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THE WEISS MOLECULAR FIELD

HE outstanding development in the phenom-
enological description of ferromagnetism is

undoubtedly Weiss' theory of the molecular
field, ' which he first published in 1907. Shortly
before this, Langevin had developed his well-
known theory of paramagnetism, based on the
fundamental idea that the orientation of a
molecular dipole of moment p in a field H is
governed by the Boltzmann distribution law.
With this hypothesis it is easy to show' that the
moment per unit volume is given by the expression

M =NpI. (pH/kT), (1)

where X is the number of molecules per unit
volume, and I.(x) is the so-called Langevin
function

L, (x) =coth x —x '. (2)
'i

The basic idea of the gneiss theory is that the

eRective field acting on an elementary magnet in
a ferromagnetic medium is not to be identified
with the applied field H, but is, rather, to be
taken as H+qM, where M is the intensity of
magnetization, and q is a proportionality factor
independent of temperature. The portion graf is
called the '-'molecular field, " and is clearly a
manifestation of the cooperative phenomenon in

virtue of which the atomic magnets tend to be
parallel.

The Weiss theory has the merit of great
simplicity, for many phenomena can be ex-
plained by taking the argument of the Langevin
function as H+qM instead of IZ. With this
modification, Eq. (1) becomes

M =NpL(iJ, [H+qM j/k T).

If we can neglect saturation effects, and so make
the familiar approximation' I (x) = —',x appro-
priate to small x, then after solving for M, the
relation (3) reduces to
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* This article is based to a considerable extent on the
seventh of a series of eight lectures which the writer de-
livered in Paris in the spring of 1939.Their publication in
the Annales de 1'Institut Henri Poincare had reached the
proof stage at the time of the Nazi invasion. In view of
their uncertain subsequent fate, it has -seemed proper to
publish the present paper, the latter portion of which has
been amplified considerably.' P. Weiss, J. de Phys. 6, 667 (1907l.

2 P. Langevin, J. de Phys. 4, 678 (1905). For a review
of the Langevin theory and properties of the Langevin
function, see, for example, Chap. II of the writer's Electric
and 3IIagnetic Susceptibilities (Oxford University Press,
New York, 1932).
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FIG. 1. The reciprocal of the susceptibility as a function of
temperature above the Curie point.

Here y denotes the susceptibility M/H and

Tg Nij, 'q/3k. ——

Equation (4) obviously fails at T= Tz, and so
the Weiss theory immediately gives us a critical
point or "Curie temperature. " Below the latter
it is no longer allowable to make the approxi-
mation I (x) =-',x. Instead, the moment ceases to
be linear in the field strength; enormous mag-
netization can be obtained without the necessity
of corresponding applied fields, and the behavior
becomes ferromagnetic.

This simple analysis furnishes a remarkably
satisfactory description of the salient experi-
mental facts. We shall allude to what are perhaps
the two most important of the many successes of
the Weiss theory. One of these is the linear rela-
tion which is predicted by Eq. (4) between the
reciprocal of the susceptibility and the tempera-
ture above the Curie point. As shown by Fig. 1,
taken from Stoner's Magnetism and 2IIolecuLar

Structure, the linearity is on the whole quite well
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FK'. 2. Enlargement of Fig. 1 near the Curie point for
nickel, to illustrate the distinction between the para-
magnetic Curie point Tq and the ferromagnetic one Tq',

confirmed experimentally, except for the dis-
continuities at the polymorphic transition points,
whose eEect is particularly pronounced in iron.
Figure 1 is drawn to too small a scale to show the
fact, illustrated schematically in Fig. 2, that as
the temperature is lowered to the vicinity of the
Curie point, the experimental curves begin to
deviate more from linearity. The intercept of the
axis 1/x=0 obviously corresponds to infinite
susceptibility or in other words to ferromagnetism.
Usually it occurs at a lower temperature T&' than
the value T& which is obtained by extrapolation
from the linear behavior at higher temperatures.
The quantities T& and T&' are sometimes ca11ed

the paramagnetic and ferromagnetic Curie points.
The distinction between them is relatively small,
representing so-to speak a second-order effect.
For instance in nickel, the difference Tg —T~ is
about 20', whereas Tc' itself is 630'K.

The other success of the Weiss theory which we
should like to emphasize is its prediction con-
cerning the variation of saturation magnetization
with temperature below the Curie point. If
T & Tg, Eq. (3) can be solved for M in terms of T
only numerically. The solution need, however, be
made only once and for all, if we employ "reduced
units, "

i =M/Np, r=T/Tg,

wherein the magnetization is measured relative
to the saturation intensity RIM, achieved at the
absolute zero, and the temperature is expressed

as a multiple of the Curie point. Then, according
to the Weiss theory, we have for all substances,
a relation of the form i =f(r), where f is a "uni-
versal function" involving no undetermined con-
stants. The graph of this function is shown, in the
curve of Fig. 3 labelled 5= ~. It is seen that the
general trend of the experimental points does
indeed follow the classical curve, although they
do agree better with the curve S=—,

' yielded by
quantum-mechanical refinement, which we will
discuss later. The universality of the t rg—raph
yielded by the classical theory of Weiss is usually
called the law of corresponding states. The
analogy to the law of corresponding states in van
der Waals equation of state in thermodynamics
is obvious; in fact, we may well apply to the
Weiss theory the words which Harvey Davis so
aptly uses to describe that of van der Waals:
namely, that it is "qualitatively right but
quantitatively wrong,

" and based "half on
theory, and half on genius at empirical guessing. "
The empirical part of the Weiss theory is, of
course, the ad hoc introduction of the molecular
field.

In deriving the universal curve shown in Fig. 3,
one approximation is necessary, and that is to
neglect the applied field II in comparison with the
Weiss field q3f in the argument of the Langevin
function. The reader may perhaps object that the
full intensity of magnetization is never obtained
without some applied field, so that the approxi-
mation II=0 is not really allowable. However,
the values of the necessary fields are always small
compared with the resulting induction, and below
the Curie point, the intensity of magnetization
appearing in Eq. (3) or graphed in Fig. 3 is to be
construed as relating to what is called the
saturation intensity. It is not the same as the
true saturation Xp which would be obtained
were a11 the elementary dipoles perfectly parallel,
and which is reached only at the absolute zero.
According to the Weiss model, a ferromagnetic
solid is to be thought of as composed of a large
number of microcrystals, each of which is spon-
taneously magnetized to the extent given by (3)
with II=0. The directions of magnetization of
the microcrystals do not all coincide, but instead
are random in the absence of an external applied
field. A comparatively small field, of the order 10'
to 10' gauss„however, will suffice to align the
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directions of magnetization of the microcrystals,
and Eq. (3), with 11=0, gives the intensity of
magnetization when this state is achieved. T~his

transition from random to parallel alignment of
the elementary domains gives rise to phenomena
such as remanence, hysteresis, the Barkhausen
eR'ect, and the like. They are not described by the
simple Weiss theory, which does not contain such
quantum-mechanical complications as spin-orbit
coupling, and so has no mechanism to inhibit the
microcrystals from having their directions of
spontaneous magnetization perfectly parallel
even in infinitesimal fields, instead of fields of the
order 10' gauss. The transition phenomena as-
sociated with the lining-up of the magnetizations
of the various micro-crystals belongs to a subject
usually referred to as "domain theory, " which
will not be treated in this article. ' On the whole
this theory is at present much more qualitative
than quantitative in nature, although one must
not overlook some important Russian work, 4

which has more quantitative features than does
the traditional Bloch model. '

The great mystery of the Weiss theory was
how to explain the large molecular fields. They
were supposed to be a manifestation of powerful
coupling between elementary magnets. However,

~ at the time, the only known interaction between
them was the classical dipole-dipole coupling,
whose potential is

(6)

Equation (6) embodies the effect which one
demonstrates experimentally when one places a
number of compass needles close together. How-
ever, the resulting interaction is far too weak to
yield the coupling required by the Weiss theory.
It gives a maximum value 4x for the constant q
in the molecular field qM, whereas the successful
application of the Weiss theory requires that q be
of the order 10'. Furthermore, with the classical
dipolar mechanism (6), the value of g depends
strongly on how the specimen is cut, and on the
direction of the field relative to the crystal-

3 For a discussion of the domain theory, see the paper by
W. F. Brown, Jr., Rev. Mod. Phys. 1V, 15 (1945).

- L. Landau and E. Lifshitz, Physik, Zeits. Sowjetunion
8.2, 153 (1935).

s F. Bloch, Zeits. f. Physik 'F4, 295 (1932).
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FIG. 3. Saturation intensity of magnetization as a func-
tion of temperature, in reduced units. The abscissa is the
ratio of the temperature to the Curie temperature, and the
ordinate is the ratio of'the saturation intensity of mag-
netization to the value of this intensity at the absolute zero.
The curve S= ~ is for the classical theory of gneiss. The
other curves are based on the Brillouin rather than
Langevin function, and are the corresponding quantum-
theory versions appropriate to a spin quantum number S.

lographic axes. The reason that this is so is that
the minimum value of the potential energy (6) is
achieved with parallel alignment p; =p; when the
directions of p; and r;; coincide, whereas the
stable configuration is the anti-parallel one

. p;=.—p; when p; is perpendicular to r;;. Thus
ferromagnetic anisotropy, according to the clas-
sical picture if taken literally, should be, so to
speak, a first-order eHect. Actually (except for the
case of pyrrhotite) it is a second-order one, in the
sense that the saturation intensities of mag-
netization are approximately the same in all
directions, although the fields required to produce
saturation may be different. As by Eq. (5) the
Curie temperature is proportional to the constant
q of the molecular field, another way of ex-
pressing these deficiencies of the classical dipolar
model is to say that the latter would give Curie
points, comparable with the very low tempera-,
tures achieved by. adiabatic demagnetization,
rather than of the order 10' 'K. Furthermore the
Curie temperature would depend on how the
specimen was cut and on the orientation of the
applied field relative to the crystallographic axes.
Cryogenic experiments on certain paramagnetic



J. H. VAN VLECK.

salts do indeed reveal critical temperatures
measured in hundredths or thousanths of a
degree which are attributable to dipole-dipole
interactions, but this is not our subject. We may
also remark, parenthetically, that in the electric
rather than magnetic case, the dipolar forces can
be much larger, essentially because molecular
electric dipole moments are much larger than
magnetic when expressed in terms of Gaussian
units. (E.g. , one Debye unit of electric polarity
is10 "whereasone Bohr magneton is.92X10 ")
In consequence, it is possible for Rochelle salt,
and a few other substances, to show the electric
analog of ferromagnetism, just from dipolar
forces alone, and in such cases there is tremendous
anisotropy, as we should expect.

to show that just enough orbital angular mo-
mentum will be left to make the gyromagnetic
ratio about 0.1 unit lower than the spin only
value 2.0.

