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1. INTRODUCTION

8 a competitor to the meson theory, in which the interaction energy with the heavy particles
(nucleons) is in analogy to electrodynamics assumed to be linear in the meson field, the so-called

pair theory has been developed' in which the interaction energy of the nucleons is bilinear in the
field variables and describes processes in which a pair of particles with opposite electric charges is
emitted or absorbed. The held was originally assumed to be that of electrons and positrons, while
later on heavier rest mass of the particles described by the field was also considered. Finally the pair
theory was even generalized for particles with spin 0 (scalar field) and spin I (vector field). While
a spin-independent interaction could be treated rigorously for arbitrary values of the coupling
constants, provided that a finite shape (radius a) of the sources is introduced, the spin-dependent
interactions have beeii treated until now only with perturbation methods (weak coupling). In the
spin-dependent case, which alone is of immediate physical interest, it turns out, both for spin 2 and
for spin 0 or I of the field particles (mesons), that if the perturbation method (development in
powers of the coupling constant) is valid and if the radius a of the nucleon is supposed to be smaller
than the range of the resulting nuclear forces, the coupling constant must be so small that the
nuclear interaction becomes much smaller than the empirical one. '

It seems, therefore, interesting to investigate for pair theories the strong coupling case of spin-
dependent interactions, which cannot be treated rigorously. This is done in this paper for the scalar
theory and the vector theory. In the fi.rst case the interaction of one nucleon at rest in the origin
of the coordinate system with the meson field was assumed to be

H;„i 4s.fai——U(x) Vy*(x)dx)& U(x) V'~t (x)dx +4sg U(x) V y*(x)dx
~

U(x) V &p(x)dx,

where U(x) is the source function, rp(x) a complex scalar field describing charged particles with
spin 0,f and g coupling constants with the dimension of a volume (if units corresponding to h = c= I
are used), and o the spin of the nucleon. The second term was added because for strong coupling
it turns out that only for g)f reasonable results can be expected because, otherwise, the Hamiltonian
is not positive definite, and the eigenvalues of the energy are not all positive and do not any longer
have a lower bound. For g=0 the weak coupling case was treated by Jauch and Lopes. Their result
for the interaction between two nucleons A, 8 at a distance r =

~
x~ —xs

~

can be generalized for
g&0 and can for distances r of the nucleons large in comparison with their radius a, be written in

' Electron-pair theory: G. Gamow and E. Teller, Phys. Rev. 51, 289 (1937); G. Wentzel, Helv. Phys. Acta 10, 107
{1937).Meson-pair theory (spin —'„perturbation method): R. E. Marshak, Phys. Rev. 57, 1101 {1940);R. E. Marshak
and V. Weisskopf, Phys. Rev. 59, 130 (1941). Exact treatment of spin-independent interaction, one-body problem:
E. Wigner, C. L. Critchfield, and E. Teller, Phys. Rev. 56, 530 (1939). Interaction between nucleons: C. L: Critchfield
and W. E. Lamb, Jr., Phys. Rev. 58, 46 {1940);C. L. Critchfield, Phys. Rev. 59, 48 (1941).. Exact treatment of spin-
independent coupling for spin s particles: J. M. Jauch, Helv. Phys. Acta 15, 173 {1942);A. Houriet, Helv. Phys. Acta
16, 529 (1943). Exact treatment of spin-independent interaction, scalar theory: G. Wentzel, Zeits. f. Physik 118, 277
(1941); Helv. Phys. Acta 15, 111 (1942) (quoted as "I").Spin-dependent interaction, perturbation theory: (a) Spin 0
mesons: J. M. Jauch and J. Leite Lopes, Anais da Academia Brasileira de Ciencias 16, 281 (1944) (quoted as "II");
(b) Spin 1 mesons: O. Klein, Arkiv for Matematik, Astronomi och Fysik 30A, No. 3 (1944) {quoted as "III").' In the case of spin-dependent interactions, the criterion for weak coupling was assumed in analogy to cases which
can be treated rigorously (compare II).
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the form

I AB(r) = —
I g'g(2pr)+ ,'f '~-(2ttr) (e~ ao)+ 3f'f(2ttr)~~a I,

xr6

with y the rest mass of the mesons in units k =c = 1 and

SgB (0~ oe) —3(~& .n) (Oe n); n = (xg xtt)/r

The functions g(x), Ii(x), f(x) can be expressed by Henkel functions and behave as x ' for small x
and as x'lt'e, x"'e, x't'e, respectively, for large x.' The function g(x) is given explicitly below
in Section 4, Eqs. (84a) and (84b). Terms proportional to the product of the coupling constants
do not occur. The case f=0 (spin-independent coupling) can be treated rigorously (Section 5) and

gives for r))0,

where A is of the order u ' and depends only on the source function of one nucleon.
The main result of this paper, derived in Section 4, is that the resulting interaction energy for

r))a is spin independent and given by

p —g(2t r),
mA' r'

if t'Ite criterion for strong coupling

(g+f)a'&)I and (g —f)a'&) I

is fulfilled, the spin-dependent part of V being at most of the relative order Dg+f)A] ' or L(g —f)A$ '

in comparison with the spin-dependent part.
This result is not satisfactory in view of our empirical knowledge of the interaction of proton and

neutron in the deuteron. The high negative power r ' for small distances (a«r« tt ') which makes
the range of the forces not much larger than a is another argument against this theory.

The discussed result is derived with a method to split the Hamiltonian in three parts IIO, II,
and 0 (Section 2) from which Ho gives no interaction between nucleons for r)a (Section 3),4 H
gives the result mentioned, and 0 can be treated as perturbation energy in the strong coupling case
and gives there a contribution to the interaction energy of smaller order of magnitude.

Very analogous to this scalar-pair theory is the vector theory for which the interaction-energy
with one nucleon at rest is given by

f r

H;„,=4m' U(x)p*(x)dxX U(x)p(x)dx +4mgi U(x)II*(x)dx ' U(x)II(x)dx i,J

where f and g have the dimensions of a length, fp', gtt '
p, laying now a role similar to earlier f and g.

