
REVIEWS OF MODERN PHYSiCS VOLUME 17, NUMBERs 2 AND 8 APRIL —JULY, 1945

Atoms in Varia &. .e .V. :agnei:ic .&ie. .c s
F. BLocH

Stanford University, Stanford University, California

AND

I. I. RAaI
Columbia University, New York, New York

l. INTRODUCTION

' 'N recent years the investigation of the mag-
~ - netic, spin, and electrical properties of pro-
tons, neutrons, nuclei, and other more compli-
cated systems has made important progress
through the study of the change in orientation
in a magnetic field which varies appreciably
during a Larmor period. It was only through
the development of quantum mechanics and the
work of Bohr and his school that one could first
appreciate how quantization in general and space
quantization in particular set in at all, and the
appropriate conditions for its study.

In the design and evaluation of experiments of
this type there arises the fundamental question:
if we have a quantum-mechanical system of total
angular momentum' j and with magnetic quan-
tum number m with respect to a magnetic field,
what will be the final state if the field varies
with the time both in magnitude and in direction
according to some known vector function H(t) &

This problem involves the solution of the time
dependent Schroedinger equation and some
special cases have been solved rigorously. How-
ever, Majorana' in a comparatively little-known
paper has given some basic general results which
are both very useful and greatly deepen our
understanding of the process involved. He has
demonstrated that the net effect of the varying
field H(t) can be described as a sudden rotation
of the angular momentum by an angle 0.. This
angle is obtained from a solution of the dynam-
ical equation and the most important of its
properties is that it is independent of the initial
magnetic quantum number m but depends only

* Publication assisted by the Ernest Kempton Adams
Fund for Physical Research of Columbia University.

'We shall throughout measure angular momenta in
units A =h/2~.' E. Majorana, Nuovo Cimento 9, 43 (1932).

on the gyromagnetic ratio "g" and H(t). An
immediate consequence of this statement can be
formulated as follows: after the rotation through
the angle n, the system is no longer in a definite
state of space quantization with respect to the
original field, but is rather to be described by a
wave packet or superposition of 2j+1 states
with magnetic quantum numbers m', each with
its appropriate probability amplitude. The abso-
1ute square of the amplitude for any m' is the
probability of finding the system in the state m'

after it had initially been in the state m, i.e., it
is the transition probability W(m, m, n) for
which Majorana has also given the explicit
expression.

As an essential feature in the derivation of his
formulae, Majorana has shown that the problem
of a system with arbitrary angular momentum j
can be reduced to the consideration of 2j repre-
sentative points on the unit sphere, each repre-
senting the direction of an angular momentum
with value —,'. Without attempting any interpreta-.
tion at this point we shall briefly outline his
method of reduction: Consider the equation

2j
Pa)2j—r P

and the relation between the 2j+1 coefficients a,
and the 2j roots l, (s=1, 2 2j) of this equa-
tion. Let further C denote the probability
amplitude of the state with magnetic quantum
number m (m= —j +j) and let

C;,a„=(—1)"
L(2j—r) r ]' (2)

Majorana shows then that if the amplitudes
C (t) are solutions of the time dependent
Schroedinger equation, each of the resulting
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roots I, of Eq. (1) can be written as

(3)

t 3E„M„j=iM„ (4)

and its cyclical permutations and the existence
of a spin j is expressed by

M'f j(j+1)P (5)

where n, and P. represent probability amplitudes
for a system with angular momentum —,

' in a
state in which the magnetic quantum number
has the values +—', and ——,

' respectively.
Majorana's method, while remarkable in its

elegance, has the disadvantage of somewhat
obscuring the physical significance of the repre-
sentative systems with spin —,'. lt is clear that a
simple intuitive understanding of the procedure
and of the essential formulae will be very useful
to many. In this paper we shall arrive at such an
understanding by the application of the familiar
vector model where the total spin operator M is
treated as a sum of 2j spin operators each repre-
senting a system with angular momentum —,

' and
with the same "g" value as the total system.
Mathematically this will be expressed by a differ-
ent representation of the system in which the
variables of the Schroedinger wave function P
are the spin variables oF the constituent systems
with spin —,

' and which we shall call the "com-
posite" representation in contrast to the usual
representation which uses only a single spin
variable, referring to the total system of spin j.

