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l. INTRODUCTION

HE phenomenon of the scattering of light in a moving atmosphere has considerable interest for
astrophysics. It occurs in Novae, Wolf-Rayet stars, planetary nebulae, the solar prominences,

and the Corona. And more recently Struve's studies' of the spectra of stars like 48 Librae and 17
Leporis have emphasized its importance for stellar spectroscopy in general. But on consideration
one soon realizes the unusual difficulties which must confront a rigorous theoretical analysis of these
problems. For, in atmospheres in which large scale motions are present, on account of Doppler effect,
the radiation scattered in different directions will have different frequencies, and, as a result of this,
the radiation field in the different frequencies will interact with each other in a manner which is not
always easy to visualize. However, in the astrophysical contexts, two circumstances simplify the
problem. First, the velocities which are involved are small compared to the velocity of light, c, and
second, the only effects of consequence are those which arise from the sensitive dependence of the
scattering coefficient o (v) on the frequency v. This last circumstance in particular allows us to ignore
all effects such as aberration etc. , and concentrate only on the effects arising from the change of
frequency on scattering. The equation of transfer appropriate to these conditions has been written
down by W. H. McCrea and K. K. Mitra. But these writers did not succeed in solving any specific
problem. However, we shall show how with certain approximations explicit solutions can be found
which illustrate the effects which may be expected in the contours of absorption lines formed in an
atmosphere in which differential motions exist. On the mathematical side, the novelty of the problem
arises from the very unusual type of boundary value problem in hyperbolic equations which it
presents.

2. THE EQUATION OF TRANSFER AND ITS APPROXIMATE FORMS

FIG. l.

We shall consider an atmosphere stratified in parallel planes and in which all the properties are
assumed to be constant over the planes s= constant (see Fig. 1).

Let p(s) be the density of the scattering ma-
terial at height s and w(s) the velocity of the
material at the same height assumed parallel to
the s direction. Further, let o (v) denote the mass
scattering coekcient for the frequency s as
judged by an observer at rest with respect to the
material. Since our principal interest is in the
formation of absorption lines, we shall suppose
that o(v) differs appreciably from zero only in a
small range of p. However, it. is in the essence of
the astrophysical problem that the "half-width"
of o.(v) is of the same order as the Doppler
shifts in the frequency caused by the differential
motions in the atmosphere. Indeed, it is this last

' O. Struve, Astrophys. J. 98, 98 (1943).Also W. Hiltner, Astrophys. J. 99, 103 (1944); P. W. Merrill and R. Sanford,
Astrophys. J. 100, 14 (1944).' W. H. MoCrea and K. K. Mitra, Zeits. f. Astrophys. 11, 359 (1936).
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circumstance which makes the change of frequency on scattering the only optical eRect of the mo-
tion w(s) which has any importance.

Consider then a pencil of radiation inclined at an angle 8 to the positive normal and having a
frequency v as judged by a stationary observer. This radiation will appear to an observer at rest with
respect to the material at s as having a frequency

v) 1 ——cos 8 [.
c j

It will accordingly be scattered as such in all directions with a scattering coefFicient

w
al v 1 ——cosa

c

We may, therefore, write the equation of transfer for the specific intensity I(v, s, 8) in the form

BI(v s, 8) |' w
cosi', = —oi v 1 ——cos6 iI(v, s, 8)+g(v, s, 8), (3)

pas & c )
where g(v, s, 8) denotes the emission per unit time and per unit solid angle in the frequency v and
in the direction 8. It is seen that this emission is;given by

t' w ) p' i' ( w w l dy
g(v, s, e)=a( v 1 ——cosa

I Il v 1 ——cosa+—cosx s x I sinydy) ~o ~o ( « ) 4x

or in view of the symmetry about the s direction

( ni l & J' w w
g(v, s, 8) =-', a( v 1 ——cos P ( I( v 1 ——cos 0+—cos x, s, x ~

sin xdx.
c )&o ( «)

To verify the foregoing expression for g(v, s, 6), we observe that the emission in the direction 8 arises
from the scattering into this direction of radiation from other directions. And, considering the'con-
tribution to g from the scattering of the radiation in the direction specified by the polar angles x
and p (see Fig. 1) into the direction (6, 0), it is evident that the radiation must have the frequency

f m w
vi 1 ——cos 8+—cos x i,

c c

as judged by a stationary observer; for, radiation of this frequency in the x direction will appear to
an observer at rest with respect to the material at s' as having a frequency

I

( w m )t' w & / m
v] 1 ——cosa+ cosy II 1 cosx

I
—vI 1 cosa I,

c c ) & c ) & c )
which will accordingly be scattered uniformly in all directions with a scattering coefticient

w
oi v 1-—cos8«)

the radiation scattered into the 8-direction will have the same frequency (7) with respect to the
material; to a stationary observer, it will appear as having a frequency v. And summing over the
contributions from all directions (x, q) we obtain (4).

Combining Eqs. (3) and (5) we have

BI(v, s, p) 1' w ) f'+' t' m w
p = —a~ v 1——y I I(v s, p) —

2 ~ I] v 1 — p+ p', s p ld—p', — (9)
pcs ', E «) . aJ-1 4 c «):

where we have written p and p,
' for cos 8 and cos x, respectively.
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In solving Eq. (9) we shall adopt the method of approximation which has recently been developed
in connection with the various problems of radiative transfer in the theory of stellar atmospheres. '
The essence of this method is to replace the integrals which appear in the equation of transfer by
sums according to Gauss's formula for numerical quadratures. Thus, considering Eq. (9) we replace
it in the nth approximation by the system of 2n equations

BI(v s) ( w l, ( w w
p, = —o.

