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1. INTRODUCTION

' 'N a recent paper Dirac' proposed a new method
~ ~ of field quantization which uses an indefinite
metric in the space of quantum states. Applied to
particles with integral spin obeying Bose sta-
tistics, it leads particularly to a "negative proba-
bility" of states, where an odd number of parti-
cles is present. The term "negative probability"
means essentially that observables with only
positive eigenvalues can get negative expectation
values. The field oscillators which are quantized
according to this method describe particles with
negative energy. In addition one uses other held
oscillators quantized in the usual way with posi-
tive probabilities and positive energy. The form-
alism which is constructed in this way has, there-
fore, a greater similarity with the original
interpretation of the second-order wave equation
as a one-body problem without second quantiza-
tion, according to which states with positive
(negative) frequencies should have positive
(negative) energies.

The advantage of this new method is the possi-
bility of overcoming all mell-known convergence
difficulties of quantized Field theories if it is
coupled with a quite diferent and logically inde-
pendent method due to Wentzel and improved by
Dirac, the so-called X-limiting process which is a

~ This report is an improved and amplified form of a
lecture held at Purdue University, Lafayette, Indiana, in
June, 1942, and at the same time a continuation of the
earlier report, Rev. Mod. Phys. 13, 203 (194j.), which will
be quoted as A.

j P. A. M. Dirac, Proc. Roy. Soc. AI80, 1 (1942).

purely classical procedure that can be translated
into quantum theory. This positive result is,
however, partly balanced by a setback in the
theory of generation and annihilation of pairs of
particles with opposite electric charges. While in
the usual form of the theory of holes it is possible
to take into account the Coulomb interaction
between generated pairs, the application of the
X-process to this theory fails to make the self-
energy of an electron finite (whether or not the
new method of field quantization is applied at
the same time). The reason is that for a con-
sistent application of the X-process there is the
necessary condition that the charged particles do
not come closer to each other than the distance X.
While this condition can be fulfilled in a theory
where the number of particles present is finite
and constant by choosing X sufficiently small,
difficulties occur in connection with this condition
from the fact that according to the theory of
holes, pairs are generated in the immediate
neighborhood of a charged particle in such a way
that the electrostatic (and also the electro-
dynamic) self-energy of an electron becomes
logarithmically divergent. It is the author' s
opinion that this difficulty could be overcome
only by using, instead of the X-limiting process, a
new and probably purely quantum theoretical
method. ' The situation in the theory of charged

~ I disagree with Dirac's state ment that in the theory of
holes, where one starts with the negative energy states
occupied, the equations are more complicated than in the
older form of the theory using a constant number of charged
particles which make transitions to negative energy states.

5



KV. PA UL I

particles with zero spin obeying Bose statistics is
entirely analogous to the situation in the theory
of ordinary electrons with spin —,

' obeying the
exclusion principle.

Both the negative energy values and the nega-
tive probabilities of some states of a single par-
ticle according to the new formalism make rather
fundamental changes indispensable in the usual
physical interpretation of quantum theory. Al-

though the new formalism has in some respects a
closer similarity to the classical theory than the
previous method which gave divergent results,
the interpretation of the new method is not a
consistent and complete system, but consists of
certain preliminary rules for computing proba-
bility coefFicients of radiation and collision proc-
esses. The situation also has some analogy to the
old correspondence principle of Bohr in this re-
spect, that the new theory unites diferent
processes which actually occur under very differ-
ent conditions in nature. Indeed, the theory does
not give the correct dependence of the transition
probabilities of these processes on the number of
particles initially present in the di8'erent states.
Although this circumstance shows the very pre-
liminary character of the new formalism and
seems to indicate the need of more radical changes
in the fundamental assumptions of the quantum
theory of fields, it may be hoped that just this
situation may enable a further progress.

2. INDEFINITE METRIC IN HILBERT SPACE

In Dirac's formalism of field quantization, a
generalization of the usual metric in the Hilbert
space of the states of a system is used. While in
the latter the normalization of a wave function

g(g) is defined by

The expectation value of an observable A repre-
sented by a linear operator has now to be defined
by

(A) = JI gsAPdg

As a generalization of' the Hermitian conjugate
operator, we introduce the adjoint operator which
we denote by A*. This is given by

A* =g
—'A~g~ = g

—'A~g,

where A~ is the Hermitian conjugate operator,
and has the property

The physical observables have to be self-adjoint;
this means that A*=A holds for them because
the self-adjoint operators are those, the expecta-
tion values of which are real. The self-adjoint
operators play the same role as the Hermitian
operators in the usual theory. In particular the
Hamiltonian operator II which determines the
time dependence of the wave function f accord-
ing to

hence
8$(8t = iHQ, —

(&P/Bt) rt =iPHt jt =ifrtH*, (6)

in which the operator q is only restricted by the
condition that it has to be Hermitian in order to
give the form used for normalization real values.
It is obvious that in a discrete coordinate system
the J'dg has to be replaced by a sum over the
discrete index n, and g can be represented by a
matrix s„so that (1) becomes

Q Pn jtnmfmy Q Pn'gnmPm.

~ ~

where P is the conjugate complex of P, and the
scalar product of two complex vectors y and f in II
the Hilbert space by

This has the consequence that

J jtjAdif i

we consider now the more general bilinear forms

J Pjudg, J
rP judg,

=if jt(H* H)f =0;—
that is, the conservation of the normalization
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with time. For the time dependence of the expec-
tation value of an observable A (not explicitly
time dependent) one gets as usual

(A—)a„i(H——A AH—)A'
dt

If we perform a linear transformation of the
coordinate system in the Hilbert space, which has
not necessarily to be a unitary transformation
according to

the Hilbert space. They lead to the consequence
that operators with only positive eigenvalues can
ttave negative expectation values. One can express it
also by saying that one introduces negative
probabilities that certain positive eigenvalues of
an observable are realized. Khile the physical
meaning of this possibility is not clear, Dirac was
able to show that it enables us to overcome the
convergence difficulties in the quantum electro-
dynamics as it has been known until now.

(8) 3. APPLICATION TO THE HARMONIC OSCILLATOR
we have to put

g' =StgS (9)

in order to keep the length of a vector in the
Hilbert space constant; that is, the normalization
of the wave function is invariant

Ke consider a harmonic oscillator which we
can describe in suitable units by two variables
p, q satisfying the commutation relations

i[p q]=1

and by the Hamiltonian

H= 2(p'+q').

The observables such as A and their adjoints are
then in accordance with (4) transformed ac-
cording to

A'= S-IAS, A*'=&'-~A'~'= S-iA*S

Introducing the new variables u, u* by

u = (1/V2) (p —ig), u* = (1/W2) (p+iq), (12)

we get

in order to make their expectation values
invariant

[u, u*]=1,

H = '(u'u+-uu") =u*u+-' (14)

The quality of an observable to be self-adjoint is
invariant with respect to these S-transformations,
while the quality to be Hermitian is in general
not invariant.

Two different forms of the matrix g connected
with each other according to (9) have to be con-
sidered as equivalent. Now every Hermitian
matrix g can be transformed with a suitable S
according to (9) into a normal form which is
diagonal and where, moreover, every diagonal
element has the value 1 or —1. Only the signs of
the eigenvalues of q are therefore physically
relevant, and, in particular, the positive definite
forms (1) are equivalent to the usual theory
where q is equal to the unit matrix. We get,
however, something essentially new if we take
into consideration indefinite bilinear forms as
defining the square of the lengths of vectors in

If we assume that p and g are Hermitian, there is
u*=ut; that is, u* is Hermitian conjugate of u.
As is well known, the quantity

(15)

u*g(N) = N&f(N 1), —
u|p(N) = (N+1)&p(N+1)

The wave function P(N) has to be normalized by

Q~ tP(N)f(N) =1.

If tt~(q) are the normalized Hermitian eigen-
functions of (11), one has

4 (a) = Z~ &~(a)4 (N) (17)

has the eigenvalues 0, |, 2, and in a repre-
sentation where N is diagonal, the operators
corresponding to u and u* have the simple
meaning of an absorption and emission operator
applied to the wave function P(N)



and hence normalized according to

k(q)4(q) =1. P v (—1)~P(N) f(N) = const. , (22)

There exists, however, an alternative possi-
bility of treating the same Hamiltonian by as-
suming the variables p, q which again satisfy (10)
as still self-adjoint, but anti-Hermitian instead of
Hermitian. In this case it wi11 turn out to be con-
venient to define

u = (1/V2) (p+iq), u' = (1/v2) (p —iq). (18)

which clearly shows the "negative probability"
of states with odd values of X in this formalism.
In view of the fact that kv(q) is an even or odd
function if N is even or odd, one easily obtains,
using (16), the normalization of P(q) which
corresponds to the normalization (22) of P(N) as
given by

~' g(q)P( —q)dq=const. . (23)

t I, u*j= —1, (19)
or, if we decompose P(q) into an even part P, (q)

with u the negative of the Hermitian conjugate and an odd part P,qq(q),
of u. We can now put

(20) tP. (q)P,.(q)dq — P.gg(q)P. gg(q)dq=const.

where N has again the positive eigenvalues
0, I, 2, , and again represent n as an absorp-
tion, n* as an emission operator, but changing
the sign of I n0(q) =4( —q) (25)

This means q operating on P(q) changes it into

4( —q) '

u*f(N) =¹f(N 1), —
uf(N) = —(N+1)ig(N+1).

The Hamiltonian becomes

If we consider p, q as operators which have to be
(1"') anti-Hermitian and to satisfy (10), we have to

put

q.A (q) = iq4 (q)
H=-,'(u*u+uu*) = —(N+-,'). (21) (26)

Ke now have to find the matrix q determining
the normalization of the wave function P(N)
according to

P(N')(N'~ g ~

N")P(N") =const.
X', N"

P.A (q) = ——k(q).
8Q'

One easily checl. s that for the operators so defined
the expectation values of p and q computed
according to

In view of (4), applied to u*= —u, q has to
anticommute with w* (q)A =iJ~4'(q)( —q)0( —q)A

f14 = —I
In the representation where X is diagonal, one
sees from (19) that it is sufficient to choose q

diagonal with respect to N with (N~q ~N) =n~-
fulfilling

(P)». = ~"f(q)—0 (—q)dq
4g

are real. We notice that from (26) and (11)

(27)

n~=( —1)"
in accordance with the negative eigenvalue of II

The wave function P(N) has therefore to be given by (21).
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4. SYSTEM OF TVFO OSCILLATORS WITH POSITIVE AND NEGATIVE ENERGY

We consider now a system of two oscillators of which one has positive energy (p+, q+ Hermitian)
and the other negative energy (p, q self-adjoint but anti-Hermitian), with the commutation rules

i[p+, q+]=1, i[p-, q-]=1, (28)

and where both variables with + commute with both variables with —,and with the Hamiltonian

I~= 2 (p+'+ p '+ 9+'-+q ')-
Introducing the variables u+, u and their adjoints analogous to the Eqs. (12) and (18); that is,

v e obtain

and with

u+ = (1/K2) (p+ iq—+), u+* = (1/v2) (p++iq+),
u =(1/v2)( p+iq ), u =(1/v2)(p —iq ),

[u+, u„*]=1, [u, u *]=—1;

N+=u+*u+, N = —u *u,
II= (X++-', ) —(X +-,') =X~—X .

