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INTRODUCTION

~HE three most common causes of the
breadth of spectral lines are the Doppler

effect, radiation damping, and interruption by
collisions. The last of these three effects is usually
the most important at high pressures in the
visible spectral region. At infra-red and longer
wave-lengths it is predominant even at com-
paratively low pressures. The assumption made
in the present paper that the breadth is due to
collisions is hence often warranted for ordinary
light, and always for microwaves.

The literature of collision broadening is domi-
nated by two names —those of Lorentz' and
Debye, ' who treated respectively resonant and
nonresonant absorption. It is true that Debye's
"relaxation" theory of dispersion and absorption
is probably not usually thought of as relating to
the subject of broadening by collision. It can,
nevertheless, be regarded as a theory of spectral
shape for a non-resonant line, i.e. , one which
would be of zero frequency except for the inter-
ruptions due to collisions. Clearly, the distinction
between resonant and nonresonant absorption is
in a certain sense a purely artificial one, inasmuch
as zero frequency is merely a special case of a
finite frequency. Hence one might expect the
Debye theory to be merely a special case of the
Lorentz one. However, this is not the case, and
one of the first points we would like to make in
the present paper is that in consequence a single,
integrated theory has been lacking. Namely, the
Lorentz formulas give no absorption at all,
instead of the Debye result, if the resonant
frequency is put equal to zero. We shall later
see that this dilemma has arisen because Lorentz
incorrectly assumed that after each collision the

mean distribution was, on the average, an un-

polarized one. Actually the application of Boltz-
mann statistics favors orientations or phases in

which the molecule is so oriented as to have a
low energy in the field, and when allowance for
this is made, a unified theory is obtained. Of
course, Lorentz was essentially right for the case
which he meant to consider, vis. , that in which
the line breadth is small compared to the reso-
nant frequency, as is always true for lines in the
visible region. In the Debye case, however, the
resonance frequency is zero. The interest in the
formulas which we derive does not lie merely in

internal consistency and the satisfaction of
having a single theory that comprises both the
limiting cases of a proper frequency very high
or negligible compared to the line breadth. In
the microwave region the line breadth can be of
the same order of magnitude as the resonant
frequency. This, for instance, is the case of the
famous line in ammonia, measured by Cleeton
and Williams' and located at about 1.3 cm, which
is associated with the "turning inside out" of
the ammonia molecule. Hence it is no longer of
academic interest to have a theory applicable to
all values of the ratio of the line breadth to
resonant frequency.

STRONG VS. WEAK COLLISIONS

'I'he various items mentioned in the preceding
paragraph become much more succinct when
expressed in mathematical form. Before doing so,
however, we must say something about the
diferent types of assumptions which can be
made concerning collisions. There are two limit-
ing cases which may be delineated. -These we
shall call, respectively, strong and weak colli-

' H. A. Lorentz, The Theory of Electrons, note 57.' P. Debye, Polar Molecgles, Chap. V.
3 C. E. Cleeton and H. H. Williams, Phys. Rev. 45, 234

(1934).

227



228 J. H. VAN VLECK AND V. F. WEISSKOPF

sions. A strong collision may be defined as one
in which the impact is so powerful that the
molecule has no "hangover" or memory regard-
ing its orientation or other distributional proper-
ties before collision. In addition, as is usually
tacitly done, the assumption may be made that
the collision is adiabatic, i.e. , takes place over
an interval of time which is short compared to
the period of oscillation in the impressed field. If
the collisions are both strong and adiabatic the
molecules can be regarded as distributed after
impact in accordance with the Boltzmann law
appropriate to the instantaneous value of the
field at collision. 4

We shall ourselves suppose that the collisions
are adiabatic. Consequently after a strong col-
lision, the probability of a molecule of electrical
moment p, making an angle lb with an applied
field E cos art will be taken proportional to
exp t

—p cos PE cos(~ts)/kT], where ts is the
value of the time at collision. The adiabatic
assumption is essentially that the quantity to has
a meaning.

