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'N this paper we investigate the equations that
- ~ can be used for describing the behavior of
elementary particles of any integral or half-odd
integral spin on the assumption that these equa-
tions must always be written in the absence of
interaction in the form

(p&n"+yI$=0,

where the pI, are the differential operators i8/Bx~,
and the o.~ are four matrices describing the spin
properties of the particle. g is an arbitrary con-
stant about the physical meaning of which we
make no assumptions for the moment. The 0.~

satisfy different commutation rules depending
on the spin of the particle described and are
square matrices of different degrees in each case.

Relativistic wave equations for particles of any
integral or half-odd integral spin have been given
in several different equivalent forms by Dirac, '
Fierz, ' and Pauli' 4 taking as their guiding prin-
ciple the assumption that each component of the
wave function by itself must satisfy the general-
ized second-order wave equation in the absence
of interaction. Of these the equation for a particle
of spin —,', the famous Dirac equation, is already
in the form (1), and Kemmer' has shown that the
pseudoscalar and vector equations for the meson
can also be written in the same form. We shall
see below that for every case of spin greater
than 1 the equations of Dirac, Fierz, and Pauli
(abbreviated to D.F.P.) cannot be written in the
form (1). The D.F.P. equations connect two
irreducible spinors, and by a suitable transforma-
tion can be split into two sets, one of which still
connects the two irreducible spinors together,
while the other set only involves one spinor and
is in the nature of subsidiary conditions. We shall

*F.R.S.
' Dirac, Proc. Roy. Soc. A155, 447 (1936).
'Fierz, Helv. Phys. Acta 12, 3 (1939).
'Pauli and Fierz, Helv. Phys. Acta. 12, 297 (1939).
4 Fierz and Pauli, Proc. Roy. Soc. Al'73, 211 (1939).' Kemmer, Proc. Roy. Soc. 1'73, 91 (1939).

see below that the first set can be written in the
form (1) but without the second set the erst set
is not equivalent to the D.F.P. equations. The
second set, consisting of the subsidiary condi-
tions, is necessary in order that it should be
possible to derive a second-order wave equation
for each component. Moreover, the existence of
subsidiary conditions has always been a difficulty
of the D.F.P. formulation and becomes particu-
larly marked when interaction is introduced.
Fierz and Pau1i' have shown that this can be
done in a consistent way by special artifices
requiring the introduction of additional sub-
sidiary spinors, involving a certain loss in the
elegance of the mathematical formulation. It
would, therefore, appear to be more logical to
assume that the fundamental equations of the

elementary particles must be first order equat-ions

of the form (1) and that all properties of the

particles must be derivable from these without the use

of any further subsidiary conditions. lt will be
shown below that as a result of this assumption
each component of the wave function by itself
does not satisfy a second-order wave equation,
but one of higher order consisting of products
of the usual second-order wave operators. The
physical interpretation of this circumstance is
that for spins greater than j. the particle has
states of higher rest mass which are simple
rational multiples of the lowest value of the rest
mass. These states of higher rest mass are an
essential feature of the theory and cannot be
eliminated by an artifice. any more than the
states of negative mass in the usual formulations
of the theory. For example, a particle of spin ~

must appear with two possible rest masses, one
three times the other, while a particle of spin 2

has also two rest masses, one being twice the
other. The theory put forward in this paper,
therefore, predicts that should particles of spin —,

'
or 2 exist in nature, they would appear each
with two possible values of the rest mass, the
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lower values of the rest mass being the stable
ones in each case. In general, it can be shown

that for a particle of spin n the number of
different values of the rest mass is 2n+1 if n is
half an odd integer, each value appearing with

its negative, while if n is an integer the number
of values is 2n, .

The assumption that all physical and mathe-
matical properties of the particle should be given

by Eq. (1) implies that the a-matrices them-

selves should be capable of generating the nucleus
(consisting of the six infinitesimal transforma-
tions) of the representation which determines
the way the wave function transforms under any
given transformation of the Lorentz group (Eq.
(8) below), and I have pointed out in a recent
note' that with this condition the problem of
finding all irreducible representations of the
matrices in (1) can be connected with the
problem of finding the nuclei of all irreducible
representations of the Lorentz group in fwe
dimensions, the solution of which is completely
known. The connection between the wave equa-
tion (1) a.nd the representations of the Lorentz
group in five dimensions which has been estab-
lished gives a very powerful method for finding

and handling equations of the form (1) and gives
a deeper insight into their structure. It is used
in this paper to specify all the irreducible equa-
tions of the form (1) that satisfy our basic
assumption. It is shown that for particles with a
maximum spin n, the number of different equa-
tions possible is n+2 if n is half an odd integer,
and n+1 if n is an integer. These equations are
not equivalent and describe particles with dier
en' physical properties with the maximum value n
of the spin. * The degree of the representation of
the matrices in each case is given. It is shown

also that there is only one equation for each
value of n, , such that the particle displays the
spin n only in all circumstances. The structure

Bhabha, Curr. Sci. 14, 89 (1945}.
~ The different physical properties described by each

equation manifest themselves strikingly in the non-rela-
tivistic approximations of the equation in each state of rest
mass. These non-relativistic approximations as also the
Lagrangian formulation of the equations and the ex-
pressions for the current and energy tensors have been
given in a subsequent paper {Proc. Ind. Acad. Sci. A 21,
241—264 (June, 194S)).

of the equations is analyzed in greater detail in
the last section. t

1. GENERAL THEORY

We take the metric tensor to have the form

g00 gll g22 g33 1 gkl =0 «r & 0 i Any
general transformation t of the Lorentz group is
one whose coefficients t~~ are all real and which
leaves the metric form unaltered, that is

gq~=g „tq t~". (2)

We adopt the usual convention of summing from
0 to 3 over any repeated index. Denoting by
t—' the inverse transformation of t so that
(t ) ktlm=glk where Sos ——8 '=les =l5 3=1 while
81k =0, k p l, the effect of a.Lorentz transforma-
tion on the Eq. (1) is to transform the Pk and rrk

to pk' and n'k defined by

p„& —p (1
—1)„l ~~k —

~ k~ 1

Let the O. s be square matrices of some given
degree d. The requirement that Eq. (1) shall be
invariant for all transformations of the Lorentz
group means that a non-singular matrix S of d
rows and columns shall exist capable of bringing
the n™back to their original from n by a
transformation Sr2™S'. The nm are, therefore,
quantities which transform according to

~m ~ m(S~sS—1)

$ The connection between the Eqs. (1) and the Lorentz
group in a free-dimensional space is also discussed by J. K.
Lubenski, Physica 9, 310 and 325 (1942). This paper is
not accessible in India at present.

With every transformation t, we must be able to
associate a matrix S, and it can be seen quite
easily that the S's form a representation of the
full Lorentz group of degree d. Since the group
of transformations t includes improper ones
whose determinant is —1, the group of matrices
S must include one which reverses the sign of
the three matrices n', e', and 0.', corresponding
to an inversion of the space at the origin. Let the
infinitesimal transformations of the representa-
tion S be the six matrices I" antisymmetric in
r and s. It is usual to refer to these as the nucleus
of the representation S. As is well known, the
infinitesimal transformations of any representa-
tion of the Lorentz group must satisfy the
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commutation relations

[&m Irs) gmr&s gms&r (6)

We need concern ourselves first only with an
irreducible set of matrices a and S satisfying (4)
since every other representation can be made up
of a direct sum of these. The representation 5 by
itself is not irreducible, and, therefore, its nucleus
consisting of the six matrices Irs is not either.
But in this particular problem, the six I"' have
also to satisfy Eqs. (6), and the collection of the
ten matrices Irs and n is irreducible.