(
v 1 ——p, ~

I,(v, s) —-', pa~I;) v 1 ——p, +—p;, s ~, (i=f1, , an) (10)
pcs E c ) ( c c

where the p s, (i = &1, , ~n), are the zeros of the Legendre polynomial Pp„(p), and the a, 's are
the appropriate weights. Further, in Eq. (10) we'have written I;(v, s) for I(v, s, p,).

At this stage one further simplification of Eq. (9) is possible. In evaluating the Doppler shifts, we
need not distinguish between

V8

and v —vp—p,
E c ) C

where vp denotes the frequency of the center of the line. We may, therefore, replace Eq. (10) by the
simpler one

BI,(v, s) .(' w ) t' w w
p, = —o'~ v —vp—p, ~

I (v s) —
p g a I

~
v —vp—p+vp —p;, s ~, P= &1, ~ ~ ~, +n)

The form of Eq. (11) suggests that instead of considering the intensities I, , (i = &1, , &n), for
some fixed frequency v, we consider them for the frequencies

I'
vi=v+vp pj ($—= +1, ' ' ', +n),

C
(12)

which are functions of s. In Eq. (12), v is a "fixed" frequency. If we now let

I,(v, , s) =P, (v, s) (p = a1, , an),
we have

(13)

aP, cjI,(v, s)

t9S v =vz

or, according to Eqs. (12) and (13)

8I;(v;, s) av;

8 Vs BS

BP, BI,(v, s)

les Bs V= Vj

vp dw BP~
p e

C dS Bv

Substituting for the first term on the right-hand side of the foregoing equation from Eq. (11), we
obtain

86; vp dw pj's;
p, —p —— = —po(v)(P; —-', g a)P;) (i= ~1, , ~n),

BS C dS Bv
(16)

which is clearly the most convenient form in which to study the equation of transfer for a moving
atmosphere.

In our subsequent work we shall restrict ourselves to the first approximation. In this approximation

pi= —p, i ——1(v3' and a, =a, =1,
and Eqs. (11) and (16) lead to the two pairs of equations

' S. Chandrasekhar, Astrophys. J. 100, 76, 117 (1944) and 101, 95, 328, 348 (1945).

(17)
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and

BI+&(v, s) f nr ) ( w
v —vo—px I I+&(v s) I—'I " 2vo p—i

p&s & c j & c j
aI, (v, s)

pg
——+-', oI v+vo—px I

I i(v, s) I~—gI v+2vo —px, s
I

p&s & c j & c j
Blgyy vo 8W Blgyy

pg —pg' —— ———-', po(v)(P~g —P g),
Bs c ds Bv

clif y vo 8w cia
p~ +pP—— = ——',po(v)(P~g —f g),

BS C dS 8v

(2o)

(21)

where it may be recalled that
t' m l t' ut

P+q(v, s) =I+&I v+pzvo s
I 0 —&(v s) I—&I v pavo

c j ( c j (22)

3. SCHUSTER'S PROBLEM FOR A MOVING ATMOSPHERE

A, classical problem first formulated by Schuster' provides the simplest model in terms of which
the formation of absorption lines in a stellar atmosphere can be analyzed. In this model we consider
a plane-stratified scattering atmosphere lying above a plane surface which radiates in a known
manner and absorbs all radiation falling on it. The problem is to determine the radiation field in the
atmosphere and in particular to relate the distribution in intensity of the emergent radiation with
that radiated by the surface below. The appropriateness of this model for a first analysis of stellar
absorption lines consists in the suitable idealization which it provides of the notions of a photospheric
surface and the reversing layers Conse.quently, when considering moving atmospheres it would seem
proper that we retain the essentials of the Schuster model and generalize it only to the extent of
admitting large scale motions. More particularly, we shall suppose that the photospheric surface is
at s=0, and that it radiates uniformly in all outward directions (0 ~&6 &or/2) and in all frequencies.
In other words, we suppose that

I(v, s, 6) =constant at s=0 for 0 &~8 &s/2 and for all frequencies. (23)

The state of motions in the atmosphere will be specified by the function w(s) giving the velocity
(assumed parallel to the s direction) at height s.

Finally, if s = s& defines the outer boundary of the atmosphere, we must require that here

I(v, s, a) =0, ~/2 &e &~ at s=:„ (24)

in accordance with the assumed non-existence of any radiation from the outside being incident on
the atmosphere.

Schuster's problem for a moving atmosphere consists then in solving the equation of transfer (9),
or the equivalent systems of equations in the various approximations, together with the boundary
conditions (23) and (24). In the first approximation, the equivalent boundary conditions are that

I+~(v, s) =constant independent of v at s = 0, (25)

I i(v, s) =—0 at s=sg. (26)

4. THE' REDUCTION TO A BOUNDARY VALUE PROBLEM FOR THE CASE 0(v) =CONSTANT FOR
v —4v&~v& v +slav AND ZERO OUTSIDE THIS INTERVAL AND FOR A LINEAR

INCREASE OF w WITH THE OPTICAL DEPTH

In this paper we shall consider the solution to Schuster's problem formulated in the preceding

' A. Schuster, Astrophys. J. 21, 1 (1905).
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P, +89+2)l iDP
C

section for the case
o(v) =constant=op for vp —hv ~&v ~&vp+hv,

=0 otherwise,

1 d'N
——=constant.
p ds

(28)

Further, we shall restrict ourselves to the first approximation.
When o (v) has the form (27) some care is required in the formulation of the boundary conditions.

For, according to Eqs. (18) and (19)
ZO W

o I+1/os W 0 o»y if Po —hv+plvo —& v & vo+»+ plvo —,
C C

and
ZO

BI 1/Bs WO only if vo —hP —plvp —~+ P +~vp+hP —plvp —.
C C

Accordingly, in the (v, w) plane the lines
K ZO

P= vp —hP+plvo an—d v= Pp+hP+plvp-
C C

(30)

(31)

demark the regions in which I+i is different from a constant from the regions in which it is a constant
for varying s. The situation is further clarified in Fig. 2 where AD and BC represent the lines (31).
Similarly, the lines (AF and BE in Fig. 2)

ZO R'
v= vo —hv —IMlvo— and v= vo+» lllvo—

C C
(32)

demark the regions in which I & is diR'erent from a constant from the regions in which it is a constant
. for varying s.