This will lead to an elementary discussion of
Majorana's reduction and its limitation in the
case of fields which are not merely time de-
pendent but vary also in space. Ke shall also
derive the general and explicit solution for a
system with spin j in a time dependent magnetic
field in terms of that for a system with spin ~.
Majorana's expression for the transition proba-
bility will appear as a special consequence of
this more general formula.

2. COMPOSITE REPRESENTATION OF A SYSTEM
WITH SPIN j AND ITS CONNECTION

WITH MAJORANA'S METHOD

Let g be the wave function describing a system
with angular momentum j and let M be the
vector operator, describing its angular momen-
tum. The components of M have to satisfy the
commutation rule

The usual representation of the operator M is
that in which iV, with the eigenvalues m= —j

+j is diagonalized. In this case p has to be
understood as consisting of 2j+1 components
C and the operator M as a matrix M ~ so that

(MP)„= P M „.C„,.
m'= —7

The vector model, however, suggests another
representation in which the angular momentum
M is expressed as a sum of 2j angular momenta
Mq of spin —,'. The commutation rules (4) shall
be satisfied for the components of each operator
Mg, and the components of two different oper-
ators shall commute with each other.

It is then obvious that the components of

27

(6)

satisfy likewise the commutation rules (4). Since
they commute with each other we can now use
a representation in which the s' components and
the squares of all 2j operators M& are simultane-
ously diagonal; the components of each operator
Mi, can then be understood as one half of Pauli's
familiar spin matrices 0. , 0„,0. Corresponding to
an angular momentum —,', each of the 3f~' will
have the eigenvalue —,

' and (Mi), will have the
two eigenvalues mI, = &~.

Whereas in the usual representation the condi-
tion (5) is satisfied by having 3P diagonal with
the eigenvalue j(j+1), it becomes here an
auxiliary condition upon the wave function P,
expressing the fact that the angular momenta
MI, of value —,

' shall be coupled such that they
all add. The general wave function will evidently
have 2" components since each of its arguments
mI, can independently assume either of the two
values +-,' or ——,'.' The condition (5) is then
satisfied if P is symmetrical in its arguments,
i e. , if it does not change its value as any two of
them are interchanged. '

' For a given set of values mf, we shall write the wave
function in the form p(m1, m2, ~ m2, )=f(mA;} a«we
shall speak about "functions" and "arguments" although
we have to deal with discrete quantities.

4 This can be verified through Dirac's (Proc. Roy. Soc.
123, 725 (1929)) relation

4(&+(~~ «)j= 2+2(M~™i&=&~~
expressing the fact that this operator, acting upon P is
equivalent to a commutation of its arguments m& and m&.
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It shall further be observed that the vector
operator (6) is symmetrical in the quantities M&
so that any function of its components represents
an operator which, acting upon a symmetrical
function with the arguments mk produces another
symmetrical function. The symmetrical functions
ii! form, therefore, a closed subset to which we
shall from now on restrict our attention.

