(t—)) ' (12)

As an illustration we may quote the Brownian
motion of a galvanometer: if we call the deHec-
tion n and the angular velority p these quantities
will satisfy Eq. (12).

Suppose that the n' are even functions of the
velocities of the individual particles, so that they
are invariant when t is replaced by —t. The fact
that the future behavior of a system having
specified values of n' at a time t is, on the
average, identical with its past behavior, can be
expressed by the equation

(n (t+ r) at(I'), ~ ~, an(t))Av . (n (t r) a&(I), ~ ~, a~(I))Avt (t)

the suSxes denoting that the values remain fixed,
so that the average is taken over a section of the
microcanonical ensemble corresponding to these
values. M ultiplying by n '(t) and taking the
average over all possible values of n'(t), , n" (t)
we find

Let us transform the macroscopic equations,
which are of the form

into the form
n"= g) P'"y},.

(13)

(14)

We assume that the same equations also describe
the average behavior of Ructuations in the fol-
lowing sense: there exists a time interval v-~ such
that for r&v~, but r&&T, where T is the time in
which, according to our equations, a disturbance
of equilibrium is appreciably reduced; then

(n'(t+ r);(i), ..., (I) —n'(t))A~

=+ Z. ~'"v.(t). (»)
This assumption calls for some comment. In the
first place it is not legitimate to write a' instead
of ) n'(t+ r) —n'(t) ) /r, for it is a consequence of
microscopic reversibility that the mean value of
this derivative is zero. The time interval v~ is
required to establish a state of steady How and
the condition that 7-~ is small compared with the
time in which the deviation from equilibrium is
appreciably reduced imposes evidently some sort
of limitation on the mechanics of the system. It
should be borne in mind, however, that many
applications of the macroscopic equations are
based on essentially the same condition. Further,
it is by no means evident that a set of equations,
applying originally to deviations large compared
with Huctuations, can also be applied to the
average behavior of these fluctuations them-
selves. Of course, the fact that the macroscopic
equations are linear partly justifies an extrapo-
lation to very small deviations, but in principle
one may imagine a pseudo-linearity holding only
at reasonably large amplitudes. The acceptance
of Eq. (15) is really a new hypothesis; and
although the same hypothesis is made in the
theory pf Brownian motion, we do not think that

If a magnetic field is present, the Eqs. (8),
(10), and (12) are no longer valid, but must be
replaced by

(n'(t) n'(t+ r, H) )A, ——(n'(t) n" (t —r, H)—)A„(8')

and so on.

(c) Regression of Fluctuations
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it can rigorously be proved without referring in
some way or another to kinetic theory. The
author feels satisfied however, that it willhold
in all cases that can be treated by means of the
usual method based on the equation of Maxwell
and Boltzmann.

Once Eq. (15) is accepted, the analysis is very
simple. M ultiplying by a '(t) and taking the
average we find

(n'(t) {n'(t+ r) —n'(t) })A„——rP" k.

In the same way

( '( ) t '( + ) — '() l)"=

3. THERMOMOLECULAR PRESSURE DIFFERENCE;
RELATION TO PSEUDO-THERMO-

STATIC METHODS

As a first example, we shall discuss a case
where the application of the general theory is
perfectly simple and straightforward. We con-
sider a vessel containing an ideal gas and divided
into two equal compartments by a wall with a
small hole. Let n~ and n2 be the number of
gram molecules in the two compartments and
T~, T2 the respective temperatures.
In equilibrium

ng n2 —n Tj —T2 —T

But according to Eq. (8) the left-hand sides of The fluctuations of numbers and temperatures
these equations are equal; hence, are subject to the conditions

pi i —pi i (16) Bni+8n2 ——0; b(niTi+n2T2) =0.

