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1. INTRODUCTION

T is generally accepted at present that.the
stars of the main sequence, or rather the stars

in the main sequence stage of their evolution,
owe their energy supply to the so-called C-N
cycle! (transformation of hydrogen into helium
through the catalytic action of carbon and
nitrogen) taking place in the center of the star.
This leads to Cowling’s semiconvective point
source model,? consisting of a central convective
zone and an outer envelope in a state of radiative
equilibrium. The introduction of the convective
zone in the point source model is necessitated by
the fact that the radiative equilibrium of the
stellar material becomes unstable at a certain
distance from the center and must break up into
a series of convective currents. The continuous
circulation of the material within the convective
core of the star insures its uniform chemical
constitution, the changes taking place in the
center as a result of nuclear transformations
being distributed rapidly through the entire core.
If we assume, as it is usually done, that the
stellar material originally contains about 35
percent hydrogen (the rest being a mixture of
heavier elements), and that this hydrogen is later
completely transformed into helium, the mo-
lecular weight of the convective core will increase
gradually from a value of about 1 to a value of
about 2. The effect of these evolutionary changes
on the observable characteristics of the star have
been studied in some detail by Miss Harrison.?
It has been shown by this author that the
increase of molecular weight u from 1 to 2 leads
to a shrinking of the convective core, and a
steady increase of the stellar radius and lumi-
nosity. The resulting evolutionary curve in the
frame of a (log L/Lo vs. log R/Roe)-diagram is
shown in Fig. 1, where L/Lo and R/Ro are the

1C. v. Weizicker, Physik. Zeits. 39, 633 (1938); H.
Bethe, Phys. Rev. 55, 434 (1939).

2 Cowling, M. N. R. A. S. 96, 42 (1936).

3 Marjorie H. Harrison, Astrophys. J. 100, 343 (1944).

luminosity and radius of the star, respectively,
expressed in solar units.* As the hydrogen content
of the convective core decreases, the temperature
of this region must rise steadily in order to
insure the proper rate of energy . production,
which, as it is easy to see, will result in the
appearance of new sources just outside the con-
vective region where the hydrogen content is
still high and the gradual fading of the central
source of energy. When the hydrogen content of
the convective core finally drops to zero, the
production of energy within the core ceases. The
currents then stop because of the lack of a
driving force, and the temperature becomes con-
stant throughout the core. Thus the structure of
the star is gradually transformed into that of the
so-called shell source model, with an isothermal
core of dehydrogenized material, a thin energy
producing layer, and a radiative envelope with
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F1G. 1. The evolutionary tracks of a Cowling model star
with increasing molecular weight u of the convective core
(after Miss Harrison), and that of a shell source model

‘star with an increasing fraction of the total mass in the

isothermal core (after Schénberg and Chandrasekhar).
L/Lo and R/Ro are the luminosity and radius of the
star respectively, expressed in solar units.

4 The curve in Fig. 1 is calculated under the assumption
of a constant central temperature of the convective core;
the steady increase in this temperature will result in
somewhat smaller changes in the stellar radius.
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the original high hydrogen content.? The further
evolution of the star must now proceed in the
direction of a continuous growth of the energy
producing shell towards the surface of the star.
The upper line in Fig. 1 gives the evolutionary
track of such a star as that calculated by
Schonberg and Chandrasekhar under the as-
sumption of p=2 for the isothermal core and
w=1 for the envelope. The transition from the
semiconvective point source model to the shell
source model is indicated schematically by the
dot dashed line.

In their study of the evolution of a shell source
model of a star the above authors came to a
peculiar result, namely, that no solutions exist
which correspond to an equilibrium condition of
the star when the amount of matter in the core
exceeds 10 percent of the total mass of the star.$
This is illustrated in Fig. 1 by the broken line
continuation of the evolutionary track, the points
of which correspond to decreasing values of the
mass of the dehydrogenized isothermal core.
Since physically the mass of the core must
increase continually, the above result lead these
authors to the conclusion that beyond the 10
percent point on the evolutionary curve (marked
with a cross in Fig. 1) the star must evolve
through a series of non-equilibrium configura-
tions which .they try to connect with the phe-
nomena of stellar explosions.

It has recently indicated by one of us’ that
the above result concerning the upper limit for
the isothermal core does not necessarily represent
an intrinsic property of the shell source stellar
model, but may be due in part to the arbitrary
assumption made in the calculations that the
gas forming the isothermal core is always ideal.
By taking into account the possibility that
degeneracy may occur in the center of a core
with a fixed temperature and steadily increasing

5 G. Gamow, Astrophys. J. 87, 206 (1938); Chas. Critch-
field and G. Gamow, Astrophys. J. 89, 244 (1939); R.
Henrich and S. Chandrasekhar, Astrophys. J. 94, 525
(1941); M. Schénberg and S. Chandrasekhar, Astrophys.
J. 96, 161 (1942).