(30)
(31)

(32)

(33)

(34)

I he normalization of the wave function is given by

(—1)~ $(IV'+, X -)P(E+, ItI ) =const. , (35)

or

(36)

It is important for the following that for this system of oscillators, two other pairs of variables exist
which fulhll the same commutation rules as u+, u and their adjoints do; namely,

for which we have

and with

and therefore also

a= (1/v2)(u++u *), a*= (1/&2)(u~*+u ),

b= (I/H)(u~* —u ), b*= (1/v2)(u+ —u *),

[a, a*]=1, [b, b*]= —1;

N =a*a, Nb ———b*b,

N, —Nb ——N+ —N,

II= N —Nb.

(37)

(38)

(39)

(40)

(41)

(42)

XVe notice that the inverse formulas which express u+, u and their adjoin ts by a, b and their adjoints
are of the same form as (37), (38), namely,

u+ ——(1/v2) (a+b*), u+* ——(1/v2) (a*+b),

u = (1/v2)(a* —b), u '= (1/v2)(a —b*),

(43)

(44)

and that therefore the variables a, b are entirely equivalent to the variables u+, u . The transforma-
tion of the P, q variables corresponding to the new self-adjoint variables P„q, Pb, qb is given by

with

P.=(IW&)(P++P-) q =(1/~2)(q++q-)

pb=(1/v2)(p+ —p ), qb (1/v2)(q—+—q ),

~[p. q.]=b[pb qb]=1,

(46)

(47)
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the a variables and the b variables commuting with each other. The inverse formulas of (45), (46)
have again the same form. Obviously one has

1(p 2+p 2+g 2+g 2) 1(p 2+p 2+g 2+g 2)

Taking into account (30), (31), (37), (38), we find

(48)

(49)

(50)

KVe now proceed to the investigation of the S-transformation which carries the wave function
P(N+, N ) to the wave function if(N, Ni, ) according to

f(N. ,¹)= Q (N. , ¹ i Si N+, N )P(N+, N ). (51)

This transformation will not be unitary, but it can be chosen in such a way that the normalization is
conserved; that is,

or

(—1)"P(N+, N-)f(N+, N ) = Q (—1) Q(¹,¹)P(N,Ni),
NN, Ng

(¹',Ni'~5( —1)"-S
~

Ng", Ni") = (—1) b'b»
N+, N—

(52)

The last equation can be considered as a particular case of (9) if we put(¹'»'I &' IN." Ni") =(—1) 'bN", ~" b»', »"
(N~, N ~g~N~, N ")=(—1) bN~~, ~+~ 8~ ~, ~

Equations (51), (52) can be simplified in view of (41), and the double sums in these equations reduce
to single ones. Putting

¹ =¹—¹=0, ¹ =N~ —
¹

—0,
we obtain for every ¹

(51')

2 (N I~(—1)"+ "&IN. )=(—1)"' "b~. .~." (53')

In order to compute the transformation function S, it is convenient to start from the equality

-'(aa*+a*a) ,'(bb" +b—~b—)= u+u +u+*u

which is derived from (37), (38). Because the left side can also be written

¹ +¹+1=2¹—¹+1,
the application of this equality to S gives

(2N. N+1) (—N.
I
~'! N+) = (u+u +u+'u ")(N. I

~-I N+)

Using (16) for u+, u+~ but (16') for u, u * we obtain

(2N. —N+1)(N I5'IN+) = LN+(N+ —N)1'(N I5'IN+ —1)
—L(N++1) (N++1 —N) 7'*(N,

i 5~ N++1). (54)
Pu tting

LN~!j& LN+lj'
y(Np) = (N iSiN~), (N i5iN+) = $(Ni),

L(N+ —N) lj' HN+ —N) 'j'



DIRAC'8 NE% METHOD OF F IELD QUANTIZATION 18i

we get from (54)
(2No N+—1)y(N+) =N+y(N+ 1)——(N~+ I —N) s (N++1),

(2N. N—+1)g(N~) = (N+ N)—P(N+ 1)——(N++1)P(N++ I).

(56)

(56')

While (56) has a solution with qr(N+) =0 for N+ & N, (56 ) has a solution with f(N+) = 0 for N+ (0.
In the latter case the factor $(N+ N)!—j & in the second Eq. (55) makes (¹~ S ~

N+) =0 for 0 ~N+ (N
as it must be, while (56') defines f(N+) for 0 &N (N. On the other hand for N&0, s~(N+) can be
defined by (56) also for negative values of N+ greater than or equal to N= —

~
N ~, while the factors in

the first Eq. (55) make (N, ~S~N+) =0 for N+&0.
Introducing the auxiliary variable x and the power series

s(x)= Z v(N+)x" " tI(x)= E 0(N+)x"',
N+=N X+M

one gets for y(x) and P(x) from (56), (56'), the differential equations

p' N, —N N, +1
(x' —1)s ' —[2N. —N+1 —(N+1)x]y =0 or

q x—1 x+1

¹ ¹

N+1-
(x' —1)f' —L2N, —N+1+(N —l)xjf=0 or

x —1 x+1
Their solutions are

s =const. (x—1)" "(x+1) "
/=const. (x—1)"(x+1)" ~

(58)

(58')

(59)

(59')

In order to compare the values of the constant factors in the last two equations we notice that from

(55), it follows that
N+!

s (N+) = &(N+) '

(N+ —N)!
hence

dN

s (N+) = N+(N+ —1) (N+ N+1)4 (N+)— s'(x) = &(x)
dxN

(60)

0(N+) = (N++ IN I) (N++ IN I —1) . (N++1) s (N+) 4'(x) =
dx~"~

If we compare both sides of Eq. (60) in the neighborhood of x=1 and bring the coefFicients of
(x—1)~ ~ in (60), and of (x—1)~' in (60 ) into agreement, we obtain in both cases N~O and ¹0

si(x) =&(N., N) 2"(x—1)" "(x+1) "(¹N)!—
P(x) =Z(No, N)(x —1)~ (x+1)~ ~

(61)

(61')

Moreover, it is easy to check (60), (60 ) by direct computation, which, however, is not necessary for
our purpose.

We now determine the normalization factor Z(N, N) using the condition (53 ).That the left side
of this equation is zero for N 'WN, " is already a consequence of (54). Indeed, if we insert in the
conjugate of this equation ¹

=¹",multiply by (N '
~
S

~ N+) (—1)~ ~+, and sum over N+, the right
side is the same as if we start with (54) for the value N = N, ', multiply by (—1)~ ~+(N+

~

St
~

No"),
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and sum over E+. Subtracting the two results we obtain

Pr."—X.')(X.'~S( —1)N-~ S'~ X.")=O.

XVe are left now with the case ¹

'=¹".In order to give the sum

2 P'I Sl X+)( 1)"—"'(X-+
I
S'I X.),

which does not coiiverge in the proper sense, a definite meaning, we define it following Dirac as the
limit

lim Z(r) with 0 &r &1

where
~(r) =2 (&.I ~l &+)r'"+( 1)" "+(—&+I,&I,& )

and in view of (55) also
&(y) =Z ( 1) "'—r'"'~(&+)0P'+).

As can be seen from (57) the sum Z(r) can be expressed with the help of the functions y(x), P(x) by
introducing the points

x=re'~ x=re ", 0&r&1

of the complex plane as an integral over the unit circle, namely,

Inserting (61) and (61'), we get

1 2

Z(r) =—!! g(x)x~y( x)d8. —
2x ~0 ¹.!

Z(r) =
~
E(X., X) ~' 2~I(r)-

(X E)!—

(62)

(65)

2~

I(r) =— e'~'(re " 1) '(re
' "'—+1) ¹ '( re" —1) ~ ~(—re'~+—1) ¹ 'd0,

2 J,
or introducing s= e ", ds jis = —d8

rN

I(y) —( 1)Na N
d(s+s)y¹ N(s r) ¹ 1(ys 1)¹(ys+1)x Na 1

27ri
(64)

and the path of the last integral is the unit circle in the positive sense. Taking into account¹.—
¹

—0,
one sees that the integrand has poles for z= r and z= —r ' from which only the first is inside the unit
circle. The value of the integral is therefore the residue at the pole z=r, namely,

I (y) —( l)¹Nyv [(s+y)¹N( +rsvp )w ¹ 1(ys 1)¹j¹rd
Fortunately this expression simplifies greatly in the limit r=1 because the last factor in the bracket
has the value (r' —1)~ for s= r and vanishes for r = 1. Therefore only the differentiation of the last
factor gives a contribution which is diferent from zero for r—+1, and we get

lim I(r) = (—1)".-"-' ¹.!
lim &(r) =(—1)" "~!E(X., N) ~'2"-'

(No X)!—(65)
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The normalization condition (53) or (53') is therefore fulfilled if we choose

(X, N)—! &

Z(N„N)= 2 &x u (66)

A phase factor in Z(¹,N) is of course arbitrary.
Collecting our results we finally reach the conclusion¹!(Q+ —+) !

(¹{S{N+)=Y2 2'v {coeff of xN+ ln (x—1)~ 'v(x+1) '}
(X E)!N—+!¹!(N+ —Ar)!

=v2 2" {coeff. of x~+ in (x —1)~ (x+1)" ~~ '}.(¹—x)!x,!

(67)

Because of the complete symmetry between the variables E„¹and X+, N (or¹,X and X+, N)
one obtains the inverse transformation function S which expresses P(X+, X ) by f(¹,¹)ac-
cording to

P(X„X ) = g (A'„ iV { S '~ X., Xi,)y(cV. ,¹) (51')

simply by interchanging ¹,¹bwith X+, ¹ .
A case of particular interest is the state X+——X = 0 (hence X=X+—X =

¹

—
¹

——0), for which
we get from (67) putting

¹

=
¹

=n

(n, n{S{0,0) =@2(—1)"

which means that the "probability of the value n=¹=¹bin the state X+= ¹

=0" is given by

ii„{(n, n{ S{ 00) ~'=2( —1)".

