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I. INTRODUCTION

1. Historical

HE sclENcE of architectural acoustics is a
relatively small branch of physics and one

which attracts the attention of few physicists;
yet the field has ha.d its share in the advances of
the past decade, and some of the new results may
prove useful in other fields. After the pioneer
work of W. C. Sabine (S1)*at the turn of the
century, very little new scientific work was done
on the subject for some time, and room acoustics

. seemed to have become a branch of engineering
(S5). During the past deca.de, however, scientific
interest in the field has revived, largely because
of the theoretical discussions of Schuster and
Waetzmann (S10), and Strutt (S15), and the
enlightening experimental results of Knudsen
(K3, K5), Hunt (H'7, H9), and others (C2, M5,
M10, P7, P9, S3, W8). Considerable progress
toward a fundamental understanding of the
subject has now been achieved.

Ten years ago Knudsen wrote an article (K7)
in these Reviews, outlining the status of the field

at that time, emphasizing the inadequacy of the
underlying concepts previously in vogue and
pointing the direction in which new advances
must be made. Since that time the advances
which he foreshadowed have been suAiciently
extensive and interesting to warrant another
report in these Reviews.

Room acoustics is the study of the transient
and steady-state behavior of sound waves in an
enclosure. The scientific aspect of the field has
many inter-connections with other fields of
physics. The inter-relations between experi=
mental acoustics and the advances in vacuum-

*References to the bibliography at the end of this
review are given in parentheses, ( ).

tube technique are obvious, as are the relations
between acoustic theory and the theory of other
sorts of wave motion. Rayleigh's law for the
number of electromagnetic waves in a given
frequency range was first worked out for the
acoustic case (R3, R4). More exact expressions
for this number have been developed for use in

acoustics (B6, M1, R8), and recently these ex-

pressions have been used (H10) in the study of
the Bose-Einstein statistics of particles. The
exchange has also been in the opposite direction;
some of the theoretical techniques developed for
use in wave mechanics have been applied in

acoustical theory (M11, R8). Some of the results
discussed in this report may, in turn, find appli-
cation in other fields.

The study of sound waves is of particular im-
por'tance to the study of wave motion in general,
for several reasons. In the first place, sound
waves have a convenient length, not being im-

moderately long as are most radio waves, and not
being excessively short as are light and matter
waves. This advantage of wave-length size more
than outweighs the practical difficulties of
measuring the small energies involved in acous-
tics, for details of wave motion may be studied
by direct and ob'vious methods. In the second
place, the objects e hich usually reHect and
absorb sound are of about the same magnitude
as the wave-lengths of sound (S7). This is the
region in which the most complicated wave phe-
nomena occur. Many problems in this region
have been left undone, even though the results
would have been valuable, because the need for
their study in other fields was not great enough
to warrant the efforts required for their solution.
In the study of acoustics, however, it is impos-
sible to avoid these problems if any scientific
advance is to be made at all.
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2. Geometrical and Wave Acoustics

Curiously enough, though perhaps it is under-
standable, the concepts developed by the early
workers in room acoustics, and the concepts
underlying present acoustical engineering prac-
tice, completely neglect the wave properties of
sound. Here, in a subject where wave properties
continually obtrude, a geometrical picture of
rays and sharp reflections has been used. It is to
be expected that geometrical acoustics should
have been first used, for the wave analysis
presents so many diAiculties that no initial ad-
vances could have been made without using an
oversimplified picture. W. C. Sabine (S1) of
course recognized effects arising from the wave
nature of sound, and he pointed out some of the
influences of diffraction and interference. But he
set aside these complications in order to make a
start on the problems, and they are set aside by
most acoustical engineers even now;

Thus it is not surprising to find (H8, K7, W1)
that the acoustical engineer must salt his geo-
metrical formulas with large doses of "common
sense" before they become useful in practice. In
spite of the unreliability of the formulas, how-

ever, and because of his common sense, the
acoustical engineer today is quite successful in

designing satisfactory auditoriums and once
rooms —whenever the architect gives him a
chance. As Knudsen (K7) says, "The approxi-
mate theories, when used with caution and
understanding, have served satisfactorily for the
practical purposes of acoustical designing, and
they will continue to do so until they are super-
seded by more exact theories. "

Such a state of affairs may be satisfactory to
the engineer; it is not at all satisfactory to the
physicist. In order that room acoustics may
advance along with the rest of physics, the wave
nature of the problem must be investigated (KS,
S4). It is necessary to study the normal modes
of air vibration in rooms whose boundary sur-
faces are not simple shapes. It is necessary to
study the effects of patches of absorbing material
and irregularities in wall shape on the distribu-
tion of steady-state sound. It is important to
study exact solutions for the transient vibrations
in a room with absorbing walls; in this case the
boundary conditions are dependent on the fre-

quency of the wave, the characteristic values of
the frequencies are complex, and the charac-
teristic functions do not form an orthogonal set.
It is necessary to study the transient effect when
many normal modes of vibration are set into
motion, each normal mode having a different
decay rate and the resulting decay exhibiting
interference effects. I t is necessary to investigate
the nature of the absorption of sound by various
acoustic materials, to find how best to formulate
this effect as a boundary condition of the waves,
and how best to measure the effect quantita-
tively. In the past ten years, attacks have been
initiated on some of these problems. The results
will be reported in succeeding pages.

After a short summary of the results obtained
by geometrical acoustics, we shall discuss the
general principles underlying wave acoustics, and
the way in which these principles clarify and
supplement the geometrical results of the earlier
workers. In the remainder of the report we shall
outline the recently obtained solutions to some
of the problems of wave acoustics and indicate
some of the problems which still await solution.
It is to be hoped that the incompleteness of these
results will tempt other workers to enter the
field.

3. Reverberation Time and Acoustic Criteria

Although most of the present report will be
concerned with the physical problem mentioned
above, some space must be devoted to discussing
engineering questions since they provide criteria
for determining the relative importance of the
physical problems. As soon as the engineering
aspect is considered, however, one must also
consider the aesthetic and the psycho-physio-
logical aspects of acoustics. Before one can apply
acoustical science to the design of an auditorium,
one must know what constitutes a "good"
auditorium. This was partly answer'ed by W. C.
Sabine (S1), who showed that an important
criterion is the nature of the transient response
of a room. He distinguished between the ir-
regular transient which constitutes an echo, and
the more regular damping out of sound after the
source is stopped, which he called reverberation.
In order to measure this important effect he
defined the reverberation time: the length of time
for the mean square pressure of a, suitably chosen
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listeners, using specially devised lists of typical
syllables. '

The percentage articulation in a room can be
estimated by means of the following equation
and empirically determined factors:

P.A. =96k)k,k„k„

FIG, 1A. Factors determining percentage articulation in
rooms (according to Knudsen, reference K3). Articulation
reduction factor for noise.
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FIG. 1C. Factors determining percentage articulation in
rooms (according to Knudsen, reference K3). Articulation
reduction factor for loudness.

Fro. 18. Factors determining percentage articulation in
rooms (according to Knudsen, reference K3). Articulation
reduction factor for reverberation.

I= (II/X V) T (1 2)

in which the k's give the reduction as dependent
on: kt~loudness, k„~reverberation, k„—+noise,
k,~shape of room. Values for k~, k„, and k„are
shown in Fig. 1 as obtained by Knudsen(K3).

We see that through ki, Fig. 1C, the P.A.
drops rapidly with decreasing average loudness
below about 40 db. This is due to psychological
factors such as attentiveness, and to physio-
logical factors such as the variation of ear sen-
sitivity with frequency which causes the weaker
sounds (b, tt, th, etc.) to drop below audibility
before the average level does. On the other hand
we see that k, decreases with increasing rever-
beration, which is due to confusion of sounds and
to masking caused by the overlapping of pro-
longed sounds. The k, function in I'ig. 1B is
based on reverberation time at 512 c.p.s. ; varia-
tion of reverberation effects with frequency will

be discussed later.
Reverberation time T and steady-state sound

intensity I are connected through the following
(asymptotic) relation:s

distribution of sound waves to diminish to one-
millionth of its original intensity. He then col-
lected opinions as to what values of reverberation
time in various rooms were considered satis-
factory. Other investigators have extended this
study. En the folIowing sections are discussed
some of the criteria which guide present en-

gineering practice.

in which II is the rate of emission of sound, X a
constant depending on units, and V the room
volume. The subjective quantity /oldness is
monotonically, but not linearly, ' related to the
objective quantity intensity; and the relation
depends on frequency. These functional inter-
relations are shown in Fig. 2.

As a consequence of the opposing effects of k~

3.1 Criteria for Hearing of Speech

The recognizability of speech in rooms has
been studied quantitatively by Knudsen (K3)
and Lifschitz (L3), using "articulation test"
methods (F3) developed for testing transmission
over telephone equipment. Percentage articnlu-
tion (P.A.) is defined as the percentage of typical
speech sounds heard correctly, when measured
statistically by a number of speakers and

' The commonly accepted evaluation scale for percentage
articulation is:
P.A. =96 "Perfect hearing"; some sounds are mis-

heard even under ideal conditions, but their
meaning is supplied by context.

85-96 Hig/ly satisfactory.
l5—85 Satisfactory.
65—75 Speech understandable with normal acuity

and strained attention.
below 65 Unsatisfactory.*A glossary of symbols used is given at the end of this
review.

2 Except at 1000 c.p.s. ; loudness level is by definition
equal to intensity level at 1000 c.p.s. See Fig. 2.
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and k„connected through Eq. (1.2) and the
functions in Fig. 2, there is an optimal rever

beration time for a room of a given volume, i.e.,

a value of T for which the P.A. becomes a
maximum; and the optimum varies with V. In
Fig. 3A, the lower curve, marked "speech, "gives
the optimal reverberation time as a function of
volume, according to Knudsen. This curve incor-
porates only the effects of ki and l'I„, as outlined
above, and neglects effects of k„and k, .

Noise, as expressed by k„ in Fig. 1A, always
reduces the P.A. , because of masking of the
speech sounds. However, the reduction depends
to some extent on the ratio of noise to speech
level, so that the effect of noise can be reduced
by amplification of the speech, at least up to a
limiting loudness level of about 80 db, beyond
which l'si begins to drop off.

The effect of shape is not so well understood
and requires further quantitative investigation.
In "conventional" rectangular rooms, k, prob-
ably does not differ appreciably from 1.0. In very
large auditoriums, or in the presence of im-

properly curved surfaces, it may be as low as 0.9.
In small rooms with properly shaped reflecting
surfaces, k. may be as high as 1.05. Some of the
new developments reviewed later have con-
siderably increased our knowledge of the physical
behavior of sound as influenced by room shape.
It is hoped that further studies may yield useful
information on the influence of shape on hearing
conditions.

The recent developments in room acoustics
appear to have a significant bearing on the above
picture, particularly through the relation be-

a" E~—
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FIG. 3A. Reverberation time criteria. From reference K3.
Optimal reverberation times, at 512 c.p.s., for speech and
music rooms.
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FIG. 38.Reverberation time criteria. From reference K3.
Optimal frequency characteristic of reverberation. Re-
duced to unity at 512 c.p.s.
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)
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tween P.A. and k„. In the 6rst place, there is an
increasing tendency to consider the decay rate'
as more fundamental than the reverberation
time. Decay rate has meaning even for non-
linear decays, whereas T is defined in terms of a
linear decay of 60 db. As discussed elsewhere, a
strictly linear decay is more likely to be the
exception than the rule; in practice one hnds
both major breaks in the curve and small super-
posed fluctuations. There are indications that
the first 30 or 40 db of decay are the most sig-
nificant in determining the hearing quality.
Thus a room having a rapid initial decay and a
long tail of small slope would probably possess a
higher P.A. than a room having linear rever-
beration matched to the same value 60 db down;

'In this report the term "decay curve" will always
mean the plot of the natural logarithm of the mean-square
pressure as a function of time; and "decay rate" will mean
the magnitude of the slope of this curve. In some cases
the' decay curve will be plotted in decibels (ten times the
logarithm to the base ten), but the decay rate will always
be the slope of the natural logarithm function.
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yet k, would be assigned the same value for
these two cases on the basis outlined above.
Modulations on the decay may also influence
speech hearing, though it appears that this
effect may be more important for music hearing,
as will be mentioned later. But beyond the
explicit inHuence of decay shape on P.A. , one
might expect the detailed nature of the decay
curve to reveal other acoustic properties which
in turn affect the hearing conditions. For ex-
ample, strong interference effects and also the
degree to which the sound energy has been mixed
inHuence the decay curve. Decay shape and
modulations are controlled by absorbing ma-
terials and their distribution and by room shape
and irregularities. These relations will be de-
veloped in Chapter VII.

The above discussion implies that k„and k, are
not strictly separable factors. In fact it may be
necessary to modify the functional form of Eq.
(1.1) in order to express more rigorously the
dependence of P.A. on the physical properties of
the room. But one can do no more than indicate
the general problem at this time; there remains
much experimental work to be done before we
can supplant Eq. (1.1) which, when used with
understanding, provides a very useful engineer-
ing guide to the design of speech rooms.

3.Z Criteria for Hearing of Music

The evaluation of speech hearing in rooms has
been reduced to a fairly definite engineering
practice largely because one can employ the
objective measurement of percentage articula-
tion. The evaluation for music is more dificult,
and to date no comprehensive, solidly grounded
criteria have been established. Objectivity is
more dificult to apply; personal tastes differ and
may be conditioned by experience and musical
environment. And yet it is to the control of
music rooms that we expect the application of
recent results to be most fruitful (B1, L4, RS).

The fundamental requisites are similar to
those for speech: (a) sufficient loudness for com-
fort and pleasure, (b) freedom from extraneous
noise, (c) freedom from distortion of frequency
and amplitude relationships, and (d) adequate
separation of successive sounds to satisfy musical
taste.

The last two requisites are the most relevant

here, especially the last one which calls for
proper control of reverberation time. The same
underlying factors apply to music as to speech
hearing. It is expected that these would lead to
an optimal reverberation time for music, and
that this optimum would depend on volume. But
the analogy can be carried no further. Ke must
depend on the concensus of musical taste to
provide "quantitative" criteria. The present
accepted practice is about as shown in Fig. 3A
(K3). The optimum values form an area (instead
of a single curve as for speech) because, in any
given room, the most acceptable reverberation
time depends on the kind- of music. Fast, light,
intricate music requires generally shorter T,
while broad, flowing music seems pleasing in the
presence of longer reverberation. For no kinds of
music is the desired T as short as for speech.
Figure 3A applies to 512 c.p.s.

The dependence of optimal reverberation on
frequency has been studied .by several inves-
tigators (W2, L2, L4, S10, L3). Knudsen (K1,
K3) proposes that T should be so adjusted that
all frequency components die away to inaudi-
bility at the same instant. MacNair (M4) has
proposed that the loudness of all components
should decay at the same rate. Other criteria have
been suggested, some being based more on
results as attainable with conventional acoustic
treatment than on any rational basis. In Fig. 3B
are shown some of these criteria; each of these
have yielded fairly satisfactory engineering
results. Recently there has been a trend on the
part of some investigators to favor a more nearly
Hat frequency characteristic, especially in rooms
thoroughly treated with sound diffusing irregu-
larities (H2). Apparently there is a connection
between the degree of diffusion (as discussed in

Chapter VII) and optimal decay properties. It
has also been observed that the ear tolerates
longer reverberation in rooms properly shaped
and with surfaces "broken up" for diffusion

(M5). The result is an increase in "liveness"
without sacrifice in clarity or distinctness. 4

' Maxfield has arbitrarily de6ned "liveness" I by the
equation I =ET d'/U, in which E' is an empirical constant,
T the reverberation time, d the distance between sound
source and ear, and U the room volume. He finds that in
some cases the optimal T—V curve (Fig. 3A) fits an
hypothesis that the ear shows preference on the basis of
equal liveness.
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3.3 Rem Trends

It now appears that reverberation time alone
is not always a sufficient measure of auditorium
excellence. It is desirable to have the mean square
pressure as nearly uniform as possible over the
seating area. It is also important to have at least
a certain percentage of the sound reach the
listener directly from the speaker, and less than
a certain percentage reach the listener indirectly,
after reflection from any single surface; these
requirements are involved in the concept of
liveness. 4 It is now well known that sound in
many rooms does not exhibit a straight line

decay curve, ' so that the term "reverberation
time" has become somewhat ambiguous. For this
reason, in the present report we shall discuss the
decay rate, the slope of the decay curve, which
has meaning even for non-linear decay curves.
It seems that the decay rate should be nearly
constant for the first 30 or 40 db for good acous-
tics, except for small superposed fluctuations
which appear to make the decay more pleasing
to the ear. Few of these subsidiary criteria have
been reduced to quantitative statements, and it
is hoped that studies will soon be made to
remedy this lack. Articulation tests in rooms
with specially controlled acoustic properties are
needed, and quantitative tests should be devised
for music conditions.

We now see that acoustic excellence of rooms
depends on both large scale and small scale
properties of both the steady-state and the
transient behavior of sound waves. The recent
developments reported here lay a foundation for
a detailed understanding of the physical aspects
and the factors which govern even the fine
details of acoustic behavior. But there remains
much work to correlate these physically de-
scribable variables with acoustic excellence. The
criteria for speech and music should be re-
examined with these new tools. It is not too
much to hope that these lines of thought,
pursued cooperatively by physicist, psychologist,
engineer, musician and architect may lead to
rooms which not only lack acoustic faults, but
which possess positive qualities for enhancing
the enjoyment of music.

II. GEOMETRICAL ROOM-ACOUSTICS

Prior to the twentieth century, contributions
to room acoustics were meager and qualitative
(A, S5, S7, K3, W1). Probably the most signifi-
cant findings were those of Joseph Henry (H3),
who discussed such matters as echoes, reverber-
ation, resonance, and the shapes of enclosures as
related to acoustic properties. Many of his
conclusions, though qualitative, were based on
experimental observations. Other physicists of
this era, particularly Tyndall and Rayleigh,
recognized the problems involved in controlling
sound in rooms, but no systematic investigation
was made in this period.

4. Absorption CoeKcient

The first controlled quantitative experiments
in room acoustics were those started in 1896 by
Wallace C. Sabine (S1).His immediate task was
the improvement of hearing conditions in the
newly-constructed Fogg Art Museum lecture
hall at Harvard, but he made of this particular
problem the start of a general study of the
behavior of sound in rooms. By ingenious experi-
ments and inductive reasoning Sabine arrived at
the now well-known reverberation theory and,
the formula:

T=ZU/Qn;S, ,

in which T is the reverberation time in seconds
(defined above); X is a constant depending on
units, V is the volume, and S the surface area of
the room. The summation in the denominator is
over the different sorts of material on the wall
surface; S; is the exposed area of each type of
material, and n is a constant, called the obsorp-
tion coegcient of the material, which Sabine
defined as the average ratio of absorbed to
incident sound intensity for the material.

The experimental details of Sabine's work have
been discussed by many writers (K3, W2, S5)
and need not concern us here. However, we
should review the essential concepts involved as
well as the experimental limitations since these
underlie the geometric theory and its inherent
shortcomings. From a present-day point of view,
Sabine's equipment was quite primitive. For a
sound source, organ pipes were used; the sound
detector was the ear, which was found to be
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adequately consistent if a single experimenter
carried through a complete set of measurements
himself; timing of decay was recorded on a
chronograph; absorption was provided by seat
cushions which were available in a large number
of small uniform units. These comments are not
meant to detract from the importance of Sabine's
contributions, which have guided admirably the
acoustic planning of auditoriums during the last
four decades; they are given here to indicate
why the approximate geometric approach was
adequate to describe the results obtained in the
particular cases studied by him, but not in all
cases.

S. Sabine's Approximations

Before proceeding with extensive studies of
reverberation, Sabine examined the possible
sources of experimental inconsistency and arrived
at the following conclusions: (1) The duration
of audibility of residual sound is nearly the same
everywhere in the auditorium; (2) the duration
of audibility is nearly independent of the position
of the source; (3) the efficiency of an absorbent
in reducing the duration of audibility is under
ordinary circumstances nearly independent of its
position. These results, which we shall see are
invariably the prerequisites of the geometrical
concept of room acoustics, were conditioned both
by the experimental method and the choice of
room conditions which were investigated. Had
Sabine used a high speed instrumental means of
detecting sound instead of the ear, he would
have observed large Ructuations in intensity,
with respect to both space and time changes.
The averaging property of the ear, which smooths
out space and time variations, made it possible
for him to accept this elementary picture. The
rooms used were moderately large and were all
fairly reverberant, with reverberation times
usually greater than 1.5 sec. If a wider variety of
rooms had been studied, including extreme cases,
no such simple conclusions as those listed would
have resulted.

Sabine's choice of a standard unit of absorption
is of considerable interest. He adopted an open
window as a perfect absorber and assigned to it
an absorption coeScient a= j.. Numerous ab-
sorbing materials were then measured by ending
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FIG. 4. Relation between Sabine and Eyring formulas for
reverberation time.

the area of open window which gave the same
reverberation time as a particular area of the
absorbing material. Sabine clearly recognized
the limitations of the open window standard, in

particular the inHuence of diEraction, which
renders a small area comparatively more eScient
in absorbing energy than a large window. In
fact, this limitation applies to small areas of
absorbing materials in general, though the dif-
fraction eÃect is greater for very absorbing
materials than for areas which have low values
of absorption coefficient. This defect did not,
however, appear to be too serious as long as the
areas of window or material were not too small.
Sabine concluded that, to the same order of
accuracy as the other factors involved in rever-
beration measurements, the efficiency of an
absorbent is usually independent of the area of
the material exposed. This situation made it
possible to apply the simple reverberation
equation (2.3).

6. Geometrical Theory

Shortly after Sabine's empirical development
(S2) of reverberation theory, Jaeger arrived at
the same equation by a derivation similar to that
used in the classical kinetic theory (J1, A1, F5).
Modified derivations have since been given by
Eckhard (E1), Buckingham (B14), and others
(C5, C6, D2, F4, S15, S16). These derivations
are based on certain simplifying assumptions
(necessary in order to apply the statistical
methods) which are based on the experimental
observations of Sabine mentioned above. These
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assumptions are essentially: (1) uniform, disuse
distribution of sound energy throughout the
room at any instant; (2) equal probability of
propagation of sound in all directions; (3) con-
tinuous absorption of sound by the boundaries.
Clearly, the picture is strictly geometrical; sound
energy is considered to travel in rays, and all
wave phenomena are neglected. These assump-
tions are valid to the order of accuracy of
Sabine's observations, which involved the aver-
aging property of the ear.

These concepts lead to a simple differential
equation derived from the conservation of
energy.

Rate of increase
of energy in room

Rate of emission of
energy from source

Rate of absorption
of energy by walls

Let W be the energy density (assumed uniform),
V the volume of the room, and II the power of
the source. Then VdW/dt=the rate of increase
of energy. The absorption rate is derived by
calculating the fraction of energy which falls on
unit area per second from a single direction, and
integrating this over all angles of incidence.
Then the rate at which energy strikes unit area
is equal to

2m ~m/2

do
~0

t/V

4m 0 &0
cos y sin p d y = (Wc/4).

W= (4II/cnS) L1 s-'c s4'4v (2.1)

and, when the source is turned off at t =0, it is

W= (411/ccxS)e &'~ "v&'.

The measure of the shortness of the transient
is sometimes expressed in terms of the decay
constant

k= (c/8V)cxS,

The absorption rate is (Wc/4)(nS), since n is
defined to be the fraction of incident energy
absorbed by the surface area S.

The differential equation is:

U(d W/Ct) = II—(caS/4) W.

The solution, when the source is turned on at
t=0, is found to be

where the exponential factor in the transient
term is written s—'"'. The more usual measure of
the transient duration is, however, the reverber-
atioN time, the time required for the energy to
fall to 10 ' of its initial value,

T= (4 V/cn5) t In (10 )$ = (EV/n'5) .(2.3)

In this, X=0.049 in English units and 0.161 in
metric units. This equation is the same as the
one obtained experimentally by Sabine, which
emphasizes again the fact that Sabine's picture
was essentially a geometrical and statistical one.

'7. Other Geometrical Formulas

The first important modification of Sabine's
theory was the replacement of the assumption
of "continuous absorption" by that of a process
of discontinuous drops in intensity during the
decay. The resulting formula, due to Eyring
(E3), is

'1=Z V/[ S In (1—0.)—). (2.4)

The Sabine assumptions of uniform distribution
of energy and random flow of energy are retained,
but sound energy is assumed to travel one mean
free path and then to be reduced abruptly by
an amount depending on the absorption coefli-
cient of the wall. The form of the equation is
similar to that of Sabine, with the simple
absorption coeRicient replaced by a logarithmic
function. A plot of this function is given in Fig'.
4, and we see that for large absorption Eq. (2.4)
can dier from Eq. (2.3) by more than 100
percent. Measurements in relatively dead rooms
show that the Eyring formula is very much
superior to. the simple Sabine one for these cases.

The Eyring formula may be deduced very
simply, by a method suggested by Norris (N1).
On the average, every time a travelling wave
front strikes a wall, a fraction 0. of the energy is
absorbed and a fraction (1—Q.) is reflected. The
mean free path of the wave is (4V/S), (V=vol-
ume and 5=area of room), as used in Sabine's
analysis (S1).The avera. ge number of reflections
of the wave in a time t is then (Sct/4V), c=ve-
locity of sound, and the intensity after the time
t will be

I=I,(1- )(1- )(1- ) "=I,(1- )"i

=ID exp L[Sc ln (1 a)/4V}t j. —
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Placing I/Io ——10 6 we obtain the reverberation
time given in Eq. (2.4). In Section 53 of the
present Review we shall discuss the inaccuracies
inherent in this method, of analysis.

The Eyring formula uses an "average absorp-
tion coefficient. " It is assumed that the walls
are uniformly covered with material of uniform
absorption or that the material is sufficiently
well spread over all walls so that an average
value can be taken. In this case

T-
—QS, ln (1 —n, )

(2.5)

The main point of departure is this: Eyring's
theory assumes that the energy in the room
resumes uniform distribution after each set of
incidences, during the discontinuous decay pro-
cess; Millington and Sette follow the course of a
bundle of rays through many reHections and
assume that, on the average, a particular ray
will strike a given surface a number of times
proportional to its area. Both forms assume the
Sabine geometric conditions, but the averaging
is obtained differently. Eyring takes an arithmetic
mean over the absorbing surfaces while Milling-
ton and Sette take a geometric mean. Since the
geometric mean is always less than the arithmetic
mean, it follows that the reverberation times
and absorption coefficients given by the Eyring
(E) and Millington-Sette (M-S) equations will
be related by:

For very non-uniformly placed absorbents, as
when just one wall is highly absorptive and the
rest are reHective, the Eyring form is seriously
in error. This shortcoming led Millington (M7)
and Sette (S12) to propose another form of
averaging the absorption coefficient. Their equa-
tion is:

"caution and understanding, " mentioned in the
previous section, is apparent.

All reverberation theory so far discussed has
considered that energy is lost at the walls only.
Actually there is some dissipation in the air in
the room. Absorption in the air is negligible
below 1000 c.p.s. but becomes increasingly im-
portant with higher frequencies. Above 4000
cycles the absorption in air may, in some cases,
be several times the total absorption at the
boundaries of the room. The nature of this
absorption has been investigated extensively by
Knudsen (K2, K6), who has incorporated the
effect into the reverberation theory: (using
Eyring's form, which has proved most widely
useful)

T= —5 ln (1 —n) +4m V

If V is in cu. ft. , S in sq. ft. , then X=0.049 and
m is the attenuation coefficient for plane waves
in air in (feet-'), as used in I=Ioe ".The
coefficient m depends on frequency, humidity,
and temperature (K3).

In order to apply these geometrical formulas
in a reasonable manner, it is often necessary to
follow the "rays" of sound about the room, as
they reHect from the various wall surfaces. In
this manner it is possible to discern the focusing
effects of curved walls and to see how nearly
each particular room satisfies the requirements
of uniformity of sound distribution, necessary
for the application of the geometrical formulas.
Much work has been done with ripple tanks and
spark photography in this field (A). Ray-tracing
analysis has also been used to determine the
ratio of reHected to direct sound reaching the
listener at different places in an auditorium
(A, K3).

8. R'everberation Measurements

Tu s & Tz o'M s &~z.

One serious defect of the M-S form is that it
predicts T=O if any surface, no matter how
small in area, is completely absorbing.

Thus we see that each of the three equations
discussed can be seriously in error in certain
cases. The reason for-Knudsen's remarks about

A brief summary of the experimental methods
of room a.coustics appears desirable in this report
to indicate the role that measuring techniques
have played in uncovering the inadequacies of
the geometrical theory. Full experimental details
are given in numerous papers (A, A1, C1, H5,
H6, H7, 01,S13,W5, W6, W7) and are presented
concisely in several books (A).
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Broadly speaking, measurements of room
acoustics serve two purposes: (a) the evaluation
of absorptive properties of materials and (b) the
measurement of the properties of rooms; in many
cases the same method is used for both.

The earliest measurements were those of
Sabine, as already discussed (S1).These involved
the. use of a stop watch and the ear to detect
and measure the time of decay. This procedure
was improved successively by many investi-
gators, leading to the automatic apparatus of
Hunt (HS) which incorporates several refine-
ments. The sound source is an oscillator with a
warble-tone (a periodic variation of frequency
over a small band) which excites a band of
frequencies in the room, thus smoothing out the
decay. Fluctuations are further reduced by (a)
turning off the loudspeaker at the same phase
of the sound wave for every decay, (b) rectifying
the microphone output and filtering the envelope
against the rapid fluctuations about the mean
decay, (c) making observations at several micro-
phone positions, and (d) averaging a large (40
or more) number of decays for each condition.
Hunt's method employs an automatic timer
which turns off the source after the sound level
in the room has attained a predetermined level,
turns it on again when the level drops to a
predetermined level, and records the time of
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FIG. 6. Decay curve for 500 cycle sound traced by high
speed level recorder at four different writing speeds, with
the same average decay rate. From reference W6.

decay. This cycle of operations may be repeated
automatically a number of times, and the
average decay time to any preset level is obtained

-directly. A sample decay curve taken in this
way is shown in Fig. 5.

An entirely different method of observing the
decay of sound is by means of oscillographic
recording, as used by Knudsen a,nd others (K3).
In this case the complete wave motion is repro-
duced, and the decay is evidenced by a diminish-
ing envelope of the fluctuating curve. In these
records, see Fig. 25 for example, the detailed
variations of intensity and frequency show up,
and if an "average" value of decay is desired,
it must be obtained graphically. Both mechanical
oscillographs and cathode ray types have been
used, and considerable speed of recording can be
attained.

A third type of instrument developed by
Wente, Bedell, and others (S13, W6, W7), is the
high speed level recorder. In its most refined
form a light-weight arm carries a stylus which

.makes a trace on a moving strip of waxed paper,
the position of the arm and stylus being governed
by the amplitude of an input signal. Decay
rates up to 600 db per sec. can be recorded.
While this apparatus, operating at its highest
speed, records rapid fluctuations in intensity, it
does not generally reproduce the details of vibra-
tion of the sound as does the oscillograph. By
varying the writing speed oF the instrument, any
desired degree of fluctuation may be retained; or,
in other words, any desired degree of smoothing
over can be achieved (W7). ln this way a decay
curve which was very tortuous as recorded by
an oscillograph may be recorded as a fair1y
smooth curve, exhibiting only the major fluctu-
a,tions. (See Fig. 6.)
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These methods of measuring reverberation in
rooms can also be used to measure absorption
coefficients of acoustic materials, by use of Eq.
(2.4). This procedure has been standardized in
several laboratories by using the same area of
material (72 sq. ft.) in all cases and placing it
always in the same position in a given room.
Diffusing agencies such as large rotating paddies
are used in an effort to achieve the "random
distribution" of the geometrical theory.

Not all experimental techniques of the geo-
metrical era have been based on transient
behavior of sound. The measurement of steady-
state intensity has been explored by Knudsen
(K4) for determining absorption coefficients.
This method (the "intensity method") is based
on the steady-state term of Eq. (2.1). One sees
that the mean-squared pressure in the steady
state is

where p is the density of air, 0 the power output
(in ergs per second) of the source, and it is
assumed that the energy density of sound in the
room is L(p')A„j/pc2. This equation is subject to
the same restrictions as Eq. (2.3).

In the experimental utilization of Eq. (2.6), a
comparison procedure is employed: the total
absorption of the bare room or of a "standard
sample" must first be known, and the absorption
of any other sample is obtained simply from a
ratio of sound intensities. Though the method
has not been used widely, it has experimental
advantages in that considerable precision is
readily attainable and that all measurements can
be made at a high sound level to over-ride
background sounds. ' However the method has
the same inherent limitations as any method
based on the geometrical picture. This will be
discussed more fully in Chapter V.

Another steady state type of measurement has
been made by Wente (W8, H7). He considered
the room to be an acoustic "transmission line, "
and measured the transmission as a function of
frequency by means of a loudspeaker at one
point, and at another point a microphone which

~ It is difFicult in the reverberation method to achieve
adequate exclusion of background, especially if a wide
range of decay is to be measured. This leads to elaborate
and expensive sound isolation construction of reverberation
chambers.

fed a graphic level recorder. Only a qualitative
interpretation of the transmission irregularities
was possible on the geometrical basis, but the
results are instructive from the wave point of
view, as will be pointed out in Chapter V.