The interaction energy between two nucleons in the weak coupling case was calculated by Klein'

3 In the quoted paper "II" (Jauch and Lopes) the factor (2m) ' is missing in the final result; moreover, some errors are
contained in the numerical coefficients of their Eqs. (11}and (13). In our notations (the coupling constant X2 in II is
equal to our 47If) the functions F(x},f(x} introduced in the expression for Vzz(r) are given by

E(x) = —(20+ (7/2)x')X(x) —(10@+~~x')Kp(x)

f(x) = ——,
' (35+5x')E (x)——,'(35x+x')EII(x)

X(x), Xo(x) are Watson's functions connected with Hankel's cylinder functions (compare their definition given below
in Section 4).

Forr &a thecontribution of JIO to the interaction energy isnotzeroand proportional to the square root of the coupling
constants. The analogy to this "Ho-problem" for mesons with spin -', was discussed by J. R. Oppenheimer and E. Nelson,
Phys. Rev. A@1, 202 (j.942). (For spin —, mesons the corresponding result for r &a is linear in the coupling constant. ) For
r ))a where the contribution to the interaction energy of Ho vanishes, these authors, however, do not consider the inter-
action-energy which springs from the part of the Hamiltonian analogous to our H, which is independent of the coupling
constant.' Compare note (1), paper "III." In Klein's notation ye'/yc' is identical with our 4mf
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for g =0 and can, analogous to the scalar theory, be written in the form

V~~ =— Ig'g(2pr)+ ,'f'F-(2IJr)(o~ oz)+ ' f'—f(2pr)S~z},
Xp

where g(x), E(x), f(x) are again of the order x ' for small x and of the order x'~~e ' for large x. For
the spin-independent interaction giveri by f=0 the problem can also here be solved rigorously
again leading to the result, valid for r)&a

Vggg =— 1 p

(ii'/g+A) ' z

where 2 is a quantity similar to A and also of the order of magnitude and dimension of a 3.

In the strong coupling case, the criteria of which are here the conditions

(g+ f)p
—'A&)1 and (g —f)p,

—'A»1,

the interaction-energy is here, too, spin-independent as in the scalar theory and given by

p
V~z ——— g(2pr), -

xA'

as is derived in Section 6. All objections against the scalar theory also hold against the vector theory.
The condition g)f is necessary to make the Hamiltonian positive definite and the eigenvalues of
the energy discrete and positive.

The analogous treatment of the strong coupling case of.a spin-dependent interaction in the pair
theory for mesons with spin —, will be given in a thesis by J. M. Blatt. This case is simpler than the
case of mesons .with integer spin because, owing to the exclusion principle for the mesons with
spin ~~, there is no necessity to make the Hamiltonian positive, and a single coupling constant is
sufficient also for strong coupling. Moreover, the problem analogous to our IIO can be treated rigor™
ously, and the magnetic moment of a nucleon according to this theory can be discussed.

2. SCALAR-PAIR THEORY. SPLITTING OF THE FIELD

As the simplest spin-dependent interaction of pairs of scalar (or pseudoscalar) mesons with nu-
cleons, we consider the Hamiltonian

II= [~z*+Vq*V(p+p'y*yjdx+47rf +~eg i U(x —zg)Vrp*(x)dxX, U(x zg)Vy(x)d—x
a) a)

+4zg P~~ I U(zt: —z&)Vp*(x)dx U(x —z~)Vy(x)dx ~. (1)

Here y(x) is the complex scalar field describing positively and negatively charged particles with
restmass p, , its canonical conjugate satisfying the commu tation rule,

i[z.(x), P(x')] =i[z.*(x),P*(x')]= b(x —x').

Capital Roman indices denote the diferent nucleons, the motion of which is neglected, sg the co-
ordinates of their centers, e~ their spins, U(x) the source function, supposed to be spherical sym-
metrical and normalized according to

U(x)dx = 1.

The reason for the assumption of the second spin-independent interaction term (proportional to g)
will be explained later, The factors 4x are only conventional to facilitate the comparison of later
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results with those of other theories. We are using the units k=c=1 in which the dimension of II
is cm ', hence:

[~]=cm-', [y]=cm-', [f]=[g]=cm-'. (4)

The electric charge of the nucleon never changes in the. pair theories; therefore, the total charge
of the meson field,

P
e=z (q*zr*—yzr)dx,

is conserved. With two real fields pi, zz instead of one complex field defined in the well-known

way by
1

zr =—(zri+zzrz), y =—(pi —zqrz),
V2 V2

(6)

zr =—(zri —zeal z), p = (pl+zpz)i
K2 V2

the Hamiltonian acquires the form

, ~[zr.'+(&q.)'+Iz'y~']dx+4zrf pg irg „U(x—sg)&zidxX ' U(x —sg)V'qzdx
a 12~ al

( 2

+4~g. z P i
U(x —s,)V(..dx I, (8)

with the charge of the meson field.

e= t(z ivz —zzzri)dx.
J

It will be convenient to introduce the momentum space instead of the x-space, which is done in
the usual way by

p (x)=(2zr) & ~q (k) exp (ikx)dk, zr (x) =(2zr) & t p (k) exp (—zkx)dk, (10a)

r
q.(k) =(2zi)-& y (x) exp (—ikx)dx, p (k) =(2zr) —

& zr (x) exp (zkx)dx

U(x) = (2zr)
—' tv(k) exp (ikx)dk, v(k) = U(x) exp (—zkx)dx.

