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' 'T is a modest and almost trivial contribution
& ~ which I have to offer for the special issue of
this journal dedicated to Professor Bohr. The
problem is quite out of date but nevertheless it
was unsolved until recently. It concerns the
dependence on temperature of the pyroelectric
moment. An elementary theory of this eRect
was given by Boguslawski' in I914 with the help
of an Einstein model of a crystal, namely, a set
of independent linear oscillators. As in the first
theories of thermal expansion, these oscillators
were assumed to be non-harmonic; then the
mean amplitude of vibration is not symmetrical
about the equilibrium, and this asymmetry
increases with temperature. If the oscillators are
charged particles and the crystal lattice of suAi-

ciently low symmetry so that the eRects of the
asymmetry of the single oscillators do not cancel,
an electric moment depending on temperature T
is produced. Boguslawski found the same func-
tion of T as that representing thermal energy
and thermal expansion, hence for low tempera-
tures a T'-law. Careful experiments were carried
out by Ackermann' in 1915 down to T=23'K.
A discussion of his results by 8oguslaw ski
showed that although . the theoretical curve
represents the observations fairly well over a
large interval of temperature there are marked
deviations for the lowest temperatures. Bogus-
lawski found that a T'-law gives much better
agreement with the observations than his theo-
retical T'-law.

I took up this problem in several papers and
in my book Atomtheorie des Festen ZN,standes'
from the standpoint of general lattice dynamics;
I obtained again the T4-law, and I summarized
that section of my book with the words: "The
contradiction of this theoretical result with Acker-
mann's measurements remains to be solved. "

' J. Boguslawski, Physik. Zeits 15, 283, 569., 805 (1914).' W. Ackermann, Ann. d. Physik 46, 197 (1915).' M, Born, Zeits. f. Physik 7, 217 (1921);11, 327 (1921).
"Atomtheorie des Festen Zustandes, " Encycl. d. Math.
Wis. 5, 529 (see in particular p. 689).

Falkenhagen, in his article on pyro- and piezo-
electricity, discusses, in connection with this
question, a paper of Lindman' which deals with
the distinction between "true" and "apparent"
pyroelectricity (the latter being the eA'ect of a
combination of piezoelectricity and thermal ex-
pansion), and he suggests the solution of the
problem may consist in the non-existence of true
pyroelectricity. This seems to me quite oR the
point; for as piezoelectricity is little dependent
on temperature, the "apparent" pyroelectric
moment should behave like the thermal expan-
sion which doubtless follows a T4-law.

I have now found the solution of this old
problem as part of a general revision of lattice
electrodynamics and lattice optics. This work
was undertaken in connection with the attacks
directed against lattice dynamics by Raman and
his collaborators. The Indian physicists have
produced many new and accurate observations
of electrical, optical and x-ray phenomena. These
results led them to deny the validity of the whole
theory of lattice dynamics and to propose another
theory, the main characteristic of which is the
contention that the vibrational spectrum of a
lattice is not quasi-continuous, but consists of a
small number of sharp lines. This contention is,
of course, too absurd to be taken seriously. For
in classical mechanics and in quantum mechanics
as well, a vibrating system of N particles has
3N 6normal mo—des of vibration (6 being the
number of translational and rotational degrees
of freedom). Raman would hardly deny that a
molecule consisting of 10 atoms has 24 normal
modes; perhaps he would also agree that a
system of 100 atoms has 294 normal modes-
but a system of 1000 atoms which may be
already called a micro-crystal would, according
to his theory, not have 2994 normal modes but
only 48 (if I understand his somewhat vague
statements). The attacks of the Indian physicists

!
4 H. Falkenhagen, Handbech der I'hysik (1928), Vol. 13,

Chap. 8, p. 291 (see in particular pp. 301 and 316).
~ K. F. Lindman, Ann. d. Physik 62, 107 (1.920).
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against lattice dynamics are mainly directed
against the use of the cyclic boundary condition;
but Ledermann' has given a rigorous proof that
the results obtained by this method are asymp-
totic approximations to the correct solutions.
There is no doubt that lattice dynamics as
represented in my old book is correct. But the
new observations of the Indian scientists are not
concerned with dynamical but with thermal,
electrical and optical phenomena, and I perfectly
agree with the Indians that the theory as de-
veloped in my book is incapable of accounting
for many of these experiments. The reason is
that my book was written before the discovery
of quantum mechanics; it is based on Bohr's
tentative adaptation of classical mechanics and
optics to quantum theory, and it misses, there-
fore, a)I more refined details. It is strange that
during the 20 years which have elapsed since the
birth of quantum mechanics nobody has taken
up the problem of investigating the optical
properties of a crystal from the modern stand-
point. The reason is that many of these effects
are inconspicuous and of no practical importance
while other problems (like the theory of metals
and alloys) seemed to be much more urgent.
However, now that the skill of the Indian
physicists has produced a host of interesting
details, it is imperative that they should be
explained. Therefore I have worked out the
dynamical, electromagnetic, and optical prop-
erties of lattices from the standpoint of quantum
mechanics, and I have no doubt that all the new
observations can be explained in this way. I do
not know whether I shall be able to publish these
investigations as a whole; but I am pleased to
have this opportunity of giving an example
which illustrates the method.

