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UANTUM mechanics gives not only a com-
plete and accurate account of atomic phe-
nomena, but through the uncertainty principle
it also gives a satisfactory interpretation of the
status of ordinary classical ideas. It shows where
they can be applied and where they must fail.
This principle focuses attention on the inability
to watch the progress of a phenomenon without
disturbing it. This disturbance has a finite mini-
mum, and the failure of the classical picture of
the progress of a phenomenon takes place when
the events imagined cannot be observed on
account of the disturbances produced by any
-attempted observations. Conversely if the space-
time picture can be watched without radically
interfering with the phenomenon (in respect of
the quantity calculated), then the picture is
admissible.

Strong interacting forces between the colliding
particles naturally favor the applicability of a
classical treatment of collisions. At the other
extreme of very weak interacting forces, the
general quantum-mechanical treatment takes up
the limiting form commonly known as Born's
first approximation. In problems of scattering,
a very simple picture of this approximation can
be formed by virtue of the wave form of the
fundamental equations of quantum mechanics.
Under the conditions of weak interaction, the
collision produces only a small change in the
wave function representing the colliding parti-
cles. The primary wave, as it were, passes right
through the perturbing field without appreciable
scattering. Under these conditions the scattered
waves originate at every point with an amplitude
proportional to the interaction potential and to
the undisturbed amplitude of the primary wave.
The final solution can readily be worked out as
a simple problem in interference. The important
point of interest which this treatment has in the
present connection is that the conditions under

which it is valid are, in general, complementary
to those which permit the use of the classical
orbit treatment. This means that a complete,
if approximate, solution of collision problems can
often be obtained by a combination of these
limiting forms of quantum mechanics.

It is hardly necessary to emphasize that the
simple wave picture in the limit of weak inter-
acting forces has not the reality of the classical
orbit picture in the limit of strong interacting
forces. In the former we imagine a wave motion,
but no observation on the system concerned will
reveal a wave motion or any associated perio-
dicity. The wave function must be translated
into terms of particles before it can be given an
observable meaning. In the classical picture, on
the other hand, we imagine a particle moving in
an orbit, and under the limiting conditions when
such a picture is used, observations made at
successive intervals during the collision will
actually reveal a particle moving in an orbit. In
other words what is visualized in the picture
can be observed as such by our ordinary senses.
This incidentally gives the answer to such
questions as, “‘Is an electron a wave or a parti-
cle?.”” It is, of course, a particle. The wave
properties are not properties of the electron but
properties of quantum mechanics. It might be
noted that the same cannot be said of radiation,
where, in the limit of strong fields, periodic
effects corresponding to the frequency of the
waves can be observed. This difference between
particles and radiation corresponds to the ap-
pearance of the quantum of action (#) in the
wave behavior of particles (wave-length =4/Mv),
and to its appearance in the pariicle behavior of
radiation (energy of photon=~%Av) but not in the
wave properties of radiation.

In what follows we shall consider certain
collision phenomena from the standpoint of the
applicability of classical mechanics and of the
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wave treatment. Examples of experimental re-
sults are quoted which bear on the main topic of
the wvalidity or failure of the classical orbit
treatment. In this respect the multiple scattering
of electric particles through small angles and the
loss of energy by electric particles are very
illustrative phenomena. In order to be brief, the
detailed qualifying statements which must at-
tend a complete discussion are not always given.
Some of the points dealt with here were discussed
more fully in an earlier article.!

The writer wishes to take this opportunity of
stating that his own interest in, and initiation
into the theory of collisions, were occasioned by
the study (1926) of Professor Bohr's classical
papers on ‘‘The Passage of Electrical Particles
through Matter,” which appeared in the Philo-
sophical Magazine in 1913 and 1915.2 Later
(1933-34) the writer had the pleasure of personal
discussions with Professor Bohr on such aspects
of collision problems as are discussed in this
article, and certain points mentioned here are
the result of these discussions.

SCATTERING

The initial conditions in a scattering problem
are generally a well-defined incident velocity,
but a random impact parameter—this parameter
denoting the perpendicular distance of the undis-
turbed path of the incident particle from the
center of the scattering field. The classical
treatment of the scattering, however, cannot
proceed without visualizing the conditions in
greater detail—the random incidence is broken
up into discrete incidences each with a definite
impact parameter, the classical deflection is
calculated for each discrete orbit, and the sta-
tistical scattering actually observed by experi-
ment is obtained by a re-integration of the
results. Now this procedure is admissible only
if the extra details imagined could be observed
without radically disturbing the collision in
respect of the quantity calculated, which in this
case is the deflection produced by the scattering
field. »

Let us consider, for instance, a scattering field
extending over a limited volume of dimensions
of the order of @, and in which the scattering