¢ A similar result had been obtained previously by
Henrich and Chandrasekhar (reference 5) for models in
which the molecular weight of the core remains the same
as that of the envelope. In this case, however, the solutions
were non-existent only when the core exceeded 35 percent
of the star mass.

7 G. Gamow, Phys. Rev. 67, 120 (1945).
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density, the picture changes considerably. Be-
cause of the degenerate condition, stellar models
obtained in this way are not subject to the
homology transformations in respect to the mass.
Consequently the fitting of semidegenerate cores
to radiative envelopes must be carried out
individually for any particular star mass. In
fact, as we shall see later, one obtains entirely
different evolutionary tracks for large and small
stellar masses.

In the present article we will consider the
fitting of partially degenerate cores of fixed
temperature 7%=2X10"°K (corresponding to
the C-N cycle in the energy producing shell) and
molecular weight peore=2 to radiative envelopes
of molecular weight pgenv=1 and opacity coeffi-
cient ky=7.1X10* (log k¢=24.85). The value of
the molecular weight chosen for the envelope
corresponds to a hydrogen content of 35 percent.
The fitting method consists in “cutting out”
from isothermal solutions with varying central
densities cores of the desired mass M* and
fitting these cores to envelopes obtained from
various radiative equilibrium solutions for the
given star mass M. In order to make the envelope
fit, a mass is cut out of its center equal to that
of the isothermal core. The fitting conditions
are that the gas pressure and temperature must
be continuous at the interface between the
isothermal and radiative parts.

2. SOLUTIONS FOR ISOTHERMAL CORES

We will first discuss the method of building
isothermal cores both for the case of an ideal gas
and a partially degenerate gas.

A. The Case of an Ideal Gas

The equilibrium equation for an isothermal
sphere of an ideal gas can be written in the
form?®

dp/dr=—GpM(r) /7% (1)
where .
M(r) =f 4w pridr; (2)
and °
p=(R/u)pT*, ' 3)

where p=gas pressure, r=the radius, p=the
density, M (r)=the mass within the radius 7,

8 Radiation pressure neglected.
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F1G. 2. Fitting curves for a core of mass M*=

=0.1 Mo and for the corresponding envelopes

pertaining to the stars of total mass equal to 0.4 and 1.6 Mo. We notice that in the first case
(6.25 percent core) an intersection is obtained with the ideal gas part of the curve (heavy line),
whereas in the second (25 percent core) the intersection corresponds to a partially degenerated
core. The black circles, triangles, inverted triangles, and diamonds correspond to points of the
envelope fitting curves obtained respectively from Cowling’s convective solution, from two
solutions given by Strémgren, and from the solution given in Table I.

G =gravitational constant, u=the molecular
weight at the radius 7, 7% =the temperature of
the isothermal core and energy producing shell,
and R=the gas constant. The boundary condi-
tions are

dp/dr =0 4)

at the center. Since T* is constant the above
equations can be rewritten in the form

14d 2d log p) 47Gup
7 =— .
2 dr ar RT*

Introducing new variables ¢ and v connected
with the old ones by the relations

p=pc;

)

r= g/aa ! (6)
p=pe (7

where
a?=4rGup./RT*, (8)

the Eq. (5) may be transformed to

=alE) - @

with the boundary conditions
“y=dv/dt=0 at £=0. (10)

The mass within the radius 7 is expressed in new

variables by the formula
(11)

Equation (9) describes the polytrope of index
K=1 and n= «, and its solutions have been
tabulated by Emden.? Using (6) and (11) we
obtain

M(r)= ——RT* {rd—g (12)
uG  dE
On the other hand from (6), (7), and (8) we have
RT*a? RT* 1
PPt = 47Gu n—v_4=1rG,u. ;; Eze w39

Taking M(r) equal to the desired mass M* of
the core, adjusting 7 and p to the desired values
r* and p* for the radius and the density on the
surface of the core, and expressing all in terms
of the mass Mo and radius Roe of the sun, we
can rewrite the above two equations in the form

() ey
Ro \ Mo/ \RT* dt

® A table of these solutions can be found for example in
Milne, Handbuch d. Astrophys. They were originally given
in R. Emden, Gaskugeln (B. G. Teubner, Leipzig, 1907),
where a somewhat different notation is employed from
that used here. .

