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1. INTRODUCTION: "OBSERVERS"
AND "STATES"

formulation from an observer to a simultaneous
observer with a different position or orientation
in space, which change is left unaltered; and we
shall talk in the same way about a change in the
specification of a state from one observer to
another in relative motion. Whenever that part
of our dynamical laws giving the change of
specification to neighboring observers at relative
rest at one time is so simple as to be immediately
integrable, we can return at will to the usual
unsymmetrical formulation.

In the general theory of relativity simultaneity
becomes arbitrary. The relations between our
observers may be visualized as between sets of
orthogonal axes of space and time at the points
of a four-dimensional continuum. There seems
to be no reason in principle to assume that sets
of observers at relative rest at one time exist
such that the change of specification from one to
another can be given explicitly. A literal interpre-
tation of the principle of relativity would lead
us to expect that the change of specification to
observers with different orientations and veloci-
ties at the same place and time could be given
immediately, while the change in specification
from an observer to others at diferent places
and times mould be given by differential or
integro-differential equations. .If this were not
the case we would have integro-differential equa-
tions for the change of specification from one
observer to another of a ten parameter family
of observers which might or might not fall
naturally into a four parameter set of six
parameter sub-families.

' 'T is usually convenient to treat space and time
& - unsymmetrically, not only in the formulation
either of classical or of quantum dynamics, but
also in the transition from one to the other. The
first part (kinematics) of a dynamical theory
usually defines a state of the system at a given
time by a description in terms of positions in

space at that time. Since simultaneity depends
on the motion of the observer the description is
relative to one or other of a set of observers at
relative rest whom we regard as existing at a
series of times. The relations between these
observers may be visualized as between sets of
rectangular Cartesian axes in three dimensions
with the help of which they describe the state,
and the change of description of a state from
one to another is given explicitly. The second
part (dynamics) of the theory then tells, by
differential, or integro-differential, equations how

the state changes with time, the proper time of
any one of these observers.

To discuss the invariance of a theory over
observers in uniform relative motion, it is con-
venient to adopt a different point of view, treat-
ing space and time as far as possible symmetri-
cally, at any rate at first. We regard each
observer of the usual description as a series of
observers relatively displaced in time; the rela-
tions between these may be visualized as between
sets of rectangular axes and time in a three plus
one dimensional Minkowski space. We adopt
also another conception of state. Each observer
may prepare a state according to some specifica-
tion, and the state may be observed by the sam
or by any other observer. The change with tim
of the state of the system in the usual formulatio
now becomes a change of the specification of th
state from an earlier to a later observer; on a pa
with the change in description in the usua

2. DISPLACEMENTS

*On leave of absence at Aberdeen Proving Ground
since 1943.

e
e It is convenient to describe the observers by a

set of values of ten arbitrary parameters n, P,
and to use the methods of the general theory of
relativity, later specializing for that theory and
again for the homoloidal Minkowskian case.

The observers "near" a given observer 0 may
be specified as 0+(dx, dy, ds; dt; dl, dm, dn;
du, dv, dw) with displacement from 0 with
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components dx, dy, ds, in space, dt in time, dl,
dm, dn, in rotation, y to s, s to x, and x to y, and
du, dv, dm, in velocity in the x, y, and s directions,
relative to 0's axes. These displacements dx,

, are to be treated as differentials correspond-
ing to quasi-coordinates, i.e. , Bf (Bx) Bf (Byl Bf
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The coefficients (Bx/Ba), may be regarded
as describing the topology of the ten-dimensional
observer space in a manner somewhat similar to
that in which the coefficients g„„describe the
topology of Riemann space, or more nearly
similar to that in which functions defining an
orthogonal ennuple describe it. We regard B/Bx,

, as having an intrinsic meaning which B/Ba,
~ ~, relative to arbitrary changes of the arbitrary
parameters, do not have.

3. THE DISPLACEMENT OPERATORS
are functions of a, p, forming a matrix of
non-zero determinant, and

(Ba'i (Ba'i
~ ~ ~

(Bx)
'

&By)
'

A state may be designated by parameters
(u, v, ), say, determining the independent
elements (a, b, ) of its specification relative
to any observer.

(Bp& (Bp't
~ ~ ~

g Bx) g By)

a=a(u, v, ; a, p, )
b =b(u, v, .