LE. J. Williams, Science Progress 121, 14 (1936).
2 N. Bohr, Phil. Mag. 25, 10 (1913); 30, 58 (1915).
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potential is of the order of V. In a classical
treatment the orbit of the particle must be well
defined in relation to distances of the order of a.
This means uncertainties (or disturbances) in
the momentum of the particle of the order of at
least %/a (or more exactly k/2wra="%/a). In order
that the classical picture should be valid this
disturbance, %/a, must, in the first place, be
much less than the momentum of the particle,
(M), i.e.,

h/a<Mv, or h/Mv<a. )

h/Mv is the de Broglie wave-length, and the
condition may be interpreted as the condition
for constructing a wave packet small compared
with the size of the scattering field. This, or
something equivalent to it, has not infrequently
been given as the sole condition for a classical
treatment. .
However, the classical calculation of scattering
visualizes not only a well defined orbit, but also
a well-defined deflection due to the collision. The
deflection is determined by the momentum
transfer, and the classical value of this in the
case under consideration is of the order of V/v.
The classical calculation is, therefore, admissible
only if the disturbance #/a is also small compared
with V/v; ie.,
Va/hw>1. 2)

If the collision forces are too weak to satisfy
this condition, then the classical picture of the
deflection is truly a figment of the imagination.
Under these conditions we must proceed in some
way which avoids breaking up the random inci-
dence. This cannot possibly be done in classical
mechanics, but it can be done in quantum
mechanics.? In the latter the incident particle
with random impact parameter can be repre-
sented by a plane wave, and the scattering can
then be worked out, without reference to impact
parameter, by solving the quantum-mechanical
wave equation for the passage of this wave
through the scattering field.

The solution of this wave problem shows that

3 The inability of quantum mechanics to describe the
position and momentum of a particle with classical exact-
ness is not infrequently, but falsely of course, regarded
as a limitation—to be excused, as it were, by the inability
to observe these things accurately. What requires to be

emphasized however is the inability of classical mechanics
to describe position and momentum ambiguously.



SPACE-TIME CONCEPTS IN COLLISION PROBLEMS

every element of volume, dr, of the scattering
field gives secondary waves of amplitude, at unit
distance from dr, equal to (2rM/h*) A Vdr, where
A is the wave amplitude at dr. If the scattering
forces are weak, A may be taken as the amplitude
at dr of the undisturbed incident wave—this is
Born’s first approximation. Under these condi-
tions (and if #/Mv<a, Eq. (1)), the resultant
secondary amplitude inside the scattering field
(i.e., the distortion of the primary wave) may
readily be shown to be of the order of 4(Va/hw).
The condition for the applicability of the above
approximation is accordingly

Va/hw<1. (3)

This condition is just the reverse of condition (2)
for the wvalidity of a classical treatment. If
Va/hmv>1 classical orbits are valid, if Va/w<1,
the simple wave treatment is valid. The one
limiting form merges into the other and gives
the same order of scattering cross section when
Va/hv is of the order of unity.? Between them a
complete if approximate solution can be given
for all values of the interacting potential. This
is an example of the complementary nature of
the classical treatment and the simple wave
treatment.

Condition (1) for the classical treatment must,
however, be remembered, viz., that the de Broglie
wave-length must be small compared with the
dimensions of the scattering field. If this is not
satisfied then, however strong the interaction
potential, the orbit picture is never valid. Many
important collision problems are in this category,
such as the scattering of slow electrons by atoms
and the scattering of neutrons by atomic nuclei.
In these the interaction potential is too strong
for the simple wave treatment, and the de Broglie
wave-length of the scattered particle is too large
for a classical orbit treatment. The quantum-
mechanical treatment in such cases has to

4Under the conditions Va/#1<<1, if the potential is
everywhere increased in a certain ratio, the amplitude of
the scattered waves is everywhere increased in the same
ratio. Thus the total scattering increases as the square of
the potential while its angular distribution remains con-
stant. However, when Va/Av has reached unity then for
further increases in the field strength, the total scattering
remains practically constant (all particles passing through
the field are scattered to some extent), but the angular
distribution in general changes in favor of large angles.
The inverse square field is the only exception which gives
the same angular distribution for all field strengths. :
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proceed along more sophisticated lines, such as
the method of Faxen and Holtsmark.

Coulombian Scattering by Atomic Nuclei

The scattering potential in this case is Zze?/7,
where Ze is the nuclear charge, and ze the charge
of the scattered particle.

Let us consider the scattering by the Cou-
lombian field at distances of the order of 7 from
the nucleus. Then in terms of the previous section
V=_Zze/r, a=r, and from (2), the classical orbit
picture is valid for this part of the field provided

Va/kv=(Zze?/r)r/hv=Zze?/hv>1. (4)

From (3) the wave treatment (Born’s approxi-
mation) is valid provided Zze?/hv<<1. These
conditions are well known. The outstanding
point of interest is that the quantity Zsze?/hv is
independent of 7. In other words a classical
calculation is valid for all’ parts of the field
(i.e., all angles of scattering) or not at all, and
when it is not valid, the simple wave treatment
gives the whole solution.®

The classical solution 1is represented by
Rutherford’s scattering formula, and as is well
known, this formula also represents the wave
solution. It may readily be shown that this
formal identity of the requirements of these
limiting forms of quantum mechanics can only
obtain for an inverse square law of force. In
Born’s approximation the amplitude of the
scattered wave is proportional to the scattering
potential, and the scattering cross section is
therefore proportional to the square of the
potential. It follows from dimensional considera-
tions that the scattering cross section .S for an
inverse-n interaction, V' =£k/r*!, must in this
approximation be of the form

S =const. k22 Syin—8pi—n, (5)

Only for an inverse-square interaction, #=2,
does this expression not involve %, and, therefore,
only in this case can the wave scattering be
identical with the classical scattering.