Absorption coefficients have also been meas-
ured by a variety of "tube methods, " employing
standing waves incident on a small sample (D3,
LS, P3, T1, T2, M9, P1). These require only a
simple measurement of the ratio of maximum to
minimum pressure in the wave pattern. Labora-
tory control and repeatability are comparatively
easy to achieve. But the coefficients measured
in this way have not been in good agreement
with reverberation results, except in special
cases, for reasons which are now obvious. In
subsequent chapters we will see that wave
analysis applied to tube methods leads to very
useful procedures for measuring acoustic imped-
ance; and that impedance, in turn, can be used
to calculate various kinds of absorption coeffi-
cients which are applicable to full-scale room
acoustic design.

9. Critique of Geometrical Theory

The widespread use of reverberation theory
for the acoustical correction of auditoriums and
lecture halls and the growing demand for acousti-
cally designed buildings give ample evidence of
the importance of the field so ably initiated by
Sabine. Using reverberation theory with due
consideration of a few simple stipulations which
have been fully verified by wide experience, one
can at present predict accurately the acoustic
behavior of /urge auditoriums, music and speech
rooms, theaters, and studios. Subject to a greater
number of restrictions and empirically derived
rules, one can also design small speech and
music rooms, broadcasting studios, etc. , though
these cases require a degree of "good guessing"
which is possible only after one has had con-
siderable experience in following through the
design, construction, and testing of rooms.

For the reduction of noise in rooms the
reverberation theory is adequate for analyzing
most cases, at least in large offices, industrial

plants, and in any room in which the dimensions

are fairly conventional: provided the absorbing
material is distributed "properly. "
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There have been observed, however, numerous
discrepancies between reverberation theory and
measurements. Precalculated reverberation times
are sometimes from 20 to 50 percent in error,
regardless of the formula used, and in extreme
cases, such as in very small rooms and at low

frequencies, the discrepancy iIiay be severa1

hundred percent (H8, P9, S14, W10). In a room
of complicated shape, such as an auditorium
with a reverberant back-stage, or a large rotunda
with a dome ceiling, the reverberation may
consist of two portions having widely different

decay rates. The reverberation in coupled spaces
has been studied (D1), but it is not fully under-

stood.
Most of the difhculties in applying reverbera-

tion theory to rooms arise when the simple

geometric assumptions are not fulfilled. Sound
is often not random in its propagation nor is it
uniformly diffuse throughout the room. As a
result, in these cases, the decay is not loga-

rithmic, is modulated by small irregularities, has

major breaks io the curve, and is not the same
everywhere in the room. Even more serious from

the geometrical point of view is the observation
that in many cases the effective absorption of an
absorbing material is not independent of area,

nor of position in the room. Extensive measure-

ments have been made on this "area effect" and
"pattern effect" (A2, C2, D4, E4, P7, R2, S3),
but a" calculation of these effects has had to
await the development of wave acoustics.

Probably the most serious defect of the
geometrical approach has been its inability to
yield consistent, reliable, standard measurements
of absorption coefficients of materials. In a
recent symposium on this problem, Hunt dis-

cussed the "absorption coefficient problem" (H8)
and summarized the replies to questionnaires
sent to a large number of groups of acousticians
with the following statements: (1) Coefficients
of the same material measured in different
laboratories are not usually in agreement. (2)
Field measurements yield smaller coefficients
than laboratory measurements. (3) Increasing
the sample size leads to smaller coefficients, but
this effect will not explain the preceding dis-
crepancies.

In the same sym'posium P. E. Sabine (S7),
C. F. Eyring (E5), and others (S14) discussed

the absorption measurement problem from vari-
ous viewpoints. Provided standardized test pro-
cedures, arbitrarily specified, are followed by
different laboratories, the variations in measured
coefficients may be reduced considerably, partic-
ularly at higher frequencies. But even with due
precautions, different laboratories continue to
yield coefficients which in some cases differ as
much as 20 percent.

III; GENERAL ASPECTS OF V/AVE
ACOUSTICS

The previous discussion has made clear that
certain aspects of the problem of room acoustics
can be understood only by taking into account
the wave nature of sound. That the wave aspect
plays a role in acoustics has long been appreci-
ated (S1, S10, S15): the importance of this role

has, however, only recently been investigated.
Knudsen (K5) first showed experimentally that
the reverberant sound has the characteristic
frequencies of the normal modes of vibration of
the room, and not necessarily the frequency of
the source which initiated the reverberation. In
several cases which he measured, two or more
characteristic frequencies were present, and the
resulting beat notes made the sound decay
curves deviate appreciably from the usual expo-
nential form. Wente (W8) studied the steady
state response of a room as a function of the
frequency of the source and pointed out that
sharp response peaks occurred at the resonance
frequencies of sound waves in the room. Several
other experimental and theoretical workers (85,
B6, 88, H9, M2, M11, M12, S3, M1, M6)
studied other aspects of wave acoustics, and

subsequent work has expanded the field suffi-

ciently to make the present report worthwhile

although many unsolved questions still exist.
Three aspects of the problem present them-

selves for study: the nature of the reaction
between the sound wave and its boundaries, the
walls of the room; the nature of the steady-state
response of the room to a source of sound; and
the nature of the transient response, in particu-
lar, the reverberation. Each of these aspects will

be treated in some detail later in this report; at
present we shall find that a general statement of
results is useful.
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10. Acoustic impedance

It has become apparent that the absorption
coefficient is not a unique measure of the
acoustic properties of a wall surface. The experi-
mental work of Hunt and others (83, 85, 812,
C7, H9) has indicated that a more funda-
mental quantity is the acoustic impedance Z of
the surface. This impedance is defined as the
complex ratio' between the sound pressure at the
surface and the air velocity normal to the surface
just outside the surface. This normal velocity is
due to a motion of the wall itself or else to a
motion of air into pores in the wall. In either
case, we can speak of a wall with low acoustic
impedance as being "soft" and one with large
impedance as being a "hard" wall. If the
impedance has a real component, energy will be
absorbed at the surface; a purely reactive
impedance implies only a change of phase on
reHection.

The natural unit for Z is the acoustic resistance
of air for free plane waves, pc, which equals about
42 grams per cm' sec. Expressed in terms of this
unit the impedance will be denoted by I = (Z/Pc)
=(1/Pc)(R iX)—and will be called the specific

impedance of the material. The absorbing prop-
erties of the surface are measured in terms of
the specific adnrittance P= (pc/Z) =y io, wh—ere

y is the specific conductance and 0. the specific
susceptance In pa.rticular, the quantity which
most closely corresponds to the absorption
coeScient in certain cases is the normal mall

coegcient, n~, defined as eight times the specific
conductance y. If the phase angle for the
impedance Z is p, then the quantities defined
here are related as follows:

I. =(IZI/Pc)e ', P=(Pc/-Izl)~',
7=(pr/IZI) «s v ~= —(p~/Iz()»n ~; (3 &)

In this report we shall consider the dependence on
time for simple harmonic motion to be e '"', following
the usual procedure for the discussion of wave motion.
To make the concept of impedance correspond with
electrical engineering, we must consider the quantity i in
the present paper to correspond to minus the jof electrical
engineering. Therefore we ser. Z RiX= (Z=~e '" where
the reactance X and phase angle y correspond to the,
electrical engineering convention, X and q being negative
for a stiAness (capacitative) reactance and positive for a
mass (inductive) reactance. This general convention will
be followed except in Chapters V.and VI, where the
transient behavior is discussed by means of operational
analysis, for in such a case both signs of i are needed.

As will be shown later, the acoustic impedance
usually depends on the frequency of the incident
sound. Sometimes it also depends on the angle
of incidence of the sound wave. These matters
will be discussed in Chapter IV. Since the normal
velocity of the air at the wall is proportional to
the normal gradient of the pressure at the wall,
the boundary condition on the waves in the room
will be that the pressure is proportional to its
normal gradient at the wall. This requirement
is less simple than that for a room with rigid
walls although it is still linear and homogeneous.
However, the ratio between the pressure and its
normal gradient will in general depend on the
frequency of the wave, so that the boundary
conditions will be different for each diferent
standing wave in the room. The normal modes of
free vibration of sound will, therefore, not form
an orthogonal set of characteristic functions,
and the usual methods of attack by use of an
ortho-normal set of functions cannot be used.
The difFiculty cannot be side-stepped, for the
absorption of sound at the boundaries is an
essential part of the problem; and it is not
usually accurate enough to consider the actual
room as a slight alteration from a room with
rigid walls, so that perturbation methods are
not usually adequate.

11. Steady-State and Transient Behavior

The difficulties mentioned above disappear if
we consider the steady state case, where a source
of sound is driving the air in the room with
simple harmonic motion. This motion can be
expanded in an ortho-normal set of characteristic
functions since every normal mode has the
frequency of the source, and hence the boundary
conditions are the same for all modes. The
transient case is then obtained by means of the
methods of operational calculus, in a manner
very similar to that used in electrical circuit
analysis. This question will be treated in

Chapter UI.
The transient state will in general consist of a

number of "standing" waves, each with its own
characteristic frequency which will be complex,
corresponding to an exponential damping out of
the wave. In the general case each wave will

have a diferent decay rate, though we shall see
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later that in some cases whole groups of waves
will have nearly the same decay rate, and in
many cases all the rates are nearly equal. In a
simple rectangular room, however, we shall see
in Chapter V that a number of different decay
rates exist.

This brings us to the consideration of an
important difference between the results of
geometrical acoustics and those of wave acous-
tics. In the geometrical analysis all the sound in
the room is considered to act together as one
simple oscillator, and the resulting logarithmic
decay curve turns out to be a straight line. In
the wave picture it is clear that if some standing
waves have decay rates different from the rest
of the waves constituting the transient, the
decay curve cannot be a straight line. Moreover,
since many waves of nearly equal "natural
frequencies" are usually excited together, the
resulting beat notes and interference effects
would lead to still further deviations-from the
simple straight line decay. Knudsen's pioneer
work (KS) showed these effects actually to be
present in certain cases, and more recently many
workers (85, H9, M3, W8) have verified and
extended his findings.

As we shall show in Chapter VII, rooms having
smooth, regularly shaped walls show the greatest
divergence of values of decay rates for different
standing waves. Those waves which move paral-
lel to the most absorbent wall will in most cases
damp out less rapidly than the waves which
reHect normally from this wall. This is true if
the wall is a plane or is a smooth convex surface;
if the wall is a smooth concave surface, the
reverse is true. If the surface is concave, the
tangential waves, which cling to the wall, usually
damp out much more rapidly than the normal
ones, which are focused away from such a wall.
In either case the logarithmic decay plot will be
steepest at the beginning of the reverberation,
and the magnitude of the slope will diminish
later on when only the normal modes with small
decay rate are left. In both cases some of the
waves damp out more rapidly than the geo-
metrical formulas would predict, and a few damp
out much more slowly. Such rooms seem to have
unsatisfactory acoustic qualities (811, MS, Vi).

12. Ergodic Wave Motion

One might expect, by a correspondence
principle argument, that for high enough fre-
quencies the behavior of sound in a regularly
shaped room would go over to the smooth
behavior predicted by geometrical theory. This
is not so. At high frequencies, in rooms with
smooth„regularly shaped boundaries the di8er-
ences in decay rate between the various modes
of vibration are more pronounced than with
lower frequencies, and the decay plots are still
more curved. Such a result seems in Hat contra-
diction to the correspondence principle which
usually holds in such cases, until we notice the
words which are italicized in the statement.
Standing waves in regularly shaped rooms have
corresponding regularities and symmetries which
are responsible for the differences in decay rates.
Normal modes in irregularly shaped rooms have
no such symmetries; no standing wave moves
"parallel" to an irregular wall (if it is irregular
enough!), and none is everywhere perpendicular.
We shall see later that the introduction of
irregularities in the walls of a room reduces the
decay rate for the most rapidly damped waves
and increases the rate for the slower ones, so
that both rates approach the one predicted by
geometrical acoustics.

The ideas involved here are closely related to
those underlying statistical mechanics. A system
can be treated by statistical mechanics only when
its complexity is great enough so that symmetry
has disappeared, i.e. , so that no constants of the
motion exist other than the energy. It is almost
impossible to find a system which can be analyzed
fully by both dynamical and statistical mechan-
ical methods. If the motion is simple enough
for dynamical methods to give an exact solution,
then the motion is usually not ergodic; and, vice
versa, most systems having ergodic motion are
too complicated for successful analysis except by
statistical methods. The formulas of geometrical
acoustics are statistical formulas and apply only
to rooms where "ergodic" wave motion takes
place. From this point of view the practical value
of wave acoustics would lie in its ability to tell
us how to design rooms for which geometrical
acoustics is valid and wave acoustics is not
needed!



'PHILIP M. MORSE AND RICHARD H. BOLT

However in this respect also, room acoustics
finds itself in the difficult intermediate region.
There are many rooms which are regular enough
so that the statistical formulas are invalid over
most of the useful range of sound frequency,
although one encounters many others so irregular
in shape that the formulas of geometrical
acoustics are satisfactory over the usefu1 range.
In general, wave acoustics will have to be used
for small, regularly shaped rooms, and geometri-
cal acoustics will be sufficient for the analysis of
most large auditoriums. This, of course, is the
reason for the annoying fact that the "absorption
coefficient" measured in laboratory reverberation
chambers differs from the value obtained by held
measurements in large auditoriums (S13, S14,
W10).

13. Effect of Irregularities

It is most important, both from the theoretical
and from the practical viewpoints, that the
intermediate cases be studied in detail, in order
to 6nd out how much irregularity must be intro-
duced to obtain ergodic wave motion. The
meager results obtained so far indicate that the
tilting of one wall at an oblique angle to the rest
is riot sugcient as long as the wall remains smooth

(M6). They also indicate that irregularities about
the size of the wave-length are most eff'ective in

setting up ergodic motion and that the irregular
placing of patches of absorbing material on
smooth walls will sometimes produce enough
diff'raction and scattering to make the geometri-
cal formulas valid, although this method is not
as effective as the introduction of irregularities
in wall shape (M5).

We also see that the correspondence principle
does hold for most of these intermediate cases.
For wave-lengths longer than about one-fifth of
the length of the room, the scattering from
relatively small irregularities in wall shape is
insufficient to set up ergodic wave motion, and
the curved decay plot typical of wave acoustics
is in evidence. But for shorter wave-lengths,
the same irregularities are more effective and
the decay plot changes over to the straight line

typical of the statistical results of geometrical
acoustics.

For large auditoriums geometrical acoustics

is usually suKcient for the study of sound
reverberation; but even here wave acoustics is
necessary for the accurate calculation of the
acoustic properties of patches of absorbing
material, and for the calculation of the ratio
between the amount of sound coming directly
from the speaker and the amount which has
suffered one reHection. For these calculations the
sound can be considered to consist of free,
traveling waves since the results are going to be
interpreted in terms of the geometrical picture.
Such cases will be discussed in Chapter VIII.
For regularly shaped rooms wave acoustics must
be used, and an exact solution of the boundary
value problem must be carried through if pos-
sible. The steady-state case for a rectangular
room will be discussed in Chapter V and the
transient case in Chapter VI.

Although the perturbation method is usually
not sufficiently accurate for acoustical problems,
it is the only method available at present for the
study of the cases intermediate between simple
wave acoustics and simple geometrical acoustics,
where the walls are somewhat irregular. It will

prove to be quite valuable in determining how
much irregularity must be present before geo-
metrical acoustics becomes valid. The results of
the perturbation method will also serve to bring
out more clearly the fundamental reasons for
the differences in decay' rates of waves in a
regularly shaped room, even though the accurate
values of these rates must be obtained by more
exact methods. The perturbation method will

be discussed in Chapter UII.

14. Classification of Waves in a Room

But before any of these questions can be taken
up, we must obtain formulas which tell us how
many waves of each different kind (if there are
different kinds) are excited by a given source,
and we must discuss in detail the nature of the
boundary conditions on the sound at the walls
of the room. The boundary conditions will be
studied in Chapter IV, and the remainder of the
present chapter will be devoted to one aspect of
the problem first mentioned, a determination of
the number of different waves-having "natural
frequencies" within any specified frequency
range, in a given room.
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This number can be computed once it is known
how many different waves there are which have
frequencies less than a given value s . The
number n(v) of waves with frequency less than
v has been investigated by Ra.yleigh, Weyl, and
others (J2, L1, M11, R3, S15, W9), and the first
term in the asymptotic series for n(v) has been
computed. In room acoustics, however, the
wave-length is long enough compared to the
room dimensions so that the first term in the
series for n(v) is not sufficient, and further terms
must be obtained. ' This has been done by Maa,
Bolt, Husimi, and Roe (B6, H10, M1, R8) for
the rectangular room, and the solution will be
outlined here.

First it is necessary to classify the various
types of waves which can occur in a rectangular
room. If the walls are rigid and the lengths of
sides are I„I„,I„then the expressions for the
velocity potential P, pressure p, and air velocity
u for a normal mode of vibration are

f=A cos (7m,x/L, ) cos (Trn„y/L„)

Xcos (vn, z/L, )e. '~'"'

P = p(af/at), u= —grad (p),

"=( /2)'L( */L.)'+( ./L, )'+( ./L.)'].
(3.2)

These expressions are accurate enough for our
present purpose, even if a certain amount of
absorption does take place at the walls.

The standing waves described by this formula
can be divided into three classes: those for which
none of the n's are zero will be called oblique
waves, those for which one n is zero will be called
tangential waves (those for which n, is zero are
called the yz-tangential waves, etc.) and those
for which two n's are zero will be called axial
waves (those for which n„and n, are zero are
called x axial w-aves, etc.). The reason for this
terminology is clear. Axial waves are made up
of two traveling waves propagated parallel to
one axis and striking only two walls. Tangential
waves are built up of four traveling waves,
reflecting from four walls and moving parallel to
two walls. Oblique waves are built up of eight
traveling waves reflecting from all six walls.

7 For instance, for a room 10'&(15')&30' the first term
for n is about 50 percent below the correct value at 100
cycles/sec. , about 10 percent low at 1000 cycles/sec. , and
about 1 percent low at 10,000 cycles/sec. See Fip. 7.

Each of these three types of waves has
different properties. We will show in Chapter VI
that they have diferent decay rates. There is
also a difference in energy content, the total
sound energy in the room for one of the waves
being

F= —' (grad 4)'+
2~ J c' Etl])

f2s'vspp
)L.L„L.A'e, (3.3)

cs )

where the factor e has the value —', for oblique
waves, si for tangential waves, and si for axial
waves. Thus, for a given pressure amplitude an
axia1 wave has four times the energy of an
oblique wave. The consequences of this fact will
become apparent later in this article.

The fact that in this simple case the traveling
waves are plane waves should not lead one to
expect that rooms with curved walls do not
have tangential or axial waves. It will be shown
in Chapter VII that there are axial waves in
cylindrical rooms; some which move parallel to
the cylindrical sides and reflect back and forth
from the flat ends; some which reflect normally
from the curved walls and focus at the center;
and some which circle around the room parallel
to the ends and to the curved wall. These can
be called s-, r-, and p-axial waves respectively.
The waves moving parallel to the curved walls,
which reflect from the flat ends, are the y-
tangential waves, and so on. We shall see later
that each of these wave types has different rates
of decay (K8).

Both the cylindrical and rectangular rooms
have walls corresponding to coordinate systems
for which the wave equation is separable; and
it might be assumed that the classification above
would only hold for such cases, for only in

separable coordinates can standing waves be set

up which move parallel to one coordinate
system. It seems, however, that in any room
which has a smooth wall which is severa1 wave-
lengths in extent, there wi11 be classes of' waves
which move para11el to this wall and others
which reflect from the wall; and these classes.
will have different decay characteristics with
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respect to the absorbing material on the smooth
wall. This is true in the case of the triangular
room (one of the few non-separable cases which
has been solved) as will be shown in Chapter VII.
It is to be hoped that other non-separable cases
will be investigated, so that the limitations of
the above classification can be found.

( C C C ) gpv~-"+I + +
6 &4L. 4L„ 4L.) 4

g2 G2 g2

+] + + f+" .
(16L,L„ 16L,L, 16L„L,)

To obtain the number of frequencies less than v

we divide by the volume occupied by one point,
obtaining (M1, 86, R8)

4m V mS I
n(v) = v'+ v'+ —v+0(v),

3G' 4G' 8C
(3 4)

where

V=L,L„L„S=2(L,L„+L,L,+L„L,),

L =4(L,+L„+L,),

and 0(v) is an irregular step function whose
magnitude is of the order of unity. The quantity
5 is the area of the wall surfaces and I is the
length of all the edges of the room shape. The

15. Frequency Distribution of Normal Modes

Equation (3.2) indicates that the characteristic
frequencies in a rectangular room have the be-
havior of a vector, with components cn, /2L,
etc. (M11).Each natural frequency can therefore
be represented by one point in a rectangular
lattice in frequency space, having a lattice
spacing in the x direction of c/2L, and so on.
The "volume occupied in frequency space" by
one point is therefore a rectangular parallelopiped
of volume cs/8V with the point at the center,
where U=L,L„L, is the volume of the room.
The points fill all of the first octant in frequency
space, which means that the space occupied is
more than the first octant, since the parallelo-
pipeds extend c/4L„beyond the (xs) plane, and
so on. The total volume occupied by points
with frequency less than v is therefore
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FIG. 7. Distribution of normal frequencies in a room
10X15&(30 ft. Actual function n(v) compared with con-
tinuous part of Eq. (3.4), and with first term only. From
reference B6.

first term in the expansion comes chieHy from
the oblique waves, the second term mainly from
the tangential waves, and the third term comes
from the axial waves. The term 0(v) expresses
the fact that n is actually a step function,
increasing by unity whenever the sphere of
radius v encloses one more allowed frequency
point. Figure 7 shows the calculated function

n(v) (stepped curve), the smooth curve for n(v)
without the function 0(v), and the first term

only, which is well below the actual curve (86).
It has been shown by Weyl (W9) that the first

term in this asymptotic expansion for n(p) has
the same form for a room of volume U, no
matter what its shape is. So far the generality
of the second term has not been demonstrated.
However, for triangular and cylindrical rooms

(R8) the second term has the same form as in

Eq. (3.4), with S again 'the area of the room

walls; so that it appears likely that this term
also is of general validity. In an attempt to study
this point for more complicated shapes, experi-

mental measurements of normal frequencies have
been made in a few small models (88).The main

limitation is that one cannot count very far up
the frequency scale without encountering uncer-

tainty as to the discreteness of- peaks, due to
overlapping of the increasingly crowded reso-

nances by damping. The limited results indicate
that corrections to the asymptotic term are
always present, and that the following rule gives

a reasonable estimate of their magnitude: (a)
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4x U xS I.
v'+ —v+0 (v). (3.5)

4c' Sc
n, (v) =

3C

use the actual volume of the room for U in the
first term of Eq. (3.4); (b) for S in the second
term, use the area of a smoothed-out "average"
surface around the room such that the total
volume contained is equal to V. This would
indicate that the "effective" surface area S is
often smaller in value than the actual wall area
in irregular rooms.

The third term is still more uncertain. Appar-
ently for rooms enclosed by plane walls L is the
sum of the edge lengths (at any rate, this is
true for the rectangular and triangular room).
For a cylindrical room, however, L=4+R+4L„
where R is the radius of. the cylinder and I., is
the distance between Hat ends; and this has the
term 4I., in addition to the 4xR for the two
curved edges. Luckily most of our discussions
will be for rectangular rooms, where we are sure
of the validity of Eq. (3.4).

The number of waves, of one of the three types
discussed above, having frequencies less than v

can be found by a similar argument. For instance,
in the rectangular room, the number of oblique
waves having frequencies less than v is

k = (c/8 U) Q n„S„, (4.1)

Iv. ACOUSTIC IMPEDANCE

16. Impedance and Absorption

It has been demonstrated in a number of ways
(A2, 83, 812, H9, M2, P1, S4, W10) that the
absorption coefficient entering into the geomet-
rical acoustical formulas is not a fundamental
property of the wall surface. The measured value
of the coeScient changes when the material is
placed in different rooms (H8, P5, S14, W'10),
and for some materials it changes with angle of
incidence of the sound (89, W10). It is an aver-
age property, averaged for the particular dis-
tribution of sound which we have called "ergodic"
in the previous section, and has no meaning in
cases where the sound distribution is not ergodic
(H8, 83).

It is well to emphasize this limitation on the
use of the term absorption coefficient, for an
over-optimistic use of the term may lead to
erroneous results. In the present paper we shall
use the term "absorption coefficient" only when
conditions in the room under discussion are such
that the Sabine formula for reverberation holds;
i.e., when the logarithmic decay curve is a
straight line; with a decay rate for the root mea'n

square pressure equal to

The number of ys-tangential waves with fre-
quencies less than v is

zr

ng„.(v) = I.„I.,v' (I.„+—I.,)v+O—g„,—(v), (3.6)
c

and there are similar expressions for the xs- and
xy-tangential waves. The number of x-axial
waves with frequencies less than v is

2
n..(v) =—I..v+0..(v),

c
(3.2)

with similar equation for y- and s-axial waves.
The last four equations with the terms 0(v)
omitted are fairly accurate expressions for the
n's whenever the wave-length (c/v) is smaller
than twice the smallest dimension in the room.

where V is the volume of the room and S the
area of one sort of wall material. This equation.
constitutes our definition of the coefficient o.„.
The quantity thus loses all meaning in cases
where the decay curves are not straigh't lines.

Recently there has been an increasing tendency
(82, 812, N9, M11, M12, S8) to consider that
the acoustic impedance of the wall material, the
complex ratio between sound pressure and
normal air velocity at the wall, is a more useful
measure of the absorbing properties of the wall
material than is the absorption coefficient. It is
true that the impedance is not a much more
"fundamental" physical property than the ab-
sorption coefficient; its advantage lies in the fact
that its measurement can be specified concisely
and uniquely and that its value for a given ma-
terial has a definite meaning no matter what the
distribution of sound inside the room. The
acoustic impedance of a material varies with the
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frequency (82, 83, SS), and ln certain cases
(89, S8, W10) changes with the angle of incidence
of the sound wave; nevertheless it can be used to
determine the decay rate in rooms where the
Sabine formula is not valid, where the absorption
coefficient has no meaning.

There has been reluctance on the part of some
acoustical engineers to adopt impedance as the
primary acoustic property of a material. This is
partly caused by an understandable hesitation
at changing concepts, and also by an impression
that the relationship between impedance and
absorption coefficient is a rather vague one.
Actually this impression has arisen because the
fact has been lost sight of that the absorption
coefficient is a vague and non-general quantity.
It will be shown later in this paper that the
relationship between the impedance of the walls
and the decay rate of sound in the room is not, a
unique one, but depends on the distribution of
the sound in the room. When the room, source,
etc. , are arranged so that ergodic sound motion
is set up, there is one definite and unique rela-
tionship between the slope of the resulting
straight line decay curve and the impedance of
the walls. Since this is the only case where the
term absorption coefficient should be used, we
can thus say that there is a definite and unique
relationship between impedance and absorption
coeScient. This relationship will be discussed in
Chapters VII and VIII. However, in cases where
ergodic wave motion does not. hold and wave
acoustics must be used, the theory to be outlined
in Chapter VI indicates that there is a diferent
relationship between impedance and decay rate.
The vagueness, therefore, only arises when the
concept of absorption coefficient is pushed
beyond its legitimate scope. The resulting failure
in correlation must be ascribed to the inherent
limitations of geometrical acoustics and recog-
nized as another argument against considering
absorption coe%cient as a fundamental property
of a material. '

The pioneer experimental work of Hunt and
his co-workers (83, H7, H9, M2) has shown that
the statements made in the above paragraph are
true in general. Much detailed work remains to
be done, however, before we can understand fully
the interrelationships between the acoustic im-
pedance of a material and its physical charac-

teristics, on the one hand, and between the
impedance of the walls and the reverberation of
the room on the other. This section will outline
the present status of our knowledge of the first
relationship, that between the mechanical proper-
ties of a material and its acoustic impedance.
The various experimental methods of measuring
impedance will also be outlined, together with
the conclusions which can be drawn from the
few available data, in the light of the theory.

1'7. Mechanical Properties of Porous
Materials

The relation between the density, porosity,
and various other mechanical properties of a
material, and its acoustic properties, has been
studied for some time. Rayleigh (R4) calculated
the absorption of sound at the face of a rigid
porous material by considering the dissipation
of sound energy into heat through viscous actions
in capillary channels. If the channels are as-
sumed to be small (less than 0.01 cm diam. ),
cylindrical, perpendicular to the surface, and
long enough so that no sound is rejected from
the back surface, yet short compared with a
wave-length, the absorption coefficient as cal-
culated by Rayleigh is:

n =4M/(2M'+2&+1),
where ~= 9(1+K)("'Y)'1/Lr&'1

.g=ratio of unperforated to perforated area of
surface, v =kinematic viscosity of the gas,
y =ratio of the specific heats of the gas, r = radius
of the pores (uniform, cylindrical), and &v=2m

&frequency. While the term g is thus defined
as a surface porosity, it is analogous, in the
special case treated here, to the volume porosity
which we shall use later. This equation predicts
that n may go through a maximum at a fre-

quency lying in the audible range. Rayleigh also
considered sound striking the material at all
angles of incidence and showed that in a certain
case the absorption may be complete at a par-
ticular angle.

Paris (P2, P6) derived a formula giving the
absorption coefficient at any angle of incidence
if the "acoustical admittance" of the surface is
known. He made no special assumptions as to the
physical nature of the absorbing material, except
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to specify that sound could not be propagated
parallel to the surface inside the material. Ex-
pressed in terms of the acoustic impedance,
which is the reciprocal of the admittance, the
equation of Paris is:

Z cos 9+pc

where Z= acoustic impedance of the surface, in

general a complex quantity, p=density of air,
and c=velocity of sound in air. (pc~42 c.g.s.
units. ) This equation, giving the absorption coef-
ficient at a particular angle 8, has assumed con-
siderable importance in recent discussions and
correlations between impedance and absorption
coefficients (H7, M11, S8, W4).

Crandall (C4) wor'ked out a formula for the
variation of absorbing power with the thickness
of material having rigid backing, for normally
incident sound. His treatment was the first to
allow for reflections from the back of the ma-
terial, which may give rise to interference
maxima and minima in the curves for n as a
function of frequency or thickness of material.
Crandall also showed that the absorption ap-
proaches a constant value when the material
becomes thick, and his various predictions were
checked by measurements using the standing
wave method in a tube. Further work on sound
absorbents has been done by Davis and Evans
(D3), who investigated the effect of an air cavity
backing the porous material; Meyer (M6), who
has studied flexible panel types of material ex-
tensively; and many others.

In the present analysis we shall distinguish
between two different types (R/) of wall ma-
terial: the panet, type, where the reaction of the
wall to the pressure fluctuations is due to the
stiffness of the wall, and the normal velocity
ne'xt to the wall is due to a motion of the panel
as a whole; and the more usual porous type, where
the normal velocity is due to the penetration of
air into the pores of the material, and the reac-
tion is due to the interaction of the penetrating
air with the material of the pores. Of course
there are intermediate cases, where the panel is
backed by porous material, or where the porous
material also acts as a panel; but these cases can

be understood when the two 1imiting cases have
been analyzed.

In studying the porous type, we shall follow
the. work of Wintergerst, Gemant, and Rettinger
(G1, R6, R7, W11, M8) to some extent. A porous
material allows elastic waves to be transmitted
through it in various directions. In some cases
the wave velocity normal to the surface is dif-
ferent from that parallel to the surface (W11),
because of the layer-like construction, or the
orientation of the pores in the material. In such
cases the "index of refraction" of the material
for waves traveling normal to the surface differs
from that for waves parallel to the surface; and
the material is acoustically bi-refringent.

First we must define the relevant mechanical
properties of the porous material. The porosity,
P, of the substance is the ratio of the volume of
air in its pores to the total volume of the material.
Therefore the volume flow of air through the
material, u, in cc per cm' per sec. , is related to
the average velocity v (in cm per sec.) of the air
in the pores by the relation u=I'v. The equation
of continuity then can be used to obtain the
equation

div (u) = (+Ip& ) (~P/~~) (4 2)

relating pressure and average flow. This equation
indicates that the porosity can also be defined as
the ratio between the stiffness of air alone and
the stiffness (bulk modulus of elasticity) of the
same volume of material: air, pores, and all. It
suggests that the effective porosity (which we
might call the dynamic porosity) which enters
into our equations here, may differ from the
geometrical value because the material sur-
rounding the pores may not be incompressible.
There is another reason why the effective
porosity, which we shall use in our discussions
to follow, may differ from the geometrical
porosity: the stiffness of the air in the pores is
assumed in Eq. (4.2) to be expressed by the
quantity pc', which assumes that the air in the
pores expands adiabatically. Some work of
Beranek(84) indicates. that the expansion may
be more nearly isothermal. The difference in the
stiffness, a factor equal to the ratio of the spe-
cific heats, will be absorbed in the effective
porosity P.

