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FTER many unsuccessful attempts to under-

'

~

stand the mechanism of superconductivity
on the basis of the quantum theory of electronic
conduction in metals a new way of regarding
the whole problem was opened up when F.
London' introduced his phenomenological de-
scription of the magnetic behavior of supercon-
ductors, especially the Meissner effect. In fact,
this phenomenological theory, which after essen-
tial contributions by M. v. Laue' seems to cover
the general electromagnetic experience about
superconductivity, reducing the problem to the
study of a set of linear differential equations for
the electromagnetic held in a superconductive
medium obtained from Maxwells equations by
the introduction of a current-density vector pro-
portional to the magnetic vector potential, lends
itself quite naturally to suggestions as to the
quantum theoretical background of the phe-
nomena in question. First of all it follows from
the considerations of London and v. Laue that
in order to arrive at a general interpretation of
superconductivity we need only hx our attention
on the behavior of an infinite homogeneous
medium. Moreover, as pointed out by London
himself, a characteristic term in the wave me-
chanical current-density formula —we shall call
it the London current —is just proportional to
the vector potential, the factor of proportionality
being of the right order of magnitude. Ordinarily,
however, this term is almost completely cancelled
by the rest of the current-density —the gradient
current —a fact already illustrated by Bohr's'
well-known proof of the absence of any dia-
magnetism of the electrons in a metal on classical
theory and corresponding to the weak diamag-
netism derived by L. Landau on quantum theory.

' F. London, Une conception nouvelle de la supraconducti-
bilite (Hermann et Cie, 1934}.' M. v. Lane, Ann. d. Physik 42, 65 (1942); Zei&s
Physik 118, 445 (1941); 120, 578 (1943).' N. Bohr, Metatterrtes Etetttrortteort' (Copenhagen, 1911)

It is characteristic of the London theory that
it describes a case of magnetic action on matter
depending linearly on the field where the concept
of magnetic permeability does not apply. As
shown in an earlier paper' such a state of things
is just what may be considered the general case
on quantum theoretical perturbation theory
applied to a system of electrons in a magnetic
field. Introducing the wave functions perturbed
by an arbitrary magnetic held, which in part may
be due to the electrons themselves, into the wave
mechanical current-density formula we arrive at
an expression which in general is not proportional
to, but still linear in the magnetic vector poten-
tial. Thus by means of the ordinary relation
between current and magnetic held a linear
integro-differential equation for the magnetic
vector potential is obtained, which may be taken
as the basis for the calculation of the magnetic
properties of the electron system in question as
far as non-linear effects may be neglected. In the
paper mentioned it was further shown that there
will be no contribution to the gradient current
from transition possibilities corresponding to two
occupied electron states, a full electron band
contributing thus only to the London current.
That this has something to do with supercon-
ductivity is made still more plausible by the fact
that there will also be no contribution to the main

part of the gradient current from transition possi-
bilities corresponding to an occupied and an

empty state belonging to the same value of the
wave number vector but with mutually orthogo-
nal wave functions such as would occur with a
full s band and a partially filled p band in the
approximation starting. from atomic wave func-

tions. In the present paper we shall arrive at
similar but more precise results from the more

general starting point of an arbitrary distribution

'O. Klein, Arkiv for mat. , astr. och fysik, N:o 12, 31A
(1944); referred to in the fo11owing as I.
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of the electrons of a band with respect to the
energy. Thus from the theorem mentioned it
follows that the gradient current due to the
presence of a magnetic field will be determined
from the conditions at the surface of such a band
provided that it is without holes as will be the
case at the absolute zero of temperature. Since
the gradient current will contain the energy
differences between neighboring filled and empty
states as denominators, we see that its value
will be particularly small if the surface of the
Fermi distribution lies at a point where the
energy changes comparatively rapidly with mo-
mentum as at the boundary of a Brillouin zone
or more generally at a place where the density
of states with respect to energy is particularly
small. This now entails that the part of the
specific heat which is due to the electrons and
proportional to the absolute temperature will
also be small, which agrees well with the observa-
tion that such a term is lacking in the specific
heat of the superconductive state.

The considerations just sketched, which would
seem to form a step towards a quantum theory
of the superconductive state, are quite in line
with the view which London himself has taken
towards the problem. Thus his suggestion of a
comparatively large energy difference between
the lowest and the next electron band entailing a
vanishingly small perturbation of the lowest
state is very close to the considerations of this
note if by state we mean the whole full electron
band. For a closer study to which we shall now
proceed it is more practical, however, to regard
the separate wave functions of the single elec-
tron states as is always done in the Hartree-Fock
treatment of the many-electron problem, and
these are by no. means negligibly disturbed by a
magnetic field.