The other case is that of weak collisions. Here
the assumption is made that any individual
collision has but little effect in disturbing the
original orientation or polarization of the mole-
cule, so that an appreciable change in distribution
is obtained only as the result of a large number of

impacts, which hence have to be bountiful. The
well-known theory of Debye' on the relaxation
behavior of dielectric liquids may be regarded as
the embodiment of the weak collision mechanism
for the non-resonant case. The viscous resistant
force proportional to the rotational velocity in
his theory may be considered as representing
the damping due to the patter of a large number
of feeble impacts. A number of variants of
Debye's calculations should be mentioned, which
lead to the same final result. In an interesting
article, Kauzmann' shows how the redistribution
at collision can be interpreted in terms of re-
action rates such as are used in chemical kinetics,
instead of in terms of a Brownian motion.
Kauzmann includes calculations for both weak
and strong collisions. In the appendix we extend
his results to include the general intermediate
case. The derivation of the analogue of the
Debye formula in paramagnetic relaxation given
by Kronig' is substantially a quantum-mechan-
ical adaptation of the reaction-rate model, in
which the possible orientations are discrete rather
than continuous. Kronig assumes essentially
weak collisions, since he supposes that at each
collision the magnetic quantum number can
change by only one unit. At the end of the ap-
pendix his model will be amplified to include
collisions of arbitrary strength.

A SIMPLE DERIVATION OF THE DEBYE FORMULA

In comparing the Debye theory of nonresonant rotators with the Lorentz calculations on resonant
oscillators it is clearly advisable to have a collision mechanism which is as similar as possible in the
two cases. We shall therefore adopt the strong collision viewpoint, as it is the easiest to handle, as
well as being a reasonable model for impacts in gases. We shall begin by giving a particularly simple
derivation of the Debye formula, which is considerably shorter than the usual calculations based on
weak collisions and Brownian motion.

Let us suppose that after each collision the probability of distribution of a dipole is distributed
in accordance with the Boltzmann law. Let us consider the mean polarization per molecule, at time t,

4 It may be objected that by supposing that after collisions the molecules are distributed in accord with the
Boltzmann law, we assume that the transition probability A between two orientations m, m is influenced only by
the energy R' of the final state, whereas that 8 of the initial might also enter, as for instance in connection with
the activation energy necessary to surmount an intervening potential hill, In other words, we suppose that A
=A exp (—8' /kT), where A is a constant; on the other hand, detailed balancing requires only that Am m'/Am' m

=exp (—(lV —8' )/kT). This relation demands only that A „=g(m, m', T)e ~ '~~ where q is symmetrical in m
and m'. However, we show in the appendix (cf. remarks after Eq. (24)) that the results with this more general
assumption are precisely the same, for strong collisions, as though only the terminal energy were to enter. We,
therefore, consider the end result of a strong collision as in accord with the Boltzmann law, as this picture is easier
to visualize.

5-W. Kauzmann, Rev. Mod. Phys. 14, 12 (1942).
C. J. Gorter and R. de L. Kronig, Physica 3, 1009 (1936);also especially, Kronig, ibid, 5, 63 (1938).
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for the class of molecules whose last preceding collision was at time to. If the applied field is E cos +t,
the relevant Boltzmann factor is obtained by using the potential energy tJE—cos (~to) appropriate
to time t p, so that the mean polarization per molecule is

cos P exp LpE cosP cos(a&to)/k T] sin PdP
Jp

6p
exp LpE cosP cos(&AO)/k T] sin Pdf

Here we a.ssume that the inertia of the molecule is so large that the latter can be regarded as stationary
between collisions. The supposition is warranted if the frequency of our strong collisions is high com-
pared to the molecular rotational frequency, and is the analogue of Debye's treatment of the re-
sistance as viscous rather than inertial. When only terms of the lowest non-vanishing order in F are
retained, (I) becomes

ti'E cos(&oto) ' cos' P sin PdP
Jo p2E

S exp(icuto).
P7P 3kT

kT sin /de
dp

Here and elsewhere the symbol S means that only the real part of the following complex expression
is to be used. To obtain the polarization P per cc, we must multiply by the number N of molecules/cc,
and average over the various times of last collision. With random collisions the probability that the
last collision experienced before t was in the interval t 8 —d8, —t —8 is (I/r)e ~~'d8 where r is the
mean interval between collisions. The mean polarization per unit volume is hence

