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1. INTRODUCTION

T is generally considered rather certain that
the peculiar low temperature transfer proc-
esses which occur in the superconducting state
characteristic of certain metals and in the super-
fluid state of liquid helium below 2.19°K (liquid
He II) cannot be understood on the basis of
classical physics, or rather on the basis of that
familiar mixture of quantum statistics and
classical mechanics applied to certain energy
surfaces (‘‘Brillouin-Zones’)—which procedure,
as one krows, has found numerous successful
applications in the theory of metals. As an ad-
mission of ignorance it has become customary to
say that these “‘super-transfer’” phenomena must
be caused by some elementary mechanisms in
which quantum mechanics plays an essential
role. But up to the present, it has not been pos-
sible to substantiate the alleged quantum nature
of the supertransfer mechanisms by a satis-
factory molecular theory. As a first step in the
direction towards such a future theory, one
might expect to see, at least, that the occurrence

of these low temperature phenomena is condi-.

tioned by something of the order of magnitude
of Planck’s constant. In fact it is surprising that
nothing of this sort is known thus far.

Daunt and Mendelssohn! recently assembled
some evidence for an interesting analogy between
the surface flow of liquid helium II and the
electric surface currents in a superconductor. In
particular they stressed the fact that there are
in both cases upper limits for the current densi-
ties, which considered as functions of tempera-
ture are known to have in either case a similar
character; namely, they both start with a finite
slope at the temperature at which the superfluid
state begins, and they both become temperature
independent near absolute zero. The authors
suggested that these critical current densities

1J. G. Daunt and K. Mendelssohn, Nature 150, 604
(1942).

might indicate the number of particles per cm?
which are involved in the superfluid or super-
conducting transfer. However, they gave no
hint why such a connection should exist; nor
did they give any support to their view by pre-
senting empirical evidence concerning the num-
ber of superfluid or superconducting particles.

While this so far quite qualitative analogy
may appear rather accidental, it might be of
interest to draw attention to the fact that the
parallelism goes possibly further than at first
suspected. It can be given the form of an
inequality in which a quantity of the order of
Planck’s constant actually appears as a kind of
limiting surface transfer velocity and which in
fact expresses a connection between the critical
rate of transfer and the number of superfluid or
superconducting particles.

In order to show this, we shall refer both
kinds of surface current, the supercurrents as
well as the helium surface currents, to the same
units. Both currents will be described by the
rate of transfer, R, which we define as the mass
in grams transferred per sec. through one cm
width of surface. Since in reality a current is
never confined to a strictly mathematical surface,
R is the integral

szjdx, | (1)

where j is the density of the three-dimensional
mass current. The direction of the current is
assumed to be parallel to the surface, x is the
direction perpendicular to the surface, the inte-
gration being taken across the more or less
extended region to which the ‘“surface’” current
actually is confined, sharp curvatures of the
surface being excluded. Obviously R is of the
dimension (g cm™! sec.™). If we now compare
this quantity with the number of superfluid
particles per cm?, 7, we notice that the ratio R/n
has the dimension (g cm? sec.™), i.e., the same
dimension as an angular momentum. In the
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following we shall show that in the few cases in
which sufficient data are available the maximum
value of R is of the order nk/2w, possibly just
reaching this value at absolute zero.

A comparison with the quantum conditions
(commutation rules) of quantum hydrodynamics
indicates that by this relation the supertransfer
processes are placed precisely within those limits
in which classical hydrodynamics is indeed no
valid approximation and actual consideration of
quantum theory is indispensable.

2. SUPERCONDUCTIVITY

Considering first the case of superconductivity,
one may express the mass current density j by
the density J of the electric current, j= —mJ /e,
and J in turn by the magnetic field HZ by means
of J=(c¢c/4r) curl H. Thus one obtains for the
rate R of the mass transfer per cm surface cross
section of a sufficiently large superconductor:

' m me oH mc .
e

4re ax 47e

Here H,=magnetic field at the surface and the
integration is to be directed, as in (1), perpen-
dicularly to the surface of the superconductor
into its interior. The superconductor is supposed
to be sufficiently-large, i.e., large enough so that
in some depth the magnetic field can, for all
practical purposes, be assumed as zero. We will
in addition assume the specimen as cylindrical
and oriented parallel to the magnetic field, so
that considerations of demagnetizing reactions
by the specimen on its surroundings can be
dispensed with. Then H, is simply identical
with the external field.