Remembering that for any three quantities
a, P and y

[~P, v) =~[P, v)+[~ v)P.

it follows from (6) that

[[~m &n) Irs) — gmr[&m & )+sg [&msgr)
+gnr[~n &s) gns[&m ~r) (7)

showing that the substitution

[~m &n) cImn

where c is a numerical constant, would be con-
sistent with Eqs. (5) and (6). Any finite constant
c can always be removed from this equation by
introducing a new set of o. s equal to the old one
divided by (c)&. The effect of this change in

Eq (1) is to divide g by (c)', but since the
physical meaning of p has not been found yet
we may consider this factor absorbed into g.
There are, therefore, two alternatives. Either the
last equation holds with a finite c, in which case
we can always write it in the more convenient
form

[Imn Irsg —ImnIrs IrsImn
)

gmrIns+gmsInr+gnrIms gnsImr (5)

and conversely any collection of six matrices
satisfying (5) can be used to build up a repre-
sentation of the restricted Lorentz group without
reflections. From (4) it follows, as usual, that

[I ", I"')=g""I *. (no summation over n) (9)

Hence if we take any three matrices I ", I"', I™,
they satisfy the three cyclic commutation re-
lations

[Imn Ins) gnnIms gnnIsm

[Ins Ism) gssImn

[Ism Imn) gmmIns
(10)

The g"" are here simple coefficients having the
value I if n =0 and —1 otherwise. Consider first
the case when m, n, l are equal to 1, 2, 3 re-
spectively. Writing iI2'=X, iI3'= V, iP'=Z, the
three equations (10) become

holds, however, for the three important cases
where we are fairly certain that the theory is
correct, namely for the Dirac equation, and the
scalar and vector meson equations considered in
the form (1) by Kemmer.

En this section we consider all possible equa-
tions of the form (1) for which the condition (8)
is fulfilled. The resulting theories for particles of
higher spin will be along the lines of the electron

. and meson theories, and it is possible to carry
over many of the features of the latter to the
general case. There are no subsidiary conditions,
and, therefore, interactions can be introduced
without difficulty or resort to any special artifice,
exactly as in the case of the electron or meson.
There are, therefore, reasons for believing that
the equations of the form (1) for which the con-
dition (8) is satisfied are the correct ones for
describing particles of higher spin.

We have to study the algebra of ten matrices,
the four a's and the six I's satisfying Eqs. (5),
(6), and (8). Equation (5) merely states that if
all the four indices m, n, r, j on the left are
different, the matrices commute, while if one
index of the two matrices on the left is common,
then we always get a general commutation rela-
tion of the form

[~m ~n) —Imn (8) [X, F)=iZ, [F,Z) =iX, [Z, X)=iY'. (11)

or it does not hold.
The most general form for the n's'satisfying

Eq. (6) will be investigated in the last section.
It will be shown there that (8) does not hold in
general. Indeed, it does not hold for any of the
alternative forms of the equations for spin greater
than 1 given by Dirac, Fierz, and Pauli. It

Equations (11) are the well-known commutation
rules for the three components of angular mo-
mentum and all representations by finite matrices
of three quantities X, F, Z satisfying (11) are
known. As is well known, any irreducible repre-
sentation can be labelled by a number X which
is an integer or a half-odd integer, and in this
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representation all the three matrices have the
eigenvalues X, X —1, X —2, ,

—X+1, —X, and
X, Y and Z satisfy the characteristic equation

IX' —) '}(X'—() —1)'}
X I

X' —() —2)'} =0, (12)

the last factor in the product being X or
}X'—(~s)'} depending on whether X is an integer
or half an odd integer. Now the representation
of the I's with which we have to deal are cer-
tainly reducible as far as any three of them
satisfying the relations (11) are concerned and
since they are the direct sum of irreducible repre-
sentations, can be characterized by the numbers

belonging to each irreducible com-
ponent. It will be found in the next section that
the numbers X', A.", must either be all
integers or all half-odd integers. Since the charac-
teristic equation for an X labelled by a given
integer or half-odd integer' is a factor of the
equation for an X labelled by a larger integer or
half-odd integer respectively, it follows that
every such reduciMe X satisfies the characteristic
Eq. (12) where X is the largest positive number
of the set A', X",

Suppose now that one of the indices in (10),
say m, is zero. We then have to put I'"=X,
I"'=i Y, I"=Z to reduce the corresporiding
Eqs. (10) to the form (12).

Lastly, consider the set of three matrices
n", n", and I ". From (6) and (8), it follows
that these satisfy the three commutation re-
lations

[&m &n] Imn [&n Imm] gne&m

[Imn &m$ — gmm&n (13)

Putting, for example, in" =X, in" = Y, iI "=Z
if m, n P 0, these can aga, in be brought to the
form (11).Taking three of our ten n's and I's at
a time and proceeding in this way, it can be
proved that n', in', in', in' I', iI", iI",iI" all
satisfy the same characteristic Eq. (12) with the
same value of X, which is, therefore, a number
that (together with others) can be used for
labelling an irreducible representation of the ten
matrices, furnishing a possible equation for a
spinning particle. That the n-matrices, multiplied
in some cases by i, satisfy the same characteristic
equation as the I's as a result of Eqs. (6) and (8),
was deduced after relatively lengthy calculations

by Madhava Raor in the case of sPin ss and 2.
The above argument shows without any calcu-
lation that it is generally true for all spins.

The similarity of (10) and (13) immediately
suggests the next step. We introduce an addi-
tional index 4, and deFine

Im4 — I4m. —nm

g4'= —1, g"4=0 for m/4. (14)

2. THE IRREDUCIBLE REPRESENTATIONS OF
THE WAVE EQUATIONS (1)

From every irreducible representation of the
real orthogonal group in n dimensions, we can
obtain an irreducible representation of the
Lorentz group by a suitable change in the reality
conditions governing the parameters and the
elements of the group. Every representation of
the Lorentz group in five dimensions can be
labelled by two numbers X& and P2 such that
'Ay&& ~2&~0 where X~ and X~ are both integers or
zero, or both half-odd integers (and, therefore,
neither is zero). In the former case we get the
one-valued representations expressible in terms

7 Madhava Rao, Proc. Ind. Acad. Sci. A15, 139 (1942).
8 Weyl, The Classical Groups (Princeton University

Press, New Jersey, 1939).' Murnaghan, The Theory of Group Representations
(Johns Hopkins, 1938).

Then, as I have already pointed out in a previous
note, ' Eqs. (5), (6), and (8) are all combined
into, one, Eq. (5), if we let the indices in the
latter run from 0 to 4 instead of from 0 to 3.
We make the convention that a small capital
letter used as an index stands for any of the
numbers 0 to 4. Then ten matrices I~~ satisfying
(5) with the indices running from 0 to 4 now
satisfy the same commutation rules as the ten
infinitesimal transformations of the Lorentz
group in Five dimensions. The problem of hnding
all relativistically invariant equations of the form
(1) under the assumption (8) is reduced to the
one of finding all irreducible representations of
the Lorentz group in Five dimensions, the solution
of which is already known. It will, therefore,
suffice to state in the next section some of the
results we need concerning the representation of
the Lorentz group in five dimensions and refer
the reader to books" on the subject for further
details and proofs.
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of tensors, in the latter the two-valued repre-
sentations expressible-in terms of spinors only.