The equation of motion of the air in the pores
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is a more complicated one. In the first place there
is a resistive reaction as well as an inertial one,
and in the second place the motion of the air is
not necessarily in the same direction as the
driving force. This means that the effective
density of the air in the pores, and its effective
resistivity, are both dyadics, transforming a
force vector into a velocity or acceleration
vector. In the equation

pm(Bu/Bt)+ru= —grad (p),

both m and r are dyadics, and u is a vector. In
the isotropic case, m and r reduce to scalars,
when r is the effective resistivity of the material
per unit volume, and m is the ratio of the effective

dense of the air in the pores to its density in the
open. Since there is some motion of the porous
material along with the air, m is often consider-
ably larger than unity.

These effective values are supposed to include
the possible eEects of the motion of the porous'
material itself if it is a yielding structure. There-
fore we should not expect the effective resistivity
r used here necessarily to equal the d.c. How

resistivity measured (813) by steady flow of air
through the material, for the d.c. measurements
would not include the resistivity due to motion
of the structure. As we shall see later, measure-
ments show that for porous materials with stiff
structure, the r obtained from dynamical meas-
urements equals the d.c. flow resistivity, whereas
this check is not obtained for materials with

yielding structure.
In the cases where m and r are not scalars, it

is usua11y the case that the principal axis for
both is normal to the wall surface. The matrices
for m and r then reduce to diagonal ones, and
the equations of motion become

pm„(Bu, /Bt) +r„u, = —(Bp/Bx),

pm, (Bu„/Bt) +r&u„= —(BP/By),

pm, (Bu,/Bt) +r gu. = —(BP/Bs),

where x is normal to the surface and y and s are
tangential to it. When the dependence on time
is simple harmonic, the time factor being e '"',
the equations can be combined with Eq. (4.2)
to obtain the wave equation for sound in the
porous material

S~=
ZpMc~ BX

Qy= —, Ztz=
zpcoeq By

P Bp
(4.4)

ZpG06g BS'

With the above equations it is possible to obtain
a formula for the acoustic impedance of the
material in terms of the "fundamental con-
stants" m, P and r If we. know the dependence
of these quantities on the frequency, we can
predict the dependence of the impedance on
frequency and on angle of incidence of the
sound wave.

Suppose that the region occupied by the air
of the room corresponds to negative values of x,
the front surface of the porous material being
the plane x=0, and the back surface being at
x=L,. In addition suppose that the sound pres-
sure in front of the wall has the following
properties:

(B'p/Bx') = p-'p—
V 2P: (B2P/By2) +(B2P/B&2): p 2P '

(4 5)
(Bp/Bt) = —ipcp,

We can then define the angle of incidence q, of
the wave by

sin q;= (p, /p), cos q;= (p„/p). (4.6)

The sound pressure in the porous material
will show the same dependence on y and s as
does the pressure just outside the wall, but the
factor depending on x will have the form

sinh [/+i'(n„+iq. )x cos &p„], 0(x(I.,

B'p (B'p B'p)
(I/e-) +(I/«)I + II+(~/c)2P=o; (43)

Bx &By' Bs2i

e = (n„+iq„)2=PLm„+i(r„/pa))],

e, = (n, +iq,)'=Pfm, + i(r,/p~)].

The quantities n„and g„are the real and imag-
inary parts of the index of refraction of the
material for sound waves traveling normal to
the surface; n& and q~ are the corresponding
values for tangential waves.

Once the pressure is determined, the air How

can be obtained from the equations of motion
, given above. For simple harmonic waves this
gives
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where P is a phase angle determined by the
boundary conditions at the back of the wall,
and y„ is the angle of refraction, defined by
Snell's law

S1I1 y„= (nq+'tgg) S1I1 y, ,

cos y„=1—et, s1n2 y;.
(4.&)

Unless g~ is zero, this angle is complex, but if the
magnitude of n&+iq& is considerably larger than
unity (as it often is) cos y„has a small imaginary
part, and its real part never diA'ers appreciably
from unity. In the discussion following, this will
be assumed to be the case unless it is specifically
stated to be otherwise.

The ratio between the pressure at any point
inside the material and the x component of the
volume Row at the same point is then

P pc(n„+iQ„)—=Z=
Pcos y,

-&(tanh ~La+(2g„/X)(L —x) cos p,

+iP —i(2n„/X) (L —x) cos rp, $, (4.8)

p = m (a+ip)

= tanh ' fPZI. cos p,/pc(n„+i g„)g,

where Zl. is the acoustic impedance of the
material just back of the wall, at x=I.. The
acoustic impedance of the wall is then the value
of Z, at x=0. The behavior of this must now be
studied for long wave-lengths and for a few
typical cases of backing impedance Zl„ for any
wave-length.

18. An Equivalent Circuit for Long Waves

The most instructive case is that for long
wave-lengths; more accurately, for frequencies
such that (2n.vL/c)(n„+ig„) is small compared
to unity. In this case the behavior of the porous
material is analogous to an electric circuit with
lumped elements, the mass pml. per unit area
being analogous to the inductance, the How
resistance rL analogous to a resistance, and the '

reciprocal of the stiffness pc'/PL corresponding
to a capacitance. We expand the expression in
Eq. (4.8) in a power series in (2~vL/c) (n„+ig„).

To the third order, the equation becomes

z,y L(1/z) —-',i~c)-'Z-
1+Zg((1/ —ice C) + -', Z)—'

I

where Zq is the backing impedance, C=PL/pc',
and Z= ice pm—„L+r„L. This formula cannot
be represented by a simple circuit, any more
than a transmission line can be represented by
a simple circuit. Nevertheless, several limiting
cases can be represented by simple circuits.
Usually the reactance 1/~C is larger than Z at
low frequencies.

If the impedance Zl, of the backing material
is of the same order of magnitude as Z, a fair
approximation corresponds to having Z in series
with Z~, and C shunted across both. If Zl, is very
small, —,'C is shunted across Z alone, in the ap-
proximate equivalent circuit. If the backing
material is very stiR' and Z~ is large, the equiv-
alent capacitance is shunted around Z~, with
—,Z in series with it. These circuits are shown in
Fig. 8.

If the porous material also acts as a panel,
having total mass 3/I, per unit area, effective
stiffness constant for bending X„ then another
branch containing inductance, capacitance, and
resistance in series must be shunted around the
part corresponding to the air motion in the
pores. The resistance R, in this branch would be
due to the internal friction in the panel as it
bends.

The general equivalent circuits for long wave-
lengths are shown in Fig. 8. The acoustic im-
pedance at the front of the material is equal to
that measured at Zo in the equivalent circuit,
as long as the thickness I. is small compared to
a wave-length inside the material. Laminated
material is thus analogous to a filter network,
and it is possible to design the porous structure
so as to absorb any required band of frequencies.
An air space of thickness L,' (small compared to
a wave-length) in back of the porous panel,
which is subdivided by partitions perpendicular
to the panel to discourage transverse standing
waves (89), corresponds to a capacitance L'/pc'
shunted across Zl. , with ZJ. then being the
acoustic impedance of the material behind the
air space.

Transmission properties of acoustic materials
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characteristics. The dependent variable is I', the
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where
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O,o
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) Z„fP (pc/at Pl) vr

7=21'(P/m„)& cos q„
(r= (L/X)(m„P)& cos q „
y=(r„L/2m pc) (P/m„)& cos y„.

The equation for F then becomes

(4.9)

&aL - O~ttL=~00tt000

pL/gpCa

2L

(pP/APL)& r Lkr)2Ll

I'= (a+ib) tanh trL —io.(a+ib)+-', ij
= (2/pc) (P/m„) &(cos q „)(R„iX—,),

(4.10)
a=2n„(Pm„)-&= {2[1+(y/o)'$&+2I &,

FIG. 8. Equivalent circuits for porous panel of thickness
I backed by impedance Zz„ for long wave-lengths. R„
M., and X. are the equivalent constants corresponding
to the bending of the panel and are infinite if the panel
does not bend. The quantities r„, m, and I' are the
constants corresponding to the porousness of the panel.

are also represented by the circuit of Fig. 8
since the current through ZI. corresponds to the
normal air velocity just back of the panel. A
series of panels separated by air spaces therefore
corresponds to a low pass filter network.

When the wave-length is no longer large com-
pared to the panel thickness, the acoustic be-
havior is analogous to the electric behavior of a
leaky transmission line, and Eq. (4.8) must be
solved exactly. Several cases merit discussion.

19. Resu1ts for Shorter Waves

The simplest case is when the backing material
is rigid, when Zr, is infinite, and a+iP= 2i The.
specific acoustic impedance of the wa11 surface
(Zo/pc) is then

n„+iq„

icos p,
tanh L(2trI/X)(q„—in ) cos y„+-,'tri$

(for rigid backing).

The subscript p indicates that this impedance
is due to motion of air in the pores of the ma-
terial. A subscript s will be used when we discuss
the impedance due to the panel motion.

A study of the quantities involved in this
equation shows that a one-parameter family of
curves can be drawn to show the dependence of

b =2q„(Pm„)—& = {2L1+(y/o)'j'*—2 I &.

The variable o is proportional to the frequency,
and the parameter y is proportional to the How

resistance r„L of the material. If the quantities
m„, r„, and P are independent of the frequency,
o will be linearly proportional to the frequency,
and p will be independent of the frequency.

Curves of real and imaginary parts of the
quantity F are plotted as functions of o for four
di8'erent values of j in Fig. 9. In computing these
curves it has been assumed that the imaginary
part of cos y„ is negligible. We see from these
curves that for low frequencies (small values of o)
the reactive part of the impedance is very large,
the stiffness of the air in the pores being the con-
trolling factor. At these low frequencies the real
and imaginary parts of the acoustic impedance
Z of the wall approximate the following simple
values:

R~ ', r„L, X~ —(pc-'/otPL cos' p„) (4.11)

(when o((y(1, for rigid backing) (see Fig. 8).

In this limiting case the effective resistance is
one-third of the static How resistance r„I., the
factor 3 being due to the fact that the rigid
backing prevents the air in the pores from
moving enough to take full advantage of the
resistivity. (See Eq. (4.15) for the corresponding'
case when the backing is soft. ) The reactance is
due to the stiGness of the air in the pores. This
is the result for the equivalent circuit of Fig. 8
for infinite impedance ZL, .

At higher frequencies interference effects occur
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with the wave reflected from the back of the
material, and resonance peaks occur, which are
sharper and higher for smaller values of y, as
the curves show. For very large values of y the
waves never reach the back of the material, the
wall impedance shows no resonance effects, and
the following approximate formulas are valid:

R„~(pc/P)n„sec ip„,

X„—(pc/P) g„sec p„
(4.12)

(when y) 1, yo )1, for any sort of backing).

This is the characteristic impedance of the elec-
tric transmission line equivalent to the material.
For high frequencies R„approaches pc(m„/P)&
Xseep „, and the reactive term reduces to
—(r„c/2')(m„P) '* seep„. For very low fre-
quencies (0 considerably smaller than 1/p) Eq.
(4.12) is not valid, and Eq. (4.11) must be used.

We shall see in the next section that the sound
absorbing quality of a wall is usually approxi-
mately proportional to the real part of the
acoustic admittance (1/Z). Hence a large value
of acoustic reactance for a wall at a given fre-
quency will prevent the wall from absorbing
much sound at that frequency. Eq. (4.11) shows
that in order to have a material be a good ab-
sorber at low frequencies it must be thick (L
large), porous (P close to unity), and have a
tangential index of refraction much larger than
unity (in order that cos' q„be as near. unity as
possible for any angle of incidence). This last

specification insures that the acoustic impedance
does not vary to a marked degree with the angle
of incidence of the sound.

In the next section we shall see that the ma-
terial absorbs somewhat better when it is not a
pure resistance but has a small amount of nega-
tive (stiffness) reacta'nce.

20. Effect of Air Backing

It is possible to provide negative reactance for
a wall material for low frequencies by providing
an air space behind it (84, 89). In this. case the
constants 0. and P are fixed by setting Zl, equal
to the impedance of the air space. Suppose the
thickness of this space is L, and that it is small
compared to the wave-length of the sound in
free space. Then Z~ is a stifFness reactance ap-
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FIG. 9. Curves giving acoustic impedance of porous
material of thickness t., with rigid backing.

proximately equal to (ipc'/coL cos' y;) (notice
that the angle of incidence occurs in this formula).
This approximation is valid whenever sound
waves parallel to the wall can be set up in this
air space, i.e., whenever the framework which
holds the porous material away from the rigid
wall is spaced more than a wave-length apart.

When this boundary condition is satisfied, it
turns out that the only eBect of the air space is
to increase the effective thickness of the ma-
terial. Equation (4.10) is still valid, and in Eq.
(4.10) the values of 0 and p are changed by in-

serting the effective thickness

L,=L+(L,/P)(cos y~/cos q„) (4.13)

(air backing, L„(X/4, transverse waves allowed),

instead of the actual thickness I. in the equations.
When the thickness L, of the air space is larger
than a quarter wave-length, a more accurate
expression must be used for Zc, and Eq. (4.10)
must be revised.

In general therefore the presence of the air
space increases the effective thickness of the
material and reduces the height of the resonance
peaks in the curve of impedance vs. frequency.
The reason for this is that the presence of the
air space behind the material moves the surface
of zero normal velocity out back of the material,
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allowing a greater How of air through the pores,
and therefore allowing a greater absorption of
energy (84).

However, an air space which allows waves to
be set up in it which are tangential to the surface
makes the impedance depend more strongly on
the angle of incidence p; of the wave because of
the factor cos q; in the formula for the effective
thickness. This means that waves at near-
grazing incidence are not absorbed any better
with the air space than they are without it. In
order to reduce the dependence on p;, it is neces-
sary to break up the backing space by a honey-
comb structure whose cells are small in dimen-
sions compared to a half wave-length (89). In
this case the effective thickness of the material,
to be substituted for L in Eqs. (4.10) and (4.11),
is

L,=L+ (L./P cos p„)

(narrow air backing, transverse waves
suppressed).

(4.14)

21. Panel Vibration

The previous analysis in this section has taken
into account that particular part of the normal
velocity of air near the wall which is due to the
penetration of the air into the porous material.
In many cases, however, the surface of the wall
yields to the pressure by moving as a whole, as
a stiff panel (R7). This panel action must also be
discussed. Its effects can be studied separately
because, for any wall which is porous and also
moves as a panel, the normal air velocity at the
wall is simply the sum of the velocity of the

This expression is less dependent on q; than is X.
when no cell structure hinders the waves parallel
to the wall surface; and thus even for waves
striking at near-grazing incidence the effective
thickness of the material is increased.

When the thickness of the air space becomes
larger than a quarter wave-length, or when the
material is made up of several layers having
different properties, the analysis becomes more
complicated. By using Eq. (4.8) several times,
however, it is possible to compute the wall im-

pedance for even these complicated forms. Of
course, for the low frequencies the equivalent
electrical circuit analysis can be used, as we
have noted, according to Fig. 8.

material as a whole plus the velocity of the air
into the pores. Therefore the impedances of the
two separate effects can be considered to be in
parallel. In this case the smaller impedance is the
more important one. On the other hand, when
the wall consists of a stiff impervious layer (as of
paint) mounted on a porous backing material,
the impedances of the two materials will act in
series, and here the larger of the two impedances
is the more important.

As with air space backing, when the supporting
framework (assumed rigid) is spaced more than
a wave-length apart, the effect of the panel
action .is markedly different from what it is
when the spacing of the supporting network is
less than a half wave-length. In the former case
transverse waves are set up in the panel (M11),
and we must use the theory of the wave motion
of plates to obtain the impedance.

Let p, be the density of the panel material, s
its Poisson's ratio, Q its Young's modulus, and
I its thickness. Then the equation for the
normal displacement of the panel at a point
(y, s) on its surface, owing to a pressure dis-
tribution over the wall, is

g2$
+LQL'/»(1 —")l~ '~

8t'
=Po(y ) P(y ) (4 1—6)

where po is the pressure in front of the panel and

pz, that in back.
The pressure in front, po, can be assumed to

have the properties assumed earlier, in Eq. (4.5),
with an angle of incidence given in Eq. (4.6).
Inserting these expressions into Eq. (4.16), we
obtain an equation for the acoustic impedance
of the wall panel,

iQL'ar'
Z, =Zl. i cv p,L+ — sin' q, (4.17)

192c4(1—s')

(spacing between supports much greater
than wave-length),

where Z~ is the impedance of the material (or
air space) behind the panel.

The second term in this expression is the usual
mass reactance of the panel. The third term is
due to the stiffness of the panel as it tries to
accommodate itself to alternations of pressure
from point to point along its surface when the
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wave is striking it obliquely. It has a positive
sign indicative of a stiffness reactance (X nega-
tive), but it increases rapidly with frequency
because of the fact that the panel finds it dif-
ficult to bend itself into the form of a short
wave-length wave. Since the wave-length along
the wall depends on the angle of incidence of the
wave as well as its frequency, this part of the
impedance depends very markedly on the angle
of incidence, being small for small angles and
having its maximum value, for a given frequency,
for grazing incidence. Therefore a wall having a
fairly stiff outer coating has a very large im-

pedance for near-grazing waves and is, therefore,
a poor absorber for such waves, particularly at
higher frequencies.

When the frequency is small enough, the
wave-length becomes larger than the spacing
between supports, and Eq. (4.17) is no longer
valid. In this case each portion of the panel which
is between the supporting network acts as a
stiff diaphragm having an effective mass per
unit area 3II,~p,L„an effective stiffness constant
K„and an effective resistance R, (as in the
equivalent circuit), the values of these constants
depending on the distribution of the supporting
network. In this case the impedance of the wall is

Z, =Z I, iu)M—,+ (iK,/a)) +R, (4.18)

(wave-length longer than four times
support spacing).

This impedance is independent of the angle of
incidence, which is an advantage; but the im-

pedance becomes quite large in the low frequency
range, so that the panel is a poor absorber in
that range.

22. Types of Absorbing Materials

We can now classify the various sorts of wall
materials and note again the equations giving
the total acoustic impedance for each type:

1. Thin porous material, hard backing. Im-
pedance from equivalent circuit of Fig. 8.

2. Thin porous material, air space in back,
with supports spaced more than a wave-
length apart. Impedances given in Eqs.
(4.15) and (4.17) in parallel, with

Zl, = zpc'/~L cos' &p,.

3. Thin porous material, air backing, with
supports spaced less than a half-wave-length
apart. Impedances given in Eqs. (4.15) and
(4.18) in parallel with ZI, i p——cz/coL

4. Thick material, hard backing. Impedance
from Eqs. (4.9) and (4.10).

5. Thick material, air backing, supports more
than a wave-length apart. Impedances
given in Eqs. (4.10), (4.13), and (4.17) in

parallel, Zl. i pc'/~——L cos' p;.
6. Thick material, air backing, supports closer

than a half-wave-length apart. Impedances
given in Eqs. (4.10), (4.14), and (4.18) in

parallel, Zl. ——(i pc'/~L).
7. Very thick porous material, any sort of

backing. Impedance from Eq. (4.12).
8. Thick porous material, hard backing, outer

surface covered with thin stiff impervious
layer (such as paint). Impedance given by
Eq. (4.17) with ZL, given by Eqs. (4.9) and
(4.10).

Impedances for other, more complicated struc-
tures can be built up in a similar manner.

It is interesting to notice that in four of these
cases (which include the materials most generally
in use), the acoustic impedance is nearly inde-

pendent of the angle of incidence of the sound

wave; since in most cases cos p, is nearly inde-

pendent of y;. Only in the cases where thin
porous material (I.(X) has an air backing with

supports spaced widely apart, or where the
surface is impervious enough so that the im-

pedance because of panel action preponderates,
does the impedance depend markedly on y;.
Probably the most usual cases, which will be
most useful to investigate later, are the case of

I independent of p; and the case of l equal to
a term independent of q; plus a pure reactive
term (i pcz/coL cos' y, ), typical of the behavior of
an air space backing at low frequencies.

Enough measurements of impedance of acous-
tic materials have now been made to indicate
that the above theoretical analysis provides a
satisfactory picture of the sound absorption
process. Moreover, the experimental data dis-
cussed later in this chapter indicate that the
quantities P, m, and r for many commercial
materials are independent of frequency over the
range of frequency from 100 to 6000 cycles per
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second. This indicates that these quantities can
be considered as meaningful physical constants
and that a measurement of the three constants
for a material will enable one to predict its entire
acoustical behavior. The theory greatly clarifies
our understanding of the behavior of absorbing
materials; and, for the lower frequencies where
the equivalent circuit analysis is valid, it enables
us to design materials to satisfy any specified
acoustical requirements.

the two microphones, at which the sound pres-
sures are pi and p2 respectively, are combined in
a circuit which yields voltages proportional to
the sum (pi+p~) and the difference (pi —p2), and
indicates the phase angle p between the sum and
difference terms. The acoustic impedance is then
given by:

Z md pi+p2
~i(q —m/2)

pc X pi —p2

23. Measurement of Acoustic Impedance

We turn next to a brief review of the experi-
mental methods of measuring acoustic imped-
ance. The most straightforward way would be,
of course, to measure the pressure, the air
velocity, and their phase difference at the
surface of the material. This is, however, ex-
ceedingly diflicult experimentally. It is par-
ticularly difficult to'build a small but sensitive
velocity microphone, and the air particle velocity
is usually much smaller than the pressure am-

plitude at the surface of a wall.
Attempts have been made to instrument this

approach. Clapp and Firestone (C3) have de-
veloped an "acoustic wattmeter" consisting of
miniature pressure and ribbon velocity micro-
phones mounted closely together. Sound pres-
sure, particle velocity, and their relative phase
can be measured separately, and impedance is
computed from these. It was found diflicult to
establish and maintain the calibration of the
microphones, especially because of sensitivity to
small wind currents and temperature changes.
The device has been used for measuring im-

pedance. in a tube terminated by acoustic ma-

terial; this is essentially the "hyperbolic tangent
method" described below, except that p, u, and

p are measured directly at one point in the
standing wave, - and then extrapolated to the
position of the sample.

Another approach to the direct method has
been explored by Bolt and Petrauskas (B7).
Pressure and pressure gradient are measured by
means of two small pressure microphones, sepa-
rated by a distance d, placed close to the sample
and along a line normal to it. A steady train of
plane waves (from a loudspeaker) of length X

falls normally on the sample. The outputs from

Several approximations are involved: the finite
difference (pi —p2)/d is used for the pressure
gradient; the midway point between the micro-
phones is not "at" the absorbing surface but a
distance Ii in front of it; the microphones have
finite size; Also plane waves are assumed, and
diffraction effects as would obtain for a small
sample are neglected. With use of appropriate
experimental control and correction factors, im-
pedance values have been obtained in the range
100 to 700 c.p.s. , for impedance magnitudes less
than 5, which agree within a few percent with
values obtained by the hyperbolic tangent
method. These direct methods have the potential
advantage that they can be applied to large.
samples of acoustic materials installed for use.

The next most direct procedure consists in

setting up and exploring an interference pattern
in front of the material (TI). In its simplest form
this method makes use of a long straight tube
of uniform cross section, with the material ter-
minating one end. If a plane wave of a given
frequency travels down the tube with partial
refiection at the termination, the magnitudes
and positions of the pressure maxima and
minima in the resulting "standing wave" '
pattern are determined uniquely by the complex
impedance of the material at the end, except for
dissipation along the tube and other effects for
which corrections can be applied. The impedance
Z of the material is then given by the equations
(M11):

Z/pc =R/ pc iX/ pc =—tanh m (a —iP),

pmin/pm'~ = tanh (xn),

Strictly speaking, this is a pseudo-standing wave since
energy is being continuously absorbed and resupplied.
This usage is common in acoustics for referring to normal
modes of vibration of an enclosure, even when absorption
is present.
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and

d;„= (—P+n), where n=0, 1, 2, 3,
2

In these equations p;„and p,„are the sound
pressures at the minima and maxima respec-
tively, and d; is the distance from the face of
the material to the first, second,

'

third, etc. ,

minima.
This "hyperbolic tangent method, " using a

straight tube, possesses certain difficulties which
limit its usefulness. In order to work with low
frequencies a long tube must be used. Thus at
IOO c.p.s. the tube should be longer than three
meters. The high frequency limit is set by the
transverse modes of vibration of the tube which
break up the simple standing wave required by
this method. In a tube of 10-cm diameter the
lowest transverse vibration appears at about
2000 c.p.s. A further difficulty arises from the
diffraction effects due to the presence of the
microphone in the standing wave. In spite of
these difficulties the method has proved useful
for measurements on samples of moderate size
(89, P2, P3, P4, S9, D3, LS, P1, %10, PS).

Some of the objections of the straight tube
have been overcome in an ingenious modification
due to Hall (H1). The "tube" is an annular
groove of square cross section machined in a
heavy circular casting. The top of this groove is
closed by a smooth surface of another circular
casting, mounted so as to rotate with respect to
the lower. A miniature condenser microphone,
mounted with its diaphragm Hush in the smooth
surface, moves along the groove as the top
casting is rotated. The acoustic transmission line
is completed by two straight portions of square
cross section milled into the castings so as to
join the annular groove at opposite ends of a
diameter. These tubes are terminated, respec-
tively, by a loudspeaker unit and the sample to
be measured. This method eliminates microphone
diffraction and reduces the space required for
low frequency measurements.

Impedance can also be measured by its influ-
ence on the acoustic resonance of a closed tube
or chamber. A tube having a given length and a
particular value of terminating impedance pos-
sesses discrete normal frequencies at which a
resonant condition exists. The "sharpness of

resonance" may be detected in three different
ways: by measuring the pressure as a function
of (a) the frequency of the sound, (b) the length'
of the tube, or (c) the position of the microphone.
In any case a unique determination of the ter-
minating impedance is achieved after appropriate
analyses and various corrections have been
applied.

The most precise impedance measurements to
date are those of Beranek (82, 83), who has
developed a pressure vs. length resonance
method. This method possesses a number of
advantages in addition to the high degree of
precision which has been obtained. Measure-
ments have been made over a wide range of fre-
quencies, from 100 to 8000 c.p.s. The method is
absolute in that no comparison with a "standard'
impedance is needed. All possible sources of
error, such as temperature variation, dissipation
along the tube, etc. , are considered in the
analysis. The experimental observables are
pressure ratios, length, and frequency, and all
of these-are measured very accurately.

The resonance chamber in Beranek's appa-
ratus is a length of steel tubing; two tubes, of
different diameter, are used to cover the whole
frequency range desired. Into one end of the
tube is fitted a solid brass plug about one inch
thick. The sound source is a loudspeaker unit
to which is attached a high impedance multiple
capillary tube to lead the sound into the reso-
nance chamber, through a hole in the brass plug.
This high impedance source is essentially iride-
pendent of impedance variations in the resonance
tube (H7). The sound detector is a small diameter
brass tube which conducts sound from a point
near the source out to a crystal microphone. The
material to be measured is cut into a circular
disk and fitted into a thin cylindrical shell. This
shell is backed with a solid brass plug about
three inches thick which slides into the resonance
tube at the end opposite the source. The as-
sembly holding the acoustical material is moved
by means of a precision screw which can be read
with an accuracy of 0.0005 cm. Sound is gener-
ated by an oscillator, the frequency of which is
held constant to one part in 100,000 by com-
parison with a primary frequency standard.
The output from the microphone is ampli6ed
and filtered, then passed into a calibrated at-
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ten uator and meter with which to measure
changes in sound pressure. In order to evaluate
the acoustic impedance of a material, it is
necessary to plot pressure-length resonance
curves with and without the material at one end
of the resonance tube, to determine the fre-

quency, to hold the temperature constant, and
to know the velocity of sound in the tube. In
fact, variations in temperature during the
measurements can be included in the formula.

Typical results of this impedance method are
illustrated by Fig. 10. These and other data ob-
tained by Beranek are used e1sewhere in the
present report for correlating experimental re-
sults with theoretically predicted curves. The
over-all accuracy of these measurements is
indicated by repeatability to +2 percent ob-
tained over most of the frequency range. This
is very satisfactory since variations of the same
order are inherent in commercial acoustical
materials.

The methods discussed here are proving useful
for the measurement of acoustic impedance of
small samples, mounted in a simple manner as
with a rigid backing. In practice, however, ma-
terials are used in large areas and are mounted
in a variety of ways. It is indicated (by the
theoretical considerations earlier in this section
and by preliminary experimental results) that
for certain types of mounting the impedance will

vary with angle of incidence of the sound. So it
will eventually be necessary to measure im-

pedance on large-scale samples, at least large
enough to represent typical mounting conditions.
We should also be able to study the possible
variation of impedance with angle of incidence.
Both of these problems are being attacked by
extensions of the resonance chamber methods
and the direct method mentioned above.

24. Determination of Effective Porosity,
Density, and Flow Resistivity

The results obtained by the experimental
techniques outlined above now make it possible
to check the adequacy of the impedance theory
outlined earlier in this chapter. The measure-
ments of Beranek were all made on samples with
a rigid backing, so Eq. (4.10) and the corr espond-
ing family of curves in Fig. 9 should be applicable.
If we compare a particular experimental curve
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FIG. 10. Acoustic impedance of materials as function of
frequency, as measured by Beranek. From reference B3,

with the impedance curves in this figure, an
approximate value of the parameter y may be
chosen by inspection. The frequency scale is
adjusted to fit the lower end of the reactive
curve, after which a readjustment of y may be
necessary. This fitting process then indicates
probable values for r, nz, and P, and from these
a complete impedance curve can be plotted.

It is hardly to be expected that a curve plotted
in this way from a single set of constant parameter
values should check experiment over the entire
frequency range. Most acoustic materials are not
perfectly isotropic and uniform as assumed in
the derivation of Eq. (4.10). Also there is no
a priori reason why r, m, and I' should be con-
stant with frequency; as in electrical circuits,
inductance and capacity may vary with fre-
quency. Consequently, it is gratifying to find
that more than half of Beranek's impedance
curves can be reproduced reasonably well by
Eq. (4.10) with constant values of r, m, and I'
(812, 84). More recent measurements, using
various experimental methods, indicate that r,
nz, and P are reasonably constant for most com-
mercial acoustic materials over the frequency
range 100 to 6000 c.p.s.

These results lead to the hope that a direct
measurement of r, m, and P and a subsequent
calculation of impedance will eventually take the
place of the more difficult procedure of measuring
the impedance directly for all frequencies and for
diferent mounting conditions. In order to
explore this possibility for porous materials,
measurements have been made of the d.c.
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resistivity (B12, B13).This bears the same rela-
tion to the r used in the impedance equation as
d.c. resistance does to a.c. resistance in electrical
circuits; the two are not necessarily the same.
The d.c. resistivity of porous acoustic materials
has been discussed and measured by Gemant
(G1), Rettinger (R6), and others (B4). A steady
Bow of air is maintained through a sample of the
material, and the pressure drop across the
sample is measured. The resistivity or How re-
sistance per unit cube is given by:

bpr= —grams cm ' sec. ',
(V/t) L

where bp is the pressure drop in dynes, V is the
volume of air in cubic centimeters which flows
through the material in t seconds, A is the area
and I. the thickness of the sample. Measure-
ments have been made on a number of materials
ranging from a very porous hair 'felt with r =10
to building boards with r=2X10' g/cm' sec.
(B13). The majority of acoustic materials in
general use appear to lie in the range from 50 to
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FIG. 12. Comparison of measured and computed values
for acoustic impedance.

FIG. 11. Comparison of measured and computed values
for acoustic impedance. Measured values of resistance„'. are
circles, of reactance are crosses, theoretical values for
constant r, P, and m shown by curves.

500, with a few notable exceptions. About twelve
of the fifteen materials reported by Beranek (B3)
lie in this range.

Returning now to the correlation of impedance
data, we examine two cases in which the agree-
ment between experiment and theory is very
close when we use values of ns, r, and I'
independent of frequency. These are Perma-
coustic and Acoustex, in Figs. 11 and 12. These
two materials are physically similar in that they
are comparatively rigid, and their surfaces are
fissured, allowing easy flow of air into their in-
terior. The d.c. resistivity measured for these
materials is in fairly good agreement with the
"effective" values of r chosen to 6t the data. The
agreement is particularly good for Permacoustic,
and the other material shows a deviation of
about 30 percent between static and e6ective
values of r. The above considerations seem to
indicate that most of the sound energy enters
these materials by air penetration, and the ab-
sorption is due simply to viscosity in the pores,
as postulated by the simple model.

Other materials have physical parameters
which are not constant. For Temcoustic 0.5",
Fig. 13, the experimental points gradually depart
from the theoretical curves indicating a gradually
decreasing 7 with increasing frequency. This
material is much more "fine-grained" than the
two discussed above, and does not have fissures.
Also it is somewhat compressible or "spongy. "
The static Bow measurements on Temcoustic
0.5" indicate a probable value of d.c. resistivity
about twice the effective value of (r/pc) used in

plotting Fig. 13. In this case it appears that
sound energy enters the material by compres-
sional vibration and is absorbed by internal
damping, in addition to the viscous damping in

the pores. There are indications that in some
such cases the d.c. resistivity may be as much
as a hundred times the .effective dynamic re-
sistivity.