The realization of the superconducting state of
a superconductor as assumed above is restricted
by the condition

H,=., (3)

where H, is the so-called critical (or threshold)
field strength, which is a certain function of
temperature, H.(T"), and has been measured for
most known superconductors over a wide range
of temperature. The quantity . according to
(2) defines a critical value R, for the surface
mass-transfer R:

R.= (mc/4mwe)H,. 4)
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In Fig. 1 we have drawn R, as a function of
temperature for Hg, the critical magnetic field
strength being taken from measurements of A.
D. Misener.?

As to the number of superconducting electrons
per cm?®, #, we have only some indirect informa-
tion, which is derived from measurements of the
so-called penetration depth, A, that is the depth
to which magnetic fields (H,<H.), and currents
are confined in a superconductor. This N is
defined by the relation

curl N2 = — (¢/4m)H, (5)

which is assumed as the basic relation between
magnetic field and electric current density in the
electrodynamics of the superconductor.? The
connection between this A and # is then given by

A= (1/47) (mc2/ne?). (6)

It is at present not yet clear how # is to be
interpreted in terms of an “effective” number of
free electrons as used in the electronic theory of
metals. We may consider (6) as the,definition of
that number # of electrons which would produce
a magnetic screening as described by (5) if the
electrons were perfectly free.

Measurements of N\ are so far available only
for Hg and, though on a somewhat less reliable -
basis, for Sn. In Fig. 1 we have plotted the values

20x IO'6g/cn}/ sec.

(o] | 2 3 £K

F1G. 1. Number of superconducting particles, #, and
critical rate of superconducting mass transfer, R, for
mercury as functions of temperature.

2 A. D. Misener, Proc. Roy. Soc. A174, 262 (1940).
3F. London and H. London, Physica 2, 341 (1935);
Proc. Roy. Soc. A149, 71 (1935).
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for nh/2w =mc?h/8n%>\?, for Hg along with those
of R,, using the samie scale 10~¢ g sec.™ cm™ for
both quantities. The values of X\ are based on
measurements of the magnetic susceptibility of
a very fine preparation of colloidal mercury
(“HgA”") by Shoenberg* which values agree well
with those obtained by a quite different method
by Appleyard, Bristow, H. London, and Misener®
with fine mercury films. The numerical evalua-
tion of A from Shoenberg’s measurements re-
quires the knowledge of the average radius 7 of
the colloidal particles. The value for {(r)» given by
Shoenberg is (r)»=5X10"% cm which value has
been determined by measuring the polarization
of scattered light. Plotting #k/27 in Fig. 1 we
have assumed (r®)s=(4.63X107%)%, which as-
sumption is certainly quite within the range of
the precision of such a measurement. This value
has been chosen because it leads to an exact
equality of R, and #nh/2m at T=0° abs. However
this choice is quite arbitrary, and one cannot at
present say much more than that R, and nh/27
are, for Hg, of the same order of magnitude, R,
differing from #k/27w nowhere by more than a
factor between % and 1.

For tin the constant X has so far been deter-
mined only by means of a quite different -and
somewhat more indirect method, namely by
measuring the heat produced within a super-
conductor in-a high frequency field.® The nu-
merical evaluation of these measurements with
respect to the quantity X is, however, dependent
on some special assumptions concerning the

_existence and the behavior of normal conducting

electrons in a superconductor, and it appears
that the final evaluation of these experiments
still requires further discussion.” At any rate
the available values also fulfill the inequality
R.<nh/2w. In actual fact R, is found to be by
a factor of about % smaller than =nk/27. At
present it seems, however, not justified to
attribute particular significance to this detail.

4 D. Shoenberg, Proc. Roy. Soc. A175, 49 (1940).

5E. T. S. Appleyard, J. R. Bristow, H. London, and
A. D. Misener, Nature 143, 433 (1939); Proc. Roy. Soc.
A172, 540 (1939).

6 H. London, Nature 133, 497 (1934); Proc. Roy. Soc.
A176, 522 (1940).

7 The difficulty in evaluating these results is connected
with the fact (reference 6) that already the normal con-
ductivity of tin becomes anomalously small for high
frequencies and low temperatures,

F. LONDON

3. THE NUMBER OF SUPERFLUID PARTICLES
IN LIQUID HELIUM

Many properties of liquid helium II indicate
that at a given temperature only a fraction of the
atoms is actually responsible for the superfluid

* transfer processes:

1. There is no transition heat at the transition
point into the superfluid state (‘“A-point”); only
a discontinuity of the specific heat occurs accom-
panied by a rapid change of entropy over an
extended temperature interval below the transi- -
tion temperature (transition of ‘‘second kind’’)
which indicates a gradual transformation, not a
simultaneous change of state of all atoms at a
certain temperature.