The degree d of a representation R2(lii, X2) of
the five-dimensional real orthogonal group is
given by the formula

d2(1% i, X2) =
—2,(Xi+2')(X2+2)

X (lii —)i2+1)(Xi+X2+2). (15)

On the other hand, the degree of a representation
R4(1~i, X2) of the four-dimensional real orthogonal
group is given by

d4(1).i, X2) = 2P, i —1~2+1)(1~i+1%.2+1)
provided )i2Q 0

and (16)
d4(lii, X2) = P, i —X2+1)(Xi+li2+1)

if X2 ——0

Every tI'ansformation of determinant one of' the
real orthogonal group in four dimensions belongs
to a class, the typical element T of which con-
sists of a rotation of any two axes through an
angle 8~ and a rotation of the two other axes
through an angle 02. ID 6ve dimensions, the
typical element of a class is of the same type,
but leaves in addition the fifth axis unchanged.
Consider the expression

tion and set up the connection with the more
usual notation.

In the usual rotation used by physicists, an
irreducible representation of the proper Lorentz
group D(k, E) is labelled by two positive numbers
0, / which can take on any integral or half-odd
integral values independently. This representa-
tion is of degree (24+1)(2E+1) and its basic
vectors v, may be labelled by two numbers
m, m' of which m takes on the values k, k —1,
—0+1, —k, while m' takes on the values

E, E 1, . ——E+1, E(cf., f—or example, van der
Waerden"). The typical transformation T corre-
sponding to a rotation of the axes 1, 2 through an
angle 8&, and the axes 0, 3 through the hyperbolic
angle 02 is represented with a suitable choice of
the basic vectors v by a matrix which simply
multiplies the vector v „by exp I (2m+ m)8 i

+(m —m')82}. A reflection turns the representa-
tion D(k, E) into the representation D(E, k), and
in consequence, both must appear together in a
representation of the full Lorentz group if k+E.
The degree of this irreducible representation of
the full Lorentz group is, therefore, 2(24+1)
X (2E+1) if k+E, and (2@+1)(2E+1)if 1'2 =E. The
spur of the matrix representing 1is, therefore,

p(mi, m2) =g exp (imi8i+2m282) (17) Q }exp Li(m+m') 8i+(m —m') 82]

with fixed positive numbers mj and no~, the sum
being over all permutations and reversals of sign
of 0& and 02. Since p is symmetric in m & and m&,

we make the convention of writing the larger
number first mi&~m2&~0. A certain p(mi', m2')
will be said to precede another p when m~' & m~ or
when m2'&m2 if m~' ——m&. Then the spur of the
matrix representing the transformations belong-
ing to the class of T, we have described above in
the representation R4(X„ li4) is

m) m

+ exp L2(m+m') 8i+ (m' —m) 82] }, (20)

the sum being over all values of m from —k to k
and over all values of m' from —/ to l. This
expression can be identified witjh (17) if we write
i02 in place of -02 as is required in passing from
the Lorentz group to the real orthogonal group.
The biggest positive integer which multiplies 0~

in (20) is )'2+E, and in this term 82 is multiplied
by ~

~
0 —E

~

. We therefore have the identification

P p(mi, m2),
m$) m2

(18) (21)

the sum being over certain integral values of m~

and rn2 if X~ is an integer and over half-odd
integral values if it is half an odd integer. The
important point is that the 'leading term' in the
sum (18), consisting of the p which precedes all
the others, is

p(~1 ~2) = 2 exp (2»8i+21i282) ~ (19)

This circumstance enables us to identify the spin
of the particle described by a given representa-

The infinitesimal transformations iI", iI", iI"
can also be interpreted as the spin operators of'

the particle, and the highest eigenvalue of these
in the representation we have just considered is
Ee+E=Xi. Hence we can interpret Eq. (1) as
describing a particle of spin ) ~, when the o.'s in
it are the four infinitesimal transformations I~4

~0 van der Waerden, Di e grN ppentheoretische Methode
in der Quantenmechanik (Verlagsbuchhandlung, Julius
Springer, Berlin, 1932).
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TABLE I.

k l d4

of the representation R~(Xi, X2) of the Lorentz
group in five dimensions. That ) i should have a
value equal to the spin of the particle we wish

to describe is clear. We leave the question open
for the moment as to whether this condition is
sufficient and discuss it again at the end of the
section.

The existence of the number ) ~ shows that
there is more' than one such equation for any
given value of ) i. Since ) i && ) 2 && 0, it follows that
the number of equations for a given value of ) &

must be equal to ) i+1 if Xi is an integer not
equal to zero, or Xi+~ if X& is half an odd integer.
For example, for X& = ~, there is only one possi-
bility X2= —'„and we simply get the Dirac equa-
tion. For Xi = 1 there are two possibilities ) ~ =0
and X2=1. The former gives the scalar meson
theory with a representation of degree 5, the
latter the vector meson theory with the repre-
sentation of degree 10, both studied by Kemmer.

In the first column of Table I the possible
values of X& and X2 for equations describing
particles of any spin up to 2 have been given.
The respective degrees of the representations
concerned, as calculated by formula (15), are
given in the second column. The same values of
) ~ and ) 2 also label an irreducible representation
of the Lorentz group in four dimensions which,
as we have seen, is identical with the usual
representation D(k, I) +D(l, k) if k+ l and D(k, k)
otherwise. The values of k and l given by (21)
are shown in the third column, and the degrees
of the representations, as calculated by (16), in
the fourth. In the fifth column are given the
types of spinors corresponding to the irreducible
representations of the four-dimensional group in
the usual notation.

' Rg(1, 0)—+R4(1, 0)+R4(0, 0). (23)

These two examples show in a new light the
structure of the meson equations as studied by
Kemmer.

Another example is provided by the simple
rule (Murnaghan, page 287)

Rg() g, 0)~R4(Xg, 0) +R4(Xg —1, 0)
+R4(Xg —2, 0) + +R4(0, 0), (24)

for ) i, an integer. As a particular case of this
rule, ) i ——2, we have one of the possible equations
of a particle of spin 2 whose wave function con-
sists of a symmetric tensor G~L, satisfying Gz~ ——0,
which breaks up under restriction to the Lorentz
group in four dimensions into. a symmetric
tensor GA, i, a vector GI, 4 and scalar G44. The
degrees of the representations furnish a check
on this decomposition: 14=9+4+1.

For half-odd integral Values of the X's we have,
as an example, which may be of physical interest,

Every irreducible representation of the Lorentz
group in five dimensions provides a representa-
tion, usually a reducible one, of the Lorentz
group in four dimensions. For example, the anti-
symmetric tensor Fz I. with ten components
breaks up into two irreducible tensors, an anti-
symmetric one F&& with six components and a
vector FI,4 with four components, if we consider
only rotations keeping the axis 4 fixed. It corre-
sponds to the decomposition

R5(1, 1)—+R4(1, 1)+R4(1, 0). (22)

This shows that the ten-rowed representation of a
particle of spin 1 must involve a wave function
which is made up of an antisymmetric tensor
with two indices, and a vector. Similarly a five-
dimensional vector F~ breaks into a vector F~
and a scalar F4 under restriction to the four-
dimensional group, corresponding to

0 0

0

3.
2 2

2 0
2

2 2

1

5

10

16

20

14

35

35

0 0

0

1 0
1

1 1
3 1
2 2

2 0

1

6
12

8

9
16

10

ghee t

@eh'V

gX+V

g, ~Xjgr
-VP

g, 7I P,V

p

+X@,v p

+X)'sv

+Xiii

+Rsvp

Rs(2, k)~R4(k, 2)+R4(k k)

with the check by degrees

20 =8+12.