For an infinite medium including the sources
of .the imposed magnetic field with no unper-
turbed current-density of the electrons, the
integro-differential equation mentioned above
will take the form

where po=X represents the average number of
electrons per unit volume. Further we shall use
Fourier expansions of the, functions K,(r), namely

K,(r) =(2pr) '* ~K, (k)e'"'dk (4)

Here dk denotes a volume element in wave
number space. Thus we may replace the integro-
differential Eq. (1) by the following system of
linear equations

k'A (k) +P, g, (k —r) A (k —r) = k'A p(k), (5)

with
4m&'

g.(k) = p, —K,(k).
'ffIC

In the case of free electrons only gp(k) differs
from 0 and is for any spherically symmetrical
distribution of the electrons in k space equal to
a scalar. Therefore we shall expect that for the
more loosely bound electron of a metallic medium
as are in all probability responsible for super-
conductivity the g„rP 0 may be treated as
small quantities and that in a first survey of the
subject they may be neglected altogether. In this
way we obtain the following solution of (5)

Ap(r) the corresponding potential of the field due
to other sources than the electrons considered,
—~ the charge, m the mass of the electron, and c
the vacuum velocity of light. Further p(r) is the
electron number density at the point in 'question
and dr' a volume element at the integration
point r', the integration being carried out over
all space. The nucleus 8(r, r') is, in general, a
tensor but degenerates in important cases ap-
proximately into a scalar, and it follows from
the well-known theorem of Bloch that for a
crystalline medium it may be written in the
following way

0(r, r') = (27r)
': P, K, (r r')e"—" '(2)

where ~ is any whole number vector correspond-
ing to the lattice periodicity. Similarly we may
put

p(r) =Z, p,e'. ',

= —AA p(r) . (1)
Here A(r) denotes the total vector potential at
a point in space with the coordinate vector r,

A (k) = Ap(k).
k'+gp(k)

If now gp(k) takes a finite positive value for
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k=0, we see that for k-values fulfilling the con-
dition

I
k I((Lgp(0)]', A(k) will practically vanish.

This means that there will be a Meissner effect,
a magnetic field being able to penetrate the
matter in question only to a depth of the order
of magnitude 1/I gp(0) ]l. In the special case
where Xp(0) vanishes we have only a London
current and here

4xe'
gp(0) = ~' =

¹

mc'

is the reciprocal length characteristic of
London's suggestion as to the interpretation of
his theory.

Let now Pk(r) be an electronic function cor-
responding to the energy E(k). Then according
to the theorem of Bloch we may write

1
Pp(r) =—Q, u, (k)e"+") ".

V'

ing to those electronic states which with a given
small k-vector combine with states outside the
occupied region. of wave number space. The
thickness l of this layer at a given point ko is
seen to be equal to the projection of k on the
normal to the boundary which will be a surface
of constant energy, and the number of states
within a volume element of this surface layer
corresponding to the element of area dS will be
L2 V/(2pr)']I dS. Further we have with sufficient
accuracy for the energy difference in the de-
nominator of (11)

E(kp+k) —E(kp) =k VE=l I«I,
where V'E is the gradient of R as a function of ko.
Thus the contribution to Xp(0) from the volume
element in question will be

p' (k )kpdS

~'mcp (m/&')
I
«

I

U is a volume of periodicity which is later taken d
'

f
to be infinitely large. Since all the functions Pk(r)
are to be normalized with respect to this volume
the following relation will hold

Xp(0) =
c' f dS(kp) kp

pr'mc' 3 (m/fi')
I

7'E
I

P, Iu, (k)I =1. (10)

where the summation with respect to ko is to be
carried out over all the electrons present in the
band in question, and where (2kp+k)kp means
the tensor formed by multiplication of the two
vectors 2kp+k and kp. On account of (10) the
sum with respect to ~ in the numerator may for
small k values be replaced by unity.

Proceeding now to the calculation of Xp(0)
according to the theorem mentioned above we
need only consider a thin surface layer at the
boundary of the Fermi distribution correspond-

Assuming further such symmetry to hold tha, t
u, (k) is independent of the sign of the whole
number vector 7, then from the considerations
in I, we obtain the following expression for Xp(k)

4pr p'
I
Q, u, *(kp)u, (kp+k)

I

'

I p mc'Vq 2m
I E(kp+k) —E(kp)]

52

I Q, u, *(kp)u, (kp —k) I'—(2kp —k) k
2m

LE(kp —k) —E(kp) ]
PL2

m E'(IkI)
n(IkI) =—.

A. '
I
k

I

(13)

where now we have written k for the wave
number vector at the integration point, the
integration being extended over the whole bound-
ary surface, which by the way need not be simply
connected. Hereby the first term of (11) con-
tributes to that part of the integral where the
vector k forms an acute angle with the direction
of VB while the second term gives rise to the
rest of the integral.

