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STATEMENT OF PROBLEM —T2
&S 8;~dx,dxi, +dt',

(1+sr/2) ' (A)' 'N the theory of relativity one is used to
- - representing the gravitation field in the neigh-
borhood of a single star by the centrally sym-
metric static solution of the field equations,
which was first stated by Schwarzschild. This
field goes over asymptotica11y with increasing
distance from the generating mass into the
Euclidean (or rather, Minkowskian) space. That
is to say, it is embedded in a "flat" space. On
the other hand, we know that real space is
expanding, and that, for the existence of a non-
vanishing average density of matter, the field

equations will imply such an expansion.
The boundary conditions on which the

Schwarzschild solution is based are, therefore,
not valid for a real star. In particular the
boundary conditions which are valid for the
expanding space are dependent on time. One has
to expect, therefore, a priori, that the field

surrounding a single star is essentially dependent
on time.

The problem of this time dependence is of
particular interest, since such a time-dependent
behavior could be of essential importance for the
theory of matter. The assumption has been
voiced in this connection that there may exist
connecting relations between the cosmic and the
molecular constants.

The investigation below yields that the ex-
pansion of space has no inHuence on the structure
of the field surrounding an individual star, that
it is a static field —if only for an exactly deIimited
neighborhood.

METHOD
4

As usual for the cosmologic solutions, one
starts with a (pressure free) spatially constant
density of matter. It is of the form

where r= ,'(xP-+xP+xP). 1 is a function of t
alone. The spherical case corresponds to s= i,
the pseudo-spherical to s = —i, the spatially
plane case to s=0. The drawing (Fig. 1) is an
illustration of the spherical case a=1; each of
the two circles stands for a three-dimensional
spatial section of the four-dimensional con-
tinuum. A particle which at the time t1 is in I'1
and at the time t2 in I'2 is always on the same
radial line in our picture. The spatial coordinates
in (A) are chosen so that for a fixed particle they
are independent of t ("cosmic coordinates"). The
conformally Euclidean representation has an
arbitrarily chosen point as the origin of the
spatiaI .coordinates.

We now consider a region G cut from the
continuum in the following manner: we consider
all (two-dimensional) spheres, with a constant
radius independent of time (in "cosmic coordi-
nates"), constructed around the origin of each
time section. The common interior of all these
spheres is the four-dimensional region G. In this
region G we consider the metric field as replaced
by one whose generating mass (represented by a
singularity of the metric field) is localized at the
(spatial) origin xi ——x2 ——x3 ——0. Outside the singu-

larity this field shall satisfy the equations 1|.'o, = 0
of empty space. At r=I' the field shall pass
continuously into the original field (A). At this

passage the g,~ and their first derivatives shall

remain continuous.
The solution of this problem yields a field for

the entire continuum, which is generated in the
interior of G by a concentrated mass, in the
exterior of G by a homogeneous density of matter.
Furthermore, it is clear that in other spherical
regions outside G one can replace the field by one
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generated by a point-like mass according to the
same method. By continuing this process of
replacement, one can obtain a field so that the
entire metric is generated by point-like masses '

rather than by a continuous distribution of
matter.

The possibility of obtaining a rigorous solution
by this method is gained at the cost that, in order
to avoid mathematical complications, we do not
allow the cut-out regions to overlap. This implies
that we have to introduce infinitely many mass-
points with smaller and smaller masses in order
to be able to replace the entire continuum by
fields generated by discrete mass-poin'ts.

This flaw is, however, of little concern to us.
We can restrict ourselves to the consideration of
the case where we replace only the interior of G

by a field generated by a mass-point in its
(spatial) center, and connect this solution con-
tinuously (for all values of t) to the solution
generated by continuously distributed matter at
the boundary of G.

I. Field Equations for the Interior of the Region
C and Boundary Conditions for the Tran-

sition into the Remaining Space with
Homogeneous Density of Matter

A general centrally-symmetric field can be
brought into the (conformally Euclidean, not
necessarily static) form

ds'= e~8,~dx,dx~+—e"dt' i, k = 1, 2, 3, ' (1)

where. p and v are functions of r and t. The field
equations R,i, ——0 (i, k =1, , 4) now become:

p„+v„', (p„' v, ') —p—„v-,=0—;
&(ljrr+ 2 pe + 2pr&r) + (2IJr+ 2 &r)

r'~" "(0«+2pi'——2p~i'~) =o; (2 2)

2p, g
—p, v,.= 0; (2.3)

&( Ilrt + 2 &r + 2 Pr&r) + 2 &r

4s" "( «+5~~' -2p~~-~) =o; (2 4-)

Fzc. 1.

ds b;gdx;dxg+dt',
(1+sr/2) ' (3)

where s and T' are as above.
Our boundary conditions are now that the field

(1) shall go over continuously up to the first deriv-
ative into the field (3) for r =P,' i.e., for r =P.

e~ = T'/(1+zr/2) ',

p„eI' = —sT'/(1+ sr/2) ',

v„e"=0.

