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INTRODUCTION

N many of the early cloud-chamber experi-

ments the possibility existed of erroneous
interpretation because several tracks might acci-
dentally seem to originate from the same point.
Professor Bohr asked me once to study the
chance that several independent tracks inter-
sected at almost the same point. The need for
the answer to this problem had fortunately
vanished before any progress was made towards
its solution. Lately, however, the same problem
arose in other connections and in the following
we discuss the first steps so far obtained towards
the solution.

THE IDEALIZED PROBLEM

We consider a plane covered with straight lines
distributed at random in position and direction.
These lines cut the plane into triangles and
polygons. What is wanted is the probability
distribution of the areas of the fragments,
namely what fraction of the fragments has an
area lying between given limits.

In order to avoid difficulties with infinities it
seems advantageous to consider the problem on
a sphere instead of in a plane. In that case the
straight lines are replaced by great circles on
the sphere. These great circles will intersect an
arbitrarily chosen equator at randomly distrib-
uted points, in ‘fact one needs to consider only
a half sphere as the two halves are identical.

SIMPLIFIED PROBLEM

The following simplified version of the problem
can be solved completely., We assume that the
plane is covered by straight lines which are not
arbitrary in direction but parallel to the x axis
and the y axis. The plane is then cut into
rectangular fragments by two perpendicular sets
of lines. The lines in each set are distributed at
random.

Let the density of the lines be chosen such
that on the average the x axis is intersected by
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one line per unit length and similarly the ¥
axis. The problem is now reduced to the well-
known distribution of random points on a line.
Considering one rectangular fragment the proba-
bility that its horizontal dimension is between 7
and n-+dn and its vertical dimension between ¢
and {+d¢ is given by

(&, n)dEdn=e"ndtdy.

We are, however only interested in the area
o= fn. We introduce new variables, namely

o=£n, area
u=§£+n, half circumference
S(& n)dédn = e dudo/ (u* —40)k.
Note that
u*>4o.

For the probability that the area of a fragment
is o the simplified problem gives

F(o)do=do | due/(u?—40)},

vio

F(o) =31miH® (in/40). (1)

These functions are tabulated in Jahnke-Emde.
It is very easy to obtain the averages of
powers of o,

0

()= f f Eepke—Grnddy = (B)2.

0

(2)

Note that our choice of one line per unit length
on the average has normalized these averages
so that ¢

(Ow=1. (3)

THE GENERAL PROBLEM

For the general problem it is better to con-
sider the distribution on a sphere. We assume
that there are N halves of great circles distri-
buted at random on a half sphere, not counting
the “‘equator.” We can then derive the following
properties, the N lines divide the half sphere
into $N(N+41)+1 fragments; and on the average
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each fragment has four sides when IV increases
indefinitely.

The first statement can easily be proved by
induction. The Nth line intersects all (V—1)
previous lines and in doing so cuts IV fragments
into two, thus adding just NV fragments to the
total. As we started with one fragment, the
whole half sphere, the number of fragments is
given by
number of fragments

=14ZN={NN+1)+1. 4)

The second statement is also derived very
simply. Each one of the N great circle halves is
cut by the others into NV segments. Each one of
these segments serves as side to two adjacent
fragments. In addition the ‘“‘equator’ is cut up
into 2N segments bordering one fragment each.
The total number of sides to the fragments is
therefore

total sides=2N24-2N.

The average number of sides per fragment is

average number of sides=4 for N— .

(5)

When going over to the plane case we have to
let NV become infinite. In that case we can also
use an exponential distribution for the lengths
of the segments into which the lines are cut,
which is not strictly correct in the final case.

We must watch the normalization this time.
If, like above, we wish to adjust it so that the
average size of the fragments is unity, the area
of the half sphere has to be $/V? for large N. The
radius of the half sphere is then ¥N/+/m, the
length of the great circle half is £N+/7. The mean
length of the segments into which the great
circles are cut is thus 34/7 and not unity, as it
was in the simplified rectangular case.

THE MEAN SQUARE AREA

We use an artifice to compute the mean square
area of the fragments in the general case. We
consider two arbitrarily chosen points and ask
for the probability that they happen to lie in
the same fragment. This probability can be
expressed in terms of the mean square area of
the fragments. We next consider the line which
is determined by the two points and ask for the
probability that the two points fall both in one
of the segments into which the line is divided by
all the other lines. This latter probability can
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easily be computed and thus the mean square
area obtained. '
The probability that the first arbitrarily chosen
point lies in a fragment of size between ¢ and
o+do is given by the fraction of the total area
which is covered by such fragments, namely

¢SG(o)do / f #SG(o)do,

where S is the number of fragments considered
and G(o) the distribution in size.

The probability that a second arbitrary point
falls in the same fragment is given by the area
of that fragment divided by the total area,

o’/fo‘SG(cr)do.

The probability P, that the two points lie in
the same fragment irrespective of its size is
equal to the product of these two expressions
integrated over all sizes,

Py= f #2SG(0)do / {f trSG(a)da}2

=(0"n/S(o)w?.  (6)

We next consider the probability that the
second point lies at a distance / to I4d! from the
first. This is given by the area of a ring, namely

27ldl/total area.

Through the two points we pass a line, which
will be cut into segments by all the lines already
present. The chance that no intersection will
occur between the two chosen points is

e~

The factor 34/ arises from the normalization
discussed above, the mean distance between
intersections is $4/7.

The probability that irrespective of their
distance the two points are not separated by
one of the lines is thus given by

Py= f dl- 2ale 7 /S =17/,

where we made use of the fact that (o)a =1 in the
chosen normalization.
Comparison with Eq. (6) gives at once the

final result
AOn/{o)at =372 (7N

Note that this differs from the simplified case
with rectangular fragments which gives 4 instead.