Now, since the outward intensity I+& is a constant independent of v on the photospheric surface
(represented by the line XAB Y in Fig. 2), it is clear that, we must, in accordance with our foregoing
remarks, require that

I+l(v, s) =constant along AB and BC.

Similarly, the non-existence of any radiation incident on the atmosphere from the outside requires
that

I l(v, s) =0 along BE and EF. (34)

When we pass to the intensities f+l and p l defined as in Eq. (22), the boundary conditions (33)
and (34) are equivalent to (cf. Fig. 3):

and

lp+l C= constant on AB: s =0 and vp —hv ~& P ~& vo+hv,
=the same constant on BC: v= vp+hv and 0&~s~&sl,

f l ——0 On CD: S=Sl and vo —hv~& v~& l'o+hv,
= 0 on BC: v = vp+h v and 0 ~& s &&sl.

(35)

(36)
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We now transform Eqs. (20) and (21) to forms which are more convenient for their solution:
Let t denote the optical depth of the atmosphere measured from the boundary inward in terms

of oo. Then
pood' = —dt. (37)

In transforming Eqs. (20) and (21) it is, however, more convenient to use instead of the optical
depth t the variable

x= t=—t.
2py 2

In terms of x Eqs. (20) and (21) are

and

Bgyy vp ZB1 Blg~y
v i ——— =4'~x —4'—ii

Bx c dx Bv

BlP y vp 8w Blf
+Pi

Bx c dx Bv

(39)

(40)

Now the assumption (28) concerning the variation of w clearly implies that the velocity is a linear
function of x. And as it entails no loss of generality, we shall suppose that m=0 at the base of the
atmosphere. Further, let

m=mi at t=0 and x=0.

Under these circumstances we can write

(41)

m =uri(1 —x/x&) =m&(1 —t/ti), (42)

where t& denotes the optical thickness in o p of the entire atmosphere lying above the radiating surface.
According to Eqs. (41) and (42) w& denotes the difference in velocity between the top and the bottom
of the atmosphere. This velocity can be expressed in terms of a DoPPler width Dv according to

With these definitions
Dv= p vpBly/c

vo O'N Po %os 2 DP 4 DP
j1

"/3 xx

(43)

and Eqs. (39) and (40) can be rewritten as

and

B1Pyg Dv Bf+g
+2@i =P+g —P g,

Bx xy Bp

B$ g DvBQ g—2pi =P+&—P g.
Qx xi BP

We now introduce the variable y defined by

Dp
(vp+Ar) —v=2pg y.

xg
(47)

0(F)

A
'Po-Q Q

+.o

"fkI= c

+,-c
Q]=0

2p&Dv/x& (unit of frequency). (48)

Equations (45) and (46) simplify to the forms

Bf+i/Bx BI+i/By =0'+i—0' i (4—

In other words, y measures the frequency shifts
from the violet edge of o(v) in units of

FIG. 3. B4' i/Bx+B4' i/B3'=%+i 0' (50)
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The range of the variables x and y in which the solution has to be sought is (Cf. Eq. L47 1)

Av
0~& x~& xg and 0~& y ~& yg

——— xg.
pg Dv

(51)

And the boundary conditions with respect to which Eqs. (49) and (50) have to be solved in the
ranges (51) are (see Fig. 4):

g+, =Con BA: x=x, and 0~&y&~y„
=Con CB: y=0 and 0~&x~&x~. (52)

P, = 0 on CD: x =0 and 0 &~ y &~yg,
=0 on CB: y=0 and 0&~x~&x~.

Since the Eqs. (49) and (50) are linear and homogeneous, there is no loss of generality if we set

C=i

(53)

We shall assume this normalization in our further work. Finally, we may note that in terms of the
variables x and y Eq. (12) allowing the passage from the P's to the I's becomes

y~i =yW(x~ —x).

It is convenient to introduce one further transformation of the variables. Let

f+~ e "f and P ~
——e "g-—

Equations (49) and (50) reduce to
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Eliminating g between Eqs. (57) and (58), we obtain

B'f/Bx' B—'f/By'+ f= 0 (59)

We require to solve this hyperbolic equation with the boundary conditions (cf. Eqs. (52) and (53)
and Fig. 5)

f=e& on AB: x=x~ and 0~&y~&y~,

f=1 and Bf/Bx=Bf/By =0 on BC'. y=0 and 0&&x&&x', b

Bf/Bx=Bf/By on CD: x=0 and 0&y&y&, J

(60)

since P &
——0 implies that g=0 and according to Eq. (57) this, in turn, implies that Bf/Bx =Bf/By

Since, in the problem of the formation of absorption lines, our principal interest is on the ratio of
the emergent intensity I+&(v, t) at t =0 to the constant outward intensity on the radiating surface,
we are most interested in the value of f on CD and DA. We may recall. in this connection that Av, Dv
and xq are to be regarded as the parameters of the problem. Given these, y~ is determined according
to the relation (cf. Eq. (51))

line width3
y~ ——&3x~ ———optical depth

Dp 2 Doppler width
(61)

Further, according to Eqs. (48) and (61), y measures the frequency as it, enters in f+, and f &, from
the violet edge of 0 (v) and in the units

2 1—Du =—line width.
3'» 3'»

Accordingly, the line contour will have a width

2 ( xy)—(x~+y~)Av=
~

1+—
~

line width.
yy)

(62)

(63)

This is in agreement with what can be inferred directly from Fig. 2. As can be seen from this figure,
the contour (on our present first approximation) must extend from

and must, therefore, have the width

or, according to Eqs. (43) and (61):

5)»
pp Av to vp+Ap+pypp

C

'R»
2»+ pavo

C
(65)

Dvl (2»+ZuiD~=2»( 1+~i I
=2»I 1+—l.») & yi)

It is evident that the line contour will itself be given by

r=e "f, x=0, 0~&y&&yg,

(66)

(67)

r=e »f, y=y„o&~-x~&x, .