(14)
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and

* =

1 RT*)3(M* _2[ dv 2[ . s
dr Mo\ uG MO) Ea_f] o] (15)

Taking corresponding values of &, £(dv/d¢), and
£e from Emden’s tables we obtain a linear
sequence of isothermal core solutions™ corre-
sponding to a given mass M*/Mo and tempera-
ture T*. Plotting log 3p*core against log 7*/Ro
we obtain curves'® of the type shown by the
heavy line in Fig. 2 which can be used for fitting
with the corresponding curves for the inner face
of the envelopes. These fitting curves are, of
course, subject to homology transformations.
For various core masses we have

P M*; p*1/M% (16)

A typical feature of these curves consists in the
fact that they do not extend into the region of
small radii but instead begin to spiral around a
certain point in the [log p*/2; log 7*/Roe] plane.
Physically this means that it is impossible to
construct an isothermal core of an ideal gas with
a radius smaller than a certain value determined
by its mass. This fact underlies the above men-
tioned result of Chandrasekhar and his collabo-
rators concerning the impossibility of building a
stellar model with a core containing more than
10 percent of the mass. In fact, as we see from

Fig. 2, the fitting curves for the envelopes (to be

discussed in detail in the next section) cease to
intersect the core curves when the mass of the
envelope becomes smaller than 9 times the mass
of the core.

B. The Case of a Partially Degenerate Gas

If, instead of considering the gas as ideal, we
take into account the possibility of degeneracy,
the equation of state® has to be replaced by the
equation of a partially degenerate gas. In this
case we have

dumy(2am KT)?}

p= o Fi2(¥),

(17)

10 At the interface between the isothermal solution for
the core and the radiative solution for the envelope we
must have continuity of the gas pressure. Since the mean
molecular weight of the core is assumed to be twice that
of the envelope, the continuity condition requires that at
this point $p*core = Penv-
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KT(Q2wm,KT)?

3(w)*h? (18)

Fapa() +§T4,

where Fi and Fj are Fermi-Dirac functions

defined by ;
®  u'du

R - [T

=]

In the above expressions m, and my are respec-
tively the masses of an electron and of a proton,
pe the effective molecular weight, and ¢ a
parameter determining the degree of degeneracy.
The quantity k is the Boltzmann gas constant,
and % is Planck’s constant.

The equilibrium equations for an isothermal
sphere described by the above equations of state
have been integrated numerically by Wares!! for
different values of the parameter y.. Using the
Wares’ solutions calculated for ¥.=0, 2, 3, 5, 10,
20, and 100, and transforming them to the
conditions? u,=pere=2 and I'=T*=2X107°K,
we can again repeat the procedure of “‘cutting
out” isothermal cores of a given mass M* and
plotting the logarithms of their surface densities
3pcore” against the logarithms of their radii
7*/Ro. The resulting curve for M*=0.1 is shown
by the heavy line in Fig. 2, and we see that in
this particular case the spiraling part of the ideal
gas curves does not have physical significance

(19)

“since degeneracy sets in before this solution for

the polytrope is obtained. The fitting curve now
continues into the region of smaller radii and
gives well defined intersections with the enve-
lope’s curves corresponding to any percentage of
star mass contained inside of the core. This
removes the long standing paradox of the upper
limit for the core mass. The complete set of core
fitting curves which can be obtained from Wares’
integrations is shown in Fig. 3 for core masses
ranging from 0.0125 Mo to 0.40 Mo. It shows
that for small core masses the fitting curves
continue monotonically from the ideal into the

1 Gordon W. Wares, Astrophys. J. 100, 158 (1944).
We are grateful to Dr. Wares for kindly placing his
unpublished and detailed tables representing the results
of these integrations at our disposal.

2]t may be noted here that Wares’ solutions are
calculated for a constant value of u throughout the core.
This is actually not quite correct since for the same
chemical constitution the mean molecular weight in the
degenerated part will be different from the value in the
non-degenerated part. We have used Wares’ data, however,
since no better integrations are available at present.
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F1G. 3. Core fitting curves as obtained from Wares’ data for various values of the core mass.

degenerate regions, whereas for larger masses
(around 0.1 M) we obtain a ‘“folding” of the
curve. For still larger masses the folding part
goes a long way into the region of larger radii and
its run in this region cannot be followed on the
basis of the existing integrated solutions (mainly
due to a large gap in Wares' tables between
¥.=20 and ¢.=100). However, as we shall see
later, intersections with the fitting curves for
the envelopes will also be present in this case.
The lack of numerical solutions which can be
~used for cores with relatively large masses makes
the study of the shell source evolution of massive
stars more difficult than for smaller ones, and
the further integrations of the equations of
partially degenerated isothermal spheres become
* highly desirable. '

3. SOLUTIONS FOR RADIATIVE ENVELOPES

For the radiative envelope of the star we have
the equations

d /R GM(r)p
§E ) OHO
dr\ u r?