It should be noted that though the probability

5 It should be noted that the classical condition %/ Mv<<r
is automatically met if Zze?/hv>>1. For under the latter
condition the interaction is so strong that the cross section
for large angle scattering is very much greater than

(h/Mv)?, and impact parameters of the order of %/Muv,
therefore, play an insignificant part.
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of scattering through an angle @ is formally the
same in the wave treatment as it is in the
classical treatment, the parts of the field re-
sponsible for the scattering through 6 are not the
same. In the wave treatment, scattering through
6 is due to the Coulombian field at distances of
the order of %#/Muv6# from the nucleus, while in
the classical treatment such scattering is due to
the field at a distance of the order of Zze?/ Mv*0
from the nucleus. The ratio of these distances
is Zze?/hv.

Substituting for kc/e* its numerical value,
viz., 137, the condition (4) for the validity of the
classical treatment of nuclear scattering becomes

Zz/1378>1, ©)

where 8=wv/c. Rutherford’s original application
of his formula referred to the scattering of
a-particles (z=2, 8~0.05) by elements of me-
dium and high atomic numbers (Z~50, say).
For such cases Zz/1378~ 20, so that Rutherford’s
classical orbit treatment was, in fact, quite valid.
Classical mechanics has thus by no means been
ousted from all sub-atomic phenomena.

Comparison with Experiment—
Multiple Scattering

Since the classical scattering formula is the
same as the ‘wave’ formula, it would appear that
an unambiguous demonstration of the validity,
under the above conditions, of the classical
treatment of nuclear scattering and of the break-
down of the wave treatment is not possible.
However, the Coulombian field of atomic nuclei
is limited by the atomic electrons. The effect of
this shielding is to cut out the Rutherford
scattering through very small angles, and from
the remarks in the preceding paragraph but one,
it is evident that the angle of cut-off is different
in the classical treatment from what it is in the
wave treatment. Its value in the wave treatment
is approximately

It = h/M‘U(Z, (7)
where a is the effective shielding radius (roughly
equal to the hydrogen radius X Z—%). The cut-off

in the classical treatment takes place in the
region of

Onct=Zze*/ Mv*a = (Zz/1378)0,,". (8)
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For the scattering of a-particles by heavy nuclet,
we have seen that (Zz/1378) is about 20, so that
the classical cut-off takes place in the region of
much larger angles than the wave cut-off. For
the scattering of a-particles by gold, 6,,°* is of
the order of 0.20°, while 8,* is of the order of
0.01°. The cut-off is, of course, gradual and
begins at about 10 times these angles. Experi-
ments by Rose® on the scattering of a-particles
by gold show a falling-off below the Rutherford
scattering already at about 1°, thus bearing out
the classical treatment. However, though Rose
experimented with very thin foils, the conditions
were not sufficiently those of single scattering,
nor were the observations comprehensive enough
to make a reliable comparison with the classical
shielding effect.

A more quantitative comparison with past
experiments is possible if we consider the scat-
tering of a-particles by thicker foils, the condi-
tions for which are those of multiple scattering.
This multiple scattering occurs in the region of
very small angles for which the Rutherford
formula for single scattering can be written

P(0)d0 = (4w NtZ?s%*) M?v")d0/6* = ktdf/ 6. (9)

t=thickness of scattering foil, and N =number
of atoms per cc. The most probable angle of
scattering and also the arithmetic mean angle of
scattering are determined by the integral

01
S=ﬁ 02 ktd9/6° =kt log (61/0n).  (10)

6, is a property of the statistics of multiple
scattering and may be defined such that on the
average the a-particle in traversing the foil
suffers one collision in which it is deflected
through more than 6;. Hence 8;=(kt/2)3.

6 in the above integral is the angle of cut-off
caused by shielding, and its value depends on
whether we use classical mechanics or the wave
treatment. Since 6,, occurs inside a log term, the
multiple scattering is not very sensitive to its
value. For the cases investigated experimentally,
the difference in the wave and the classical
requirements is, however, not inappreciable,
being about 50 percent. The -following table
gives the results of observations by Geiger in

¢ D. C. Rose, Proc. Roy. Soc. 111, 677 (1926).
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TaBLE I. Multiple scattering of a-particles (Zze?/hv>1).

Most probable angle of scattering,
Op (degrees)

Scattering ‘Wave
element Zzet/hv Observed ~ Classical treatment
Gold 20 2.1 1.74 3.07
Tin 13 1.5 1.43 2.20
Silver 12 1.5 1.37 2.11
Copper 7 1.1 1.04 1.46
Aluminium 3 0.6 0.69 0.85
=0, 6.8 6.3 9.7

1910,7 and also the calculated values required by
classical mechanics and by the wave treatment
respectively.8 (Table I.)