One thing which quantum theory has obviously
done is to introduce a discrete series of orienta-
tions rather than a continuous distribution as in
the classical Langeviri theory. When this modifi-
cation is made, Eq. (3) is'replaced by

f 2SP(H+qM) y
M=2JVSPBs!

az' )

where BB(y) is the so-called Brillouin function

ADVENT OF QUANTUM MECHANICS

The discovery of the true quantum mechanics
in 1926 was a great help in understanding ferro-
magnetic phenomena. Iri the first place, it was
accompanied by the Uhlenbeck-Goudsmit con-
cept of electron spin. The latter has a ratio of
magnetic moment to angular momentum equal to
e/mc instead of the classical e/2mc. This fact
enables us to understand why it is that experi-
ments on magnetization by rotation and on
rotation by magnetization made by Barnett and
otherss always (again, excepting pyrrhotite) yield
a gyromagnetic ratio almost twice the classical
value. This behavior is to be expected if most of
the orbital angular momentum is largely de-
stroyed by interatomic forces in the solid state,
leaving only the spin. The quantum theory of
ferromagnetism is usually developed on the basis
that the orbital contributions to the magnetic
moment are negligible. Actually, they cannot be
forgotten entirely, as evidenced by the fact that
gyromagnetic ratios of ferromagnetics are usually
nearer 1.9 than 2.0. Although quantum me-
chanics enables us to understand qualitatively
that the orbital angular momentum is largely
suppressed, remarkably little has been done, on

' the whole, in the way of quantitative calculations'

6 For the most recent gyromagnetic work, and references
to earlier literature, see S.J. Barnett, Proc. Am. Acad. -75,
109 (1944), 73,'401 (1940); Rev. Mod. Phys. 7, 129 (1935). .

~ For discussion of the quantum-mechanical mechanism
for the quenching of orbital angular momentum in
ferromagnetic solids, which is different from that in
paramagnetic salts, see Sommerfeld and Bethe, Handbuch

2S+1 (2sy+y) 1 ( y )
2S J 2S «2Si

der Physik, second edition, Vol. 24/2, p. 613 (Heisenberg
model) and H. Brooks, Phys. Rev. 58, 909 (1940). (Stoner
model). Brooks Ands that the orbital residues are of the
order of magnitude to be expected theoretically.

s W. Heisenberg, Zeits. f. Physiir 49 619 (1928l.

Here 5 is the spin quantum number of the atom,
and p is the Bohr magneton he/4mmc; we have
assumed complete quenching of the orbital angu-
lar momentum, so that the total effective angular
momentum of the atom is specified by S, and the
g-factor is 2. When the Brillouin function is used,
the law of corresponding states of course only
applies to atoms with the same spin S. It has
already been mentioned that in I ig. 3, better
agreement with experiment is achieved by using
a low value of S than the classical S= ~. This
behavior is reasonable. The incomplete d shell in
nickel, for instance, probably has the form d',
with only one free spin, so that the most relevant
curve should be that for S=—',.

The greatest service of quantum mechanics,
however, has been in the removal of the mystery
of the large Weiss molecular fields. The puzzle
was solved by Heisenbergs in 1928, who showed
that the explanation is provided by the exchange
forces characteristic of quantum mechanics.
These forces cannot be described in simple intui-
tive language. In a certain sense these forces are
purely orbital in character as they arise from the
overlapping of orbital wave functions and are
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associated with the dependence of the energy on
the type of orbital symmetry. However, because
of the constraints imposed by the Pauli exclusion
principle, there is a correlation between orbital
symmetry and spin alignment, so that there is
very large apparent spin-spin coupling, despite
the fact that in a certain sense the exchange
forces have nothing to do with the magnetic
moment of the electron. (In chemical language,
the spin alignment may be regarded as an "indi-
cator" of the orbital symmetry). Dirac' showed
that, apart from a constant term of no interest to
us, the effective coupling between spins due to
the exchange effect is equivalent to a potential
energy of the form

U;;= —2J,; S,'S;,
where J,; is the exchange integral connecting
atoms i and j, and S; is the spin angular mo-
mentum vector of atom i, measured in multiples
of the quantum unit k/2s. .

Two facts are immediately to be noted about
Eq. (8). One is that exchange integrals can often
be fairly large, and so it is no longer dif6cult to
understand the large amount of interaction be-
tween the elementary magnets envisaged by the
Weiss held. The other is that the potential is
isotropic, or in other words, does not depend on
how the spin magnets S; and S; are aligned rela-
tive to the radius vector r;, joining atomsi and j,
whereas this alignment was involved in the clas-
sical coupling (6) through the term (p,"r,;)(y; r,;).
Hence in the erst approximation ferromagnetic
media should be isotropic, in agreement with the
experiment. How then does one explain the fact
that actually there is always some anisotropy,
though it is not the main effect? One immediately
recalls that besides (8), there is superposed the
much smaller classical electromagnetic coupling
energy (6), which will give some anisotropy. This
is true, but tile resulting anisotropy is not suffi-

ciently great, and the proper explanation of
anisotropy is probably to be found in spin-orbit
coupling, wherein the incomplete quenching of
the orbital angular momentum interferes with
the freedom of the spin. We shall not pursue this

' P. A. M. Dirac, The Principles of Quantum Mechanics
(Oxford University Press, New York, 1935) second edition,
Chap. X; for the application to ferromagnetism see Chap.
XII of the writer's Electric and Magnetic Susceptibilities.

subject further, although there is an appreciable
literature on the quantum theory of ferromagnetic
anisotropy. "

J;~ =J fP„(1)gi(2)XQ;(1)P;(2)dsgds2. (10)

Here K denotes the Hamiltonian operator, and p; is the
wave function for state f Equ. ation (9) is a well-known
result of the elementary Heitler-London theory of chemical
bonding. The upper and lower signs correspond respectively
to singlet and triplet states. In writing (9), it has been
assumed that the wave functions are orthogonal. Actually
they are not because they relate to diferent atomic centers,
but the resulting error is probably unimportant for our
purposes. ~'

Now by the law of cosines we have

2s"s =s '—s' —s's+2

where s,+,. is the vector sum of s; and s;. In quantum
mechanics, sp, sp, and s;+22 are all diagonal matrices in the
two-electron problem, such that

sP =s =s(s+1)= -'„s;+,' ——s;+,(s;;+1)
where the singlet and triplet have respectively s;+, =0 and

s;+, = i. Hence the characteristic values of the expression

———2s s'1
2 s

are &1, the upper sign applying to the singlet.
We next note that the exchange energy, whose character-

istic values are given by the second member of (9), and the
expression (11) are simultaneously diagonal, differing from
each other merely by a factor J;;.Since matrices equal in

one system of representation are always equal, it follows
that the exchange effects are equivalent to multiplying
(11) by J;;, and so (8) is proved. In writing (8) we have
omitted the term —-', J;; corresponding to the 6rst member
of (11) since this term does not depend on spin alignment,
and is hence of no interest in the problem of magnetism.
It is to be emphasized that because of the matrix identity,
this proof, though starting with a two-electron system, is
general, and applies regardless of how many electrons may
be involved in the characteristic value problem of the whole
solid body.

In this derivation of (8) we have supposed that there is
only one valence electron per atom, so that s may be
identified with S. The extension to the case of n electrons
per atom is, however, immediate. We have merely to sum
over the various electrons of each atom, noting that the

"For references see J.H. Van Vleck, Phys. Rev. &2, 1178
(1938), also Brooks, reference 7

"Cf.J. H. Van Vleck, Phys. Rev. 49, 232 (1936).

Derivation of Eq. (8)

It is quite es,sy to derive Eq. (8) if one accepts the fact
that for a two-electron system, the permitted values of the
energy are

TV=X;)+Js;, (9)

where X;; is the so-called Coulomb integral, which we need
not write down, and J;; is the exchange integral
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total spin Si of atom i ls the vector sum of the spins
8;, s;+1, 8;+ of the various constituent electrons. Thus
we have

JijSi 'Sj+~i+1s jSi+l'Sj+ ' ' '+ Ji+n, jsi+n'Sj+1
+~i, j+1Si 'Sj+1+ ' ' +~i+n, , j+nSi+n'Sj+n
= J;;(s;+s;+t+ +s;+.) (s;+ +s;+.)
= JijSi S;. (12)

In (12), we have assumed that all electrons not in closed
shells on a given atom have the same exchange integrals,
so that Jij= J;+I, j—— - ~ =J;+,j+, Our simple form of the
theory thus does not take account of the fact that, espe-
cially in a crystalline 6eld, the d orbits are of diverse types,
but without this simplification the calculation would be
completely intractable. Actually, only s shells have the
property that the exchange integrals are the same for all
constituent electrons, and an incomplete s shell can have
only one electron. (Complete shells do not contribute to
(8) since their total spin is zero. ) Hence the generalization
to incomplete shells with n& I may seem unwarranted and
deceptive. However, we can, for rough qualitative purposes,
consider several electrons to be effectively in a common s
state if their orbital angular momenta have been quenched
by the interatomic forces and if they all overlap neighboring
atoms to about the same extent.

CALCULATION OF THE SUSCEPTIBILITY WITH THE
HEISENBERG MODEL

The total exchange energy is obtained by
summing over all pairs of atoms in the crystal. We
shall make the usual assumption that the ex-
change integral is negligible except between
adjacent atoms and has the same value J for all
neighboring pairs. Then the total interaction
energy is

the same resultant spin for the whole crystal (or
microcrystal) have the same energy. Then the
constant of proportionality q of the gneiss field
turns out to have the value

tt =sJ/2'', (14)

in terms of the exchange integral (10). Here s is
the number of nearest atoms possessed by any
given atom.

An extremely simple method of getting this
result has been given by Stoner, " and we shall
now present essentially his procedure. Heisen-
berg's original calculations' by means of group
theory, or the corresponding computations by
means of the vector modeig are probably more
rigorous, but are much more intricate, and in any
case (14) is only an approximation.