The sum of the probabilities defined by

(68)

with 0 (r (1 is 1 as it has to be. Of course this result can also be derived directly from (54). It means
that the ground state of our system of two oscillators is not uniquely determined when an indefinite
metric in the Hilbert space is used; this circumstance plays an essential role in Dirac's theory.

5. RELATIVISTIC FIELD QUANTIZATION

(a) Uncharged Particles with Spin 0 or 1 and Bose Statistics

We consider first as the simplest case of a wave field with integral spin, a real scalar field A (x) =A*(x)
in the absence of any interaction. lt satisfies the wave equation

where
( +ii')A =0

3 82 a2

+
& Bxg Bxo

(69)

with xo = ct and ii the rest mass of the particle (the units are chosen so that h =c= 1).' A particula, rly
important case is p, =0, but we shall postpone this specialization. The energy B and the momentum

' Compare paper A, Part II, Section 1-d. The field function which we denote here by A (x') is there called V(x).
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6 are given by
i aAz=-, (vA)p+} } zv, G= —t vxzv.

Eaxp)
'

& ax,
(70)

The usual method of decomposing the field into Fourier components (periodic with respect to a large
hole with volume V) is done according to

A(x) = V—& Qp (2kp)
—&[A(k) exp Ii(k x kp—xp) }+A*(k)exp Ii(—k.x+kpxp) }]

where we define ko as positive and satisfying ko' ——k'+p, , hence

(71)

The usual quantization according to
kp ——(k'+ p') &.

[A (k), A *(k)]= 1 (72)

and with the commutability of all variables corresponding to different values of k leads to

A*(k)A (k) = N. (k)
and to the expression

F.= gp kp[X.(k)+~p], 6= Pp k[N. (k)+-', ] (74)

for energy and momentum.
Dirac proposed the procedure of decomposing the real field A (x) into two complex fields U(x), U*(x)

1
A(x) =—[U(x)+ U*(x)], (75)

and of quantizing only the oscillators of U(x) with (—kpxp) in the phase factor in the usual way, while

the other part of the oscillators of U(x) with (+kpxp) in the phase factor is quantized with the new

method developed in the last two sections, which leads to negative energies of these oscillators. This
means that we have to put

U(x)= V & pp (2kp) &[U+(k) exp Ii(k x —kpxp)}+U (k) exp Ii( —k x+kpxp)}] (76)

U*(x) = V-~ gp (2kp)-1[U, *(k) exp ti( —k x+k~p) }+U-'(k) exp }i(k x —koxo) }] (76')

If vie now define energy and momentum by

BU~ BU
E= I VU VU+ +~'U*U d V,

BXO BX

-g UQ 8U6= — VU+VU* d V
aXO BXp

(77)

(with symmetrization of the order of factors in the last integrand), if we assume that U+ (k), U+(k)
commute with U P(k), U (k), and if we put

[U+(k), U+*(k)]=1, [U (k), U *(k)]=—1,

we are in accordance with the rule

dF/Bxp i[H, F]—— (79)

applied to F= U(x) and F= U*(x). Moreover, this leaves the usual commutation relation for
Up(x), U(x) unchanged. ' The latter equation means that U *(k) is the adjoint but not any longer the

' See paper A, Part II, Eq. (21).
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Hermitian conjugate of U (k). In accordance with (33), (34) we obtain

N+(k) = U~~(k) U+(k), N (k) = —U' *(k)U (k),

Z=Qg kp[N+(k) —N (k)],

6=+g k[N+(k) —N (k)],
(81)

which shows the negative energy of the X oscillators. The normalization of the wave function is

analogous to (35)

(—1)z"N ~"~$( N+(k) ~, N (k) )f( N (k) N (k) ~ ) =const (82)
N+(k), X-(k)

which shows the "negative probability" of states with an odd number of particles in states with
negative energy.

This procedure is also equivalent to introducing besides A(x) another field, B(x), the adjoint of
which is B*(x)= B(x—),

or in Fourier decomposition

B(x)=—[U(x) —U'(x)], (75')

B(x)= V-& Pa (2ko)-&[B*(k) exp {i(it x kox—o) } —B(k) exp {i( ir. x—+koxo) }], (71')

and with the quantization

leading to
[B(k),B*(k)]= —1

B*(k)B(k)= —¹(k)
(72')

(73')

and to the energy and momentum expressions

1 p (BA) 2 (BB)2

(gA)'+{ }
—(qB)' —{ } d V,

2 Eaxo) &ax,)

r 8A 896= — V'A+ VB dV,
Bxo Bxo

(7o')

(in the latter expression one has to symmetrize the order of all non-commuting factors) from which
one derives

E=pg ka[N. (k) —Ng(k)],

6= Qy h[¹(k)—¹(k)]. (74')

The connection between U+(k), U (k) and their adjoints, on the one hand, with A (k), B(k) and
their adjoints on the other hand is, in view of (75), (75 ), given by equations in analogy with (37), (38)

1
A(k) =—[U+(k)+ U ~(k)], A*(k) =—[U+*(k)+U (k)],

V2

1
B(k) =—[U+~(k) —U (k)], B*(k)=—[U+(k) —U *(k)].

V2 v2

(37')

(38')

One obtains the inverse formulas by permutation of A (k), B(k) with U+(k), U (k) and the same for
their adjoints.

The functions 2 (x), B(x) are the same as V(x), iS'(x) in A, Part II. Their connection with U(x), U (x) is given there
in Eq. (33).
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An alternative way of decomposing the field A (x) is to write all oscillators with positive energy in a
field A+(x) =A+*(x) and all oscillators with negative energy in a field A (x) =A *(x) given by'

A+(x) = V & Pp (2kp) &[u+(k) exp [i(k x)]+u+*(k) exp [—i(k x)]],
A (x)= V ~ Qp (2kp) &[u "(k) exp [i(k x)]+u (k) exp [—i(k x)]],
A(x) = (1/v2) [A+(x)+A (x)].

AVe have introduced here the time dependent quantities

u+(k) = U+(k) exp ( ik—oxo), u+*(k) = U+*(k) exp (ikoxo),
u (k) = U (k) exp (ikpxp), u *(k)= U *(k) exp (—ikpxp),

(83)

(84)

(85)

besides the constant quantities U+(k), U (k) and their adjoints in order to prepare for the treatment
of the interaction of the field with charged particles. The corresponding decomposition of B(x) into

B+(x)= B+'(x)—, B (x) = —B '(x) according to

is given by
B(x)= (1/v2)[B~(x)+B (x)]

B+(x)= U & Pp (2kp) ~{u+(k) exp [i(k x)]—u+*(k) exp [—i(k x)] I,

B (x) = V & gp (2kp) & { u "—(k) exp [i(k x)]+u (k) exp [i(k x)]I.
(87)

If wc intro&luce for every value of k, the variables P+(k), i7+(k), P (k), q (k) by (30), (31), and identify

a(k), b(k) and their adjoints given by (37), (38) analogous to (85) with

a(k) =A(k) exp ( ikpxp), a*(k) =A'(k) exp (ikpxp),

b(k) =B(k) exp (ikpxp), b*(k) =B*(k) exp (—ikoxo),

then the quantities A+(x), A (x), B+(x), B (x) can be written

A+(x) = V & pp kp &[p+(k) cos (k x)+g+(k) sin (k x)],
A (x) = U & pp kp &[p (k) cos (k x)+g (k) sin (k x)],

B+(x)= V ' Qp ko ~i[ q+(k)—cos (k x)+p+(k) sin (k x)],

B (x) = V & Qp ko 4[g (k) cos (k x) —p (k) sin (k x)].

(89)

(90)

Further, if we define the self-adjoint quantities P, (k), g.(k), Pb(k), gp(k) by (45), (46), (49), and (50),
we obtain

A(x) = V—
& Pp ko &[p.(k) cos (k x)+g.(k) sin (k x)),

B(x)= V & gp kp &[—gp(k) cos (k x)+pp(k) sin (k x)].

(93)

(94)

I'he energy and momentum can also be written in the new variables as

&= U ' Zp kpp[p'(k)+a'(k)+pp'(k)+up'(k)]= U ' Zp kol[p+'(k)+a+'(k)+p-'(k)+a-'(k)] (95)

6= V & Qp k-'[p p(k)+g '(k)+pop(k)+gpp(k)]= V & Qp k-,'[p+p(k)+g '(k)+p p(k)+g '(k)] (96)

One obtains the analogous quantization of Maxwell's equation by putting p, =0 and by substituting
for the scalar fields four-vector fields A„(x), B„(x), U„(x), U„*(x), (p= 1, 2, 3 and 4 or 0) with the same
kind of connection

1
A, (x) =—[U.(x)+ U.*(x)], B.(x) =—[U,(x) —U.*(x)].

v2
(97)

6 The quantities here called A+(x), A (x) are called A'(x}, A2(x) in Dirac's paper.



DIRAC'S NEW METHOD OF FIELD QUANTIZATION

In the definition of energy and momentum one has to take into account the definition of the scalar
product of four-vectors by

p A„B„= AO—Bp+Q A;B;,

and to replace in the expressions of energy and momentum of the scalar theory the squares of field
function by the corresponding invariant total squares of four-vectors. Moreover, one has to add the
well-known extra conditions of Fermi for all fields

pBA„q i pBB.q 4 (8U„y 4 (BU„*q
I "le=Pl "

I~=0..-i &ax„ i -i (ax, i -i &ax, i -i E ax„ i

Although until now the theory is symmetric with respect to the ¹„¹&on the one side and the ¹+,
¹ on the other side, this is no longer so if we take the interaction with charged particles into account.
Dirac assumes that only the field A „(x) and not B,(x) occurs in the interaction energy with the conse-
quence that the numbers ¹(k)stay constant with time. On the other hand he assumes that at least
for sufFiciently large values of k the N+(k) and N (k) are zero, entirely diferent from the N, (k) and
¹(k).This makes it more convenient to use the first kind of variables in the computations in spite of
the redundant character of the ¹ .

(b) Charged Particles'

In view of the interaction of mesotrons with heavy particles (protons and neutrons), it is of
particular interest to consider also fields describing charged particles instead of photons. We are
dealing here with the simplest case of spin 0 particles, for the treatment of charged particles with spin
1 can be done in an analogous way.