KLp

’
4cr?

and

i(; T4 = — 21
or 3aT*) = (21)

where the opacity coefficient K can be repre-
sented with a sufficient approximation by
Kramers’ formula

K=K,,T-5. (22)

.Four numerical integrations of these equations
have been performed by Strémgren.’* These
integrations are carried out for a star with the
mass, radius, and luminosity of the sun, a
molecular weight u=2.2 and the following values
of the opacity coefficient K,: log K¢=26.2; 27.0;
27.4; and 27.8. The first two solutions ‘‘run out
of mass’’ before reaching the center whereas the
last two approach the center with an excess mass
of 5 and 12 percent, respectively, of the total mass
of the star. Transforming these solutions to a
molecular weight u=1, these solutions will hold
exactly only if the mass is simultaneously trans-
formed to 4.84 Mo."* Along with these four
solutions we use a new solution calculated for
M=4 Mo, R=15 Ro, L=10* Lo, with the as-
sumptions p=1, log K;=24.85. This solution,

18 B, Stromgren, Zeits. f. Astrophys. 2, 345 (1931).

14 Since the radiation pressure, which was taken into
account in Stromgren’s calculations, remains the same
under the approximation u?M =constant.
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Fi1Gs. 4 (a) and (b). Relation of the radius and lumi-
nosity of a star of mass 4 Mo as a function of the radius
and mass of the core. The curves are quantitatively
rather approximate.

given in Table I, approaches the center with a
mass excess of about 20 percent. It has been
shown by Stromgren that the solutions which
approach the center with a finite value of the
mass can be extrapolated beyond the tabulated
values to smaller radii by using the formulae

1 32/11 1 10/11
) )"
7 7

M(r) ~r—111 (for r/RK1).

(23)

These expressions show that M(r) does not
approach a finite value for =0 but rather goes
to zero very slowly. All the above solutions are
free from convective instability, although in the
case of the solution for log K¢=27.4 one comes
very close to such an instability.

Strictly speaking all the above solutions con-
tain a term corresponding to the radiative pres-
sure, and are not subject to homology transfor-
mations, being valid only for the values of M, R,
L, p, and K, for which they are calculated.
However, since a special integration of the equi-
librium equations for each particular case re-

G. GAMOW AND G. KELLER

quires an enormous amount of work (about a
hundred man hours per solution) we have used
the homology transformations despite the ap-
proximation they involve.

If we choose for independent variables the
mass M of the star, the temperature T at certain
homological point, the molecular weight p and
the coefficient of opacity K, the homology
transformations for the remaining three variables
become

r~uM/T, (24)
p~T3/udM?, (25)
Lw? MST3 /K, (26)

Using these formulae one must first transform
Stromgren’s solutions to the standard values of
u=1 and log Ky=24.85. In order to build an
envelope for a given total mass of the star M,
which can be fitted to a core with a mass M* and
temperature 7%, we must evidently choose from
each of these tables a line corresponding to the
prescribed value of M*/Me. Then, again using
the above formulae, the solution is transformed
so that the temperature corresponding to that
value of M*/Mo will become T*, and the total
mass of the star will become M. In this manner
we get definite values from each solution for the

~inner radius 7* of the envelope, the density p* at

this point, and the corresponding radius R and
the luminosity L of the envelope. These points
determine a curve [log p* vs. log r*], the inter-

" section of which with the [log (0*/2) vs. log 7*]

curve for the core will give us the fitting condition
for the model.
It may be noticed here that whereas the core

TaBLE I. Solution of the equations for the radiative
envelope. M=4Mo; R=15R0; L=10,000Lo.

log (*/RQO) log p log (M(r)/MQ) log T
1.148 2.135-10 0.602 4.787
1.110 3.535 0.602 5.211
1.025 4.946 0.602 5.641
0.866 6.343 0.598 6.070
0.618 7.686 0.570 6.482
0.297 8.875 0.468 6.861
9.932-10 9.835-10 0.300 7.180
9.548 0.663 0.152 7.459
9.154 1.513 0.060 7.736
8.756 2.466 0.005 8.037
8.357 3.523 9.965-10 8.368
7.958 4.652 9.930 8.720
7.558-10 5.819 9.897-10 9.083
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F1c. 5. Fitting curves for a star of mass equal to 0.1 M o. The notation is the same as that in
Fig. 2. Intersections between corresponding curves are encircled.