(10b)

v(0) =1,

z[p.(k), q, (k')] = S.&S(k-k'),

and with the usual abbreviation koz = k'+ziz,

[p (k)p. (—k)+ko'g. (k) .(—k)]dk
z)

g

f
+f P~ o~(2zr') ' v( —k)ik exp (ikz~)qi(k)dkX v(k)ik exp (ikz~)gz(k)dk

(12)

(13)

(14)

+-,'g Q~ (2zrz) 'i v( —k)ik exp (zkz~)g (k)dk i,

= ~[~ (k)p (k) —~ (k)p (k)]dk. (16)
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For the following considerations we split the field into a "zero field" which alone appears in the
interaction energy and a residual field p '(k), q '(k). The latter can be chosen in such a way that
in the Hamiltonian, cross terms between the zero field and the residual field only appear for q (k)
but not for p (k). This is fulfilled if we put

v( —k)k exp (ikzA)g '(k)dk=0, (17)

v(k)k exp (—ikzA)p '(k)dk=0,

1
p (k) = i PA v( —k) exp (ikzA)(k PaA)+P. '(k),

(17a)

(18)

1
QaA = i v( —k)k exp (ikzA)g (k)dk.

prV2 ~

From (17a) and (18) follows, with the abbreviation

G(k) =v(k) v( —k) = v(k)! ',
!

t' ij U(x BA) 8—U(x —BB)
N„,, B;=N», A, G——(k)k;k; exp (ik(zA zB))dk—=4v dx)

2m' Qg Bx~

(19)

(20)

p (k)v(k) exp ( i—kzB)kjdk g=P A, ;NA', Bj.
~42 ~ A, i

If M is the reciprocal matrix to N defined by

NAi, ClMC/, Bj = ~AB4 ji
C, Z

one has therefore

ga(k) = Q V(k)ki eXp (—tkZA)MAi, BjQBj+ga (k)p
&~2 A, B, i, j

i (' t'—
P A,

' — ! p„(k)v(k) exp (—ikzB)k,dk !MB;,A,
~P2 &~

The commutation rules are
&LPaA, i& QBB, j]= 4B~AB~i'jy

p '(k), g '(k) commute with P,A, ; and Q A, ,", and in accordance with (18), (18a),
1

iQ' '(k), gp'(k')]= 4p &(k —k') — p v( —k) exp (i(kzB —k'zA))v(k') k;k,'MA;, B;
A, P, i, j 2&'

Inserting (18), (18a) in the Hamiltonian one obtains by taking into account (17), (17a)

H=Hp+H'+D,
with

(22)

(18a)

(19a)

(23)

(24)

HP 2 2 [+Ai, BjPaAiPaBj+dA, i, Bj, QaA, iQaB, j]+f ZA O'A/Q 1A XQPA]+ pg P QaA, is (25)

where
a, A, B, i,

' j a, A, i

1
dA;, B;——dB;, A;

—— Q MC~, A,MD„, B; G(k) kp k~k„exp (zk(zC —zD))dk, (26)

H'=
p Z- Lp-'(k) p-'( —k)+kp'a-'(k) a.'( —k)]dk, (27)

0= Q MA, , B;Q B, ; v( —k)ik, exp (ikzA)kp g '(k)dk.
a, A, B, i,j WV2 4
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For the electric charge one has without cross terms e =ep+e'

&0 QA (Q1A '~2A Q2A ' plA), (29)

Lg&'(k)Pp'(k) —gp'(k) P, '(k) jdk. (3O)

These expressions simplify considerably if the different nucleons do not overlap; in other words,
if the distance rAs= ~sA —ss

~

between different nucleons is large in comparison with the dimension
of one nucleon, which in the usual way can be characterized by

In this case,

1 1 p 2
G(k)k-'dk =— ' G(k)dk.

a 2~'J

rgB)&a, (31)

the coefficients NA, , s; defined by (21) can be neglected for A WB; moreover one has for A =8,
because of the spherical symmetry of U(x),

(32)
with

/II Xl

G(k) k4dk =4n. (V' U) 'dx
m' Jo

(33)

In this approximation one has therefore

~~', Bg= ~'~4B —, (34)

and for similar reasons for the coefficient dA;, s; defined in (25)

dAi, Bj ~AB~ijd)

1 2
3d =—— G(k) kp'k4dk.

N'x Jo

(35)

(36)

Instead of (25), (28) we obtain then

Hp=-', p ( &I'.A'+ f~A[QiA XQ pA]+ ', (g+d)Q.A'-I, (37)

0=—Q Q A. ," v( k)ik, exp —(ilrzA)kp'q '(k)dk.
prv2

(38)

Obviously the Eqs. (32) to (38) are exactly true if there is only one nucleon present.

THE Ho-PROBLEM

We consider now more in detail the problem defined by the Hamiltonian which is generally given
by (25). ~e shall first investigate the particular case of non-overlapping sources Lsee condition
(31)], in which, according to (37), Hp decomposes into separate parts HpA from which each contains
only variables connected with one nucleon. The eigenvalues of IIO for nucleons at distances larger
than their sizes are therefore independent of these distances and of the orientations of their spins.
Therefore the part Ho of the Hamiltonian does not give rise to nuclear forces in distances where
the forces do not overlap.
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In this region it is sufficient to consider only the part of H() which is connected wi'th a single nucleon
and to omit the index 'A. Moreover we shall be interested in the strong coupling case in which d
is small in comparison with g and can be neglected. Indeed, according to (33), (36) one finds that
d is of the order as, and the inequality,

g))a', (39)

will turn out to be one of the strong coupling conditions. We have, therefore,

Ho = s&(&i'+I'2')+ ';g(Q-i'+ Q2')+fe[Qi XQs]
Besides the charge

so=—2'=Qi Ps —Qs I'i,

(38')

(29')

there exists the angular momentum integral

with

J=Lj-,'e, (40)

L = [Qi Xpi]+ [Qs XP2]. (41)

We found it convenient to use coordinates introduced by Pauli and Dancoff' which describe the
two vectors Qi, Qs by two positive scalars and four angles, one of which, denoted by 0 is canonically
conjugate to the charge T. The three other angles define a system of three orthogonal unit vectors
n&'& (r = I, 2, 3) in such a way that

hence,

Qi=Qi cos en'" —Qs sin en"', Qs ——Qi sin en"'+Q2 cos en ";

[Qi X Q2] = Q)Q2n"' with n"' = [n&" X& "].
(42)

In other words n&'& and n(" are in the plane spanned by Qi, Qs, their direction being fixed b)&. the
condition

Q (1)Q (2)+Q (1)Q (2) O (44)

where here and below the components of a vector X parallel to n&"' are denoted by X&")= (X n&"&).