In the usual theory of Pauli and Weisskopf one introduces a complex field P(x) (instead of the real
field A(x) of the preceding section) which again satisfies the wave equation

( +ii')/=0

and the Fourier decomposition of which can be written

P(x)= V—
& Qi, (2ko) &{A,(k) exp {i(k x kox.o) }—+A.*(k) exp {i(—k x+koxa) }),

P*(x)= V & gi (2ko) &[A~*(k) exp {i(—k x+koxo) }+A,(k) exp {i(k'x—kpxp) }).
The commutation rules for the quantities A ~(k), A (k) with their conjugates are

We remember' that
LA, (k), A „*(k))= 1, {A.(k), A.*(k)]= 1. (100)

N, ,.(k) =A,*(k)A„(k), N, .(k) =A *(k)A (k), (101)

represent in this theory the number of particles with positive and negative electric charge, re-
spectively.

Analogous to Eq. Pi') we now introduce the second redundant field y(x) defined by

p(x) = V & Pq (2k') ~ {B„*(k)exp{i(k x koxo) }—B—„(k) exp {i( ko x+k—oxo) .}),
q*(x) = V & Pa (2ko) &LB„(k) exp {i(—k x+koxo) } —B,*(k) exp {i(k x koxo) }.),—

(102)

'Compare A, Part II, 1, 2.' A, Part II, Eqs. (11), (11~), (19), and (20).
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and quantized according to

[B~(k) B~'(k)]= —1,

B,*(k)B~(k)= N—,, o(k),

The energy and momentum are given by

[B (k), B *(k)]=—1,

B '(k)B (k) = —N, o(k).

(103)

(104)

a/* a$6= — V'f+ Vf +
8Xo BXo

Btp Bp
Vp+ Vy* d V.

Xo BXo

a4* a4, , „ I
ay* ay

+'74*~4'+~9*4 + +~y"~y+~'y*y
ax, ax, l ax, ax,

(105)

Here and in the following, one always has to symmetrize the order of all non-commuting factors. One
derives from these expressions

&=Qo ko[&, .(k)+&..(k) —. &,, o(k) —N. , o(k)],

6= Qo k[N„,.(k)+N, .(k) —N, , o(k) —N, o(k) ].
For the current vector s,(i = 1, 2, 3 and 4 or 0, s4 ——iso) one gets

a/* a$ l ay* ay
s, =ie P — P*'+ y — y*

I ax„ax„ I ax„ax„
Hence for the total electric charge

(106)

(107)

Q=) sorJV=e Qo [N„,o(k) N, o( k)
—+X~, o( k)

—N„, o(k)]. (108)

The decomposition of the fields P(x), y(x) analogous to the former decomposition of A (x) in U(x) and
its adjoint U*(x) [see (75), (75')] has to be done according to

1
4(x) =—[U.(x)+ U-*(x)], y(x) =—[U.(x) —U-*(x)],

V2 V2
(109)

1
P*(x)=—[U„*(x)+ U„(x)], y*(x) =—[U,*(x)—U (x)],

W2 V2
where

U„(x)= V & Qo (2ko) &[Uo,+(k) exp {o(lr x koxo) }—+ U„, (k) exp {i(—lr x+koxo) }],
U,"(x)= V & Po (2ko) &[U,, +'(k) exp {i(—k x+koxo) }+U~, *(k) exp {o(k.x—koxo) }],

and in the same way

U„(x)= V & go (2ko) &[U,+(k) exp {i(k x—koxo) }+U, (k) exp {i(—lt I+koxo) }],
U*(x)= V—

& Po (2ko) ~[U ~*(k) exp {i(—lt I+koxo) }+U, *(k) exp {o(k I—koxo) }].
The quantization is

L U,, +(k), U..+*(k)]= LU-, +(k), U.+*(k)]= 1,

[U~, -(k) Un, -*(k)]=[U~-(k), U-. -*(k)]=—1

(110)

(112)

(113)

Hence the U„, (k), U„, (k) have an indefinite metric in Hilbert space as the B~(k), B„(k); the
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U„,+(k), U„,+(k) have a definite metric in Hilbert space as the A„(k), A„(k). Moreover, we have

U. +*. (k) Un+(, k) = N~+(, k) U., +*(k)U-. +(k) =N-, +(k),

U,, '(k) U„, (k) = —N, , (k), U., *(k)U., (k) = N„—, (k),

and by comparison of (110), (111)with (99), (102) we find, using (109)

1
A„(k) = [U,—, +(k)+ U., *(k)],

V2

A„(k) =—[U., +(k)+U, , *(k)j,
V2

A~*(k) =—[Un, +*(k)+U-, -(k) j
v2

A„*(k)=—[U,+*(k)+U„, (k)j,
42

(115)

1
&n(k) =—[—Un, -(k)+ U-. +*(k)j. &p'(k) =—[—Up, -*(k)+U., +(k)j

V2

1
&.(k) =—

L U~, +*(k)—U., -(k)j
v2

1
&.*(k)=—[Un, +(k) —U;-*(k)j.

V2

N„,,(k) Ng(k—) =N, ~, +(k) —N~ (k), N, ,(k) —N„, g(k) =N, +(k) —N„, (k);

Z=Qy ko[N„,+(k)+N, +(k) —N, , (k) —N, (k)j,
G=gi, is[N, , +.(k)+N, +(k) N, , (k) —N.—, (k) j,
Q=Qi [N„+(k) N, , +(—k)+N, , (k) N. , (k—)j

(117)

(118)

One can see from these expressions that the held describes four kinds of particles, with positive and
negative charges and with positive and negative energy, respectively. Inserting (109) into (105) and
(10/) we find

8 U~* 8 U~ 8 U„*8 U„
+&U„*U,+p'U„*U„+ +&U 'r/U +ii'U„*U„dV,

BXo BXo

y6= —
[

BX'o

BU* &U, [BU* 8U
VU„+ U„* +, VU+ VU * dV,

~Xo ~ ~Xo ~So

(119)

Sg=M
8Xy

8U~~ 8U~U—
ax,

(120)

In an external electromagnetic field with the potentials y„(x) one has to substitute for

BU„8U~ gU—jeq „U„, — —+ +icy, U~*,
Bxp Bx„

BU„BU„
+iss~, U,

gUQ gUg
—

icy „U„*.

(121)

Therefore the functions U„, U„are multiplied under the gauge transformation p„—+y„—(i/s) (Bu/Bx„)
by e', while U~*, U„are multiplied by e ' . There is a fundamental difference between this form of
the theory and the older theory of Pauli-Weisskopf. According to (99) the current vector s„due to the
6eld P(x) contains terms of the form A „(k)A (k') and A „~(k)A„*(k') which correspond to the ab-
sorption and emission of pairs of particles with positive and negative electric charge, respectively.
However, the expression (120) according to (110) and (111)does not contain terms of this kind but
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commutes both with the total number of p and of n particles present. Therefore in this mathematical

description pair generation and annihilation do not occur, but only transitions of a particle from

positive to negative energy states as was the case in Dirac's original theory of the electron with spin —,.
The physical interpretation of this description is discussed below in Section 7. We notice here that of
course there is in general also a change in the number of charged particles in the new mathematical
description as soon as there is an interaction of the charged particles with other charged particles (for
instance of charged mesons with protons and neutrons).

For the sake of completeness we indicate here the possibility of other variables which are sometimes

convenient and which comes from the separation of P(x) into its real and imaginary parts

according to

and analogously

P (x)=P,~(x), n=1, 2

1 1
4'(x) =—8'~(x) —iA(x) 3 4'*(x) =—[4'~(x)+is'2(x) j

K2 W2

y (x) = y *(x)

1 1
y(x) =—[y~(x) —iy2(x) ] y*(x) = [y~(x) +iy-(x) ].

K2 V2

(122)

(123)

(122')

(123')

1 t t'B$ )' /By l''
~

+(VP )2+pQ 2 —
( ( +(Vy )2+p2y 2 d V,

=~, 2 2a
' ( Bxo) ( Bxo)

1 t B$ By
G= Q — — Vf+ Vy dU,

=i.2 2~ Bx, Bxo

(124)

s, =s
Bxy Bxp

If we put in a similar way

BXp BXp

(125)

1 1
U„(x) =—[U (x) —zU (x)j, U„*(x)=—[U*(x)+iU*(x)],

K2

1 1
U (x) =—[Ug(x)+iU2(x)], U *(x)=—[Ur*(x) —iUg*(x)],

V2 K2

(126)

we obtain, in view of (109),

1f.(x) =—[U, (x)+ U *(x)j,
V2

1
y-(x) =—

L U-(x) —U-*(x)j
V2

(127)

p 8U* BU6= —P ~ VU+ VU~ dV,
%=1&20 Qgp Bxp

and the corresponding expressions for energy, momentum, and current vector are

p DU*DU
+V'U *VU +p'U *U d V,

&p

(128)

-gUg gUQ gU
s„=e U2 — Ul+ U2*—

8U2
U,*. (129)
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We emphasize, however, that there exists a diferent scheme for the description of the fields
corresponding to charged particles which is more similar to the older Pauli-Weisskopf theory. Wc
decompose the field according to

1

P(x) =—[U'+(x)+ U (x)7
v2

(130)

U+(x) = 1' &P(2ko) &[V„,+(k) exp {i(k x . k—oxo) }+V„+*(k), exp {i( k—x+koxo) }7,

LT (x) = V &P(2ko) &[V„, (k) exp {i( It —x+koxo) }+U, *(k) exp {i(k x ko—xo) }7,

(131)

and define the redundant Acid different from y(x) by

1
x(x) =—[U+(x) —L'-(x) 7.