Through the condition of symmetry a wave
function P is defined by giving merely 2j+1 of
its values instead of the general 2'&, necessary
for its definition. Let

has the eigenvalue ni =j—r whenever any r of
the 2j operators (M&), have the eigenvalues ——,

'
and the remaining 2j r t—he eigenvalues +-', .
The probability to find the value m is therefore
given by

(10)

where the symbol P' stands for the summation
over all those sets of values mI, of which r have
the value ——,

' and 2j r—the values +-,'. Since
there are altogether

p(mi, ) = r l(2j r)! ~s

(2j) '
(7)

(2j) '

E r ) r!(2j—r)!

whenever

r=j ™
such sets and each contributes according to (7)
the same value

~
C„~'r!(2j—r)!/(2j)! to the sum

(8) (10), we have

of its arguments mk have the value ——,
' and,

therefore,

2j —r=j+m (9)

have the value +-,'. Evidently the 2j+1 numbers
C, obtained by letting r vary from 2j to zero or
m from —j to +j, are sufficient to define com-
pletely a symmetrical P, since its value (7) will

be the same no matter which of its 2j arguments
mA, have the value ——,'.

Through the definition (7) C is the proba-
bility amplitude of finding the value m for the
s component of the angular momentum, if P(mi, )
is the probability of finding the values mA, of the
constituent components. Indeed,

cV, =Q (Mg),
k=-1

It is now

27 2j
M'=(Z M&)'=Z Mg'+ Z (Mp Mi)

k=I k-I k+ t

= -,'2j+ —', Z L—',+2(Mi, M&)g —-', 2j(2j—1)
k+l

=-', 2 I'I g+2j —j'.
Ir, + L

If P is symmetrical, i.e., if I'I,g =P for any k Pl, we have
therefore M'p = (-,2j(2j—1)+2j j' jp =j (j +1)p in ag—ree-
ment with (5).

Different coupling schemes and symmetry properties of
P can of course be introduced if the resultant vector M is
composed of more than 2j vectors MI, . For our purposes,
however, nothing is gained by this complication g,nd it
shall therefore be omitted,

W =/C i',

which proves the significance of C as probability
amplitude to find the value m.

The relation of our procedure with that of
Majorana is now obtained by showing that
without loss of generality a symmetrical wave
function can be constructed as a symmetrized
product of 2j functions p„each depending only
upon one of the arguments nzA, , i.e. , that we can
always write

2j

(12)

where P~ stands for the sum over all terms
obtained by permutation of the arguments m&.

%bile a given set of functions q, leads through
(1.2) obviously to a symmetrical P and therefore
through (7) to a given set of values C, the
converse is also true, that, given the 2j+1 values
C, the functions p, are essentially determined.
To prove this, we shall write

(13)

thus defining the functions p, by 2j pairs of
numbers a, and P, . Consider now the equation
for I

27

with the 2j roots f, =p,/z, . It can also be written
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in the form

with

2j.

Q u, l2& "=0,
r=O

its Hamiltonian will beX= —(H p) and the time
dependent Schroedinger equation —(k/i)(BP/Bt)
=X& takes the form

with P'"& having the same significance as in (16).
p, &

v

Since, according to (7) and (8) the value (1"I) of
r!(2j—r)! l

C;, we obtain by
(2j)

comparison of (16) and (17)

P is also given by

r!(2j—r)! '* r!(2j—r)!
~,—,= ( —1)" . ;~.; (18)

(2j) [(2j)!)'
or

C, ,
a„= ( —1)"[ '(2j —) 3'

which agr'ees with (2) and proves our Eq. (1.5)
to be identical with the fundamental Eq. (1) of
Majorana.

3. SOLUTIONS IN A TIME DEPENDENT
MAGNETIC FIELD

We shall now consider a system with angular
momentum j and with a magnetic moment ghj
which is to be represented by the vector operator

If the system is exposed to a magnetic field H,

ao = A]CX2
' ' ' A2g~

+1 (Pl~&' ' ~2 j+~1P2 ' '~2&'

+ +nin2 Pg ) etc

&» = ( —1)"PiP~ t3», .

or generally

(16)
P& t' V

where Q ~"' stands for the sum of all those
p& v

products which can be formed by letting r of the
factors be of the form P„, with v assuming any r
different values of s and by letting 2j —r more
factors be of the form O~„with y assuming the
remaining 2j —r different values of s.