(4.1)

(4.2)

(4.3)

From the equations we can determine y, v, p„, v„,

p&, v&, p, &, p, « for r=P. If we substitute these
values in the Eqs. (2) we get for r =I'

p„„+v,„— = 0, (2.1.1)
2c

s') 2s 1
r~ p„„+

~
(TT"+—2—T"—)—=0, (2.2.1)

2~2) g g2

ri„„—(3/c') TT"=0, (2.4.1)

constant spa. tial curvature which conformally
Euclidean is given by

—T2

where the subscripts stand for differentiation.
As stated above, the remaining space with

homogeneous distribution of matter is a field of

' In the following, indices will always refer to 1, 2, 3.

2 These boundary conditions are always sufhcient, but
not always necessary, i.e., it could happen that a discon-
tinuity of the g;& or their first derivatives should be caused
by a discontinuity of the respective systems of coordinates
and not by a discontinuity of the fields. In our case such a
possibility is avoided by the conformally Euclidean repre-
sentation of both fields.
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where c=1+,'z-r .(The Eq. (2.3) is satisfied The field Eqs. (2) now become, if we neglect
identically. ) If we eliminate p„and i„„from these terms of higher order,
equations we get o„„—T*'r„„=0,

'

(2.1.2)
TT"+—,

' T"= —s/2.

By differentiation we get

(5) 2ra„,+4a, —T*27.,
+2T~'(2T*"+T*T*")= 0, (2.2.2)

2T'T"+TT"'=0. (5.1)
7 gf

(T*'r„2o„)—+o.,g
——0, (2.3.2)

Integrating this we get rr„,—r„3—T*T—*"=0. (2.4.2)

T'T"= —k/2.

Substituting this in (5)

(5.2) If we separate these equations according to
powers of r, we get

ai ——T*'bi (6.1)
T"=(k —sT)/T. 4a2 —T*b2+2T*'(2T""+T*T"")=0, (6 2)

This result is in agreement with that obtained by
the solution of the field equations in the case of
spatially constant density of matter (cosmologic
problem).

(T"'bi —2ai) +a i' =0,

TgJ'
(T*'b..—2a2) +a2' ——0,

(6 3)

(6.4)

II. Approximate Solution of the Field Equations
and the Boundary Conditions for a

Region SufBciently near to the
Boundary of G

We set as first approximation for a region in

the neighborhood of the boundary of G:

ep T+2+

e"=1+r,

where o. =air l+a2r; r=bir &+b2r the a;, b; and
T* being functions of t. Here o and r are small
of the first order. We further assume that
diR'erentiation by t increases the order of small-
ness by —,'.

This form contains, besides the term which
does not depend on r, a term proportional to r &,

which corresponds to the field of a mass-point
embedded in the Euclidean space. Moreover, it
contains a term proportional to r, which corre-
sponds to a regular part of the field. This term
appears due to the fact that in the present case
we have no embedding in the Euclidean space.

and hence,

b, —2T"'T*"=0;

aI ——kgT*,

. T+2T+Ig

bg ——kIT* '

b =2T~T*"

(6.5)

(6 6)

The boundary conditions (4) become, if we
neglect higher powers of I'

T*' kiT*P 1+T—*'T*"P= T' —sT'P (4.1.1)

—,'kiT*P &+T*'T*"= sT', —

k T* 'P l+2T*T*"P=O

', kiT* 'P &+2—T-*T*"—=0—.

(4.2.1)

(4.3.1)

(4.3.2)

From this follows that T* differs from T onIy
by terms of first order and that the constant k
in (5.3) is given in the first approximation as:
k=( —ki/2)P &. In that case the Eqs. '(4) are
satisfied.

Our field now has the form,

ds'= (—T*'+kiT*r '* T*'T*"r)o;~dx,dxI, +(—1+kiT* 'r '+2T*T*"r)dt'

= [—T*'+kiT*r & T'(k sT*—)rjo,~dx,dx~+[—1+kiT* 'r & kT* 'rgdt'. —



INFLUENCE OF THE EXPANSION OF SPACE

We consider this solution for a small interval of
time around t = to and transform it so that it
remains conformally Euclidean and that the
coefficient of 5;Adx;dx& becomes equal to 1 except
for infinitely small terms ("local coordinates").
We then get the form (neglecting smaller terms):

ds'= (—1+k,r' '*)b,gd=x, dxg, +(1+&,r' ')dt". (7.1)

This result is most remarkable since it represents
an entirely static field which in the first approxi-
mation is identical with the Schwarzschild
solution.