In the paper referred to it was shown that

1(3)+T 2 L(s) T 2 1(2) 2 L(1) 2

&i'+Ps'= &i+&i+&2+&s+,+,+, +
2(Qi —Qs)' 2(Q)+Qs)' Qi' Q2'

(43)

The operator I' + is hermitian conjugate to I' with respect to the density p = Q)Q2(Q1+Q2) (Ql Q2);
that means

8I' 4= i, I'—+4= i (p%). ——
BQ p ()Q

Hence we obtain finally

2(Qi —Qs)' 2(Qi+Q2)' Qi' Q2' .
As was shown in the paper referred to, ~ it is also possible to make an S-transformation which brings
o&") to its normal form o„and at the same time I &"& to J&")—0&"&, where J&" as an operator applied
to the new wave function has the same form as I.&'& had before the transformation, so that (46)

6 W. Pauli and S. M. Dancoff, Phys. Rev. 62, 85 (1942); compare especially, Section 8, .Eqs. (115), {116),{50c).For
the definition of three Euler angles 8, p, p compare Appendix, Eq. (1), the quantities A, being identical with the com-
ponents of n("). The expressions of I.(")= (L n(")) are given by Appendix, Eq. (7).

~ W. Pauli and S. M. Dancoff, see reference 6, Section 8, Eqs. (6Sa), (69).
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is equivalent to
(J(8) 10 +T)2 (J'(8) ls. T)2 (J(2) 10. )2 (J(1) is. )2

H, = 2X P,+P,+P,+P,+ -+ + +
2 (Ql Q2) 2 (Q1+Q2) Q 1 Q2

+2g(Q1'+Q2')+f~8QiQ2,
or with

R=—(Ql+Q2)
v2

S=—(Ql —Q2)

1
Pz =—(P1+P2), Ps = (P1—P2)—

(47)

(J(8) 1~ +P)2 (J(8) 1~ T')2 (J(2) 1~ )2 (J(1) 1~ )2
Ho= 2& Pe+Ps+Ps+Ps+ + +2 +2

4S' 4R' (R+S)' (R—S)'

y-;( yf, )R +-', (g —f,)S ]. (48)

If R, S, R+S, R —S (in other words Ql, Q2, Ql+Q2, Ql —Q2) are large, the terms with the denomi-
nators can be neglected and the eigenvalues of a 8 being +1, we obtain a system of oscillators with
the frequencies

» = L(g+f)&]' » = t;(g f)&]—',

each of them double-degenerated, provided that

g&f

(49)

(50)

HQ 2 2 +Ai, BjPaA, iPas, j+2g p QaA, i.
a, A, B, i, j n, A, i

As there is complete separation of the variables for n = 1 and 0.= 2 we can neglect in the following

the index e and write:

Ho= 2 Q &A;, s,PA„Ps,;+2g Q QA, ;.
A8B8 &. g

The Hamiltonian being a quadratic form, this leads to a system of oscillators which Can be obtained

by searching the classical periodical solutions, with the frequencies co to be determined. As we have

8H gH= —gQA„, QA, ,= = Z &A;, a)Pa, ),'
~~A, i 8, j&QA,

In the opposite case the Hamiltonian is not de6nitely positive, and we obtain a system which partly
corresponds to repulsive forces and for which a continuous spectrum with any eigenvalues of Hp

between —ao and + a() has to be expected. This conclusion seems to be confirmed by the discussion
of the behavior of the eigenfunctions for large values of R, S, R+S, and R —S. This result seems
to be in such a disagreement with the empirical properties of particles that we postulate the inequality

(50) as a necessary condition to be fulfilled by our Hamiltonian.
The actual discussion of the different eigenstates of H() can better be made with help of (46)

without the S-transformation than with (48). The ground state T=O, j= 2 [where j is defined by
J2=j(j+1)]for instance leads to two simultaneous differential equations of the second order for
two wave functions @ and p which, however, do not have a simple analytic solution. We have not
carried through a detailed numerical discussion of this eigenvalue problem because it was not
necessary for our purpose.

Before concluding this section we discuss the case f=0, but for small distances where the sources
overlap, in order to prove that in this region the Hp-problem actually does give rise to interaction
forces. Neglecting the coefficient dA; s; for the same reasons as before the d, we obtain for f=0
from (25),
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hence, ~0—&A, '= g 2 &A,.Bga;
B, j

We obtain for the frequency the determinant condition

II
—~ 4;,a,+&A;, a;II —0.

This can be simplified for the case of two nucleons according to the definition (21) of NA;, a; and
the central symmetry of the source function. Using (32) for A =8 and choosing a coordinate system
where the xs axis is parallel to the line joining the two nucleons, one easily finds for A &9, NA;, a;——0
for i/ j, NAl, Bl=NA2, B2, hence,

II
—~'~A'. Bt+&A*;»II =

The roots for co' are, therefore,

—td +Ã, XAs, as

&A3, B3& +Al, Bls

++a +Ai, Bi
—~s+N

and the zero-point energy

+~+A3, B3) +~+Al, B1) +++Al, Bl)

s[(+++As, Bs) +(+ +As, Bs) j+[+++A i, Bll +[+ +Al, Bll

For infinite distances one has 8 =3(N) &; hence,

&Aa = s [(&+&As,as) ~+ (&—&As, as) ~ —2&~j+(&+&A i, ai) '+ (&—&A i, ai) ~ —2&~), (53)

which actually depends on the distance r» as soon as the sources overlap. Because of the presence
of two real fields (is =1, 2), one has still the result given by (53) to multiply with two.

4. THE H'-PROBLEM

We have now to investigate the problem defined by the Hamiltonian H' Eq. (27), and the extra
conditions (17), (17a). As there is complete separation between the two fields with 0. =1 and += 2,
we omit the index 0. and write

H'= -', [P'(k)P'( —k)+ks'g'(k)g'( —k) 3dk,

v( —k)k exp (sk zA)g'(k)dk=0, (55)

v(k)k exp (—ik zA)p'(k)dk=0. (56)

Assuming that the sources do not overlap [inequality (31)] we can write the commutation rule
(23) according to (34) in the form

11
s[p'(k), g'(k'))= tt'(k —k') —— v( —k)v(k')(k k') QA exp (i(k —k'). zA). (57)

N 2m'
t

One can see immediately that neither the coupling constant nor the spin of the nucleons enter into
the formulation of the problem.