Stoner's assumption is that in considering the
action of the other spins of the crystal on a given
spin, the instantaneous values of the other spins
may be replaced by their averages with respect
to the time, which will be denoted by bars. Since
all the atoms of a crystal are considered equiva-
lent, these averages will be independent of the
atom. So the potential acting on a given atom is
taken as

I i 2~ Zneighbors of i Si ' Sj
2sJ(Sz,8zj+Sy,8yz+ Sz '8zj),

If the intensity of magnetization is directed along
the s axis, then

I tote i = 2+ gne ighborsSi ' Sj. (13) 8z; ——8y; ——0, 8z, M/2' jP, ——

We must now proceed to examine the magnetic
properties which follow from the coupling (13).
We have already intimated that (13) gives a large
force between elementary magnets, and so is in
at least qualitative agreement with the Weiss
molecular held. We must, however, go a step
further, and see if the quantitative formulas for
magnetic properties resulting from (13) are
reasonably close to those of the Weiss theory.
The problem of calculating the magnetic sus-
ceptibility associated with (13) is far from an
easy one. In fact, it can be solved only under
limiting conditions, or else with simplifying ap-
proximations, usually questionable. Heisenberg'
showed that the formulas of the Weiss theory are
a consequence of the exchange coupling (13) if
one rather arbitrarily assumes that all states of

and hence
U, = —(sJ3II/IMP) Sz,.

If we add V, to the potential —2PHSz, due to the
applied magnetic 6eld, we see that the total
energy of orientation of the spin magnet is the
same as though the applied held II were replaced
by H+t13E, where tl has the value (14). Since we
are dealing with a quantum-mechanical rather
than classical theory, we must; of course, employ
formulas based on the Brillouin rather than
Langevin function, or in other words use (7)
rather than (2). If in (7) we use the approxi-
mation Bs(y) =y(S+1)/3S appropriate to weak
fields, then (7) takes the form 3II= CH/(T —Tc)

'~ E. C. Stoner, Magnetism and 3Eatter (Methuen
Company, London, 1934), p. 358, Proc. Leeds Phil. Soc. 2,
56 (1930); Phil. Mag. 10, 43 (1930).
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where the Curie temperature Tc and Curie con-
stant C have the values

T c=2JsS(S+1)/3k, C=4NP'S(S+1)/3k. (15)

Stoner's substitution of average for instan-
taneous values, or Heisenberg's ultimately equiv-
alent assumption that all states of the same total
crystalline spin have the same value, obviously
represents only an approximation, the exact
nature of which is so obscure that the theory can

, scarcely be said to rest on a rigorous or logically
convincing basis until more accurate methods of
calculation are found. As has been stressed by
Neel, " the instantaneous molecular field acting
on a given atom is by no means the same as the
average, and so the gneiss theory is in a certain
sense equivalent to supposing that all Auctuations
in the molecular field can be neglected. Neel
shows, for instance, that the fluctuations in the
molecular field are responsible for the differences
between the paramagnetic and ferromagnetic
Curie points.

It would obviously be desirable to find a more
accurate method of calculation with the Heisen-
berg model, especially a systematic scheme of
successive approximations which will enable one
to come closer and closer to the true result.
Heisenberg' himself made an interesting attempt
in this direction. He made a presumably more
refined calculation on the assumption that the
energy levels for a given total crystalline spin
have a Gaussian distribution, whose mean square
fluctuation can be computed from group theory,
or, alternatively, by means of the vector model.
Unfortunately the results, whose quantitative
formulas we shall omit, are, if anything, less
satisfying than those of the first approximation.
They lead to far too much curvature in the
graphs of 1/x against T above the Curie point,
and to excessively drastic conditions for ferro-
magnetism, namely that the number of neighbors
be eight or greater. Actually, ferromagnetic
alloys are kriown in which the magnetic ions are
arranged on a simple cubic lattice, where a=6.
On the other hand, the first approximation (15)
gives too lenient conditions, allowing even a
linear chain to be ferromagnetic, whereas it can

c 6 c
&& T—~+ + + +

T T2 T3
(16)

Here the first and second approximations, corre-
sponding respectively to (14—15) and to the
Gaussian assumption are obtained by terminating
the infinite series with the terms —6 and c/T
respectively. Opechowski" has computed for the
case 5= —,

' of one electron per atom the values of
the further coefficients b and c respectively,
although the determination of the fourth-order
moment necessary to evaluate c is quite difficult.
If the substance has a Curie point, i.e. , a temper-
ature at which the susceptibility becomes infinite,
the right side of (16) must have a zero for a real

be shown rigorously by other methods that such
a chain should be only paramagnetic. "It is thus
of interest to carry out third and fourth approxi-
mations, and see whether they will lead to reason-
able results, intermediate between those of the
first and second. The higher approximations
should be of particular interest, because they
involve other details of the crystalline structure
than merely the neighbor number z, which is all
that enters not only in the first approximation
(14—15) but also in the second or Gaussian one.
For instance, it is known from another method
of calculation, vis. the Bloch spin-wave theory to
be discussed later, that the simple cubic grating
should be ferromagnetic, whereas the hexagonal
plane grating should not, although both involve
six nearest neighbors. Clearly the same result
should also ultimately follow from a series devel-
opment which is a continuation of Heisenberg' s
procedure. Indeed, in the higher approxima-
tions, there appear terms which represent group-
ings of parallel spins in closed chains, the
possibilities of which are not enumerable in
terms merely of the neighbor numb'er.

Most instructive calculations of the third and
fourth approximations . have been made by
Opechowski. " He shows that, in principle, the
reciprocal of the susceptibility above the Curie
point should be expressible in the form

3k

x 4''S(S+1)

"M. L, Neel, .%un, de physique 18, 3 (1932), 8, 237
(1937),

"H. Bethe, Zeits. f. Physik 71, 205 (1931)."W. Opechowski, Physics 4, 181 (1937).
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positive value of T. Opechowski finds that this
property is indeed restored to the simple cubic
lattice if the development is terminated at b/T'
rather than a/T. When, however, he pushes the
calculations a step further, and computes c,
absurd results are obtained. Not even a face-
centered lattice, where s = 12, remains ferromag-
netic. Thus for practical purposes, attempts to
compute the susceptibility by means of an infinite
series such as (16) must be regarded as fruitless,
for the convergence is so bad that the method is
not really usable.

Other methods of calculation than the series
one are obviously desirable. One step in this
direction has been made by Fay" for a simple
cubic lattice. He splits the entire crystal into
elementary cubes each containing eight atoms,
and within each cube the exchange interactions
are taken into account rigorously by means of
formulas which Serber" has developed for the
characteristic values of an eight-electron system.
The coupling between electrons of different cubes
is handled by methods equivalent to the first
approximation of Heisenberg's theory. Thus the
secular problem connected with (13) can be
solved "half-rigorously, " i.e. , taking into account
the fluctuations in half of the interactions, but
employing essentially mean values for the re-
mainder, since any given atom has three neighbors
within its own cube, and three in other cubes.
Fay finds it makes comparatively little difference
whether the problem is treated "half-rigorously, "
or whether the entire problem is handled by the
first approximation, where only the average fields
are used throughout. Namely, the formula for
the Curie point becomes Tc = 2.55J/k instead of
Tq=3J/k, and the (1/y) —T curves above the
Curie point are nearly straight lines. Thus
incorporation. of half the interactions rigorously
does not lead to anything like as much deviation
from the simple formulas of the original Weiss
theory as Heisenberg's Gaussian calculation
would suggest.

Another way in which the Heisenberg model
can be simplified is by changing the interaction
potential. This is done in the so-called Ising
model, which uses a coupling energy of the form
—2Js*;s~; rather than —2Js.; s; as in (13). We

"C.H. Fay, Proc. Nat. Acad. Sci. 21, 537 (1935).
'~ R. Serber, J. Chem. Phys. 2, 697 (1934).

use the notation s rather than S as it is assumed
that there is only one free spin per atom. In a
certain sense the Ising model is a purely mathe-
matical fiction, as it neglects the interactions
—2J(s*„s*,+s~;sy;) between the components of
spin perpendicular to the direction of the mag-
netic field, which are often important physically.
There is a considerable literature on the calcula-
tions of crystalline characteristic values and
Curie points with the Ising model. " Such
treatments have the great merit of being clear-
cut and rigorous for the assumed problem. How-
ever, they have been confined primarily to one- or
two-dimensional rather than three-dimensional
lattices. Even were rigorous calculation with the
Ising model possible for the actual lattice pattern,
the results should not be identified too closely
with the actual magnetic behavior of the material
simply because of the inadequacy and arbi-
trariness of the model. Nevertheless, the Ising
model is undoubtedly useful as a stepping-stone
to further mathematical insight into the charac-
teristic value problems associated with a mag-
netic crystal.

THE BETHE-PEIERLS-VfKISS METHOD

Another and quite different procedure has
recently been developed by Peter Weiss, " a
young American not to be confused with the
French physicist Pierre Weiss, the father of the
molecular field, who died in 1940. The essential
feature of this new calculation, not yet published
because of war delays, is that it adapts to the case
of ferromagnetism a method which had previ-
ously been devised by Bethe and Peierls" in the
order-disorder problem encountered in the struc-
ture of alloys. The method has both power and
generality. Unlike Fay's treatment, for instance,
it is not confined to the simple cubic lattice.
Peierls" himself showed how it could be adapted
to magnetic susceptibilities by a simple change of
notation in the order-disorder problem, provided
one employed the Ising rather than Heisenberg

"E.Ising, Zeits. f. Physik 31, 253 (1935}.For the most
recent work with the Ising model and references to the
literature see the article by Wannier, Rev. Mod. Phys. IV,
50 (1945)."P.R. Weiss and J. H. Van Vleck, Phys. Rev. 55, 673
(1939) (abstract only}; P. R. Weiss, unpublished doctor' s
thesis, Harvard University, 1941.

'OH. A. Bethe, Proc. Roy. Soc. 150A, 552 (1935); R.
Peierls, Proc. Camb. Phil. Soc. 32, 477 (1936).
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model. gneiss, on the other hand, uses the true
Heisenberg model, and with the latter, a calcula-
tion of the Bethe-Peierls type is both more
difficult and more interesting than for the Ising
potential, since it involves the quantum me-
chanics of angular momentum vectors, instead of
classical scalar quantities.