curves are fixed, not being subject to homology
transformations, the fitting curves for the enve-
lopes can be constructed for one definite mass of
the star M, and be moved for different star
masses across the diagram in accordance with
the conditions r*~ M, and p*~ M2,

The radius and luminosity of the star can now
be determined directly from the value of the
fitting radius. As an example we give in Figs.
4 (a) and (b) the dependence of R and L for a
star of 4 Mo on the radius of the interface
between the core and the envelope. For other
star masses similar curves can be obtained by
simple homology transformations.

4. SHELL SOURCE MODELS FOR STARS OF
VARIOUS MASSES

As has already been mentioned, the peculiar
character of the core fitting curves leads to
qualitatively different results for the evolution-
ary tracks for stars of different masses. We will
choose as our first example a star of very small

mass 0.1 Mo, in which case the growth of the
energy producing shell can be followed through
the entire range from 0 to 100 percent of the
total mass of the star. The corresponding part of
the [log (p*/2) vs. log (r*/Ro)] diagram is repre-
sented to an enlarged scale in Fig. 5 with the
fitting curves for the cases in which the -core
contains 12.5, 25, and 50 percent of the mass of
the star. The radii and luminosities obtained
from the three intersections are shown in the
frame of the ordinary [log (L/Lo) vs.log (R/Ro)]
diagram in Fig. 8. In this diagram the general
direction of the main sequence and the locations
of some well-known stars are also indicated for
the sake of comparison. We see that in this case
the shell source model does not experience any
considerable increase of stellar radius in any
stage of its evolution. The representative point
of the star evolves through regions slightly off
the main sequence in the direction of increasing
radii and luminosity, following for a while the
continuation of the track calculated by Schon-
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FrG. 6. Fitting curves for a star of mass equal to 0.4 M o. The notation is the same as in Fig. 2.
Intersections between corresponding curves are encircled.

berg and Chandrasekhar. With further increase
of the mase of the core the radius of the star
begins to decrease while its luminosity continues
to increase, and (when the mass of the core is
about 50 percent) the star crosses the main
sequence line. With the gradual approach of the
energy producing shell to the surface of the star,
its effective temperature rises very rapidly, and
one may expect the ejection of the outer layers
to begin at a certain point during the subsequent
evolution. A more detailed study of these late
stages of shell source evolution will represent
the subject of a later publication.

As a second example we will consider a star
with a total mass 0.4 Mo. In this case the
existing integrated solutions permit a study of
the evolution only up to the point where the
core contains about 32 percent of the star’s mass.
From Fig. 6, representing the fitting curves for
that particular case, we see that whereas the
intersections corresponding to 6.25 and 12.5

percent of the mass are similar to those in the
previous case, the situation changes quite essen-
tially when the shell continues to grow. In fact,
due to beginning of “looping’ in the core curves,
the intersection points begin to move towards
smaller core radii, which results in a rapid
increase in the stellar radius and luminosity.
The evolutionary track for a star of that mass is
shown in Fig. 8, and we notice that for a core
containing 32.5 percent of the mass the radius
of the star has increased by a factor of about 40,
its luminosity becoming more than tenfold its
original value. Further stages in the evolution
cannot be followed at present because of the
lack of suitable integrated solutions.

Both examples discussed above are of purely
theoretical interest and cannot be compared with
actual stars, since stars of such small mass con-
sume their original hydrogen content very slowly,
and can hardly be expected to have reached the
advanced stage of evolution predicted here at
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F1c. 7. Fitting curves for a star of mass equal to 4 Mo. The notation is the same as in
Fig. 2 and Fig. 3 with an additional point from one of Strémgren’s “negative mass’’ solutions
indicated by the square. (The ‘‘square’” points corresponding to different envelopes are
so close together that they cannot be distinguished on the diagram.)

the present age (a few billion years) of the
stellar universe. They indicate however that the
growth of an energy producing shell can cause a
considerable increase in stellar radius, an increase
which becomes more pronounced for the stars of
larger mass.

The most interesting case corresponds, of
course, to stars several times heavier than the
sun, since the stars in this mass range have used
by now a large proportion of their original
hydrogen supply and must be expected to be
found at present in an advanced stage of their
evolution.

The fitting curves corresponding to a star of
mass 4 Mo are shown in Fig. 7. For convenience
we shall discuss the evolutionary stages corre-
sponding to various core masses separately.