Applying the rule F=i[H', F$ for F=g'(k) and F=@'(—k) one obtains, with help of (56), (57),
the equations of motion

1
j'(k) =p'( —k), —p'( —k) =——j'(k) =ks'g'(k) — v(k) QA exp (—ik zA)kXA, (58)
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with

or also according to (55)

1 1
0g ——— v( —k)kp'k exp (ik z~)q'(k)dk,

X~v2~

1 1
v( —k)k'k exp (ik z~)q'(k)dk.

N~v2 J (59a)

The same result follows, of course, with the method of Lagrangian multiplicators.
As the equations of motions are linear, it is su%.cient to treat these equations classically by search-

ing its periodic solutions. It will turn out, however, that the problem is only uniquely defined if we
first make the k-space discrete, assuming for instance k, =~n; (n; integers) and replacing J'dk by
e P~,. Only at the end of the calculation shall we perform the limiting process e—+0 again. For
instance, we have then:

1 1
e' Q v k 'k„exp (ik„zg)q„'.

K mv2
(59')

For a periodic solution with a frequency u which we may put equal

we obtain from (58)

Hence, either

or

~=(p+t')'

1
( —I'+k„')q„' —— Qg exp (—ik„z~)k„X~——0.

K m.v2

1 1 v„k„
q~ =— Pg exp ( —zk„sg)X ~v2 —t'+k„'

(60)

(61)

(62a)

(62b)

From (55) we therefore obtain, using (20),

1 &;n&;.P G(k ) exp (ik„(z&—zs)) Xs, ——0,2' B . —t'+k ' (63)

which leads to the determinant condition

e' P G(k ) exp (ik„(z~ —zs)) =0.
2~2 —P+k ~

(64)

If Xdenotes the number of nucleons present, the determinants (the elements of which are written
with the double-indices Ai, Bj ) have 3% rows and 3N columns.

While the values of the roots of this equation essentially depend on the exact discrete values of
the k;„, symmetrical functions of its roots can be computed by an elegant method given by Wentzel, '
which makes it possible to perform again the limiting process to the continuous k-space. We define
a function q (t) in the complex t-plane by

1
y(t) —= e' P G(k„) exp (ik„(z~ —z~))

2~2 —t+k„' (65)

The zeros of p(t) are just the eigenvalues of / '=&a„'—p' we are searching for. As the Hamiltonian
is positive definite, the eigenvalues of co' are certainly positive, and the eigenvalues of l'=co' —p,',
therefore, certainly larger than —p'. The poles of p(t) are obviously t = k„2. If now f(t) is any function

8 I (see note 1); compare the figure on p. 115.
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which is regular on the real axis and its environment for t & —p,
' one has

d log q(t)
Zf(I ') —2 f(k ') = «f(t)

2m'z dt
(66)

On the left side the first sum has to be taken over all eigenvalues; on the right side the path of
integration is a loop in the positive sense around the real axis from + ~+ip over tp+ip and tp —ic
to + ~ ip, w—here the choice of tp lets the point t= —p to the left. By partial integration the ex-
pression (66) is transformed into

(67)

(It can be shown that the upper limits together do not give any contribution if G(k) decreases
sufficiently with increasing k.) For f(t) =(t+y')&, we obtain in this way just the change Z of the
total zero-point energy of our oscillators owing to the nucleons and their coupling with the meson
field (where the existence of two mesons corresponding to m=1, 2 has been taken into account).
Hence we have

dt
logyt.

4~i (t+p') &

(68)

It may be noted that the solutions satisfying (62a) automatically make no contribution to this
difference.

The remarkable fact is that it is possible to go to the limit of a continuous k-space in (65), namely

1
(p(t) —= G(k) exp (ik(zg —zs)) dk .

2m. t+k'— (69)

The integrals are defined if t is not on the positive real axis. There, however, one can still define

the two limiting values

qp+(x) =lim q(x+iy), p (x) =lim rp(x —iy),
y-+0

which both exist for x, y real, y positive, but turn out to be different from each other.
It is convenient now to separate the contribution of possible existing roots of p(t) for real t in

the interval ( —y', 0) from the contribution to (68) from t-values with a positive real part. The
former, if present at all, remain discrete even if the k-space becomes continuous, and may be de-

noted by
t„=((o„'—p') (0, pp(t„) =0. (70)

Introducing I =(t„) as variable of integration for the other part with positive real part of t we obtain

Going with the part of integration near to the real axis from above and below, one obtains from

(71) immediately
1 f'" ldl pp (I')

F.=Q a) + log
2xi a p (l'+p, ')& pp (I')

(72)

We shall now compute the determinant (69) defining pp(t) for the case of two nucleons present,
for which we are here mainly interested. There are first the elements corresponding to A =8 which

we cari write Ib;; with
1 2 ~" k4

I= 'G(k—)d—k.
3 ~up t+k'— (73)
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The elements for A &8 are symmetrical in A and 8 and can first be written, if we use the abbreviation

z=zg-zs, r= (s~,, (74)

88'z BSp

1 t exp(ikz) 1 2 t "ksinkrJ= G(k)dk =—— G(k)dk.
r or Jo —t+k' (76)

If we choose the 3-axis of our coordinate system as being parallel to the line joining the two nucleons,
we easily obtain from these expressions

J;;=0 for i&j,
1 dJ ' d'J

J33=-
r dr dr'

(77)

For the determinant in (69) one obtains now immediately

t'1 dJI ' ' fd'J) '
«t)= I' —

I

——
I

&r dr ) &dr')
or

o (t) = I:V i(t) j'Lo o(t) PV o(t),

with
oo~(t) = I',

(78)

(78|)

being the expression for y(t) if only one nucleon is present and

t'11dJI '
ooo(t) = 1 —

(
———(,(I r dr)

/1 d'Jl '

(Idr')

We can now compute the limiting values qr+(x), oo (x).by using the formula

F(k) | F(k) F(l)
lim dk= dk&ix
„o ~ o

—(1'&iy)+k' J ~ —l'+k' 2l

(78o)

(78o)

(79)

which holds for positive y and every F(k) which is regular on the positive real axis and its environ-
ment. The symbol P under the integral sign denotes the principal value. Transforming the expression
for I into

~ 00 G(k)
3I(P) =— k'G(k)dk+l' — G(k)dk+l4 —, dk,

'll o or & o
—l'+k'

we obtain with the abbreviation

2 2
3A. =—, G(k) k'dk —=— G(k)dk

~JO 6 7F'& 0

1 2 p" G(k)3I=3A+l' —+l4 — dk.
u or J o

—l'+k'

Obviously the order of magnitude of A is tt '. For the following it will be sufficient to evaiua« the
integral for

l(&u ' (80)
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In this case it is permitted to put G(k) =1 in the last integral and we obtain'

1
3I~(P) =3A+P +i—l'.