The central idea of the procedure of gneiss is
to consider a given atom i and its s nearest
neighborsi+1 i+z as a structural unit U'. The
interactions involving atom i are thus taken into
account rigorously. The atoms i+1, i+2,
i+z form a shell around i. Their coupling with
each other and with the central atom i is treated.
rigorously, inasmuch as a quantum-mechanical
system of z+1 spins is a soluble problem if z is
not too large. It is, however, necessary to assume
that the spin quantum number of each atom is —,',
because the problem becomes too complicated
with more than one magnetic electron per atom.
The coupling of atoms i+1, , i+z with atoms
exterior to the shell U is included by means of an
approximation. It is assumed that the influence
of the outside atoms can be represented by the
addition of a potential energy term in the par-
tition function for the system of z+1 atoms. The
magnitude of this term is determined by the
requirement that the mean magnetic moment of
the central atom i be the same as that of any
atom i+1, , i+z in the shell surrounding i,
since in the crystal all atoms are strictly equiva-
lent on the average. Insertion of the extra term
to allow for coupling of atoms exterior to U is
equivalent to supposing that the outer atoms
i+1, , i+z of U are subject not merely to the
applied field II, but rather to the sum H+II. of
H and an effective field H, . On the other hand,
the central atom i is subject only to H, since--the
interaction with its neighbors has been taken into
account rigorously, and it is for the latter reason
that the Bethe-Peierls attack is such a good.
approximation. The effective field H, is consider-
ably more general than the molecular field qM
used in the classical gneiss theory, and is not to
be confused with the latter. In the first place H.
need not be linear in M, although this is the case
above the Curie point, and even when II, is a
linear function II,=o.M of M, the coefficient of
proportionality 0. is not assumed to be inde-
pend. ent of the temperature T. Instead a is a

where the summation is over the various energy states of
our system of s+1 atoms, which are given by (17). It is to
be emphasized that there are many states W(S') belonging
to a given value of S', the number being determined by the
so-called "branching rule" for compounding angular mo-
mentum vectors. For the simple'and body-centered lattices,
W(S') is independent of S' and may be taken to have the
value zero, since for these arrangements none of the atoms
i+1, ', i+z are nearest neighbors to each other. This
statement is not, however, true of the face-centered cubic,
or plane hexagonal lattices. In the face-centered case, the
exact characteristic values of TV(S') are too diAicult to
determine exactly, and so Weiss is obliged to make certain
simplifying approximations, which, however, still take
account, at least qualitatively, of the spreading of the
energy levels R'(S') belonging to the same S'. For the plane
hexagonal grating, the determination of W(S') is equivalent
to calculation of the benzene ring by means of the Heitler-
London model, a problem already solved by Serber" and
others. The requirement that atoms i and i+% have the
same mean moment implies that

a log Z/aH = (1/s) (a log Z/a ')H. (19)

The intensity of magnetization is the same as PAT times

complicated function of T determined by the
requirement that atoms i and i+k (1—k —z)
have the same mean moment. It is to be empha-
sized that it is not necessary to resort to series
development of 0, , or other functions, in de-
scending powers of T, as in (16), and so the
Bethe-Peierls scheme gives closed expressions,
instead of arbitrarily terminating a series at a
certain point.

We now present a brief outline of the mathematical
details of the model. Since atom ~ interacts equally with its
various neighbors i+1, ~, i+z, the resultant spin S' of
atoms i+1, - ~ ~, i+z will be a "good quantum number, "
which can assume the values 0, 1, - z. The total spin of
the entire system U will be S&, where SU =S'&2' unless
S' =0, in which case Sir = —,'. Let W(S') be the energy of the
system i+1, , i+z in the absence of i and of external
fields. Then when the coupling with i, and the fields H, H,
explained above are introduced, a quantum-mechanical
analysis, similar in many ways to that used in the Paschen-
Back effect, shows that the energy levels are

WU = W($')+2MUpH'+ ', J+pp'(H' H—)'—
+2Mv JP(H' H)+(S'—+ ig)'S']» (17)

with H'=H, +H. When M& has any of the values —S',
—S'+ j. , ~, S' there are states corresponding to both sign
choices in (17), but when MU= —S'—1, S'+1 only the
branch of the radical should be used for which the coeffi-
cient of J i's negative. Here MU is the magnetic quantum
number associated with the projection of SU along H. The
partition function is
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the expression (19), and in this fashion, the susceptibility
can be found.

Weiss has considered the cubic, body-centered
and face-centered cubic lattices, also the plane
hexagonal grating, and the linear chain. He finds
that the various types of cubic lattices shou1d all
be ferromagrietic below a certain temperature, or,
in other words, possess Curie points. On the other
hand, he finds that the linear chain should not
be ferromagnetic, which is as it should be, for this
particular arrangement can be treated rigorously,
as has been done by Bethe, "who proved it should
be only paramagnetic. It is particularly gratifying
that Weiss' analysis yields no Curie point for the
plane hexagonal grating, in contrast to the simple
cubic lattice, which possesses the same number
s =6 of neighbors. It is known from other
methods, vis. Bloch's spin waves, to be discussed
later, that the simple cubic grating should be
ferromagnetic, and the plane hexagonal not. The
different results obtained by Weiss in these two
cases show that his method has considerable
sensitivity, for difference between the two ar-
rangements begins only with the term b/T'
in (16).

It is, of course, possible to expand the results
obtained by Weiss as a series in descending
powers of 1/T, although, as already emphasized,
the great advantage of the Bethe-Peierls method
is that it yields closed forms rather than series.
However, the expansion is useful in order to let
us see how far the model agrees with the first few
terms of the exact development (16), which have
been evaluated by Opechowski. Weiss finds

agreement inclusive of b/T' in (16). The Bethe-
Peierls model used by Weiss represents a far
better approximation than Heisenberg's Gaussian
assumptioii, but at the same time yields results
not too far out of line with those of the simple
molecular field corresponding to the first ap-
proximation of Heisenberg.

Weiss finds that the Curie points for the
simple and body-centered lattices are respectively
1.85J/k, 2.9J/k. The values furnished by the
first approximation (15) of the Heisenberg theory
are respectively 3J/k and 4J/k. With the
Gaussian model, "the simple cubic lattice has no
Curie point at all, while the body-centered one
has T,= 2J/k. It is, of course, to be expected that

the results obtained by Weiss should be inter-
mediate between the first and second approxima-
tions of the Heisenberg theory, for the Gaussian
distribution overemphasizes the effect of the
spread of energy values for a given total crystal-
line spin, whereas the first approximation repre-
sented by (15) neglects the spreading entirely.

The graphs obtained by Weiss with the Bethe-
Peierls model for the reciprocal of the suscepti-
bility as a function of the temperature above the
Curie point are remarkably cIose to straight lines,
despite the fact that the series (16) converges so
slowly that it would be entirely unwarranted to
stop with the' second term —A. The curvature is
greatest near the Curie point, and so one can
understand, at least qualitatively, why the
paramagnetic and ferromagnetic Curie points are
different.

gneiss has not yet extended his calculations
with the Bethe-Peierls method to the ferromag-
netic region below the Curie point, where the'

computations become considerably more diffi-

cult. It is not, however, to be expected that this
method will be a particularly accurate one at low

temperatures, since there the elementary magnets
are nearly parallel, and long distance order, as
well as waves of propagation not envisaged in the
Bethe-Peierls model, become important.

THE BLOCH SPIN WAVES

Fortunately, another method, particularly
adapted to the low temperature region, was de-
veloped some time ago by Bloch."The starting
point of his attack is Slater's's observation that
the characteristic values of the Heisenberg ex-
change coupling can be rigorously determined if
1:he spins of all but one atom are parallel (i.e. ,

X—1 atoms have Mi, = + si, and one has
3A;= ——,'). The solutions can be interpreted as
representing waves of disturbance in which the
reversed spin is propagated through the crystal
with various 'possible wave-lengths. The funda-
mental hypothesis of the Bloch calculation is that
if there are k reversed spins, the solution can be
obtained by additive superposition of k solutions
in which a single spin is reversed. This will be an
allowable approximation only if k is small com-

"F.Bloch, Zeits. f. Physik 61, 206 (1930); Kramers,
Leiden Comm. Supplement 83; Moiler, Zeits. f. Physik 82,
559 (1933);W. Opechowski, Physica 4, 715 (1937)."J.C. Slater, Phys. Rev. 35, 509 (1930).
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pared with N, so that .the probability of two or
more reversed spins being at the same point of the
lattice is small. (When reversed spins coincide,
the approximation is meaningless, as one cannot
turn. a northward spin southward more than
once. ) Hence the Bloch method of calculation
with the Heisenberg model is only satisfactory in
the immediate neighborhood of complete satura-
tion M=&/, and consequently only at tempera-
tures very low compared to the Curie point.
Bloch has shown that the plane hexagonal
grating should never become ferromagnetic, even
at the absolute zero, unlike the various cubic
lattices. He shows that for the latter the formula
giving the variation of magnetization with tem-
perature is, for small kTjJ,

M=NPt 1—A(kT/J)l7 (20)

where A is a numerical constant, which has the
value 0.1174 for the simple cubic lattice. "
Equation (20) leads to more rapid deviations of
the moment from the limiting value XP when the
temperature is raised above zero than does the
conventional first approximation (7), (14) which
is the quantum version of the molecular field of
Weiss. The variation of M with temperature
predicted by (20) has been confirmed by ex-
periment '4

INSUFFICIENCY OF THE HEITLER-LONDON
MODEL—STONER'S METHOD

It is to be emphasized that all the calculations
with the Heisenberg theory which we have dis-
cussed in the preceding pages are based on the
Heitler-London model. The latter represents a
completely non-polar approximation or, in other
words, it supposes that the electrons responsible
for ferromagnetism always remain on the same
atom and do not participate in electrical con-
duction. This is an idealization never completely
realized in fact. Another limiting case is furnished
by the model of Sommerfeld, Wigner, Seitz, and
others analagous to that of Hund and Mulliken
in the theory of valence. " In this model of
"itinerant electrons, " one supposes that the 3d

"The value .0587 of A given on p. 338 of the writer' s
Electric and Magnetic SNscept@ilities is incorrect, as he
copied a numerical error in Bloch's original paper.