2. Liquid helium II shows a quite normal vis-
cosity .of the same order (n~107%) as liquid
helium I (above the A-point) if measured, not by
the flow through narrow capillaries or slits, but
rather by the motion, say, of a disk immersed in

.the liquid.® In apparent contradiction to the

latter, flow experiments show an immeasurably
small viscosity (or rather a peculiar “super-fluid”’
transfer, which cannot be described in terms of
ordinary viscosity). It had been proposed? to
resolve this contradiction by assuming that the
superfluid transfer is not necessarily carried out
by all atoms, but possibly only by a certain
fraction of them, say, by those which are in some
special quantum state. The remainder of the
atoms might be subject to dissipation of mo-
mentum and thus account for the frictional work
done on the disk, whereas in the flow experiments
with very narrow channels, these atoms would
be almost completely immobilized and conse-
quently not be involved in the transfer.

3. It is impossible to empty entirely a ther-
mally isolated container of liquid helium II by
means of superfluid transfer processes alone.

This latter property will be discussed presently
since it has apparently not yet received due
attention. '

Without reference to a specific molecular
model, it is necessarily somewhat arbitrary how
one defines, for a given quantity of He II, and
for given temperature and pressure, the fraction

8 W. H. Keesom and G..E. MacWood, Physica 5, 737
(1938).
9 L. Tisza, Comptes rendus 207, 1186 (1938).
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of particles considered as superfluid. However,
each of the three properties named above leads
actually to about the same result, and so we
probably shall not be very far from the truth if
we define the superfluid fraction as the maximum
amount of liquid which can be separated from a
given thermally isolated quantity of He 1I solely
by means of superfluid transfer processes. In the
following we will calculate this fraction.

The experiments of Kapitzal® show very con-
clusively that the entropy current of helium II
flowing through a very narrow channel must be
very nearly zero, a result which was first pre-
dicted by Tisza!! on the basis of a kinetic model
of He II proposed by the present author.’? If the
helium leaving the channel actually had an
entropy of exactly zero, its temperature would
be also exactly 0° abs. Kapitza’s experiments
cannot, of course, exclude the possibility that a
very small amount of entropy is being trans-
mitted through the channel. In reality, with
channels of a finite size there will certainly be at
least some ordinary viscous transfer. Possibly
also the small amount of entropy proportional
to 7 observed by Simon and Pickard®® below
0.8°K might not be separated by even the finest
channels. In this case the temperature of the
helium leaving the channel would be appreciably
different from zero. In order to simplify matters
we shall, however, assume that the entropy
current through a sufficiently fine capillary is
exactly zero.

From simple thermodynamics' it follows that
two containers (4 and B) of liquid He II con-
nected by a fine capillary are in equilibrium if
the pressures p4, p5 and the temperatures T4, T
in the two containers fulfill the condition

g(pa, Ta)=g(ps, Tn), (7

where g(p, T)) is Gibbs’ thermodynamical po-
tential per gram. We assume that according to
Kapitza or Tisza no entropy is being transferred
through the capillary, which statement, by the
way, is not a consequence of (7) but implies a

1 P, L. Kapitza, J. Phys. 5, 59 (1941).

1. Tisza, Nature 141, 913 (1938).

2 F, London, Nature 141, 643 (1938); Phys. Rev. 54,
947 (1938).

. ( 13 G) L. Pickard and F. Simon, Proc. Roy. Soc. A173, 21

1939). :

14 H. London, Nature 142, 612 (1938); Proc. Roy. Soc.
A171, 484 (1939). .

313

separate hypothesis as to .the absence of a
“Thomson heat”!* along the capillary where
there is a temperature gradient. If we take care
that the container 4 is thermally isolated during
any process in which M grams of He II initially
at pressure p and temperature 7" are reduced to
M4, pa, T4 then we have no change of entropy
ind:

Mas(pa, Ta)=M-s(p, T). (®)

Here s is the entropy per gram:

Let us now consider a process in which, by
applying a suitable pressure difference, the liquid
He is pressed from A to B. Suppose that during
the process the pressure in B is kept zero and
that in the beginning B was empty. [f actually
no entropy can go through the capillary and B
is thermally isolated, it follows that T3 =0 and
we may write (7)

g(pa, Ta)=¢(0, 0). (7

This equation gives the equilibrium pressure p4
for any temperature T'4. Accordingly the process
does not start at the initial temperature T in 4
unless the pressure in A is a little larger than
that given by the equation