A. Core Mass M*=0.05 Mo

It is to be noted that the fitting curve for the
core (No. 7) is a monotonically decreasing func-
tion, and that consequently along all points of
this curve an infinitesimal decrease in the radius
implies an increase in the surface pressure. It is

reasonable to suppose that this means that the
core will be stable to small fluctuations of the
pressure on the surface. There is an intersection
at the lower right side of the graph corresponding
to a star of log L=2.9 Lo and log R=0.65 Ro.
It will be found that such a star lies well within
the main sequence. This star has a core of
isothermal gas in a nearly perfect gas condition,
and is one which has already been described by
Schoénberg and Chandrasekhar.?

B. Core Mass M*=0.10 Mo

Observing! first the structure of the curve for
the isothermal core (No. 6), one notices the
existence of a region near log (*/Ro)=0.875
where the value of dp*/dr* is positive. This
implies that if the core were in a condition
represented by a point in this region of the
curve, the core would begin to collapse spontane-
ously if the pressure on its surface did not
decrease too rapidly as the core contracted. For
the star under consideration, however, the enve-
lope curve intersects the core curve in only two
points, at both of which the slope of the core
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curve is negative. The intersection on the lower
right is similar to the adjacent point for a core
mass of 0.05 Mo, and represents a later stage in
the evolution of a star of this type. The radius
and luminosity of the star have not changed
appreciably, and consequently the star remains
at about the same point on the main sequence
and on the Hertzsprung-Russell-diagram of Fig.
8. There is an additional intersection at the
upper left-hand side of Fig. 7 which deserves
some attention. It will be seen that the radius
of the core is very small in this case and that its
surface density is exceedingly high. The material
in the core is highly degenerate. Unfortunately
the existing integrations of the radiative envelope
equations do not allow very accurate estimates
of the radius and luminosity of the corresponding
star to be made, but these appear to be about
log (L/Lo)=2.5 and log (R/Ro)=1.5. It will be
seen that this star is truly a red giant.

C. Core Mass M*=0.15 Mo

In this case the curve for the isothermal core
has a break in the middle, the right-hand branch
turning back on itself approximately as shown.
As one traces the upper right-hand branch
toward the left, around and back to the right

“along the lower right-hand branch, one proceeds
in the direction of increasing degeneracy of the
core. We do not have enough information to say
just how the curve behaves beyond the right-
hand margin, but one can pick the curve up
again at the lower end of the left-hand branch
and proceed, still in the direction of increasing
degeneracy, upward and to the left. It appears
that the values of the density corresponding to
points in the break between the two curves are
quite small. The peculiar behavior of the curve
is caused by the fact that in the region where
the right-hand branch turns back on itself the
gravitational attraction of the matter in the star
for itself has become so great that the rate of
increase of the internal gas pressure with de-
creasing radius of the star becomes smaller than
the gravitational force of contraction, and the
core tends to collapse. This brings about a
redistribution of matter in the core with an
increasing concentration of matter in the center
and a reduced density on the surface. Apparently
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the reduction of density near the surface of the
core is more effective in reducing the mean
density of the core than the increased density
near the center is in increasing it, since as one
proceeds along the lower right-hand branch the
core must have increasingly larger radii in order
to contain the required mass of 0.15 Moe. Jump-
ing to the left-hand branch one comes to cores
which are so highly degenerate that they have
become relatively less compressed again, and the
surface density and pressure must increase
rapidly as the radius of the core is reduced.

It will be seen that the envelope curve inter-
sects the core curve in four places. The upper
right-hand intersection is analogous to the right-
hand intersections in the case of lighter cores.
The lower right-hand intersection implies the
possible existence of another star, the radius and
luminosity of which do not differ greatly from
those corresponding to the upper right inter-
sections. There are two intersections with the
left-hand branch, both corresponding to rela-
tively small luminosities and to very large radii.
The values of the latter quantities have been
estimated very roughly from Fig. 4, enabling
points representing these two star models to be
plotted in Fig. 8. The upper left-hand inter-
section is, of course, of the same kind as the
left-hand intersections corresponding to the
smaller core masses, whereas the lower left-hand
intersection represents a new possible stellar
model.

D. Core Masses M*=0.20 Mo and 0.25 Mo

The core curves for these two masses are
similar to that for a core of mass M*=0.15 Mo,
except that because of the larger masses the
collapse of the core (corresponding to the turning
back point of the right-hand branch) occurs at
a larger radius. Similar considerations explain
the behavior of the left-hand branches. In these
two cases no left-hand intersections exist, but
the right-hand ones are present as before.