~4 M. Fallot, Annales de Physique 6, 305 (1936).
'~ For comparison of the Heitler-London-Slater-Pauling

and Hund-Mu'. liken theories of valence see, for example,
J. H. Van Vleck and A. Sherman, Rev. Mod. Phys. 7', 167
(1935).

electrons circulate independently and freely from
one atom to another. The resulting momentary
shortage or surplus of charge on any particular
atom makes the crystal instantaneously polar.
Theoretical calculations from this point of view
have been made by Bloch," by Slater" and
especially by Stoner. " Evidently, the truth is
somewhere between the Heitler-London model
and that of itinerant electrons. The actual inter-
mediate case is too dificult to calculate. Hence
Stoner's calculations fulfill a very useful role in

rounding out the theory, for if we have available
the predictions of theory for the approximation
of completely free as well as completely bound
electrons then we can see qualitatively by inter-
polation what is to be expected between the two
limiting cases. When, as fortunately often proves
true, the results are quite similar in the two
extremes, we can be reasonably confident that
the behavior is not very different in the inter-
mediate region.

The calculations of Stoner are based on a well-

defined, clear-cut model, and so have a certain
characteristic elegance. It is assumed that the
electron energy levels are attributes of the whole
crystal rather than the individual atom, and can
be handled by the Fermi-Dirac statistics. A
molecular field is used to represent the exchange
interaction, which is hence treated in a somewhat
phenomenological fashion, and no more com-
pletely or rigorously than in the first approxi-
mation of the Heisenberg theory. The Stoner
procedure can hence be characterised . as the
superposition of the Weiss molecular field on the
Sommerfeld theory of electronic conduction, and
depicts what is called "collective electron ferro-
magnetism. "

For readers used to thinking in mathematica
terms, the content of the Stoner theory is most
readily visualized by writing down the formula
which he uses for the characteristic function, viz.

I

I'=) i(s) log [1+e" ' 'Me ~~''r7de
0

+ i (e) log $1+e& '+'~~+~~&"~7ds, (21)
6 p

s' F. Bloch, Zeits. f. Physik 57, 545 (1939); J. C. Sister,
Phys. Rev. 49, 537, 931 (1936) and 52, 198 (1937}.

~~ E. C. Stoner, Proc. Roy. Soc. 165A, 372 (1938); 169A,
339 (1939);also Proc. Leeds Phil. Soc. 3, 457 (1938); Phil.
Mag. 25, 899 (19S8).
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FK". 4. The left side of the 6gure gives the saturation intensity of rnag-
netization measured relative to the value at the absolute zero, as a function
of the reduced temperature below the Curie point in Stoner's theory. The
ordinate for the right side, which applies above the Curie temperature, is
proportional to the reciprocal of the susceptibility. The various curves are
for different values of a parameter k8'/eo which is proportional to the ratio of
the exchange integral to the spread in energy (so-called "Fermi energy") due
to electron migration. The limiting case kt» /es ——oo coincides with the
classical gneiss molecular field theory if the latter is applied to a Brillouin
function for 5=-,'-.

where t (e) is the number of orbital states in the
energy interval s, e+de and q is the threshold
constant, which is determined by the require-
ment N=(8F/Bg)r that the total number of
electrons per unit volume be X.Once F is known,
the free energy Ji, specific heat Cz, and magnetic
moment M can be simply determined as follows:

8 (BFi
F=NkT —kTF, c = kT'~

~
. (22)

aT t DT)„

M = k T(BI'/BH) „. (23)

The two integrals in (21) correspond to electrons
with spins respectively parallel and antiparallel
to the field H. The parts of the exponential
coefficients which are proportional to 3f and to II
represent the energy due to the molecular and to
the applied field, while e is the translational or
"Fermi" energy. If we could neglect the fields

g3EI and H, the two integrals could be combined,
and we would have the usual quantum theory of
electronic conduction. Stoner assumes that the
density of energy levels v(e) has the same form of
dependence v(e) =as' on the energy as in the
standard Sommerfeld model, but he does not
make the assumption that the proportionality
constant a has necessarily the same value
2m (2m)»k ' V as for a free electron gas, or in other
words the "effective mass" for determining the

energy levels need not be the same as the true

electronic mass. Stoner notes that for his as-

sumption v(e) =as'* "to be applicable with fair

approximation, it is merely necessary that the
band form should approximate to this standard

type over part of its range, up to and somewhat

beyond the top of the Fermi distribution. As far

as can be judged from the graphical representa-

tion of the form of the d band in nickel, computed

by the signer-Seitz method, the approximation
is here reasonably close."

Even with the specialization v(e) =eel, the
determination of the threshold constant M and

the solution of Eq. (23) for M, which enters on

the right side through the exponential in (21) as
well as explicitly on the left side, is not easy. The
calculations must be made numerically. The
Curie point T~ is clearly the temperature above
which (23) ceases to admit a non-vanishing solu-

tion for M when H=O. The situation is not as
simple as in the conventional Weiss theory, 'where

the Iaw of corresponding states permits the
elimination of all undetermined constants. There
still remains as an undetermined parameter the
ratio of the energy level spacing to the constant
of the molecular field. In order to have a con-
venient dimensionless ratio l, k8'/es Stoner uses
in place of M, a, g constants l, 0', es given by

i =M/Np, «= 53N/4aj», k~'=rINP'.
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The quantity ~0 has the physical significance of
being the width of the filled energy band, while
8' plays the role of a sort of characteristic temper-
ature, and I is the ratio of the magnetization to
the value which would result were all the spins
perfectly parallel.

In Fig. 4, taken from Stonep's paper, the left-
and right-hand portions correspond roughly to
Figs. 3 and 2. The abscissa in Fig. 4 is the reduced
temperature, and the left-hand ordinate is the
saturation magnetization measured relative to
that at T=O, while the right-hand one, applicable
above the Curie point is proportional to the
reciprocal of the susceptibility. In comparing
Fig. 4 with Fig. 3, it should be remembered that
the structural unit of the Stoner theory is a single
electron, and so the curve of Fig. 3 which is
relevant is that for S=-,'. In. fact, the curve
labelled ~ in Fig. 4 is identical with the curve
S= ~ of Fig. 3. This agreement is to be expected,
for if k8 /eo is infinite, the spreading of the
electronic energy levels is negligible compared to
the effect of the molecular field, or in other words
of exchange. Then the Fermi-Dirac statistics
employed by Stoner reduce to the Boltzmann
variety, and if we use spins with Boltzmann
statistics subject to no other forces than a given
phenomenological molecular field, it is imma-
terial whether the electrons are bound or migra-
tory. In connection with Fig. 4, it is to be
emphasized that the magnetization which is
achieved at the absolute zero is not necessarily
the same as that corresponding to complete
parallel alignment of the spins. As I denotes the
magnetization measured in multiples of XP, com-
plete parallelism would demand 10——1. Prior to
Stoner's theory, Bloch" had pointed out that
ferromagnetism is impossible if the spread of
translational energy levels is too large compared
to the exchange integral. The corresponding
critical value of k8'/eo in the Stoner theory is —,.
If k8'/60 is sufficiently large, the value of lo is
unity, but a particularly interesting result of the
theory is that in the interval -', &k8'/&0&2 & the
saturation 10 at T=O is intermediate between 0
and the value unity characteristic of comp1ete
parallelism. The behavior in this intermediate
region is, shown in Fig. 5;

The Stoner theory has many noteworthy re-
sults. Among them are the following:

1'0

Poi 1 I t 1 I I I I I I 1 I

0 65 2~3 070 ge/6~ 0 75 Q80

FIG. 5. This figure shows that for certain values of the
exchange integral the saturation intensity of magnetization
at the absolute zero in the Stoner theory is less than that
corresponding to complete parallelism of the spins. The
ordinate is the ratio of the saturation moment at T=0 to
the value which would result were the elementary magnets
perfectly parallel. The abscissa is proportional to the ratio
of the exchange to Fermi energy.

(1) The fact, already alluded to, that the
saturation intensity at the absolute zero need
not be an integral number of Bohr magnetons.
This accords with experiment. At the same time,
however, it should be emphasized that this ex-
planation by the Stoner theory is open to the
criticism that there is less than 20 percent
diA'erence between the upper and lower limits of
the inequality for k8'/eo that delineates the
transition zone covered by Fig. 5. Hence it should
presumably happen but rarely that the exchange
integral has the proper value to yield the inter-
mediate region characterized by non-integral
magneton numbers.

(2) In reduced units, the curves of saturation
intensity against temperature (left half of Fig. 4)
have. about the same shape as in the standard
molecular field theory. Hence the rough agreement
of the latter with experiment does not preclude
the existence of a collective energy-band structure.

(3) Above the Curie point, the reciprocal of
the susceptibility is roughly a linear function of
temperature, but still there is an appreciable
curvature, especially near the Curie point.

(4) The slope of the asymptote of the 1/x —T
curves does not have the value k/XP' corre-
sponding to the first term of the ordinary tA'eiss-

Heisenberg theory (cf. Eq. (16) with S= ~) .
Here we must of course take X to be not the total
number of atoms per unit volume, but rather the
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number with free spins (e.g. , 60 percent of the
total number of atoms in nickel). The direction
of the deviation is in accord with experiment,
viz. the asymptotic value of 1/x is smaller than
that furnished by the first term of (16). If, how-
ever, one uses in the Stoner theory the ratio of
band width to molecular field deduced from the
low saturation at the absolute zero, the predicted
deviation is considerably larger than the ob-
served. In nickel, for instance, the actual reduc-
tion amounts to only about 30 percent.

(5) The law of approach to the magnetization
at the absolute zero is approximately f/fo ——

j —bT'. In the case of iron or n.ickel, this formula
is in fair accord with Fallot's experimen tal data, '4

though the agreement is not as good as when the
Bloch expression 1 —cT& based on the spin wave
theory is used (cf. Eq. (20)). For certain alloys,
however, the differences between the results ob-
tained by using the two formu1as are much. more
pronounced, and Fallot's measurements un-
equivocably favor the T' rather than T' law.

(6) There is a specific heat due to the redistri-
bution of the d electrons among the various
translational states when temperature changes.
The theory shows that it should be linear in the
temperature. Such a contribution to the specific
heat seems to be confirmed experimentally. It is
usually referred to as the "excess specific heat, "
and is a characteristic of transition elements such
as nickel.