Equation (67) refers to the part of the contour which extends from

'N» VO»

p = pp Ap+ jlyvo to po+Ap+ plpo
C C

while Eq. (68) refers to the part
K»

Po —6v+ pgPp —+~ v ~+Pp —»
C

(68)

(69)
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Finally, it may be noted that according to Eq. (55) the scale of frequency is the same for both the x
and the y axis.

5. THE SOLUTION OF THE BOUNDARY VALUE PROBLEM

$n the preceding section we have seen how the determination of the radiation field in a scattering
atmosphere in which differential motions are present can be reduced to a boundary value problem in
partial differential equations of the hyperbolic type. Under the conditions (27)' and (28), the hyper-
bolic equation is one with constant coefficients and is of the simplest kind; indeed it is of the same
fprm as the well-known equation of telegraphy. s But where our problem differs from the standard
ones is in the boundary conditions. And it is the nature of our boundary conditions which prevents a
direct application of the methods of Cauchy or Riemann. For in these latter methods, only those
situations in which the function and its derivatives are assigned along curves which do not intersect
any characteristic more than once are contemplated. Our boundary conditions (60) are not as simple,
the "supporting curve" BCEUF in fact intersecting every characteristic through a point inside the
fundamental rectangle twice. Moreover, the function and its derivatives are assigned only on a part
pf the contour namely CB, while on the rest of the contour either the function alone, or a relation
between its derivatives is specified. We shall, however, show how the boundary conditions (60) just
suflice tp determine f uniquely in the region ZDCBA. The method of solution we are going to de-
scribe is an adaptation of Riemann's method and is based on Green's theorem.

Now Green's theorem as applied to Eq. (59) is that the integral

where

(72)

around a closed contour vanishes if f and v are any two functions which satisfy Eq. (59) on and
inside the contour.

As in Riemann's method we shall apply Green's theorem to contours which in parts are the charac
teristics x —(= ~ (y —st) passing through some selected point (p, st) and choose for v a solution which
is constant along the characteristics through (g, st). For Eq. (59) such a "Riemann functipil"
v(x, y; (, rt) is known and depending on the quadrant in which the contour lies is

or
(73)

where Jo and Io are the Bessel functions of order zero for real and imaginary arguments, respectively.
With the choice of the Riemann function for v, it is readily verified that

Pdy Qdsc= af-
1 ~ (w s)— —

(75)

if the integral on the right-hand side is a line integral along the characteristic x —P= &(y —rt).
In solving Eq. (59) consistent with the boundary conditions (60), we shall find it necessary to

treat the various. regions distinguished in Fig. 5 separately.

Cf. A. G. Webster, Partial differential equations of mathematicat physics (1933), Section 46, p. 173.
6 For a general exposition of these classicai methods see Webster, reference 5, pp. 160-188 and 239—255; or P. Frank

and R. von Mises, Die Differential und Integralgleichungen der Mechanih und Physih (Rosenberg, New York, 1943),
Uoi. I, pp. 779—817.
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(a) The Solution in the Region OCB

Let the characteristic x =y through C intersect AB at C' and the characteristic x~ —x =y through
B intersect CD at B'. Further, let CC' and BB' intersect at O. (See Fig. 6.)

Now, since the function and its derivatives are specified along CJ3, the solution inside the region
OCB (including the sides OC and OB) can be found directly by Riemann's method. Thus applying
Green's theorem to a contour such as BI'GB where BI' and BG are the characteristics through
Z = (g, 21), and using Eq. (75) to evaluate the integrals along the characteristics we readily find that

. or, remembering that along CJ3

we have

«+" f' Bv Bf)
f(& n) =1 2 -I f&), E &y &yi,=o

Bf Bff=1 and —=—=0,
Bx By

pl+2 ( pj's)
f(k ~)=1-2

&o, (&y), o

(76)

(77)

(78)

Now the Riemann function appropriate to our present contour is (73). Accordingly,

( pivot

(&y),=o
= Ii(L(y —n)' —(~ —5)']') y

L(y- n)'-(&- 5)']' o-p
(79)

Hence,

(80)

Equation (80) determines f in the region OCB.
To evaluate the integral on the right-hand side of Eq. (80) we let

22 —P=g COS 8,
and obtain

f(P, g) =1+22' Ii(g sin 8)d8.
Jo

(81)

Replacing Ij in the foregoing equation by its equivalent series expansion and integrating term by
term we find

p ~ (2 g Sin y)2m+2

f(k n) 1+2=v 2
m=o 0 o 222!I'(222+2)

oo p x/2

1+~ P (2~)2m+1 syn2m+&/de
=o 222!F(222+2) J p

00
22m (222!)2

—1 + rj
' P (1~)2m+1

222!F (222+ 2) (2222+ 1)!
(83)

p (2222+2)!
oo ~2m

o (2222)!
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f($, q) = cosh gThus,

inside and on the triangular contour OCB.

(84)

(b) The Integral Equation which Ensures the Continuity of the Solution Along OC

We have seen how the boundary conditions along CB determine the solution in the region OCB
and on the sides OC and OB. We shall now show how this knowledge of the function along OC and OB
together with the boundary conditions on CB' and BC' enables us to continue the solution into the
region 0'3'COBC'0' (including the sides 8'0' and O'C').