The data quoted here are preliminary in nature
and may be subject to revision. Further data are
accumulating rapidly, however, and the indica-
tions are at present that for homogeneous ma-
terials the more accurate the measurements the
more closely do the results correspond to the
analysis given in this section.
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separation of the wave equation (E2). lt is
fortunate that the most usual room shape, the
rectangular parallelopiped, is also the easiest to
calculate. Even for this case the analysis is
complex enough so that the general physical
picture is often lost among the obtruding details.
Nevertheless the details must be studied before
the picture can be made clear.

FIG. 13. Comparison of measured and computed values
for acoustic impedance.

The material Celotex C-4, with its holes
punched almost through the panel, and with the
porosity in the hole lining considerably greater
than that of the outer painted surface, presents
a case which obviously cannot be represented by
as simple a theory as that which gives Eq. (4.10).
Since the conductivity of holes is greater the lower
the frequency, presumably the effective porosity
of the material should be that for the hole linings
at low frequencies. The porosity for high fre-
quencies should be that for the front perforated
surface, a value which would decrease con-
tinuously as the frequency increases. To show
this, Fig. 14 has two sets of theoretical curves
drawn for two diferent (constant) values of the
porosity and effective mass. Presumably a curve
drawn with the parameters changing monotoni-
cally with frequency will 6t the data reasonably
well.

In conclusion, we see that the agreement
between impedance theory and measurements
for rigidly backed uniform materials is fairly
satisfactory. Many materials are represented by
physical parameters which are fairly constant
with frequency. Also the effective value of resis-
tivity is equal to the steady How value for the
more rigid porous materials and is less than the
static value for some compressible materials.

V. STEADY-STATE SOUND IN RECTANGULAR
ROOMS

In rooms of regular shape, with smooth walls,
the sound is not statistically disuse, and wave
acoustics must be used. The wave equations
must be separated and solutions found satisfying
the boundary conditions. Theoretical analysis is
thus restricted to room shapes corresponding to
the eleven coordinate systems which allow

25. The Boundary Conditions

Let us study (M12) the acoustical behavior of
such a room, having the dimensions I. , I.„, I„
with each wall uniformly covered with acoustic
material. We erst discuss the steady-state be-
havior of the room, with a source driving the
room at frequency i =(~/2s. ). The methods of
operational calculus will be used later to obtain
the transient behavior in terms of the steady-
state performance. We will soon perceive that
the steady-state so1utions depend on the sign of
the frequency constant co in the ubiquitous ex-
ponential e'"'. As has been already explained
(Sec. 10, Footnote 6), we shall choose the nega-
tive sign for co when discussing the steady state.
But both signs for ~ are needed in applying the
operational calculus, so that our analysis here
will 'be extended to cover both signs. It will

appear that the characteristic functions and
constants for negative values of co are the com-
plex conjugates of the quantities for the corre-
sponding positive values of ~. For ease in dis-
cussion we shall adopt the convention of regard-
ing the characteristic functions, constants, etc.
(which are complex quantities), to be functions
of the variable co, which wi11 be a11owed to take
on both positive and negative values, whereas
the real arid imaginary parts of these quantities
wi11 be considered to be functions of positive
values of co alone. For instance the complex im-
pedance Z(or) of a wall is defined for positive and
negative values of a&, whereas R(&o) and X(&o), the
resistance and reactance, are de6ned only for
positive values of co. Therefore Z(co) =R+iX, but
Z( —~) =R—sX. A mass reactance is therefore
always positive, a stiffness reactance always
negative.

Returning to the rectangular room, we denote
the specific acoustic impedance (Z/pc) of the
wall (x=0) as l, i, that of the wall at (x=I.,) as
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rix+coth ' (XIII'~)+«th ' (x/Psn) = o (5 4)

and so on. The velocity potential for a standard form,
standing wave in the room has the general form
P(&o;x, y, z) =D(x) E(y).F(z) e' ', where

D(x) = cosh
j (s-ix/L. )x.(o&) —4,7, (5.1)

P = p(~4'/~I) u = grad (0'). (5 2)

The boundary conditions, which fix the values
of the constants ~, p, and 4, are that the ratio of
pressure to normal velocity into the surface at
each surface equals the impedance of the surface.
Thus, for a driving frequency (~/2s. ) (co positive),
at x=0,

with similar expressions for B and Ii. The charac-
teristic value y has a real part which will be
denoted as p, and will be called the wave number
parameter, and an imaginary part, denoted as ~„
which will be called the o,ttenuation parameter. In
accordance with the convention discussed above,
g(M) =p+ZK, x( M) =p 'LK.

From the velocity potential can be obtained
the pressure p and the air velocity u by the
equations

When we insert the subscripts x, y, or s, we
obtain the three basic equations.

There are an infinity of roots of this equation.
As long as P~ and P2 have positive real parts there
is at least one value (and not more than two
values) of y =p+iz, for p between zero and
unity. There is one root with p between 1 and 2,
another with p, between 2 and 3, and so on. The
different roots, and their corresponding charac-
teristic functions, will be distinguished, when
necessary, by giving them different values of the
subscript n, with n=0 for the value of x with
the smallest value of p, n = j. for the next smallest
value of p, and so on.

In a good many cases the quantities (P&q) and

(P&g) are much smaller than unity, so that it is
possible to use the first terms of the series so)u-
tion of Eq. (5.4):

i~pP = pc f,~(8$/Bx), or coth (4,) = —(|',~/g, )x,.

The parameters q, = (coL,/ere) = (2L,/X), and the
corresponding ones q„and g, will be called the
frequency parameters. They give the dimensions
of the room. in half wave-lengths. When we fit
the boundary conditions at x=t.„we obtain the
basic equation for x,
~i~.+coth-' [(I-.,/q. )X.7

+coth —' t (I',2/q, )y,7 =0, (5.3)

with two other equations for g„and y, .

26. Characteristic Values

The simplest case is when none of the im-

pedances I depends on the angle of incidence of
the sound wave. Then the three basic equations
separate, and y, depends only on (I',&'/g, ) and

(I,s/rI, ), and not on (I„2/g„) and the other con-
stants for the other two wall pairs. Referring to
Eq. (3.1) (and recalling that &v is positive here),
we utilize the expression for the specific acoustic
admittance of the walls, P = (1/I ) = (pc/ j

Z
j )e '".

Ke can then express the basic equations in the

+ (n'/~'~') (Pi+P2) '+
(n) 0; P,q, P,q(n).

These formulas are adequate except for the case
where one or both of the walls are quite soft. ,

In reverberation chambers, however, -'where

acoustical materials are measured, data are some-
times taken with absorbing material spread over
one wall (or over the floor). Therefore, it is
important to obtain a solution of Eq. (5.4) when

/
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FIG. 14. Comparison of measured and computed values
for acoustic impedance. Lack of agreement may be
explained by variation of I' and m with frequency.
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The plots correspond to the conformal trans-
formation from In (P22)) to X2, defined by Eq.
(5.7). The transformation is multivalued, with
an infinite number of sheets, corresponding to
the infinite number of roots for g2, as can be
seen from Fig. 15, which gives the transformation
from ln (Pr)) to x'. The details of the trans-
formation from X22 to ln (1/Psr)) will be discussed
later, and plots of some of the sheets are given
in Figs. 16—19.

27'. Resonance Frequencies and Damping
Constants

Solution of the three basic Eqs. (5.4) makes it
possible to compute the characteristic values and
thus the characteristic functions of our boundary
value problem. These functions, for positive cu,

have the form pl! (cv,' x, y, s) =D(x)R(y) F(s),
where

Ds, (X) = COSh L(2riX/L, )X„n,

+coth-' (x., ../P„q, )], (5.8)

1
&law ~apw

FIG. 15. Conformal transformation from wall imped-
ance parameter re'" to square of characteristic value
2!2= (p+2s)2 Branch. points are shown as black circles and
cuts as shaded bands.
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one of the P's (suppose it is Pl) is small, but the
other P is not small. In this case x can be split
into two terms:

i psr)/2r
X~X2+(ipl2)/2rX2) 1+ (pl2) (X2)

X2' —P2'2)' (5.6)

where the quantity y2 is one of the roots of the
transcendental equation,

(1/X2) coth ( —2rzX2) = (1/P22)) = (2Z2L/pc), ), (5.7)

where Z~ is the impedance of the softer wall. The
y's for the other four walls of the reverberation
chamber, which are fairly hard, can be obtained
from Eqs. (5.5).

Plots of real and imaginary parts of the roots
of Eq. (5.7) as functions of the magnitude and
phase angle of P2 have been published (H9, M13).

0.1
-90' -So'

P&RST CYCLE

o gent

CL ~0&S

Olly0s +30 +80

Fro. 16. Conformal transformation from X2=0+iA/2m.
to ln (1/g) for first sheet shown in Fis. 15. Branch point
is at (!1!/g)=1.1'9, y= —38.7'.
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where g....(&o) is the n.th root of Eq. (5.4) for
the x-walls, and where the letter X stands for
the trio of numbers n, , n„, n, . These functions
satisfy the differential equation

~V~(~)+ (~/c') C~~(~) +i&~(~)3V~(~) =o

corresponding to the characteristic value

C~-(-)j = C=+'~-& =(- ) IC.*-.(-)/~.]
+Cxs .(~)/Ls]'+Cx *(~)/J-.l'I (5 9)

The quantity co~, which we shall call the resonance

frequency of the standing wave P~, and k~, which
we shall call its damping constant, are defined
only for positive values of ~ in- accordance with
our convention.

In most cases of practical interest the damping
constant k~ is much smaller than the resonance
frequency co&, so that the approximate equations
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Fta. 18. Conformal transformation from y.
' to In (l'/s)

for third sheet. Additional branch point is at (il'i/s)
=0.355, q = —j.5.0'.
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FIG. 17. Conformal transformation from y to 1n (p/g)
for second sheet. Additional branch point is at (i f ~/s)=0.550, q = —21.1'.

are valid. It will be sho~n shortly that ~ and k

are usually the quantities determined experi-
mentally, rather than the wave number and
attenuation parameters p and K. Therefore, in
our computations, it m~i11 be more suitable to
obtain values of the quantities p2 —K' and 2pK,

rather than p and K themselves. These quantities
are the real and imaginary parts of x', so that
the most useful conformal transformation is that
between y' and ln (i/ptf), corresponding to Eq.
(5.4) or Eq. (5.7).

The series expressions in Eqs. (5.5) enable us
to compute co~ and k~ when all the walls are
fairly hard. The results can be expressed most
easily in terms of the real and imaginary parts of
the specific admittance p: the specific acoustic
conductivity being denoted as y, and the specific
acoustic susceptance as o", so that p(cv) =y+io.
and p( —a&) = y —io, according to our convention.
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Frt-. 20. Conformal transformation from normalizing
function Ge'~ to wall impedance function ln (p/g), for first
sheet.

From Eqs. (5.5) we obtain

—(g/7r) (o g+ o 2),

n' (2g/~) (—~g+ ~,),

2(v~+v~)

p K~—

4~p ~ /q
4(yg+y2), n) 0

n&O
(5.11)

y=(pc/~Z~) cos q, o= —(pc/~Z~) sin y

for (I ~))g/(n+1).

The approximate expression for the damping
constant when all walls are fairly hard is, there-
fore,

k~ (c/SV)[Se .(v„+y„)$,+Se,(v„,+v„,)5„

+Sen. (y, g+y, 2)S,), (5.12)

where tj' is the volume of the room, S, the areas
of the walls at x=0 and x=1. , etc. , and the
quantity e„ is unity when n)0, and ~~ when
n=0. Since e„ is the factor which depends on
the standing wave and not on the wall, we can
call it the wane type factor.

In this case the effect of each wall is additive,
and the formula for the damping constant bears
a close resemblance to the formula of Sabine,
Eq. (2.2), for the ergodic distribution. The
similarity is not complete, however, for the
Sabine formula assumes that all waves have the
same value of k, whereas Eq. (5.12) differen-
tiates between the oblique, tangential and axial
waves through the wave type factors e„. An
axial wave, with two e's equal to —,', is damped
much less rapidly than the oblique waves, with
all three e's equal to unity.

For the case of a reverberation chamber having
one wall which is soft, we can use Eq. '(5.6) to
obtain approximate formulas for the resonance
frequency and the damping constant. We hrst
define the quantities G and 8 by the equation

ip2r//~
G, exp (i82) = 1+ ), (5.13)

X~' —P2'r/"

where x2 is defined by Eq. (5.7). For small
values of P2, 82 is small and G2 is unity if n)0,
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and is -', when +=0 (in other words, it approaches
the quantity e„used in Eq. (5.12). Values of G
and 8 for larger values of P/n can be read off the
charts given in Figs. 20 and 21 for the hrst two
cycles of the transformation from P2q to y~. Then
the contributions to ~ and k due to the soft wall

and the wall opposite the soft one are

p,
' —~'= 0 +(2pcqG2/~ l

Zi l) sin (yi —~~), (5 14)

and

where g2' ——0&+(ikey/2'). The quantities & and
6 can be read from the plots of Figs. 16—19, in

terms of the impedance and phase angle for the
soft wall; whereas G and 8 can be read from the
plots of Figs. 20 and 21. For the further cycles
and for larger values of (Z2/pcg) than those
shown in the plots, it is suf6ciently accurate to
let G=1 and 0=0, (except for the initial cycle,
for which G= —', is the limiting value).

The quantities 0 and 6/2~ are the real and
imaginary parts of the quantity y', which is
related to pi1 by the relation

ciably distorts the form of the standing wave in
the room. In some ca.ses (n=0, or p~ positive for
I&0) the pressure near the soft wall has a larger
amplitude than it does near the opposite harder
wall, so that the relative effect of the harder wall
is reduced. In other cases (for n)0 and for
negative values of q for the soft wall) the
pressure amplitude is reduced near the soft wall
compared to that near the hard wall, so that G2

is larger than unity. The most extreme case is
for n = 0, for (l I 2l /g) less than unity and for p2

negative; where 62 becomes extremely small, so
that the harder wall has practically. no absorbing
effect. In these cases the pressure amplitude
falls off exponentially away from the soft wall,
and the amplitude near the harder wall is prac-
tically negligible, so that very little energy is
present to be absorbed by wall No. 1.

28. Characteristic Functions

The above discussion covers the behavior of
the characteristic values defined in Eq. (5.9).
We must now complete our discussion of the

(1/x) coth ( —irix) = (1/Pg),

as given in Eq. (5.7). Therefore the transforma-
tion from the real and imaginary parts of
ln (1/Pg) to 0 and (6/2~) is a conformal one.
The transformation is multi-valued, any given
value of Pg corresponding to an infinity of
allowed values of 0 and d. Each sheet has its
branch points and connecting cuts, which link
it with the next sheets above and below. The
branch points are shown by heavy circles on the
charts Of Figs. 16 to 19, and the cuts by blank
spaces. Figure 15 shows the inverse transforma-
tion, mith the cuts shown as double lines, shaded.
Other representations of this transformation
have previously been given (H9, M13).

Equations (5.14) show that the absorption of
opposite walls is not additive whenever one wall
of the pair is soft. The contributions to co and k

due to the wall opposite the soft waH (wall No. 1

in Eqs. (5.14)) are modified by the factor G2 and
the phase angle 02, which depend on the value of
the impedance of the soft mall. This is because of
the fact that the presence of a soft wall appre-

G51.0
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FIG. 21. Conformal transformation from Ge'~ to ln (gjg)
for second sheet.
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characteristic functions f~. The functions are
orthogonal, in that the integral of the product
f~(or)P~ (~) over the room volume is zero unless
the trio of numbers represented by N is identical
with the trio represented by N'. (Note that we do
not multiply p~ by the complex conjugate of
p~. , for the conjugate would be the characteristic
function for —&o). The normalization factors for
the functions are

given in Eq. (5.8),

Dm. cosh [(~ex/Lg) y.+(g.P.g/y. )$. (5.18)

If the opposite mall is also hard, then the fol-
lowing approximate formulas are valid,

cosh

r~

A~(L) =,', P~'(~)d V=A~.Anys~g (5.15)
Dn, [P,g(x —L,) +P.2x], (n, =0) (5.19)

L,
A„(a)) =—1+

2 x-'(~) Pi'n' -x-'(~) Pa'n'-

L[1—(~iq/3)(pg +p2 )(pg+p ) '5,

(&=0 P~n P2n&1)
(5.16)

(L/2) [1+(ig/~n') (pg+ p2) ],
(n )0; P,g, Png &n).

When all the walls are rigid, the normalizing
factor has the more familiar value

AN~( UE+) )

1, n, =n„=n, =0

@&here the subscripts x, y, and s are to be inserted
in the second equation to obtain the three factors
of A~. When both walls of a parallel pair are hard,
the corresponding normalization factors can be
computed from the series formulas

cosh I (~inx/L, ) —(g, /nL, ) .

[~. ( -L*)+~" 3I, (.»).
This completes our discussion of the standing

waves in a rectangular room, with uniform
coverage of material whose impedance is inde-
pendent of angle oF incidence y;. An exact solu-
tion for the case when the impedance depends
on q; is beyond the scope of this article. When
the mails are hard, the angle of incidence against
the x-walls, for instance, is approximately

cos '
I (~*/L.)[(~*/L*)'+(N./L. )'+(~*/L.)'3-'I.

For this approximate value of angle the im-

pedance for the x-walls can be computed, and
values of p,„a, etc. , can be obtained. If this
result is not accurate enough, a more exact
value of angle of incidence can be obtained by
setting the computed values of p„a, in the
equation

cos q,—(m c/a)~L. ) (p.' —~') ',

en en„en,

—,', only two n's zero

4, only one n zero

—,', not any n equal to zero

and recomputing the values of impedance and
corresponding resonance frequency and damping
constants.

29. Steady-State Response

vrhere V=I I-„I, is the room volume,
In the case when one wall of a pair (wall No.

2, for instance) is soft and the other is hard, we
can use Eqs. (5.13) and (5.14) to obtain the cor-
responding factor in the normalizing constant,

A„~(L/2)[(1/G2) exp ( i82)+(i—P&g/xy2') j
As for the characteristic functions themselves,

if the wall at x=0 is hard (P,~g, small), the
x-factor for f~ takes on a form simpler than that

Now that the characteristic values and func-
tions have been discussed, and methods have
been outlined whereby their values can be com-
puted in the various cases of practical impor-
tance, we must apply the results to the study of
the steady-state response of a rectangular room.
We assume that a distribution of sound source
is present in the room, so that in the cm cube
around the point (x, y, s) there is an air outflow

g(x, y, s, t) cc per sec. of air at the time t. In the
present section we shall study the behavior due
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to simple point sources, but it is possible to
study the effect of any sort of source by building
up a space distribution of sources of various in-
tensities. The equation for the velocity potential
in the presence of a distribution of sources turns
out to be

When the source is simple harmonic,

g=Q(x, y, s)e-~',

and we can expand 4' and Q in series of the
characteristic functions discussed above. These
series will satisfy the boundar'y conditions for the
frequency ( —~/27r). Substituting the series into
the equation for + and using the equation re-
lating the characteristic functions P~( —cu) with
the characteristic values co& —i k&, we finally
obtain the series

~ivg'N ( & y & ) y ~ s)
cp P e kat-

pp' —(pp~ —ik~) '
(5.20)

~N Q4~( —~)d~.
+N( pp) ~

The steady-state pressure at point (x, y, s) is
then —z pc@%'.

If the loudspeaker is considered to be a
simple point source of strength Qp at point
(xp, yp, sp), then

8~= QplP~( —6); ppp, yp, zp)/A~( —(0). (5.21)

This indicates that the relative amount of the
Xth wave in the series excited by a point source
is proportional to the amplitude of the wave at
the position of the source. To eliminate a wave
from the steady-state sound, one can place the
source where the amplitude of the unwanted
standing wave is zero.

A more important factor in each term, how-
ever, is the resonance denominator, which is
small when the driving frequency is equal to the
resonance frequency (pp&/2pr), making the corre-
sponding term in the series quite large. The
resonance peak for each standing wave is fairly
narrow; the half-breadth (the amount the driving
frequency must differ from the resonance fre-

quency in order that the mean square pressure

be half its resonance value) being (k~/2pr). For
low frequencies, such that the wave-length-is
not small compared to t'he room dimensions, the
separation between successive resonance fre-
quencies is, on the average, larger than this
half-width. The response at these frequencies is
quite irregular; it is small when the driving
frequency is not equal to one of the resonance
frequencies, and quite large at resonance. In
this case it is possible to study each standing
wave separately, by driving the room at the
corresponding resonance frequency.

The limiting frequency, below which iridividual
standing waves can be excited separately, can be
obtained from Eq. (3.4), which gives the average
number of resonance frequencies less than v. If
we differentiate Eq. (3.4) and set dn equal to
unity, we find the corresponding value of dv is
the average frequency spacing between resonance
frequencies. Neglecting all but the first term in
the series, we see that an approximate value for
this spacing is (c'/4pr Vv'). In order to separate
individual resonance peaks, this spacing must be
larger than (k~/2s). Therefore individual stand-
ing waves can be excited separately in a room
for driving frequencies v such that

v & (c'/2 Vk~) '*, (5.22)

where V is the volume of the room, and k~ is
given by Eq. (5.10).

30. Phenomena at Low Frequencies

So far we have been tacitly assuming that
our problem was to compute the acoustic be-
havior of the room when the impedances of the
walls are given. A problem of equal importance,
however, is the reverse one, of finding the im-

pedance of a material from measurements of the
acoustic behavior of a reverberation chamber
having the material on one wall. The discussion
immediately above suggests two different meth-
ods of solving this problem.

Both methods require the use of small scale
chambers in order that the resonance frequencies
be spaced far enough apart in the useful fre-
quency range so that individual standing waves
can be excited separately. Chambers about 3
feet in largest dimension, and with sides approxi-
mately in the ratio 1.5:2.5:3.5 have been found
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suitable (B5, B9, H7}. The source can be a tube
transmitting the sound into a chamber through
a hole in one side, so that it acts as a point
source. In this case the coefficients B~ in Eq.
(5.20) are given in Eq. (5.21). If we suitably
arrange the position in the wall of the end of the
tube, it is sometimes possible to separate the
response of two standing waves which have over-

lapping resonance peaks. The chamber should
be made of very heavy, rigid, impervious ma-
terial in order that the contribution to k~ from
all the walls not coated with absorbing material
be negligibly small.

The first of the two methods mentioned above
involves the measurement of the dependence of
the pressure in the chamber on the driving
frequency (B5, H7). By measuring the response
of the room near one of its resonance frequencies
one can obtain values of co~ and k~ for the room.
A comparison of the measured values of these
quantities for the untreated chamber with those
obtained when the absorbing material is placed
on one wall may enable one to find values of 0
and 6 corresponding to the absorbing wall (see
Eq. (5.14)). From these, by using the charts in

Figs. 16 to 19, it is possible to obtain the specific
impedance for the absorbing material at the
various resonance frequencies.

In practice, however, it seems to be much
more difficult to measure 0, which involves a
measurement of the change in the resonance
frequency' caused by placing the absorbing
material on one wall, than it is to measure 6,
which involves only a comparison of half-widths

of resonance peaks for the room with and without
the absorbing material. If 0 cannot be measured,
and only one value of 5 is measured, the value
of I cannot be determined; but if the values of
6 for two or more different standing waves, of
nearly the same frequency but having different
values of n„can be measured, it is sometimes
possible to obtain the value of I. For instance,
if we know values of 6 for a wave which grazes
the material (n, =0) and for a wave with nearly
normal incidence (n„~& 1), we can compare Figs.
16 and 17 to find what value of f gives this pair
of values. This method, however, does not always

'Shifts in resonance frequencies have been observed
experimentally (B8, K5), but quantitative correlations
with wall impedance have not been reported.

give unique answers (B5, H7), and slight errors
in measured, values of k~ may lead to very large
errors in the resulting values of I. On the whole,
the frequency variation method is more reliable
when both 0 and 6 can be measured.

A second method of working backward from
steady-state measurements on standing waves
to acoustic impedance involves the measurement
of the dependence of the pressure on position in

space. A moving microphone is used to obtain
the dependence of the pressure amplitude of a
resonating standing wave on the distance from
the absorbing wall. If the absorbing material to
be measured is placed on the wall x=I, and
the wall at x=o is rigid, the dependence of the
mean-square pressure on x wi11 correspond to
the factor

(P') A. = —', cosh (2~a.x/1..)
+-,' cos (2nlj,,x/I, ). (5.23)

A family of curves of ten times the logarithm of
this factor (p' in db as function of (iix/L), for
diFerent values of (~/p), is shown in Fig. 22. By
fitting the horizontal scale of the experimental
curves to those of.the figure, one can obtain a
value of p .

, and by correlating the shape of the
experimental curve with one of the family of
theoretical curves, a value of a can be obtained.
Once these two parameters have been deter-
mined, values of 0 =p,-'—~,' and 6 =4xp a can
be computed and Figs. 16 to 19 can be used to
find the specific impedance l,2. If the wall at
x=0 is not perfectly rigid, the origin for Eq.
(5.23) will not coincide exactly with the hard
wall, but will be displaced by an amount which
can be determined by Eq. (5.18).Also, according
to Eq. (5.14), correction terms must be sub-
tracted from p,,' —~' and 4xp, rc, in order to
obtain the values of 0, and 6, to use in obtaining

Values of these correction terms can be
determined by measuring the pressure distribu-
tion in the chamber before the absorbing ma-
terial is placed on one wall.

Few applications of these methods have been
reported to date, but these have been sufficient
to furnish some enlightening results and to indi-
cate that this approach can be useful for obtain-
ing certain kinds of information which are diK-
cult to get by other methods. In particular, the



SOUN D WA VES I N ROO lVIS 109

lA

0

I ) j I i I i

Ipl'= ,'c-o(' ~~)+gcosh(' „'~);r ~"
r

C

r
lr

/i
-50

20
~ 0 O.f 'l.0

(z~rL)
e.o

FIG. 22. Mean-square pressure in decibels; dependence on one coordinate.

study of isolated modes of vibration in rectang-
ular chambers can yield values of impedance as
a function of angle of incidence and of mounting
conditions, on samples large enough to simulate
full scale applications.

Hunt (H7) made a, study along the lines of the
first method outlined above, measuring resonance
peaks to determine absorptive properties of
acoustic materials for different kinds of waves.
However, this work was done before the meas-
urements of Beranek (B3) and others had
demonstrated the importance of the imaginary
part of the impedance; no attempt was made to
obtain a reactive term, so only the quantity
corresponding to 6 was measured, and 0 was
ignored. Transite slabs, 2" thick, were used to
form model chambers of variable dimensions
such as to give isolated peaks from 250 to 1500
c.p.s. A high impedance sound source was used
to minimize reaction of the standing wave which,
as Eq. (5.20) shows, undergoes wide variations
in impedance in the neighborhood of a normal

frequency. A resonance peak width is measured
between points on each side at which p2 is one
half the maximum peak value, and this width
in c.p.s. is just twice k&, the damping constant
of Eq. (5.12).

Measuring a given mode with and without a
wall covered with material makes it possible to
determine the y for the material since all other
y's in Eq. (5.12) are equal, and have the value
for bare walls. Since the wave analyses reported
here were not fully developed at that time, the
results were interpreted along the lines of free
wave propagation as discussed in Chapter VIII.
Hunt computed n(8) from an equation similar
to Eq. (8.5), on the assumption that the acoustic
impedance was independent of angle of incidence
and by fitting to an impedance measurement at
one point. It was then found that values of 0.(8)
measured for waves of various angles of incidence
on the sample, by the peak width method, fitted
this curve well with one exception; values for
grazing incidence were not zero as predicted by



ii0 P H I L I P M. MORSE AN D RI CHARD H. BOLT

the free wave theory. This is now understood in
terms of the analysis in the present chapter; in
an enclosure, waves which "graze" a wall (one
or two n's equal to zero) are somewhat damped
by material on that wall.

Bhatt (B5) used a variation of the first
method described above. He determined the
equivalent of 5 for two or more modes having
about the same frequency but different angles
of incidence. As mentioned above, this does not
always give a unique answer. But Bhatt showed
that if a large number of "probable" values are
determined by pairs of modes, and plotted
against frequency and smoothed, the correct
impedance curve can be inferred with reasonable
certainty. Values measured in this way checked
values obtained by the hyperbolic tangent meth-
od (Chapter IV) closely. Instead of measuring
peak widths, he used two other methods for
determining 2: (a) decay rate measurement, a.nd

(b) pressure measurement, of individual normal
modes. The decay method was fairly accurate,
giving k~ to within a few percent. The measure-
ment of peak pressure was much less accurate,
and there were unexplained variations, related
perhaps to minor changes in mounting conditions.

A start has been made on the application of
the second method suggested above, that is
measurement of the pressure distribution in
space. A heavy walled chamber similar to that
used by Bhatt, dimensions about 2')(3'g4', was
fitted with a miniature microphone movable
continuously in all directions by external con-
trols. Pressure plots were obtained both with
bare walls and with absorbing materials on
different walls. The method of fitting these
results to the curves in I ig. 22 was found to be
straightforward and simple. An exploratory
study was made of the problem of variation of
impedance with angle of incidence, by using
spaced porous felt materials. The impedance of
this type of structure had been studied for
normal incidence (89) and is developed theo-
retically in Sec. 2i above. The difference be-
tween Eqs. (4.13) and (4.14) was strikingly
demonstrated, i.e. , a dependence of impedance
on angle of incidence when waves could travel
parallel to the material behind it and independ-
ence when the backing space was broken up
with a cellillar structure. This method should

provide a useful tool for the study of new
absorptive structures.

v) (50c'/ Uk~) '. (5.24)

In this case there are enough standing waves
resonating to make it possible to transform the
summation in Eq. (5.20) into an integral. How-
ever, before the analysis of Chapter III can be
used to effect this change, we must make certain
approximations to simplify our calculations, and
we must classify our standing waves into the
oblique, tangential and axial waves discussed in
the earlier chapter.

In the first place at these higher frequencies
the wave number parameters p are usually much
larger than the attenuation parameters ~, so
that Eq. (5.17) can be used for the normalizing

31. Phenomena at High Frequencies

Individual standing waves can be measured in
small chambers at usual frequencies, or in larger
rooms at very low frequencies. In conventionally
sized rooms at "usual" frequencies (200 to 5000
c.p.s.) the resonance frequencies are so close
together that a number of standing waves will
be excited, by the source, with about equal
amplitudes, so that no individual wave can be
studied by itself. In this case it becomes quite
difficult to work backward to find values of wall
impedance from measurements of steady-state
response of the room although it is possible to
predict the behavior of the room when the wall
impedances are known.

It is not possible to make any general state-
ments about the room response when only a few
standing waves are excited together. The pres-
sure distribution must be obtained by detailed
computation of Eq. (5.20). The room response is
quite irregular in its dependence on frequency in
this -range, and the pressure distribution is still
far from uniform. However when the natural
frequencies are so closely spaced that a hundred
or more different standing waves have frequencies
within a half-breadth of the driving frequency,
it is possible to study the room response by
statistical means. By arguments similar to those
used in deriving Eq. (5.22) we see that the
statistical analysis may be used for ranges of
driving frequency s satisfying the following
inequality
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factor. This is a good approximation for the
oblique waves (which comprise the majority of
the waves) though it may not be valid for the
tangential or the axial waves if one or more of
the walls is soft. In the second place we can see
that although the introduction of absorption'
has altered the resonance frequencies from the
simple values used in Chapter III, nevertheless
the average density of resonance frequencies at
these higher frequencies is the same as that given
by Eq. (3.5). Therefore the average number of
the three different types of waves having
resonance frequencies between a& and co+d~ is

dn ~(V~ /22m' 'c)Cko, oblique waves;
(5.25)

dn~ (L„L,cv/2~c')d&u, y—e tangential waves;

dn. (L,/~c) cI+, x axial waves,

' Actually the vector is not exactly parallel to the wall
since for an absorbing room none of the three components
of cvz, (mc/L ) (p. ' —~,2)&, etc. , is exactly zero. However for
the purposes of our statistical discussion, we can refer to
the vector cog for tangential waves as though it were
parallel to the corresponding walls.

to the first approximation.
Therefore we can consider the quantity co& in

Eq. (5.20) to be the magnitude of a vector in
frequency space, which covers all the first octant
in frequency space as the summation is carried
out, and which has the "density" given in Eqs.
(5.25). Instead of summing, we can then integrate
over all directions and magnitudes in the first
octant. First, however, we must find out how
the damping constant k~ changes as a function
of the frequency vector.