(7) From the observed excess specific heat it is
possible to determine the ratio eo/k8', which is a
measure of the importance of the "Fermi energy"
compared to the effect of the molecular field. In
nickel, the value thus obtained for this ratio
agrees quite well from that deduced from the
reciprocal of the susceptibility above the Curie
point. On the other hand it does not check with
the value of the ratio deduced from the value
go=.6 of the saturation magnetizati'on at the
absolute zero. If the latter is used to determine
eo/k8' the calculated electronic specific heat per
gram atom is 2.4)&10 'T, ,whereas the observed
value is 1.7X IO 'T. The agreement in orders of
magnitude is certainly good, and, as Stoner

' states, the discrepancy in the exact values may
be attributed to a difference in the band form in
theactualmetal from thestandard from v(e) =eel
assumed in the computations.

COMPARATIVE MERITS OF THE HEISENBERG
AND STONER THEORIES

One is apt to wonder whether from the agree-
ment with experiment or other considerations one
can deduce whether the non-polar Heisenberg
model or the polar Stoner one, comes closest to
reality. In our opinion, it is impossible to say
anything very definite on this subject. One
immediately recognizes that there are a good
many features common to both theories. For
example, both give a reasonable behavior of the
saturationbelowthecuriepoint (item (2) above).
The mode of approach to the magnetization at
the absolute zero is, however, represented some-
what better by the Heisenberg model (cf.
item (5)). At first thought, it may seem that a
non-polar theory is incapable of oKering any
explanation of the excess specific heat, or of the
fact that the magnetization at the absolute zero
is not an integral number of Bohr magnetons per
atom (items (1) and (6)).This is no longer true if
one uses a slight variant of the Heisenberg theory
in which not all atoms have a free spin. As a
typical case, let us consider nickel. Here the usual
Heisenberg model with one spin per atom is tobe
identified with a shortage rather than surplus of
one electron compared with a closed she11, in
other words with the configuration d' rather than
d. Now, all told, there are 10 electrons per atom
in nickel in addition to the electrons in the
interior part 1s'2s'2p'3s'3p' of the atom which
are so tightly bound that they can be omitted
from consideration. These 10 electrons have their
choice of being housed in 4s or 3d states. The
neutral Ni atom has the configuration 4s'3d',
indicating that lower energy is obtained by
occupancy of the two 4s places than by filling out
the 3d shell to the completed group 3d". In the
solid however, the 4s wave functions of adjacent
atoms will overlap considerably, and as a result
the totality of 4s states for the crystal will be
spread into a quite wide band, which, is pre-
sumably broad compared with the 3d band. As 4s'

configurations are generally not ferromagnetic,
the spins will be paired in the portion of the 4s
band which is occupied, and hence will not
contribute to the magnetism. Probably the 4s
band is so wide that the upper portion of it is
higher than the 3d band, which may in first
approximation be treated as infinitely narrow in
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comparison. If we assume that 70 percent of the
4s band is above the 3d band, then the most
stable configuration will be that in which on the
average 0.6 of an electron per atom is in a 4s
state, and 9.4 electrons in 3d, so that symbolically
the configuration is 4s'3d". The fact that the
saturation magnetization at T=0 is .6 Bohr
magneton per atom is then explained without the
need of invoking the Stoner mechanism in the
intermediate case shown in I ig. 5. How about the
excess specific heat with this picture & The energy
is undoubtedly different when two 3d' atoms are
adjacent than when a 3d' is next to a 3d". There
will hence be a specific heat associated with the
redistribution of the Bd' and 3d" states among the
different lattice sites when the temperature is
varied. Sixty percent of the total number of
atoms are always to be kept in the configuration
3d', and forty percent in 3d", but there are an
enormous variety of ways in which the two
varieties of atoms can be peppered about in the
crystal. This effect is rather hard to treat in a
quantitative way, although some preliminary
calculations have been made by H. Hurwitz. "It
is not known yet, for instance, whether the
resulting specific heat is linear in the tempera-
ture, or whether the agreement on the order of
magnitude of the parameters as determined by
the various criteria is as good as discussed in
item (7) for the Stoner theory. Still, Hurwitz
shows that it-is probable that the specific heat is
not vastly different in order of magnitude from
that furnished by the Stoner collective electron
mechanism. Incidently if we had a pure Heisen-
berg model with one free spin per atom, there
mould still be some specific heat, due to the
spectrum of energy states for the exchange energy
of the crystal, or in other words due to the
fluctuations in the molecular field. At low tem-
peratures this specific heat can be treated by the
Bloch spin-wave method. It is, however, pro-
portional to T& and so not large enough to
account for the observed excess specific heat,
which is linear in T.

Our suggestion of a lattice built on 3d' and 3d'
atoms is in a certain sense a compromise between
the simple Heisenberg picture using only one type
of atom and the Stoner model of freely migrating

28 H. Hurwitz, unpublished doctor's thesis, Harvard
University, 1940.

electrons. The latter neglects the interplay be-
tween the various electrons, so that. it is possible
for large surpluses or deficits of charge to pile up
on a given atom, which can hence be regarded as
momentarily existing in configurations such as
3d', 3d', 3d', etc. In other words the Stoner
theory neglects what signer and Seitz" call the
correlation energy. In our opinion the correlation
eff'ect is a rather large one, as the indications are
that the spread in 3d levels due to inter-atomic
overlap is smaller than the higher ionization
potentials for removal of several electrons which
would have to be overcome in order for the
electrons to migrate freely through the crystal
without much regard to one another. In other
words, our generalization of the Heisenberg-
Heitler-London model does not involve the high
degree of instantaneous polarity found in the
unmodified collective electron viewpoint, and so
perhaps comes closer to the truth. In the last
analysis, it is quibbling to try and say which idea
is right, since the addition of appropriate correc-
tion terms, vis. the states of higher ionization in
the former and correlation effects in the latter,
ultimately merge the two together. Incidentally,
there is, as far as we can see, no reason why in
the Stoner model the number of 3d electrons per
atom, or rather number of holes in the 3d shell
pei atom, need be. taken as unity. The unit value
assumed by Stoner applies only if the 4s she11 is
half filled, so that the average configuration is
4s3d'. This will be the case if the 4s band splitting
is rather symmetrical, so that about half of the 4s
band is above, and half below the 3d band. How-
ever, there is no reason why this should neces-
sarily be true. With two undetermined parame-
ters, vis. the total number of d electrons and the
ratio hatt'/60, the extended Stoner theory would
have so much leeway in the way of undetermined
constants that it would be hard to tell whether
any agreement obtained with experiment would
be significant or fortuitous. The fact that the
original Heisenberg theory has no undetermined
constants when reduced units are used must be
regarded as both an element of strength and

"E. Wigner, Phys. Rev. 46, 1002 (1934}; Trans.
Faraday Soc. 34, 678 (1938). In the latter of these refer-
ences signer shows that the correlation corrections are so
large that numerical calculations of speci6c heat made
with the usual collective electron model uncorrected for
correlation are open to serious question.
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weakness in this theory —strength in that any
agreement achieved with experiment is not the
result of an ad hoc choice of constants, but weak-
ness in that not enough flexibility is included to
allow for the complicated structure of a real solid.

It still remains to compare the Heisenberg and
Stoner theories in their predictions regarding the
reciprocal of the susceptibility as a function of
temperature above the Curie point (items (3) and

(4) of our preceding discussion of Stoner's work).
We believe it is futile to try and decide between
the two theories on this ground. We have seen
that Opechowski's work shows that the series in

(16) converge so badly that it is silly to correlate
with the first two terms of (16) the slope of a
straight line which happens to represent fairly
well the theoretical dependence of 1/x on T over
most of th'e range of T accessible to observation.
Thus even in the Heisenberg theory one should

not expect agreement between the magneton
numbers deduced from saturation at T=0 and
from use of the 6rst two terms of (16). More
specifically, the calculations of Weiss with the
Bethe-Peierls method indicate that above the
Curie point, except near the latter, the graph of

1/x against T does not deviate greatly from a
straight line. On the whole, with any point of
view, it is easier to understand the existence of
curvature in the relation between 1/y and T, or
the discrepancy between the paramagnetic and
ferromagnetic Curie points, than it is why the
relation is as nearly linear as it is empirically.
Namely, with any type of theory one always
neglects certain corrections or perturbations the
inclusion of which will presumably introduce
more curvature. The observed linearity would

seem to indicate that there is a fortuitous com-

pensation of the various effects, and that the
slope does not correspond to the value obtained

by using the first term of some series development
but rather that a straight line is simply a rough
approximation to a complicated analytical rela-
tion. Among the various complications which
affect the relation between 1/x and T are the
following:

(a) the fact that exchange coupling cannot be
represented rigorously by the usual molecular
field. In other words there exist fluctuations in

the latter which are not covered by the con-

ventional first approximation of the Heisenberg
theory;

(b) distortion due to the remains of spin-orbit
coupling which persist despite quenching of most
of the orbital angular momentum in a solid, and
which interfere with the freedom of spin
orientation;

(c) in an ionic model, the migrations of elec-
trons through the crystal;

(d) in a generalized Heitler-London model, the
redistribution of the configurations d' and d"
among the different lattice sites.

The calculations of Weiss with the Bethe-
Peierls method allow in principle for (a), and
those of Stoner include (c), but not (a). In
unpublished work, Hurwitz" has investigated
qualitatively the effect of (d), having to rely
mainly on examination of how the badly con-
vergent series development (16) is affected by
including (d). He finds that (d) increases the
fluctuations of the molecular field which are
present even with all atoms alike, and so tends
usually to accentuate curvature. None of the
existing calculations have considered (b) in any
detail. All told, the observed amount of linearity
in the 1/y —T relations must be regarded as
something of a mystery.