From the standpoint of quantum mechanics a
crystal, like any molecule, is a system of nuc1ei
and electrons, electrically neutral as a whole,
with the special feature that there is only a small
number of different kinds of nuclei, say n; but
each kind is represented by N individuals, where
N is very large. The method of so1ving the wave
equation for any atomic system has been given

by Oppenheimer and myself. ' The result is this:
Assume an arbitrary configuration of the nuclei
(coordinates X) and solve the wave equation for
the electrons (coordinates x). The energy in
every electronic state is then a function of the
nuclear coordinates X; let 4 (X) be this function
for the lowest electronic level. The solution of
the actual wave equation in which the x and X
both are variables can then be expanded in
a power series with respect to a parameter
r = (m/3II)l where m is the mass of the electron,
3II that of a riucleus (say the smallest nuclear
mass occurring). For r=0 one has the solution
for fixed nuclei, described above; the eigen-
function can be written

P(x, X) = x(X)p(x, X)

where x(X) is arbitrary. The condition for the
soIvability of the next approximation is that the
electronic energy 4(X) is stationary. If X, is a set
of solutions of this "equilibrium' condition and
X—Xp =u small deviations, the second approxi-
mation provides an equation for the function x(X)
=x(XO+u) = g~(u); it is the wave equation for a
set of coupled oscillators with nuclear masses and
a potential energy which consists in the second-
order terms of C(X+u) with respect to the u
Higher approximations describe the rotation of
the system, as a whole (which for crystaIs may
be neglected) and of couplings between electronic
motion and nuclear vibrations (and rotations).

The total electronic energy in the lowest level
C(X) represents, therefore, the potential energy
of the nuclei up to terms of the second order in
T. If one writes

4(X+u) =C"+Q), C„'u„+2 Q)„„C'„„'u„u„(2)

where O', C„', C„„' are the values of C(X) a,nd
its first and second derivatives for the configura-
tion Xp, then Xp is determined by the equations

(3)

where p, indicates all components of all position
vectors of the nuclei. Now these Eqs. (3) have
the peculiarity that for a crystal, that. is, for a
system consisting of a small number n of types

6@1. Ledermann, Nature 151, 197 (1943); Proc. Roy.
Soc. 182, 362 (1944).

~ M. Born and R. Oppenheimer, Ann. d. Physik 84, 457
(1927).
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of nuclei, each type represented by a large'
number N of individuals, there exists a solution
which approaches more and more a lattice,
namely a periodic repetition of n equal groups,
the larger X is. Deviations of periodicity occur
mainly on the surface. In the limit N~~ one
has an exactly periodic lattice; but then the
surface has receded into infinity, and the Eqs. (3)
are no longer sufficient to determine the con-
figuration completely. One can easily see that
they reduce to 3(n —1) equations restricting the
relative positions of the nuclei in the base, while
the shape and size of the cell can be chosen
arbitrarily. The latter depends on 6 constants,
the scalar products g p

——a ap of the three base
vectors al, a~, a3. It is clear that these are
macroscopic parameters, like the volume of a
gas, and have to be determined from statistical
mechanics. For this purpose one introduces
normal coordinates g(J) and their conjugate
momenta P(J); here the index J assumes 3Nn
(more precisely 3Nn —6) values. By applying
cyclic boundary conditions, it is shown that J
can be split up into two indices j, q where

j= 1, 2, . 3e characterizes different branches of
the elastic spectrum and q, the momentum vector
of the elastic waves, is restricted to N lattice
points filling the cell of the reciprocal lattice.
Now (2) becomes

for A. Small changes of these parameters can be
described by

6 components x~, x2 ' ' 'xp of the external
strain, 3(n —1) components y (k), (m=1,
2, 3; k=1, 2, n —1) of the internal
strain.