This is Onsager's fundamental relation. The
same reIation holds if the macroscopic equations
are expressed in terms of variables of the
"p-type:"

pi p pox (17)

If both even and odd quantities enter into the
equations the situation is slightly more compli-
cated. In this case the entropy, being an even
function, is a sum of two terms

sS= —-' (g S,u'~ +Q S, p p j

and also the conjugate quantities fall into two
groups, that are even and odd in time:

S icl pg —Q Supp

The macroscopic equations are

~"=Z- f '"v-+Z~ P'"v~,

px Q pram~ +Q pÃp, ~

and a similar procedure as before. leads to:

We shall now introduce a new set of variables:

ill ~n2 ii2 ~ +2 (~n2 T+~T2 'n) C .
Then,

C„+R
~S= — otz'—

1 2C„

The conjugate quantities are

C.+R C, /R C.
'ri=2 &i—2 o'2=2

n nT in T ) '

The second condition, which expresses the fact
that the total energy is constant, leads to

n(5Ti+ 8Tg) +8n2(STD —5Ti) =0.

Starting from the well-known expression

S=n C„ log T+R log V nR log —n,

we find a simple calculation yields

nC, R
AS = — (5T2) ' ——

(Snab)

'.
T2 n

pii p ii

pXy, —ppX

piX ~pXi

2C„2 5T2
cLi+ cx2= 2

nT nT'C„T'
(18b)

Let us now write down the equations for the
transport through the hole in the wall:

If a magnetic field is present, these equations
have to be replaced by

5T2
M2=28n2+8

T2

and so on.

0"(~) = 0 "(-~) (18') 6T2
8 Um =Q5ng+w

T2
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We can now apply Onsager's general equation:

AnQ A22TC„"8,
R R

or 8 Q —TC„
n.

R

Suppose that a difference of temperature is
artificially maintained, but that we wait until
Bn=0. Then we have

or

8 8T
8n= ——-

2 T'

Q/T —C„BT

Onsager's theory gives a general relation between
the difference of concentration caused by a
diiference of temperature and the energy carried
by moving molecules. Of course the value of Q
can only be derived from a kinetic theory. If the
diameter of the hole is small compared with the
free path, a simple calculation gives:

leading to

Q= (C.+-,'R) T,

const.

or
p= const. QT,

which is Knudsen's well-known formula. For a
large orifice on the other hand

Q= (C„+R)T,

The first equation expresses the fact that a Row
of gas may be caused both by a difference of
concentration and by a difference of temperature
(since we assume that a linear approximation is
valid, we have 8T1= —5T2 and T2 T1—26T——2);
the second equation states that energy is trans-
ported by the moving molecules, but also by
conduction of heat.

Transforming to conjugate variables, we have:

1 An 1 (ANTC„
V1+-I +& iV22R 2& R )

1 A22Q 1 (AnTC, Q62= — y1+—
i +&Q+~ i 72.2R 2& R )

and it f'ollows

1 P2

CX»2

Pl P2 ~

&»1

Next we carry out a virtual displacement bn»

(in our case we transport a number of molecules)
and we assume that the quantity bu2, which is
displaced along with hex», is the same as if y2
were zero, so that

0!2»
80,2

—— 5n»,
0!»y

which means here that 8U= Qln. It is now
assumed that the change of entropy due to the
virtual displacement vanishes:

SS= —(~,S~,+~2Su2) =
i

— + i~2m, =o,
&11 &11)

and hence,

Evidently this way of arriving at the relation of
symmetry cannot be justified at all by thermo-
dynamic theory. Since, however, all applications
of quasi-thermostatic reasoning are based on
essentially the same equations, it can now be
understood why this procedure has usually led
to correct results.