NBp' 1 t'" NB@' e'"'
I'= S— e'"&' ') e "'de= S

7~p 3k T 1+i&or
(3)

This is the same as the usual expression of Debye. If now we write this formula for P as ES(a—ib) e'"',
the absorption coefficient n is 4~bee/c, inasmuch as this is the same as the mean work (EdP/dt)A„
done on the molecule divided by the energy flow cE'/8~ in the incident radiation. Thus

co 4~Xp, ' cov-

3k T I+(g2r2
(4)

This expression gives the absorption per unit length. The corresponding expression for the imaginary
part of the dielectric constant, which is the same as the absorption over a path of (I/2m) times a
wave-length, is like (4) except that the factor co/c is wanting.

Although we have given a classical derivation, it is easy to give the corresponding quantum-
mechanical proof. This differs only in that the orientations are discrete rather than continuous, so
that we must average by summing over the various quantum states rather than integrating over a
sphere as in (I). However, the theorem of spectroscopic stability in quantum mechanics shows that
(cos' 8)A„——-'„as in classical theory, and so the result is the same as before.

The case in which the collisions are not perfectly strong, i.e. , do not restore equilibrium after each
encounter, will be considered in the. appendix.

THE LORENTZ OSCILLATOR THEORY

We now turn to the Lorentz theory' of line-broadening for a harmonic oscillator. Let ~ be the
angular frequency of the incident wave, and let a&0 be that of the oscillator, whose charge and mass
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we denote by e and ns, respectively. If E cos cot be the electric field, the equation of motion is

of which the solution is

(d'x
mI +(oo'x

I
=eZ cos ( t,

4dt' )
eEe'"'

x=S +Cz exp (ia&ot)+C2 exp ( —i&sot)
m(coo' —(v')

(6)

Suppose now that at a time t —0, the oscillator has last experienced a collision. Then the transient
amplitudes C&, C2 are determined by the values of x and dx/dt immediately after collision. Different
oscillators will have different values of x, dx/dt created by the collisions, as no two of the latter are
alike. Lorentz assumes that positive and negative values of x and of dx/dt are equally probable, so
that on the average one has immediately after collision x=dx/dt=0. Since the averaging of the
polarizations of the various oscillators is a linear process, the net result is the same as though one
had a single oscillator, and determined C~, C2 so that it has x=dx/dt =0 at time to t —8. ——Then
(6) becomes

eEe'~' 1 t' (ul 1( col
1 —-I 1+—

I exp (i(~o —~) ~) —-I 1 ——
I exp ( —i(~o+~»)

m((o' —~0') 2 4 ~0) 2 ( Gop)

We must now average this expression over the various times of last collision. If the collisions occur
at random, with a mean interval r, we multiply, as before, by (1/r)e " and integrate over & from 0
to ~. The result is

eI'e'"'x=—
m((do' —co )

1+(~/~o) 1 —(~/~0)

2 [—i( —)+(1/)3 2 [i( + o)+(1/)j
(8)

If we write the bracketed factor of (8) as Ze'"'(x' —ix") then the absorption coefficient a and re-
fractive index n are (assuming n' 1«1) given b—y o, =47rlV~ex"/c, n' 1=4+Rex'. Th—us it follows
that

2m'' t'a& & 1/r 1/r

mc I, (rod ((u (uo)'+ (1/—r) ' (~+~o) '+ (1/r) '

n2 —1= 4m Ne' —",+-,'(co/(op) 2
—k(~/~0)1—

m(~, ' —~') r'[(~ —~o)'+(1/~)'j r'[(~+~0)'+(1/r)']
(10)