Thus, applying Green's theorem to contours such as ICIII and XJBX we shall obtain integral
equations relating the values which the function takes along CO and OB with the values which the
function and i'ts derivatives take along CB' and BC'. And, as we shall see presently, these integral
equations suffice to determine f along CI3' and Bf/Bx along BC' uniquely and secure at the same time
the continuity of the solutions along OC and OB.

Considering first the condition which ensures the continuity of the solution along CO apply
Green's theorem to a contour such as ICHI where H= (g, g) is a point on CO and HI is the charac-
teristic g

—x =y —g through H. Using Eq. (75) to evaluate the integrals along the characteristics HI
and CH and remembering that f takes the values 1 and cosh g at C and H, respectively, we find that

l'" ( Bf Bvl
2 cosh g —1=f(2g, 0)+ i

i
v f —j—d—y,

2 p ( Bx Bx)

or, since Bf/Bx = Bf/By along CB', we have

,

('" ( Bf i 0'" f Bvl
2 cosh il' —1=f(0, 2i7)+ ~l

(
v—[ dy — ~

( f )dy-.
"p & By) g=p ~p & Bx) z=p

Integrating by parts the first of the two integrals on the right-hand side of Eq. (86) we obtain

(Bv Bvl
2 cosh g=2f(0, 2g) —

l f(0, y) i
—+—

i dy.
~ p KBx By) z=p

(86)

(87)

The Riemann function appropriate to our present contour is (74) with (= g. With this choice of v we
find after some minor reductions that

3'd3'
cosh p =f(0, 2p) —

2
~ f(0, y) Ji([q' (y —q)']l)—

dp Ln'- (y- v)']'
(88)

which is seen to be an integral equation for f along C8 . It is seen that Eq. (88) is equivalent to an
integral equation of Volterra's type. For, by differentiating the equation

2 f(o y) Jp(Ln' —(y —n)']')dy
p) P

with respect to g we may readily verify that we recover Eq. (88).

(89)

(c) The Solution of the Integral Eq. (89)

To solve Eq. (89) we apply a Laplace transformation to this equation. Thus multiplying both
sides of Eq. (89) by e '& and integrating over g from 0 to ~ we obtain

porl

dye '~
I dyf(0, y) jp(L&P —(y —&)P]l),

s —1
(90)

or inverting the order of the integration on the right-hand side we have
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Introducing the variable

instead hf q we find

)re 00 pQO

dyf(0, y) I drte '"Jo(L2rty —y2]i).
S —1 4 p

t = (2 sty —y') '*

(91)

(92)

2 ""dy e—'""f(o y)
S —1 Jp Jp

dt t exp L
—st'/2y] Jp(t). (93)

In Eq. (93) the integral over t is equivalent to the so-called Weber's first exponential integral in the
theory of Bessel functions' and its value is given by

goo 3'
exp P —st'/2y] Jp(t)t dt = e&t".—

p S

Using this result Eq. (93) reduces to

2s
f(0, y) «p I:—y(s+~ ')/2]dy

S~ ~- & p

If we now let
s+s '=2tt,

Eq. (95) becomes
1

, = I" f(o, y)
—-dy

(tc2 —1)
'*Jp

(94)

(96)

(97)

In other words, we have shown that the Laplace transform of f(0, y) is (tt2 —1)&. But it is known that
the Laplace transform of Ip(y) is exactly this. Hence

f(0, y) =I,(y) (0&y&x,). {98)

Thus, the requirement of the continuity of the solution along CO has determined f along CB . Its
derivatives along CB' are also deducible. We have

(itf & (ref & =I (y) (0&y& x,).
Edx) .=o E~y) .=o

(99)

(d) The Integral Equation Ensuring the Continuity of the Solution Along OB and Its Solution

Along BA we know f and its derivative with respect to y. But we do not know itf/Bx along this
line. However, as the solution along OB is known the requirement that the solution be continuous on
this line will determine r)f/itx along BC'. Thus, applying Green's theorem to a contour such as
JABJwhere J= (xi —

21, rt) is a point on OB and JX the characteristic x —xi+21 =y —rt through J we
find in the usual manner that

t'2& ( Bf ctv'1
2 cosh 21=1+e'o—I'

I
~——e —

I dy.
&p ( clx clxp*=,

The Riemann function appropriate to our present contour is

~ = Jp([(x—»+ n)' —{y—n)']').

With v given by Eq. (101), Fq. (100) becomes

(100)

{101)

p2o ~dy p2o (gf q
2 cosh st = 1+esp

I
e"Ji(—grts (y —rt) 2]—&) ——

~ Jo(grto —(y —st) 2]l)
~

—
~

dy. (102)
dp Ln'- (y- ~)']'*

2 Cf. G. N. Watson, TtMory of Bessel Functions (Cambridge University Press, England, 1944), p. 393.
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Putting y —q=p cos 8 (103)

in the first of the two integrals on the right-hand side of Eq. (102), it can be expressed in the form

where

p2Q (&f t

2 cosh g=1+e "—e"G(q) — Jp([g —(y —q) j&)
~

—
~

dy,
ej P &BXj x=zi

G(g) =g " e""' J1(csin 6)d2t.
~p

(1o4)

(105)

To evaluate G(g) we replace e" "'2' and Ji(g sin 6) by their respective series expansions and
integrate term by term. In this manner we And that

(g COS 0)" " (-,'q Sin 0)2m+'
G(z) =z„'

~ p =p n! =p m!I'(m+2)
00 2t2n+1 oo (1~)2m+1

,
I'(n+-') Z (—1)". p (2n)! „=p I'(m+2)r(m+n+ 22)

" (2&).+:r(ny21)- (1~)2m+m

( 1)m
=p (2n)! =1 I'(m+1)I'(m+n+2)

- (2,)-+'r(n+-, )
- (-;,)--~ J. i(n)—, -

p (2n)! r(n+-', )
vP" " (2g)"+&

=2 Z, —Z, I'(n+2) J- 2(n),-
p (2n). =p (2n).