K2
(132)

'I'he energy, momentum, and current vector are given by

t'- a4" a4 ax* ax
+~4*'%+i V'4 + +~x*~x+w'x*x

8Xp BXp l9Xp BXp

~x* ~x
~0+ 'V* + ~x+ ~x*

QXp QXp BXp BXp

(133)

or else by

Sv =$8
BXv

~x* ~x
4* + x— x*

~Xv ~Xv ~Xv
(134)

8U+* 8U+
U,*1+

Bxo Bxo

8U *DU
+qU QgU + 2U QU dP

BXp t9Xp

8V * 8U
VU+ VU* dV,

BXp BXp

(135)

s, =re
~Xv

(136)

'I'he expressions (118) for F, 6, and Q still hold, but the current is essentially diA'erent. It contains,
according to (131),no operators corresponding to transitions from positive to negative energy states
of a particle, but operators corresponding to generation and annihilation of pairs with opposite
charges as in the older theory. We do not need to give the details for the decomposition of the se!f-
adjoint helds Pi(x), f&(x), defined by (123), into its self-adjoint parts U, +(x), U, (x) with positive
and negative energies which has to be done in a way quite analogous to the above development. The



W. PAULI

corresponding expression for the current is

8U2, +
Ug, + +

BUj, +
U2, +-

OXp BXy

8Ug,
U2 (137)

In an external field one has to substitute both for the + and the —part

~Xv

—ie p„U~,
gU

+~~ U (138)

the gauge transformation being

Pv
e BX,

U +~U *g—ia (139)

A more detailed consideration of the two alternative forms of the theory of charged particles has
to be postponed to the following section, but we may add here some preliminary remarks. The zero-
point energy of the vacuum of the positive and the negative energy part of the held cancels exactly
also in an external electromagnetic field; therefore all effects due to the so-called polarizability of the
vacuum disappear. On the other hand, the self-energy, both of the vacuum and of a single particle due
to the electromagnetic interaction of particles, gives rise to infinities in this second form of the theory
while the divergences are completely eliminated in the former alternative of a theory with a fixed
number of particles in the mathematical description. Just as the former alternative has, in the case of
the ordinary electron with spin -„ its analogue in the original form of Dirac's theory of electron, the
latter alternative has its analogue in a slightly modified form of the theory of holes. We have to bear
in mind that the principle of defining the vacuum as the state of lowest energy in the mathematical
description is a1ready abandoned by defining the photon vacuum as given by X+=X =0. Therefore
(and this will become more obvious in Section 7, dealing with the physical interpretation of the
theory), we introduce besides the ordinary field u„(x) (the spinor index is suppressed) which fulfills the
Dirac equation, a second field u„(x) which also fulfills this equation. We assume, however, that in an
external electromagnetic field one has for the first field to introduce the substitutions

and for the second held

BQ~ BQ„—MrPvQy,
BXy BXy

BQ„BQ„
+18ftrivQrt,

I9Xp l9Xy

BQ„* BQ„*—+ +icy vQ„*,
BXp

8Q„* BQ„*
—+ —icy„Q„*.

~Xp
(141)

The total current vector s„ is therefore given by

s„=eL(u~ cx„uy) (u„a„u~)] (142)

where a4 ——iI and n~, n2, o.3 are the spatial part of the Dirac matrices. The "vacuum" analogous to that
given by X+=X =0 in the theory for Bose particles is obtained by the following assumption: All
negative energy states of the p particles (the u„(x) field) shall be occupied and all positive energy states of
the n particles (the u„(x) fold) shall be unoccupied Using the .principle of charge-conjugate solutions it
is easy to prove that there is no zero-point energy nor zero-point charge in this picture even if an
external electromagnetic field is present. Hence the "polarizability of the vacuum" drops entirely.
On the other hand infinite self-energies exist here again just as in the analogous picture for charged
Bose-particles due to the electromagnetic interaction, because the p and the n particles have to be
treated as diferent particles for the application of the exclusion principle. (See Section 'l. )
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5. THE INTERACTION OF ELECTRONS %'ITH AN ELECTROMAGNETIC FIELD

(a) The 2-Limiting Process. Electrostatic Self-Energy

193

We develop the interaction of electrons with an electromagnetic field in two steps: 6rst introducing
the so-called ) -limiting process, and then the negative energy photons in accordance with the previous
sections. The former, which is due to Wentzel, was originally a purely classical method to avoid the
singularities due to the classical electromagnetic self-energy of a point source in a relativistically
invariant way without altering the validity of Maxwell's equations near the source. It was based on
the formalism of Dirac-Fock-Podolsky, in which separate time coordinates are used for each electric
particle present and for the electromagnetic field. Wentzel showed that a translation of this method
into quantum theory can easily be made as long as one does not introduce explicitly Dirac's theory of
holes, but uses the original form of Dirac's theory, where the number of charged particles present is
conserved and transitions to negative energy states for this particle are possible. We shall discuss
later this restriction, which seems to be a matter of principle, and use here too the original form of
Dirac's theory. Later it was shown by Dirac, "that the procedure can more easily be described by a
change of the commutation relation between the potentials according to"

iLA„(x, xo), &„(x,xo)]= o8„,LD(x —x'+X, xo —xo'+ho)+D(x —x' —2, xo —xo' —Xo)] (143)

where the rest mass of the photon in the D function has to be put equal to zero and where the new
four-vector ) „or Xo, X has to be timelike,

(144)

fn the final result one goes to the limit)io, 2—&0 again, in such a way that (144) is always ful6lled. For
finite X the results are relativistically invariant only if X is also transformed (like a vector) while its
inHuence on the results drops in the limit X—+0. We may decompose into Fourier components ac-
coi dIIlg to

A„(x, x,) = V—&go (2ko) &t a„(k, xo) exp Li(k x)]+a„"(k,xo) exp L
—i(k x)]],

dA„—(x, xo) = V-&go (2ko) &iko[ a„(k,—xo) exp Li(k x)]+a„*(k,xo) exp [—i(k x)]].
dXO

(145)

(146)

The commutation relations (143) are at a certain instant xo, equivalent to

La„(k, xo), a„*(k', xo)]= 8„.bio cos ()ioko 2 'k). (147)

While (143) holds also for xoWxo in the case of interaction of the field with matter, if only the particle
time is the same in both field quantities, the latter relation, which is already specialized by the
assumption xp =xo does not require the use of different time variables. These are very convenient for
putting relativistic invariance of the method into evidence. On the other hand it may be an amend-
ment of the existing literature, to which we refer for this proof, to give also a formulation of the
method with only a single time variable and a Hamiltonian II, which is really the energy and which
determines the time dependence of all observables F according to the well-known relation [com-
pare (7)]

d F/dxo i(HF FH). —— — (148)

We shall use here the latter method. In order to find the necessary changes in the usual expression for

9 G. Wentzel, Zeits. f. Physik 85, 479 and 635 {1933};8'7, 726 (1934}.
'0 P. A. M. Dirac, Ann. de 1'Inst. Poincard 9, 13 {1939}."We use here the notations of paper A. The indices y, u run from 1 to 4, where the last one corresponds to the imaginary

coordinate ~4=~~0. The vector or tensor components with index zero always fulfil the relation A...4...=iA. ..O... . Hence
the c~~ponents with index zero are contravariant as xo. Moreover we adhere to the convention, used in A, that in the case
of a complex vector or tensor, A ~...4...——iA*...O. .. , the latter quantity being the actual conjugate-complex, or self-adjoint.
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H due to the )(-process, we notice First that the eigenvalues of a,„*(k)a„(k)due to (147) are given by

a„*(k)u„(k)=X„(k) cos (Xpkp —2 k) (149)

where kp ——
~

k ~, the rest mass of the photons being zero, and the X„(k) are zero or positive integers for
)4 = 1, 2, 3, but negative integers for )4 =4. [Notice that —ao*ap ——a4*a4 has negative eigenvalues, which
are given by (—1, —2, —3, ) cos O), pko —2 k) according to (147).7 This statement holds also for
a negative sign of the cosine factor in (149), if we deFine in this case a„(k) not as the Hermitian
conjugate of a„(k) but as the self-adjoint analogous to Eqs. (19), (20).

The Hamiltonian H consists of three parts, the energy of the free radiation held IIo, the energy of
the free electrons II, and the interaction energy 0,

II=IIo+II +n.
First we have to write

Ho= goko[P, N, (k)+o]=go ko[cos (l~oko —& k)7 'oP, [a,*( k) (4( k)+ (i(k) (,z*( k) 7 (150).

(151)Q [((o(m) . p(a)) +4)4P(n)]

The factor [cos (P pkp —3 k)] ' is rather striking, but unavoidable in order to stay in accordance with

(146) and the rule (148) applied to A„(x) in view of (147). In the formulation of the X-process with the
help of several time variables this circumstance is not obvious because one then does not need IIo
explicitly. The energy of matter for a set of spin —, electrons characterized by a running index m is

given by

)where the usual Dirac matrices n, P are introduced. The interaction energy is

Q=(4)r)&eg. l
—Ao(S„)+n(") A(S„)7

~4xq 1

Po (2ko) 1[I—&o(k)+4).(") a(k) } exp ((i(k z„) }
& VJ

+ {—ap"(k)+a(")) a(k) I exp I
—4(k z„)}]. (152)

Here s„ is the place of the nth particle; the sign is chosen in such a way that for electrons with negative
charge e is the positive absolute value of the charge, and the factor (44r) & is added in order to measure
it in the ordinary and not in the Heaviside units, while the potentials are, according to (150), meas-
ured in Heaviside units. One sees that (146) still holds as a consequence of (148) if the interaction
energy (152) is taken into account, for the reason that the latter commutes with A„(x). The mo-

mentum p'"' fulhlls the usual commutation rule

&[p (o) s,(m)7 —
h (i,j =1, 2, 3).

'I he correct generalization of the subsidiary condition (98) if the interaction energy is taken into
account, is given in the k space by

where
X(k)4 =0 and X*(k)%=0

~4)rq &

X(k) =k a(k) —kpap(k) —
}
—

} e(2kp)
—&P„exp [—i(k z„)]cos (l~pkp —2 k).

EV)

(154)

(155)

The additional term on the right side of this expression is uniquely determined by the condition that
(dX/dxo)+=i[A, X]%'=0 has to be a consequence of the conditions (154) themselves. Using (147),
(153), one Finds indeed

Moreover one has

ln v&ew of ko~=~~.

[H, X(k)]= —kox(k), [H, X*(k)]=koX*(k).

[X(k), X*(k)]= 0

(156)

(156')
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A further reduction of the problem is possible if one decomposes the field in a longitudinal and a
transverse part (this decomposition depends of course on the coordinate system). The corresponding
decomposition of a(k) is given by

a(k) =az(k)+ar(k) a (k) = (k/k ') (k.a(k)), a (k) =a(k) —(lt/ko') (lr a(k)) y

with similar formulas for a*(k). X(k) contains only the part az(k) and commutes with a*r(k). Further-
more one has

t. &sing.

[a;r (k), a;*r (k)]= [&&;;—(k,k,/ko') ].