We must now seek to generalize this result to the general quantum-mechanical system. This can
be done by making use of the fact that each transition between stationary states can be identified
with a certain equivalent or "virtual" classical oscillator, whose effective charge is correlated with
the transition probability. Namely, the quantum theory of dispersion' shows that the adaptation is
achieved by replacing e'/m by 8m'v, , I p, , I'/3lt and ~0 by 2m v, , Here v, , = (W, —W)/It is the charac-
teristic frequency associated with a transition between the statesi and j.The corresponding moment
matrix element p„.may be either electric or magnetic, the reaction in the latter case being, of course,
with II rather than E. One must also distribute the molecules among the various stationary states in
accord with the Boltzmann law, and sum over the various possible transitions. One thus obtains

(8~"~)2 2'It'. I'f(~' ~)e

3hc ) Q;e ~'"r

Cf. W. Heitler, The Quantum Theory of Radiation, Eq. (19), p. 40 vs. Eq. (19), p. 108. His quantity eX~& is the same
as our p;;, and his v corresponds to.our co.
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Where v =~/2u is the incident frequency and f is a "shape factor"

1 Av hv
(v.;, v) =- With

m (v;;—v)'+Dv' (v;,+v)'+Av'
Av=

27r7.
(12)

Substantially the same result can also be derived by means of quantum-mechanica1 radiation
theory, as given, for instance, in Heitler s book, when a11owance is made for transitions in which v

and v;; are opposite in sign, corresponding to the possibility that excitation of the atom is accom-
panied by the emission rather than absorption of a quantum. (In this connection the law of con-
servation of energy need not superficially be satisfied, as energy balance is taken care of by the
mechanism responsible for the damping. ) The theory is usually assumed to be for radiation, rather
than collision damping, but this does not affect general questions of line form.

A common case is one where the resonance frequencies of the molecule are small compared with
kT/k. In the microwave region, for instance, this condition is always fulfilled. Since

aIld
v;;= —v... f(v... v) = f(v..—. v), lp, ;l = lp, , l,

(e v e")—', x(e v+e—'"—) if x((1,

we may then replace (11) by

(Sm'vtV) k Q, Q ly, ;l'v f(v;;, v)e ~~

6hc ) kT Q . e wp fsT— ' (13)

The advantage of (13) is that it involves no nearly compensating terms or negative factors, as
v,;f(v;;, v) is always positive.

To compare with the Debye formula for absorption due to a rotating dipole, we must specialize
(13) in the following way: the molecule has a permanent moment of magnitude p for all stationary
states, and in addition the rotational energy is considered to be negligible. Stated in equation form,
these two conditions mean that

Zil @ail =ij r v~i=0 (14)

When we substitute (14) in (13), however, we obtairi zero rather than the expression (4).

REVISION OF THE LORENTZ FORMULA

The fact that (14) does not reduce (13) to (4) is the contradiction between the Debye and Lorentz
theories referred to at the beginning of the article. What is the explanation of the discrepancy& It is
that there is a fallacy in the Lorentz calculation, which we have embodied in our Eqs. (5)—(10),
when there is thermal equilibrium. Then the values of x and dx/dt after collision should be regarded
as distributed not randomly for the oscillator, but instead according to the Boltzmann distribution
law for a Hamiltonian function

II(t) = (p'/2m)+atm(&oox)' —ex' cos rot, (p =dx/dt).

Hence the constants C&, C& in (6) have been incorrectly determined in obtaining (7), and when one
introduces a Boltzmann distribution after collision at time to ——t —0, the effect is to increase C~, C2

E. Wigner and V. Weisskopf, Zeits. f. Physik 63, , 54; 65, 18 (1930);V. Weisskopf, ibid. 75, 287 (1932).
W. Heitler, The Quantum Theory of Radiation, p. 113, Eq. (12). In adding the term in v+vs which corresponds to

the second member of our Eq. (12), a minus sign must be used because the excitation of the molecule is here accompanied
by emission rather than absorption of a light quantum. Heitler interprets 4~he as the transition probability, but the
latter becomes 2~A ~ when one allows for the possibility of interruptions in both initial and final states.
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by amounts hc&, AC&, where