(25)

The corresponding Eq. (1) could describe a
particle of spin ~, and its wave function would
involve the spinors a"&", a~„.„, a;~& and a);„".

The only other equation possible for describing
a particle of spin ~3 is that given by the nucleus
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of the representation R2(22, 2). The wave function
decomposes under restriction to the four-dimen-
sional rotation group according to

R2(2, 2)~R4(2, 2)+R4(2, 2), (26)

the check according to degrees being 16= 12+4.
The wave function consists of the spinors a„"&,

a~„.", a& and a„.We shall consider the structure of
both the equations given above in more detail
in Section 5.

We now return to the question as to whether
the representations for a given value of A. » but
diAerent values of X2 all describe particles of
spin X&. The scalar wave equation R2(1, 0) is

generally thought to represent a particle without
spin, and Kemmer has shown that the expecta-
tion value of the spin operator is zero in this
case. On the other hand, as Kemmer has pointed
out, the particle would still show a magnetic
moment in the relativistic region. There is,
therefore, some justification for regarding this
particIe as one possessing a spin which manifests
itself in the relativistic region. According to a
possible classification it would be considered as a
particIe of spin 1, even though it manifests no
spin in the non-relativistic approximation. There
are several equations of this type, as for example
those given by R&(2, 0) and R&(2', —,') mentioned
above. In all cases of the above type, the wave
function falls into parts which transform accord-
ing to different representations D(k, 1) of the
four-dimensional Lorentz group with k+1 equal
to and less than )». We may consider the particle
described by equations of this type to manifest
different spins under different circumstances, the
highest value being always X». If, however, we

require that all the different parts should corre-
spond to representations for which k+1 is con-
stant, then there is only2022e possible representa-
tion for each value of the spin X~ namely R2(X2, X~)

with the degree 6(2K~+1)(2X4+2)(2K~+3) given

by (15). This equation would certainly describe
a particle of spin X» only.

3. DETERMINATION OF THE VALUES OF
THE REST MASS

The constant x is obviously connected with
the rest mass of the particle. To 6nd the actual
values of the mass it is necessary to eliminate the
spin matrices n" from Eq. (1) and in so doing

derive an equation of higher order containing
only the differential operators p& and the con-
stant p. This can be done quite easily by a direct
method already given in a previous note. '

Let P=pI.„e4"—. For the argument which follows
we may regard the pz as simple numbers; they
become this in fact if the wave function is a
plane wave. Since the u's are finite matrices of
degree d, I' must satisfy a characteristic equation
whose degree cannot exceed O'. This character-
istic equation is a polynomial in P with the pz as
coeScient;s. Further, it can be proved immedi-
ately by using (4) that this equation must be
invariant for all transformations of the Lorentz
group; that is, it must be unchanged when the
p~ are replaced by the p~' to which they are
connected by a transformation (3). The p&

can, therefore, only appear in the combination
P'=—P2P2. Now consider the characteristic equa-
tion of P in the Lorentz system in which pz
has the special form P~ ——P2 ——P2 ——0. P then
becomes equal to p2422 where po is just a number.
For a particle of spin X the operator 0,' satisfies
the characteristic Eq. (12); and hence P satisfies
the equation obtained from this by multiplying
X2, (X—1)', etc. , by p'. Written in a relativistically
invariant way, p02=pj, p~ and hence the charac-
teristic equation of I' must be

f
P2 p2g2} f

P2 p2() 1)2}
X f

P' —P2(& —2)'} =0 (27)

the last term being {P'—p'}P or {P'—4p'} de-

pending on'whether X is an integer or half an
odd integer. Operating on P with the left-hand
side of this equation we get, replacing every I' by
x by a repeated use of (1),

f x2 p2(2} f x2 p2(y 1)2}.. .

X f X2 —X2}x/=0 (28a)
if X is an integer, or

{X2 p2g2} {X2 p2() 1)2}.. .

X f X2 —~2p2 } f x2 ——4' p2 }$=0 (28b)

if P is half an odd integer. We may now replace
p' by the second-order diAerential operator
—82/Bx48x". Each bracket is then just the usual
second-order differential operator for a particle
of finite mass. Equations (28), therefore, show
that a particle of integral spin X has 2X possible
values of the rest mass, namely &x, &x/2,
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+y/3 ~ +y/X while a particle of half-odd in-
tegral spin has 2K+1 values of the rest mass

+2y/3, ~2@/5 ~ ~ &x/X. The negative
values of the mass only give the 'anti-particles'
corresponding to each positive value of the mass,
that is the particles of opposite charge exactly
as in. Dirac's theory of the electron. In the
special case of spin ~, we have two possible
values of the rest mass, namely m=2'/3 and
3m=2x. The higher value of the mass is, there-
fore, three times the lower. In the case of spin 2,
we also have two possible values of the rest mass,
namely m = x/2 and 2m = X. The higher value is
here just double the lower.

The above derivation shows that the 'number

of values of the rest mass depends only on the
maximum spin of the particle, or more precisely,
on the magnitude of the constant X» and is
independent of the value of ) 2. Moreover, these
states of higher rest mass are an intrinsic and
necessary part -of our theory and cannot be
eliminated any more than the states of negative
energy in Dirac's theory of the electron. Accord-
ing to our theory, if particles of spin greater
than 1 exist in nature, then they must certainly
manifest the phenomenon of appearing some-
times with one, sometimes with another value of
the rest mass. The states of different rest mass
being merely different states of the same par-
ticle, transitions from one mass to another would

always be possible under the inHuence of inter-
action if sufficient energy were available for the
purpose.

4. COMMUTATION RULES. REDUCIBLE
REPRESENTATIONS

Equations (5), (6), and (8) or, if we adopt the
five-dimensional notation, Eq. (5) alone with the
indices running from 0 to 4, are commutation
rules which must be valid for all representations
and hence for all values of the spin. .From these
we can exclude all but a finite number of repre-
sentations by prescribing a maximum value for
the eigenvalues of any one of the o.'s or I's. It
has been shown in Section 1 that all the X's and
I' s, multiplied in some cases by i, satisfy the
same characteristic Eq. (12). We can derive
particular commutation rules for each value X~

of the spin by prescribing the value of X in

(12) and then using this equation in conjunction

with (5), (6), and (8). The method has been
used by Madhava Rao' "to derive the commuta-
tion rules of the 0.'s for spins —,

' and 2, It is clearly
quite general and can be used for any other
value of the spin. From the fact that these com-
mutation rules are derived by ma, king use of (12),
we can see at once that for a spin ) they must
contain terms consisting of products of 2K+1
different n's on the one hand and connect these
with terms containing products of 2X —1, 2X —3,~, etc. , )'s, On putting all the e's equal in
these commutation rules, one must get back
Eq. (12). The contribution of this paper to the
solution of this particular problem is that it
allows one to write down all the irreducible
representations without knowing the commuta-
tion rules themselves, and it also tells us how
many inequivalent representations there are for
each value of the spin.