C
(81)

Under our assumption r»a (see (31)], and taking (80) into account we can put G(k) =1 in the
definition (76) for J. In this way one easily gets"

J~(P) =e~'"/r. (82)

Inserting now (78) into (72) one sees that pi(t) gives rise to the zero-point energy and that for
the interaction energy we have

1
t
" ldl (ps, +(P) 1

t

" ldl ys, ~(l')
B 2 log

' + log
2~i g p (l'+p, )I (p (l') 24rs a p (I +f4 ) I (ps, (l')

From (81) and (82) it follows that for r»a, ys, ~ and ys ~ are small in comparison with 1 (they
are therefore never zero and the discrete term in (72) can be omitted) and we can put

(1 idJ~&' (1 1dJ~i'
log pcs, ~=log 1 —

i
——

(I~r dr ) &I~r dr )
(1 d'J~ t

' (1 d'J~'l '
og @ps, a=log 1

l,I~ dr' ) &I~ dr' )
As in the analogous case of Wentzel only the region l«u ' contributes appreciably to the Fourier
integral;" therefore we can simply substitute A for I~ and get

ldl 2 (dJ ) s 2 (dJ ) s (d'J+) s (d J
~~B=—

24riA'op (V+f4')I r' & dr ) r' & dr ) & dr' ) & dr' )
Inserting (82) we obtain the final result

1 1 &" ldl
s»«L2( —1+ilr)'+ (2 —2ilr —l'r )']+con). compl.

27ri A'r' ~ p (l'+f4') I

which can be written

ldl
V~s= — ' — Lsin 2lr (6—10Pr'+l4r4)+4 cos 2lr ( 3lr+l'r'—)]

4rA'r' J p (P+I4') I
(84)

The result can be expressed by the function

7r ('" zsin zx——Ht&'&(ix) =E(x)= dz=
2 ~ p (1+s') I u p

exp L
—s(s'+1)1]ds

9 For t&0 one obtains, putting t= —I2,

3I(—I,2) =3A —P —+P.
8

"For t (0 one obtains, putting again t = —l'
f( I')=e "/r-

"In the usual way we use, in the following, for integrals with oscillating integrands f(x) which are not convergent in
the proper sense, the definition

f f(x)dx=lim f f(x)e '"Cx

)Compare W. Pauli, Rev. Mod. Phys. 15, 175 (1943), Eq. (190))
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and its derivatives. We also notice the connection with

zz t' cos zx—Hp'(ix) =As(x) = dz=
2 ~ s (1+z')'

given by
&0

t "exp [—z(s'+1)'*]
dS,

(s'+ 1)'

1~(x) = —Xs'(x), E.o(x) = —K'(x) ——Z'(x).

From (84) one gets the expression
p,

g(2~r)
mA'r'

with

g (x) =6X(x)+—x'X"(x)+—x'X' (x) —6xX'(x) ——x'X"'(x),
2 16 2

which can be transformed into

t'43 63 1 i (43 5
g(x) =

(
—+—x +—x [X(x)+ (

—x+ —x [Xo(x).
&2 16 16 ) &4 8 j

Using X(x) = 1/x for x((1 and X(x) = (z /2x) &e * for x))1, we obtain

(84b)

(84c)

43
V~a = ——

4g A'r'
for pr(&1, (85a)

p, ' 1
Vga = — — e—'&" for p,rp)1.

2+7r A' (pr)"'
(85b)

S. RIGOROUS TREATMENT OF THE SPIN-INDEPENDENT CASE f=o ESTIM.ATION OF THE
CONTRIBUTION OF Q IN THE SPIN-DEPENDENT CASE

To prepare the estimation of the part 0 given by (28), to the interaction energy in the general
case, we first discuss briefly the rigorous treatment of the spin-independent Hamiltonian" obtained
from (15) by putting f= 0 and omitting the index n, namely

H=s) [P(k)P( —k)+ko'V(k)a( —k) jdk+sg E~ Q~',

where again, as in (19), Q~ is given by

Qg —— i t( —k)k exp (ik zg)q(k)dk
~v2 J

From the canonical equations of motion one easily obtains

—Z

ij(k)+kp'g(k)+g t(k)k Q~ exp ( —ik zg)Qg ——0.
m%2

As these equations are linear it is sufficient to search their periodic solutions and if we put, as in
the last section, for the square of their frequency,

ties

—)2+~2

"The analogous case, with the scalar

Qs= ~fs( k) exp (ik—zg)g(k)dk

instead of the vector Qz in the Harniltonian was treated by Wentzel, see reference 1 "I."
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and introduce discrete k-values, we obtain the system of linear equations

(—l2+k„')g„+g p'Q v(k )k. , exp (—ik„zg) Q„v(—k ) exp (ik„zg)g ~ =0.
2Ã i, A

Hence we have either P = k„' and Q~ ——0 or

1 v(k )
b '+g p P k; exp ( —ik z„~)v( —k „) exp (ik„z&) =0.2s',

, g —l2+k '

This determinant can be transformed with the help of the following algebraic theorem

(88)

&- +E f.(n)g''(n') = &',+2- f'(n)g;(n)

the latter determinant having N rows and N columns, whatever the corresponding number for the
first determinant may be. The proof of the theorem is given in the appendix. In our case one has
to replace i, j by the double indices Ai, Bj, and N by 3X, if X is the number of nucleons present.
The determinant condition then gets the form

1 G(k„)
8Q ', e j+g p' P k;k, exp [ik„(z„—ze) ) = 0.

2vr' ~ —l'+ k, '