On the other hand it follows from (12) that
whenever r of the arguments nzI, have the value
——', , P assumes because of (13) the value

Bf—=ig(H M)P.
Bt

(20)

P(m, t) =- —Q Q q, (ml„ t); (21)
[(2j) ]'*

and we have

BI/ 1 (Dpi

~~ [(2j)G-:
8 +2

+q» q2+ +vien l. (22)

Suppose now that each of the functions q, (mi, t)
is a solution of the equation

8q, (mi, t)
-=ig(H Mg) p, (mj„ t),

Bt
(23)

with which one has to deal for a system with
angular momentum ~, represented by the oper-
ator M~, provided that it has the same g-value as
our total system and is exposed to the same field
H =H(t). Since the time derivatives on the right
side of (22) apply successively to functions &p the
arguments of which assume all values nzI, from
mi to m», it follows immediately from (22) that

BP " 1
=ig(H p M—I,),Qv pi i»~;,

L(2j) tj*'

and therefore with (6) that (21) is a solution of
(20) if the functions p, are determined as solutions
of (23).

It is also clear that this provides the general
solution of (20) in the sense that it permits f to

It can now readily be shown that the solution of
this equation with H(t) as an arbitrary function
of time can be reduced to that of the solution
for a system with angular momentum —', .

Using the composite representation of the
previous paragraph we have seen that p can
always be written in the form (12) as a sym-
metrized product of 2j functions p, . If, besides
depending upon the arguments mI„P will also
depend upon the time t, the functions q, wi11

likewise have to depend upon t. !Ate can write
(12) in the form
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have any prescribed value at an initial time t =0.
This value determines, according to Section 2,
merely the initial values of the functions q,
which are used in (21) to construct f and the
problem of finding a solution of (20) with arbi-
trary initial conditions is therefore just as gen-
eral as that of finding such a solution of Eq.
(23) for a system with spin i~.

To derive the general solution of (20) from
that of (23) the procedure can thus in principle
be described as follows: The initial state for t =0
is characterized by 2j+1 probability amplitudes
C„' (m= —j .+j). Upon substitution of these
values into (2) one obtains a set of coefficients
a„' and by solving Majorana's Eq. (1) the corre-
sponding 2j roots l', ' (s=1 2j). These roots
determine by virtue of (14) the ratios p. '/n. ' = l .'
and therefore except for a normalization factor
the initial values q, ' of the functions y, . The
solution of (23) gives then the functions y, at
any later time t in terms of their initial values

p, o; inserted in (21) these functions lead to the
symmetrical wave function P(m&, t) and finally
through (7) to the probability amplitudes C (t)
in terms of their iriitial values C

To carry out this procedure for higher spins
would prove very troublesome, particularly since
it involves the solution of Majorana's Eq. (1) of
the 2jth degree. The reduction to the problem
with spin 2 is fortunately greatly simplified
because of the linear relation between initial and
final probability amplitudes and actually does
not require the knowledge of the functions p,, but
merely their transformation properties; it shall
be carried out explicitly and generally in the
next paragraph.

To characterize the linear relation which con-
nects the initial values q, with the functions y,
at a later time t we use again the notation (13)
and write n, =n, (t) and p, = p, (t) for the values
which q, (mi, t) assumes for mi, ——+-', and mi, = —-'„

respectively. If a, ' and p, ' are the corresponding
initial values at the time t=0 the result of
integration of Eq. (23) can always be expressed
as a linear transformation in the form

n, =An, '+BP,', P, = Cn, '+DP, ', (24)

where the coeScients A, 8, C, D are functions of
the time t. For t=0 they assume the values
A =D = 1; 8 = C = 0 and they are otherwise

uniquely determined through the magnetic field
vector H(t); particularly their values do not
depend upon the index s. In the next section we
shall investigate the transformation which leads
from the initial values C of the probability
amplitudes to their values C at a later time t in
consequence of the relation (24).