In this connection one important point should
be noticed. Any matrix which satisfies Eq. (12)
for a given value of X ipso facto satisfies the same
equation for a value )' greater than X by a
positive integer. Hence matrices satisfying the
commutation rules for some spin ) automatically
satisfy the commutation rules for a spin greater
than X by an integer. In other words, if only the
commutation rules corresponding to some value
of the spin are given, there are included among
the possible representations of the matrices those
corresponding to particles of lower spin. For
example, the commutation rules for spin ~ are
also satisfied by the Dirac matrices" besides the
two new representations for this case which have
been given above.

It may now be asked whether it is possible to
specify an abstract algebra in such a way that
it only has the one representation that we wish
to select. For example, in the case of spin 1,
can we so specify the algebra, besides giving the
commutation rules of Duffin, that it possesses
only one of the two possible representations that
are known) The answer to this question must
be in the affirmative. It depends on a well-known
theorem in algebra (cf. van der Waerden")

"Madhava Rao, J. Mysore Univ. 3, 59 (1942).
"This particular fact was pointed out to me in a'con-

versation by Prof. D. D. Kosambi, and I am grateful to
him for it."van der Waerden, Moderne ALgebre (Verlagsbuch-
handlung, Julius Springer, Berlin, 1931),Vul. II,
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which states: Every irreducible representation
of an abstract finite semi-simple algebra is a
faithful representation of a simple sub-algebra,
the other sub-algebras being represented by zero
matrices in this representation. Corresponding
to each irreducible representation for a given
value of the spin, therefore, there must be an
abstract simple sub-algebra, and the specification
of it automatically restricts one to just this one
representation.

It was first discovered by Cartan that the
orthogonal group in 2) or 22+1 dimensions has
a spinor representation of degree 2". As shown by
Brauer and Weyl" spinors in n dimensions can be
introduced exactly as in four dimensions. We
start with n matrices p~ satisfying the relations

~K~I +~I~K —2gKI (29)

"Brauer and Weyl, Am. J. Math. 57, 425 (1935).

the g~~ being just a generalization to I dimen-
sions of the g~' given previously. There are only
2" independent elements of this algebra. The last
element y'y' y" commutes with all the ele-
ments, if n is odd and since its square is ~1 it
can only be represented by plus or minus a
certain multiple of 2. Corresponding to these two
possibilities it can be proved that there are only
two inequivalent irreducible representations of
degree 2". One of these is obtained from the
other by merely reversing the sign of all the y's.
Spinors can then be introduced by considering
the transformations of the form pKyK and con-
necting each orthogonal transformation in n
dimensions with a certain S, exactly as in (4).
The particular spinor representation so obtained
can be regarded as the basic one, since every
other representation of the n-dimensional or-
thogonal group is contained in the reducible
ones obtained by forming its direct product with
itself a sufhcient number of times. In five dimen-
sions the degree of the basic spinor representation
is four. It is the representation denoted by
R2(—'„—',) in Table I. This summary suffices for
the purposes of this paper, and the reader is
referred to the paper by Brauer and Weyl for
further details.

Now consider the Kronecker direct product
R2(XI, X2) XR2(lti', X2') of two irreducible repre-
sentations of the five-dimensional orthogonal

group of degrees d and O'. As it is well known,
this representation is reducible, and its nucleus
consists of the infinitesimal transformations

I (Xi, X2) XBa~+ZgXI (X
'

X ') (30)

Bq and E~ standing for the unit matrices of
degrees d and d', respectively. Since the eigen-
values of IK~(x~, x2) are it), xi —1, —xi and
those of IK~(xi', x2') run from xi' to —xi' it
follows that the eigenvalues of the nucleus of
the product representation must range from plus
to minus Xi+Xi' and an irreducible representa-
tion corresponding to this value of the spin must
appear in the reduction of the product repre-
sentation. Further, the matrices (30) must satisfy
the characteristic Eq. (12) with X=XI+Xi'. We
can, therefore, write down immediately matrices
which satisfy the characteristic Eq. (12) for any
value of X. They are in fact

1~&=p»~& y g&» )(g('3& . . )(/(»~
+jV(I) XI(2)jINX/(2) X. . . Xg(2&). . .
+@(I)X+(2)X. . . X+(2x—i) X I(22)2IN (31)

where the numbers in parentheses denote differ-
ent independent sets of matrices of degree 4 each
satisfying (29). Putting the four matrices I~' of
this set into (1) in place of the n~, in accordance
with (14), we get an equation whose wave func-
tion is a direct product of 2) wave functions of
the Dirac equation. The reduction of the set (31)
into the sum of irreducible representations leads
to a direct sum of all possible equations for
particles of spin ) and those of lower spin. The
reduction c'an be effected by repeated use of the
formula (cf. Murnaghan')

R(-,', 2) XR(XI, X2) =R(XI+2, X2+ 2)
+R(XI+2', X2 —-2')+R(XI ——,', X2+-2')

+R(XI—-'„X2——,'), (32)

it being understood that the third term on the
right is to be dropped if Xi —2 (X2+2. The re-
duction indicated by Kemmer of the equation
considered by de Broglie in which the n" in (1)
have the form a"+u'~ is but a particular case of
(32) with Xi ——X2 ———,'. We get on the right in this
case R(1, 1)+R(1, 0) +R(0, 0), the first two
representations being the two irreducible ones of
the vector and scalar meson theory.
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S. GENERAL ANALYSIS OF THE STRUCTURE OF EQ. (I)
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We now proceed to a general analysis of the structure of Eq. (1) without requiring Eq. (8) to be
fulfilled. For this purpose we shall have to make use of certain well-known formulae' ""connecting
tensors with spinors which are summarized below. "

Spinor indices are denoted by Greek letters and only take on the values 1 and 2. The antisymmetric
spinors ep„and ep" defined by ei2 ———e2~

——1, e~~=e22=0 and e"= —e"=1, k"=&=0 cari be used for
lowering and raising indices according to the formulae

b„=~„„b", b" = b„eI'".

Antisymmetric spinors c„„and ~I"'"' for raising and lowering dotted indices are defined similarly. Now
consider the four matrices a.I, defined by

(1 0& (0 1l (0 i i— (1 0 )
E,o 1&l ~-1&1 O&l

k=1, .
0 &I k-IEO (33)

or an equivalent representation. They satisfy the well-known relations

oko~+otak=0 for kplp0, ok2=1 all 0 and oko~=i&r3 (34)

together with the equations obtained from the last one by a cyclic permutation of the indices. The
rows and columns of the matrices (33) can be labelled by an upper undotted and dotted index re-
spectively thus giving the quantities ok""' which have one tensor and two spinor indices. They retain
the same form (33) after undergoing a transformation of the Lorentz group on the index k and
corresponding spinor transformations of the indices p, i. The tensor index of these can be raised and
lowered as usual by the tensor gl, &, the spinor indices by using the ~ s. On doing this we find that
oo„„, and —ok„,(k+0) have again the form (33) if the lower dotted index is now used to label the
rows and the lower undotted one the columns. The first two equations of (7) can then be written in
the spinor form

&k &tpp+&l &k p p2gkl~p

&kpp&L +0 lppak 2gkl~p

The third set of equations in (34) can be written

(35)

and
2(0'k" 0'l'p —&L" 0'k p) =0'k"'&t' p&kt ~& ""&;p"

2

1
z

0IXpol' —&Q,p&I' =Okkp&l' = ——~I lmn&), p 0 '
2

(36a)

(36b)

Finally there are the equations

+mdiv+

. 2$ m
nvp, . n-

pP«mpv 26yp6) v

(37)