Q„a„*(k)a„(k)=a*r(k) .ar(k) —no*(k)a, (k) +—(lt. a*(k)) (lr a(k))
kp'

(158)

one decomposes H into two parts

1II=Pi —[cos (Xoko —& lr)] '— lt a*(k)+koo&&*(k)
kp 2

J4~~ ~

+ {
—

} e(2ko) lg„exp [i(k.z„)]cos (l&oko —& k) X(k)+ k a(k)+ko&io(k)Lv)

~4~q ~

+{—
} s(2ko) &P„exp [—i(lt z„)]cos (l&oko —1 lt) X*(k) +H'. (159)

I v)
Introducing the abbreviation

f4s) &

y'&"& = y&"'+
{
—

} eg~ (2ko) 1P {a~(k) exp [i(k.z„)]+a*z(k) exp [—i(k z„)7}~v)
|'4'& ~ 1 8 (k a(k)) (lt a'(k))

=y&"'+{ —
} eP„— Pi (2ko) 1 exp [i(lr z„)]— exp [—i(lt z )], (160)

&Vi iaz„ k(} ko'

one obtains for H' the expression

II'=P&, ko[cos (l&oko —X.lt)]—'-'[a*r(k) a (k)+a (k) a* (k)]++„[(e&"&y'"&)+mP&"&]

&4~y ~

+{—
} eP&, (2ko) &P„[(e&"& ar(k)) exp {i(k z„) }+(a&"& a~r(k)) exp {—i(k z„)}]

&. v)
4m 1

+—e'Pq —cos (l&oko —2 h)-', P„P„exp [ik (z„—z„)]. (161)
V k02

The operators y'&"&, X(k), X*(k) have the important property of commuting with each other:

[O'""& P/'"&] =0 Ly'"' X(k)]=o [y'"', X*(k)]=o. (162)

Only such observables are of physical significance which commute with the subsidiary conditions,
that is with X'(k), X*(k); and it is well known that these are gauge invariant quantities. The result
(162) proves, for instance, that y'&"' belongs to these quantities, but not y'"'. So long as we are inter-
ested only in observables of this kind, we are allowed to put explicitly X(k) =X*(k)=0, which reduces
the Hamiltonian H to its part H', and to use a wave function +' of a complete set of variables of this
kind which commute with each other. One can choose for them the coordinates z(„~ of the particles and
the numbers X&,(k) of photons in the eigenvibrations of the transverse part of the field (X=1, 2 for
every lt corresponding to the two possible polarizations). Moreover, the relation i[P; &"&, s„~]=1 is
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sufhcient to put
8

p't")0" = —i
Bz~

(163)"

This will be done in the following, where we can now simply omit all primes.
We now discuss the last term of the Hamiltonian (161),which is due to the longitudinal part of the

field and is nothing but the electrostatic energy E". Inserting

1 1—Ps —+
~

dk
V (2&r)'~

and separating the terms n=m from the terms n&m, we obtain

z*'= Z Eo"+ E z

4m.
Zo"=—e'

i
"dkko-' cos (ko)&o —k 2),

2 (2or)sJ

,g 4~Z„=e' dkko ' cos (ko)&, o
—k'2) exp Lik (z„—z„)).

(2or)sd

(164)

(165)

"In order to explain this in more detail we write

k s(k}—koao(k) = ko[Q&{k)+iQs(k)],
k a*(k)—kPco~(k) =kor Qi(k}—iQ2(k) j,

where Qi(k), Q2(k) are Hermitian and commute with each other. In accordance with the commutation relation (147) we
define the Hermitian operators Pi(k), P2(k) which fulfiill

[Pi{k},P2(k) j=0, ILPi{k},Qi(k))=II P2{k), Q2(k) j=COs (koXp —k'X),
by putting

k a(k)+koao(k) =2ko)Pi{k)+iP2(k}j,
k a{k}+kyxo{k}= —ikoP' (k) —iP {k)j.

Furthermore we define the Hermitian operators Xi{k},X2(k) by
X{k)=Xi{k)+sX2{k}, X*{k)=Xi(k) —sX2(k},

and get from {155)
4' &

Xi(k}=kogi(k} ——e(2ko} ~ cos (ko) 0 —k 2) cos {k z„),
4m- &

X2(k) =koQ2(k)+ —e(2ko) & cos (ko) 0 —k X) sin (k z„).V
The expression (160) for p'(") has now the form

kp"" =p'")+ —e Za (2ko} &—L"(—P2+Q1) cos (k z„)—(Pi+Q2) sin (k z )j.V ko

Assuming the operators p("), Pi, P2 as usual as —i8/Bz, —i8/8Q1, —i8/BQ2, respectively, we now evaluate the applicatoin
of p'{» to an arbitrary function of the Xi(k), X2(k). The contributions of p("), Pi, P2 cancel, and we are left with

4' & ky'&»&F( X&(k) .
, Xo(k) }=7( X&(k), X2(k} ) —e Zo {2k,} &k LQ& cos (}r z )—Qo sin (}z z„)].

For

g{Qi(k), Q2{k), z, Ng(k)) =F( ~ Xi(k) ~ ~ - ~ X2(k) - ) exp —i —e Zk (2ko) ~kp '

X&. IQi sin (k z.)+Q co. (k z.) I ~'{z., X~(k)},
we get therefore

p (»O=F exp [ ~ ]I 8
~Zoo

To fulfill the subsidiary conditions

we have to choose
X,{k)~=X,(k)+=O,

F= I4 &(X (k))S(X {k)).
The phase factor does not change the expectation, values of any observables which commute with the Xi(k), X2(k}, for
these are functions of Xi(k), Xq(k) themselves and of z, p'(") and the transverse part of the field only. For these observables
it is therefore allowed to use the part +' of the wave function alone, and to identify the Xi(k), X~(k) everywhere with zero,
as was indicated in the text.
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The integration over the directions in (164) leads to

»n (ko/Xf) s' ~" sinko(&o+}0 }) sin kp(Xp —}X})
Zp" =— dkp cos (kpXp) dkp

K&p ko&~ 2or~ o kp kp

The two integrals cancel if Xpo)X' as was assumed in (144), thus leading to

8 "=0
For Xp'(X' they would add and give a contribution proportional to

~

X
~

. For num it is sufficient to
put X= 0 which is permitted according to (144).Then performing the integrations over the directions,
and putting

we obtain
r„„=~z„—z

~
(167)

Hence

2 f' sin (kor ) 1 e' p" sin kp(r„+Xp) sin kp(r„„—Xp)
E~~=—t,' ' dkpcos kp)p =—

I dip -+
kpr. m ~ r.~ 0 kp kp

for r„~)Xp,
rnm

E„=O for r„
(168)

So long as we are dealing with a discrete set of particles, we can exclude the singular case y„=p, and
if r„&0, we finally obtain, always in the limit Xp~O,

et
lim E„= for r„„$0.
x~p r

(168a)

In the case of a continuous distribution of charges, for a hnite Xp the contribution of the particles
inside a sphere with the radius ) p is canceled. So long as the charge density is regular, this contribution
goes of course to zero for Xp~0. There are cases, however, where the charge density around a particle
is singular for small distances, and then it can happen that the contribution to the electrostatic energy
due to the particles in a distance larger than Xp increases to inanity for Xp~0. We shall see at the end
of this section that in the theory of holes such a case does occur. It is the author's opinion that the
restriction r„&0 for the particles, which is necessary for the validity of the ) process, "is not quite
satisfactory.

(1) Introduction of the Negative Energy Protons. Electrodynamic Part of
the Self-Energy in the e' Approximation

We now introduce the negative energy photons by putting, according to (97), (98), (76), and (137)

1
A„(x) =—LU.(x)+ U.*(x)7,

42

U„(x)= V & gp (2kp) &Lu., +(k) exp {i(k x) }+u., (k) exp {—i(k x) }7,
d U(x) = V P go (2ko) &L u„+(k) ex—p {,i(k I) }+u. (k) exp , I

—i(ir x) }7,
dXp

(169)

(170)

(171)

{ u„~(k), u„,+~(k)7=(i„.cos (4kp —X.it), tu„, (k), u„, *(k)7= —8„.cos (Xpko —X ir), (172)

j.
s„(k) =g~„,+(k) +a„,-'((t)1

'g P. A, M. Dirac, see references 1 aIId 10.

.1
a„*(k)=—Lu„, *(k)+u„, (k)7.

v2
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One has to insert these expressions in the Hamiltonian (150), (152) (in Ho the terms containing the
cross products between u„,+* and u„, or u„,+ and I„, * cancel by virtue of the contribution of the
redundant field, see Section 5) and the extra condition (154) splits into

wh(re
X+(k)4=0, X (k)4=0, X+*(k)4=0, X *(k)0=0,

X-t (k) =k u+(k) —kouo, +(k) —
}
—

} e p exp L
—i(k.z„)j cos (l~~k, —2 k),

& Vk, )

X—(k) =k u-(k) —kouo, (k) —
} } e p exp fi(k z„)j cos (Xpko —2'k),
I Vko&

from which their adjoints follow. For the transverse parts of the field one gets instead of (158)

r 'r r *r ( kkl
Lu*, +(k), ui. +(k)j= —

} u;, -(k), u;, (k) j=
} &;;— '

} cos (kol~D —k X).
2

(158')

For H' one has simply to insert (173).
It is convenient to eliminate the first part of H' which is due to the pure radiation field with the

help of the well-known canonical substitution"

f=exp (iHoxo)f exp (—iHpxo)

for every observable or operator which corresponds to the transformation of the wave function

4 = exp (zHpxp)% .
If we put

we have now

In our particular case we have

II' =Ho+Hg,

84/Bxo ———iHi4.

u„,+(k) =u„,+(k) exp ( ikoxo)—, u„(k) =u„, (k) exp (ikoxo)

Therefore one finally obtains from (161) in view of (166), (168a), the wave equation (omitting again
the tilde)

=Hg+
$8xo

p4w) &

= 2 L(~'"'p'"')+~4'"'j+} —
} s 2 (2ko)-' 2 ~'"' —IU+'(k)

n (V) ~ ~ v2

g2

+ U * (k) } exp Ii(k z koxo) }+—I U+—*r(k)+U r(k) } exp Ii( —k z.+koxo) } + Q +. (174)
K2 e Qm f~~

The tI„(k) are analogous to the quantities defined in (76), which are constant in the absence of Hi.
We are now particularly interested in the self-energy, that is, in the one-body problem, which we

"See P. Dirac, Quantum 3feckonics (Qxford University Press), second edition, p. 287.
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want to compute with the help of the perturbation theory to the order e'. We have here with

t 4~q ~ 1
f1=~ —

~

e p (2kp) &a —{U+r(k)+U *r(k) } exp {i(k z . k—pxp) }kV) V2

ppq = ', (a p)+mp+O}q,

xs ith

1
+—{U+*r(k)+U r(k) } exp {i(—Ir z+kpxp) }, (175)

~2
(176)

8
PO

2 Bxo

1 I9

z Bz
(177)

KVe write, in the sense of the perturbation theory

+=+0++i++2+
where the term 0'„ is of the order e" and obtain

(Pp —e.p —mP)%'p =0,
(Pp —a p —mP)%'i ——0%'p,

(Pp a y —mP. )%—'p =Q4'i.