According to Eq. (5.12) the damping constants
for a room with fairly hard walls depend on the
magnitude of'the vector ~~-, but are independent
of the direction of ~~ (the relative magnitudes
of n„n„, and n, ) as long as the wave is an
oblique one; that is, as long as the vector is not
parallel to a wall or an edge. The x-y tangential
waves, with vectors parallel" to the (x, y) plane,
also all have the same value of damping constant,
which is different from the value for the oblique
waves, and so on. Even with one or more walls
of the room soft, the majority of oblique waves
usually have damping constants which are nearly
equal. For instance when the wall at x=1, is

moderately soft, Eq. (5.14) and Figs. 16 to 19
show that the value of 62 for n =0 or 1 may
differ markedly from the rest of the roots but
that as n, is... increased the allowed values of A2

rapidly approach the limiting value given by
Eq. (5.11). In most cases of practical interest
only the first two roots differ markedly from the
limiting value, so that even here a11 the oblique
waves, except those with vector co& most nearly
parallel to the soft wall, have the same value of
kN. . (One might call these exceptional oblique
waves the "almost-tangential waves. ")

32. The Wa11 CoefGcients

with two other equations for the y and s wall

coefficients. These quantities n play a role in

wave acoustics similar to the absorption coeffi-

cients in geometrical acoustics. However they are
not equal to the ratio between absorbed and
incident energy, but'are more nearly proportional
to the ratio between absorbed and average
energy in the room. In some cases the distribu-
tion of energy is far from uniform over the
room, with the intensity at some walls larger
than the average intensity; so that the wall

coefficients may sometimes be larger than unity.
To each mall in a room, therefore, we can

assign a set of coefficients o.„which depend in

general on the shape and size of the room, on

the particular standing wave which is excited,
on the acoustic impedance of the wall; and
sometimes even on the impedance of the opposite
wall. When the wall is hard ( ~

Z
~ /q larger than

about pc) and the frequency vector co~ of the
wave in question is not parallel to the wall

(n) 0), the coefficient has the value

a&=8y=(8pc/~Z~) cos p, (5.26)

where Z and q are the acoustic impedance and

phase angle for the wall in question. This
quantity will be called the normal coegcient

In view of the above discussion, we shall make
one more change of notation in order to make our
equations correspond as nearly as possible to
the form of the Sabine equations. We shall define
the mall coegcients (812, H8) for the x-walls by
the equation

cxn~zl +cingx2 = (8'pnzKnz/gz),
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When the wall is hard and the frequency vector
of the wave is parallel to the wall, the coefficient
1S

n, =(8pcGo/~Z~) cos (y —6), (5.27)

where G2 and 02 depend on the impedance of the
wall opposite the one under consideration, their
values being obtained from Figs. 20 and 21.
This coefFicient will be called the supp/ementary
coegcient W.hen (~Z~/q) is larger than about
4pc, both n, and o.& are approximately -,'o.„.

When the wall is soft and the wave vector is
parallel to it (m=0), the coefficient is

(5.28)

where the value of 6 is obtained from Fig. i6,
the first sheet of the transformation. This will
be called the grasping or tangential coegcient. The
cock.cient for n = 1, where the. frequency vector
is nearly tangential, is 26/rl, with the value of 6
obtained from Fig. 17, the plot for the second
sheet of the transformation. In most cases the
coefficient for n =2, which can be obtained from
Fig. 18, is almost equal to the normal coefficient
given in Eq. (5.26); and in all but the most
exceptional cases the coefficients for still higher
values of n are quite accurately given by Eq.
(5.26), or obtained from Fig. 13.

Therefore the damping constant (see Eqs. 4.1

and 5.10) for a particular standing wave is
given by the formula

k~ ——(ca~/8 V),

a~=L„L (n i+n o)+L L,(noi+n„o)

+L„L„(n.i+n, o), (5.29)

where a~ is the room absorption factor for the
wave specified by the trio of quantum numbers
1V= (I, n„, n, ). For a room with all its walls hard
and when the wave is an oblique one, the o.'s are
equal to the corresponding normal coefficients
for each wall; when the wave is tangential or
axial the coefficients for the walls perpendicular
to the frequency vector are still the normal
coeScients, those for the walls parallel to the
frequency vector are equal to the corresponding
grazing coefficients, which in this case are one-
half the normal coefficients. When one wall- of a
pair is soft and when the frequency vector is
parallel to this pair, the coefficient for the harder

wall of the pair is the supplementary coefficient
and that for the softer wall is the grazing coeffi-
cient, whose value in this case must be obtained
from Fig. 16. For waves with frequency vectors
almost parallel to this pair (n=1) the normal
coefficient is used for the harder wall and the
coefficient n~, obtained from Fig. 17, is used for
the softer wall. For waves with still smaller
angles of incidence (n)1) in most cases the
normal coefficients are used for both softer and
harder walls. When both walls of a pair are soft,
Eq. (5.3) must be solved to find p and ~ for the
pair, and Eq. (5.26) used to find the sum of the
coefficients, which in this case cannot be sepa-
rated into two terms, each depending on one of
the two walls separately.

Equation (5.29) is similar in form to the
expression derived by Sabine (Eq. (4.1)) for the
case of ergodic distribution. The difference lies
in the fact that in the present. case the coefficients
not only depend on the nature of the walls, but
also on the nature of the standing wave under
consideration; and sometimes on the size and
shape of the room. For the majority of the
oblique waves the coefficients are the normal
coefficients, which do not depend on the room
size (though they may turn out to be larger
than unity). The tangential and axial waves
always have different values for some of the
coefficients, and when one or more of the wa11s
is soft, their grazing coefficients depend on the
room size as well as on the wall impedance. If
the wall is soft enough, the "almost tangential
waves" also have special values of the coefficients.

33. Coherent and Incoherent Waves

Returning to our study of the room response,
we can now say that the damping constants for
the majority of the standing waves in the series
of Eq. (5.20) are independent of the direction of
the vector u~. In case the frequency of the source
satisfies the inequality of Eq. (5.24) the summa-
tion may sometimes be replaced by an integra-
tion over all magnitudes of the vector or~,
and over all directions inside the first octant
of frequency space. When Eq. (5.21) is used,
each term in the series has the product
i'( —oi; ooo, yo, &o)far( —oi; x, y, s). When the
hyperbolic cosines are expressed as exponentials
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R((a„/64) i, (5.30)

where a„ is the value of a// given in Eq. (5.29)
when normal coefhcients Q.„are used for every
wall. This usually means that the point I' must
be fairly close to the source in comparison to the
size of the room, in order that integration be
valid.

If R does satisfy the inequality of Eq. (5.30)
the result of the integration of the eight expo-
nentials is the simple expression

—
(Q /4&R)e((&o/c) (8—ct) (5.31)

and the product multiplied 'out, there will be a
sum of 64 different exponentials for each term
in the series. One of these exponentials will be
exp L(i/c)(&o~ —ih)/) R], where the direction of
the vector (co~ —ih~) is determined by the ratio
of the quantum numbers n„n„, n„and R is the
vector distance between the source (xo, yo, &0)

and the point I', (x, y, s). There are seven other
exponentials of the same form, except that
instead of the vector (&u~ —ih~), its mirror image
in one of the other seven octants of frequency
space is used. Therefore instead of integrating
the eight exponentials over the first octant, one
of the exponentials can be integrated over all
directions in frequency space. There are other
exponentials in which the vector R is replaced
by the vector distance between the point I' and
the mirror image of the source in one or more of
the octants (mirror image of source in nearest
walls).

When we attempt to integrate the eight
exponentials first mentioned over all directions,
we encounter a restriction on the size of the
vector R. The resonance denominator ensures
that the integrand is only large when the magni-
tude of &d~ is between co+h~ and ~ —k/('. As we
sweep the vector co~ over this important spherical
shell in frequency space, it will not be possible to
change from a summation over the allowed
directions to an integration over all directions
unless R is small enough so that (1/c)&o~ R
changes by an amount smaller than (v/2) when
we change co~ from one allowed direction to a
next nearest allowed direction. If we use Eqs.
(5.25) and (5.29), this requirement can be
reduced to the simple inequality

where we have utilized Eq. (5.25) for dn„, as
well as Eqs. (5,.17) and (5.21). The expression
on the right-hand side is the velocity potential for
radiation from a simpte source in the open. This
part of the. velocity potential can be called the
coherent part. Unless the source is closer to a
wall than the limit given in Eq. (5.30), none of
the rest of the sixty-four exponentials can be
arranged so that their sum changes to an integral.
Therefore the remainder is an incoherent part
with no definitely directed How of energy or
ordered wave motion, a quantity which will
have to be studied by statistical methods later
in this section.

If the source is near to one wall, the distance
between the point P and the image of the source
in this wall will be small enough to satisfy Eq.
(5.30), so that another term must be added to
the coherent part representing the reHection of
the wave by the wall. This term is multiplied by
a factor arising from the fact that energy is
absorbed by the wall when reHection takes place.
This extra term will be discussed in Sec. 53,
where the coherent part will be dealt with by
less fundamental but more straightforward
methods.

As the point I' moves away from the source,
the coherent part of the sound diminishes in
intensity, until when R equals the limit given in
Eq. (5.30), it has the same average magnitude as
the incoherent part. Beyond this limit there is
still a coherent part, but it is quickly lost amid
the incoherent part, and would be exceedingly
difficult to measure experimentally (R1).

The incoherent part of the sound, when the
frequency is high enough to satisfy Eq. (5.24),
is distributed fairly uniformly throughout the
room and is fairly isotropic, except near the
walls. This does not mean, however, that the
incoherent sound in a simple rectangular chamber
is ergodic in distribution, for it is still possible
to distinguish between oblique and tangential
and axial waves. The difference is analogous to
the difference between multiply periodic motion
and ergodic motion in mechanics.

34. Mean-Square Pressure

In order to study the incoherent part, we must
determine its mean square amplitude. Using
Eqs. (5.17), (5.20), and (5.21), we find that the
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general expression for the mean-square pressure
(Xo, yo, eo) IS

at the point P owing to a point source at

(p') 4.=
4c'p'~'Qo' (114~(—~; ~0 ~o «)4~( —~ ~ 3 s) '

0 4~) 4d —(CO~ 'tkN)
(5.32)

(p')A. =
c4o2~2Q, 2 ~X

2 V~ ~ (~~ —~~2+k~~) 2+ 4(g~~k~'2

1, (space average for both)

Z~ ——- (1/e~), (average for one, other in corner)

(1/c~)', (both in corners) (5.33)

where e~ is defined in Eq. (5.17).
This summation can be changed to an inte-

gration if the frequency of the source is large
enough to satisfy Eq. (5:24). As indicated in
Eq. (5.29) and the preceding discussion, in most
cases the k's for all oblique waves in a given
frequency band are equal since they are obtained
by using all normal coefficients in the expression
for c~ (the corresponding value of c~ will be
called a~). Similarly, the k's for the ys-tangential

In making reverberation chamber measurements
there are two positions where the microphone
and loudspeaker source are usually placed:
either at a corner of the room, or on a rotating
arm so that a space average is measured. For a
corner of the room ip~ is approximately unity
(plus or minus), whereas the space average of

is approximately e~. Therefore there are
three special forms of Eq. (5.32) which will be
useful to write down; one for the case where
both source and microphone are at "average"
positions in the room (far enough apart so that
the coherent part is negligible); one for the case
where one, either source or microphone, is in a
corner of the room and the other is moved so
that an average is measured; and the third for
the case where one is at one corner and the
other at one of the other corners of the room.
In all three cases the terms involving two
different values of N cancel out in the summation
because of the orthogonality of the P's in the
case of the space averages and the equal numbers
of plus and minus signs in the case where source
and microphone are at different corners; so that
only the squared terms are summed, The results
are p'(o'Qo' 1 ( xSc ~Lc' q

(p') = —
I

1 — +
24r a„( 4 Vid 8 Va)')

m L.L„c t' L,+L„i
+7- I

1 —c
' "

I+g
~y a&Uai~„& L.L„(u &, (o'Va~.

2xJ c'
(5.34)

when both source and microphone are moved to
obtain space averages. This is a rather compli-
cated formula, but in many cases only the first
term is important. This first term is the quantity
which would be obtained by the simpler Sabine
theory for a simple source in a room with walls
having absorption coef6cients equal to the nor-
mal coeflicients given in Eq. (5.26). Therefore,
most steady-state measurements in rectangular
chambers give values of the normal coegcients of
the walls, and do not give values of the Sabine
absorption coefficient. In exceptional cases where
one wall is much softer than the others, one of

waves are all obtained by using grazing coeS-
cients for the x-walls and normal coeScients for
the other walls in the expression for a~ (which
will be denoted by a&»). The damping constants
for the other tangential waves and the axial
waves can be obtained in an analogous manner,
and the a&'s can be similarly denoted (for
instance, c,„ involves grazing coefficients for the

y and s walls and normal coefficients for the x
walls, and is for the x-axial waves).

Referring to Eqs. (3.5)—(3.7), we see that
when the summation is changed to an integra-
tion, it will be necessary to integrate co&'dko~,

co&des~, and der& divided by the resonance de-
nominator $(aP co~'+k—~')'+44d~'k~'], over co~

from zero to infinity. When ki4 is small compared
to the driving frequency co, approximate values
of these integrals are (v/4k~), (4r/4~k~), and
(ir/4a'k~), respectively. When all the integration
is performed and when the proper values of the
k's, in terms of the a's discussed above, are
written in, we obtain an approximate formula
for the mean-square pressure of the incoherent
sound.
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the o, 's for tangential waves may be much smaller
than ao, and therefore one of the terms in the
summation over (xy) may be la,rger than the
first term in Eq. (5.34). In this case the quantity
measured by the steady-state technique would
correspond more nearly to the grazing coefficient
for the soft wall than it would to the normal
coefficient. This corresponds to the well-known
fact that placing all the absorbing material on
one wall of a rectangular room is not the most
efficient arrangement of material, since there
are some tangential and axial waves which
move parallel to the material and are not readily
absorbed.

When either source or microphone is in a
corner of the room and the other is moved
about to obtain a space average, then the
quantity in the first parenthesis in Eq. (5.34) is
multiplied by 8, the terms in the second paren-
thesis are multiplied by 4 and the last term by 2;
whereas if both microphone and source are in
corners, the extra factors are 64, 16, and 4
respectively.

35. An Approximate Formula

When none of the walls is especially soft (to
be more precise, when the smallest of the c's for
tangential waves is larger than a„divided by
the longest dimension of the room measured in

' half-wave-lengths), a somewhat simpler expres-
sion can be used instead of the one given in
Eq. (5.34). Using the definitions of S and I.
given in Eq. (3.4), and recalling that tt = (2L„/X),
etc. , we can write the approximate equation

( I a, )(xl& — +
2'„g„pi~.l &

which is valid to the second order in the quanti-
ties (a„/rt~g„, ) etc.

However, (p~'Q02/8mc) is the total power radi-
ated from a simple source of strength Qo, so
that Eq. (5.35) can be generalized for any source
of reasonably small dimensions (not considerably
larger than a wave-length). If the source is
emitting sound energy at a rate of II ergs per

second, then an approximate formula for the
mean-square incoherent pressure in the rectang-
ular room (with space average for both source
and microphone) is

(4pc
(p ).,=l 11 l8.8„8.,

4a„

8,= I — +
2'gx 'gx+ ty z-

(5.36)

with similar equations for B„and 8,. The factor
in parentheses is the quantity obtained by the
simple Sabine theory with normal coeAicients
for every wall; the correction factors 8 arise from
the fact that sound in a rectangular room with
uniform walls does not produce an ergodic sound
distribution.

When either source or microphone is in a
room corner and the other is moved about, the
factor 8, equals

l
2 —(I/it, )+(a /it, ag„,)$, etc.

When both source and microphone are at
corners„ the factor 8, has the value [4—(2/tt. )
+(a„/rt, a&„,)], with similar modifications for 8„
and 8,.

When one of the walls (wall x2, for instance)
is soft enough so that the "almost tangential"
waves have a coefficient n& which is not equal to
n„, the expression for 8 is modified and becomes

3 Qy Cy+ +
2&x 'gs+1yz gx~tyz

(5.37)

where ai„, is the value of a obtained when the
"almost tangential" coefficient ~~ for the soft
wall is used for x,. in Eq. (5.29). The further
modifications for corner placing of source or
microphone, or both, are that the first three
terms are multiplied by 2 or 4, and the last
term is unmodified.

Equation (5.36) indicates that the Sabine
absorption coegcient cannot be measured by
steady-state measurements in a simple rectang-
ular chamber. If the chamber is large (rt's large)
or the frequency high and if none of the walls is
particularly soft, the quantity which is measured
is nearly equal to the normal coegcient which, we
shall see 1ater, is not exactly equal to the Sabine
coefFicient (and may sometimes differ from it
widely). Otherwise an analysis of the measure-
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FIG. 23. Steady-state response characteristics of a room. Curve A, room live;
curve B, room damped. From reference W8.

ments is further complicated by the fact that
the 8's are not equal to unity, and the quantity
measured is a weighted average of normal
coef6cient and grazing coefficient, the weighting
factors depending on the ratio between room
size and wave-length.

36. Measurements of Steady-State Sound

Experimental studies of steady-state sound in
rooms have not kept step with measurements
involving the transient state. This is partly
because music and speech sounds are predomi-
nantly transient in character, .so it is natural to
associate the hearing quality of a room with the
properties of sound decay. Another reason is
that Sabine and other pioneers, who lacked
modern electronic techniques, recognized that
the time of reverberation was something that
could be observed by the ear, whereas it would
be impossible for the ear to judge relative
intensities of steady-state tones with sufficient
accuracy to give significant absorption measure-
ments. With the advent of modern instruments,
however, this limitation has been overcome.

Some of the steady-state investigations to
which we referred earlier in this report will be

described a little more fully here. Wente (W8) in
1935 studied the transmission characteristics of
rooms with a high speed level recorder. The
loudspeaker was fed by an oscillator which was
changed very slowly in frequency. The signal
picked up at some other point in the room was
thus indicative of the steady-state transmission
properties of the room. This method is commonly
used in studying electrical transmission systems.
Figure 23 shows two of Wente's records; the
upper one is for a live room, and the lower one
for the same room (about 10,000 cubic feet in
volume) with absorbing material added. In the
damped room the resonance peaks are markedly
broadened, as discussed in connection with Eq.
(5.20), and the curve is consequently smoother.
Wente carried this a step further and showed
empirically that a simple functional relation
existed bet'ween the "transmission irregularity '

and the total amount of absorption in the room.
Wente's work led to the investigations of Hunt
(H7) and Bhatt (B5) discussed in the previous
section.

Steady-state measurements were utilized by
Knudsen (K4) in developing the "intensity
method" for obtaining absorption coefficients.
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In this case an averaging over a large number of
standing waves is desired, and precautions are
taken to eliminate individual resonances. The
basic equation for this method, as given by the
approximate Sabine theory, is

4pcII
a (see Eq. (5.36)),

( ')A.
'

where a=gnS is the total absorption at the
walls of the room, and p is the sound pressure; .

(p')A„ is proportional to the average intensity in

the room. According to this equation the total
absorption is inversely proportional to the
steady sta-te intensity. If the absorption of the
bare chamber walls is first evaluated by intro-
ducing a "standard" absorbent with a known

coef6cient, then the coeScient of any material
may be measured by a straightforward compari-
son of steady-state intensities. This method has
the advantage over reverberation methods that
a moderate background noise is not a disturbing
effect since all measurements can be made at
high intensities. Decay measurements, on the
other hand, must be carried on in very quiet
surroundings which are not always easy to
obtain.

Unfortunately, there are not sufFicient data at
present to make a very thorough correlation of
the intensity method with the wave theory
treatment outlined above. Only two materials
were reported and impedance values for these
are not available. However, if certain reasonable
assumptions are made, it is possible to calculate
the correction terms in the simplified Eq. (5.36)
for the cases measured by Knudsen (K4). This
calculation indicates that the difference between
the geometrical theory and the wave theory is

experimentally negligible for these cases, at
least insofar as the correct relative values of
absorbing coefticients are concerned. For a
plaster of 0.=0.083 covering all surfaces in a
room 18X 18X 16 ft. high, the product of the
correction factors B,B„B,in Eq. (5.36) is about
1.14. This means that the actual absorption is
somewhat greater than the value inferred from
the intensity measurement and the. simple
formula. However, the correction factors have
almost the same values for the bare walls
(m=0.014) as for the plastered walls, so that the

ratio of absorption with and without the plaster
is changed by less than 0.5 percent by the wave
theory modi6cations. Nevertheless, the wave
theory does bring out one new point of impor-
tance in this case: that the quantity which is
actually measured is the normal coefficient and
not the statistical coefficient. The good agree-
ment with reverberation measurements is due
to the fact that the reverberation method also
gives normal coefficients for frequencies lower
than about 500 c.p.s. The adequacy of the
geometrical theory in giving the correct relative
absorption in this instance is owing to the low
value of o, and to the completely uniform
coverage of all surfaces. Most acoustic materials
of interest are more absorptive than the plaster
discussed, and it is usual to cover only one
surface or a portion of one. In many such cases
Eq. (5.36) would be significantly different from
the simpler form.

VI. TRANSIENT SOUND IN RECTANGULAR
ROOMS

The transient characteristics of thc rectangular
room are obtained from the steady-state char-
acteristics by using the operational calculus.
From Eqs. (5.20) and (5.17) we obtain an
expression for the steady-state velocity potential
at the point (20, y, s) in the room due to a simple
source of unit strength and frequency (+00) at
(&0 t $0 & SO)

1/A~
e, (0~) = —c2 Q p~((0, x, y, s)

0i2 $
2x()

Xfg((0, x0, $0, s0)e' ', (6.1)

)N(&d) —Mhr+24', $iV(
—00) = Mjy 'bI0~.

3'?. The Operational Calculus

As we have seen in the previous section, close
to the source, the coherent wave preponderates,
and from Eq. (5.31) the approximate formula

where f~ is the characteristic function and
the characteristic value (see (Eq. 5.9)) corre-
sponding to the Nth standing wave for the
driving frequency (+a&). Their behavior has been
discussed in the previous section. According to
our convention
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for the steady-state wave,

q (00) q ((o) =(1/4(oR)e' " '~" i (6.2)

holds for distances R from the source smaller
than the limit given in Eq. (5.30). Outside this
limit the incoherent wave is largest, and the full
series of Eq. (6.1) must be used.

The operational calculus enables one to obtain
expressions for the general transient phenomena
of a system in terms of the indicial admittance,
the transient response of the system to a single
pulse driving force. In the present case it can
be shown that the response of the room to a
source at (x0, y0, s0) having zero strength for
t(0 and unit strength for t)0, can be given by
the contour integral

A(t) = U(t)e, (0)

+(1/2%i) [q,(~) —+.(0)](d~/~), (6 3)

(for q= U(t))

where U(t) is the Heaviside "unity function"

called the Nth natural frequency of the room and
will de denoted as a&oN, the imaginary part will
be called the natural damping constant', and will
be denoted as koN. We note that these quantities,
fo«he transient decay of sound, are not the
same as the resonance frequency coN(coN) and
damping constant kN(a&N) for the steady-state
response. In certain special cases this difference
turns out to be large enough to be apparent
experimentally (K5).

With this'notation, the two poles for the Xth
term in the Seriea are at cooN+ikoN and —00ON

+ikoN, and by evaluating the residues for each
term, the indicial admittance for positive values
of t can be shown to be

A(t) = U(t)q'. (0)-"2
- N ~ON'+koN'

X WN exp ( koNt) c—os (00 oNt +&N 2+N), (6.—6)

where

$N(RN+ZkN) 00ON+ZkON

= (~ON'+koN')' exp (ic'N);

0 t&0
U(t) =

t&0
(6.4)

(1/~N)QN(~oN+&koN y &0~ y0i s0)

XQN(cvoN+ikoN, x, y, e) = W„exp (iI'N).

and the contour for the integration lies just
below the real axis; The function +,(0) is the
velocity potential for a room with unit source
of zero frequency. At zero frequency most walls
have an infinite impedance, so that the corre-
sponding characteristic values and functions
have quite simple forms.

The presence of +,(0) in the integrand of Eq.
(6.3) removes the pole at co=0; the other poles
are due to the resonance denominators of the
terms in the series. There are two such poles for
each term, one at 00= $N(00N+ikN) and the other
at 00= —$N( cvN+ikN) T—hese valu.es of ~ are
the self-consistent solutions of Eq. (5.9) obtained
by inserting the solution, instead of or, back into
the boundary conditions determining the x'p. In
other words $N must have such a value that
when the quantities ()NI /rrc) etc. , are used
instead of the quantities g, etc. , in Eqs. (5.4) to
determine the x's, then Eq. (5.9) will result in
this same value of pN. The real part of this
self-consistent solution (for the positive case) is

This genera1 form is useful in studying the
incoherent part of the wave. For the coherent
part, the indicial admittance has the simple form

A, (t) = (1/4n R) U[t —(R/c) 7. (6.7)

The velocity potential in the room at time E,

due to a source of strength q(t) U(t) at the
point (x0, y0, z0) is then

q =A (t)q(0)+ A (t —1%.)q'(1%.)dz (6.8)
4 p

(for source q(t) U(t)),

where q'(t) = (d/dt)q(t). This-formula is a general
one, and from it we can obtain both the transient
and steady-state behavior of the room. The
pressure can be obtained from this by using the
formula p =q(8q /Bt).

If the source is a simple harmonic one, which
has been turned on for an indefinitely long time,
the corresponding response can be obtained from
Eq. (6.7) by changing the zero of time back into
the past. The response is then by definition the
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steady-state response of the room, so that

gt
A (t —X)q'(X)dX

(when dq/dt =~(oq).

(6.9)

If the source had been started a long time
before, and was stopped at t=0, the resulting
velocity potential after the source is stopped can
be obtained by subtracting Eq. (6.8) from (6.9):

LA(t+), )q'( —X))de —
I q(0) A(t)) (6.10)

(for source q(t) $1 —U(t) J).

38. Pulse Wave

where a volume 8 of air is sent out from the
source in a time At. We see from Eq. (6.7) that
the coherent part of the wave is an outgoing
spherical pulse

R~
+,„=lim (B/4+Rdt) U~ t+At

4t~0 c)
Rq

(6 12)c). '

which reaches point P a time (R/c) after the
pulse originated at the source. This equation
neglects the part of the coherent wave which
has been reflected from the walls. With as sharp
a pulse as this, the coherent wave will be apparent
after several reflections. From physical con-
siderations one would expect in this case to find
some successive pulses of the coherent wave to
be distinguishable above the background of the
incoherent wave.

Maa has discussed the pulse wave for the one-
dimensional case (M3). Here the sound waves
are all plane waves, the natural frequencies are
all harmonic (if the walls are hard), and the wave
stays coherent. Consequently the exact solution
is a sequence of pulses of form similar to Eq.
(6.12), emanating from the sequence of images

Before we discuss such problems, however, let
us first study the transient velocity potential
due to an explosive pulse

q„= lim I (B/At) )U(t+ht) —U(t) j}, (6.11)
4 t-+0

of the source plane in the two parallel walls, and
the series solution is exactly equal to this
sequence of pulses. Maa uses this solution to
illustrate some of the properties of flutter
echoes. The correspondence with actual flutter
echoes is only approximate since most impulsive
sound sources are more nearly points rather than
planes and since it is rare that only two walls
reflect the sound and the effect of the other four
walls can be completely neglected. The formulas
given in the present section would be better ap-
proximations, but their considerably greater
complexity renders them less amenable for dem-
onstrating the properties of flutter echoes.

The incoherent part must be obtained from
the full series of Eq. (6.6), and it turns out to be

+,=c'B Z (~ox'+&ox') '
N

X W~ exp (—hoist) sin (coovt+I'~ C~). (—6.13)

The mean-square pressure corresponding to this
velocity potential is

p2c4+ 2

(P )A =2 ~4X(&ox+&&ox; &0 $0 &0)

Xgnr(&ox+&&oN , x, y, s')
~

' exp ( —2ko~t). (6.14)

All frequencies are equally important in the
incoherent wave due to an explosive pulse. A
decay curve" of the mean-square pressure will
not be a straight line, as would be the decay
curve of a simple damped oscillator, but will be
decidedly curved. The initial slope will be quite
large, corresponding to the strongly damped,
high frequency waves; and the final slope cor-
responding to the most slowly damped waves,
usually the lowest frequency axial waves between
the hardest wall-pair.

Individual experimental decay curves taken
for this case, moreover, would not give the
smooth curve predicted by Eq. (6.14), because
of the pulse-like nature of the coherent part of
the transient. The pulse is quite sharp and high
before its first reHection, and though it will
broaden and reduc= in height at each reflection

"The term decay curve in this paper always denotes a
curve of the logarithm of the mean-square pressure as a
function of time in seconds. When plotted it is often ex-
pressed in decibels (ten times the logarithm to the base
ten).
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(especially if the wall is soft, as we shall see in
Section 53) the irregularities due to its presence
will be noticeable in the curve for some time
after t=0. As a matter of fact, nothing wi11 be
heard at point P until a time t = (R/c), when the
first pulse arrives; and subsequently the co-
herent pulses diminish in importance compared
to the smooth incoherent decay.

39. Reverbexation

In measurements of room reverberation, how-
ever, curves are not measured for such a discon-

tinuous sound. Usually the source emits a single
frequency note, or else a warble note with a band
of frequencies, for a long enough time so that a
steady-state condition is reached; then the
source is shut off. We shall first study the case
for a simple harmonic source; if a warble tone
is used, the answer can be computed by super-
posing the results for single frequencies. Using
Eqs. (6.10) and (6.6) we can perform all the
integrations and obtain for the transient velocity
potential at point P at a time t (t)0), due to a
source Q sin (a&t —p) L1 —U(t) )at point (xo, yo, zo):

~ON'+&ON'

WN exP (—koNt)+= —c'Q sin y Q
N

cos (G)ONt+ FN —2C'N)

——;c'(oQg
&N e&p ( ltoNt) —sin (raoNt+FN 24N —p——QN ) sin (&uoNt+FN 2'+—y —QN+)+,(6.15)

&ON +~ON L(~ON —~) '+&oN'7' D&ON+&) +~ON j
where the phase angles I'N and CN are defined in Eq. (6.6) and where we have set

(&ON~&)+&&ON= L(&ON+&)'+&ON'j~ exp (&flN ) ~

The pressure corresponding to this velocity potential is then

P = +p cQ» ny p ~N (~ON'+&oN ) ~ exp ( —&ONt) sin (a)ONt+I'N —@N)

~~exp (-&oNt) cos (MoNt+I'N C'N W flN —) cos (NoNt+I'N CN+P ftNy)
etc'—~Q 2

(&ON +~ON ) f(OioN ~) +~ON j' L(&ON+&) +~oN j*
(6.16)

unless y=0 or m there is a discontinuity in 0'.,
which gives rise to a sharp pulse in the pressure
just before it drops to zero. The pulse is present
unless the loudspeaker source is stopped at an
instant when the diaphragm velocity is zero (i.e. ,

unless &p=0 or n.). The nature of the pulse is
indicated by the fact that the first series in Eq.
(6.16) for the pressure is proportional to the
series in Eq. (6.13) for the velocity potential for
an explosive pulse. The pressure pulse from an
explosion is a double one, a condensation fol-
lowed by a rarefaction; whereas the pressure
pulse caused by stopping the source is a single
one, either just condensation or just rarefaction,
depending on the value of the phase angle q.

Of course in actual practice the source does
not stop instantaneously. Unless p=0 or x the
diaphragm will have its transient motion before
it comes to rest. If the loudspeaker is highly
damped, the effect will be almost the same as if
it came to rest instantaneously, and the cut-off

pR
@.~(Q/4nR) sin (o~ t ~+p- —

ic
t'R

~ Ui t i. (6.17)——
Ec )

The coherent part of the pressure is propor-
tional to the time derivative of this. It is unaf-
fected by the cessation of the source until a time
t = (R/c), after which it drops to zero. However,

The first series in this expression represents
the pressure pulse set up by the sudden cessation
of the source (which we might call the cut-off
pulse). The size of this cut-off pulse depends on
the phase y of the source at the instant it is
shut off. The origin of the pulse is more clearly
shown in the expression for the coherent part of
the wave. If we use Eqs. (6.7) and (6.10), the
velocity potential for the coherent part is found
to be
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pulse will be a single one, though it will be
broader and not so high as the one represented
by the flrst series in Eq. (6.16). If the loud-
speaker damping is not large, its transient will

involve several oscillations at its own natural
frequency, which will not usually be the same
as the driving frequency. The series for the
cut-off pulse for this case can be computed by
the methods outlined above, once the transient
motion of the louds'peaker is known, and it can
be substituted in Eq. (6.16) instead of the first
series. It will emphasize those natural frequen-
cies of the room near the natural frequency of
the speaker, whereas the second series in Eq.
(6.16) emphasizes those near the driving fre-

quency.

40. Detai1s of the Decay Curve

It is now possible to make a few general
remarks about the transient behavior of the
sound at point E after a simple harmonic source
at (xo, yo, so) has been shut off at t=0. At first
there is little change from the steady-state con-
dition, but at t= (R/c) there is a pulse, the first
arrival of the cut-off pulse, whose size depends
on the phase at which the source was stopped
and whose shape depends on the transient charac-
teristics of the loudspeaker. After this the sound

decays, each standing wave having its own
natural frequency and decay rate. Several re-
flections of the pulse from the walls of the room
may be apparent, producing characteristic irreg-
ularities in the individual decay curve. To obtain
a smooth decay curve, it would be necessary to
stop the source at an instant when its velocity
is zero, or else to obtain an average curve from
a number of decays involving different values of
the phase q. The resulting, smoother curve then
corresponds to the second series in Eq. (6.16).