The subsequent calculations can be made in exactly the same way as in the last section, by replacing
in (68), (71), (72) the previously used function pp(t) by the new one f(t) defined by

k,k;
p(t) = 8~;,e,+g G(k) exp Lik (z~ —ze)]dk,

2~' J t+ k'— (90)

instead of (69). Again this definition fails on the positive real axis, where il'(t) has different values
if the approach is made from the upper or the lower half of the complex plane. From (78i) to (78p)
one gets the corresponding expressions for p(t) by substituting 1 +gI and gJ'for I and J, respectively.
Hence

1dJ~ ' (
!pi(t) =1+g'I', p2(t) =1—

!
——

I A(t) =1—
I

(g '+I r dr j &g '+Idr'p (91)

(38')QQaA '+aA. ~

a, A

In order to estima, te the contribution of 0 to the interaction energy (or self-energy) we use the
well-known formula of the perturbation theory

For rgb&)a the final result for the interaction energy V» is therefore exactly the same as that for the

strong coupling case which was given by (Z4) if the factor 1/A' is replaced by g'/(1+gA)'. While in

the strong coupling case the result holds if only the coupling constants fulfill certain inequalities
which will be derived, the generalized result for arbitrary coupling only holds for f=0. In this
particular case the relative error of the result (84) is obviously of the order of magnitude 1/gA.

We are now in a position to estimate the corresponding error in the general case, where both f
and g are different from zero. For r~e))a, we can use the expression (38) which we can write, using
the notation X~ introduced in (59)

(92)

where r are the excited states, 0 the ground states, and E„, Bo the corresponding energies. In our
cases the excited states are those where one of the oscillators of the H'-problem and one state of
the Hp-problem are excited, the former corresponding to the matrix element of .X g, ; (which are
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independent of the coupling constant), the latter to those of the Q g, , In order to estimate the
order of magnitude of the matrix elements of the Q we can, according to (47), (48), (49) approxi-
mately replace Hs by a system of oscillators with the frequencies (49), namely

vt= [(g+f)N)&, vs ——[(g—f)Njl,

the order of magnitude of the corresponding matrix elements of Q, ; is, according to (47), (48)

(0
~ Q„g„(r) (N/vt)1 and (N/vs) 1.

In the denominator of (92) the excitation energy vt or vs of Hs will in the strong-couphng case
always be large in comparison with the excitation energy of H' (the I's being cut off by a '); hence

N 1
A&o —()I )A (~ )A

g~f
where () )A„means some average, this second factor being certainly independent of the coupling
constant.

The comparison with the above result for f=0 let us also expect in the general case errors of the
relative order

DBp 1
and

(g+f)~
The strong coupling conditions are. therefore

(93)

or, as' a 3
(g+f)A)&1 and (g —f)A&)1,

(g+f)»~', (a —f)&&~',

(94)

(94')

as was stated in the introduction. Moreover one sees again the importance of the inequality g&f
[stated in (50)j for the consistency of our approximation. Moreover, if (94) holds, the spin-dependent
part of the interaction energy will be smaller than the spin-independent part given by (84), by a
factor whose order of magnitude is at most that indicated in (93).

0. VECTOR-PAIR THEORY

In close analogy to the scalar-pair theory we discuss in the following the vector-pair theory, in
which a pair of mesons with spin 1 and opposite charge interacts with the nucleons. The charged
mesons with spin 1 are described in the usual way by a complex vector field P(x) or two real vector
fields P (x) with n=1, 2 and the simplest spin-dependent interaction of pair type (that means
quadratic in the meson field) with the nucleons is characterized by the following Hamiltonian"
which is analogous to (1) and (8):

1
H=-,' Q ~ m, '+—(V era)'+[VXPn]'+p'Pa' dx+4sf Q e~ ) U(& z~)Pt(&)d—x

a A

( 2

X "U(x—z&)ps(x)dx +-,' 4sg p I U(x —zg)p dx I, (9&)
e, A

with the canonical commutation relations

i[~.;(x), ~„(x')$ =3.,3,;3(x—x'). (96)

Transforming into momentum space as in Eqs. (10) to (14), and again putting Ass =k'+p' we obtain

"For the force-free part in which the fourth component of the four vector and its time derivative is eliminated, compare
N. Kemmer, Proc. Roy. Soc. .A166, 127 (1938); H. J. Bhabha, Proc. Roy. Soc. A166, 501 (1938); and W. Pauli, Rev.
Mod. Phys. 13, 203 (1941), Section 2a.
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as in (15),

( 1)H= ', Q-i 8;,+k,k,—iP;(k)P;( —k)+(ko'5, j—k;k;)g, (k)q j(—k) dk

+f QA IFA v( —k) exp (ik zA)il&(k)dkX v( —k) exp (ik zA)il&(k)dk
2x' aJ

( n 2

+r'g 2A I v( —k) exp (ik zA)q. (k)dk I
. (97)

2+' ga

The coupling constants f and g have now the dimensions of a length. The split of the field in a "zero
field" and a residual field analogous to (17) to (19), which avoids cross terms between the P A

and the p ~ in the Hamiltonian is here given by

v( —k) exp (ik zA)q '(k)dk 0=

1
v(k) exp (—ik zA) p (k)+—kik;p (k) dk=0,

p

1
p (k) = QA v( —k) exp (zk zA)P A+p '(k),

(98a)

Q A= v( —k) exp (ik zA)g (k)dk.
v@2~

(100)

We restrict ourselves here to the case where the sources do not overlap; then. it follows from it

=11
g.,(k)=— v(k) g exp (—zk zA)~ Q A„+—k,k;Q.A; ~+g„(k),

A, j
(101)

1I',A, ; gj ——v—(k) exp (—ik zA) p;(k)+—k;k;p„(k) dk,
7l p

where Ã is in analogy to (32), (33) given by

Eb„=, G(k)
/

8;j+ /dk
1 p ( kkj)

2v'J ( ji' )
2 e" ( 1k')

G(k) i 1+——ik'dk.
v~p & 3ji'j

(102)

(103)

(103')

We remark that for jia«1 the difference of E and N/jip is small, of the relative order (jia)'. The
commutation relations are

ZP aA, i~ QpBj] ~ap~,AB~ij&

as before, the P,'(k), il (k) commute with PaA„and Q A, ; and in accordance with (98), (98a)
one has