; a, p, ). (3.1)

form the reciprocal matrix; but (Bx/Ba) . do
not in general satisfy the equations

B (Bx) B (Bxg

BP KBa) Ba EBP)
(2.2)

so that Eqs. (2.11) do not in general determine
true parameters x, y,

'tA'e define, however, for x, y, s, t, 1, nz, n, I,
v) m,

Bf (Ba) Bf (BP) Bf
~ ~ ~

Bx gBx) Ba &Bx) BP
(2 3)

with like de6nitions for other differential coef6-
cients that we shall later introduce, vis. ,

The various observers may set up apparatus
according to various specifications, and make
observations on the same state (or on states
prepared according to the same specifications
relative to some particular observer). The results
of these observations, one or more numbers,
"measures, " which may be statistical averages,
will be functions of a, 0, the specification of
the state relative to the observer, and also of
a, p, , because the specification of the appa-
ratus for observation may vary from observer to
observer, and because the kinematics may vary
from observer to observer,

df (Ba& df (Bplt df
~ ~ ~

dx gBx) da EBx) dp
(2 31) For a, given state (u, v, ), the total rate of

change of the measure with the observer, df/«,
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is the sum of two terms: —the partial rate of
change Bf/Bn caused by the change in the meas-
ure observed for a fixed specification of the state
relative to the observer, a, b, ; and the rate
of change which we shall denote by D f caused
by the change in specification of the state from
observer to observer. Thus

1.e. ,

or
dg/da =D.g,

dg/dx =D.g,

frame), for which

(4 1)

(4.2)

(4 3)

and

Bf da Bf dbDf= ——+ +
BG do; 86 Gn

df Bf=D—f+ , e—tc.,
dx 80.

(3.2)

(3.3)

so that also

df/dx =D,f+Bf/Bx (3.31)

We may call D,fdx the change due to displace-
ment; dx and D, the displacement operator.
(These operators all obey the law of di8erentia-
tion of a product in the form

D(fa) = (Df)a+a(Df) (3.21)

Here 8/Ba, 8/Bb, , 8/80. ,
~ ~, are for a, b,

n, as independent variables; d jdn, are for
I, v, , 0, ,

~ as independent variables.

4. EQUIVALENCE

The functions

g(ab np )

giving the measures observed with various set-
ups for states with various specifications com-
prise our kinematics, shrunken in this point of
view to the connections between the specifica-
tions and measures relative to the same observer.
If our observers are equivalent in the sense of
the principle of equivalence of general relativity
theory, **i.e. , if the kinematics is independent of
th'e observer, these functions will be independent
of a, p, , and it has definite meaning to say
that g is the measure of a dynamical variable
explicitly independent of the observer (e.g. ,

angular momentum relative to the observer's

In this case any sufficient number of the measures

g can be used to specify a state relative to an
observer, and the states specified in the same
way relative to different observers. can justly be
called displaced states. We can then give an
intrinsic definition of the operator D; it is just
the differential operator giving the change from
a state relative to one observer to the state with
the same specification relative to an observer
displaced in the x direction. If the principle of
equivalence does not hold, the operator D will

depend on what measures were chosen to specify
states.

Our dynamical laws which give dg/dx etc. , in
general or da/dx, db/dx in particular in
terms of a, b, , a, p, for changes to the
various observers neighboring a given observer
are expressed by the form of the operator D,
acting on a function of a b . . . The form of
expression of D, may vary considerably with the
nature of the aggregate of a, b,

This d/dx for 8/Be=0, . , corresponds to
the rate of change with time of the dynamical
variables in classical mechanics or in the Heisen-
berg picture in quantum mechanics; and to the
rate of change with rotation in the coordinates
relative to fixed axes of a point moving with a
rotating body, when the fixed axes are those with
which the axes moving with the body momen-

tarily coincide.

S. INTEGRALS

Alternatively the dynamical laws may be re-
garded as determining functions h(a, b,

n, P, ) of variables a, b, , specified relative
to the observer a, p, , such that

**The principle of equivalence of gravitational fields to
those due to an acceleration of the frame of reference, used
in Einstein's general theory of relativity, can be regarded
as a special case of the equivalence of observers in the sense
considered here, that the kinematics is the same for them
all.

dh/da =0,

Bk/Bn = Db,;—
Bh/Bx = —D,h,

(5.2)

(S.3)
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6. THE CONSISTENCY CONDITIONS

In order that such a set of dynamical laws
should be consistent it is necessary and sufficient
that we should come back to the same values
after traversing a circuit of observers. f

The differential conditions of consistency may
be found either from the form (4) or from the
form (5). Using the latter, we must have

=0') (6.1)

and since

(e.g. , h=u(e, b, . ; o., p, .) etc. , obtained
from (3.1)). Such a function may be said to be
totally independent of the observer and to deter-
mine an integral of the dynamical equations.
Equations (5.3) instead of (4.3) now give our
dynamical laws when the form of the operator
D acting on a function of a, b, , is given, and
D, may be defined intrinsically as the negative
rate of change of the specification of a fixed state
relative to an observer, or to the limiting ratio
to dx of the change of specification of some
quantity from an observer 0 to an observer 0'

relative to whom 0 is displaced distance dx in

the x direction.
This Bh/» for dh/dn=0, corresponds to

the rates of change with time of the distribution
functions of classical statistical mechanics, or of
the Schrodinger functions and statistical matrices
in the Schrodinger picture in quantum mechanics.