We start with a state where X+(k) =X (k) = 0. Writing the corresponding photon eigenfunction asap,

we have
40= Boffo

where u() is a solution of the Dirac equation for which we assume

up=9 exp [p(q z —gpÃp)], (180)

denoting energy and momentum in the initial state with qo, g to distinguish them from the operators
P„y. Of course one has gp' —q' —m'=0. We do not write explicitly the spin index on which both up

and a depend. It is important that by virtue of (16), (16')

U+r(k)q p
——U r(k)@p 0, —— (181)

both operators being absorption operators. This fact is technically useful, for every term is zero where
on the right side stands a U(k) and not a U*(k). +& contains only states where one photon is present,
while +2 contains states with no photons and with two photons. Writing the eigenfunctions of these
states 420 and 422, respectively, we can put

q 2 q pp+q 22) q pp upp~p.

Only the first summand is important for the computation of the self-energy in the second approxi-
mation.

In view of (181) we obtain from (178) first

f4'~' 1
(pp a p mP)q 1 { ~

e g (2kp) & [(e U —p (k)) exp i {(q —Ir) z —(qp
—kp)xp }EVJ & y2

+(e U *r(k)) exp i{(q+Ir) z —(gp+kp)xp}geppp.

To evaluate 4'~, we use the important relation
po+ e.p+tsp

(Pp —e p —mP) '=
Po —P —7S

(182)

which shows that the reciprocal of the operator on the left side of (178) can be expressed in a rational
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way by po and y. Using this relation we now have

t4pr) & 1 (qo —kp)+n (q —k)+mP
q' =

{
—

} e E (2ko) '— (e U+* (k)) exp i {(q —k) z —(qp —k,)x, }( V ~ p V2 (qo —ko)' —(q —k)' —m'

(q+kp)+ a (q+k)+mp
+ (a U *r(k)) exp i {(q+k) z —(qo+ko)xo} acpp. (183)

(qo+ ko)' —(q+k)' —m'

We must now apply the third equation (178) for q p. Here we are interested only in the part q pp Qppppo

of +p which comes from terms of the form U(k) U*(k) while 4'pp comes from terms of the form
U*(k) Up(k). We obtain from (181) a further simplification which has by virtue of (158') the
consequence

U;+(k') U;, (k)%'p= U;, (k') U), +(k)Op=0,

U„(k) U, ,(k )~.= L-U„,(k), U, ,(k )~,~.= { ~„- ' '
{ ...(~.k, &.k) &„„+„

kP)
and silTl liar ly

r r , P k k)1
U;, (k) U;, (k')q o= -—

{ b;; — '
jib ~ cos (X k —2 k)%,.

ko'

Using this result we obtain

preo 1 qp
—ko+e (q —k)+mP

(pp —n p —mp)upp= —p —pp n;
V p kp & r & (qo —kp) —(q —k)' —m

qo+ko+ a (q+k)+mp ( k,k, )
n;{ 8;;— { cos (kpXp —k X)ppo. (184)

(qo+ko) —(q+k)' —m' 'E '
k,')

We notice that the second term can be derived from the first term simply by changing ko, k into
—ko, —k. We now bring a; to the right side, using

a*{a (q —k)+mP} = —{a.(q —k)+mP}n; —2(q; —k;).
Moreover we have

k,k;q
Pn, n;{ a;;— {=2,
az E kpo)

and according to the wave equation for uo

(qo —e ' q —mP) PPp =0.

Finally the denominators can be simplified by virtue of go'-—q'= m"" and we obtain

(pp a ' p mp)82p
I

—kp+(a k)+(e q) —(n k)(q k)/kpo

ko( —qoko+q k)

kp —(e k)+ (n q) —(e.k)(q. k)/ko'

ko(qoko- q.k)
cos (kpXp —k ' X)ppp. (185)

It will be convenient for us to apply to this equation the operator (pp+e p+mp) from the left. Using

(qo+ q+ P)L —k+( k)+(
= {.—k.—( k) —( q)+( k)(q k)/ko'7( —qo+ q+ P)+2L —qok. +q'+(q k) —(q k)'/ko'j,
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we obtain ln this way

2pre' soka —q' —(q k)+(q k)'/ko"
(po' —p' —m') uoo =

V o ko(gpkp —q k)

—qako —q'+(q. k) —(q k)'/ko'

kp( —gpko+q k)
cos (Xpko —2 k)up. (186)

This equation is of the form

(Pp —p —m )upa = cu p

In the approximation of the order e', the term cQ2o can be neglected and up+ufo satisfies the equation

(po' —p' —m' —e) (uo+uoo) = 0.

Therefore c is simply the correction of the square of the rest mass of the particle due to the second-
order perturbation. Inserting

we obtain

with

e2
t

1
hm'=2mhm= [f(k—p, k)+f( kp, —.k—)]cos (Xpko —2 k)dk

2' ~ 2

soka —q' —(q.k)+(q. k)'/ko' 1 go' —g' go (q k)
f(ko k)= =—j.+

ko(soka —q k) ko - rIoka q'k ko —ko

Ke put, for the sake of simplicity, X=O and obtain after integration over the directions of k with

1 e'
t

" 1- (m' go+g
-am'=mam= —,'

— ko+~ —log —
go ~

2 pt' p 2 E 2g gp g )
(m' gp+g

+ —kp+
~

—log —gp ~
cos Xokpdkp. (187)

(2g gp
—

g

We compare this result with the old result of %aller" for the self-energy of the one-electron prob-
lem, which me can write

1 e' t'- e' t'm"-go+a
—Am =mdm= — kpdkp+

i
—log —

go (
' dko

2 (2g gp
—

g ) Ijp
(187')

where we took into account that for a given momentum g of the electron one has gpAgp ——mmmm. In
the old form of the theory one had to cut off the integrals arbitrarily in order to avoid the infinity.
Here we get rid of the infinities, using two difTerent methods simultaneously, namely, the X-limiting
process and the negative energy photons. The former makes the second integral disappear because of

| dk cos Xpko ——0. (188)

This is quite analogous to the cancellation of the electrostatic self-energy. Indeed the factor before
the second integral disappears if the electron is initially at rest (q =0, qp m), in w—h—ich case the com-
putation can be much simplified. Generally the second term gives the electromagnetic energy of the
electron due to its motion and is in a relativistically invariant theory always present if the electrostatic
"I. %'aller, Zeits. f. Physik 52, 6'/3

4,'1930),
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selF-energy exists. The first term in (187) on the other side is due to the fluctuations of the field in the
vacuum and a typical quantum effect. It is directly cancelled by the contributions of the negative
energy photons, as one can see from the integrand in (187).The final result is therefore

(189)
in the e' approximation.

We now generalize both remarks. First we note that in (188) a generalization of the ordinary con-
cept of integral is used, which is useful for integrands of an oscillating type. One introduces a factor
g(px), where g(x) falls off sufficiently rapidly for large x, so that at least g'(x)~0 for x~ pp but for
some integrands the decrease of some higher derivatives of g(x) is required. Moreover g(0) =1, and
we assume that g(x) has only a finite number of maxima and minima between zero and infinity. Then
we define

f(x)dx = lim ) f(x)g(px)dx (190)

If the limit exists, it is independent of the particular choice of g(x); for instance, g(x) = e * fulfills all

requirements. "In this way one gets

but

x'" cos xdx=0,
0

x'"+' sin xdx=0,

(188')

n=0, 1, 2,

Using the X-limiting process but not the negative energy photons one would get, instead of (187),

mmmm=(e'/arm) kp cos Xpkpdkp= —(e'/ rm7X )p
0

which was derived by Dirac at an earlier time.
Also the cancellation of the terms in the integrand which are linear in ko by the negative energy

photons, can be greatly generalized. If in the older theory (including the X-limiting process) the
integrand over the momenta lt of photons in intermediate states is f(k, kp), in the new theory the
integrand is p$f(k, kp)+f( It, —kp)]—. This is equivalent to the other statement that after integration
over the directions one has to take

1
'

f(kp)dkp instead of f(kp)dkp

'6 An alternative to the definition (189) is to take first

J f(x)dh= F!x),
and to construct then, instead of lim F(x), using the mean value

1F(x)=-
o F(x)dx

the other limit, lim F&(x). If lim F(x) exists, the value of lim FI(x) coincides with the former, as one can easily prove.

The procedure can be repeated by forming
1

Fg(x) =— F1(x)dx.

If after a finite number of steps lim F„(x) exists, one can define f(x)dx by its value. It can be shown that under gen-
~czp 0

eral conditions this definition coincides with that given in (190).
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This holds also in higher approximations where multiple integrals over the momenta k, k, -. of
several photons in intermediate states occur and where one has, in the new theory, to take the part of
the integrand which is even with respect to the k„-vector of every photon. The proof of it is rather
elementary but becomes clearer if we introduce new variables ip+(k), pp (k) and their adjoints instead
of U+(k), LT (k) which make the square root kp & in the expression (176) for U(x) disappear. We put

p+(k) = (kp) & U~(k),

v+*(k) = (kp)'U+*(k),

q (k) = —(kp)iU (k),

p *(k) = —(kp)&U *(k),

[pp+(k), p~*(k) 1 =kp cos (Xpkp —& k), [pp (k), pp *(k)]=—kp cos (Xpkp —2 lr),

j.
&(x)=(2&) 'Pp —p+(k) expi(k x kp—x,) ——

p (k) expi( k—x+koxo) .
kp kp

Then from the beginning one obtains in every equation the contribution of the negative-energy
particles by substituting for ip+(k), q+~(k), k, kp, simply pp (k), ip *(k), —k, —kp and this holds also
for the Anal results. The notations which we have used here were chosen in order to stay in agreement
with the notations of paper A.