This question of source cut-off has been given
some experimental consideration by Hunt (H6)
and others. The automatic reverberation equip-
ment of Hunt (see Sec. 8) incorporates a means
for stopping the source always at the same phase
of the frequency variation cycle of the warble
tone. This could be carried a step further to cut
oR' at a particular phase of the driving frequency.
Bu t it appears to be much simpler experi-
mentally to allow random cut off and obtain an

average curve from a large number of decays.
In addition, detailed variations in decay are
smoothed out by the timing method used by
Hunt, so it. is likely that variations due to the
cut off pulse would also be smoothed out.

On the other hand, the Huctuating nature of
sound decay is very evident from inspection of
oscillograms or high speed level records. The
detailed correlation of these Auctuations with
physical properties of the room and source is a
complicated problem, and one on which there
remains much work to be done, Some study has
been given to the problem by Jones (J3), who
has studied the effect of the average decay rate
on the magnitude of the fluctuations; and Watson
(W3) has investigated fluctuations experimen-
tally by means of a recording system which com-
pensates for the exponential decay.

At low frequencies, corresponding to the re-
quirement of Eq. (5.22), the natural frequencies
roo~ are spaced far enough apart so that usually
a single term of the second series is much larger
than all the rest (the one for which (oro~ ra) i—s
nearly zero). A single standing wave has been
excited, and the average decay curve will be a
straight line, with a slope corresponding to the
wave's natural damping constant. (Note that
even in this case the cut-off pulse will appear in
the individual decay curves). In cases where the
frequency is somewhat larger than that required
by Eq. (5.22), or'where two characteristic func-
tions have natural frequencies closer than the
average spacing, two standing waves may be
excited strongly. As long as the source is radi-
ating sound, these waves have the same frequency
as the source, as is indicated by the steady-state
solution of Eq. (5.20). When the source is turned
off, however, the standing waves each oscillate
with their own natural frequency; and if these
differ somewhat, the 'decay curve will exhibit
irregularities (K5) due to the resulting beat note,
in addition to the irregularities due to the cut-off

'

pulse. The exact nature of the best irregularities
will depend on the relative amount of excitation
of the two waves and on the phase angle of the
source at the instant it was stopped, as can be
seen from examination of Eq. (6.16).

Some of these effects have been strikingly
demonstrated by Knudsen (K3, K5); a typical
result is shown in Fig. 24. These are oscillograms
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of sound decay in a rectangular room 8'X8'
X9.5'. Each decay was obtained with a different
driving frequency, the value of which is recorded
on the curve. There are theoretical normal fre-
quencies at 92.8 and 99.8 c.p.s. and no others
closer than /0. 3 and 115.9 c.p.s. It is seen that
driving frequencies of 92.9 and 99./ produce
almost pure (exponential) decay curves; whereas
an impressed frequency of 96.7, which lies about
half way between, produces strong beats of ab tou

c.p.s. as expected. At other driving frequencies,
the two components are excited in varying
amounts, yielding various degrees of cancellation
in the beats. But all impressed frequencies in the
range shown produce 7 c.p.s. beats (if any),
which convincingly demonstrates that only the
two normal frequencies noted partake in the
decay of sound energy. At a frequency of 118
c.p.s. in this same room, Knudsen observed the
coexistence of beats at 3.3 and 19.3 c.p.s. arising
from simultaneous excitation of three normal
frequencies 99.8, 116, and 119.2 c.p.s. At some-
what higher frequencies, when several waves are
excited, the transient behavior of the room
becomes still more complicated.

for frequencies high enough to satisfy Eq. (5.24),
or else for warble notes of band width Au and
average frequency r such that hv)(50c'/Vv').
If we leave a,side the series for the cut-off pulse,
the second term in Eq. (6.16) can be used to
obtain the mean-square incoherent pressure. By
methods analogous to those used in obtainin g
Eq. (5.33) the results prove to be

g
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41. Approximate Formula for Decay Curve

When a large number of waves are excited,
however, it becomes possible to analyze the
reverberation by statistical methods analogous
to those used in the previous section. This occurs

0 6. 50
TINS PARAHSTSR T

Fro. 25. Approximate decay factors for rectangular room.



(f')A. =
c' p' pp'Q' B~ exp ( —2ko~t)

8U' (opoN op) +~oN (opoN+&) +~oN
(6.18)

and this can then be added over all oblique, tangential, and axial waves to obtain a formula cor-
responding to Eq. (5.34):

(f ')A. =
popQ t'1q ( m.Sc mLc')

t exp ( —a.«/4V) jf —
I( 1 — +2' (ave ( 4Vo~ 8Vop']

~7rL,L„cq ) L,+L„q ( 2+L,c'y+2 texp( —«*.«/4V)31 II 1 —c I+2 Lexp( —a-«/4V)jl, — I, (6»)
I or Va„v ) ( ' oiL L„) (op' Va„)

where we have taken space averages for both source and microphone.
Finally when none of the walls is particularly soft, and if all the g's are larger than about 3, an

approximate equation can be obtained analogous to Eq. (5.36):

(0') =(4pc&/a )D*(~) &.(~) D*(~)

D.(&)= 11— ( avu )
~

exp P L„L,(n—»i+n»&)c&/4U)+~
~
exp P L„L,(—n&»+n&»)ct/4V), (6.20)

2g.&
" " "

I g.a,„,)

where n„,i is the normal coegcient for the x1
wall, a~, ~ is the grazing coefficient for the same
wall, and so on. The quantity v is unity if
both source and microphone are moved about,
~ when the source or microphone is moved about
and the other is in a corner of the room, and ~

when both are in different corners. Plots of decay
curves corresponding to this formula are shown
in Fig. 25.

A logarithmic plot of (p')A„ is the decay curve.
We see that to the approximation represented by
the last equation, the decay curve is a sum of
three curves, one for each wall-pair. Each
individual curve starts with a slope corresponding
to the normal coeKcients for both walls of the
pair, and ends with a slope corresponding to the
grazing coe%cients. The "break" in the curve,
where the slope changes from initial to finaI
value, comes at a time when both terms in D
are equal, i.e. , when

tb*= (4L,/c) (n„,i+n„,2 ni, i n4p)— —

Xln [(aiv./uav)(v1, —',)]. (6.21)—

In general this time is long when the normal
coefficients n~ are small and do not differ greatly
from the grazing coeAicients, and is short when
one or both of the normal coefficients is large.
The logarithmic curve for the D corresponding
to the softest wall-pair therefore usually has its

"break" sooner than the other two curves, and
also has the largest slope of the three curves. In
fact when only one wall of a rectangular room is
soft (as in a reverberation chamber), the com-
ponent of the decay curve which is due to the
soft wall lowers the level of the decay curve so
rapidly that the "breaks" in the components
due to the harder pairs usually come at a level
below the limits of measurement. In such cases
only the normal coefficients for the harder walls
can be measured, and the only break apparent in

the measured decay curve is the one for the
softest wa11 pair.

Suppose that the only soft wall is perpendicular
to the x axis, and suppose that the frequency is
large enough so that g, = (2L,/X) is la.rger than
ten. In this case, by inserting Eq. (6.21) in Eq.
(6.20), we can see that the first break in the
decay curve for the room will occur at a level
approximately

(10a,„/L„L,) (n„,i+n„.2 ng. i ng.2)— —

Xlogip (g,ag„,/ua„) db

below the level for t=o. This break occurs at a
time given by Eq. (6.21).

To recapitulate: the individual decay curve
measured for high frequencies (v) (400c'/a„) &) in
a reverberation chamber with one soft wall will
be more or less irregular because of the cut-off
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pulse, and will not begin to drop until this pulse
first reaches the microphone from the source.
An average curve, made from a series of curves
for different cut-off phases, will drop fairly
smoothly after the first arrival of the pulse. Its
initial slope will depend on the normal coef-
fiicients of the walls; it will usually have, only one
"break" during its measurable extent, and its
slope after the break will correspond to the
grazing coefficient for the soft wall, the com-
plimentary coefficient for the opposite wa11, and
the normal coefficients for the other four walls.
If the difference between grazing and normal
coefficients for the soft wali is a large one, the
break may be very near the beginning of the
curve, and it may be hard to distinguish the ini-
tial steep slope from the first arrival of the
cut-off pulse. In this case' the majority of the
decay curve depends on the waves which are
parallel to the soft wall, which are less quickly
damped but more strongly excited than the
oblique waves.

On the other hand, as we shall see in the next
chapter, any presence of irregularities in the
shape of the walls or the distribution of absorb-
ing material, or any use of diffusing vanes in the
room, will tend to make the normal and grazing
coefficients approach each other in value. Since
it will turn out that the grazing coefficients in-
crease more rapidly than the normal coefFicients
decrease, as irregularities are introduced, it is
quite possible by this means to lengthen the
initial part of the decay curve enough so that
even the first "break" is outside the measured
extent, and at the same time have the slope of
this initial part correspond fairly closely to the
normal coefficients given by Eq. (5.26) for non-
diffused waves. Therefore in rooms where dif-
fusion of sound is not complete enough to
create an ergodic distribution, "absorption coef-
ficients" obtained from decay curves which
seem to be straight for the first thirty or forty
db will be more closely equal to the normal coef™
ficients discussed above than they will be to the
true Sabine coefficient. Also, comparison with
Eq. (5.36) indicates that the coefficients obtained
by steady-state measurements in such rooms
wiil usually be smaller than the normal coef-
ficients obtained by measuring the initial slope
of the decay curves. This is because of the fact

that steady-state measurements give an average
result for all waves excited, whereas the initial
slope of the decay curve is concerned only with
the oblique waves.

Decay curves of the sort shown in Fig. 25 are
often encountered in practice, and presumably
would provide an interesting series of correlations
between the measured impedance of the walls
and the usual decay curve measurements.
Hunt, Beranek, and Maa (H9) used an equation
similar to Eq. (6.20) for their analysis of decay
curves and obtained fairly satisfactory checks
with theory, as is shown in Fig. 26. The meas-
urements were made in a room 20'&(I4'&(8' with
walls and ceiling of concrete and the whole Hoor
covered with absorbing material. Circles are
experimental points and solid line is the theo-
retical curve. The departures from straight line
of the decay curves are quite apparent. A similar
analysis (B12), in which a modification of Eq.
(6.20) and other experimental conditions were
used, also gave a satisfactory check between
theory and measurement.

In using Eq.' (6.20), one should note that it is
an approximate expression, and not valid if any
g is less than 2. One should also take care to use
the approximate expression cx, =n, =(4y) only
when (~Z~ jgpc) is larger than about 4.

VII. PERTURBATION CALCULATIONS FOR
ROOMS OF VARIOUS SHAPES

42. The In6uence of Room Shape

In the past two sections we have studied the
separable case of the rectangular room with
uniform wall coverage in considerable detail. We
have found the exact theory quite complicated,
but have discovered that in the great majority
of cases (at the higher frequencies, walls not too
"soft," etc.) the normal modes can be divided
into a few general classes with regard to their
decay rates. The great majority of waves, most
or all of the oblique waves, react with the
material on the walls in a manner defined by the
normal coefficient, 0.„, equal approximately to
eight times the specific conductance y of the
wall material. For those waves parallel to the
wall in question, the effective coefficient is the
tangential or supplementary coefficient, depend-
ing on whether the wall in question or the one
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opposite is softer. In the limiting case of fairly
hard walls, both the tangential and supple-
mentary coefficients turn out to be one-half the
value of the normal coefficient.

Thus in most cases for the rectangular room
with uniform walls, the Sabine assumptions are
almost valid, but differ just enough from ac-
tuality so as to be inapplicable. The majority of
the modes in a given frequency band (the
oblique modes) have nearly the same decay rate,
but the decay rates of some modes (the tangential
and axial ones) are appreciably different, and the
resulting decay curve for the combination is not
a straight line. The normal coefficient turns out
to be larger, and the grazing coefficients smaller
than the Sabine coefficient.

In the present section, we shall investigate
rooms of more complicated shape, with walls
having non-uniform distribution of absorbing
material. Exact solutions cannot be obtained for
many of these cases, but a perturbation method
will be developed which will be accurate enough
most of the time (i.e., for hard enough walls).
The results will show that many other room
shapes are regular enough so that not all their
standing waves have the same decay rate, and
will indicate how irregular the shape must be in
order to have the Sabine assumptions become
valid.

From the time of Sabine, it has been widely
recognized that room shape has a very important

I

influence on acoustic behavior; and this aspect
is about as well understood, from an empirical
point of view, as could be expected within the
limitations of the geometrical approach. General
aspects of shape in auditorium design have been
well summarized by Bagenal and Wood (A),
Knudsen (K3), and others. Two fundamental
principles are: (a) avoid shapes which give
acoustical defects, such as sound foci from
concave surfaces, distinct echoes, etc. and (b)
design shapes to facilitate flow of sound energy
to all listeners in the room. These considerations
can be studied by geometrical ray constructions
on drawings of sections through the room, by
spark photography of pressure pulses in small
models, and by surface waves of a liquid bounded
by a small. scale section of th'e room (ripple tank
method) (A). Three-dimensional scale models
have also been employed, with light rays re-
Hected from small mirrors appropriately placed.
In all of these methods (A) one can follow the
course of a ray starting in a given direction from
a position corresponding to the actual sound
source in the room, through a large number of
successive reHections, and in this way study how
well the sound energy is spread over the seating
area by multiple reQections and how well sound
foci have been avoided.

Attempts to express the effects of shape
analytically have, by the very nature of the

'problem, not been very fruitful by the geomet-
rical approach. Knudsen (K3) has studied the
influence of shape on reverberation time by
measuring mean free paths, using the light ray
method. He followed paths through some 25
successive reHections, for rays starting in a
number of typical directions. The mean free
path enters into the derivation of the reverbera-
tion equations (Sections 7 and 8), and has been
assumed to be 4 VjS, which is exactly the
asymptotic value in rectangular rooms. Knudsen
measured this for some dozen shapes, including
rectangular, fan shaped, octagonal with dome,
cruciform, and others. The results are expressed
as effective values of X, in Eqs. (2.3)—(2.5), the
computed value being 0.049 assuming 4V/8 as
the mean free path. Values ranged from 0.046
to 0.053 in the shapes studied.

Knudsen's study revealed another effect of
more importance than the small correction to the
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reverberation time: it showed that some surfaces
had a greater probability. of reHection than
others. This means that absorbing materials
placed on these surfaces are more effective in
absorbing energy since more energy on the aver-
age reaches them. The effect was particularly
striking in a room with large horizontal dimen-
sions and a low ceiling, a common shape for large
oAices. In a room approximately 50'&(40'&10'
with all of the acoustic treatment on the ceiling,
the measured reverberation would be as much as
20 percent shorter than that given by Eq. (2.4).
This result could now be computed by Eq. (6.19)
or (6.20).

We see in this example a striking demonstra-
tion of the fundamental diR'erence between
geometrical and wave acoustics. By geometrical
methods a certain result is predicted (rever-
beration Eqs. (2.3, 4.5)) on statistical assump-
tions (Sec. 5); a different result is observed in a
special case; qualitative reasoning shows the
basic assumptions are not valid; a geometrical
ray method is used to find the actual (non-
statistical) energy distribution; and this result
is used to modify a factor in the reverberation
equation, still retaining the Sabine absorption
coegcient. By wave methods the component
waves in a room are described analytically; the
effective damping of each "kind" of wave is

computed, by taking into account -the room
shape, the distribution of absorbing material,
and the absorbing properties; the acoustic im-

pedance is assumed to be the invariant quantity
describing the behavior of the absorbing ma-
terial; the component waves are combined ac-
cording to type, and averaging processes are
used to obtain approximate formulas applicable
to various special cases of practical significance;
and in this process there emerge several coegcients
of diferent kinds in place of the single absorption
coeKcient of geometrical theory. The explicit
result of the wave method is the modification of
the absorption coefficient while the geometrical
method can take account of the actual energy
distribution only by an external, empirical cor-
rection factor.

43. Perturbation of Boundary Conditions

The most suitable perturbation method for
the problems at hand is based on Green's

theorem (F1, F2, M2). One starts with a room
Ro of simple shape and rigid walls, for which the
wave equation can be solved exactly. The
characteristic functions P„(x) satisfy the usual
equation

V', 'P~(x) + (a&o~/c) 'P~(x) =0; x = (x, y, s);

X= (n„n„, n,); a&0~
——27ri~ ——(2v.c/X);

(& 1)

O'N(x)4'M(x)d Vz VOEN 8NM&

Bp

where Vo is the volume in the room Ro, and
where a~0 is the average value of P~' over Ro.

One also needs the solution G for the waves
from a unit source at point X= (X, F, Z) in go,
having frequency i = (u/2~), satisfying the
equations

7,'G„(x, X)+ ((o/c) 'G„(x, X) = 5(x —X),
(& 2)

Vx'G„(x, X)+((o/c)'G„(x X) = 8(x—X)

where 8(x—X) is the Dirac delta function for
three dimensions. Since this Green's function
satisfies the same boundary conditions as the
f~'s (BP/Be=0), it can be expanded in terms of
the P~'s, in the usual series,

4'~(x) 4'~(X)
G„(x, X)=Q

N VOEiV (0) . Q)N )

which is the form reached by Eqs. (5.20) and
(5.21) when no absorption is present.

We shall follow the work of Feshbach (F2) in

studying the effect on the characteristic func-
tions because of small changes in the boundary
conditions and in the shape of the boundaries.
We can imagine the shape of the room to be
changed slightly to a new shape R, whose walls
are every@here inside the original room Ro. We
also allow the new walls to be non-rigid, having
an impedance, Z, which may change from point
to point on the new walls. In order that the ap-
proximation converge, we must assume that R
does not differ much from Ro and that ( Z ~

is
everywhere large compared to pc. The new
boundary condition on the walls of R is therefore

—=ice(p/Z)@=i((u/c)Pp=((u/c)(o+iy)p, (7.4)
t9n
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where Z, P, o, and y are often functions of the
position on the wall surface.

The use of Green's theorem, together with the
equation for G, provides us with an integral
equation of considerable generality:

8
q'(x) = y(X)

Bnx
G„(x, X)

8—G„(x, X) y(X) dS», (7.5)
Bsx

0'~(x) = fN(X) G ~(x, X)
anx

8

—G „(x,X) P~(X) dS» (7.6)
BQx

where the integration is over S, the surface of
new room R, The solution of this integral
equation, y, is a solution of the wave equation
V'rp+(co/c)'@=0 inside R, and is sero outside R
(for instance, in the region outside of R but
inside of Ro). The function @& defined by the
equation

pedance varies over S in any complicated way.
It is, however, set up in a form peculiarly
adapted for perturbation calculations since the
integrations are over the new surface and involve
the new boundary conditions. One needs only
to replace y(X) inside the integral by P~(X)
and to substitute Eq. (7.3) for G to obtain a
first approximation to y. Moreover, one can
re-use Green's theorem (F2) to obtain an
equation

(~
pN'= ~~'+c' (c) )

- —1

q P~d V, (7.8)

from which an approximate value of $„can be
obtained.

The difficulty with substituting P& for p inside
the integral in Eq. (7.7) is that the resulting
series converges very poorly because of the dis-
continuity in q at the surface S. This can be
obviated by using Eq. (7.6) to subtract the
discontinuity (or most of it):

is equal to f& inside R, but is zero outside R. 8
Remembering Eq. (7.4) for the new boundary y(x) =0'~(x)+ y(X) G„(x, X)

conditions, we can show that the solution of the Brl»

integral equation,

y(x) = y(X) G„(x, X)
aux

-lP (X) G (x, X)-G (x, X)~ ~ ~q(X)
an

'
E c)

. (~Pl—ii —iG„(x, X) dS», (7.7)(c)
is zero everywhere for most values of co. How-
ever, for a discrete set of co's, which we can call
P~, the solution y is not zero inside R, but is a
solution of the wave equation satisfying the new
boundary conditions on S (it is still zero outside
R). Therefore solutions of Eq. (7.7) are the
required characteristic functions, and the P&'s

are the characteristic values for the new room
R and for the boundary conditions of Eq. (7.4).

Equation (7.7) can no more be solved exactly
than can the original differential equation, if R
has a complicated surface S and if the wall im-

+G ~(x, X) P~(X) dS», (7.9)
81sx

(p(x)~%~ — G ~(x, X)
S

ia)P 8
p~(X) — P~(X) dS», (7.10)

BnxC

where 4& is equal to f& inside R and is zero
outside R.

A first approximation to p can now be ob-
. tained which converges fairly satisfactorily. If

we substitute P~ for rp inside the integral, we

obtain:
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and, using Eq. (7.3), we finally have

lp(&) +—N(&) +c Q A 3'(&N &M ) fM(&) i

exp ( —i$~t) ~exp —i ra~
2UO~~'~ &

' alit~'dS t

( 8 0J~P
A~N (1/——V~~) p~~ p& ——i —

p& ~tdS,
E an c ) (7.11)

S

2 Uo~x'«
ylfw'dS . (7.14)

The mean square of p mill therefore have an
exponential decay factor of the usual form

exp L
—(caxt/4VO)) (see Eq. (6.19)). The ef-

fective wa11 coeScient for the room walls,

where U is the volume of room 8, e~ is the mean
squared value of g& inside R (see Eq. (5.17)),
and where the prime over the summation sign
indicates that the term for 3E=X is omitted.

The corresponding equation for the charac-
teristic value is

$N MAr +C A—NÃ

+C Q (EM/EN)AM' /(MN NM ) ) (7 12)

where Eq. (7.11) has been substituted in Eq.
(7.8).

44. Perturbation Due to Patches of Absorbing
Material

Let us first consider the case where the room
shape is still simple, and the boundary condition
of Eq. . (7.4) is the only perturbation. In this
case R is identical with Ro and the integral A~~
entering in Eqs. (7.11) and (7.12) becomes

t

Aili~ = —i%~(1/c Vof~ ) [lP~PlP~)dS.

So

This case has been studied by Maa (M2) and by
Feshbach and Clogston (F1, F2).

The first approximation to the frequency
parameter $il is, in this case,

1 c f
5 ( —)= —— ' ( +' )4 '~S (7.13)

2 UO6g

which is to be compared with Eq. (5.9). The
function y will therefore 'have an exponential
factor in it of the nature

~il = (ail/S)~
2Se~o

v4w'dS,

(7.15)
y =real part of Lpc/Z),

is given in terms of the wall area S; the mean
square of the wave function f~ over the volume,
e~', and the integral of the absorbing factor
(8y), weighted by peal', over the wall area. This
is to be compared with Eqs. (5.26) and (5.29).
The earlier equations were derived for a uniform
wall', but the present one is as accurate (or
inaccurate, as the case may be) for a non-uniform
wall, with patches of absorbing material placed
here and there, as it is for a uniform one. We see,
from the earlier chapter, that the approximation
is valid if (~Z~/pelt))2, where rt is the ratio
between the room "dimension" and the half-
wave-length.

Several interesting conclusions can be drawn
from this first-order result. In the first place, a
piece of absorbing material is most useful, in

producing a large absorption coeflicient, if it is
placed in a position on the walls where most
wave functions have their maxima. In a rec-
tangular room, therefore, the most effective
positions for absorbing material are at the
corners; next best positions are along the edges.
In the second case, if material is to be spread
over a number of walls, it is better to place
patches of material in a rather irregular manner
over the wa5s rather than to space them in too
regular a pattern. A regular pattern will almost
inevitably place the absorbing material at the
minima of f' for some modes, and these modes
will be very poorly damped.

Equation (7.15) can be still further simplified
if' the absorbing material on each wall is uniform
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over regions large compared to the wave-length.
In this case the integral ffgag'dS is approxi-
mately equal to the area S times the constant
value of P, multiplied by the mean square value

of f~ on the wall in question. Therefore to the

first approximation and for samples of material
large compared to the mave len-gth the mall coef
ficient of a material on a given mall is

1 Av. value of P~' over wall in question

2 Av. value of P~' over volume of room

(Formula valid for
~

Z
~

X)4pcL, where I- is the largest dimension of the room) ..
(7.16)

The factor e&, which is the only place the wave-

type enters in this first approximation, might be
called the wave type factor. It is to be noted that
cx~ is not Nsua/ly eqgcl to the Sabine coefficient.
The rooms we are discussing here are still too
regular in shape to satisfy the Sabine conditions.

Therefore, even to the first approximation the
absorption coefficient of a material depends not
only on the acoustic impedance of the material,
but also on the wall on which the material is
placed and the particular normal mode con-,
sidered. If we are interested in making the initial
slope of the sound decay curve as steep as
possible, we should place our material so that
the wave type factor e„ is as large as possible
for the majority of modes in a given frequency
range. If we wish to make the final slope of the
decay curve as large as possible, we should place
our material so that no mode will find all the
absorbing material on a wall of low e„ for that
mode. This was shown in Chapter VI for rec-
tangular rooms with uniform coverage; the
present results show it to be true for any regular
room, and even with non-uniform coverage (at
least to the first approximation).

To make these rules capable of practical appli-
cation, we should compute the values of e~ for
various room shapes likely to be encountered.
For instance, , for rectangular rooms, by use of
the known properties of the cosine factors in the
normal modes, we obtain:

For all oblique modes
eN=1 for all walls;

For all tangential modes
eN = 2 for the two walls parallel to the wave

motion,
e~ ——1 for the other four walls;

For all axial modes
e = -', for the four walls parallel to the wave

motion,
e =1 for the two other walls.

Reference should be made to the discussion fol-
lowing Eq. (3.2), and to Eq. (5.12) .

One can go further, and compute the value
of some of the e's for any room having two walls
plane, parallel, and opposite to each other, the
remaining walls all being perpendicular to the
plane-parallel pair. An example would be a room
whose side-walls are all perpendicular, with any
sort of complicated floor-plan, and with plane
horizontal floor and ceiling (floor and ceiling are
also called walls in the present paper). Suppose
we set the x coordinate perpendicular to the
plane-parallel walls. Then even though we
cannot separate the wave equation in the two
coordinates perpendicular to x (call them y and
s), we can separate the x factor in the charac-
teristic function for each mode.

PN = cos (v n x/L )Fn„n, (y; s) .

The average value of P~' over the volume will
be (Xm&m~/2en ) where e~, = 1 (if n, )0),
(if n, =0), and where X is the average value of
I' over y, s. Therefore for large patches of ab-
sorbing material placed on either. of the plane-
parallel walls

& for waves striking these

walls (n )0)
Ar =e~*= (7.18)

~ for waves tangential to these

walls (n, =0),

to the first order of approximation. For a more
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exact answer we should have to use the methods
discussed in Chapter V.

We squall now compute the values of the e's for
cylindrical and triangular rooms. These rooms
have been discussed by Roe (R8).

45. Cylindrical Room

The' characteristic functions for a cylindrical
room of height J and radius R are

cos
lP~ = (N&p) Jn&(7rrn&. N„r/R) cos (wsgs/L), (7.19)

sin

where ~ is any one of the numbers which satisfy
the equation

Jn„(+—7) =0,

7n&, 0 being the lowest value, 7np, 1 being next, and
so on. The limiting values of v for n„or n„ large
are

Tn~, m„ tl„+ &I&+ ~, 0 &&1, (n, /n„)&&1

T y, (n„/'r) + ,'L9(n, + ~—)'n„/n]&;

n )1, (n /n, ))&1

7~„,0~(n„/m) +0.25 75n„&; n„&&1, n„=0.

The average value of the square of the q factor
is 1 for n„=O and is (2) for e„)0.This is also
true for the s factor. The average value of the
square of the r factor is

(2/R') J.,'(7r rr/R) rdr
0 = Jn& (err~&, wf)L1 —(B&/orred, n~) j.

Therefore, from Eq. (7.16), the ratio between
the wall coefficient for a large sample of material
and the normal coefficient (8y) is:

For material on the two plane circular walls,

2 for waves tangential to these

Values of e~ for the cylindrical walls for various
values of n„and n„are given in Table I and the
following asymptotic formulas.

e~--,'L1+ (I„/~n, )'], ~,&&1; (n„/n„)&&1,

e~~0 309.n„&+ ,', —n„&&1;n„=0,

n
e~ — + 8, n„&&1; (nq, /n, )&&1.

2 3x(n,+ ',)-
The situation for the curved walls is obvious1y

different from that for the flat walls. Here the
waves which trave1 in a circle, "parallel" to
the curved walls (n, =0), have a coeKcient
a~=(8y)e~ which is (for n„))1) larger than the
normal coefficient (8y). This is due to the fact
that such waves cling closely to the outer walls,
whereas the waves tangential to flat walls have
less than the usual energy near the walls, and
so have tangential coefficients one half of the
normal. For cylindrical rooms large compared to
the wave-length (c/v), the partic'ular mode with
n,, and n„both zero and n„ large has the majority
of its energy within a half-wave-length of the
outer wall so that the energy is quickly absorbed.
For instance, for n, =n„=0 and n„=20, the wall
coefficient for material on the circular wa11s is
2.3 times the normal coefficient (8y); and for
n„=100 it is 6.7 times the normal coefficient,
whereas for the flat walls it is one-half of the
normal coefficient.

However, these circular tangential waves are
very special cases, which are hard to excite
unless the source is close to the circular walls,
and are hard to measure unless the microphone
is close to these walls. One would expect that
the decay curve for a cylindrical room would
differ considerably when measured at different
points. A curve taken from close to the circular
walls would have a more pronounced steep initial
part than would one taken from the center of the
room.

In contradistinction to the (r, s) tangential
walls (n, =O)

(7.20) TABLE I. Values of eN for cylindrical walls.

1 for wave striking these walls

(n. &0);

For material on the cylindrical walls,

eA' ———,'L1 —(n,,/~rn„, n„)'j '.

0.50
0.50
0.50
0.50

nr e~= 0

0
1
2
3

0.70
0.52
0.51
0.51

0.86
0.55
0.52
0.52

1.00
0.57
0.54
0.53
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For the curved walls,
e~) 1 for waves tangent to the walls (n„&&n~),
e~~'zfor waves striking the walls (n, &~n„);

to the order of approximation considered in this
section.

ln general (X9) a curved surface which tends
to focus sound at some region away from the
walls will reduce the effectiveness of the acoustic
material, and the greater the proportion of
smooth concave surfaces, the fewer will be the
locations on the walls where acoustic material
will be able'to produce its normal absorption, at
least on the sound in the central part of the
room. A similar analysis for a spherical room has
been made by Schuster (S11).

R

FIG. 27. Location of pressure nodes and values of wave
type factor e& for normal modes in a triangular room.
Quantum numbers are nq and n„and the corresponding
values of e~ are written near the related walls.

waves, the waves which travel back. and forth
along a radius (the r-axial waves, where n~=0)
have a wall coefficient for the circular walls only
one-half of the normal coefticient because such
waves focus their energy at the center of the
room and have less than the average energy
near these walls. In fact, for wave-lengths short
compared to the room dimensions, most of the
modes have a value of e~ for the circular walls,
which is approximately —', ; only the modes for
which n„ is very small have e~'s larger than unity.
Therefore, for sound in the center of the room,
acoustic material placed on the circular walls is
roughly half as effective in damping out the
sound as it would be if placed on the flat walls.
For the sound close to the circular walls, how-

ever, absorbing material on these walls is much
more effective than normal.

Similar studies of a room in the shape of a
half-cylinder, with the additional plane wall

along the cylindrical axis and studies of a hemi-
spherical wall show that the rules. :

For the flat walls,
e~ ———,'for waves tangent to the walls (I,

or N„=O),
e~ ——1 for waves striking the walls (n, or

n, )0).

46. Triangular Room

The case of a room with vertical side walls,
and plane horizontal floor and ceiling, having a
right isosceles triangular floor plan, is one for
which exact solutions for P~ can be obtained
although the wave equation is not separable.
However (see Fig. 27), the function

P~ = ( ', ) cos (7r-n, z/L, ) Ts,~s(x, y)

where the function T is

Tns, n (x, y) = -', I cos fw(nd+n, )x/L j cos (wn, ,y/L)

+ ( —.1)"~ cos $~(ns+n, )y/L) cos (~n,x/L) }

= —,
'

}cos f~(ns+ 2n, )$/A) cos (7rnsri/A)
(7.21

+cos $m (nd+2n, )g/A$ cos (7m,.g/A)}, (Nd even

= —,
' (sin Lz (ns+2n, ) $/A$ sin (~nsri/A)

+sin $m. (nq+2N, ) rl/A$ sin (xn, g/A) }, (ns odd)

and where

1
$ =—(y+x), ri =—(y —x); A =v2L,

W2 W2

satisfies the boundary conditions on the diagonal
wall as well as on the rectangular ones. The
number of allowed frequencies less than v for this
room is about half that for a square room with
the same rectangular walls, for the diagonal
wall has removed the double degeneracy of most
modes (i.e. the room has half the volume).

An integration of the above wave functions
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e~= 1 for ng).0,
8~ = 4 for Qd =0.

For the floor and ceiling:

e~=1 for n, )0,
8~= 2 for 'S =0.

(7,22)

Therefore there are waves "parallel" to a wall

(one of the n's=O) even in this room, and for
such waves the effective absorption of the
material is reduced. The amount of reduction is
not as great as for the rectangular room, e~
only reducing to 4 on the side walls. Presumably
a wave "parallel" to a side wall in a triangular
room is not as "parallel" as a wave can be in

a rectangular room. These results do show, how-

ever, that a room with plane walls not parallel
to each other does not constitute a room irregular
enough so that Sabine's assumptions are valid,
for the decay curve in this case is still not a
straight line.