E. Cores with Masses Greater than 0.40 Mo

It will be seen from Fig. 7 that in this case no
intersections exist between the envelope fitting
curves and either branch of the core fitting
curve. Apparently there are no solutions in this
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case. The situation is not unlike that described
by Chandrasekhar and Schénberg for their model
with a core of a perfect gas. Even assuming the
possibility of a core of degenerated gas it appar-
ently is not possible to obtain a fit for stars of
this mass.

It is desirable at this point to attempt to link

the possible solutions for various different core
masses together in an evolutionary sequence.
This has been done in a rather mathematical
fashion in Fig. 7 for the left-hand solutions
simply by drawing curves through adjacent
points of intersection, thus producing two pos-
sible evolutionary tracks. The same might be
done for the two right-hand solutions, but to do
so would clutter up the diagram. The question
now arises as to which track is the correct one,
whether transitions from one track to another
can occur, and what happens when the mass of
the core exceeds that for which suitable solutions
exist. Aside from a certain reasonableness, the
following suggested evolution is largely con-
jecture on the part of the authors.

. Itis probable that the star begins its evolution
with a relatively rarefied core corresponding to
the upper right-hand intersections (Chandrase-
khar-Schénberg solutions). This stage of evolu-
tion may be modified by a certain amount of
energy production throughout the core as a result
of the convective mixing of the unconsumed
hydrogen with the rest of the core material.

As soon as the star reaches the stage of evolu-
tion where the core is represented by a point on
a core curve for which dp*/dr*=0 there will be
a tendency for the core to contract through a
series of non-isothermal equilibrium states, at a
rate corresponding to the Kelvin Helmholtz time
scale. Since such a contraction of the core should
be a slow process, then, corresponding to the
slow decrease in the radius of the core there
would necessarily be a slow increase in the radius
of the star as will be seen from Fig. 4a. This
result is easily obtained if one assumes that the
envelope is in radiative equilibrium and calcu-
lates what will happen to the radius as the core
radius is decreased, assuming constant surface
temperature and mass for the core. The ex-
panding star will gradually become a red giant
and possibly a supergiant. Whether the star
ever reaches a condition corresponding to the
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left-hand intersections is problematical. It does
not appear to happen in the case of stars of
mass M =4 Mo, since the left-hand intersections
cease to exist before the upper right-hand inter-
sections reach the unstable portion of a core
curve. '
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F1c6. 8. Evolutionary tracks calculated for the stars of
0.1, 0.4, and 4 Mo. The values of the radii of the stars
on the 4 Mo curve are very uncertain and could be
actually much larger than indicated.

CONCLUSIONS

The results obtained in the previous section
indicate that the growth of the energy producing
shell within a sufficiently massive star may lead
to a very large increase of stellar radius, thus
bringing the star into the region of the Hertz-
sprung-Russell diagram occupied by the red
giant and supergiant stars. It is tempting,
therefore, to consider the stars of these groups
as representing various stag_és of hydrogen shell
source evolution, particularly in view of the fact
that there is, as it seems, no other adequate
explanation of their existence. In fact, it is not
possible to consider stars of the red giant branch
as still being in the stage of gravitational con-
traction since in this case their radii would be
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decreasing at a faster rate than is consistent with
the observational evidence.!® On the other hand,
the attempt by Gamow and Teller!® to explain
the energy production in red giants as caused by
thermonuclear reactions involving light elements
(Li, Be, B) cannot explain the peculiar distribu-
tion of these stars in the Hertzsprung-Russell
diagram; in fact, one would expect in this case
that the stars would be distributed in different
bands running parallel rather than almost
perpendicular to the main sequence. Thus, al-
though it is very possible that some of the red
stars scattered through this region of the
Hertzsprung-Russell diagram are still consuming
their original allotment of light elements, the
main bulk of the stars forming the so-called red
branch require a different explanation. A look
at the general position of the red branch,
especially in the case of Baade’s stellar popula-
tion of type II'7 suggests on the other hand that
most red stars represent evolutionary stages
subsequent to the main sequence; in fact, only
in such a case would the brighter, faster evolving,
stars get farther away from their main sequence
position. THe above discussed features of shell
source evolution seem to fit rather well with the
general picture as it presents itself on the basis
of observational data. It may be noticed that
the appearance of a red giant branch for more
massive stars does not even require the assump-
tion that they have consumed a larger portion of
their hydrogen, since, as we have seen in the
previous section, only such massive stars are at
all able to expand considerably beyond their
normal size in the main sequence. Thus it may
turn out that the absence of highly expanded
stars of comparatively small mass is not at all
connected with the slowness of their evolution,
but is rather due to the peculiar properties of
partially degenerated shell source models for
small masses. On the other hand it seems very
likely that the difference between the red giant
branches in the two types of stellar population
is directly connected with the age of these
particular stellar groups. It would seem that the
absence of diffuse interstellar material in the