(38)

With every tensor o.~ we can connect a spinor 2 "& and vice versa through the equations

QXj, ~m~ ) p, ~m &~, mg) p, (39)

Similarly, an antisymmetric spinor lk' can be connected with two symmetric spinors Xp" and Lp"' by
p

the equations
4+ p I ~mp, X~' n

4L .) I g. mgn vX
p, mn pv

(40a)

(40b)

'5 Uhlenbeck and Laporte, Phys. Rev. 37, 1380 (1931)."The definitions given here do not follow those of the authors mentioned but those given in my essay for the Adams
Prize (Cambridge, 1942) on "The theory of the elementary physical particles and their interactions" to be published
shortly in enlarged form by the Clarendon Press, Oxford.
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and the converse
Imvv = 30'm + 0' v"v(cjgpKl, v+cl,vs p) ~ (41)

(40a) is equivalent to the three equations

Kl' —— K3—' K„——K3' K——, iK—„, Kl3 =K,+iK„
where

1 (iI33+IM) K 1 (iI31+IQ2) K 1 (iI13+I33)

Similarly (40b) is equivalent to

Lil= I33= ——L, Lll= L iL—3, —Il = L +iL„
where

Lg ——', (iI" I-M) L—„=-',(iI"—I") Lv ———,'(iI"—I").

(43)

(44)

(45)

The formulae (39) to (45) hold even when the n's and I's are matrices as in the previous sections.
When the I's are the infinitesimal transformations of a representation of the Lorentz group satisfying
(5), the K's and I 's form two sets of matrices which commute with each other while the three matrices
of each set satisfy the commutation rules (11) which follow from (5). In fact, K'=K,'+K„'+K,'
commutes with every one of the six I's and if the representation concerned is the irreducible one we
have labelled I "(k, I), its value is k(k+1). We denote this particular representation of the K's by
K(k). Similarly L'=L,'+L„—3+L 3 commutes with all the I's and has the value l(l+1) in this repre-
sentation. The representation of the K's is of degree 2k+1, that of the I's of degree 2l+1 The.
eigenvalues of all the K's are k, k —1, —k+1, —k. We may as usual take K. to be in diagonal form.
Labelling the corresponding rows and columns of the matrices by m, where m runs from k to —k the
matrix elements of the usual representation of the X's are given by

(m~K, m) =m
(m+1~K,+iK, m) =L(k —m)(k+m+1) J&

(m —1~ K.—.K, m) = L(k+m) (k —m+1)]:—. (46)

All the other matrix elements vanish. The representation of I.„L„,and L, is similar with l replacing k.
Finally we shall need the two matrices u&(k) of 2k+1 rows and 2k columns and the two matrices

v&(k) of 2k rows and 2k+1 columns introduced by Dirac' and treated by Fierz' which satisfy the
equations

—u„(k+-,')v" (k+-,') =v„(k)u" (k) =2k+1,

v„(k)v& (k+ -,') =n„(k+ -', )u& (k) =0,

—v&(k+-,')u. (k+-,') =K„&(k)+ (k+1)8,&,

(47b)

(48a)

-u~(k)v„(k) =K„~(k)-kb„~. (48b)

Equations (47) and (48) uniquely define the u's and v's. There are corresponding matrices u&(l) and
v&(l) satisfying the same equations with all the indices dotted and the L(l) written in place of the K(k).

Writing k —
3 in place of k in (48a), multiplying it from the left by Ip(k) and then subtracting from

it (48b) multiplied by u'(k) from the right we get after using (47) and (48)

u3(k) Kl'"(k —-') —Kl'"(k) u~(k) = 3 e»u" (k) + -'63 "ul'(k)

Similarly we can deduce the equation

vp(k)K""(k) —K""(k—-')u&(k) = 'e»v"(k)+3~'" v( )k-

(49)

(50)

Equations (49) and (50) uniquely determine the u'-s and v's except for an arbitrary multiplying
constant if the reoresentations of K""(k) and K""(k—q) are given.
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We now return to Eq. (6). Multiplying it by o &"0,&"0„,and remembering (39) and (40), the left-
hand side becomes —4t A&~, X,&] while the first term of the right-hand side gives

g "0- l'"o-„&"'A„p——. 2e»e'"'A„= —2''&A "
P

because of (39). The second term on the right can be transformed similarly. Raising the index p

we get
2t Ai", X»j = ~»A" +~»A~'.

Similarly, multiplying (6) by 0 &"0„;,0,» we get

2LA&i', L"'"j= ei "A&"+ei "A».

(51)

(52)

The factor 2 at the left of these equations is important, as we shall soon see.
The matrices I"' in (6) must be a reducible representation of the nucleus of the proper Lorentz

group, and they can always be written in the form

I"'(k i, l i)

I" =&

I"(km, lg)

I"'(k3, l3)

{53)

and

The index X remains attached to the A&" unaffected in (54), while the index P remains unaffected in

(55). The general solution of these equations is, therefore, clearly of the form

where all the empty rectangles are filled with zeros. We leave the number of irreducible elements
contained in I."' unspecified. Corresponding to this reduction, both X» and I.I"'"' take the same form,
the former having X»(k,) in the respective boxes, the latter LI'"(I,) We c'an a. lso divide the matrices
At'~. into squares and rectangles corresponding to the above reduction and label the sub matrices in

any rectangle (k„ l. ~A&"
~

k&, I&). Corresponding to this reduction, (51) and (52) become

{kl IA'"lk«i)&"{ki) —&"(k)(k I IA'"lk«i) =2"'{kI.IA'"lk«i)+k"~(k I IA" lk«i). (54)
/

(k I
I

A'"
I
k«i)L""(«) —L""(l.)(k.l. I

A"
I k«i) = a~""(k I

I

A'"
I
k«i)+2~""(k I

I
A™

I
k«i) (55)

(k,t, lA»lk, I,) =(k, lA&lk, )(I, IA II,), (56)

the expression on the right being really the direct product of two rectangular matrices the first having
2k, +1 rows and 2k&+1 columns, and the second 21,+I rows and 21&+1 columns. The ffrst equation,
therefore, reduces to

(k IA'Iki)&"(ki) —&'"(k )(k IA'Iki) =k"'(k IA'Iki)+l "~(k IA'Iki) (57)

with a similar equation for (I. tA ~l&). Equation (57) is exactly the same as (49) or (50) if k& ——k, ~2.
We have to investigate what happens in the other cases. It will be shown that (k,

~

A&
~

ki) = 0 unless
k] ——k, a-,'.

Putting P=y=1, p=2 in (57) we get, remembering (42),

(k, iA'~ k )&*(k ) —&*(k.)(k. lA'I k ) = l(k. lA'Ik ) (58)

Let us assume the X's to be in the form (46). Using the letters m and m' to label the rows and columns
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of X,(k, ) and E', (k&), respectively, (58) then becomes

(k. , miA'~k„m'){m' —m —-', } =0. (59)

Since m takes on the values k„k,—4, and m' the values k&, k& —1, . the factor in curly brackets
can only vanish if k, and k& differ by half an odd integer, and the only non-vanishing elements of A
are then (k„m~A'}ki, m+-', ). If kiQk, &-', , then the corresponding sub matrix of A' is zero. Let
ki =k, +(n/2), n being an odd integer.

If we put li=y = p = 1 in (57) we get, remembering (42),

(k IA'Iki) {&(ki) —l&.(ki) }
—{&*(k) —~&.(k ) }(k IA'lki) =o.