4. CONDUCTION OF HEAT IN CRYSTALS

The equations for the conduction of heat in
crystals can be written in the form

221~= Qk +ik'ATi

here BI, denotes the derivative with respect to x~„
and we write x», x2, x3 for the Cartesian coordi-
nates x, y, z. Now this system is certainly not
of the form (14), for in a three-dimensional case
m; is not the time derivative of a thermodynamic
variable. As a matter of fact, m; is not even
uniquely defined, for only its divergence has a
direct macroscopical physical meaning. This

Our example affords also an interesting illustra-
tion of the quasi-thermostatic procedure used by
several authors. Let us write our equations in
the form

1 ~11|'1+&12Y2&

~2 '122171+~2272

Consider first a stationary state with 6»=0, then
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means that we may add to L;p a quantity p;&,
as long as

p 8;(p,pBpT) =Q {&,(p,p)&pT+p;k&;&pT} =0.

This equation is satis6ed for an arbitrary distri-
bution of temperature, if

and
pip phd

p, B,pg, =0. (18)

Z (~T)'U+
2 Tp

where we have put T. Tp=AT, . T—he variable
conjugate to AT, is thus found to be (C/Tp') V.~T.
and Eq. (4) gives

T2
(V,~T,~T„),„=k

C

Let us sum this equation over a number of cells

S;, then

P(Ve;ATe, AT, )A„——0, when S,/r for all S,,
Si

P ( UB,A Te;6T,)p„—kTp'/C, when S—,= r for one S,.
Si

I

Passing to the limit of very small cells, we find

ET(x, y, s)ET(x', y', s')dxdyds
J J Av

lkT. /C,

the upper or lower result holding according as

The addition of an antisymmetric tensor to I p

has no physical consequences as long as Eq. (18)
is fulfilled, and it is therefore not to be expected
that Onsager's theory correctly applied will lead
to the result Lt,&~= —,'(L;& —L&;) =0. To apply
Onsager's theory, we must begin with a discus-
sion of temperature fluctuations. Let us consider
a solid of total volume U and divide it into a
number of cells V,. Let T. be the temperature
in each respective cell, Tp being the equilibrium
temperature and C the specihc heat per unit
volume, then the change of entropy will be
given by

pTs C 1
d S=g, V. I dT =+,—V,— Cd T

& TO T Tp

1 (s Ts

Q V, (T Tp) Cd T+-
Tp J T0

AT(x) =
~

—
~

e'&""&a(k) dkgdkpdkp,:(21t') 4 J

(1)'~ t
"

a(k) =
~

—
~

~
I e '~""'AT(x)dxdydz

E2~) ~ »
with

and, AT being real,

a(k) =a( —k)*.
4

It is easily seen that a(k) and a(k)*C/Tpp are
conjugate variables satisfying the equation

(a(k)a(k')*)p„——(kTp'/C) 8(k], k\, )

X 5(kp —kp') 5(kp —kp').

Next we determine the rate of change of a(k):

(1)4
(k) =

~

—
I

I e '&"*&KT(x)d—xdyds
&2ir)

(1 )4 n ro

, e—~(k«)

&2s) J J C „
X (L„„B„AT)dxdydz.

We assume that I.,~ is a function of x, y, s which
vanishes at infinity. By partial integration we
find:

(il'1
a(k) =

~

—
~

—
i

—Q{k kmL
E2~)

+ik (a„L„)I e '&'"'ATdxdydz. -

Introducing the Fourier integral for d T

(
a(k) =

~

—
~

— Q( —k k~„
L27r). C s J J J J J

ik„(8~„))e"+—' @ «&dxdyds

X i

—
i

a(k')dkg'dk, 'dkp'
(2pr

—(k
' —k )k*„(k—k') }a(k')dkI'dkp'dkp',

x', y', s' is outside or inside the range of integra-
tion. This can also be written in the symbolical
form

(AT(x, y, z)AT(x', y', s'))A.

= (kTp /C) ~(x—x') ~(y —y') ~(z —").
We introduce the Fourier components of AT:
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where L„(k) is the Fourier component of I„, x '. This is of the form

or, finally

(1&-**1
,

-gu„u I.„(k-k)
E2~) C& ~ J

AT(x) = ', X(x, x')AT(x')dx'dy'dz',
J

and Onsager's principle gives:

=Q 8„[L. (x)B„jb(xg—xg')

X b(x2 x2—') b(xg x3—') }].