ACi exp (i(ogtp) = AC2 exp (—i(opto) =

$00 f400

x exp $ H—(to)kT]dxdp . Eecos cot~

F00 F00

2 '

~,

~ exp $ H(—tp)kT]dxdp

Correspondingly there is added to (7) the term

(Ze/ma&P) cos (~to) cos &uo(t to) =—(Ze/2m~/)Ste' i' "(exp (i&ape)+exp ( —i(go&))].

When we average, as before, over 0 with weighting factor (1/r)e '~', (15) becomes

el47 f

When (16) is added, (8) is changed to

eQe'ted s

x= .m(~0' —~')

(1/) —i( o
— ) (II )+t( + )

~0 CO CO a)0 r (MO Ql)M! Cdp T

201/ ) —'(~.—)) 2L(1/ )+'( .+ )]

(16)

Correspondingly we have in place of (9) and (10)

n2 —1=

2ir+s2 ( ~ ) 2 . 1/r 1/r
,+mc &a o) (~—~0) '+ (1/r) ' (&v+~0) '+ (1/r) '

l( / o)+l( / )' l( / ) —l( / .)'
m(~o' —~') r'L(~ —~0)'+(1/r)'] r'[(~+~0)'+(1/r)']

(17)

(18)

The extension to the quantum-mechanical system still gives (11) and (13), but with the difference
that the shape factor f has the significance

s Ds As
P' P = P' P

~ i,; (i; —i)'+hi' (v;+i)'+Av'
(19)

instead of (12). When we use (19) rather than (12), Eq. (13) reduces to (4) if we make the specializa-
tions (14).The paradox is thus removed. "It should, however, be emphasized that the modifications
which we have introduced in the standard Lorentz theory are of no importance in the optical reso-
nance region in which Lorentz himself was interested, where the second members of formulas such
as (12) or (19) are of no interest, and where one has both Dv/i«1 and

~

i „—v~/v&&1. In much of
the microwave region, or in the limiting case of the Debye theory, these inequalities are not satisfied,
and the modifications are considerable. In the limit v;,«v, for instance, use of (19) in (11) gives a
finite absorption, whereas (12) gives zero, as previously mentioned. In the other limit i,;))v, Eq. (19)
gives half as much absorption as (12).

As a further indication that our modihcations of the Lorentz formula are correct, it may be noted
that according to (18), the static dielectric constant obtained as the limit of n as p~0, has the correct
value 1+4~De'/m~02 appropriate to a harmonic oscillator, regardless of the collision frequency.

"Another phrasing, somewhat more quantum-mechanical in language, of the discrepancy between (4) and (13)
which results when we use the shape factor (12) is the following. If we treat diagonal matrix elements by means of the
Kronig-Gorter theory, which is essentially the quantum-mechanical transcription of' the Debye calculation, and if we
treat the off-diagonal elements by means of the form factor (12) rather than (19), then the diagonal and non-diagonal
elements do not enter symmetrically. Namely, the non-diagonal effect does not agree with the diagonal in the special
case of zero proper frequency, which is contrary to the general stability characteristic of quantum mechanics. For in-
stance, if we consider a moment vector precessing about an axis to which it is coupled by some internal field (e.g. the
axis of figure in a diatomic molecule), the components perpendicular to the axis would make no contribution to the
absorption in the limiting case that the coupling energy is very small. On the other hand, when (19) is used, the perpen-
dicular components will in the limit contribute twice as much as the parallel, as should be the case.
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With the unmodified formula (10), the correct limit is obtained only if the collision frequency 1/r is
negligibly small compared to the proper frequency of the line. The fact that experimentally the
dielectric constants of gases are not influenced by pressure (except insofar as the latter alters the
number of molecules or the local field) may be regarded as an empirical confirmation of the fact that
in the limit ~ =0 the formulas for the polarization should not involve the collision frequency.