4. LINEAR TRANSFORMATIONS OF COMPONENT
AND RESULTANT WAVE FUNCTIONS

We shall assume that a set y.'(s= 1 . .2j) of
wave functions for spin -'„characterized by the
2j pairs of numbers n, ' and P,', is related to
another set q „characterized by a, and p„
through the linear transformation (24) with
coefficients A, 8, C, D, independent of s. Because
of the results of Section 2 each of them leads
to a corresponding set of probability amplitudes

0
C; „(r=0, 1 .2j) and C; „respectively, for a
system with spin j and we shall here investigate
the consequent transformation which is estab-
lished between these two sets of probability
amplitudes.

It was pointed out in the previous section that
this transformation leads to the solution for a
system in a time dependent magnetic field if the
transformation coefficients A, 8, C, D are ob-
tained as functions of time by integration of (23).
The same transformation, however, leads also to
the result of a rotation of the coordinate system
since, with a different significance of the trans-
formation coefficients such a rotation is likewise
expressed by a relation of the type (24); applying
the general formula to this special case, we shall
thus directly obtain Majorana's formula' for the
probability W(m, m') of finding the value m of
the s component in the new coordinate system
if it is known to have the value m' in the original
one.

To obtain the desired transformation of the
probability amplitudes, we use Eqs. (7) and (17)
and write the probability amplitude C; „, corre-
sponding to the pairs n„p, in the form

C;,= Lr!(2j—r)!]'P"g ~„gP„(25)
tjlr V tl

where the sum P'& contains all the products with
/l, V

r different factors p„and 2j rremaining fac—tors
n„ to be obtained from the 2j pairs of numbers

' Equation (4), reference 2.
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n„P,. If one expresses in (25) these numbers in
terms of the numbers n, ' and P, ' according to
(24), one obtains the quantities C; „ in the form

where

2j

C;,=Q S„C, , ;
rI=O

(26)

(2j—r')

p!(r' p) 1 (r p)!(2—i -r--r'+p)!
g g 2j—r—r'+ ppr' —p Cr—pD p

The final result for Sr, is obtained by summation
over all possible values of p and through the

0
relations (25) and (27) between C,. „, C, „and
P&"&, P "& respectively. It is namely
P& V P& V

~- = L&'(2j —&) r' (2j—r') 8'

P& V P V

is the probability amplitude corresponding to the
pairs n, ', P, ' and where P'"' has the same sig-

P& V

nificance as Q&"& in (25) except for the replace-
P& V

ment of r by r'.
To obtain the transformation matrix S,.„ is

now simply a problem of combinations. One has
to observe that it will contain the product
A'& " "'+p8"' pC" PDp as many times as there
appear of the products Q n„' g p, ' those for

V

which among r' chosen values of the 2j indices s
there are p factors of the form P„' and among the
remaining 2j—r values of the indices s there are
r p fac—tors of the form &3„'. For every value of p

'

for which none of the four numbers p, r —p, r' —p
and 2j —r —r'+ p is negative, one obtains there-
fore from the sum Qi'& on the right side of (25)

P& V

the sum P&"& of (27) multiplied with

zero if the factorials in the denominator of (28)
are understood in the usual generalized sense
which makes them infinite for negative integer
arguments and thus automatically suppresses all
terms in P for which any one of the four

P

numbers p, r p, r' ——p, 2j r —r'—+p is negative.
We shall finally rewrite the formulae (26) and

(28) by using instead of r and r' the values m

and m' of the s component of the angular mo-
mentum which, according to (8) are given by
m =j—r and nz' =j—r', respectively. We have
then:

+g

C„= PT C', (29)

with
T ~ =Sj

or from (28)

T- =Hj+ ) (j— ) (j+ ') U — ') l'*

g m+m'+ pp j—m' —p Cj—m—pD pXQ, — . (30)
(m+m'+p)!(j —m' —p)!(j—m —p)!p!