With gradually increasing pressure in A, more
and more helium will be pressed through the
capillary, while at the same time the temperature
rises. Equation (7’) permits one to express p4 as
function of T4, pa=f(T4), which substituted in
(8) gives M4 as function of T4 and the initial
values, M, T, p:

s, ) _ . sUD), T)
s(pay Ta)  s(f(Ta), Ta)

The process comes to a standstill when 'the
helium in 4 reaches the \-line, i.e., the line in
the p-T-plane which separates the superfluid
state from the ordinary liquid state. Above the
M-line only viscous flow is possible, which we
disregard anyway. If My, p», T are the values
for which our process reaches the \-line the
fraction of helium that has passed through the
capillary is given by

M-My | SUD), T)
M st Th)

A=

(10)

(11)
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F1G. 2. Number of superfluid particles, #, and critical
rate of superfluid transfer, R, for liquid helium II as
functions of temperature.

We may determine this fraction numerically
by using for g(p, T') the following empirical ex-
pression:

2(p, T)=6.9p—0.0205p%—0.03177%-¢

X (140.0175p40.00117p%) cm® atmos./g, (12)

(p in atmospheres), which has been obtained by
interpolating and integrating the wvalues of
s=—20g/dT and p=(dg/ap)~!, given by Keesom
and Keesom.'® The values used are confined to
the region between 1.2°K and the A-line; they
do not account for the fact that for temperatures
below 0.8°K the specific heat has been found to
follow a 73-law.* However, in this region the
entropy is already very small anyhow. Between
1.2° and the A-line formula, (12) represents the
experimental data fairly well.
With (12) one obtains for Eq. (7):

6.9p4—0.0205p42—0.03177 456
X (140.0175p4+0.00117p,42) =0, (13)
or for small pressure within sufficient accuracy:

pa=0.0046T,55. (14)

15W. H. Keesom and Miss A. P. Keesom, Physica 1,
128, 161 (1933-4); Leiden Comm. 240 (1936).
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The \-line is reached for 75,=2.18°K and
/M =0.79 atmos. Thus we have always p4=0.79
atmos., and we were justified in neglecting the
higher terms in p4 of Eq. (13).

The entropy given by (12) is

ag
S=——-=0.0057%%(140.0175
or 0 1+ b

4+0.00117p2) cal./°K g. (15)
According to (11) we thus obtain for the fraction
(M—M\)/M of helium that has passed the
capillary :

(M—M\)/M=1—(T/T))>". (16)
Here again the terms in p and $? have been
neglected. If we had preferred to keep the
pressure in 4 constant and correspondingly had
lowered the pressure in B, according to (7), we
would have obtained the same result (16) even
without neglecting the terms in p and p% The
same would be the case if we had used the
mechanism of the helium-pump of Allen and
Jones'® in order to empty container 4.

So far we have not concerned ourselves with
determining the maximum fraction which could
be transferred by any adiabatic superfluid
process. According to (11) this maximum will
be reached if the process ends at such values
(p, T) for which the entropy per g of liquid He 11
has its maximum value. The measurements of
Keesom show that this entropy maximum is
located at the lower end. of the A-line (i.e., for
$=0.05, T=2.19°). The above considered proc-
esses all end very close to this point; they
therefore yield just this maximum. Since the
total number of atoms per cm?, n,, for He II is
for small pressure about 2.2X10%, we obtain as
the number of superfluid atoms per cm?, #:

n=n0(1

or for not too large pressure approximately :

s(p, T)

—~——)cm‘% (16)
$(0.05, 2.19)

n=2.2X10%2(1—-(7/2.19)5-%) cm=3. (16")

16 J. F. Allen and H. Jones, Nature 141, 243 (1938).
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4. THE CRITICAL FLOW VELOCITY
IN HELIUM II