In order to have simpler conditions, it is
illuminating to have experimental data on
metallic gadolinium (not to be confused with the
celebrated salt gadolinium sulphate, which is only
paramagnetic). Such data are provided by the
noteworthy experiments of Trombe. " As the
4f electrons responsible for the magnetism of the
rare earth group are deeply cloistered in the
interior of the atom, and as the Gd+++ ion is in an
S state, eGects (b) and (c) are presumably
wanting. Trombe finds indeed that the curvature
in the relation between 1/x and T is considerably
smaller for gadolinium than for nickel. Also he
finds that at T=0 the saturation magneton
number has, within the experimental error,
exactly the right value for a Gd+++ ion, indi-
cating that we have here to consider only atoms
in a single configuration. What is especially
interesting is that above the Curie point, the
susceptibility is, except near Tq, well represented
by using a Curie constant 35&P'/3k. This is the

' M. F.Trombe, Ann. de physique 7, 385 (1937).
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value corresponding to the first approximation of
the Heisenberg theory, in which we terminate the
development (16) with 6 and use S=7/2 since
the Gd+++ ion is in an '5 state. It is clear that
since the 4f electrons are deeply buried in the
atom, one must use the Heisenberg rather than
Stoner theory in gadolinium. However, it is not
apparent why the fluctuations in the molecular
field, whose effect is represented by the higher
members of (16) should be so unimportant. In
other words, there is still the complication (a.)
even if (b), (c), and (d) are absent, and we have
indicated that (a) alone is enough to change the
apparent value of the Curie constant over the
domain in which linearity of 1/x in 1 holds.
There thus appears to be something of a contra-
diction between iron or nickel and gadolinium. In
other words the simple theory seems to work too
well for the latter. Possibly the fact that the
gadolinium atom has a rather. high spin, vis.
S=7/2 makes the fluctuations smaller than for
an atom with a comparatively low spin such as
nickel. There is some reason to believe that this is
the case, as calculation shows" that in (16) the
ratio a/LP, which is dimensionless and a measure
of the effect of the first member of the fluctuation
corrections, is inversely proportional to S'+S.

QUESTION OF THE SIGN OF THE
EXCHANGE INTEGRAL

In order to have ferromagnetism, it is essential
that the exchange integral defined by (10) be
positive. Otherwise the exchange effects tend to
destroy rather than amplify the magnetic mo-
ment, or in other words the constant of the
molecular field is negative and has a demag-
netizing effect. Hitherto in this article we have
tacitly omitted examination of whether the ex-
change integral had the proper sign to produce
ferromagnetism. Obviously it would be desirable
if one could calculate this sign theoretically, for
then one would be able to predict whether a given
material might be ferromagnetic. We use the
word "might" rather than "is" because the work
of Bloch and Stoner shows that even with a
favorable sign of the exchange integral, ferro-
magnetism is suppressed if the spreading of
energy levels due to electron migration is too

"See J. H. Van Vleck, J. Chem. Phys. 5, 320 (1937),
especially Eq. (56}and footnote 20.

large. Unfortunately it is so difficult to calculate
exchange integrals in ferromagnetic materials
that this has not been done. Even for electrons
belonging to free hydrogenic atoms the computa-
tion of these integrals would be laborious, and
undoubtedly interatomic forces distort the d
electrons so badly that conclusions based on
calculations with free atoms would probably not
be reliable, at least without some further analysis.

There is, however, one working rule, first de-
veloped by Slater, " which seems to furnish a
rather convenient qualitative index as to whether
ferromagnetism is possible. "It states that ferro-
magnetism can exist only if the atomic radius is
small compared to the interatomic distance.

Furthermore, Sommerfeld and Bethe" have shown that
the Slater rule has a simple, though rather crude quantum-
mechanical explanation, as follows. The bulk of the contri-
bution to the integral (10) presumably comes from regions,
in the six-dimensional coordinate space, which are exterior
to the outermost node of the wave functions of both
electrons, at least provided the azimuthal quantum number
is zero or small. The contribution of the region inside the
nodes is considered of minor significance by Sommerfeld
and Bethe because the wave functions will not overlap
suKciently to penetrate strongly the interior portion of a
neighboring atom and also to a certain extent because the
volume covered by the interior regions of the atom is small.
Thus, though this is perhaps the weakest part of the
argument, the dominant part of the integral is considered to
arise from regions for which the factor if;(1)if;(2)fi(2)4'i'(1)
is positive, so that the sign behavior of the integral can be
guaged by examining the sign of 3C. After allowing for
terms that cancel out because l„t;, p; satisfy respectively the
wave equations for free atoms i and. j respectively, it is
found that the significant parts of 3C are those corresponding
to the potential energy due to the nucleus of the other
atom, with allowance for screening by non-valence elec-
trons, and to the mutual potential energy of the two
electrons involved in the exchange integral. If the nuclear
attractive term predominates over the inter-electronic
repulsive term, the factor 3C will be essentially negative;
otherwise it will be positive. Now if the radius of the atom
is at all comparable with the interatomic distance, there
will be appreciable overlapping of the wave functions, i.e.,
a significant factor/;(1)P;(2)rg, (2)P;(1),at points where the
interelectronic repulsion is overshadowed by the nuclear
term inasmuch as a nucleus contains many electronic
charges. On the other hand, when the atomic radius is very
small compared with the interatomic distance, the only
appreciable overlapping will be in a more or less void space
midway between the two atoms, where the influence of both

~ J. C. Slater, Phys. Rev. 35, 509 (1930);36, 57 (1930).
~ E. C. Stoner, Proc. Leeds Phil. Soc. 2, 391 (l933).
~4 A. Sommerfeld and H. A. Bethe, Hcndbuck der Physik,

second edition, Vol. XXIV/2, p. 596.
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atomic centers is unimportant and the important energetic
term arises only because of the possibility of the two
electrons themselves sometimes being close together in this
midway region. Hence one can see qualitatively why in
order for the repulsive terms to outweigh the nuclear effects
and give a positive exchange integral, one must satisfy the
Slater criterion that the atomic radius be small compared
to the interatomic distance. The Sommerfeld-Bethe argu-
ment, 'moreover, goes further and indicates why ferromag-
netism is found only for d and f electrons and never for s
electrons. Namely, the atomic wave functions contain a
factor r', where l is the azimuthal quantum number. In
s-states the absence of a node at the nucleus presumably
makes the negative contribution to the. exchange integral
predominate if the atomic diameter is not completely
negligible compared to the inter-atomic distance, so that
there is some, overlapping. Hence we can understand why
's-electrons never give ferromagnetism. On the other hand,
in d- or f-states the factor r' makes the integrand small in
the interior of an atom where the nuclear forces are greatest.
In order for there to be ferromagnetism it is not sufficient
just that the exchange integral be positive, but in addition
it must be sufficiently large to predominate over any energy
band structure due to electron migration (cf. Fig. 5). The
factor r' is helpful not merely because it enhances the
likelihood of a positive sign, but also because it will make
the integral larger once it has become positive, by ac-
centuating the outer regions where the interelectronic
repulsion is the prime effect. We have not said anything
about p electrons, but clearly it would be optimism to
expect this very qualitative argument to provide us with
any definite predictions regarding this intermediate case.

FEEBLE PARAMAGNETISM

From the preceding discussion it is apparent
that the large positive exchange integrals neces-
sary for ferromagnetism wil1 be realized only
under rather special favorable conditions. Nor-
mally the exchange integral will be negative, and
the spins will tend to set themselves anti-parallel.
This is the situation ordinarily encountered for
the electrons responsible for chemical bonding. . In
fact, the usual theories of valence, electron-
pairing, etc. , are founded on the idea that a
saturated chemical bond corresponds to the
'compounding of the individual atomic spins to a
zero resultant molecular spin. This is just the
reverse of the state of affairs necessary for ferro-
magnetism, since the latter demands that. the
configuration of lowest energy be one of high
rather than compensated spin. Thus ferromag-
netism may be regarded as a sort of exception to
the usual valence rules.

For the normal case of negative exchange
integrals, the effect of exchange is demagnetizing,

and may roughly be described by taking the
Curie temperature r~ to be negati ve in the Weiss-
Curie formula x= C/(T —To), since To has the
same sign as the exchange integral. If the ex-
change coupling is powerful enough so that —Tg
is large compared with T, then the susceptibility
will be independent of temperature, and much
smaller than for a free atom, where T~=O. Thus
a mechanism is provided for understanding why
many substances', far outnumbering the strongly
paramagnetic, or ferromagnetic ones, have a
feeble paramagnetism which is more or less inde-
pendent of temperature. In a feebly paramagnetic
material, the spin of an individual atom can be as
large as in a highly magnetic substance, but the
exchange effects are demagnetizing and tend to
make the resultant spin of the entire crystal
small. A typical metal. of this type is aluminum,
which is only weakly paramagnetic despite the
fact that the normal state of the Al atom is 'I'.

Strictly speaking, any discussion of feeble
paramagnetism is outside the scope of a report on
ferromagnetism. However, weakly paramagnetic
materials are so common, and the theoretical ex-
planation of their behavior ties in so closely with
that of ferromagnetics, that before closing it has
seemed*worth while to comment on them brieAy.
We should mention that there are other effects
besides negative exchange coupling which enfeeble
paramagnetism. In particular there is the sup-
pression of paramagnetism due to the spreading
of energy levels caused by the migration of the
electrons through a solid conductor. Pauli" first
showed that this dispersion of translational
energy levels removes most of the spin para-
magnetism when there is no exchange coupling,
and we have seen that Bloch" and Stoner" have
demonstrated that this can still be true even
when the exchange integrals have a sign favor-
able to ferromagnetism, provided they are not
too large. Since the wave functions for s and P
electrons usually overlap adjacent atoms con-
siderably, the migration effects are probably
sufficient, regardless of the sign of the exchange
integrals, to suppress most of the paramagnetism
in solids not having d or f electrons. Special men-

35 W. Pauli, Zeits. f. Physik 41, 81 (1927); an excellent
review of this subject is given in sections 29 and 140 of
Seitz' book, The Modern Theory of Solids (McGraw-Hill
Book Company, Inc. , New York, 1940). :
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FIG. 6. The susceptibility x (T} as a function of the
reduced temperature in an anti-ferromagnetic material.
The solid curves are theoretical, while the dashed lines are
measurements on MnO by Bizette, Squire, and Tsai. The
scale of ordinates is such that the susceptibility is unity at
the Curie point.

tion should be made of the fact that in the non-
ferromagnetic elements of the transition groups,
the paramagnetism, though still of what may be
called the "feeble" variety, is considerably larger
than usual for this category. Precisely this be-
havior is to be expected theoretically, since the
wave functions of d electrons overlap other atoms
less than do those of the s or p type, and in
consequence there is a narrower band structure,
with less suppression of paramagnetism. For a
very interesting description of the experimental
data on this subject, data on the widths of the
energy bands, etc. , the reader is referred par-
ticularly to the discussion in Mott and Jones'
book. "