A glance at Fig. 27 brings out a number of
interesting points. The nodal surfaces cut a wall

either at right angles or at 45 degrees. If they
meet a wall at 45 degrees, the pressure is in

phase over the who1e of that wall, e~ has a cor-
responding value of —,', and, presumably, the
wave is "parallel" to that wall. If the nodal
surfaces meet a wall at right angles, then the
pressure over one half the wall is out of phase
with the pressure over the other half, e~ has a
value unity, and presumably the wave is not
"parallel" to the wall. Figure 27 shows the
nodal surfaces and values of e~ for some of the
lower modes, including most of the typical cases.

4V. Second-Order Perturbation

So far we have considered only the first-order
perturbation, having tacitly assumed that the
second-order term was negligibly small. This is,
of course, not always the case (actually it is only
true when

~

Z
~
X)4pc times the largest dimension

provides values for the wave type factors e~,
relating the wall coefficient for a given wall and
mode and the normal coe%cient (8y).

For the rectangular walls:

e~ ——1 for n, &0,
e~ ———,

' for n, =0.
For the diagonal wall:

of"the room), and it will pay to investigate the
higher order terms. As a matter of fact, we shall
find that unless the second-order term in Eq.
(7.12) is appreciable in size and is composed of
many terms, there is no possibility of having
ergodic wave motion in the room. The relative
size of the second-order term, compared with the
first-order term, will turn out to be an approxi-
mate cr'iterion as to whether Sabine's assump-
tions are va1id or not in the room, for a given
frequency.

We first study the case where the room's shape
is the simple shape R&, the only perturbation
being the effect of patches of absorbing material
on the walls. The expression for the perturbed
wave function is

p(x) ~4~(x) —i~~(c/ V)

X Q' PM(X)P(X)gw(X)dS»
QM(x)

C~ GO~ —Q) M

p(x) 4~(x)+icecap ~ [P~(X)/Z(X) j

exp (i~~D/c)—dS» (7.24)
23rD

where the integration is over the surface of the
absorbing material near the point x, and D is
the distance between points x(x, y, s) in the
room and point X(X, F, Z) on the wall.

This last formula is a very interesting one,
which could have been obtained by the following
reasoning: to the first order the pressure on the
wall at point X is icv~pg~(X); the norm—al
velocity of the wall (since it has impedance
Z(X) at that point) is —i cd~ pg~(X)/Z(X).
The velocity of the wall at that point sets up
radiation into the room equal to the strength
of the elementary source, ( i~~pP~/Z)dS, times-
( —exp [iar~D/c]/2nD). The integration over all
the elementary sources near point x is the second

(7.23)

the prime indicating that the term 3/I=X is
omitted in the summation. An application of the
methods discussed in Section 33, and of Eq. (7.3),
indicates that near a patch of absorbing material
a rough approximation to Eq. (7.23) is
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term. Therefore, the first correction to the wave
function pN, because of the presence of absorbing
material on the wall, is the radiation owing to
the motion of the material (Vi) (or of air into
the pores of the material) induced by the
standing wave fN itself. The consequences of
this simple result will be investigated in Chapter
VIII.

To the second order in, p, the equation for the
frequency and damping constant, for the case
1Il question, 1s

ZMN C

kN &N —
1 P4'N d$v;' ~

-2

QMPQNdS

+I I 2', —, (7 25)
4 VeN J M eM (COM —(ON )

This equation can also be approximated by con-
sidering only the coherent part of the perturba-
tlon;

%CONC P f
$N MN — P4'N dS

T&N4

+I I d~. 4 (x)p(x) 4 (&)pP)
EV@ri& &

sizable amounts of oblique waves present in
every q. A glance at Eqs. (7.23) and (7.25)
indicates that this would be true if the last term
in each expression were made up of a large
number of approximately equal terms, the sum
being of the same order of magnitude as the
erst term. When this is true, higher orders of
approximation than the second will of course be
needed to obtain reasonably accurate values of
the wave function. Nevertheless it seems satis-
factory to take the relative magnitude of the
second-order term (say, in. Eq. (7.25) for g) as
a rough criterion of the presence or absence of
ergodic wave motion.

Whenever this second-order term is as large as
or larger than the 6rst-order term and when it
consists of a large number of different wave
functions, all of about equal amplitude, then we
can expect to have ergodic wave motion and to
have Sabine's assumptions become valid. We
will therefore be interested in obtaining simple,
average values of the second-order terms in Eq.
(7.25), to use as criteria for the onset of com-
pletely random motion.

The deciding factors in the second-order terms
of Eq. (7.25), for instance, are the interaction
integrals

PMN 4'MW'N~~i

X (exp fi~ND/c j/2m D)d S», (7.26)

where the double integration should be only
over small values of D. This equation also will
be discussed in detail in Chapter VIII.

4S. Transition to the Ergodic State

Presumably if enough absorbing material is
applied, in an irregular enough manner to the
walls of a rectangular room, the wave motion
could be made ergodic and the decay curve
would be a straight line. This condition would
be reached when we can no longer call a standing
wave a pure tange'ntial or axial wave, and when
all waves have the same decay rate. From the
point of view of the perturbation theory, this
would be reached when every standing wave y
is a more or less random mixture of a number of
different fN's in about equal proportions, with

which measure the ability of the distribution of
absorbing material to "scatter" wave N into
wave M. If the scattering is large enough, no
wave will be just axial or tangential, all the
decay constants will tend toward a common aver-

. age value, and the Sabine assumptions will
become valid.

For this to be true, of course, PMN should differ
from zero for most 3f's and N's; in fact, most
pMN's should have roughly the same magnitude.
This indicates immediately that uniform coverage
of one or more walls of a regularly shaped room
wiH not produce this effect; for if p is uniform
over a wall (the xy wall, for instance), then all
pMN's will be zero except those for which n, =nt,
and n„=m„. The result will be that most of the
terms in the summation over M will be zero, and
the standing waves will not be random.

Similarly, any very symmetrical placing of
absorbing material will result in many integrals
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p~N being zero. What is needed is a "com-
pletely irregular" distribution of patches of ab-
sorbing material. How this is done in practice
is indicated in the work of Maxfield and Potwin
(M5), Boner (B11), Meyer (6), and Volkmann
(&1).

Let us consider a specific example: that of a
rectangular room, with m patches of absorbing
material of specific admittance P= (pc/Z), each
of dimensions u and 6, distributed "irregularly"
about the walls. The total area of material will
therefore be 5 =mab. The first-order term in
Eq. (7.25) will then become

2i(—oNcQtS. / V).

The next quantity to compute is the mean
square value of ffp~@Nds over one patch of
material, averaged over iV and X. If the patch,
of dimensions a and b, is placed at random on
the wall, the nodal surfaces will cut the patch
at random, and the x factor of the integral will

have the general form

sin { (7m,x/L )+C',J
Xsin Dsm. x/L. )+e.' jdx.

This factor is to be squared and averaged over
4, C,', n, and m .

Averaging first over the phase angles 4, and
C ', we obtain

sin' [(ma/2I. ,)(n, —m, )j sin' Dna/2L, )(n,+m, )5

L(m/I. .)(n —m, ))' L(m/L„)(n +m )j'
Averaging this, times the corresponding factor
for y, over n, n„, m„and m„yields the approxi-
mate result for one patch,

a2b2
1P2

1+(4ab/X')

and for all m patches,

(PMN ) Av 4P—
1+(45 jmX')

where X is the average wave-length of the sound
for the 2lIth and Xth modes. Since the important
part of the second-order sum is for co~ co~, this
average value is valid.

' The final approximate result for a typical
term in the second-order sum in Eq. (7.25) is

g 2

(c'(aN/ V') P'
1+(45./m~ ) ~~ —~N

From Eq. (3.4), the average di&'erence between
allowed values of ~ is (2m'c'/VaP), so that the
magnitude of the largest dozen terms in the
second-order sum is approximately

g 2

(ar'/4~'c V)
~ P ~'

1+(45./mX')

and the ratio between these large terms in the
second-order sum and the first-order term is
approximately

(1/2)I@IS.
(7.27)

Sm'c' 1+(45./mX') X'+ (4S./m)

This quantity can be called the index of
randomness for waves in a rectangular room with
irregularly placed patches of absorbing material.
A similar formula can be obtained for rooms of
other regular shape. When is smaller than
unity the wave motion is not ergodic, there will
be appreciable differences between the decay
rates for different modes, and the decay curve
will not be a straight line. When is considerably
larger than unity, no wave can be a pure axial
or tangential mode, the decay rates will tend to
approach an average, and we can expect that
the Sabine assumptions will hold. It has not yet
been determined just how much larger than
unity must be in order that the Sabine assump-
tions hold.

One can readily see that will be considerably
smaller than unity for low frequencies (X large).
The usual magnitude of P for soft materials is of
the order of 0.2, so that even for X2 smaller than
(45,/m), will not be larger than unity unless
m is large; i.e., unless there are a large number
of small patches. The most effective size for each
patch is approximately one-half-wave-length, so
that X' (4S./m) and the resulting value of
is m(

~ P ) /8).
For instance, for a cubical room 20 feet on a

side, with square patches a half-wave-length
(X/2) wide, of soft material having ~P~ =0.2,
and with the average distance between patches
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(3X/2), there will be, on the average, one patch
in every (4X') area of the wall. The coefficient
of randomness in this case will be .=(7.5/X').
In order that be larger than 4 (which is perhaps
a reasonable criterion for randomness) we must
have the wave-length less than about 1.5 feet,
or the frequency greater than 800 cycles per sec.
At 800 cycles per sec. there would need to be
approximately 250 patches on the walls, one in
each 9 square feet of area.

These results are quite enlightening, and tend
to explain the success of the work of M ax6eld
and Potwin and others (B11, M5, M6, V1).
However, patches of absorbing material on
smooth walls are comparatively ineffective in
scattering sound. We must now study the result
of irregularities of room shape and determine
the effect of these irregularities on

49. Perturbation Caused by Change in Shape of
Boundaries

The other term in Eq. (7.10) must now be
taken up; that due to a change in shape between
S and So. An example is shown in Fig. 28, where
Sp is the (x, y) plane and S "bulges" inward from
Sp in a region bounded by contour C. Inside
this contour the equation for the surface S is
z=B(x, y), where the positive direction of s is
into the room, and where 8 is never negative
(according to our original assumptions). The
unit vector normal to So is no, pointing in the
negative s direction. The unit vector perpen-

dicular to S is n, at an angle 8(x, y) to n. There-
fore for the case under consideration the term in
A~& of Eq. (7.11),

8
&

——Ln grad P&).= I
—[86/Bsj,

BQ
+(grads, B) (grad8 QN) I cos 8,

where grads, is the two dimensional gradient in
the (x, y) plane, and where

cos' 8 =1+grads. ' (B)

The area dS is equal to dxdy/cos 8, so that
the first term in AM~ turns out to be,

(1/Vp~) P~ grad B grad P"dxdy

8
P~—P"dxdy, ('7.28)

as

where, if 8 is smaller than a quarter-wave-length,
it is possible to use grads, P~ instead of grads P~.

Since we have assumed So to be a plane wall,
the general form of P~ near this wall (s small) is

P& = F(x, y) cos (m.n,s/L„),

and the value of —(BP~/Bz) at s=B is approxi-
mately

(mn, /L. )'Bgf~j,=p,

as long as B is small compared to (L,/mn, ). A
final approximate expression for the part of A~~
due to the "bump" in question is

~l
~/

W L
/

/ I / /

~MN—

Sg

PM grads, B grads, PN

(a+i—y—+os)PN dxdy, (7.29)
C

where y —io is the admittance of the bump, and
where the term from Bf~/Bs has been converted
into an eguivalent suscejtance

os ———(X/2m) (~n,/L. )'B, (7.30)

FIG. 28. Irregularities in a plane wall.

a "mass-like" susceptance as long as 8 is
positive.

This part of the effect of change in room shape,
which can be expressed in terms of 0.~, is the
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effect owing to the change in total volume of the
room. To show the effect we can take the case
where Ro is a rectangular room, and where the
only "bump" is on one (x, y) wall, covering an
area whose dimensions are large compared to a
wave length. In this case the part of A~~ arising
from os is, approximately

(2B/L, ) (mrs. /I. .)',
I

where 8 is the average of 8 over the whole wall.
I he result is vahd for oblique waves (m, )0).
The expression for the modification of frequency
owing to this term is, to the first order

(
) +( i +i

EL, ) (L„J (L )
xe 2

+c'i i (2B/L,).
&L, )

To the first order, this .extra term is equivalent
to a reduction in the length of I, by an amount

Therefore the part of the effect of change of
shape which is expressed in terms of os can be
handled in just the same manner as the true
impedance effects were handled in the previous
sub-sections. There is, in addition, a new sort of
term'; the part involving grads, P~. To show the
effects of this term, let us simplify the problem,
somewhat further, by considering the bump to
be the sort shown at the bottom of Fig. 28, with
a B which changes from zero to a constant value
Bo at the edge C. In that case the expression
for A~~ becomes

f
Bo P~n. grads''ards

~ (-+~+-.)ed dy, (7~1)cJ~
$0

where n, is the vector in the (x, y) plane which
is normal to the contour C; and where the first
integral is a line integral around C. This first
term is the effect of the edges of the bump, and
we shall see that it is quite effective in producing
wave scattering.

If the contour C of the edge of the bump is
rectangular, of sides a and b, parallel to thex

and y axes respectively, we can compute the
root-mean-square value of the first term of A~&.
We use the same sort of calculation which
already resulted in Eq. (7.26), to obtain the
r.m.s. value of the first part of A~~ for a single
bump:

Bo (a+6)/&

2 V [1+4(a+9)/Xj'

where it is assumed that neither a nor b is as
large as the x or y dimension of the room Ro.
If, on the other hand, b were equal to L,„, so
that the bump is a raised strip of width a going
across the (x, y) wall, parallel to the y axis,
from one (x, s) wall to the other, then the root-
mean-square value of the first part of A~~ in

Eq. (7.29) is approximately

Bo a/)

2 V (1+4a/X)&

for waves for which m„=n„and m, =n„but is
zero for m„&n„or m, 4n, . If we wish all A~~'s
to differ from zero we must have several raised
strips, on various walls, at least one of which is
perpendicular to each of the three axes. Or else
the irregularities should be patches extending
over just part of a wall, with the patches dis-
tributed over at least three mutually perpen-
dicular walls. If the patches are distributed
irregularly enough, and if there are enough of
them, the approximation series of Eq. .(7.11)
mill not converge, and ergodic wave motion will
result.

The criterion for the transition to the ergodic '

state will be taken from Eq. (7.11) this time.
We will study the average amplitude of the
coe%cient of f~, c'A~~/(sr~' or~'), for co—~ near
or~. If this is small, then y will be made up
primarily of one unperturbed wave P&, and if
the f~ is an axial one, q will have a decay rate
which differs appreciably from the other waves.
On the other hand, if a number of coefficients of
various P~'s are not small, then y will be a
mixture of a number of unperturbed P's, some of
them axial and some oblique, so that each
standing wave p will be a mixture of axial,
tangential and oblique waves; and all standing
waves will have approximately equal decay rates.
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where
(a', S,/m assumed X'),

P, =y io io—e~y—io + (2—~i B/X),

if 8 is smaller than a half wave-length.
A somewhat more flexible formula (though no

more accurate) which is equally valid for any
ratio between X and size of patch or bump, but
which again requires random distribution of
bumps and patches, and assumes that 8 is
smaller than a half-wave-length, is

1 (nBa/X)
~
p, ~S.+, ' '

(7»)
2 X+4a X'+ (4S./m)

If B is larger than ()./2) we substitute (X/2) for
8 in the above formula.

The quantity ™,the index of randomness for
both absorbing patches and bumps, checks with
Eq. (7.27}, for the second term. It can be used
as a very crude measure of the presence or
absence of ergodic wave motion in the room. If
it is considerably less than unity, the wave
motion will not be ergodic and the decay curve
will not usually be a straight line; if it is con-
siderably larger than unity, the wave motion
will be random, we should expect Sabine's
assumptions to be valid, and we can only then
talk about an absorption coegcient for a wall
material, rather than a wall coefficient for a
particular wave and wall and material.

50. The index of Randomness

Suppose we have m patches of absorbing
material of average admittance p and of average
area 5,/m irregularly distributed over the walls;
and we have n "bumps" of average height 8 and
dimensions u (if the bump is a patch extending
over just part of a wall, the dimension a can be
taken to be half its perimeter; if the bump is a
strip extending clear across a wall its dimension
is its width a) also distributed irregularly over
the walls. We also suppose that the average
dimensions of patches and bumps are the same
order of magnitude as the wave-length. Then,
using the previous approximate results for both
patches and bumps, we arrive at a very approxi-
mate value for the average amplitude of the
coefficient O'A~I~/(~~' —co,~12) in Eq. (7.11) for
P~'s with frequencies close to P~,

="=(I/10' ')
t nB~+ IP I ~.l (7 30)

A number of interesting conclusions can be
drawn from this expression. In the first place,
the volume of the room does not enter explicitly
into the formula for the index of randomness;
to this crude approximation it takes just as
many (or as few) irregularities in the room walls
to create random wave motion in a small room
as in a large one at a given frequency. However,
since it is harder (if not impossible) to put a
given number of patches and bumps in an
irregular manner in a small room than in a large
one, it will be more difficult to make Sabine's
assumptions valid in a small room than in a
large one for any given wave-length. In the
second place, it is easier to obtain ergodic wave
motion in any given room for a short wave-length
than for a long wave-length (this is perhaps a
corrolary of the first statement rather than a
separate conclusion).

As an example, let us use material of acoustic
admittance

~ p~ (1/5), which is a fairly "soft"
material. For bumps we can use rectangular
strips extending across three or more walls, some
vertical and some horizontal, with a thickness B
of about 6 inches. For a frequency of 1000 c.p.s,
(X = 1 foot) we should have the strips only a foot
wide, and the absorbing materia, l cut into sepa-
rate pieces about a foot on a side. To obtain
ergodic wave motion, we would have to use
more than 100 patches of absorbing material,
irregularly placed, or we could use more than 40
strips, breaking up the wall shape (in order to
make larger than 2).

For a frequency of 250 c.p.s. (X=4 feet) we
could cut our patches into 4'&&4' squares, and
our raised strips could be 4 feet wide (both
could be somewhat smaller without reducing
their effectiveness appreciably). Again, we would
need more than 100 such patches of the absorbing
material to produce ergodic motion; or we would
need more than 160 strips. It is obvious that it
would be fairly easy to obtain ergodic wave
motion in a room of moderate size (10' && 20'X 30')
at 1000 c.p.s. , but that it would be difficult to
crowd in enough larger patches or bumps to
make it completely ergodic at 250 c.p.s. It is
also obvious that it is usually easier to produce
random wave motion by means of bumps than
it is by patches of absorbing material. This is
not surprising since a raised bump would be
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expected to scatter sound more efficaciously than
a flat patch of absorbing material.

Experimental verification of the theory just
outlined is very fragmentary. A few experiments
with small scale "rooms" have been made to
check the general aspects of the perturbation
theory. In one set of experiments (88) the
enclosure had dimensions of the order of one
foot, so that even the lowest frequencies were
not too low for easy measurement. Individual
normal modes were set up in this room and the
corresponding distribution of pressure was meas-
ured so as to obtain the nodes and loops in the
pressure pattern. The shape of the room was
varied from a rectangular one to a trapezoidal
one. Rectangular "bumps" and "dents" were
also applied to one or the other of the walls.

The distribution of pressure in the first ten or
twenty normal modes and the values of the
resonant frequencies were compared with the
results obtained by the perturbation theory
discussed in this chapter (810).

In general there was good agreement between
theory and experiment although the second-order
term in the perturbation had to be used in order
to obtain satisfactory agreement. Figure 29
shows one case, the top diagram showing the
shape of the room and the measured equi-pres-
sure contours in the room for one of the modes.
The other three curves show the check between
experimental and calculated pressure values. For
this type of perturbation (trapezoidal room),
the first-order terms vanish since the volume of
the room was held constant. For other types of
change of room shape, the first-order terms are
important, and the calculation is somewhat
simpler.

Much more experimental work needs to be
done before we can be sure of the range of
validity of the perturbation theory. At present
we must use it since it provides the only means
of computing complex rooms, but we are not
yet certain how far we can trust it.

The general results obtained in the present
section, and here deduced theoretically from the
behavior of the index of randomness, have
already been applied in architectural-acoustical
design by a number of authorities in this field

(811, M5, Vi); and some experimental study of
the diffusing eR'ect of cylinders has been made
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experimentally by Sabine (S6). In this case the
applications came before the theory, the designs
being based empirically on a wide range of prac-
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FIG. 29. Distribution of pressure measured in a standing
wave in a trapezoidal room. Lower curves compare experi-
rnental results (dotted line) with second-order perturbation
calculations (solid line marked theoretical). From reference
B10.
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tical experience gained in designing auditoriums
and measuring their properties. It is gratifying
that the results of the theory as outlined here
agree more or less with the practical conclusions
drawn from these applications. It is possible that
the theory will clarify these principles and make
it possible to apply them in a more quantitative
manner.

It has long been noticed that two rooms with
the same reverbera'tion time do not necessarily
have the same 'acoustical behavior. An addi-
tional property has been rather vaguely called
the "liveness" of the room (H2). It has some-
thing to do with the ability of the room to
"hold" the sound and at the same time disperse
it thoroughly. (Cf. footnote 4.)

There is now a general tendency to increase
the reverberation time over that previously
considered to be necessary, but to make it as
flat with frequency as possible (cf. Fig. 3-B). In
addition, a considerable effort is now made to
disperse the sound thoroughly. No large, Bat
surfaces of hard material are allowed. Walls are
covered with an irregularly spaced pattern of
"bumps" or patches of absorbing material. The
irregularities in the wall surface are made as
random as possible. All of these tendencies
indicate a general agreement with the principles
derived in this chapter. It is to be hoped that
further investigation will extend and clarify this
agreement.

VIII. FREE-WAVE CALCULATIONS FOR ROOMS
HAVING RANDOM WAVE MOTION

Rooms which are irregular enough in wall-

shape or which have enough absorbing material
distributed irregularly about the walls, can have
ergodic wave motion for frequencies above a
certain lower limit. For such rooms and fre-
quencies, each standing wave consists of a ran-
dom combination of plane waves, traveling in
different directions, so that the system of nodes
and loops is irregularly arranged; the decay rate
for each wave is roughly equal to that of every
other wave of about the same resonance fre-
quency; only then do the Sabine assumptions
hold.

In this case only can we be sure that whenever
sound is present, every portion of the wall surface
is struck by sound waves from all possible

directions; and only in this case can we talk
about an "absorption coefficient, " independent
of room and of normal mode, dependent only on
material. Only in this case can we consider the
sound striking each part of the wall as made up
of a large number of plane waves, randomly
distributed in direction.

When ergodic conditions hold and we can deal
with plane waves traveling in all possible direc-
tions, the problem becomes somewhat simplified
again. We can study the absorption or reRection
of a plane wave from some part of the wall and
then obtain the behavior for the ergodic case by
averaging over all possible directions of incidence
of the wave.

where s is the perpendicular distance to the wall,
x the distance along the wall parallel to the
plane of incidence, and A is the amplitude
(complex) of the reflected wave.

We determine A by requiring that the ratio
between the pressure at the surface

p i(op( 1+A )et (tc /c) (s sin t2—ct)

and the negative normal velocity at the surface

u, = —(i(d cos 8/c) (1 —A)e'("') (* ""e—")

equals Z, the wall impedance. The resulting
equation for A yields

I cos8 —1 cos8 —PA=
I cos 8+1 cos 8+P

where

e—2~T (y)

e 2cc+2ctc (—8 1)

COth [trY(8)$ =COth [2r(2.—iu)$
= I cos 0= ( ~

Z
~
/pc) e—'& cos 8.

tanh [2rY(8)]=p sec 2).

51. Re6ection of a Plane Wave from a Uniform
Wall

To illustrate this technique, and at the same
time to obtain the formulas necessary to compute
the relationship between the Sabine absorption
coefficient and the wall impedance, we shall first
discuss (Kg, H4, P6) the reflection of a plane
wave from a plane wall of uniform impedance
Z=R iX=—pcs =pc/p= ~Z~e 'z'. The angle of
incidence is 8, and the velocity potential is

ei(tc/c) (z sin tt—z cos e—ct) +Act(ra/c) (z sin t)+z cos e ct)—
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The quantity e ' ' represents the reduction in
amplitude of the reHected wave, 2m u is the
change of phase on reHection.

If the incident plane wave has unit intensity,
(IP;I'/2pc) =1, the pressure amplitude at the
wall is the amplitude

2I cos6
(2pc)'*(1+2)= (2pc)'

I cos 8+1

2cos8= (2pc) & = (8pc) &e-" cosh (s T), (8.2)
cos 8+/

and the normal velocity amplitude is the ampli-
tude of

2 cos8
(2/pc)& cos 8(1—A) = (2/pc)&—

I cos 8+1

2P cos8
. =(2/ )' —=(8/ )' ' '

h ( ) (83)
cos 8+P

When the wall is rigid (P =0, T=0), the pressure
amplitude at the wall is twice the amplitude of
the incident wave and the normal velocity at
the wall is, of course, zero. As the wall is made
softer (IPI )0), the pressure amplitude at the
wall, in general, decreases, and the normal

velocity increases in amplitude.
The intensity of the reflected wave is

(cos 8—y)'+o'
I f I'/2~o=! ~I'=, ,

=s-'" (8.4)
(cos 8+y)'+o'

where P=y io Th—e fr.action of the incident
intensity which is absorbed is

u(6) =1—IA I'=1 —e ' '

4y cos 8
(8.5)

(cos 8+y)'+o'

which is the wall coefficient for a plane wave at
an angle of incidence of 8. Its value as function
of ( I

Z
I /pc), y and 8 can easily be computed

from Eq. (8.5). We note that it has its maximum
value for an angle of incidence 8 such that
(IZI/pc) cos 8=1;the harder the wall the nearer
the angle for maximum absorption comes to 90

(grazing incidence). Exactly at grazing iricidence,
of course, free waves are not absorbed at all.

Equation (8.5) has been checked experimen-
tally by measurement of incident and reflected
sound intensity of free waves on large samples,
by Cremer (Ci) and Willig (W10). A modiflca-
tion of this free-wave method has yielded pre-
liminary results in substantial agreement with
theory (P6). In this method, measurements were
made on the maxima and minima in the inter-
ference pattern set up in front of the absorbing
material by the incident and reflected waves, for
various angles of incidence. Equation (8.5) has
also been used (Hi) in the interpretation of
damping of modes of vibration in a rectangular
chamber, with one wall completely covered with
material. Each mode is associated with a partic-
ular angle of incidence, given by the n's, so one
can study damping for all angles by appropriate
choice of frequency and room dimensions. The
free-wave theory gives a close approximation in
this case, ' with the notable exception of waves at
"grazing" incidence. However, a standing wave
analysis must be used for the rigorous solution
of this case, as was shown in Chapter V.

Willig (W10) developed a miniature pressure
gradient microphone in order to discriminate, by
directionality, between the incident and reflected
waves. The directionality was adequate for
measurements between 15 and i5 angles of
incidence. He also obtained a value at normal
incidence by the tube method. He fitted the
points to a curve computed by Eq. (8.5),
choosing a value of y for best fit, and assuming
0.=0, i.e., a real impedance. The experimental
error was a minimum f'or +=0.75, and became
quite large for 0. less than 0.2 and greater than
0.9 because these involved small differences be-
tween large quantities. The experimental results
flt the calculated curves within the experimental
errors, giving adequate confirmation of the
theory in this case.

52. Sabine Coefficient and Wa11 Impedance

I In order to obtain the Sabine absorption
coefficient, we need only obtain the average
value of n(8), given in Eq. (8.5), over all angles
of incidence, weighting each direction by the
relative amount of energy falling on a unit area
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at that direction. The result is 00 $00

~2Ã fQ

nstst
ap

n(8) cos 8 sin Id'

x'dx
=8y

&0 &'+2m&+V'+o'

2y+1
=8y 1—y ln 1+

g== 10

tan ' (8.6)

!==:=::I.==.

IZING
'P~

COS P COS P=8 1 — ln t1+2w cos y+w']
= 1.o

cos 2y

'N S11l p
tan ' m tan y-

w+sec y

cos y 2 cos y~8 1 — In (w)

/ ~ '1
IT

1 ~
l I"

11/I /

I
(
==:-== 0.$

p cos 2p
+— (w—+ oo)

m sing

8 3~—w cos y 1 ——w cos y (w~0),
3 2

where w = ( I
Z

I /pc); cosy/w =y; w cosy
=(R/pc); w sin y=(X/pc). Figure 30 gives a
contour plot of n, t,,t, as a function of w = ( I

Z
I /pc),

the speci6c impedance amplitude, and y, the
phase angle, of the wall.

Equation (8.6) and Figure 30 give the relation-

ship between the wall impedance and the Sabine
absorption coefficient. This quantity is measured

by reverberation measurements only when the

wave motion in the reverberant room is completely

randomised. Ergodic wave motion occurs in most
large auditoriums at all usual frequencies, so
that n, i,~ can be used in most auditorium design

problems. On the other hand there is a consider-
able body of evidence to indicate that ergodic
wave motion is not attained in most acoustic
measurement chambers until the frequency is above

Z000 c.p.s. At lower frequencies the normal
coefFicient n„=8 cos y/w=8y is usually obtained
from the measurements. Consequently, in de-

signing acoustic treatment for large auditoriums
it is better to use n, i.i computed by Eq. (8.6) or

4

0.0$
oo +QP +eo

7'hase Angle of Impedavme

FIG. 30. Sabine absorption coefficient a,&,& as function
of wall impedance magnitude and phase angle. Only to
be used in cases where ergodic wave motion is attained.

53. Reflection of Spherical Wave from
Plane Wall

Some analyses of reverberation have utilized
the image method to obtain the successive

Fig. 30 from the measured impedance of the

material, rather than to use the coePcients measured

at present in reverberation chambers (at least for
frequencies below 2000 c.p.s.) In general the
normal coef6cient O.„is larger than o.,~ ~, so that
the coefficients at present measured in acoustic
chambers are usually larger than the Sabine
coefficient, which characterizes the material's
absorbing ability in large, irregularly shaped
rooms (E5, S7, S14).
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Fro. 31.Angles and distances involved in computing the reQection of a spherical wave from
an absorbing wall.

reflections of a spherical wave from the walls of
a rectangular room. Unfortunately this useful
method is accurate only mken the walls are
perfectly rigid; when the wall impedance is not
infinite the reflected wave cannot be expressed in
terms of a simpleimage. To show this, we utilize
the equation

k r'"
eikRsd&

4xR 4xi ~g

eikR

8X2i ~ p

f'p
eikB cos u sin

= (k/Semi) e'~. Rd0 (8.7)'

where k = (co/c) = (2~/X), the angles and lengths
involved are shown in Fig. 31, dQ is the element
of solid angle for k, and the subscript s beneath
the integral signs indicates that the axial angle
is integrated from 0 to 2x, and the polar angle is
integrated from i~ —(m/2) to 0.

Equation (8.7) expresses the spherical velocity
potential at P due to a simple unit source at
Q, in terms of an integral of plane waves e'~'R

over different directions of k. We can now use
the results of Section 5j. to 6t the boundary
conditions at the wall, s =0. For each elementary

plane wave e'"'RdO there is a reflected wave

[(cos 8 —P)/(cos 8+tl) je'" RdQ. The amplitude of
this reflected wave is not independent of the
angle of incidence (because the factor contains
cos 8) so that the wave emanating from the
image point Q' is not spherically symmetric. This
means that the intensity of the reflected wave
at I' depends on the angle O'. Therefore any
argument which assumes that the reverberent
sound can be represented by a multiplicity of
simple images is likely to lead to fallacious
results. The analyses of Sabine (S2), Norris (N1),
Eyring (E3), Millington (M7), and Sette (S12)
are subject to this criticism.

The reflected wave is

k
I

~cos8 —Pei~'Rrgol
Sn'i 4 & cos8+P

k f' I'0
e—2m T(P)+sIcR' cos u'

S&n gpss
(8.8)8X'Z &p

This integral cannot be expressed in simple
form. When P is small (~ Z ~))pc), an approxima-
tion which is good for R' larger than the wave-

length is

cos 8' —p e"s
e—2m 'r (8')+ikR'/4~+~ (8 9)

cos 8'+P 4~R'
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To this approximation the reBected wave at I'
has the same reduction in intensity on reRection
as would a plane wave with angle of incidence e'.
As P is moved farther from the line QQ' the
angle 0' changes, and the factor e ' "&~'& changes;
again illustrating the fact that the reHected wave
is not spherically symmetric.

When the susceptibility is negative (X posi-
tive), the reflected wave can be expressed in
terms of a simple source at Q' plus a line source
extending along the axis from Q' to minus
infinity:

exp (ikR,)+2i kP e'"~« ) —
dq, (8.10)

wher'e P=y i(r, 0—&0, and q, R, and a are
shown in Fig. 31.