‘

Most available data concerning the flow of
liquid helium II do not permit a numerical
determination of the critical flow velocity of the
superfluid transfer. In fact it is not yet entirely
certain whether the superfluid transfer is gen-

erally confined to the neighborhood of the solid -

surfaces. There seems, however, to be consent
that there is a critical transfer velocity inde-
pendent, within certain limits, of pressure. One
difficulty in interpreting the measurements is
caused by the fact that unless one uses extremely
narrow channels, the supertransfer appears
usually mixed with ordinary viscous flow so that
special devices had to be invented in order to
exclude or reduce the viscous flow. It is the
nature of such devices (as Allen’s and Misener’s
tubes filled with compressed fine wires or packed
with a fine powder) that they are geometrically
not so well defined as to permit speaking of the
width of surface. In addition, the sharp cur-
vatures of those surfaces bring a new element
into the matter which might affect the mecha-
nism as it does in the case of very small super-
conductors. Another. difficulty, but one which
can in principle be dealt with, is connected with
the existence of the thermo-hydrodynamical
effect. This necessitates a very careful control of
any temperature changes, eventually brought
about by the transfer itself, since even very small
temperature differences are according to Eq. (7)
connected with relatively large pressure differ-
ences which have to be taken into account. This
excludes the discussion of older measurements
where such precautions have not been observed.
The measurements of Kapitzal® are probably
the ones which have been done under the most
closely defined conditions. Unfortunately, his
measurements have not yet been extended into
the region where the existence of a critical flow
velocity can be expected. »
The measurements of Daunt and Mendels-
sohn!” with the mobile helium films appear at
present to be the only data of which we can
reasonably make use. They fit well with Allen’s
and Misener’'s measurements'® with the very

17 J. G. Daunt and K. Mendelssohn, Proc. Roy. Soc.
A170, 423 (1939).

18 J. F. Allen and A. D. Misener, Proc. Roy. Soc. A172,
467 (1939).
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narrowest channels in tubes filled with com-
pressed fine wires (‘“‘tube C”’), which shows that
the estimated geometric surface area of the
channels cannot be very far from correct. In
Fig. 2 we have plotted, as functions of T, the

-quantity nk/2x as given by Eq. (16”") and on the

same scale the values for the critical surface
transfer R,. The values of Daunt and Mendels-
sohn are marked by dots, those of Allen and -
Misener by circles. Below 1.5°K the former
values appear somewhat erratic and might still
be considered with due reserve. At any rate it is
evident again that here also, in the case of
liquid helium II, the ratio R./n differs from
h/2m nowhere by more than a factor between.}
and 1.

5. GENERALIZATION

The experimental evidence we could assemble
is evidently too scant to permit any safe general-
ization. Indeed it would be very desirable to
have more data available. Yet the cases discussed
so far are conclusive enough to demonstrate that
they fall under the jurisdiction of quantum
kinematics. We shall show that the inequality

R=nh/2x, (17)

which we have encountered in the previous
empirical discussion has a close relationship to
the commutation rules of quantum hydro-
dynamics. In order to show this we shall first
write (17) in a somewhat different form.

A current which is confined to the neighbor-
hood of a surface must show a decrease of
current density j towards the interior perpen-
dicular to the transfer direction or j must have
a curl. If X is the ““depth” of the surface current

and if we assume that
Meurl jl=~|j], (18)

then the rate of surface transfer, R, can be
written :

R= fjdxz)\jmax,

and the inequality (17):

NmaxSnh /2. 17)

. Making use of (18) once more we may eliminate
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M\ and obtain:
jmax!jlﬁ(nh/Zﬂ') {Curl ]! y

or a fortiori: _ .
J*S(nh/27)|curl j|, (19)

or also:

72/2mn=(h/4wm) | curl j|. (19)

In this form (19’) the inequality (17) simply
expresses a restriction for the hydrodynamical
energy density 7%/2mn of the supertransfer. The
curl of the current density times #/4wm appears
as the upper limit for the hydrodynamical energy
density. This restriction, by the way, has nothing
to do with the thermodynamical stability. condi-
tion of the superfluid or superconductive state
though it must, of course, be compatible with
this condition.

6. COMMUTATION RULES OF QUANTUM
HYDRODYNAMICS

In an interesting paper Landau'® recently tried
to develop general principles of a hydrodynamics
on a quantum-mechanical basis. Though many
details of his theory are open to criticism, there
seems to be little doubt that this paper points to
the right direction.

The fundamental quantities of quantum
hydrodynamics are the operators o(R) of mass
density and j(R) of mass current density at a
given point in space characterized by its radius-
vector R. If 7y, 79, + -+, 74+ -7y are the radius
vectors of IV particles of the mass m and charge
e, if 8, is an abbreviation of the three-dimen-
sional Dirac-function §(r,—R) and if p, is the
usual momentum vector operator of the par-

ticle «,
(h o h o h a)
"\ 27 9xa 278 3ya 270 92.)

then the non-relativistic operators of mass
density and mass current density are given by

o(R)=m X o bar=m-1n(R), (20)
. e h
iR = ZQ[BaR(pa—ZA (ra)> +4—m_grad 5aR_I. (21)

Here A(r,) is the magnetic vector potential at
the point 7,. The quantity

Za Oar =n(R)
19 [.. Landau, J. Phys. 5, 71 (1941).
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is evidently the operator of the number of par-
ticles per cm?® in the neighborhood of the point
in space R. .