(gl" 1= 2 cosh 21
—(22r 2!)& p

~

—
~

—J„ 1(g).
='p (2j n!

"
But according to a formula of Lommel'

(106)

Hence

2 (2n)"
,
J- i(—n)=-( —I. p n! Epr2ij

G(g) =2(cosh g —1).

(107)

(108)

Substituting this result in Eq. (104) we find

(~f tJ (L~2 —(y —n)'3')
I

—
I

&BXj +=xi

which is a Volterra integral equation for (Bf/Bx)* &1=
It is seen that Eq. (109) is of the same form as Eq. (89). Accordingly

(8f/Bx)*=xi Ip(y) (0 &~——y &~ xi).

(e) The Solution in the Region O'B'COBC'0'

(109)

(110)

With the determination of f along CB' and of Bf/Bx along BC' our knowledge of the function and
its derivatives along 8'CBC' is complete, and in the region 0'8'COBC'0' the solution becomes
determinate. Thus, as in Riemann's method, applying Green's theorem to contours such as 1.3ENI,
EQUI', and STCBUS we find that we can express f in the regions OB'C, OBC', and O'B'OC' as
follows

8 See Q. N. Watson, Theory of Besse/ Functions (Cambridge University Press, England, 1944), p. 141, Eq. (7).
9 For a point such as L, Green's theorem can be applied to either of the two contours LMXL and LNCllPL, But

clearly no ambiguity is implied as the continuity of the solution along OC (and OB) has already been ensured.
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f($, g) =Ip($+rl) —p~$ Ip(g+$ cos 8)Ji($ sin 8)(1+cos 8)dP, $($, g) in OB'C),

P 7l'

f(p, g) =eo —,'(—xi —g) Ip(g+Pxi —Q cos 8)Jo(Lxi —Q sin 8) sin Id', L($, g) in OBC');
60

and
l cos 1 -$/g

y(P, g) =Io([VP P)—P)+e" "+P+ff I (rl sin a)d8
~ COS-1(X1-$)/g

/cosh 1y/$
Io(g )co—sh 8)Ii($ sinh 0)(cosh 0 1)dg—

(112)

l cosh q/($$ —$)
+(xi—$) Ip(/xi —$) sinh 8)Io(g —)xi —$) cosh 8) sinh ddt

+(xi —$) t e" " p "'h I&(Lxi—g) sinh 8)d8, p(g, q) in O'B'OC'). (113)
a) 0

In particular we may note that Eq. (113)will enable us to determine the solution along the sides B'0'
and O'C'.

(f) Further Continuation of the Solution

In the preceding paragraphs we have seen how the knowledge of the function along COB, together
with the boundary conditions on CB' and BC' enables us to determine f in the region O'B'COBC'
including the sides 8'0' and O'O'. It is now apparent that in the same way we can utilize our present
knowledge of the function along B'O'C' to extend the solution further into the region O'B'C"0"B"C'.
And this process can be continued until the solution inside the entire rectangle DCBA is completed.
However, in this paper we shall not consider these further extensions but content ourselves with the
solution which has been completed in the first square B'CBC'. According to Eq. (61) this will suffice
to determine the radiation field in all cases in which the ratio Dv:Av exceeds V3.

6. THE CONTOURS OF THE ABSORPTION LINES FORMED. NUMEMCAL ILLUSTRATIONS

In the preceding section we have seen how the boundary value problem formulated in Section 4
can, in principle, be solved. In terms of the solution thus found, we can specify the radiation field
in an atmosphere with differential motions and under the conditions prescribed in Sections 3 and 4.
While the determination of the radiation held in the entire atmosphere is necessary to answer all
questions relating to the formation of the absorption lines (see Section 7 below), greatest interest is,
however, attached to the contour of the resulting line. In the erst approximation in which we have
studied the problem, this is given in terms of the emergent value of the outward intensity I~i(v).
More specifically the form of the line is given by Eqs. (67) and (68) where f is the solution of the
boundary value problem. We shall now consider in some detail the predicted nature of these contours.

Now along CB' the solution is given by (cf. Eq. (98))

(114)

According to Eq. {68)we may, therefore, write down a formula for the residual inteesity r which will
be valid for a part of the line contour. Thus

r =e vIp(y),
-

will describe the line in the frequency interval

, (115)

or
vp+Av+2piDv)~ v)~ vp hv+21jiDv, —

vp+6v+2piDv ~) v )~ vo+Av,

(116)

(116')
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TABLE I. The function r =e &ID(y).

0
0.1
0.2
0.3
0.4
0.5
0.6

e-vI p(y)

1.0000
0.9071
0.8269
0.7576
0.6974
0.6450
0.5993

0.7
0.8
0.9
1.0
1..1
1.2
1.3

e-'I p(y)

0.5593
0.524 1
0.4932
0.4658
0.4414
0.4 198
0.4004

1.40
1.50
1.75
2.00
2.25
2.50
2.75

e-~Ip(y)

0.3831
0.3674
0.3346
0.3085
0.2874
0.2700
0.2555

3.0
3.5
4 Q

4.5
5.0
6.0
8.0

10.0

e-"Ip(y)

0.2430
0.2228
0.2070
0.1942
0.1835
0.1667
0.1434
0.1278

TABLE II.f((, q) .