REMARKS ON THE LIMITS OF VALIDITY. OF
THE FORMULAS

In closing, it should be emphasized that our
proofs have all assumed that the collisions are
suAiciently rapid, that the alternations of the
field during a collision can be regarded as
negligible. This supposition is usually referred to
as the adiabatic hypothesis, and the statistical
distribution problem is treated as essentially
that appropriate to a static field equal to the,
instantaneous value of the field at collision. In
this connection it should be emphasized that the
validity of the adiabatic hypothesis does not
require that the incident frequency v be sma11

in comparison with the line breadth parameter
hv. If so, the theory would not be usable at all
in much of the microwave 'region. The idea that
the theory fails whenever v is comparable with
hv is incorrect, for, with strong collisions, 1/2s. hv
is of the order of magnitude of the mean time r
between collisions, which is much longer than
the duration 7..of a collision. Hence Av v does
not imply 1/r, v. With weak collisions the mean
free time between impacts is even smaller than
1/2shv, as many weak collisions are required to
produce the same damping as a strong one.
Ultimately, with any model, when the frequency
is so high that the phase oscillates a great deal
during a collision, i.e. when v 1/r. , the impacts
are probably ineffective in creating thermal
equilibrium, and the extra term omitted by
Lorentz should not be added. The correct for-
mulas are then presumably more nearly (9)—(10)
than (17)—(18). In consequence, at extremely
high frequencies, the absorption probably ap-
proaches zero rather than a finite limit as given
by our formulas. However, one is presumably
far short of this limit in any microwave region.
It should be cautioned. that the modified for-
mulas discussed in the present paper do not
apply to the theory of the dielectric polarization
due to free electrons in the upper atmosphere.
Here one is dealing with free particles rather
than charges bound to a given position, and the

concept of statistical distribution of moment
vectors after collision loses meaning. Hence the
conventional theory of the refraction, etc. , of
the ionosphere is unaffected.

It should be also emphasized that throughout
the article we have assumed that there is a single
relaxation time 7-, or in other words that on the
average all molecules have the same mean
collision intervals. If one can separate the
totality of molecules into different classes such
that the subdivisions have unlike values of 7.,
then one has a phenomenon which is usually
spoken of as a "dispersion of relaxation times. ""
The parameter 7 can then not be regarded as a
constant, and the final formulas must be inte-
grated over a distribution of values of v.. The
eff'ect of such a dispersal in ~ is to make the
absorption of the wings of the line more intense
than one would expect from the behavior in the
center, inasmuch as by (19) the absorption in the
center is proportional to (r)A„and that in the
wings to (1/r)A„since r = 1/2m hv. Clearly one has
(1/r)A„& 1/(r)~„ if 7 is distributed over a range of
values. There is some evidence experimentally
that the shape does not conform to (19) and
that the deviations are of the general character
to be expected if there is a dispersion of relaxation
times. "If the rotational structure is not resolved,
as for example in the ammonia resonance, such a
dispersion can, perhaps, be explained on the
ground of resonance effects, which make the
collision cross sections larger for impacting mole-
cules in like than in unlike rotational states.
The molecules in highly populated rotational

» Cf., for instance, R. Fuoss and J. Kirkwood, J. Am.
Chem. Soc. 63, 385 (1941) or Kauzmann, reference (5),
p. 26."It is often hard to tell whether apparent discrepancies
between theoretical and experimental line forms are due
to distribution of relaxation times or to incorrect assump-
tions concerning the "line strength, " or intensity of the
dipole matrix element. In this connection it is always well
to examine the experimental value of jo"(a/v')dv as this
integral is independent of r and so is unaffected by the
assumption of dispersion in v. Any anomalies in this
integral hence cannot be attributed to distributed relaxa-
tion times.
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states will have more counterparts and will