When tP~ is large (~Z~ &/)c), we can expand
the reHected wave in a spherical harmonic series
about Q:

P+ 1- e(kR' 2kP
1 —P ln — — g ( —i)"(2n+1)

P —1 4sR' 4x +=i

XQ~(P) P„(cos tt') k„(kR'), (8.11)

where Q„ is the Legendre function of the second
kind, and k„ is the spherical Bessel function of
the third kind. This expansion is valid for all
values of P except for real values between +1
and —1, but its convergence is poor except for

~P~ large.

54. Edge Corrections

Equation (8.6) gives the relation between the
Sabine absorption coefficient and the wall im-

pedance. With rooms of sufficient size and irregu-
larity for ergodic wave motion to be set up, and
with the wall impedance uniform over fairly
large patches of the walls, the damping coeS-
cient can be computed by means of Eq. (2.2),
where the coefficient ().,t,,t„ for each patch, is
multiplied by the area of the patch, exactly as
was done by Sabine. We realize, of course, that
the value of n,~,~ was computed from the im-

pedance by assuming that the wall was infinite

and had a uniform impedance. Near the bound-
ary of a patch of material, diGraction effects
will occur, and the absorption will not be the
same as it is far from the boundary.

It is the purpose of this section to compute
approximate edge corrections which can be
added to the Sabine formula to give a more
nearly correct expression for the reverberation
time in rooms with random wave motion (these
edge corrections are not valid in rooms where the
wave motion is not random; the methods of
Chapter VII must then be used). It turns out
that the edge correction is an addition to the
area of the patch, proportional to the perimeter
of the patch, the length of boundary. It should
be pointed out that those parts of the patch
which end in a room edge (or within X/2 of the
edges) need no edge correction; so that a wall
completely covered with acoustic material has
no edge correction. Only those parts of the
boundary which are on the Bat part of the wall
will count as "perimeter" in computing the edge
correction.

To show how diffraction changes the absorp-
tion, let us consider the simplest case, that of a
plane wave of unit intensity impinging normally
on a plane wall (the x, y plane), the positive
half (x)0) having impedance Z+ and the nega-
tive half (x&0) having impedance Z . If the
wall impedance were everywhere infinite, the
pressure wave would be

p (2~c) ~~Le
—((&o/c) z+e+((ra/c) z5e i~t—

= 2(2/oc)' cos (p)s/c)e '' (8.12—)

and the normal velocity into the wall,
up ——(i /po)) ((/po/&s) *=o, would be zero

Since the wall is not rigid, up is not zero, and
the wall vibrates (or, at least, air moves in and
out of the pores). This motion generates a
pressure wave pi, additional to pp, which modifies
the wave to fit the boundary conditions. The
total pressure at some point is then pp+pi, and,
by the definition of the impedance, the air
velocity at the surface is uo ——(P/pc)(go+pi) p.

This motion generates the wave pi .'

p 00 p(N

0 (x. y. s) =i( /c)) 4" dx'L&(x' x')e'""'/2 R)LPo(x'»', 0)+P (x', x', o)j
~ —oo

(8.13)



144 I H jI L I I M. MOA. SE AN D Rl CHA A. D H. iHOiT

where ~'= (x—x')'+(y —y')'+z'. Each element
of surface dx'dy' produces a wave which con-
tributes to p&. Equation (8.13) is an integral
equation for p&, which would give the exact
solution if it were solved exactly, but which
can usually only be solved approximately.

ln the simple case we are considering, P(x, y)
depends only on x(P=P+ for x&0; P=P
x(0), and we can integrate directly over y,
obtaining for the pressure p~ at the surface of
the wall:

p, (x) = —( /2c)~ P(x')Lpp(x')+pa(x')]

x{JoL ( — ')/c]+i&ol Ix —x'I/c]}dx'

at s= 0, (8.14)

where Jp and
¹

are the Bessel and Neumann
functions of zero order.

Since pp at z=O is equal to 2(2pc)&e '"', inde-
pendent of x, and since P only changes value at
x=0, we can utilize the formula,

(pp/c) ) {Jpl (o(x—x')/c]+i¹l ~ I*—x' I/c] }dx'
0
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FIG. 32. Diffraction functions involved in calculation of
edge corrections.

px(x) at s= 0 is therefore

P ()=—(2 )'{P+LF ( /)+'F'( /)]
+P [Fr( (ox/c)+i F—i( cox/c) ]}e—

-( /2) P(")p ("){JI (.-")/]
+i¹Lpp

I
x —x' I/c]}dx', (8.16)

where

)Fr( s)+iFi—( z)7 = 2 —
I Fr(z)+—iFi(z)].

= (co/c)~ {Jp{cw/c]+i¹l cul~l/c]}d~

1 —Jip( —ppx/c) iÃi p( ppx/c—)—
1+Ji p(coax/c) +ihip(aux/c)

Fr(sx/c) +iFi (coax/c),

where

When (~x/c) is large compared to unity
(x))X/2z. ), Fr(coax/c) 2, Fr( —&ox/c) 0,
Fi(&a&x/c)~0, and an approximate solution of

(8.15)
Eq. (8.16) is

p& 2(2pc) &p—+e '"' P+p~, —

p =—(2 )'[2P /(1+P+)7 ' '. (81&)

so that the total pressure at the wall surface,
Jip(p) = iI Jp(u)du; Jip(0) =0; Jip(~) =1, far to the right of the junction line x=O is

Nip(p) =
~

¹(u)du; ¹ip(0)=0; ¹p(pp) =0.
0

A plot of Fr(z) and Fi(s) is given in Fig. 32.
We note that

f, ( pl'

Fr(s)dz=0; Fi(s)ds= ——,
J0

which will be useful later.
The final form of the integral equation for

pp+p~=(2pc)'L2/(1+P+)]e '"'

which is to be compared with Eq. (8.2) (the
present case is for 8=0). Similar expressions,
with P inserted instead of P+, hold for
—x))2ir/X.

A first approximation to p~ can be obtained
by setting it equal to these values, with a
discontinuity at x='0;

I

—(2~)'C2P /(1+P )] '"' ( &o)
1—' (8.18)

I-(2")iL2P /(1+P» --, ( &0).
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This approximation completely disregards diffraction effects, and the resulting expression for the
absorption would neglect edge corrections.

A closer approximation, one which takes into account diRraction eR'ects to the first order, is
obtained by substituting Eq. (8.18) into the integral on the right-'hand side of Eq. (8.16). After
a bit of manipulation, the next approximation turns out to be:

�

0+
pl(x) —(2pc) & )Fr(olx/c)+i Fi(&ox/c)]+ )Fr( oox/—c)+iFi ( oox/—c)j e'"', (8.19)

1+0+ 1+P

for s=o. The total pressure at the wall surface is, to this approximation,

(2pc)'
-P+

+ — — )Fr(olx/c)+i Fi((vx/c)) e-'"' (x (0)
1+0 1-+P-1+-P+

Po+Pl
P+ P

(2pc)~ + — /Fr( os/c)+iF—i( &ox/c)$ e—'"' (x)0).
1+0+ 1+0+-1+0

(8.20)

The power dissipated into the wall per unit
incident intensity per unit area of wall at the
distance x from the boundary line is y ~ po+pl ~

'/
2pc=n(0). When both (P+~ and ~P ~

are smaller
than unity (~Z~ )pc) a fair approximation to
n(0) is

u(0) ~c + (0 —tr~) Fi(loX/C) ) (X (0)
(8.21)

+(0+—0 )Fi( —oox/c) J (x)0).

The first factor is just the expression for the
wall coefficient for normal incidence (8=0) for
the wall far to the right or far to the left of the
boundary line x=0. When this is averaged over
all angles of incidence, the Sabine coefficient is
obtained. The second and third terms in the
square brackets are the correction terms due to
di8raction effects near the boundary, the quanti-
ties Fr and Fi being small except within a
wave-length (or so!) of this boundary. When the
expression is integrated to obtain the total
absorption of the wall, the first term is the usual
coefhcient multiplied by the total area of ma-
terial, the second and third terms are edge
corrections to be added to the area of each
material having a "free" boundary. A "free"

boundary is one which is well away from room
edges: one which is closer than a half-wave-
length from an edge of a room over most of its
extent is not counted as a "free" boundary.
For instance, if a patch of material covers half
a wall, dear to the edges of the room, then only
the boundary down the middle of the wall is a
free boundary.

By using the expressions for the integrals of
Fr and Fi, we finally obtain the following
approximate rules for applying edge corrections
in rooms with random wave motion. The usual
expression for the total absorption holds: we
multiply the Sabine coefficient (computed by
means of Eq. (8.6) or Fig. 31) for each patch of
material by the effective area of each patch. The
effective area is the actual area of the patch plus

(X/4)(0+ —~ )

Xpc X+ X
+ — (8.22)

4 R+'+X+' R '+X '

times the length of free boundary. Here X is
the wave-length of the sound, y+ —io+ the
admittance of the patch under consideration '

(R~ and X+ the corresponding acoustic resistance
and reactance) and y io is th—e admittance of
the material adjoining the patch on the other
side of the free boundary in question. It is
assumed that

~
Z

~
)pc.

We note that corresponding to each boundary
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separating two materials on a wall (provided the
line is not too close to a room corner), there are
two edge corrections of equal magnitude and
opposite sign, one for the area of material on
one side of the boundary and the other for the
area of material on the other side. The correction
for the material of larger susceptance (0. larger)
is positive, that for the material of less positive
susceptance is negative. The sum of the effective
areas is just equal to the total wall area. Since
0 = —pcX/(R'+ x') measures the compliance
(reciprocal of the stiffness of a wall), we can
say that the effective areas of the more compliant
patches are somewhat 1arger than their actual
areas and those for the less compliant patches
are reduced somewhat. Equation (8.22) is derived
for normal incidence; the correction for oblique
waves will differ somewhat from this.

For example; take a patch of material of
resistance A= 1.5(pc) and reactance —2(pc). The
Sabine absorption coe%cient is approximately
0.75, and the specific susceptance is 0.33.Suppose
a 10')(10' patch of this material be mounted on

a wall of impedance (14+20~)(pc), (n,~.~=0.15,
0 =0.03), with its edges far from the room
corners. At 500 cycles the effective area of the
patch will be T06 square feet, and the eRect of
diffraction will be to add 4.5 sabines to the
absorption of the patch and to subtract 1 sabine
from the absorption of the rest of the wall. At
lower frequencies, if the wall impedances remain
the same (which they will not!) the relative
size of the correction will increase.
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SS. Glossary of Symbols Used

The more commonly used symbols are listed here, with reference to the
section or sections where the symbol is defined. Only symbols used in more
than one section are included here.

Symbol

ap

A

I3

e
G
Zi JI
J
k
&o~

X

Meaning
Room absorption factor
Normal absorption factor
Amplitude of P
Indicial admittance
Expansion coeif. for Q
Velocity of sound in air
Wave type factor
Normalizing amplitude for p
Imaginary units, i = {—1)&,j=—i
Intensitv of sound
Imaginary units
Bessel function
Damping constant
Natural damping constant
Constant in reverberation formula
Effective stiffness of panel
Dimensions of room
Thickness of wall material
Density factor for material
Effective mass of panel
Integer
Real part of index of refraction
Quantum number trio
Porosity of material (Percent of volume
Imaginary part of index of refraction
Source function
Source amplitude
Strength of simple source
Resistivity factor for materials

Units
cm2 or ft.2

cm' or ft.'
cm'/sec.

sec. '
cm/sec.

ergs/sec. cry'—Z

crn or ft.
crn or ft.

(n„ny, ng)
which is pore space)

sec. '
sec. '
cm'/sec.
g/cm sec.

Defined in
sections number
32
33
14, 25
37
29
10, 17
27, 44
27, 28
10
3.1

10

6, 16, .27, 32
37
3.1, 4, 6

21
14
17
17
21
14
17
27
17
17
29
29
29
17, 24
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Symbol
R
S
t
T

U
V

V

8'
x, f)s
X
Z .

Ap

Cts

stat

E

8
K

X
A

V

II
P

cr

T

T

4
x

~ON
0

Meaning
Acoustic resistance
Area of wall surface
Time
Reverberation time
Vector velocity of air
x component of air velocity
Unity or step function
y component of air velocity
Volum'e of room
s component of air velocity
Energy density of sound
Rectangular coordinates
Acoustic reactance
Acoustic impedance
Absorption or wall coefficient
Normal wall coefficient
Tangential wall coefficient
Supplementary wall coefficient
Sabine or statistical absorption coefficient
Specific admittance
Specific conductance
Resistivity parameter for material
Impedance parameter for material
Phase angle for &

=4m', K

Normalizing number
Specific impedance
Frequency parameter
Angle of incidence
Normalizing phase angle for P
Attenuation parameter
Wave-length
Normalizing constant
Wave number parameter
Frequency
Characteristic value (i&+ik)
Index of randomness
=3.1416
Power of source
Mean density of air
Specific susceptance
Frequency parameter for material
Summation sign

Reflected wave parameters

=T ZV

Phase angle for Z
Angle of incidence
Phase angle for velocity potential
Characteristic value for P,
Velocity potential
Total velocity potential
Angular frequency
Natural frequency

Pm K2

Units
Press. /velocity
cm' or ft.'
sec.
sec.

cm/sec.

cm/sec.
crn' or ft.'
cm/sec.
erg/cm'
cm or ft.
Press. /velocity
Press. /velocity

= (pc/Z) =y —i

(e, k, L1)
(Z/pc)
(2L/x)

crn or ft.

sec. '

ergs/sec.
g/cm'

Z= JZ[e-*v

= (p —iK)
cm'/sec.
cm'/sec.
=(2sv)

Defined t'n

sections number
10

3.1, 4

14, 25
37
14

14
6

10
10, 27
4, 10

10, 32
32
32
4, 10, 52

10, 27
10, 27
17
19
37
27
14, 28
10
25
51
27, 28
25

28
25
14
27 37
47

6
10
10, 27
19

51

51
10, 27
17
25, 37
25
1.4, 25
29, 37
10, 27
37
27

56. Bibliography

The following references cover most of the material
discussed in this review. For a more complete Bibliography
on this subject, see Watson, "Bibliography of Acoustics of
Buildings, "J. Acous Soc.Am. 2, 14 (1931),and Cumulative
Index, J. Acous. Soc. Am. Vols. 1—10 (1939), which are
referred to as References A in the text.

(A1) F.Aigner, "ExPerimentelle Stgdt'e tiber d. Naclthall, "
Akad. Wiss. Wien 123, 1489 (1914).

(A2) C. A. Andree, "Effect of position on the absorption
of materials for the case of a cubical room, " J.
Acous. Soc. Am. 3, 535 (1932).

(B1) G. v. Bekesy, "Uber die Horsamkeit kleiner
Musikraume, "Ann. d. Physik 19, 665 (1934).

(B2) L. L. Beranek, "Precision Measu'rement of acous-
tical impedance, "J.Acous. Soc. Am. 12, 3 (1940).

(83} L. L. Beranek, "Acoustical impedance of com-
mercial materials and the performance of rec-
tangular rooms with one treated surface, " J.
Acous. Soc. Am. 12, 14 {1940).

(B4) L. L Beranek, . "Acoustic impedance of porous
materials, "J. Acous. Soc. Am. 13, 248 (1942).

(85) N. .B. Bhatt, "The effect of an absorbing wall on
the decay of normal frequencies, " J. Acous. Soc.
Am. 11, 67 (1939).



PH I LI P M. MORSE AN D R I CHA R D H. BOLT

(B6)

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

(C1)

(C2)

(C3)

(C4)

(CS}

(C6)

(C7)

(D1)

(D2)

(D3)

(D4)

(E1)

(E2)

(E3)

(E4}

(E5)

J

R. H. Bolt, "Frequency distribution of eigentones
in a three-dimensional continuum, "J.Acous. Soc.
Am. 10, 228 (Jan. 1939); "Angular distribution
theory, "J.Acous. Soc. Am. 11, 74 (1939).

R. H. Bo1t and A. A. Petrauskas, "An acoustic
impedance meter for rapid held measurements, "
J. Acous. Soc. Am. 15, 79A (1943).

R. H. Bolt, "Normal modes of vibration in room
acoustics;" "Experimental investigations in non-
rectangular enclosures, " J. Acous. Soc. Am. 11,
184 (1939).

R. H. Bolt and R. L. Brown, "Variable boundary
impedance, "J. Aeons. Soc. Am. 12, 31 (1940).

R. H. Bolt, H. Feshbach, and A. M. Clogston,
"Perturbation of sound waves in irregular
rooms, "J.Acous. Soc. Am. 14, 65 (1942}.

C. P. Boner, "Performance of broadcast studios
designed with convex surfaces of plywood,

" J.
Acous. Soc. Am. 13, 244 (1942).

R. L. Brown, R. H. Bolt, and P. M. Morse,
"Acoustic impedance and sound absorption, " J.
Acous. Soc. Am. 12, 217 (1940).

R. L. Brown and R. H. Bolt, "Measurement of
Row resistance of porous acoustic materials, "
J. Acous. Soc. Am. 13, 337 (1942).

E. Buckingham, Bull. Bur. Stand. 20, 193 (1925).

V. L. Chrisler, "Acoustical work of the National
Bureau of Standards, " J. Acous. Soc. Arn. V, 79
(1935).

V. L. Chrisler, "Sound' absorption coefficients, "
J. Acous. Soc. Am. 6, 115 (1934);

C. W. Clapp and F. A. Firestone, "The acoustic
wattmeter, an instrument for measuring sound
energy fiow, "J. Acous. Soc. Am. 13, 12 (1941). .

I. B. Crandall, Theory of Uibrating Systems and
Sound (D. Van Nostrand Company, New York,
1927).

H. Cremer and L. Cremer, "The theoretical
derivations of the laws of reverberation, "
Akustische Zeits. 2, 225, 296 (1937).

L. Cremer, "The physical basis of room acoustics, "
Zeits. f. tech. Physik 1'7, 528 (1936).

L. Cremer, "Nachhallzeit und Dampfungsmass bei
streifendem Einfall, " Akustische Zeits. 5, 57
(1940).

A. H. Davis, "Reverberation equations for two
adjacent rooms connected by incompletely sound-
proof partition, "Phil. Mag. 50, 75—80 (1925).

A. H. Davis, "The basis of acoustic measurements
by reverberation methods, " Phil. Mag. 2, 543
(1926).

A. H. Davis and E, J. Evans, "Measurement of
absorbing power of materials by the stationary
wave method. " Proc. Roy. Soc. A12'7, 89-110
(1930}.

I. Dreisen, "The orientation of natural acoustic
vibrations in a room with concentrated absorbents
and of anomalous shapes, " Tech. Phys. USSR 3,
743 (1936).

E. A. Eckhardt, "Acoustics of rooms, " J. Frank.
Inst. 195, 799 (1923).

L. P. Eisenhart, "Separable Euclidean coordi-
nates, "Ann. Math. -35, 284 (1934).

C. F. Eyring, "Reverberation time in 'dead'
rooms, "J. Acous. Soc. Am. 1, 217-241 (1930).

C. F. Eyring, "Conditions under which residual
sound in reverberent rooms may have. more than
one rate of decay, " J. Soc. Mot. Piet. Eng. 15,
528 (1943).

C. F. Eyring, "Symposium discussion, " J. Acous.
/ac. Am. 11, 104 (1939).

(F1)

(F2)

(F3)

(F4)

(FS)

H. Feshbach and A. M. Clogston, "Perturbation
of boundary conditions, " Phys. Rev. 59, 189
(1941).

H. Feshbach, "On the perturbation of boundary
conditions, " Phys. Rev. 65, 307 (1944).

H. Fletcher and J. C. Steinberg, "Articulation
testing methods, " J. Acous. Soc. Am. 1, No. 2,
Pt. 2 (1930).

A. D. Fokker, "Sabine's formule voor den nagalm, "
Physica '7, 198 (1927).

W. S. Franklin, "Derivation of equation of decay-
ing sound in a room, " Phys. Rev. 16, 372 (1903).

A. Gemant, "Resistance to airflow in sound ab-
sorbers, " Preuss. Akad. Wise. 1'7, 579 (1933).

(J1)

(J2)

(J3)

(K1)

(K2)

(K3)

(K4)

(KS)

(K6)

(K7)

(K8)

(K9)

A. Jager, "Zur theoric des Nachhalls, "Akad. Wiss.
Wien 2a, 120, 613 (1911).

J. Jeans, "On the partition of energy between
matter and aether, "Phil. Mag. 10, 91 (1905).

R. C. Jones, "Theory of Huctuations in decay of
sound, "J. Acous. Soc. Am. . 11, 324 (1940).

V. O. Knudsen, "Acoustics of music rooms, " J.
Acous. Soc. Am. 2, 434 (1931).

V. O. Knudsen, "Absorption of sound in air, "
J.Acous. Soc. Am. 3, 126 (1931).

V. O. Knudsen, Arctutectural Acoustics (John Wiley
8. Sons, Inc. , New York, 1932).

V. O. Knudsen, "Measurement of sound absorption
in a room, " Phil. Mag. 5, 1240 (1928).

V. O. Knudsen, "Resonance in small rooms, "
J. Acous. Soc, Arn. 4, 20—37 (1932).

V. O. Knudsen, "The absorption of sound in air,
in oxygen, and in nitrogen, " J. Acous. Soc. Am.
5, 112 (1933).

V. O. Knudsen, "Recent developments in archi-
tectural acoustics, "Rev. Mod. Phys. 0, 1 (1934).

V. Kuhl and E. Meyer, "Untersuchungen uber die
Winkel- und Frequenz-abhangigheit der Schall-
schluckung von Pyorosen Stoffen, "Preuss. Akad.
Wiss. 26, 416 (1932).

K. Kurhihara, "Distribution of sound energy in an
enclosed space, " Proc. Phys. Math. Soc. Japan
10, 71 (1928).

(H1) W. M. Hall, "An acoustic transmission line for
impedance measurements, " J. Acous. Soc. Am.
11, 140 (1939).

(H2) R. L. Hanson, "Liveness of rooms, "J. Aeons. Soc.
Am. 3, 318 (1932).

(H3) J. Henry, "Acoustics applied to public buildings, "
Smithsonian Reports (1854 and 1856).

(H4) P. R. Heyl, V. L. Chrisler, and W. F. Snyder,
"The absorption of sound at oblique angles .of
incidence, " Bur. Stand. J. of Research 4, 289
(1930).

(HS) F. U. Hunt, "On frequency modulated signals in
reverberation measurements, "J.Acous. Soc. Am.
5, 127 (1933).

(H6) F. V. Hunt, "Apparatus and technique for rever-
beration measurements, " J. Acous. Soc. Am. 8,
34 (1936).

(H7) F. V. Hunt, "Investigation of room acoustics by
steady state transmission measurements, " J.
Acous. Soc. Am. 10, 216 (1939).

(H8) F. U. Hunt, "Absorption coeAicient problem, " J,
Acous. Soc. Am. 11, 38 (1939).

(H9) F. V. Hunt, L. L. Beranek, and D. Y. Maa,
"Analysis of sound decay in rectangular rooms, "
J. Acous. Soc. Am. 11, 80 (1939).

(H10) Kodi Husimi, "On the asymptotic distribution of
frequencies of a Hohlraum and the surface
tension of. an ideal gas, " Proc. Phys. Math. Soc.
Japan 21, 759 (1939).



(L1)

(L2)

(L3)

(L4)

(LS)

M. von Laue, "Die Freiheitsgrade von Strahlen-
biindeln, "Ann. d. Physik 44, 1197 (1914).

S. Lifschitz, "Mean intensity of sound in an
auditorium, and optimum reverberation, " Phys.
Rev. 2V, 618 (1926).

S. Lifschitz, "Acoustics of large auditoriums, "
J.Acous. Soc. Am. 4, 113 (1932).

S. Lifschitz, "Apparent duration of sound percep-
tion and musical optimum reverberation, " J.
Acous. Soc. Am. 7, 213 (1936).

D. P. Loye and R. L. Morgan, "Acoustic tube for
measuring the sound absorption coefficients of
small samples, "J.Acous. Soc. Am. 13, 261 (1942).

(N1) R. F. Norris, "A derivation of the reverberation
formula, " Appendix II in Architectura/ Acoustics
by V. O. Knudsen (John Wiley fb Sons, Inc.,
New York, 1932).

H. F. Olsen and B. Kreuzer, "The reverberation
time bridge, " J. Acous. Soc. Am. 2, 78 (1930).

(Pl)

(P2)

(P3)

(P4)

(P5)

E. T. Paris, "Sound absorption coefFicients meas-
ured by reverberation and stationary wave
methods, "Nature 120, 806, 880 (1927).

E. T. Paris, "On the reffection of sound from a
porous surface, " Proc. Phys. Soc. 115, 407-.419
(1927).

E. T. Paris, "On the stationary wave method of
measuring sound absorption at normal incidence, "
Proc. Phys. Soc. 39, 269—295 (1927).

E. T. Paris, "Resonance in pipes stopped with
imperfect reflectors, " Phil. Mag. 4, 907—917
(1927).

E.T. Paris, "On the coefFicient of sound-absorption
measured by the reverberation method, " Phil.
Mag. 5, 489-497 (1928).

(M1) D. Y. Maa, "The distribution of eigentones in a
rectangular chamber at lower frequency ranges, "
J. Acous. Soc. Am. 10, 258 (1939).

(M2) D. Y. Maa, "Non-uniform acoustical boundaries
in rectangular rooms, "J. Acous. Soc. Am. 12, 39
(1940).

(M3) D. Y. Maa, "Flutter echoes, " J. Acous. Soc. Am.
13, 170 (1941).

(M4) W. A. MacNair, "Optimum reverberation time for
auditoriums, "J. Acous. Soc. Am. 1, 242 (1930).

(MS) J. P. Maxfield and C. C. Potwin, "A modern
concept of acoustical design, "J.Acous. Soc. Am.
11, 48 (1939).

(M6) E. Meyer, "Reverberation and absorption of
sound, "J. Acous. Soc. Am. 8, 155 (1937).

(M7) G. Millington, "A modified formula for reverbera-
tion, "J.Acous. Soc. Am. 4, 69 (1932).

(M8) A. Monna, "Absorption of sound by porous sub-
stances, "Physica 5, 129 (1938);Rev. d acoustique
7, 126 (1938).

(M9) K. C. Morrical, "A modified tube method for
measurement of sound absorption, " J. Acous.
Soc. Am. 8, 162 (1931).

(M10) R. M. Morris, G. M. Nixon, and J. S. Parkinson,
"Variations in absorption coefFicients as obtained
by the reverberation chamber method, "J.Acous.
Soc. Am. 9, 234 (1938).

(M11) P. M. Morse, Vibration and Sound (McGraw-Hill
Book Company, Inc. , New York, 1936) in
particular, Chapter VII I.

(M12) P. M. Morse, "Some aspects of the theory of room
acoustics„" J. Acous, Soc. Am. 11, 56 (1939).

(M13) P. M. Morse, "Transmission of sound inside pipes, "
J.Acous. Soc. Am. 11, 205 (1939).

(P6)

(P7)

(P8)

(P9)

E. T. Paris, "Oblique reflection of sound, " Nature
9, 126 (1930).

J. S. Parkinson, "Area and pattern effects in the
measurement of sound absorption, " J. Acous.
Soc. Am. 2, 112 (1930).

H. L. Penman and E. G. Richardson, "The ab-
sorption of porous materials at normal incidence, "
J. Acous. Soc. Am. 4, 322 (1933).

J. R. Power, "Measurement of absorption in
rooms with sound absorbing ceilings, " J. Acous.
Soc. Am. 10, 98 (1938).

(R1)

(R2)

(R3)

(R4)

(RS)

(R6)

(R7)

(R8)

A. V. Rabinovich, "Effect of distance in the
broadcasting studio, " J. Acous. Soc. Am. F, 199
(1936).

L. G. Ramer, "Absorption of strips, eR'ects of
width and location, " J. Acous. Soc. Am. 12, 323
(1941).

Rayleigh, "The law of complete radiation, " Phil.
Mag. 49, 539 (1900).

Rayleigh, Theory of Sound (The Macmillan Com-
pany, New York, Vol. II, Chap. 13, 1929).

M. Rettinger, "Note on reverberation character-
istics, "J; Acous. Soc. Am. 6, 51 (1934).

M. Rettinger, "On the theory of sound absorption
of porous materials, " J. Acous. Soc. Am. 6, 188
(1935).

M. Rettinger, "Theory of sound absorption of
porous materials, flexible and non-fiexible, " J,
Acous. Soc. Am. S, 53 (1936).

G. M. Roe, "Frequency distribution of normal
modes, " J. Acous. Soc. Am. 13, 1 (1941).

(S1) W. C. Sabine, Collected Papers on Acoustics
(Harvard University Press, 1922).

(S2) W. C. Sabine, Collected Papers on Acoustics
(Harvard University Press, 1929) p. 43.

(S3) P. E. Sabine, "Diffraction effects in sound ab-
sorption measurements, " Phys. Rev. 19, 402
(1922).

(S4) P. E. Sabine, "What is measured in sound absorp-
tion measurements?" J. Acous. Soc. Am. 6, 239
(1935).

(SS) P. E. Sabine, "The beginnings of architectural
acoustics, "J. Acous. Soc. Am. F, 242—248 (1.936).

(S6) P E. Sabin. e, "The effect of cylindrical pillars in a
reverberation chamber, " J. Acous. Soc. Am. 10,
1 (1938).

(S7) P. E. Sabine, "Architectural acoustics, its past and
its future, "J. Acous. Soc. Am. 11, 21 (1939).

(S8) P. E. Sabine, "Specific normal impedance and
sound absorption coefficients of materials, " J.
Aeons. Soc. Am. 12, 317 (1941).

(S9) H. J. Sabine, "Notes on acoustic impedance
measurements, " J. Acous. Soc. Am. 14, 143
(1942).

(S10) K. Schuster and E. Waetzmann, "Uber den
Nachhall in geschlossenen Raumen, " Ann. d.
Physik 1, 671 (1929).

(S11) K. Schuster, "Berechnung der Schalldichte in
einem Kugelformigen Raume, " Ann. d. Physik
1, 696 (1929).

(S12) W. H. Sette, "A new reverberation time formula, "
J. Acous. Soc. Am. 4, 193 (1933).

(S13) G. T. Stanton, F. C. Schmidt, and W. J. Brown,
"Reverberation measurements in auditoriums, "
J. Acous. Soc. Am. 4, 95—105 (1934).

(S14) G. T. Stanton, "Correlation of sound absorption
coefficients with field measurements, " J. Acous.
Soc. Am. 11, 45 {1939).

(S15) M. J.O. Strutt, "On the acoustics of large rooms, "
Phil. Mag. 8, 236—250 (1929).

(S16) M. J. O. Strutt, "Acoustics of large halls, " Zeits.
f. angew. Math. u. Mech. 10, 360—368 (1930).



P H I L I P M. MORSE AN D Rt CHARD H. BOLT

(T1)

(T2)

(V1)

(W1)

(W2)

(W3)

H. O. Taylor, "A direct method of finding the
value of materials as sound absorbers, " Phys.
Rev. 2, 270 (1913}.

H. 0. Taylor and C. W. Sherwin, "Sound absorp-
tion and attenuation by the Hue method, " J.
Acous. Soc. Am. 9, 331—335 (1938}.

J. E. Uolkmann, "Polycylindrical diffusers in room
acoustical design, " J. Acous. Soc. Am. 13, 234
(1942).

F. R. Watson, Acoustics of Buildings (John Wiley
R Sons, Inc. , New York, 1941).

F. R. Watson, "Acoustics of auditorium; optimum
time of reverberation, " Arch. 55, 251 (1927).

R. B. Watson, "The modulations on sound decay
curves, "J. Acous. Soc. Am. 13, 82A (1941).

E. C. Wente and E. H. Bedell, "The measurement
of acoustic impedance and the absorption coefFi-
cient of porous materials, " Bell Sys. Tech. J. 7,
1—10 (1928).

(W5)

(W6)

(W7)

(W8)

(W9)

(W10)

(W11)

E. C. Wente and E. H. Bedell, "Chronographic
method of measuring reverberation time, " J.
Acous. Soc. Am. 1, 422 (1930}.

E. C. Wente, E. H. Bedell, and K. D. Swartzel,
"High speed level recorder for acoustic measure-
ments, " J. Acous. Soc. Am. 6, 121 (1935); See
also Bedell and Swartzel, J. Acous. Soc. Am. 6,
130 (1935).

E. C. Wente, "Acoustical instruments, " J. Acous.
Soc. Am. 7 (1935).

E. C. Wente, "Characteristics of sound transmis-
sion in rooms, "J. Acous. Soc. Am. 7, 123 (1935),

H. Weyl, "Das apymptotische Verteilungsgesetz
der Eigenwerte linearer partieller Differential-
gleichungen, "Math. Ann. 'll, 441 (1911).

F. J. Willig, "Comparison of sound absorption
coefficients obtained experimentally by different
methods, "J. Acous. Soc. Am. 10, 293 (1939).

E. Wintergerst, "Theoric der Schalldurchlassigkeit
von einfachen und zusammengesetzten Kanden, "
Schalltechnik. 4, 85 (1931).