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4 Q

4.5
5.0

1.0

1.2661
1.4762
1.543 1
1.543 1
1.543 1
1.543 1
1.5431
1.543 1
1.543 1
2.0969
2.7183

2.0

2.2796
2.9697
3.4374
3.6897
3.7622
3.7622
3.7622
4.3857
5.2378
6.2657
7.3891

2.5

3.2898
4.4134
5.2449
5.7814
6.0569
6.1323
6.7927
7.776%
9.0554

10.5584
12.1825

3.0

4.8808
6.6792
8.0836
9.0767
9.6891

10.6881
11.8944
13.4600
15.4183
17.6724
20.0855

4.0

11.302
15.847
19.628
23.354
26.931
30.579
34.506
38.859
43.693
48.998
54.598

5.0

27.240
39.601
51.362
62.659
73.746
84.930
96.502

108.657
121.460
134.802
148.413

TABLE III. Line contours of absorption lines formed in a moving atmosphere (x& =5; y& =1, 2, 2.5, 3, 4, 5).

v -vp+hv
2b,v

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0 .

1.0000
0.7714
0.5677
0.5677
0.5677
0.5677
0.5677
0.5677
0.5677
0.543 1

0;4658
0.6450
1.0000

v —vp+b, v

2b,v

0.0
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50

1.0000
0.8480
0.7089
0.5935
0.5092
0.5092

. 0.5092
0.4993
0.4652
0.4019
0.3085
0.3674
0.4658
0.6450
1.0000

v —vp+d v

2b,v

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

1.0000
0.8667
0.7433
0.6384
0.5576
0.5034
0.4972
0.4746
0.4305
0.3623
0.2700
0.3085
0.3674
0.4658
0.6450
1.0000

v —vp+hv
2b, v

0.0
0.16
0.33
0.50
0.66
0.83
1.00
1;16
1.33
1.50
1.66
1.83
2.00
2.16
2.33
2.50
2.66

1.0000
0.8799
0.7676
0.6701
0.5922
0.532 1.

0.4824-
0.45 19
0.402 5

0.3325
0.2430
0.2700
0.3085
0.3674
0.46.58
0.6450
1.0000

v -vp+bv
2b,v

0.0
0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000
1.125
1.250
1.375
1.500
1.625
1.750
1.875
2.000
2.125
2.250

1.0000
0.8974
0.8003
0.7117
0.6320
0.5601
0.4933
0.4277
0.3595
0.2902
0.2070
0.2228
O.2430
0.2700
0.3085
0.3674
0.4658
0.6450
1.0000

v —vp+dv
26v

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
F 1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

1.0000
0.9083
0.8184
0.732 1

O.6502
0.5723
0.4969
0.4222
0.3461
0.2668
0.1835
Q. 1942
0.2070
0.2228
0.2430
0.2700
0,3085
0.3674
0.4658
0.6450
1.0000

depending on whether
p1Dv ~& as or pDv ~& av.

should be noted in this connection that in our present context y measures the frequency shifts
from the violet edge vs+hv+2vtDv of the /its coetour in the unit 2hv/yl.
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For convenience we have provided a brief table of the function on the right-hand side of Eq. (115)
(see Table I).

Again, according to Eqs. (68) and (84), when

in the frequency interval
Dv )(2/pi) hv = 2V3hv,

vp —36v+ 2']Dv ~~ v ~ vp+6v,

(118)

the contour is Hat, the residual intensity having the constant value

r=e "'cosh yi (y»&xi&xi —yi).

This Hat portion occupiey a fraction
(»—2yi)/(xi+yi)

(120)

(121)

of the entire contour. As Dv/Av +~ an—d yi—+0, the fraction (121) tends to unity: the line accordingly
becomes very shallow and very broad. More specificall, as y&

—&0

and
1 —r~yi (yi~o),

the width of the line contour —+2hvxi/yi (yi~0).

(122)

(123)

The equivalent width, therefore, tends to the limiting value

Equivalent width~2t1vxi ——v36vt, =&3&vXopm ' (y&~0), (124)

where N denotes the number of scattering atoms in a column of unit cross section in the atmosphere
and m the mass of the atom.

Returning to the general case, it is seen that the specification of the line contour over its entire
range

vp Av ~~ v ~~vp+Av+2tiiDv, (125)

requires a knowledge of the function f along the line y=yi and for 0&&x&&xi. However, since the
solution for f has been found in an explicit form only in the first square, B'CBC', complete contours
can be given only for those cases in which Dv ~&%33,v. And even then, the part of the solution not
included in the triangle OBC and the sides CB' and BC' can be found only after several numerical
quadratures. For, in these regions the solution is given by the formulae (111)—(113),and it does not
seem that the various integrals occurring in these formulae can be evaluated explicitly.

As illustrating the solution found in Section 5 we have considered in detail the case

(126)

and determined the line contours for the following ratios of the Doppler width to the line width:

tiiDv/Av = 5, 2.5, 2, 1—'„1.25, and 1. (127)

According to Eq. (61) the specification of the contours for these ratios of tiiDv:hv, requires the
evaluation of f along the lines

y=1, 2, 2 5, 3, 4, and 5, (128)

for 0&~x~&5. The values of f for several points along these lines and intercepted in the region
O'B'COBC' were determined according to Eqs. (111)—(113).The various integrals occurring in these
equations were evaluated numerically. "The results of these calculations are included in Table II.
In Table III, the values of f given in Table II are converted into residual intensities according to

'o The carrying out of the numerical quadratures were immensely facilitated by the Brit''sh Association Mathematical
Tables, VI: Bessel flnctions of order sero and unity (Cambridge University Press, England, 1937}.I should record here
my indebtedness to Mrs. Frances Herman Breen for assistance with these calculations.
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Eq. (68) and are tabulated together with the values of r for the remaining parts of the contours
given by Eq. (115).The arguments in Table III are the frequency shifts measured from the red end
vo —b, v of the contour in the unit 2hz.

The residual intensities tabulated in Table III are further illustrated as line contours in Fig. 7.
In this figure the various contours are plotted on different frequency scales, the width 2hv of o.(v)
always extending from the red end of the contour to O. Thus the contour BB'G corresponds to a
case jn which the line formed under the same conditions in a static atmosphere would extend from
BtoO.