1
iLP. (k), gi, j (k')]= &.p S(k —k')S,j—— PA exP I i(k —k') z,]

1
~ v( —k)v(k')

i b,j+ k,'kj'
i

. (104)—
)

The Hamiltonian splits again into
H=Hp+H'+Q.
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Here IIp is again given by (37) with a slightly different meaning of d, which coefficient however
can also here be neglected in the strong coupling case. H' has the same form as the force-free function

H'= ', Q -I
l 8;,+ k,k—; lp, '(k)p, '( —k)+(ko'8, ;—k;k;)q, '(k)g (—k) dk,

aij& 4 p

but with the subsidiary conditions (98), (98a). Using

( k,ki) f kikil
l I ~t/+

kp') 4

(105)

one obtains 6nally for 0 the expression

Q z. v( —k) exp (ik zp. )kp'q (k')dkS,g, , prv2 J

In view of (98) in the integral kp' can be replaced by k', hence putting in analogy to (59)

1
v( —k)k' exp (ik zg) .qa(k)dk,

vpr2 E J
we have as in (38')

Q=Q Q g.X.g.
a, A

(106)

(10/)

(38')

The H'-problem can be treated as in Section 4. Instead of (58) we obtain from (105), using (104),
(98), (98a) and omitting the index n,

k) =~,
l

~„+—k,k, IP, (-k),t' 1

—p;( —k) = Qi(kp'&;i —k/ki) ji(k) — v(k) g~ exp (—ik z, )i.„;,

where X~ is defined by (107). For tl,'(k) one obtains

1—y, '(k) =kp'g, '(k) — v(k) P exp (—ik z,)l S,,+ k,k, lZ„. —
x%2 E

(108)

The only changes necessary in the computations of Section 4 for vector mesons are therefore the
replacements of kik; by 6,;+(1/ii') kik; from Eq. (63) on. Instead of I we get

ancl lnsteacI of Jzg'

2 r" k'(1+pk'/p') 2 t
" k' 1

G(k)dk =— G(k) dk+ I, —
pr op l'+k'— pr a p

—lP+k' p2

J,;=18;;+—I;;,
p2

(109)

(110)

where J',; and J were defined by (75), (76). As

2 ~" k2 1 2 t" G(k)
G(k) dk =—+l' — dk

~ J lp+k2 g ~ J i2+k2
we have for l))a—'

1 1I~ = I~+ &il, — —
p G
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or according to (81) with

A =A+——,1 p

3 6

1
3p'I~ =3A+ (L'+3y') +i—L(L'+ 3y')

(112)

(111a)

We notice that for pa(&1 the difference between A and A is negligible.
The computation of VAB for the vector theory follows the same line as for the pseudoscalar

theory. According to (110) one obtains for r»a instead of (83)

1 1 &" ldl ( 1dJ~ )' ( 1dJ
~AB +~'J+

I
—2I —— +~'J-

I2iriA'ao (L'+p')l & r dr ) L, r dr

( d'J+ l ' (' d'J
+ I

— +~'J+ I
—

I

— +~'J-
I (»3)

or

~AB
1 1 r 1dl

e"'"L2( —1+ilr p'r') '+—(2 —2ilr —l'r' —p'r') ']+conj. compl.
2~i A'r' ~ (L'+p')'

(114)

One finds by comparison with (84)

A' 1 i
" ldl

~AB—:VAB sin 2lr (2p'L2+3p')r'.
As'r' J (L'+y') &

With the help of the function K(x) already used, we obtain

p
Vgs ——— g(2pr), —

~A'r'
with

x) 4'
g(x) =g(x)+

I

—
I 5 —2X"(x)+3K(x)],

&2)

which can be transformed into

(115)

(115a)

(115b)

/43 59 1 ) /43 1
g( ) =

I
—+—'+- ' I&( )+I —+— ' I&o( ). (115c)

&2 16 8 ) E4 2

The evaluation for pr«1 shows that there the second term in (115) is small compared to the first
by the relative order (yr)2; hence in view of (85a)

A' 43 1
NAB ==Vga = ——= for pr&&1.

4x A'r'

For pr&&1, the second term turning out to be equal to the first; hence,

(116a)

A'
t/"AB =2=VAB =—

A'
p ———e 'L'" for p,r))i.

g~r A' (pr)'i'
(116b)

Finally, in analogy to the development of Section 5, the spin-independent case f= 0 can be treated
rigorously and leads to the result that for I there has to be substituted 1/g+I. Thus for r~s&&a, Vzs
is again given by (115) if the factor 1/3' is replaced by I (p'/g)+A] '. The relative error of the
result (115) for strong coupling is here therefore of the order p'/gA. In the general case this relative
error will therefore be

y't (g+f)A] ' and p'[(g f)A], — (117)
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and the strong coupling condition

or for pt2&(1,
(g+f)A» II,', (g —f)A» p',

(g+f)&'» I" (fI f—)&'» I
'

~ (118')

One has to remember that for vector mesons, g and f have the dimension of a length and not of
a volume as in the scalar theory.

APPENDIX

Transformation of a Determinant

In Section 5 we had to evaluate a determinant of the form

On the number of rows or columns we only suppose that it is larger or equal to N (it may even be
infinite, if the functions f;(n), g, (n) are decreasing with increasing n with a sufficient degree). We
now make an S-transformation

y' =5-'yS,

which certainly does not change the determinant:

by choosing S in the following way:

=f„(n) for m= 1, 2, , A
(nls fm)

is undetermined for m) N.
Then we obtain

@„„.=b „.+ g (mlS-'In) P (nlSli)g;(n') (n'I5lm')

and because of
Q „(m I

5-'
I n) (n I

S
I i) = b„,,

Hence,

~ = b +P P b,g, (n') (n'
I
S

I
m').

n' i=1

=b,,+P g, (n)f;(n) for i Ã,j «N,

@, ~ is undetermined for i=%, m') X,

p „=b ~ for m) N and all m'.

The determinant has therefore the form

b'+Z- g*(n)f (n) undetermined

0

where 1 means the unit matrix. Hence it is equal to the smaller determinant with N rows and N
columns:

Ilb',+~- g, (n)f;( ) II
= lfb;,+P.f,(n)g;( ) ff,

I

as was stated in the text.