It will be seen that the observed scattering
bears out the classical orbit treatment in ac-
cordance with the general requirements of quan-
tum mechanics and the uncertainty principle.

7 H. Geiger, Proc. Roy. Soc. 83, 492 (1910).

8 The exact relation of the multiple scattering to the
integral S, and other details of the calculations, have been
given elsewhere by the writer (Phys. Rev: 58, 292 (1940)).
The following are some points not previously mentioned
which may be of interest to those who wish to consider
the more detailed side of the problem.

(i) The argument already given does not indicate what
is the best exact value of the quantity Zze?/hv to take as
an effective demarcation between the wave treatment and
the classical treatment. We know it is of the order of
unity, but unity itself may be appreciably different from
the best value. The following argument provides some
guidance in this respect. The gross failure of the classical
calculation of atomic scattering, when Zze?/hv<l, is in
the direction of too much scattering. When Zze?/hv>>1 the
gross failure of the wave treatment is in the same direction.
If we assume that the partial failure of both treatments
when Zze?/hv~1, is also in the direction of too much
scattering, then evidently the more correct treatment is
the one which gives the less scattering. The best value of
Zze*/hv to take as the transition point for atomic scattering
is thus the one for which the classical and wave scattering
are equal, or most nearly equal. From Fig. (2) of the above
paper, it is found that this is about 0.6, quite close to unity.
A corollary to this argument is that even the more accurate
treatment still gives too much scattering, and this may not
be inappreciable for Zze?/hv close to the transition point
(i.e., 0.6), for which neither treatment is as accurate as
one or the other is for greater or less values of Zze?/hv.
This inference may be related to the discrepancy of about
10 percent for lead in Table II.

(ii) As Zze?/hv is increased, the transition from the wave
treatment to a classical treatment does not take place
simultaneously for all parts of the atomic field. The transi-

“ tion is delayed for the weaker fields near the periphery.
However the spread in the transition caused by this effect
corresponds in the main only to a factor of about 2 in
Zze?/hv.

(iii) The effect of polarization of the atomic electrons by
the moving particle is probably quite negligible in all the
cases quoted in Tables I and II. Even for a-particles,
though their velocity is less than the orbital velocities of
the inner atomic electrons of the elements concerned, the
nuclear field acting on these inner electrons far exceeds the
average field that will be exerted on them by the a-particle
during a collision.
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Although experimental evidence for the validity
of quantum mechanics is hardly required at this
stage, these results have been given in some
detail as they offer the only example, to the
writer's knowledge, of distinctive quantitative
evidence for the accuracy under appropriate
conditions of the classical orbit treatment in
atomic phenomena.

For the scattering of fast electrons (z=1, 8~1)
the quantity Zze?/hv equals Z/137 and is less
than unity even for heavy elements. Thus the
wave treatment is the appropriate form of quan-
tum mechanics, especially for light elements.
Table II gives actual results for the multiple
scattering of fast electrons. The experimental
values are due to Kultichitsky and Latyshev?®
(1942) and refer to the multiple scattering of
2%-million volt electrons. The theoretical values
required by the wave treatment are those calcu-
lated by these authors from the writer’s theory
of multiple scattering!® and not from the later
theory of Goudsmit and Saunderson!' which,
however, agrees numerically with the former
within a few percent.

The experimental results for the light elements
clearly bear out the wave treatment, rather than
the classical treatment which gives about 25
percent too much scattering. Tables I and II
between them thus demonstrate the change-over
from classical orbits to ‘waves,” as the quantity
Zze?/hv decreases from values appreciably greater
than unity to values appreciably less than unity.

The quantity Zze?*/hv has the same value for
fast cosmic-ray mesotrons (z=1, 8~1) as for
fast electrons, viz., Z/137. Their multiple scat-

TaBLE II. Multiple scattering of fast electrons

(Zzet/hv<1).
Half-width of Gaussian distribution
(degrees)
Scattering Wave
element Zze*/ by Observed treatment Classical
Aluminium 0.10 9.5 9.8 12.1
Iron 0.20 9.6 9.9 11.9
Tin 0.37 10.6 10.9 11.9
Lead 0.60 9.6 10.8 10.6

9 L. A. Kultichitsky and G. D. Latyshev, Phys. Rev. 61,
254 (1942).
0 E. J. Williams, Phys. Rev. 58, 292 (1940).
( n S.) Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24
1940).
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tering should, therefore, obey the wave treat-
ment, and this in fact has been found to be the
- case, the agreement being very close.!>3 [t is,
however, of interest to note that in this case the
classical treatment gives practically the same
formula as the wave treatment. This is so because
the finite size of the nucleus cuts out the Ruther-
ford scattering above a certain angle 6,, which
is small. The upper limit to the integral S for
the multiple scattering (Eq. (10)) is this 6., and
not §; determined by statistics.!? Denoting nu-
clear dimensions by d, then in the classical
treatment 6, is of the order of Zze?/Muv*d, in the
wave treatment it is of the order of #/Muvd. The
lower limit 6, is of the order of Zze*/ Mv’a and
h/Mvd, in the respective treatments, where a
represents atomic dimensions. The scattering
integral depends on the ratio 6,/0,., which is
therefore the same in the two treatments, ap-
proximately equal to a/d, i.e., the ratio of the
size of the atom to the size of the nucleus.