n—l

A =A'+2 Lpl. ,+Z 2 y. (k)
p=l

+2 2 Lp~lx.x.+2 2 2 y. (k)x,
p, 0=1 k=1 a=1 p=l z&y P

n—1 3

+-' 2 2 y-(k)ye(k'). (~)
i, 0'=i a, e=i ~P

The former are the rectangular components of
the tensor Bg e= 6(a .ae) ordered in such a way
that the indices combinations 11, 22, 33, 23, 31,
12 are now denoted by 1, 2, 3, 4, 5, 6; indices of
this kind will be indicated in the following by
the letters p, 0, 1, 2, 6. y (k) are the varia-
tions of the relative coordinates x (k) —x (0),
(n= 1, 2, 3) of the base points with respect to
one of them (k =0).

In the vicinity of an arbitrarily chosen base,
A has an expansion in terms of the x, and y (k)
of the form

~=c'+-' E. '(J)~'(J)

and the kinetic energy

&=k Z~P'(J).

(4)

(5)

Here A' and all coefficients (bracket symbols are
perfectly defined functions of the arbitrarily
chosen base parameters and of temperature. We
now define the primary base by postulating that
the linear terms in A shall vanish for T=O:

Here C' and sP(J) depend still on the arbitrarily
chosen parameters of the base, namely the 6
quantities g e=a ae, and the 3(n —1) relative
coordinates of the nuclei forming the base. The
total energy @+Xis now that of an assembly of
oscillators and has the energy levels

~.= Qz &(o(J) Iv(J)+-,'I, v(J) =0, 1, 2, (6)

The free energy is

A = kT log Q„e—'"'"r—

=C'+kT g log (1—e "' "" ) (7)

As C ' and ~(J) depend on the 6+3(n —1)
= 3(n+1) parameters of the base, the same holds

Lphr=o=0
r=o

=0

(10)
t'+=i, 2, 3; p=1, 2, 6i

k=1 2, n 1)—
These are 6+3(n —1) equations for the
6+3(n —1) parameters of the base. They have
also to satisfy the conditions (3); but it is easily
seen that these are compatible with (10).

When the base of the lattice for T= 0 is

determined from (10) the quantities t p) and

are functions of T which vanish for: T=O; they
can be interpreted as thermal stresses. We intro-
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duce the notation

Lp j= —X.(T):
external thermal stress components.

k I= —F.(k; T):
internal thermal stress components.

If the crystal is free from mechanical surface
and volume forces, its shape for the temperature
T is determined by

BA/Bx, =O, BA/By. (k) =0,

or explicitly

k
Z. Lp.jx.+Z. 2- y-(k) =X,(T),

with the "true" one. The reason for this is the
following: If the crystal is subject to a mechan-
ical stress X, and an electrostatic field E, so that
the force on a nucleus is F (k) =eaE, the addi-
tional mechanical strain satisfies equations of the
same form and with the same coefficients as
(13) or (14), if the thermal strain and stress
components are replaced by the mechanical ones;
one has in particular

xp ——Q, sp.X,+Q d pE,
M = Q, d, pXp+Qp b pEp,

where s„are Voigt's elastic moduli, b p the
components of the dielectric tensor, d, , the
piezoelectric moduli; one has

A) P

k kk' '

E. x.+2' Ep yp(k) = ~-(k' T).
P

(13) kk'

(16)

The solutions of these equations represent the
components of the thermal struin relative to the
configuration for 1=0; they have the form

x,(T) = Q. I po. IX,(T)

+Pa P. k

0-'s P
Y(k; T),

(14)

y (k; T)=P, X,(T)

kk'
+Ra Ep ~p(k" T)

Now if each nucleus carries a resultant charge eI„
defined as the sum of the nuclear charge and
that of the electronic cloud of the atom, the
internal thermal strain produces an electric
moment with the components

M (T) = Pa eay (k; T) = pa Pp
A) P

eaXp(T)

kk'
+Qaa Qp ea&p(k; T) (15)

It is this expression which in my previous theory
(and essentially also in Boguslawski's "mono-
chromatic" theory) was interpreted as pyro-
electric moment. In particular. , the first term on
the right-hand side was identified with the so-
called "apparent" pyroelectricity, the second

d. , =pa
n, p

Xp(T) =-
EXP

Ba~(J) 1= —Pgk
gg gfi(e(J)/kT

P

8A
X (k;T)=-

By (k)