Using (46) we obtain

(k» m~A'~k&, m+-', )[(ki+m+2)(k& m—', )—g&—[(—k, +m+1)(k, —m)]'(k„m+1IA'~k, , m+-,') =0,

or writing ki ——k, +(n/2) and dropping the indices s and t

( n 1) ( n 3l ( n 1)
}

k m}A'ik+ —,m+ —
} ]

k+—+m+ —
} } k+——m ——

}

2) & 2 2) & 2 2)
n 3'E

= [(k+m+1)(k —m)]il k, m+1 IA'ikP —,m+ —I. (61)
2 2)

First consider the case when n is positive, n&~ 1. The matrix element of A on the left of (61) does
not exist if m = —k —1, while the one on the right exists, but no contradiction arises since the coeffi-
cient of the latter vanishes for m = —k —1. For m = k the matrix element of A' on the left exists while
that on the right does not. Hence (61) would lead to a vanishing of (k, —k

~

A'
} k+n/2, —k+-,') (and

by repeated use of (61) of all other matrix elements of (k}A'~k+n/2)) unless the coeflicient of the
one on the left vanished, i.e. , if

3q t' n Iq
} k+—+k+—

} i
k+——k ——

}
=0.

2 2) g 2 2)
(62)

This can only happen if n= 1. In this case (57) reduces to (50), and we see that (k ~A'}k+-, ) is just
the matrix v'(k+-, ) multiplied by an arbitrary constant. In fact, from (61) we can derive an explicit
expression for the matrix elements of (k~A'~k+-', ) or v'. It is

(k, m(A'(k+-', , m+-,') =c[(k+m+1) j-:, (63)

c being an arbitrary constant. All other elements vanish.
Similarly, putting P=1, y= p=2 in (57), we get an equation which connects (k~A'}k+ —',) with

(k ~A'
~

k+-,'). lt follows from (50) that it must be proportional to v'. We get, in fact, for its elements

(k, m }
A'

}
k+-', , m ——',) = c(k —m+ 1)&. (64)

If n in (61) is negative, then it can be shown by a similar argument that it must be equal to —1.
Equation (57) then takes the form of (49), and we find that

(k
i

A~ ik ', ) =du~(k). —- (65)

We have obtained the final result that two irreducible components in (53) of the I's can only be
connected together if their k's and l's differ by ~-,'. There are, therefore, two typical types of con-
nection. We call the coupling of I(k, l) with I(k+ —,', l —2) a connection of the first type and denote
it by (k, l):(k+-'„ l —,'). The coupling of I(—k, l) with I(k+-'„ l+—,') will be called one of the second
type and denoted by (k, l)=(k+-,', l+-,'). For the first type of connection the relevant matrix elements
of the u's have the form

(k, l
~

A&'}k+-'„ l ——',) = cv&(k+-', )u" (l)
(k+-,', l —-,'~Ai"

~
k, l) = d&u(k+-', )v"(l)

(66)
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For the second type they have the form

(k, l
~

Ae" ] k+-'„ l+-', ) = cve(k+-', )v"(l+-', )
(k+--'„ l+-', ~A~'~k, l) =du~(k+-', )u"(l+-', ). (67)

We note at once that by a transformation of the type n"—+Qn'Q ' which leaves the I's unchanged,
QI"'Q ' = I"', the constants c and d in (66) and (67) can be changed at will, leaving only their product
cd constant. We can, therefore, always bring them to the form ~c~ = ~d . For a reason which will
become obvious further down, it is convenient to write c= —d = (a)'.

Since Eq. (1) and the I's must be invariant for reflections or improper Lorentz transformations in
general if an I(k, l) appears in the decomposition (53), then I(l, k) must also appear in it if kgl.
There are now two possibilities. Either one can pass from any I(k, l) to every other through a chain
of successive connections of the types we have. described, or there are at most two unconnected sets
in each of which one can pass from any I(k, l) to any other through a chain. The two unconn'ected
sets (unconnected, that is, by matrix elements of the n's) pass into each other by a reHection. Any
other possibility would lead to reducible representations of the o.'s and I's. If the second alternative
holds, then we sha11 only consider one of the sets and ignore the other, since the latter can always
be obtained from the former by a reflection and has the same structure. Corresponding to the decom-
position (53), the wave function of (1) also decomposes into a direct sum of component wave functions
which we write

p(k 1& ll) +4(k2& l2) +4 (k3& l3) + ' (68)

We consider first the simplest case where there is only one connection of the first type, (k, l)
(k+-', , l —2). Remembering that pro. "=-',p&,„o."& and omitting the factor 2, we find Eq. (1) takes

the form

p (k+ ) '(l)4'(k+ l )+ 4'(» l) =0
—cPe~ue(k+-', )v"(l)$(k, l)+X/(k+-'„ l —-', ) =0.

The equations given by Dirac are equivalent to

(2k+ii'
p'e '(k+l)4(k+ 'l —l) = ~-, l x (1)4(» l)

2l

2l
p'"v1(1)0(k, l) =

I I xv'(k+l)4(k+l, l —l).(2k+Ii

(69)

(70)

Multiplying these by u" (l) and ue(k+~~), respectively, and using (47a), we get equations of the form
(69). Multiplying Eqs. (70) by v" (l —2) and ve(k), respectively, and using (47b), we get

p~ev"(l —k)v'(k+5)4(k+2 l —2) =0
p ',(l).,(k)y(k, l) =0,

which are clearly in the nature of subsidiary conditions involving only one of the component ip's.

Equations (71) alone are not equiva. lent to (70), but (69) and (71) together are. We can only pass
back from (69) to (70) by using (71), and it is also necessary to use (71) in order'to deduce that both
the ip's satisfy the second-order wave equation. It is, therefore, clear that the D.F.P. equations
cannot be written in the form (1) without imposing further subsidiary conditions not contained in, (1).
The one exception to the preceding statement is the Dirac equation (2, 0) (0, —',) where botk the
subsidiary conditions (71) vanish. "

We now investigate whether Eq. (8) is satisfied for the case we have just considered. We have to
calculate the matrix [n, a"] with the n s given by (66). [n", n"] being an antisymmetric tensor,

'7 The meson equations do not strictly come under the D.F.P. scheme, but under one of the general schemes given
below. In this one other exceptional case, however, the two are practically equivalent.
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we can associate with it a symmetric spinor 8„& by (40a). This gives, by (39),

48„~= —
I ~,„, u„jo ~"a„&,„—= [A~", A&„].

Similarly we get an antisymmetric spinor B„"defined by

48 "= [A A"']

(72)

(73)

It is obvious from (66) and (67) that all the non-diagonal elements of B„I' and 8„", for example,
(k, l

~

8„1'
~

k', /') for k Q k', l g/' vanish. For the diagonal elements we get, using (66) and remembering
that —cd =8)

4(k, /I Bp&i k, l) =aIv (k+-,')up(k+-,')v"'(/+-')u (/+-,') —vp(k+-')u (k+-')v (/+-,')u"'(/+-,'),
= —2a(2l) X,&(k),

after making use of (47) and (48). Similarly we find that

4(k+-,', l--,'~ B,~
~

k+-,', l ——,') = 2a(2/+1)X, ~(k+-,'). (73)

Hence 8,"Q E„",and they cannot be made equal by any adjustment of the constants at our disposal.
An exception occurs only when k=0, for then' X,&(0) =0 and we can choose a=1. The additional
formulae

(k, /~8„"
~
k) l) =-',a(2k+2)I.„'(/)

(k+~ l ~ IB~'lk+~ / 2) = —-', a(2k+1)I.„"(l——',)
(76)

can be calculated easily. It is clear that 8„"QL„"except when / , =0. Thus —th—e Dirac equation' is
the only one of the type (k, l) (k+-'„ l —-', ) for which Eq. (8) is satisfied.