Inverse ‘n’ Field

It is instructive to consider this general case
from the standpoint of the limiting forms of
quantum mechanics—the  classical orbit treat-
ment for strong interacting forces and the wave
treatment for weak forces.

Denoting the scattering potential by k/r*,
the classical momentum transfer for orbits ap-
proaching within distances of the order of 7 of
the scattering center is in general of the order
(k/r»2)r/v=Fk/vr*1. To make the orbit picture
valid, this momentum transfer must be large
compared with the disturbance, %/7, produced
in observing 7, i.e.,

k/vrS>h/r, or k/hor>1. (11)

This result also follows directly from conditions
(2) if we put V=~Fk/r*! and put a=r.

The condition (3) for the wave treatment by a
field V over dimensions ¢ is Va/hv<1, giving
for an inverse # field,

k/hor2K1 (12)

v12., the reverse of (11).
The conditions (11) and (12) do not involve 7
2 E. J. Williams, Proc. Roy. Soc. 169, 531 (1939).

1B P, M. S. Blackett and T. G. Wilson, Proc. Roy. Soc.
160, 304 (1937).
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for m=2, which means again that the orbit
treatment is valid for all regions of a Coulombian
field, or not at all. For the general case we must
distinguish between the fields inside and outside
a radius of the order of b, where

b= (k/ I/, (13)

If 2> 2 the field well inside » =5 is strong enough
to scatter classically, while the field well outside
r=> is weak enough to scatter according to the
wave treatment. In general a combination of the
two limiting treatments will, therefore, give a
complete though approximate solution. If <2
the field outside r =0 scatters classically. These
broad results require qualifications, but they
provide a basis for a general understanding of
the quantum-mechanical scattering by an in-
verse —n field. The following points may be
specially noted for fields with #>2.

(i) If the demarcation radius b is less than the de Broglie
wave-length, A, then there is, of course, no region amenable
to the orbit treatment. Under these conditions, it may be
shown that the core of strong field inside b does not make
a significant addition to the total scattering, and the whole
scattering is approximately equal to the wave scattering
by the field outside 7 =b. If <3 then the field inside b does
produce a significant effect, which cannot be dealt with by
the orbit treatment or the simple wave treatment.

(ii) If B>>\, and if # <3, then the classical scattering by
the field inside b, and the wave scattéring by the field
outside b, both contribute significantly to the total scatter-
ing, the angle of demarcation between the two types of
scattering being of the order of X/b. If, however, >3 then
the total wave scattering by the field outside b is not
important. In fact fields with >3 fall off so rapidly that
no sooner are the distant parts too weak to scatter classi-
cally than they are almost too weak to produce any
scattering at all.

(iii) The most interesting case of all is probably that of
attractive fields with #33. In this case the general rule
that, for b5>>\, the field inside b scatters classically requires
qualification. These high power attractive fields produce
classical orbits which pass through the center of force.
These orbits are defined by an impact parameter less than
a certain critical value of the order of (k/mz?)V/®@=D_ In the
general quantum-mechanical theory of scattering (e.g.,
method of Faxen and Holtsmark), there are serious diffi-
culties in the treatment of attractive fields with > 3. It is
shown, for example, in the treatment of #=3 in Mott and
Massey’s Theory of Collisions, page 30, that no general
solution of the scattering exists for such a case. Not only is
the wave function infinite at the origin, but the phases of
the spherical harmonies which determine the scattering are
indeterminate. It follows from Mott and Massey's treat-
ment that this applies only to those harmonics which
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correspond to an angular momentum less than (2k/mu?)},
and this is precisely the critical angular momentum for the
classical orbits which pass through the center of force.
There can, therefore, be little doubt that the classical
orbits through the center of force correspond to the in-
determinate solutions in the general quantum-mechanical
treatment. :

Now although in general the classical orbits inside the
radius & can -be observed without significantly disturbing
the final deflection, this is not true of those orbits which
pass through the center. The passage of the particle into
and just through the center can be observed since, as 7
decreases, the momentum of the particle increases faster
than 1/r. However the disturbance produced by such
observation will radically modify the ultimate motion
away from the center and hence, the ultimate deflection.
Thus the whole classical orbit cannot be observed however
strong the center. of force. There is, therefore, no proof
along those lines that there must exist a complete solution
to the scattering problem by attractive fields with » 3 3.
It should, however, be noted that the classical orbits which
pass through the field inside the radius b, but do not pass
through the center, give a small but observable deflection,
and the scattering through small angles by fields with
7> 3 has therefore a definite solution.