The special case j=
2 gives of course from (30)

Tg)=A, Tg; ——J3, T gg
——C, T g g=D, i.e. , Eq.

(29) becomes identical with the original trans-
formation (24) of the probability amplitudes for
spin 2 upon which our derivation of (30) was
based.

Formula (30) represents the general and ex-

plicit reduction of the problem of general spin to
that of spin one-half since it gives the transfor-
mation coefficients T ~ of the wave amplitudes
for the former in terms of the latter.

As a first application we shall investigate the
transformation (29) which" the probability ampli-
tudes undergo as a consequence of a rotation of
the coordinate system, characterized by the
Euler angles n, p, »t. According to Pauli' we

have here

~ (8+4'&
A =cos-e) i ), B=~ sin -e(

2 &, 2 j 2 0 2

g 2j—r—r'+ pgr' —pCr —pD pXQ, . (28)
p!(r —p) !(r' —p) !(2j r r'+ p)!——

As pointed out before, the summation over p
shall contain all those terms for which p, r —p,
r' —p and 2j r r'+ p are not neg—ati—ve. Actually
the summation g in (28) can be considered as

P

extending over all positive integers, including

n &&' .&+4'&
C=i sin —e( i [, D=cos —ej

2 E 2 ) 2 E 2 )

and substituting these values in (30)

6 W. P@gfi, Zeitg. f. Physik 43, 60& (&92&~
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T,—
I (g+~) l(j yg) l(j +yg ) l(j ~1) Ilmssj —m—m'si(mf+m'0) sinsj

2

cotan~+~'+'~ n/2
XZ (—1), , . (31)t

(m+m'+p)!(j —m' —p)!j—m —p)!p!

The absolute square of (31) gives immediately the probability W(m, m') to find the value m of
the 2' component of the angular momentum in the rotated coordinate system if it had the value w'

in the original one; i.e. ,

W(m, m') = (j+m)!(j m—)!(j+m')!(j—m')! sin'&—
2

cotanm+m'+s~ a/2 2

X Z( —1) — —. (32)
(m+m'+p)!(j —m' —p)!(j—m —p)!p!

S. LIMITATION OF THE METHOD

Ke have seen in Section 2 that the vector
model offers a new representation of a system
with spin j and that the wave function lt de-
scribing such a system can always be written in
the form (12) as a symmetrized product of wave
functions p, of 2j systems with spin —,'. While
this result is general, the explicit reduction of the
problem of spin j to spin .—, in Section 4 was
carried out under the special assumption that
the physical problem implies a linear transfor-
mation of the form (24) with the same transfor-
mation coefficients A, 8, C, D for all wave
functions y, . This assumption is satisfied if one
deals with rotations of the coordinate system or,
as shown ' in Section 3, with the action of a
magnetic field which depends only on the time.
In dealing witll rays of atoms or neutrons, it is
often necessary, however, to consider magnetic
fields which depend not only upon the time but
also upon the position coordinates of the particle
and we shall here discuss the reasons for which
the general reduction becomes in this case
impossible.

The general wave function f, describing a
particle with spin j and position vector r consists
of 2j+1 components C (m= —j. +j) each of
which depends both upon the time t and the
three components of r. According to the results
of Section 3 it is still possible for any given set
of values of r and t to find 2j wave functions q,

.~ —~0 .
A =D*=cos —$ —i sin —t,

2 P 2

gII
B = C=i sin —t,

2

where X=I (s& —ts, )'+(gH)sg** and us ——gHs. Qy
comparison with the corresponding formulae for
a rotation of the coordinate system it is seen
that the formulae (31) and (32) can also be used
for this case, if, instead of having the significance
of Euler angles of rotation of the coordinate
system, the angles rr, g, and P are defined by

(gHn=2 arcsin
I

sin t I, —
2j (33)

(~—~s
@=lt = —arctan

I
tan t I. —

2) (34)
previously derived LGuettinger's Eq. (59!g by the methods
of group theory and where the relation between the sum Z

P
in our Eq. (31) and the hypergeometric polynomials has
been observed).