For a coupling of the second type given by (67), the corresponding formulae read

(k, /~B,~~k, l) =-', a(2/+2)X, ~(k)
(k+-'„ l+-',

i 8," i
k+-', , l+-', ) = ——,'a(2/+1) X,"(k+-',). (77)

The formulae for 8,& in this case are the same, with k and l interchanged on the right of (77) and
L;& written in place of X,&. In this case also B,I"+X,I' unless 4 =0. Also, 8;I'=L;& can be shown to
require l=0. The only possible simple connection of the second type for which (8) is satisfied is
(0, 0) (~, -', ), and this gives just the scalar meson equations.

We now proceed to consider more complicated cases involving the coupling of more than two
I(k, l) s. It is convenient to distinguish two types. One consists of open chains in which the Is at
the two ends of the chain are only connected to one other I, while those in the middle are connected
to one on each side. In the other more complicated type there is no I which is connected to only
one other.

Let us consider first an example belonging to the first type, namely (k, l) (k+ —'„ l ——', )
(k+1, / 1) . (k+n+i„ l—n —,'). A» is just —mad—e up of several matrix elements of the type

(66) the ones connecting (k+r, l r) with —(k+r+ '„ l —r —2)—being multiplied by an arbitrary
constant which we write as (a„)' instead of (a)'. Here again the non-diagonal elements of the 8,&

vanish while in the diagonal elements (k, l) we' simply have a sum of two terms one of which comes
from the connection on each side of the I concerned. Thus, using (74) and (75)

(k+r, 1 rj 8,
~
k+r, l —r—) =

~ I (2l 2r+2)a—„ i (2l —2r)a„}Z—',&(k+r).

Similarly, using (76) we get

(k+r, l —r IB„."
~
k+r, l —r) =

2 I
—(2k+2r)a„ i+ (2k+2r+2)a, IL "(l—r).

t

B,I' =X,I' requires

—2lao ——(2l+1)ao —(2/ —l)ai —— ——(2l —2r+2)a, i —(2l —2r)a„= (21—2n+ 1)a„=2.

(78a)

(78b)

(79)
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Solving these equations successively for a, a„ I, we see that all the coefficients must be positive,
which leads to a contradiction with the last equation —2lap=2. Hence in general a solution of this
type does not satisfy (8). The contradiction is avoided only if k=0 for then X,&(0) =0, and the
last equation disappears. Similarly it can be shown that 8„"=I,„"requires that (I—n —~) =0. The
solution of (79) in this case is simply c„=1 for all r T. he chain covers all l(k, I) with k+5 equal to
constant X& say, I(0, X&) I(—'„X&—~) I('A&, 0). It is obvious from the analysis of the representa-
tions involved that this solution of the I's and n's just corresponds to the representation R&(X&, X&).

There is one equation, (1), of this type for each value of the spin Xq =k+1. Written in terms of spinors
with the decomposition of f given in (68), Eq. (1) with this representation of the n s is equivalent to

—p jqu&(r)m (xq r+—~)P(r '„x—x ——r+~)+ppi vt'(r+ ~) w" (x~ —r)p(r+ 2, xq —r —2)
+yf(rgXg r) =0—, (80)

it being understood that in the first and last equations of the set (r = 0 or X&) any term for which the
argument inside brackets becomes negative is to be dropped. The vector meson equation belongs to
this type. It is interesting to note that in this case there are only three equations, and while the
two end ones for r = 0 and r = 1 are of the type (70), the one for r =

2 does not belong to this type
since it connects three f's; II (0, 1), f(-'„-',) and p(1, 0). If we take X~ = ~3, we get one of the two possible
equations describing a particle of spin —,'.

Another type of open chain is provided by the scheme (k, I) (k+-„ I+-', ) (k+m, I+n).
The elements of A&" are now all of type (67), and it can be shown by an analysis similar to the fore-
going that 8„&=E,& and 8;&=I;& only if k =l =0. The one possible equation of this type satisfying
(8) has the scheme (0, 0) (-', , -', ) (k, k) it being possible to break off the chain for any value
of k. Writing X& ——2k it is clearly seen to be the case described in Section 2 as R~(X&, 0) the structure
we have just shown corresponding to that given by formula (24). Equations of this type can only
describe particles of integral spin. The scalar meson equation is the simplest one of this type.

It will suffice to mention only two other equations in detail, namely two belonging to the second
type where the chain is not open. Let us analyze the structure of the other possible equation for a
particle of spin —, besides the one we have considered. Its structure is given by (26). Connecting up
all the I's which can possibly be connected we arrive at the scheme

It can then be proved by an analysis similar to the previous ones that by a proper and uniquely
determined choice of the a's in (66) and (67) the n's can. be made to satisfy (8). In fact, calling the
constant involved in the left vertical link in (81) a, that in the right vertical link c, the one in the top
horizontal link b and the one in the bottom link d it can be shown quite easily that

By using these values and (66) and (67), the equations for this case, equivalent to (1), can be written
down explicitly without difficulty. Although the maximum spin of the particle described is ~, it
has mixed up with it a particle of spin —,. It has some very interesting physical properties which will

be dealt with in another paper. **
Finally we give the scheme corresponding to the remaining equation for a particle of spin 2 men-

Proc. Ind. Acad. Sci. A 21, 241—264 (June 1945). The non-relativistic equation of the state of lowest rest mass
describes a particle of spin q. It can be used to describe the proton, but predicts some hitherto undiscovered properties
for it. In general, the constant X1 determines the maximum spin of the particle whi1e the constant ) 2 determines the spin
in the state of lowest rest mass.
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tioned in Table I and described by the representation R&(2, 1). It is

(82)

The constants of the connecting matrix elements of Aj'" can be determined without difficulty.
Since all the equations considered in this section which satisfy (8) can be written in the form (1)

without any subsidiary conditions, it is obvious that interaction with an electromagnetic field can
be introduced in all of them, as in (1), by simply writing p& —ep& in place of pl„ the g& being the
electromagnetic potentials. The Eq. (1) can clearly be derived from a Lagrange function, and hence
no inconsistency is introduced in the equations by this procedure.

SUMMARY

The general structure of relativistically invariant wave equations of the form (1) is investigated,
it being postulated that all properties of the particle should be derivable from (1) without the help
of any auxiliary conditions. It is proved that the equations investigated by Dirac, Fierz, and Pauli
for spins greater than 1 do not satisfy this requirement.

It is shown that all irreducible representations of the spin matrices in (1) satisfying the condition
(8) can be obtained from the irreducible representations of the orthogonal group in five dimensions.
The wave functions of (1) do not in general satisfy a second-order wave equation in the absence of
interaction, but one of a higher order. A consequence of the equations is that every particle of spin
greater than one must appear with several values of the rest mass which are multiples of the lowest
value. For example, a particle of spin —,

' must have two values of the mass, one three times the other,
and a particle of spin 2 also two values of the mass, the higher double the lower. These higher values
of the mass are a necessary feature of the theory and cannot be eliminated.