This result suggests that the field in the in-

terior of 6 is rigorously equal to a SchwarzschiM
field.

where

b2
ds'= a'6,—kdx dxg, '+ dt"—,

g2

ma=1+—;
r"

(8)

The general transformation which will leave
this field centrally symmetric is given by

x =Ux, ; t'=U

where U, V are functions of r and t.

III. Proof that the Solution in the Interior of G
can be Transformed into a Static

Schwarzschild Field

The static . Schwarzschild field in its con-
formally Euclidean form is given by

The field (8) now gets the form:

b2
ds'= a' U'8 g,d—x~dxg+ 2a'U, (U—+r U,)+ V, ' x,x—gdx, dxg

C

b2 b2
+ a'Ug(U—+2r U,)+—V, Vg x;dx,dt+ 2ra'Ug2+ —V' dt' —(8 1)

C 6

where now The boundary conditions (4) for r =I' are:
m ma=1+- ; b=1 —,r~U rU

a4 U2 —T2/c2 (4.1.2)

It is now our aim to show that we can choose
U and V so that (8.1) is of the form (1) and th'at
the boundary conditions (4) are satisfied. When
we have proven that, we knower that the Schwarzs-
child field can be transformed into a solution of
our problem as far as the inside of G is concerned,
and since the boundary conditions imply the
uniqueness of the solution, our theorem will then
be proven.

In order that our field shall be of the form (1)
we must have:

(a'U) =—(&/&r)(I/c), (4 2.2)
I9r

$2—2ra4 U' 'g+—V 2 = ]
Q

(4.3.2)

8 ( 2ragUg2+ Vg' 1=—0
or& a' ) (4.4.2)

where we abbreviate: c = 1+sr/2; d = 1 —«/2.
These constitute four boundary conditions for

the Eqs. (10). From the existence theorems for.

differential equations we know that the Eqs.
(10) together with the bounds, ry conditions
(4.1.2) and (4.3.2) have a unique' solution. In
order to prove the existence of U and U satisfying
all the conditions (10) and (4), we must show
that the conditions (4.2.2) and (4.4.2) follow
from the conditions (10) and (4.1.2), (4.3.2).

b2
2a'U, (U+r U„)—+ V„'=0, —

g2
(10.1)

b2
a4Ug(U+2r U„)+—V, Vg=0. —(10.2)

The Schwarzschild field then has the form

3 Except for the fact that there is an arbitrary constant
in the va1ue of V at the boundary.

ds2 = —a4U'6 I,dx;dxk

( $2

+1 '2ra'Ug2+ Vg2 1d—P (8.2)—
E a' )



124- A. EINSTEIN AND E. G. STRAUS

From (10.2) follows:

a' Ug
V„=——(U+2r U„),b' Ug

(10.3)

That is, in this case the Eq. (4.2.2) follows from
the Eqs. (10) and (4.1.2), (4.3.2).

If we further substitute the Eqs. (10.3) and
(11.5) in the equation:

and by substitution in (10.1) we get:

a6 U2—2 U„(U+r U,) +— (U+2r U,) '= 0 .(10.4)
b2 U2

The boundary conditions (4) imply for r =P

8 8
V,—(V4') —V4—(V, ') =0,

Br 8I'
(13)

then considering the value of 0 in (12) this
becomes (for r=P)

T=a'cU,
Tt

U]=

2mr ' —sU

k —za'c U
U 2—

abc a4b'c' U

(11.1)

(11.2) or

a'dU U& a——( V,2) —V4 — ( V„2) Ui ——0, (13.1)
b'c U& Br 8U

a'dU 8 t9—(log V, ') — (V ') =0 (13.2)
b'c Br 8 U

2bc

2 U —smr: adU
U+r U„= —; U+ 2r U, =

2bc bc

a
VP =—(1+2ra4U4')

b2
a' 2rk+ c U(b'c' —2sra')

11.4
b2 b2c3 U

8 8 a2—(V4') =——(1+2ra4U4') .
Br 8~ b'

(11.5)

( sPi
k=2m~ 1+—~'P (12)

If we substitute the Eqs. (11'.2)—(11.4) in (10.4)
we get an expression which vanishes identica11y
in Uif

which is again an identity in U. Hence a1so the
condition (4.4.2) is a consequence of (10) and
(4.1.2), (4.3.2). Our assumption is thereby
confirmed.

CONCLUSION

The field of the mass point in the interior of
G, which is imbedded in an expanding space is,
considered in "local coordinates, " a static field
given by the Schwarzschild solution. The time
dependence implied by the expansion does not
make the solution time-dependent. What be-
comes time-dependent is the boundary of G
where the Schwarzschi1d field goes over into the
field generated by homogeneously distributed
matter.