ENERGY LOSS IN COLLISIONS WITH ATOMS

The classical theory of the rate at which a-
and B-particles lose energy in passing through
matter was first fully worked out by Bohr in
1913.2 Relativistic and other effects were con-
sidered in a later paper by Bohr in 1915. The
“ideas underlying the treatment given in these
papers were in many respects more general than
classical theory, and they still serve as a basis
for understanding most of the features of energy
loss. Prior to the application by Bethe in 193114
of Born’s quantum-mechanical theory of colli-
sions, it did in fact appear that Bohr’s classical
formula for energy loss might well be quite
generally true, statistically. We shall briefly con-
sider the status of the classical treatment and
also give an approximate derivation of Bethe’s
formula for energy loss.

The moving «- or B-particle loses its energy
through the excitation and ionization of the
atoms traversed, and the problem is to calculate
the perturbation of an atomic electron by the
moving particle. If this perturbation was unin-
fluenced by the binding force of the nucleus, the
dynamical problem would be identical with that
of Coulombian scattering. In that case the

1 H. Bethe, Ann. d. Phys. 5, 325 (1930).
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scattering of the moving particle (mass M, charge
ze) due to interaction with the atomic electrons
(NZ per unit volume) would be approximately
given by (cf. Eq. (9)):

P(6)d6= (8w NtZz%"/ M**)d9/ 65 =k'tdo/65. (14)

A deflection through an angle 6 corresponds to a
momentum transfer to the atomic electron ap-
proximately equal to Mw6, and hence an energy
transfer equal to (Mv6)2/2m (m =electron mass).
The maximum value of 6 is of the order of m/M.
Thus the energy loss per cm caused by collisions
with @ greater than a certain minimum, ¢m,
say, is

m|M

dT /dx= f
¢m
= (4w NZ%*/mv?) log (m/Men).

k1d0/6%- (Mu6)2/2m

(15)

The binding forces determine the value of ¢m.
The essentially new point introduced into the
classical theory by Bohr, in his 1913 paper, was
that binding forces restrict the energy transfer
only when the time of the collision is comparable -
with or greater than the natural period of the
atomic electrons. The time of collision is of the
order of p/v where p is the impact parameter.
It follows that the electron may be treated as
free from impact parameters less than p where

p~v/v~(v/u)d. (16)

v denotes the natural frequency of the atomic
electron, u its orbital velocity, and d the orbital
or atomic dimensions. In nearly all practical cases
for a- and B-particles, their velocity v is much
greater than u, so that p>>d, i.e., the critical
impact parameter at which the atomic electron
ceases to behave as if it were free is much greater
than atomic dimensions.

How general is this argument? In the first
place it rests on the conception of time of collision
and impact parameter. Since p>>d the essential
argument regarding the effect of binding forces
requires only the concept of impact parameter
in distant collisions. The impact parameter in
such collisions can be defined as the distance of
the path of the moving particle from the atom
as a whole or from the atomic nucleus. This
impact parameter can therefore be determined
experimentally by observations only on the
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moving particle and the atomic nucleus. For fast
particles (v>>u) the disturbances produced by
such observations produce a negligible, effect on
the space-time picture of the particle traveling
along a well defined path with respect to the
atom, and, therefore, such a picture is perfectly
admissible for calculating the potential per-
turbing the atomic electrons.!s

The concept of an impact parameter p (Eq.
(16)), inside which the time of collision is small
compared with the natural period or periods of
the atomic electron, is therefore quite valid in
quantum mechanics. The general theorem that
the sum of the strengths of the virtual oscillators
corresponding to one atomic electron is equal to
that of one free electron furthermore means that
for these collisions the energy transfer is sta-
tistically equal to the transfer to a free electron.'®
The exact energy transfers in individual collisions
are, however, outside the scope of a space-time
treatment. For the duration of the collisions
concerned is much less than 1/» and hence, any
. energy measurements during the collision would
involve uncertainties large compared with Zv,
i.e., large compared with the excitation and
ionization potentials of the atomic electrons
concerned.

The classical Rutherford formula represents
quite generally the Coulombian interaction of
two free particles. It would, therefore, appear
that Bohr's classical formula for the awverage
energy loss should also be generally true, since
we have seen that this energy loss is statistically
the same as the energy loss to free electrons.

The fallacy, of course, arises from the fact that
if the quantity, ze*/hv, =z/1378, is much less
than unity, the Rutherford classical formula is
only accidentally valid, and the classical treat-
ment does not give correctly the effect of any
deviation from Coulombian interaction, such as
a limitation of the interaction to distances less
than p of Eq. (16). The position with respect to
energy loss is, in fact, closely analogous to that
in respect of multiple scattering. Comparison of
(10) and (15) shows that both are determined
by the integral of the squares of the scattering