Bai(J) 1=-PJ 5
By (k) eke(z)/aT

This shows that the first term in (15) can be
written

Q, d. ,X,(T) (17)

and represents, therefore, the combined egect of
thermal pressure and piezoelectricity, called
"apparent" pyroelectricity. Hence the other
term in (15) ought to be "true" pyroelectricity;
it can be considered .as dielectric polarization
produced by a "thermal electric field" defined

by eaE (T) = F (k; T); for it can be written in
the form

2-p &-pEp(T)

We now see that the dependence of these
quantities on temperature is essentially the same
as that of the thermal stresses (11), which is
obtained from the free energy A; one has
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M. =e P ZqX. (k) —P x.(k, s) . (23)

( p on)
operator acting on the wave function (1), and
one has to form its matrix elements. This can
be done in two steps: The first step consists in
building the matrix elements with respect to the
electronic wave function; these matrix elements
are functions of the nuclear coordinates X. The
second step consists in forming the matrix ele-
ments between the diff'erent vibrational states.
As we have here to deal only with the electronic
ground state with the wave function q (x, X), we
get the intermediate diagonal element

(20)&o(J) =c;q,

where c; is the velocity of sound and q is the
length of the wave vector. Hence

da)(J) Bc; 1 Bc;
Q= GO)

BXp BXp Cg BXp

and Pq is to be replaced by

r
g dg ~ —— m der

C

These sums can be evaluated with the help of a neutral atom). The total electric moment is
Debye's approximation; only the three acoustical
br@nches of the spectrum are taken into account,

fq) . A, s=l
and a&(J) =&o~: .

~
is replaced by

It has to be considered as a multi licati

Then the expressions (19) are composed of terms
of the form M„(X)= p*(x, X)M y(x, X)dx. (24)

AG) de
geol/k T

(21)

e(Zi —'Zi') = ej, (22)

is the eRective charge of the particle k (ei, = 0 for

where cv; is Debye's maximum frequency; but
(21) is the total thermal energy, and for low
temperatures is proportional to T'.

This is the result of the older theories which
is not confirmed by experiment. But where is a
Raw in the reasoning&

It is the assumption that the electric moment
M is obtained by multiplying the internal strain
components with some effective charges and
summing over the base. This would only be
correct if. each atom or ion were a rigid structure
so that its resultant charge could be considered
as being concentrated on the nucleus. That is
certainly not the case. But pre-quantum-me-
chanical theory had no means of dealing ade-
quately with the deformation of the electronic
cloud surrounding the nuclei.

Let us consider first an arbitra, ry atomic
system (not necessarily a crystal), the nuclei of
which are distinguished by the letter k = 1, 2,
Let ZI, be the atomic number of the nucleus,
X (k) (m=1, 2; 3) its coordinates; let Zi' be the
number of electrons belonging to this nucleus,
x (k, s), (s=1, 2, . ZI, ') their coordinates. If e
is the electronic charge the difference,

or with (26)

M.(X) =gi ei,X.(k) —m. ',

where the electronic contribution

+k'

(27)

m„'= e Q Q „y*(x')x„'(k, s) q (x')dx' (28)
s=X A;

is independent of the X. The formula (27) is
that used in previous theories, and it leads for a.
homogeneous deformation at once to the ex-
pression (15).

These functions can be calculated only if the
electronic problem is explicitly solved. From the
standpoint of the present theory they have to be
accepted as some definite (though unknown)
functions of the nuclear coordinates. However,
it can be shown that M is a linear function of
the X, if the iorls are Practically rigid structures.
This means that the wave function y(x, X)
depends only on the relative coordinates

x '(k, s) =x, (k, s) —X (k).

Introducing these in (23) and using (22) we get
Zk'

M =Q ei,X,(k) —e P x '(k, s) . (26)
s=1

The matrix element (24) written in the variables
X 1S

M (X) = p*(x')M p(x')dx',
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But it is c1ear that the hypothesis of rigid
ions is a very poor approximation even in the
case of ionic crystals.

In actual fact M (X) is not, as in (27), a linear
function of the X. In any case M (X'+u) can
be expanded in a power series of the u; com-
bining, as in (2), the indices k, n into a single
one p one has

M, (X'+u) = M '+Q„M, „u„

+Q„.M„„N,„,u„+ . (29)

In the case of a crystal the displacements u are
of two kinds: a homogeneous deformation or
strain superposed by thermal vibrations, sym-
bolically: u=uhom+Qghgp~. Introducing this into
(29) it is sufficient to take only linear terms in

ui„~ into account while higher terms of ut~„
must be considered. The ut, i,„can be replaced
by the normal coordinates (. Thus, one can write

M. =M ($)+Q p M„,px p

+P, Pt M, (I; ()yp(k), (30)

where x„, y (k) are the strain components (8).
For the special case of rigid ions where M is
represented by (27), M ($) becomes a constant,
the second term vanishes, as can easily be seen,
and the last term reduces to g~ e&yp(k), in

agreement with (15). In this case the whole
temperature dependence of the electric moment
is caused by that of the internal strain compo-
nents, and this leads, as we have seen, to the
wrong T4-law for low temperatures.