hence experience more frequent resonant colli-
sions than do the less inhabited ones, and so
will have smaller eRective values of v. This
explanation obviously does not apply when the
rotational structure has been resolved. Then the
only distinction between molecules which can
make them diRer in 7 appears to be the diversity
in translational energy. Clearly, fast molecules
will experience more collisions per second than
slow ones. With the conventional hard sphere
model, the resulting dispersion in collision in-

tervals can be shown to be too small to have
much inHuence on line-form. If, however, the
force fields of the molecules vary slowly with
distance, then the fast molecules may penetrate
to regions where the intermolecular forces are
sufhcient to cause frequent reorientation of the
dipole moments, whereas the slow molecules may
have inadequate tra.nslational energy to make
them come near other molecules. In this way,
it is possible that an appreciable dispersion of
relaxation time can be obtained. The subject is
one which needs further investigation.

APPENDIX. DERIVATION OF THE DEBYE FORMULA FOR COLLISIONS OF ARBITRARY STRENGTH

In his interesting paper, Kauzmann' shows how the Debye formula can be obtained for collisions
which are either weak or strong, i.e., which aIter the orientation of the dipole moment but little, or
else destroy all traces of the previous arrangement. He uses what he calls the activation model, in
which he considers that to switch from one orientation to another at collision, it is necessary for the
molecule to receive rotational energy to surmount some sort of intervening potential hill. He thus
stresses the parallelism to the activation theory of the breaking of bonds, etc. in chemical kinetics.
As a matter of fact, his considerations are more general than any speci6c picture of the activation
process and require only that the transition probabilities satisfy detailed balancing when there is
thermal equilibrium, like, for instance, the absorption and emission probabilities in the Einstein
derivation of the radiation law.

In this appendix we shall show that Kauzmann's procedure, or one closely related to it, can readily
be extended to include "intermediate collisions" which are not of the limiting weak or strong cate-
gories. Let A„„dao be the probability that at collision a dipole originally in an element of solid
angle d+ be transferred to another element den'. lt is only necessary to suppose that

(a) In the absence of the applied field E cos cot, the probability A „„is a function f(8) only of the
angle 0 between the vectors specifying d~ and der . This assumption is trivial, as obviously in the
absence of the field, only the amount of angular change, and not the direction, is of significance.
The special cases of strong and weak collisions correspond, respectively, to f(8) being independent
of 8 and to f(8) being negligible except for small 8. Here and elsewhere the zero superscript attached
to A indicates that the value is that without the applied 6eld.

(b) In the absence of E, there is detailed balancing without preferential weighting of any given
orientation, so that A'

(c) In the presence of the field, detailed balancing is preserved when the states are weighted in
accordance with appropriate Boltzmann factors. This means that

A„„exp (iiZ cos P cos &ut/k T) =A„„exp (i' cos P' cos cot/k T). (20)

Here P and P' are the angles between the applied field E and the elements of solid angle d~ and d~',
respectively. In accordance with the adiabatic hypothesis, we use in the Boltzmann factors the
instantaneous value of the 6eld at collision, which is assumed to take place at time t.

(d) Higher powers than the first in the field strength can be neglected. These various assumptions
collectively imply that

A„~=A'„„$1+(iiBcos iC' cos a)t/kT)]+RA&'&„„(t, T),
with

0i M40 ~ COMEDO g ~ i' MCii ~ C0~N ~ (22)
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The equation expressing the change in the number of molecules in any element of solid angle d& is

dN„/dt= —
~

A „N„d(o'+ A„„N du)'.
cC

(23)

In the absence of the field, orientations are equally probable, and in the presence of the Qeld, only
the linear terms in E need be included because of (d), so that we can take

N„= (N/4~)+EN '".
When we neglect higher powers of E, Eq. (23) becomes

t'
dN„~'~/dt= — A „„(N„~'~—N ~'~)dk&'+LNpcos(a&t)/4~kT] A „„.(cosp —cosp')d~'. (24)

The fact that A "' has cancelled out entirely from (24), owing to the symmetry (22), furnishes the
proof of the statement made in footnote 4 essentially to the effect that no generality is added by
including the last term in (21).Now multiply (24) by pE cos P and integrate over cv. Since the poiari-
ZatloI1 I is

yE N„"& cos Pd(o,

we have

P
.(N ~'& N&'&) c—os /dc''dec

f'~

+ (A'E cos (cot)/4mkT] A' (cos' P —cos P' cos P)d~d~' (25).