These operators are understood in the usual -
sense of non-relativistic quantum mechanics,
i.e., that, for instance,

i(R) = f VTR, Yl dridrs - - -dro- - -dry, (22)

gives the quantum-mechanical mean value of j
at the point in space R if the whole system is in a
state represented by the wave function ¢(r1, 7,
).

These four operators do not commute with
each other. Thus for the commutator of g and j
one easily calculates:

e(R)i(S) —i(S)e(R)+e(5)i(R) —i(R)e(S)

h
=_.6RS grad 9<R)- (23)
271

c Ty

(See Landau!® Eq. (1.4).) Similarly, for the
components of j one obtains:

LIR) X3(S)1+[i(S) Xi(R)]
= ——~h—8 (curl i(R) +2EH(R)) (24)
T 2mi s ] c '

Here H(R)=curl A(R) is the magnetic field at
the point in space R. The proof of this formula
will be given in the appendix. Note that espe-
cially for superconductors, because of Egs. (5)
and (6), the right-hand side of this relation (24)
is just equal to +(%/2w1)drs curl j, i.e., except
for an irrelevant sign of 7, just the same as for
uncharged particles like helium. This might be
significant in connection with the fact that in
both cases, superconductivity as well as liquid
helium, we found the same upper limit (19),
(nh/2m) curl j, for the mass transfer per cm
width of surface per sec.

In actual fact Landau' merely mentions,
without proof, a commutation rule of this kind
for the operator

v(R)=3(e"j+ije™")
which he calls the “‘velocity operator at the point
in space R.”’ 1 must confess that I have been
unable formally to verify his result. Moreover,

it is to be noted that the assumption of the
existence of a linear operator which would rep-
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resent the local velocity vector v(R) of hydro-
dynamics at a given point R is in contradiction
to first principles of quantum mechanics. The
uncertainty restrictions preclude such a possi-
bility. This fact can also directly be ascertained
if one considers the trivial case of a single par-
ticle only. If this special case and for 4=0
Landau’s operator v turns out to be the operator

1 (1 h
V=——{——(6wp1+— grad 6113)

2m | 61r 4z

h 1 1
+{ d1rp1+-—grad é:r )—=—py,
4z ir] m
which is independent of R and actually repre-
sents the mean value of v (taken over the whole
space) but not the local velocity itself.—On the
other hand one may consider the quantity

h ¢*(R) grad ¢(R) —¢(R) grad ¢*(R)
Y(R)Y*(R)

as giving the local mean velocity of the particle
in a state ¥(r1). However, this quantity can
certainly not be represented as a quantum
mechanical mean value by whatever linear oper-
ator, say v, in the form Sy*[v, ¢ ]Jdr, analogous
to (22). The concept of the “velocity field” of
classical hydrodynamics has apparently no sim-
ple counterpart in quantum hydrodynamics and
Landau’s operator v(R) is merely a formal con-
struction devoid of the physical significance
attributed to it. It is rather the current density
field, j, not the velocity field, », which is to be
considered as the appropriate basic quantity of
quantum hydrodynamics.

’

4mim

7. FINE-GRAINED AND COARSE-GRAINED
CURRENT

The operator curl j(R) which appears on the
right-hand side of (24) is the operator

curl j=3 4 grad 8o X (Pa— (e/c)A (r2))

=Y qcurl j.. (25)

It is necessary to make clear that the quantum
mechanical mean value of curl j, '

curl j=f¢*[curl B vldri- - -dry
=3, curl fll/*[jm ‘p]dTl' --dtn, (26)
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is in general not even qualitatively what is meant
by the curl of the macroscopic current in
hydrodynamics. This becomes evident if one
observes that (26) (like (25)) is a sum of terms
each of which refers to a single particle only.
Each particle a contributes a certain curl j,, we
may call it the “self-curl” of that particle, a
concept which has no analog in classical me-
chanics where a single particle can be endowed
with a velocity but evidently not with a current
density nor with a curl. In classical hydro-
dynamics the curl of j—characterizing the varia-
tion of current density between different though
closely neighboring places—essentially implies
different particles. Such a contribution must
evidently also exist in quantum hydrodynamics
in addition to the self-curl; but it is certainly
not yet contained in (26).