156 G, Gamow, Phys. Rev. 55, 718 (1939).

16 G, Gamow and E. Teller, Phys. Rev. 55, 791 (1939);
Compare also M. Greenfield, Phys. Rev. 60, 175 (1941).

17 . Baade, Astrophys. J. 100, 137 (1944).
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regions occupied by stellar population of the
type II indicates that the stars of that group are,
on the average, older than the stars of type I.
It must be hoped that a further, more detailed
study of the shell source model for heavy stars
will explain the striking differences between these
two types of stellar population. It may be noted
in conclusion that the calculations presented in
the present article must be considered as of only
provisional nature, in particular because of the
rigid assumptions made about the temperature
in the energy producing shell, and concerning
the values of the molecular weights in the core
and in the envelope. The solutions of partially
degenerate cores are invariant in respect to
changes of mass, temperature, and molecular
weight for which the product M*uee*(T*)~t=a
constant, so that assuming different values of
T* and pere wWe obtain similar solutions for
different core masses M*. In particular, assum-
ing, as it seems very likely at present,!® that
stellar material consisted originally almost
entirely of hydrogen and helium (55 percent H;

.40 percent He; less than 5 percent Russell

mixture) we would have to use u=0.7 for the
envelope and p=1.4 for the core. Using u=1.4
instead of u=2 for the core we will find that the
“looping phenomenon” of the [log (p*/2) wvs.
log (r*/Roe)] curves (compare Section 2) will
take place only for core masses (2/1.4)222 times
as large, so that the evolutionary track for a star
of about one sun mass will now look similar to
that calculated by us for 0.4 Mo. Other impor-
tant changes in the values.of star masses corre-
sponding to an evolutionary track of a given
shape will result from the change of the value
of T*, which, of course, need not necessarily be
exactly the same in the energy producing shell
as it is in the center of a point source model.
The work of improving present calculations in
the above indicated directions, with the aim of
getting a closer comparison with the observa-
tional data is now in progress.

Previously reported difficulties connected with
the construction of shell source stellar models
containing a large fraction of the total mass in
the isothermal core arise in part from the arbi-

18 Compare G. Gamow and J. A. Hynek, “The review
?f We)iziicker's planetary theory,” Astrophys. J. 101, 249
1945).
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trary assumption that the material of the core
should be treated as an ideal non-degenerate gas.
The picture changes materially when one takes
into account the possibility of the existence of
degeneracy near the center of the core. Models
obtained by fitting a partially degenerated iso-
thermal core to the radiative envelope are not
subject to homology transformations in respect
to the mass, and their evolutionary behavior
presents essentially different features for small
and large star masses. In the case of very small
star masses (~0.1 Mo), the observable char-
acteristics of the shell source star show only
comparatively small deviations from the values
corresponding to the main sequence position.
With the fraction of the total mass in the core
increasing up to 50 percent, the luminosity of
the model increases by a factor of 4, whereas its
radius shows first a slight increase (by about
13 percent) and then begins to decrease. Beyond
this stage the evolution is represented most
probably by a continuous decrease of both radius
and luminosity towards values corresponding to
completely degenerated white dwarf configura-
tions. For larger star masses (~0.4 Mo) the
picture of evolution looks quite different, and the
growth of the core results in a very large increase
of the stellar radius. It has been calculated that
for a star with 32 percent of the total mass in
the core, the radius becomes 40 times as large
and the luminosity 20 times as large as they
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would be were the star in the main sequence.
For still larger masses (~4 Mo) the situation is
considerably more complicated because of the
fact that in this case a given core mass corre-
sponds to several possible configurations, which
can presumably evolve from one to another
through a process of internal rearrangement of
the stellar material and the liberation of gravi-
tational energy. Although it has not been possible
in this case to follow the entire evolutionary
track owing to the lack of a sufficient number of
integrated solutions, the available results indi-
cate that when a relatively small core mass has
been reached the radius of the star will begin to
increase to a very large value and the luminosity
will simultaneously decrease. It is suggested
that stellar models with steadily growing cores
and shell sources of energy can be used for the
explanation of internal structural features and
the evolutionary development of the group of
giant and supergiant stars.
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