We see immediately that Xp(0) will tend to be
small when the energy gradient is large at the
surface. Thus for instance at a zone boundary of
a perfect crystal the gradient will become in-

finite, so that such a surface will give no con-
tribution at all to Xp(0). To get a clearer idea
of the orders of magnitude involved we shall

apply (12) to the case where E is a function of
the magnitude of the vector k only and does
not depend on its direction. Here the surfaces
of constant energy are spheres, and we have

I

V'EI =E'(Ik ) and dS=k'dQ where dQ is an
element of solid angle. We put
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and get thus

e'~k'~ ) (k)kdQ
&o(0) =

~'mc'n J (k(

Since all the non-diagonal terms of the tensor
vanish at the integration over the sphere and
the diagonal terms become all equal to ~k'~/3
and since

surface of energy 8 is the usual density of states.
Since there are—apart from spin —dk/(2ir)' states
per unit volume in the element dk of wave
number space, we see that

ik=
8~ (VE/

Instead of (12) we may thus write
~k~ /3 (14)

is the number of electrons per unit volume we
obtain with the notation of formula (8)

Xo(0) = i~'/u

For free electrons we see that n = 1 and as soon
as E'(

~

k
~ ) is greater than the corresponding

quantity for free electrons a will be greater than
1 and thus Xo(0) (i~'. Comparing with formula
(6) we verify first of all that for free electrons the
London term is completely cancelled by Ko(0)
and, moreover, we see that for n)1 there will
be a positive go(0) which lies between 0 and z'.

In most practical cases, for instance when the
medium is polycrystalline, the tensor (k) k appear-
ing in the general formula (12) may as in the
case just treated be replaced by its average
scalar k'/3. Then we may still retain the simple
form of Eq. (14) if we introduce the following
generalized definition of n, which contains the
earlier definition (13) as a special case, namely

~
k. V'E

dS
m J [VEf

k2
dS

/VE
f

(16)

N(E) = i (k)dS, (17)

the integral being extended over the whole

and the general conclusions drawn from (15)
will still be valid.

We shall write formula (12) in still another
form which is useful in connection with the
problem of the specific heat of the supercon-
ductive state. For this purpose we introduce a
'quantity i (k) defining the number of states per
unit energy range, unit area of the corresponding
surface of constant energy and unit volume, so
that

Ko(0) = i (k)(k)kdS,
nz'c'

or if we replace the tensor (k)k by its average
scalar —,'k'

See'A'
Xp(0) =N(E) (k')A„

3m'c'

where we have put

(19)

(k')A, —— —
i

k'i (k)d5.
N(E) J

(20)

Since (k')A„will in general not differ much
from the corresponding quantity in a spherically
symmetrical distribution, where it is determined
from the number N by means of (14), this
formula may be useful in judging the relationship
between the lack of a temperature proportional
term in the specific heat —the magnitude of
which is determined by N(E)—and supercon-
ductivity.

It should be pointed out that the results of
the above considerations, although derived for a
perfect lattice, are rather insensitive towards
aperiodic perturbations as long as the electronic
wave functions retain their general resemblance
with the wave functions of free electrons. This is
of importance in connection with the supercon-
ductive properties of alloys or otherwise im-
perfect crystals.

Before ending this note we shall make a general
remark regarding the compatibility of London's
theory of the superconductive state with present
electronic physics. Thus from the theorem of
Bohr mentioned above it follows that any at-
tempt to derive the London theory by means of
considerations based on classical physics must
necessarily fail. On the other hand the fact that
Planck's quantum of action does not appear in
the formulae of London would also seem to
exclude a quantum theoretical explanation of the
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theory and would thus throw doubt on the
validity of the considerations put forward in
this note. Without entering more deeply into
this puzzling problem we shall brieAy show how
the behavior of free electrons in magnetic fields
may throw some light on the paradox in question.
Thus for a spherically symmetrical distribution
of free electrons of energy B it follows from the
formulae developed in I that with the notations
used in the present note

where

and

2
(2mB) '*,

krak/

Now for small )-values, i.e. when B«A'k'/Sm,
f(&) 2, so that go(k) tends towards the London
value ~'. Transforming the equations for the
vector potential back to ordinary space we see
that the nucleus of the space integral which thus
determines the field in terms of the given im-
posed field will be less and less influenced, the
smaller the value of Z, by the parts of the k
space where the condition Z«A'k'/Sm is not
fulfilled. Letting 8 tend towards zero with the

value of ~ .fixed we arrive thus at the London
equation in the limit. Now it is true, as pointed
out in I, that because of the Pauli exclusion
principle we cannot with real electrons let B
diminish without a corresponding decrease of ~,
~' being proportional to the number of electrons
per unit volume. But with particles obeying the
Bose-Einstein statistics the condition mentioned
would be fulfilled when the temperature is
sufFiciently low. We see thus how in an extreme
quantum theoretical case—the de Broglie wave-
length concerned being very large compared to
the dimensions within which the field varies
appreciably —the Planck constant gradually dis-
appears from the formulae, which at the same
time retain their non-classical form. In the other
extreme case, where the energy of the electrons is
very large the Planck constant likewise falls out
in agreement with Bohr's theorem, since f($)~0
when g

—+~. In a Fermi distribution at the
absolute zero of temperature there will always
be electrons with low energies present which
explains the deviation of Landau's formula of the
magnetic susceptibility of an electron gas from
Bohr's theorem. Here, too, we have the remark-
able case of a quantum effect formula without
Planck's constant. '

~ A closer study of the behavior of free electrons in
magnetic and electric fields is under preparation by J.
Lindhard.