The appropriate way to deal with this situation
is to introduce a ‘‘coarse-grained’’ current den-
sity, (f)a, by averaging the ‘‘fine-grained” j of (22)
over a volume Vg around a point R, large
compared with the mean volume. per particle,
1/n, but small enough to allow speaking of
“‘coarse-grained”’ differentials. Thus we define:

N
GRw== f idr

R

@7

where the integration covers a volume element
as described above around the point R.

It is this coarse-grained current, (j), which
plays the role of the ordinary current density in
hydrodynamics. What appears in the commu-
tation rules (24), is evidently the fine-grained
current, 7, and its curl, the self-curl. In order to
appraise the importance of the commutation
rules for hydrodynamics it is accordingly most
decisive to know in what measure the self-curl
contributes to the curl of the coarse-grained
current. .

1. So far as the particles can be represented by
wave packets which do not essentially overlap
(i.e., for packets small compared with the inte-
gration volume in (27)) the process (27) levels
the fine-grained structure of the currents within
each packet completely,?® so that no coarse-
grained contribution owing to the self-curls is left.
In this case there is, of course, no trace of incom-

2-This directly follows from the regularity properties of
¢ and Stokes’ theorem.
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mutability of the hydrodynamical current compo-
nents however strong the vortex field might be.

2. Let us now consider the opposite limiting
case, which might be here of special interest: If
the wave packets are so large that they greatly
overlap, that is to say, if the wave function of
the system does not permit, even approximately,
a localization of particles at distinct places in

_space, then the self-curls will have an extension
over regions in space much larger than that of
the integration volume in (27), they will actually
cover the whole available volume, and the
process (27) does not entirely level out the self-
curls. In this case the fine-grained and the coarse-
grained current fields are not essentially different
from each other, and quantum effects due to
the non-commutability (24) are to be expected.
This situation is well known to be realized by the
electrons within an atom and by the nuclear
particles within the atomic nuclei, and there is
all indication that this is also the case of the
superfluid and superconductive states.

Here is not the place to expatiate on this
point and to repeat arguments given in detail
elsewhere?! which support the idea that the
superfluid and superconducting states represent
arrangements of approaching order in momentum
space (with approaching 0° abs.) with corre-
sponding loss of localizability in coordinate space
(necessitated by quantum-mechanical uncer-
tainty). Indeed this would mean that these states
realize the second of the two cases mentioned
above.

8. PERMUTATION RULES OF THE COARSE-
GRAINED CURRENT

The two operations (22) and (27) of quantum-
mechanical and coarse-grained averaging are
evidently commutable operations. We may di-
rectly introduce the operator j of the coarse-
grained current itself,

s 1 s/ P! ’
R = f SRR,

and derive its commutation rules. We have only
to apply the above operation two times inde-
pendently on both sides of (24). On the left-hand
side we thus obtain the commutator of the

2! Reference 12, Section 2; F. London, Proc. Roy. Soc.
A152, 31 (1935); J Phys. Chem. 43, 49 (1939)
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coarse grained current components. On the

right-hand side we calculate first

1 if R within Vg
[ nwas= { .
Vg : 0 otherwise

for which function of R we will use the abbrevia-
tion A(R, V). The coarse-grained average of the
first term of the right-hand side of (24) can then
be written in the following form:

bnrsr curl (j(R'
T 2mi VaVs vaf w s curl (J(R')

= ' A(R’, V) curl j(R)dR'
ZmVRst (R, Vi) curl j(R')

h
27I'1z VR S

(curl J(R))n.

Here Vgs denotes the volume of space covered
jointly by Vg and Vs, i.e., in particular, Vzs=0

if Vg and Vs do not overlap, whereas Vies= Vg

= Vg if Vg is identical with V. Thus we finally
obtain : .

K§| (R)>Av><<J'(S)>Av]+[<j(5)>m><<J'(R)>Av]

= 27r1, v S(<CurIJ(R)>A\,

+2<n(R))Av;H(R)). (28)

Since Ve>wn"! and TVzs< Vs we have
(Vrs/VeVs)<n. If we further realize that from
the coarse-grained point of view two points,
R and S, are indistinguishable if they lie within
the same grain, we may also write: -

. . nh . e
GRWX (R < ‘2;;2(“““ J>M+z<n>Av;H)

AR X SN+ (S X (G(R)w=0

for R#S. (28a)

Here the sign < is used in order to ex’press simply
that we have replaced the factor Vgs/VeVs in
(28) by its upper limit 7.