5 It is important to notice here that we are not trying to
study the reaction of the collision on the moving particle.
To do that would require the observational disturbances to

be small compared with the calculated reaction.
16 E. J. Williams, Proc. Roy. Soc. 139, 163 (1933).
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angle as given by the Rutherford scattering
formula. The lower limit to the integral in the
case of multiple scattering is the cut-off of the
Rutherford scattering due to the shielding of
the nucleus by the atomic electrons. In the case
of energy loss, the lower limit, ¢, is the angle of
cut-off corresponding to a Coulombian field
limited to the radius, p, which marks the onset
of adiabatic conditions. As in the case of nuclear
scattering, this angle ¢, is or is not given by
classical mechanics according as the interaction
between the moving particle (ze) and the atomic
electron (e) is or is not strong enough to give
scattering according to the classical orbit treat-
ment. In exact analogy with Egs. (7) and (8),
if ze?/hv<<1 then the Born approximation is valid,
and

o’ ~h/ Mvp~hy/ Mo V)

If ze?/hv>>1 the classical treatment is valid and
dmt~ze?/ MvPp~ (2/1378) . (18)

Substituting in the formula (15) for energy loss,
we have

dT /dx = (4w Nz2et/mv?) log (gimv:/hv) (19)
if ze?/hv<1; and
dT /dx = (4w Nz%*/mv?) log (gamv®/ze*v) (20)

if ze?/hv>1.

Equation (19) is Bethe’s formula obtained by
applying Born’s approximation ;4 (20) is Bohr's
classical formula.? The numerical coefficients g,
and g, inside the log terms are left undetermined
in the present approximate treatment. The log
terms are, however, insensitive to their values.
Detailed calculations have been made which give
accurate values of g; and g, for hydrogen-like
atoms! and for helium.?

The conditions deduced above for the validity
of the classical formula and the Born approxi-
mation formula respectively were first derived
by Bloch!® from a more detailed application of
quantum mechanics. The equivalence of the
method of impact parameter for calculating the
energy loss, to Born's method, was first demon-
strated by Mott!® by a detailed mathematical

17 E. J. Williams, Proc. Camb. Phil. Soc. 33, 179 (1937).
18 F. Bloch, Ann. d. Physik 5, 285 (1933).
19 N. F. Mott, Proc. Camb. Phil. Soc. 27, 553 (1931).
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TaBLE III. Energy loss.20

Distance travelled (cm)
ave

Initial and treat- Classi-
Moving Gas final velocity Ob- ment cal
particle traversed (X1079) ze2/hv served (Bethe) (Bohr)
Alpha Hydrogen 2.054—1.709 0.23 19.0 18.9 16.3
Alpha Hydrogen 1.709—1.802 0.25 15.8 16.2 13.7
Alpha Helium 2.054—-1.709 0.23 22.6 22.3 18.4
Beta Hydrogen 5.11 —0 0.06 0.76 0.77 0.52
Beta Hydrogen 4.08 —0 0.07 0.37 0.34 0.23

proof of the identity of the requirements of the
two methods. It is important to note that Mott’s
proof and the present more general argument
based on the uncertainty principle, both refer to
an impact parameter defined with reference to
the atomic nucleus and not to the perturbed
atomic electron. Furthermore, the method is
fully applicable to all collisions, close as well as
distant, provided only the moving particle is
sufficiently heavy (a-particle e.g.) so as not to
be appreciably disturbed from rectilinear motion
even in the closest collisions.

As a parallel to Tables I and II for multiple
scattering, we give the above table (Table III)
of results for energy loss. Even for a-particles
the quantity ze?/hv is much léss than unity, so
that it is Bethe's formula and not the classical
formula of Bohr that gives the correct repre-
sentation of quantum mechanics in these cases.

The ranges given by the wave treatment
(Born's approximation) are seen to agree very
well with the experimental values. The latter,
however, very definitely exceed the values given
by the classical formula, the failure of which is
most pronounced for B-particles. These results
are as they should be since ze?/Av is much less
than unity and is much less for g-particles than
for a-particles.

GENERAL REMARKS

© Several other collision phenomena, besides
scattering and energy loss, permit in their treat-
ment the use of ordinary space-time ideas to a

20 Results for hydrogen and helium, only, are given since
these involve very little computational error. In the case
of a-particles, in order to avoid complications due to
capture and loss of electrons towards the end of their
range, the table gives the difference in ranges between fast
a-particles. Details relating to the comparison are given in
an earlier paper by the writer (Proc. Roy. Soc. 135, 108
(1932)). The theoretical value for helium was dealt with
in a later paper (see reference 17).
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greater or lesser extent. The method of Fourier
analysis of the perturbing field and comparison
of the harmonic components with radiation,-22
essentially depends on the ordinary space concept
of impact parameter. This Fourier analysis
method has been applied to energy loss, emission
of radiation in collisions, production of electron
pairs by photons in a nuclear field, production of
pairs in collision of two electric particles, etc.?'* In
all cases the criterion which determines whether
the method is applicable or not is whether the im-
pact parameter can be observed without radically
disturbing or confusing the quantity calculated.
In the above cases it can.

All the collision phenomena concerned can,
however, be treated, and in some respects more
completely treated, by the quantum-mechanical
method of stationary states (Born), and histori-
cally the first quantum-mechanical treatment of
most collisions effects was in fact by this method.?
What then, it may be asked, is the point of
introducing classical ideas even though a partial
introduction of such ideas is perfectly rigorous
in principle? There is a point.