So far we have cited only feeble paramagnetism
which arises because of nearly completing' quench-
ing of the magnetic moments of atoms which are
paramagnetic when free. Sometimes distortion
due to interatomic forces can originate a weak
paramagnetism in materials whose isolated atoms
or ions are diamagnetic. This situation is more
likely to arise in an ionic salt than in a conductor,
inasmuch as electrons of ions in closed shells
usually migrate but little. Examples are probably
furnished by Sc203, Ti02, Ce02, and numerous
cobaltamines. "

"Mott end Jones, The Theory of the Properties of iVetats
and Alloys (Oxford University Press, New York, 1936),
pp. 189—200. Also see F.Seitz, The Modern Theory of Solids,
section 29.' For further details see p. 302 of the writer's B/ect&Ic
and Magnetic SuscePtibilities,

ANTI-FERROMAGNETISM

In the preceding discussion we have stressed
how dificult it is to know whether feeble para-
magnetism is to be attributed to negative ex-
change'integrals rather than to some of the other
mechanisms which we have mentioned. There is,
however, one class of materials, known as "anti-
ferromagnetics" in which it is quite clear that the
suppression of paramagnetism is to be identified
with exchange coupling. These substances, which
are not very common, have a susceptibility which

.passes through a maximum when the tempera-
ture is raised, as shown in Fig. 6. On the other
hand, ordinary feeble paramagnetism is charac-
terized by a susceptibility which is more or less
independent of temperature, but which usually
decreases monotonically and slowly as the tem-

I

perature is raised. Examples of anti-ferromagnetic
media include MnO, MnSe, CrsOs, and CrSb

The peculiar behavior illustrated in Fig. 6 is

nicely explained theoretically in the following
way. Suppose that. we have a crystal whose
constituent atoms can be resolved into two
sublattices A and B such that the nearest
neighbors of the atoms of A are atoms belonging'
to B, and vice versa. The simple cubic and body-
centered cubic lattices are both of this type. In
our rudimentary derivation of the Weiss molecu-
lar field from the exchange potential (8), we
assumed that an the average the spins of all
atoms pointed in the same direction. This suppo-
sition is admissible if the exchange integral is
positive, as then the state of lowest exchange
energy is that of completely parallelism. With a
negative integral, however, the exchange energy
of two atoms is a minimum if their spins are anti-
parallel. Hence the configuration of deepest
energy for the crystal as a whole is that in which

the spins of sublattice A all point northward, and
those of 8 all southward or nice versa. Conse-

quently if a method based on mean values is

used, the theory should be generalized by as-

suming that the mean direction of the spin in

sublattice A is the opposite from that in 8, apart
from polarization effects due to an external

applied field. With this generalized model, a
"staggered" non-vanishing molecular 6eld can
exist which tends to direct the spins of A in one

direction and those of B in the other. We shall
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omit the mathematical analysis, which is due to
Neel, " Bitter, " and the writer. " It yields the
result that there is a certain critical or Curie
temperature above which the spontaneous field
of this character disappears. With similarly
rather than oppositely directed spins for the two
sublattices, no spontaneous field would have been
possible at any temperature. If one treats the
staggered model by a method of approximation
analogous to the usual first-order one of the
Heisenberg theory, then it turns out that the
formula for the Curie temperature above which
the staggered molecular field disappears is pre-
cisely the same as that (15) obtained for the
ferromagnetic rather than anti-ferromagnetic
case, except that now one must use the absolute
value of the exchange integral. (Without use of
the absolute value, the critical temperature would
be negative, and hence meaningless. ) As the
temperature is lowered, the inner field becomes
stronger and stronger, and so it is.harder for the
field to make the spins all point in one direction
when they want to be arranged alternately in

opposite directions. Hence, without going through
the analysis, one can see qualitatively why the
susceptibility diminishes as the temperature is
lowered from the Curie temperature to the
absolute zero. Above the Curie temperature, on
the other hand, the staggering effect is washed
out, and the susceptibility decreases with in-

creasing temperature, obeying the familiar for-
mula C/(T+6)(h)0) obtainable even without
introducing interlocking lattices. At the absolute
zero, the inhibiting effect of the powerful internal
fields on any change of alignment due to a weak
external field is complete only if the latter has,
apart from sense, the same direction as the
former. If applied perpendicular to the alter-
nating inner fields, the external field can still give
rise to an outstanding moment by twisting
slightly the orientations of the elementary mag-
nets. Since the molecular field is presumably
directed at random, the parallel and perpen-
dicular cases, considered respectively by Bitter
and Neel, should be weighted in the ratio i:2,
and it is for this reason that the susceptibility xo
at the absolute zero for weak fields is theoretically

"L. Neel, Ann de physique 1V, 64 (1932); 5, 256 (1936)."F.Bitter, Phys. Rev. 54, 79 (1937).
40 J. H. Van Vleck, J. Chem. Phys. 9, SS (1941).

3 that x& at the Curie point. The observed values
of xs/xc, instead of being 0.67, range from 0.3 to
0.85, so that the agreement is qualitative rather
than quantitative. It is especially to be empha-
sized that in a truly ferromagnetic medium a com-
paratively weak field will suffice to orient the
moments of the elementary domains and make
them parallel to the applied field, producing so-
called saturation. On the other hand, in an anti-
ferromagnetic material, even a very powerful
field will produce but little rotation of the domain
alignments, as the low susceptibility makes the
energy of the crystal rather insensitive to ex-
ternal fields. One can understand qualitatively
why the observations of Bizette, Squire, and
Tsai" on MnO shown in Fig. 6 reveal a somewhat
higher susceptibility, below the Curie point, for
a field of 24,000 gauss than for one of 7,000 gauss.
Namely, in an anti-ferromagnetic medium a very
powerful field will rotate the elementary domains
into more favorable alignment, i.e., make the
molecular field of more domains perpendicular to
the applied field, instead of being random. In the
limiting case of complete perpendicularity, the
susceptibility below the Curie temperature T~ is
independent of temperature and has the same
value as at T~. The rather mild dependence of
susceptibility on field strength shown in Fig. 6 is
to be contrasted with the behavior of a truly
ferromagnetic material where a field of less than
7000 gauss would have produced complete
parallelism. When the susceptibility is finite but
still is somewhat influenced by field strength, one
should expect some weak hysteresis phenomena,
and in MnS a feeble hysteresis is indeed observed,
wherein the loop is so narrow that it encloses but
little area.

In the preceding paragraphs we have perhaps
inadvertently given the impression that feebly
paramagnetic and anti-ferromagnetic media rep-
resent two distinct cases. Actually there is no
sharp dividing line between the two, though a
convenient criterion for anti-ferromagnetism is a
maximum susceptibility at a particular tempera-
ture. Also our statement at the beginning of the
discussion on feeble paramagnetism that the
temperature dependence of susceptibility is of
the form C/(T+

~
Tc ~) in the first approximation

"H. Bizette, C. F.Squire, and Tsai, Comptes rendus 207',
449 (1938); C. F. Squire, Phys. Rev. 50, 922 (1939).
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comparable with the Heisenberg theory is seen to
be not really correct below the Curie point if a
division into alternating sublattices is possible,
for then one has a behavior of the type shown in

Fig. 6. In either case, however, the variation with
temperature is small, in fact less with the situa-
tion covered by Fig. 6, which gives xp = 3X(,
rather than xp = 2X(,". The fact that most weakly
paramagnetic materials do not show the peculiar
maximum in x may mean that the crystal struc-
ture is not such as to permit the requisite division
into sublattices, or much more likely, that the
effects of electron migration are appreciable.
With the Stoner collective electron mechanism,
localization on individual atoms is lost, and no
molecular field of consequence is possible as long
as the mean exchange integral is negative, since

staggering requires local order. Here we thus have
a case where the results are different with the
approximations of bound and itinerant electrons,
and the former must be closer to the truth when

a behavior such as that shown in Fig. 6 is

realized.

CONCLUSION

In closing we should like to stress once more
the great parallelism in many respects between
the theory of ferromagnetism and the theory of
valence. Both topics are readily tractable only
for models corresponding to the limiting cases in

which the electrons are treated respectively as
tightly bound on individual atoms and as
wandering freely from atom to atom without
cognizance of each others' positions. The original
Heisenberg theory of magnetism is the analogue
of the Heitler-London-Slater-Pauling theory of
valence, while the Stoner treatment resembles
the Hund-Mulliken approach. In both subjects
the truth is doubtless intermediate between the
two extremes, and the results in the limiting cases
usually do not differ too much from each other,
giving one some confidence in a similar behavior
in the intermediate region. In both valence and
ferromagnetism, the agreement with experiment
is often surprisingly good in the first approxima-

tion and in many cases spoiled by inclusion of the
second or third approximation, leaving it some-

thing of a mystery why so nearly the first-order
result would presumably be restored were it
possible to carry through the calculations rigor-
ously. Along with the similarity that we have
noted, there are two main differences between the
theory of ferromagnetism and that of the chemical
bond. In the first place, the former requires a
positive rather than negative exchange integral,
in order that the energy be lowest for paral-
lel rather than anti-parallel spin alignment.
Secondly, in magnetism the entire crystal rather
than the molecule is the structural unit, and
consequently the potential mathematical and
physical complexity is greater than for even the
worst organic molecule.

Has the quantum theory of ferromagnetism
been a success? The answer depends to a large
extent on whether one takes the attitude of the
optimist or the pessimist, that is to say, whether
one concentrates on the successes of the theory
or looks for the Haws and emphasizes all the

'
difficulties of rigor and convergence. Analogous
remarks apply to the quantum theory of valence. "
If one demands a theory that will predict in
advance just which alloys will be ferromagnetic,
what quantitatively will be the remanence,
hysteresis, etc. , then one must admit failure,
although as time progresses, greater refinement
of the theory will perhaps increase its usefulness
for qualitative prognostication. Similarly one is
doomed to disappointment in the present appli-
cations of quantum mechanics to chemistry if one
expects advance information, say, on just which
substitutions in a benzene ring will give particular
physical and chemical properties such as, say,
that of photographic developer, etc. If, on the
other hand, what one desires of a theory is a
qualitative understanding of why nature works
as it does, and the satisfying confidence of having
a mechanism which would, no doubt, explain
even the most complicated phenomena if the
difficult mathematical calculations could be
made, then the quantum theory of ferromag-
netism or of valence is certainly a success.