Xa(k')dk[dk2dka.
Q Bm'[L„m(x')8~' J 8(x& —x&') 8(x2 —x2') 5(x3 x3 ) }]

We can now use Onsager's relation of symmetry
bearing in mind that the conjugate variable to
a(k) is proportional to a(k)* or a( —k):

or

Q 0„'k L.„(k+k') = Q k 'k„L. (k+k'),

Q k k 'L[. )(k+k') =0.

In order to draw a conclusion from this equation
we multiply by an arbitrary function f(x') and
integrate; We obtain:

Z ~-(L-~-f) =E ~-(L-~-f)
Putting k+k'=K so that k'=K —k, we And:

Q k (X —k )L[„„[(K)=Q k„X„L[„„)(X)=0.
or 2 ~-(L-)~-f=Z ~-(L-)~.f

This must hold for arbitrary k, whence

Q„X„L[„)(K)=0.

Now we have

t'
~(X) =

~

—
~

~ e '[K &L[„„~(—x)dxdydz,
c J

(1)4
(2~)

i (8 L[„[)e —'[K"&dxdydz—

Therefore we find ultimately

Qm ~mL[nm[ =0.

This equation can be obtained somewhat more
directly though less rigorously by using the AT
instead of their Fourier components and making
a liberal use of 8-functions. We have:

CAT=+ a. [[L. 8 AT)

X &(z —z') }L„„(x')&„'AT(x')dx'dy'dz'

Q 8„'[L„„(x')8„'[5(x—x')I

nm

X 8(y —y') 8(z —z') ]}AT(x') dx'dy'dz',

where 8 ' denotes differentiation with respect to

and, f being arbitrary,

Q„B„L[ ) =0.

Our result is, that an antisymmetric component
of J.;& has no observable physical consequences
whatever and it is permissible to put it equal to
zero. It must be zero if we agree that J,~ is zero
in vacuum and that I,;~ for a given substance
does not depend on the shape of the sample.
Though it would of course be very foolish not to
accept this convention, it is interesting to note
that Onsager's relation by itself does not compel
us to do so.

An analysis similar to that given above applies
to all cases where a c'urrent, the divergence of
which has a physical meaning, is given in terms
of the gradient of a thermodynamic variable.

S. CONDUCTION OF ELECTRICITY

In agreement with the remark at the end of
the proceding section, the conduction of elec-
tricity in solids might be treated on similar lines
as the conduction of heat. There is, however, an
additional complication inasmuch as the diver-
gence of the current gives the rate of change of
the charge density, whereas the current is deter-
mined by the gradient of the electric potential
which is in general a complicated function of the
charge. Therefore; we prefer to use a different
method. We consider a sample of a conducting
solid with four leads attached at the points
A, 8, C, D. If we restrict ourselves to situations
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where the current I», entering at A is equal to the
current going out at 8, and the current I2,
entering at C is equal to the current going out at
B, and if U» and U2 be the potential di8'erence
between A and 8 and between C and D, then
there will hold a set of equations:

Vl A11I1+&12I2 « Il 1211U1+~12 V2,

V2 =A21I1++22I2, I2 = &21 Vi+0222 U2.