From Fig. 7 it is apparent that in all cases in which Dv )2436P the contour consists of four distinct
parts, namely,

Pp —6V ~&P ~&Pp+AP,
Pp+AP ~& P ~& Vp

—3AP+2PyDV,
vp —35v+2pqDV z& v && vp —Dv+2IJ&DP,

Pp —AP+2yyDP ~& v &~ vp+AP+2yqDV.

(I)
(ii) I

(iii)
(iv)

(129)

In each of these parts r is given by a different analytical expression. It decreases from 1 in the first
interval, remains constant in the second, and decreases some more in the third attaining its miriimum
at v = vp AP+2p~DP. In th—e last interval it increases again to 1. It is in this fourth interval that the
line contour is described by Eq. (115). In Fig. 7 we have indicated these four parts on the contour
AA'G. The parts are respectively; A J, JE, EA', and A'G. The reason for the existence of these four
parts can be understood from a reference to Fig. 8. In this figure, which is similar to Fig. 2, the regions in
which I~& and I &, respectively, are different from constants (for varying s) are marked. We have further
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FIG.

indicated the frequency intervals in which the different parts of the contour arise. (The lettering in
Figs. 7 and 8 correspond). Now, according to our discussion in Sections 3 and 4, the outward intensity
I+i for a frequency v interacts with the inward intensity I i for a frequency v —2pivo(w/c). Hence I+i
for the frequencies in the intervals A J, JX, EA', and A'G in their transfer through the atmosphere
have interacted with I i for the frequencies in,the regions AjJ', jkk"J', ku'u"k", and u'ga", respec-
tively. The reason for the existence of the four distinct parts in the line contour now becomes ap-
parent. Moreover, this discussion makes it clear why it is that the problem increases in complexity
as piDv/hv decreases below unity.

Finally, it is of interest to compare the contours we have obtained with those which would be
expected in an atmosphere in which no gradient of velocity exists. To discuss this case we have to
go back to Eqs. (39) and (40). Setting dm/dx=0 in these equations and solving them with the
boundary conditions appropriate to Schuster's problem we readily find that

r=
1+xi

=0

(vo —av & v &~vo+~v)

otherwise. .
(13o)

The contours are therefore rectangular. For @~=5, r =-', . These rectangular contours which will be
obtained in the limit De=0 are also shown in Fig. 7. Thus the contour BB G should be compared
with BB"0"0;and similarly for the others.

7. REMARKS ON FUTURE WORK

The successful solution of a specific problem in the theory of moving atmospheres which we have
presented in the preceding sections justifies the hope that it will be possible to solve problems more
general and less idealized than the one considered in this paper. Indeed, there are several problems
in the theory of moving atmospheres which come already within the scope of the methods developed
in this paper. For example, there is the problem of the variation of line contours with the angle of
emergence from the atmosphere. The solution to this problem will depend on the radiation field in
the entire atmosphere. For, the intensity I(v, si, p) of the radiation of frequency v (as judged by an
observer at rest with respect to the radiating surface at s =0) emergent in a direction with a direction
cosine ii with respect to the positive normal can be expressed as an integral in the form (cf , Eq. (9).)

where

~l 8$ 4z
I(v, s&, p) = J(v, s, p) exp — w (v 5»/r3~p)/p —,—

0 g p

p+' ( w w
J(v, s, &)=-', ~" I( v —vo—jk+vo I', s, p

C C )

(131)

(132)

ln the first approximation we can express the integral on the right-hand side of Eq. (132) as a Gauss
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sum with two terms. Thus,

'R 'l8 m w
J(v, z, p) =

o I+a(v —vo p+vo p&)+I—sl v —vo—p vo
c c E. c c

(133)

The source function J' can, therefore, be expressed in terms of the solutions for I+~(v, z) and I ~(v, z)
which we have found in Section 5 and there will be no formal difhculty in solving for I(v, z&, p) accord-
ing to Eq. (131).

Again, the determination of I(v, z~, p) by the procedure we have outlined above will be of particular
importance for deriving contours comparable to those observed in cases in which the photospheric
surface is itself moving with a velocity zap. It will be recalled in this connection that our discussion
of the equation of transfer involves no assumption concerning mp since everything was referred to
an observer at rest with respect to the surface at z = 0 and t = t~. However, the line contour as seen by
an observer outside the star will not be given by F(v, z~), as allowance will have to be made for the
fact that the photospheric surface from which the radiation is emerging at an angle 8 has a motion
8/p cos 8" towards the observer. Accordingly, the contour as judged by an external observer at a great
distance from the star will be determined by

~o
S(v) =2 i Il v+vo p~ zx~ p I@dpi

o E c
' ' ) (134)

where I(v, z&, p) has the same meaning as in Eq. (131).
Another problem which can be solved by the methods of the present paper is the radiative equi-

librium of a planetary nebula. It is known that large differential motions are present in planetary
nebulae and a problem of considerable interest relates to the question of the radiation pressure in
the Lyman o,-radiation. It can be shown that with the same assumptions (27) and (28) concerning
r(v) and the variation of w through the atmosphere, the problem can be reduced to a boundary
value problem very similar to the one considered in Sections 4 and 5 and the solution can also be
found by similar methods.

And finally there is the general problem of line formation in moving atmospheres in which o (v) is
allowed to be more general than the rectangular form considered in this paper. It can be shown that
under these more general conditions the problem can still be reduced to a boundary value problem
in hyperbolic equations. If the velocity be assumed to vary linearly with the optical depth, the
equation we have to consider differs from (59) only in the occurrence of a factor depending on y in
front off It does n. ot seem impossible that with suitable simplifications, progress toward the solution
of these more difficult problems can be made.