Now, by an elementary transformation formula, we have

cos P = cos P' cos 8+sin P' sin 8 cos y, (26)

where 8, y are the polar coordinates of the vector specifying d~ in a frame whose axis is the vector
specifying des and whose meridian plane contains E.

Now by (a) and (22) we have

A' d(u'= f(0)du) =y, A „~(yl cos Hd(d =
~ f(0) cos Odo) = 8,

~

A ~ sin 8cos yd~ = f(8) sin 8cos ada&=O,

(27)

where p and 6 are constants independent of the position on the sphere. We now use the substitution
(26) for the second or negative term of the integrands in (25). Then in virtue of (27) we have

f
dP/dt= ytJE N "cos fd—co+5pE ' N„&'& cos P'des'

J ~

' +$Np'E cos (cat)/4~kT]fy

or

cos' Pd~ —8 cos lP d~ ],

dP/dt= —(y —b)P+$Np'E(y 5) cos ((ot)/3kT]—.

The solution of this differential equation is

N p, 'E. e'"'I =
3k T 1+iv&/(y —8)

(29)
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This result is similar to the Debye formula (3), which is thus established. The constant y —b is equal
to the reciprocal of the relaxation time 7.. The assumption of strong collisions is that A„„ is inde-
pendent of co', so that b =0. With weak collisions, the values of cos 8 which are most heavily weighted
in (27) are those near unity, and then 8 is nearly as large as y.

The procedure which has given the generality to the proof is obviously the use of (26). If quantum
mechanics is used, so that the orientations are discrete rather than continuous, the results are still
valid. Q e of course then have sums rather than integrals, but the spectroscopic-stability of quantum
mechanics insures that the transformation properties are similar to those of classical theory. The
simplest quantum-mechanical illustration is the atomic magnetic case where the moment in the
direction of the field is mgj', where P is the bohr magneton, g is the Lande factor, and m is the mag-
netic quantum number. This model has been treated by Kronig' and Kauzmann' for weak and
strong collisions, respectively. In place of (24), we would have for collisions of arbitrary strength

dN '"/dt= —P ~ 2' (N '"—N "&)+LNgP cos(cot)/kT(2j+1)'j P ~ (m —m')A'„-„. , (30)

where j is the inner quantum number. The polarization P is Hp N uigpm. The relations corre-
sponding to (26)—(27) are g. A' .=~, P„'m'Ao .=mr. (32)

The 6rst relation of (31) merely expresses the fact or "sum-rule" that the total transition proba. bility
is independent of m. The second is less readily demonstrated but can, for instance, be established in

the following way. Let a be a matrix whose square determines the transition probability. Then the
second sum in (31) is, except for a constant factor, proportional to a diagonal element of the matrix

g, =aj,a. where j, is the component of angular momentum in the direction of the applied Geld.
lf capital letters denote another choice of the axis of quantization and the X s are the direction
cosines, then

aJza =&Jz&=S-'aL'z.j.+"s,j,+~z.j.]aS. (32)

The relation a =A which we. have used expresses the fact that, in the absence of the field, the transi-
tion probabilities obviously cannot depend on how the axis of quantization is selected. Equation (32)
shows that q, transforms like the s component of a vector, and, this being the case, group theory"
shows that its diagonal elements are proportional to m. Thus the second part of (31) is established.
By use of the relation pm2=-', j(j+1)(2j+1), and by following a procedure analogous to the one we

have given in more detail in the classical case, the result (28) is finally obtained with, of course, H in

place of 8, and with p'-=g'p2j(j+I).

"Cf., for instance, H. A. Kramers, Proc. Amsterdam Acad. Sci. 33, 953 (1930).