Let us now suppose that a large capacitor Cl is
connected to A and 8 and similarly a capacitor
C2 to C and D. Then Il and I2 are the derivatives
of the charges on these capacitors, and moreover
the potentials are, apart from a constant factor,
the conjugate variables to these charges. There-
fore Onsager's relation gives:

density. We shall arrive at the following theorem:
if for a certain substance a relation 0.;I, ——o.I,; holds
for all possible fourpoles, then we have also
Rg, =RI,;. To establish this theorem we consider
a thin rectangular plate in the xy-plane, with its
corners at (0, 0), (0, l), (b, 0), (b, l) and with
leads C and D attached to the sides parallel to
the x axis at points with arbitrary but equal
x-coordinate xz, the leads A and 8 being similarly
attached to the sides parallel to the y axis at
points with y-coordinate y&. We have:

Vl +11I1++12I2

V2 +21I1+A22I2

with
A»2 =A2»,

but on the other hand

This equation of symmetry will hold for an
arbitrary fourpole. as Iong as no magnetic field
is present. In that case:

~12(H) ~21( H) ~

Now

Vl (R1121+R1222)2=WAdx
Jo

pb
I2 iQx, ——

0

It is interesting to note that. our equations may
also be written as Vl —R12I2+R11

gb

z»dx

Il = 511Ul+ 512I22

V2 b21 Vl+b22I2.

Now if C and D are not connected to a capacitor
but to a self inductor, the magnetic flux in this
inductor, which is proportional to I2, may be
regarded as a dynamical variable and V2 is its
derivative with respect to time. So we can again
write down an equation of symmetry. But now

I2 is an odd quantity, Vl an even quantity,
hence, according to (18c)

~12 ~2»)

in agreement with what is found by direct
transformation. The author is indebted to Mr.
Tellegen for drawing his attention to this case,
which made him aware of the necessity of making
a distinction between even and odd quantities
in the formulation of the general theory.

We shall now investigate the symmetry rela-
tions for the tensor of electric resistance:

8;=QR,2i2,

where E; are the components of the electric field

strength and 'iI, the components of the current

Specializing to the case I»=0, we have

~ 12 R12+ (R11/I2)
pb

Z»dX Ii=0.
Q =PA

In the same way we can calculate V2 and our
symmetry relation becomes

R12+Rll

pb

$»dX 11=0
9 =SA =R21+R22

I2

pl
Z2dy I1=0

0 g =X+

=R21+R22 Q

This equation holds for arbitrary values of xz
and yA. Let us then suppose that we write it
down for n, m arrangements corresponding to

xc ——0, b/n, 2b/n, . (n 1)b/n, —
y. =o, i/m, Z/m, " (m —1)&/m,

and Iet us sum the result:

gb

R12+Rll Q 21dx iI=0 I2mn
~0 9 =PA
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On the left-hand side we shall first carry out the
summation over m which leaves the distribution
of current unchanged, since this depends only on
the position of the points C and D through which

I2 enters and goes out. But in the limit of very
high m, the expression (I/m)P[ ]i~ is propor-
tional to Ji~d'y and therefore it is zero when

I& ——0. In the same way we 6nd that the sum
over I at the right-hand side vanishes, which
establishes the desired re'suit.

It is of some interest to note that the symmetry
of one special fourpole is not suf6cient for de-
riving the symmetry of the conductivity tensor:
it is only the symmetry of all fourpoles which
enables us to obtain this result. Further one
might be astonished that we arrive here at once
at the symmetry relation and not at the relation

P; B,R[;y] =0.

The reason is that our analysis tacitly assumes
that Rg, is identical for the whole series of m, e
fourpoles and that R;q, =0 in vacuum. If we had
chosen to treat also the conduction of heat by

using "thermal fourpoles" we should also at once
have found I [;~]——0.

If a magnetic field is present we have

R;g, (H) =RI,;(—H),

a relation which was first given by Meixner. '
This result may also be expressed by the

statement that the symmetric tensor R(g,) is an
even function of N, the antisymmetric tensor
R[g, ] an odd function of N. Introducing the
axial vector R (where R],—R[23] and so on) we
can write

E'= +1,R['~]4a+LIXRji.

The total electric field strength is given by a
symmetric resistance tensor which is an even
function of H and a Hall vector which is an odd
function of H. The situation was discussed by
Gerritsen and the author' in connection with
the conductivity of bismuth in a magnetic field
and we refer to their note for further details.

I
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