Thus
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BD~ BDy
D.D„D„D,= — +—Q—.C 'D, . (6.2)

8g Bx

If the dynamical laws are independent of the
observer, BD,/By, , vanish and C,„' are con-
stants, so that

D,D„—D„D =Q. C,„'D„ (6.3)

and D„,are the infinitesimal operators of a
group with C,„*for structure constants. ff

The terms BD /By enter in practice if we
wish to consider invariance in the presence of
given external fields the specification of which
varies in a given way from observer to observer,
without actually including in D the operators
to carry out this variation.

For ordinary general relativity fifteen of the
forty-ftve relations (6.2) reduce to

DD„—DD =Dz, D D„—D„D =D„,
D„D„—D.D.=D„, D zD„—D„D z

——0,

D„D z
—D zD„=D, D„D„—D„D„=D„,

(8 'l Bh= —
~

—D. /h —D.—
EriP ) flP DzD„—D Dz ——D„,

D D„—DD =0,
D zD„—D,D z

——D„,

we obtain

(8
D. ih+D.Df,h-,

&Bp )
D.D.—D D„=D., D„D.—D„D„=0;

1
D,D„—D„D,= ——Dz,

C

8 8
(D Dp DpD )h = (D )—h (Dp)h-. ——

jp Brx

D„D„—D„D„=——D,
C2

f A more exact statement would be "the same physical
values after traversing a circuit of observers;" the phase
of a Schrodinger function need not be the same, but we
do not regard it as physical.

D D, —D„D„=——D„,
C

(6.4)

t$ The relations between the C,„*necessary for this will
follow from their expression in terms of Bn /st and Bs/Bn.
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and the observers fall into a four parameter set
of six parameter sub-families, each sub-family
being a realization of the homogeneous Lorentz
group, for which DI, , D, D„, D, D„D, form a
set of infinitesima1 operators.

If one observer is picked from each sub-family
in a continuous manner, an orthogonal ennuple
in four parameter space-time is provided, and
the remaining operators D, Dy, D„and Dt,
provide the rates of change of the specification
of a state with changes of the observer along
the curves of the ennuple. It is this situation
that may be regarded as guaranteed by the
physical principles of relativity and equivalence.

For flat Minkowski space the remaining thirty
relations are

D D,—D,D =D, DyD„—D„Dy ——D„
DID —D,Dt ——0,

D D, —D D„=Dy,

D Dy —DyD =0,

DzDy —DyD s ——D„
D„D,—D,D„=0,

DD, DD, =O, —

D iDt —D,Dg ——0,

D,D t
—D tD, =Dy,

D D, —D,D =0,

D,D —D„D =D„
D Dt —DtD„=0;
DyD„—D„Dy ——0,

D„D,—D D„=—D, D„D —D D„=D,
C2

D„D,—D,D„=O, D,D —D„D,=O,

D'QDy DyDQ D t ~

g2
D Dt DtD Dy

D„Dy —DyD„= 0, D,D„—D„D,=0,

1
D„D,—D,D„=—Dt,

c2
DmDt D tDm

DyD, —DzDy ——0, D,Dt —DtD, =0,

D,D —D.D, =0, DyDt DtDy =0,

D,Dy —DyD =0, D,D —D D, =O. (6 5)

For changes to observers at rest at the same
time and place, differing only in orientation, the
invariance 'of our equations will follow at once
from their forms when expressed in ordinary
three-dimensional vector notation, which we,
therefore often use. It is then necessary to
verify only a selection of the relations (6.4), (6.5),

for example

D.D, —D,D.=0,

1

c2

D.Dy —DyD =0,

and
D„Dt—DtD„=D.,

D D, —D„D„=——D„.
C2

(6.6)

Verification of invariance would be still simpler
if we made invariance over the homogeneous
Lorentz group obvious from the form; it would
be then only necessary to verify

D~D t —D tD~ =0; (6.7)

It is convenient and usual in the formulation
both of classical and of quantum dynamics and
especially in the transition from one to the other
to treat the time variable in a special manner so
that invariance for the Lorentz transformations
of the restricted theory of relativity is not at all
obvious. Further generalization to include gen-
eral relativity and a gravitational field then
becomes diAicult.

An analysis of the situation sufficiently wide
to cover quantum dynamics as well as classical
dynamics from the point of view of a ten-
parameter family of observers "equivalent" in
the sense of general relativity unifies the whole
treatment and serves to show that "general
relativity" in which the ten parameter family
falls into a four parameter set of six parameter
sub-families is by no means the most general case.
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but the connection with the usual unsymmetrical
formulation would be much less direct, involving
solution of the equations of motion. On the
other hand, this formulation would be much
better for introducing the general theory of
relativity.

SUMMARY