$ Note added in proof: Professor Pauli has kindly
brought our attention to a paper by P. Guettinger (Zeits. f.
Physik 'V3, 169 (1931), in which this formula has been

This formula becomes identical with Majorana's
formula' if one introduces instead of p a new
summation index r by the relation r =j—m' —p,
it has however, the advantage that the symmetry
of W(m, m') in m and nz,

' becomes evident which
- is not the case in the form given by Majorana.

As a second application we shall consider the
magnetic resonance where the system is sub-
jected to a magnetic field which has a constant
s component II0 and a projection upon the x —y
plane of magnitude H, rotating around the s axis
with angular frequency co. Upon integration of
Eq. (23) one obtains here the solution for spin —',

in the form (24) with
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for spin 2 such that p can be written in the form
(12) as a symmetrized product; these functions
y, are related to the values C and will therefore
in general likewise depend upon both t and r.

The essential difference between this more
general case and the case of a purely time
dependent field arises from the fact that no
analogue can be found to Eqs. (23) according to
which all wave functions p, satisfy the same
differential equation and therefore undergo in
course of time a linear transformation (24) with
coefficients, independent of s. The Schroedinger
equation for P has in this case, instead of (20)
the form

Bf ik=—ig(H .M) + V'P (35)
8$ 2mo

where the second term on the right side has to
be included to take into account the kinetic
energy of the particle with mass mo. According
to Section 2, Eq. (21) can be generalized in the
form

2j

P(mg, r, t) = Q~ g q, (mg, r, t) (36)
. [(2j) .]l

but the substitution of this expression into (35)
gives from the Laplace operator V' not only'
terms of the form V2p, but also cross derivatives
of the form (grad p, grad p, ) between any two
different wave functions q, and p, . While the
presence of the terms V2y, would allow a simple
generalization of the results of Section 3 by
merely including them on the right side of (23),
the terms (grad y, grad p, .) prohibit such a
generalization, since they cause the values of any
function q, to depend upon those of all the other
functions q, . This means that the mere solution
of the problem with spin —,

' is not sufficient to
furnish the general solution for arbitrary spin,
if the dependence of the wave function upon the
position of the particle becomes essential.

The ordinary Stern-Gerlach arrangement for
the deflection of atomic beams can be considered
as a simple illustration of this situation. The
solution for spin —,

' gives here wave functions

y, (m, r) of which the component with m = -,'
vanishes outside the one, the component with
m= ——,

' outside the other of the two beams into
which the original unpolarized beam will sepa-
rate. A wave function P(m~, r), constructed ac-
cording to (36) from products of these functions
would therefore have the absurd property that in

the region of separation it could differ from
1zero only for ml=m2= ——m2, ——+-„ i.e., for
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m=p mq ——&j and then only inside one of the
k=1' '

two beams obtained for spin 2. It is essential for
the description of 2j+1beams, one for each value

of m, that the functions rp. in (36) do not vary
independently but are coupled through the
terms (grad q, grad p. ) with the result that
even one component of a given function q, will

split into several beams, depending upon the
splitting of the others. The method of composite
wave functions introduces under these circum-

stances merely complications and cannot be

fruitfully applied. It is obvious, however, that
there is a limited use of the method, even in the
case of space dependent magnetic fields. If the
magnetic field varies appreciably only over re-

gions of space, large compared to the de Broglie
wave-length of the particle and if deHections due

to its inhomogeneity can be neglected, one can

effectively consider a wave packet in uniform

motion and a coordinate system, moving together

with this packet. In this coordinate system and

within the wave packet, the magnetic field will

again be only a function of time alone, thus

making the results of Section 4 applicable.