In the first place the semiclassical method has
proved much more useful for appreciating the
basic features of the theory involved and for
assessing the expected validity of the formal
results. An example of this is provided by the
phenomenon of ionization by particles with
velocity close to that of light. The application
of the method of stationary states to this phe-
nomenon gives a logarithmic rise in the ionization
with energy, as does the semiclassical method.
However, the latter shows quite clearly that this
rise does not involve relativistic quantum me-
chanics!620.2¢—the mechanics involved is non-
relativistic, and relativity comes in only in the
Lorentz contraction of the field of a particle
moving with uniform velocity. This very secure
basis of the theory, which is not as apparent in
the other type of treatment, has played a part

2 E, J. Williams, (a) Proc. Danish Acad. 13, 4 (1935);
(b) Phys. Rev. 45, 129 (1934).

2 C, F. v. Weizsacker, Zeits. f. Physik 88, 612 (1934).

28 There are exceptions, for example, the logarithmic
rise in ionization by very fast particles after their velocity
exceeds about 0.97 c, was first demonstrated on the basis
of the method of impact parameter. (Reference 24.)

2 E. J. Williams, Proc. Roy. Soc. 130, 328 (1931).



226 E. J.

in the study of cosmic rays, and in particular
made it possible, before the accumulation of
other evidence, to rule out electrons as the
average high energy cosmic-ray particles at sea-
level (1934).2'® Another example of the usefulness
of the semi-classical method in this respect is
provided by the emission of radiation by high
energy electrons in nuclear collisions. The semi-
classical method readily shows that practically
all the theoretical effect involves relativistic
quantum mechanics only for quantum energies
of the order of mc? or less—however high the
energy of the electron. This relatively simple
feature of the theory was again not apparent
in the method of treatment by stationary states.
In fact, at the time of the original application of
the latter method to this problem, by Bethe and
Heitler, these authors suggested a possible break-
down of the theory when the de Broglie wave-
length of the incident electron was of the order
of or less than electron radius (i.e., energy of
electron > 137mc?). The semiclassical treatment,
however, readily shows that the relation of this
wave-length to electron radius has no relevance
at all.

The above contributions from the semiclassical
method, however, do not indicate a fundamental
advantage over the method of stationary states.
The basic theory involved in different collision
phenomena can no doubt also be unraveled in
terms of the latter though not so readily. It is
desired to emphasize, however, that the semi-
classical method does possess a distinctive funda-
mental merit in the very fact that it makes use
of ordinary ideas. We have seen that such ideas
are applicable when what is imagined in their
application can be observed without significantly
disturbing the phenomenon. Thus in applying
the semiclassical method to collisions, what we
in essence do is to shine a light on one or more
of the colliding particles and watch with our
ordinary senses what is happening. To forego the
possibility of doing this is deliberately to limit
our ordinary instinctive understanding of certain
aspects of the phenomenon, to accept as it were,
an unnecessary black-out on ordinary ideas.
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Thus the scattering of a-particles by heavy
nuclei (Zze?/hv>>1) permits full illumination, and
the orbits can be seen to obey Newton’s law.
On the other hand the scattering of fast electrons
by light nuclei (Zze?/hv<1) requires a total
black-out—the phenomenon is a 100 percent
quantum one. Finally as an illustrative inter-
mediate example, let us return to the ionization
by fast particles. This permits partial illumina-
tion, wiz., illumination of the moving particle
and of the atomic nucleus, but not of the atomic
electron. However, this is enough to show that
the failure of the moving particle to ionize at
distances beyond the radius p (Eq. (16)) is
related to the absence, at such distances, of
harmonics in the field of the particle of suffi-
ciently high frequency to ionize the atom. The
absence of such harmonics has nothing to do
with % and follows simply from our ordinary
ideas of motion. In the method of stationary
states, the limiting distance, p, again appears,
but as a wave interference effect, viz., the dis-
tance over which the change in the de Broglie
wave-length due to the ionization leads to a
phase difference of the order of .25 This gives a
simple mathematical picture of p, but the real
essence of the quantity is veiled. The method

of stationary states has to draw this veil because

it deals with the whole collision as one system
with a fixed total energy. The method gives the
reaction on the ionizing particle—which the
semiclassical method cannot touch—as well as
the perturbation of the atomic electron. This
completeness in the statistical treatment is, of
course, an essential merit, but it entails a
complete black-out on ordinary ideas. The semi-
classical method raises this black-out where
possible.

% Denoting the wave-length of the moving particle
before and after ionizing by A; and N, respectively, the
secondary waves from a volume of dimensions p will,
because of the change in wave-length alone, destructively
interfere if p is of the order of, or exceeds, a value given by
p/AM—p/Ae~1. p determines the maximum distance from.
the atom at which the moving particle can ionize. Now
AN=h/mv, so that the condition is (pm/h)(@w1—v2)~(p/hv)
X (E1— E3)~p(8E/hv)~1, where §E is the ionizing energy.

SE=hv where v is the corresponding atomic frequency.
Thus pr/v~1, j.e., p~v/», as in Eq. (16).