9. CONCLUDING REMARKS

A general theory of quantum hydrodynamics
would have to develop the statistics of a canon-
ical or microcanonical ensemble of many systems,
each system, like that we had assumed so far,
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being represented by its wave function
Y(ri72e + <74 - -ry). However it can be foreseen
that this statistical theory should be dispensable
at least as far as one aspires primarily to an
understanding of solely the hydrodynamics of
the supertransfer processes. It should for this
purpose be sufficient to consider the situation
merely at 0° abs., since there is no reason to
believe that superconductivity as well as super-
fluidity of He should not persist down to 0° abs.

This reduces the problem of the supertransfer
hydrodynamics essentially to one of pure quan-
tum mechanics, namely that of constructing the
one wave function of the ground state of a many
body system and of developing its hydrodynamics
as adiabatic transformations of this single state
under varying external conditions. While such
a reduced theory cannot, of course, say anything
about the thermal transition points into the
-superfluid states nor about the thermo-hydro-
dynamical effects, it should account not only for
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the super-hydrodynamics at 0° abs. but, more-
over, also for the fransitions at absolute zero of
superfluid helium under a certain pressure into
solid helium and of the superconducting state
in a sufficiently strong magnetic field into the
normal state.

One can further anticipate that the restrictions
we have discussed here in some detail concerning
the rate of surface transfer must have a particu-
larly simple basis within this reduced theory.
Since the inequalities (17) or (19) evidently do
not ‘express any reference to any kind of forces,
but only contain the constant % and this, more-
over, in the form of the product #nk-curlj, it
appears plausible that one should be able to
account for these inequalities within the bounds

-of pure kinematics in close connection with the

commutation rules (28), which contain the same
product #h-curl . The dynamical properties of
the mechanism should in this matter be entirely
irrelevant.

APPENDIX. PROOF OF THE COMMUTATION RULES FOR THE CURRENT COMPONENTS (24)

We shall use the following abbreviations for the vector components:

e
R= (ny VR, ZR)y S= (xSy Vs, ZS): Ya= (xay Va, 7’0,), ;A (71.1) = (aay bau Ca)y Pa= (an Na, {a)

and for the derivatives of the §-function:

[¢] J
8ar®=—0(rq—R)=——8(r«—R), etc.
axk

Xa

Further note the identity

for any function f(R).

barf(ra) =barf(R), , (D

Then we may write, according to (21), the commutator of j.(R) and j,(S) in the following form:

h h
§:(R)3y(S) —3u(9)j=(R) =2 { [5aze(§a—aa) +—.5a1e“”][5ﬂs(nﬁ—bﬁ) +_“.5ﬁsy]
a8 471 4z

271

al

h h
- I:aﬂs (773 - bﬁ) +——6B Sy][aaR ( fa - aa) +—,6¢1sz| }
4 471

al

= Sl su | tnatae ) st | - a[a e |
= N @ aRa aS\Nea Voz 47r¢ aS aSa aR\Ca— Qg 41‘_1 aR

h{d h
= __'_{'_“_ Za 5aR|:5aS(7la'~ ba) +_',6QS?!
471

21r1: axs

] h
- Za aaSI: BaR(Ea _aa) +—,_5aRz]+Za 501}260:3 ('—_—“_
ayR 4w

db, da. }

0%q 0V«
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Here we may make use of a special case of the above identity (I),
‘ 0ar0as =0RS0as,
and of its derivative, say, with respect to y,,
0arbas? =0R50as?! — 0ar¥Oas, e€tC.

Note further that because of (I)

E ( D‘) E H (7 = E "‘H R Il R H R
a aR 3 @ aR a) ( @ aR) ( ) ( ) ( )
Thus we ()[)talll

s h o . 9 . €
32(R)3u(S) = 3u(8)j=(R) = ~E{£;[6Rs1y(5)] _EEBRSJz(R)]'FﬁR Sn(R);Hz(R) }

If here we commute R with S and add the result to the original expression and then everywhere
replace 8z5j(S) by 6zsj(R), we obtain

32(R)3u(S) = ju(:S) j=(R) +jx(5)jy(R) - ju(R)jz(S)

271
h 9jy(R) 9j.(R
:——aRs{ 3W(R) 9l )+2n(R)—Hz(R)},
2w 0xp 9Yr ¢

or generally

h
[i(R) X3(8) 1+[i(S) Xj(R)]= —Eéns{curl i(R)+2n(R)§H(R) }

which is the commutation rule (24) as given in the text.