The correct interpretation of the formula (30)
is this: One has to consider all the terms linear
in the strain, those with x„and with y (k) as
well, as "apparent" pyroelectricity and the first
term M (() (which did not appear in the older
theories) as "true" pyroelectricity.

It can now be easily shown that it gives the
correct dependence on temperature. For this
purpose one has to expand

and take the thermal average, i.e. the average
of the diagonal elements with respect to the
vibrations weighted according to the Boltzmann
factors of the states. Then (g(J))A, =0 while

(32)

(k'(J))"= (~)! '(~). (34)

If one now uses the Debye approximation one
has to replace M (JJ) by some constant average;
the sum then reduces to

kcodco

J e~"(ar —1
(35)

which differs from (21) and behaves, for T~O, "

like T'. The mean square of the amplitude
appears also in Debye's theory' of the inHuence
of temperature on x-ray scattering. He intro-
duced the function

1 * $d)e(x)=- ~
x ~'p e& —1

(36)

and tabulated it with the help of its expansions
for small and large x. The pyroelectric moment
(33) can be expressed in terms of C; one obtains
approximately

(
8 L&)

(37)

where 0 is the characteristic temperature used
in Debye's theory of specific heat. For large x
one has

m'1 ( 11
C(x) =———s-.

l
1+- I—6x I, x]

(38)

hence for small T, the pyroelectric moment (37)
is proportional to T' in agreement with Acker-
mann's observations.

In a similar way one can tackle many other
electromagnetic and optical properties of a
crystal and obtain results which differ consider-
ably from the quasi-classical older theory. I wish
to mention a few examples. The simple theory

P. Debye, Ann. d. Physik 43, 49 (1914).

As only the change of the pyroelectric moment
with temperature is observable one can omit the
constant term M (0) and also the contribution
of zero-point vibration for (P)A„. Hence

(M (5))A z& M (~~) (k (~))A (33)

The true pyroelectric moment is composed of
terms which are not proportional to the mean
energy e(J) of the oscillators, but to the mean
square of the amplitude, i.e. to
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of residual rays (Reststrahlen) is not satisfactory
since a fine structure has been observed' con-
sisting of weak maxima of absorption and re-
Hection. Blackman and I" have attempted to
explain these as the effect of anharmonic terms
in the potential energy. I think now that this
effect is of secondary importance, and that
harmonic vibrations are quite su%cient; the
proper explanation can be given on the same
lines as those used here, by an application of
quantum mechanics to the electric moment
induced by the incident light wave. It is easily
shown that the ordinary theory of residual rays
is then only a first approximation, and that a
secondary spectrum exists which depends on a
second approximation. Closely connected with
this refined theory of infra-red dispersion and

' B. Barnes, Zeits. f. Physik 75, 723 (1932); K. Korth,
Nachr. d. Ges. d. Wiss. , Gottingen, Math. -Phys. Kl. p. 576
(1932); C. H. Cartwright and M. Czerny, Zeits. f. Physik
85, 269 (1933);90, 457 {1934)."M. Born and M. Blackman, Zeits. f. Physik 82, 551
(1933);M. Blackman, Zeits. f. Physik 86, 421 (1933).

absorption is the Raman eFfect in crystals. What
the Indian scientists have observed are just the
lines of the secondary spectrum. Fermi and
Rasetti, " in their excellent paper on the Raman
effect of rocksalt, have indicated the correct
theory, but did not work it out because it
appeared to them too complicated. The observa-
tions show a continuous background with rather
sharp lines on top of it. Krishnan'"" contends
that these lines prove the fallacy of lattice
dynamics which should give only a continuous
spectrum. In fact the correct theory explains the
background and the lines as well; they are due
to the same property of the vibrational spectrum
which produces the fine structure of the residual
rays, namely the existence of maxima of density
in the frequency distribution of the lattice vibra-
tions. I hope to give an account of this investi-
gation, carried out in collaboration with Miss
Bradburn, in the near future.

"E.Fermi and F. Rasetti, Zeits. f. Physik V1, 689 {1931)."R.S. Krishnan, Proc. Ind. Acad. Sci. 18, 298 (1943).