Now it is easily seen that, as was pointed out by Dirac, every (single or multiple) integral with a
rationaL function es integrand is made convergent for large k's by the simultaneous application of the
X-limiting process and the negative energy photons. The latter reduces the integrand to the even
part in kp (notice that it is always permitted to replace k by —lr without changing the result of the
integrations over the direction of the k's), and this even part can be reduced to a convergent integral
by using the decomposition of the rational integrand into partial fractions and using the hrst line of
(188 ).The repeated application of the operation (182), however, will certainly produce only rational
functions of the vectors k„, k„', - . - of the different photons in the intermediate states. We have also
to expect convergence of the new theory if applied to the one-body problem even in higher approxi-
mations. Quite the same as for the spin electron holds also for spin 0 electrons if they are treated
according to this alternative of the theory where the number of particles is constant in an external
electromagnetic field [see Eqs. (119), (120), and (121)].Also for these electrons the self-energy is zero
in the e approximation. (Whether the higher approximations give a vanishing or only a finite self-
energy is not yet known, either for spin 0 or for ordinary spin p electrons. ) Difficulties other than the
convergence for high frequencies of intermediate photons may arise from the fact that in the new
theory there does not exist a rigorous stationary solution if a particle is present, due to the spontane-
ous transitions which occur if starting from the "vacuum" LiL+(k) =X (k) =0 as initial state. This
question is closely connected with the problem of the physical interpretation of the theory which is
treated in the following section.

Q~e add some remarks about the self-energy in the theory of holes, which is treated in detail by
(Vcisskopf. "For the sake of simplicity we restrict ourself to the case where the electron is initially at
rest and consider only the difference of the self-energy if one electron is present, and the self-energy
of the vacuum. If we apply the X-limiting process, but not yet the negative energy photons, the
electrostatic self-energy is given by

e'm I-" cos ) pkp
ps' dkp,

(kpP+m') &

while the electrodynamic part is given by
eP r" (kpP+m')'* —kp e'm t" kp cos Xpkp

k cos Xpkpdkp —— —dk p.
prm ~ p (kp"-+m-') ~ pr "p kp'+m'+kp(kp'+m')&

(191)

(192)

WVe assume here 2=0 which is permitted. Both integrals behave for small ) p as log Xp, and hence
'' V. Mreisskopf, Zeits. f. Physik 89, 27 and 90 (1934); Phys. Rev. 56, 72 (1939).
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become infinite for A, O~O. Indeed, one has in this case, denoting by y Euler s constant,

e2m Rom
log +ry (191')

e'm 1 Rom
log +py +

7r 2 2
(192')

This result is not improved by Dirac's negative energy photons, which have again the convention
that the integrand f(ko) has to be replaced by -', [f(ko)+f( —ko) j. This leaves the electrostatic self-

energy unchanged, while we have now"

kQs2 (oo

xm "0 (k '+m') &

which has for small Xo the even stronger singularity

cos Xokodko, (193)

0
gdn —— log — +y

vr - (Rom)' 2 2 4
(193')

Furthermore the self-energy of the "anti-particles" described by the second spinor field u„(x) which

we introduced in the last section, Eqs. (140)—(142) is the same as that of the particles described by the
u„(x) spinors.

Similar results hold for electrons without spin if they are treated according to the second alterna-

tive [Eqs. (130)—(139)). If we include here the negative energy photons, the part Zii .& of Weisskopf"
.is cancelled, and for particles at rest, we have

gdn 0 (194)

which, for small Xf), is given by

T'e t kf) +2'Z"= cos &okodko&
4m~, (k,2+m2)&

(195)

+st
e'-m 1 3—— log
4 (Rom)' 2

Rom
-+7 +- .

2 4
(195')

If one applies the X-process in the commutation relations for the 6eld of the electron rather than for
the electromagnetic 6eld, the singularity of the diR'erent energy expressions turns out to be exactly the
same.

We see that for both spin ~ and spin 0 electrons, the failure of the ) -limiting process in theories
which allow explicitly pair generation and pair annihilation is formally due to the occurrence of a
square root in the integrand in which case the theorem of convergence, which was correct for even
rational integrands, does not hold any longer. Physically the failure of the X-process is due to the
contribution of pairs in the neighborhood of the particle considered which comes from an expectation
value of the product of charge densities (so(x)so(x'))A, with a singularity of the type r ' for small
distances r =

~
x —x

~

of the two points. "Therefore this failure is closely connected with the fact that
for a given Xo the contribution of a11 particles with r)Xo to the electrostatic self-energy is not modified.
It seems therefore likely that in a future quantum theory, which includes the description of generation
and annihilation of pairs, it will be necessary to substitute for the classical method of the ) -limiting
process a different new procedure.

'8 Weisskopf decomposes E""into two parts, one part E»,„and the other part Zfi„,t. The first part is given by (193),
while the second part is cancelled by the negative energy photons.

"V.Weisskopf, Phys. Rev. 55, 72 (1939) Sect. V.
~ V. Weisskopf, reference 19, Sect. II.
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A +=-'A . (196')

This process occurs also in the case of absence of
an external field if the final state of the electron
has a negative energy. Dirac proposes to inter-
pret the spontaneous emission processes of posi-
tive (negative) energy photons as actual emission
(absorption) processes. The conditions under
which the processes occur in nature are very
diFferent from the theoretical ones. Dirac pro-
poses always to start with ¹+——

¹
=0 and to

overtake the dependence of the probabilities of
the actual processes on the number of photons
actually present in the initial state (Einstein's
probability laws) from experience without trying
to derive them.

It is possible to improve this point a little by
considering more general initial states. Two

V. THE PROBLEM OF THE PHYSICAL INTERPRETA-
TION OF THE FORMALISM

If one applies the usual rules of interpretation
to the new formalism, one obtains, of course,
results which contradict any experience. If we
start with the state where ¹+=

¹

= 0, the
theory leads to spontaneous emission process of
negative energy photons. It can easily be seen
that the transition probability A,—per unit of
time for a process of the spontaneous emission of
a single photon in an eigenstate s of the field
oscillators (the single index s denotes the direc-
tion of the emitted photons, their polarization,
and their frequency) is related to the probability
coefficient 8, of absorption of photons of the
state s according to the usual theory. The latter
is defined in such a way that the transition
probability of absorption per unit of time is

8,¹

' if ¹,' is the actual number of photons of
the eigenstate present in the initial state. The
relation between A,—and 0„ is

(196)

where the factor —,
' is due to the factor 1/v2 in the

expression of A„(x) by U„(x) and U„*(x) which
enters into the interaction energy. If an external
field of force is present (as for instance in the
hydrogen atom), there are in the new theory also
spontaneous emission processes of positive energy
photons with a transition probability A,+ which
is also equal to one-half of the corresponding
probability A, of the usual theory

alternative ways are possible leading to the same
result.

(a) Consider for an actual emission (absorp-
tion) process in the mathematical scheme (the
"hypothetical world" ) an initial state where, for
a certain eigenstate s of the field, ¹,+' posi-
tive energy photons and ¹,,

' negative energy
photons are present, and in the final state the
number N, , +'(X,, ') has changed by +1 while

'(X, +') is unchanged. The transition proba-
bilities of these processes in the hypothetical
world are

a, (X., +'+1) or a, (N—, '+1), (197.)

The probabilities of actual emission (absorption)
processes, if n, actual photons are present in the
initial state, are then given by

2a, (n, +1) or 2a,n„respectively. (197')

One sees that for this given eigenstate s for
which we want to consider emission and absorp-
tion processes, one has to put

n 1V 0 or n, = —X 0 1 (198

respectively. " For the numbers of photons in
other eigenstates we have to put ¹+=X=0 in
both the initial and final states. We could have
selected in the same way processes where one
of the numbers ¹+,X decreases by 1 while the
other number keeps its value, and we could have
interpreted the absorption of positive (negative)
energy photons as actual absorption (emission)
process, again using the connection (198). A
simple possibility also is to combine these two
ways as follows.

(b) Consider for the physical interpretation
only those states of the hypothetical world where
¹

=0 in both the initial and final states, but
with an arbitrary number ¹+of positive energy
photons in the eigenstate for which we want to
consider an emission or absorption of a photon.
One needs only the identification of the actual
number of photons with ¹+in this case.

The latter possibility is, however, very unsym-
metrical, and we prefer the interpretation (a). In
any case the abundance of possible states and

"This has to be considered as a formal algebraic substi-
tution in spite of the fact that in the hypothetical worM' is not negative, while in the actual world e, is also not
negative.



W. PAULI

processes in the hypothetical world, in compari-
son with those of the actual world, is directly
related to the introduction of redundant variables
in the hypothetical world. The fact that only a,

part of the processes in the hypothetical world
can be physically interpreted at the same time, is
all the more unsatisfactory as the conservation
law for the total sum of probabilities in the
hypothetical world does not have a simple
physical interpretation in this way, because the
same initial state in the hypothetical world
corresponds, according to (198), in general to
different initial states of the actual world if we
consider different processes (the reverse being
also the case). The value of the new formalism is

the possibility of computing the probability
coefficients of the different radiation processes,
not only in the erst approximation where they
occur in the development in power series of the
electric charge e, but rigorously because the new
formalism leads to convergent results in higher
approximations.

The generalization of the rule to obtain the
probability coe%cients for processes in the actual
world for more complicated processes does not
lead to new difficulties and can be formulated in
the following way:

Starting with an initial state where, for certain
eigenstates s which we want to consider, X,, +'
positive energy photons and N, ' negative
energy photons are present (while for sufficiently
high frequencies one has always ¹,+' ——¹,' = 0),
we consider a process where in the final state the
numbers X,, +, X,, are¹,y=¹,+'+p, , +, ¹,=¹,'+p,
Ke interpret only those processes for which

p, +, p, are zero or positive, and where
for sufficiently high frequencies one assumes
p, , + ——P,,

=0. In the mathematical expression for
the transition probabilities of a process charac-
terized by given numbers p, , +, p, , of positive
and negative energy photons in its dependence on
X,, +', N, ,

' one has to introduce the formal
substitution (198) for this selected group of
states s and to multiply the result by

2&s(us, ++me, —)

"Dirac checks the occurrence of the factor 2 in (197') by
using the variables ¹,Nq instead of N+ and N . This,
however, does not change the fact that a new rule is neces-
sary in this place to get the correct physical interpretation.

to obtain the actual probability of a process of
emission of p., +, . photons in the states s,
and the absorption of p, , , . . . photons in the
states s, in the actual world. "The substitu-
tion (198) at the same time makes the result
positive, while the original expression has the
sign (—1) *"'-.

As an example we mention the process of
scattering of a photon from the state s into the
state s' in the actual world, which is described in

the hypothetical world as the process of the
simultaneous emission of a photon with positive
energy in the state s' and a photon with negative
energy in the state s.

It is needless to stress the problematical and
preliminary character of this rule for a translation
of results derived originally for the "hypothetical
world" into results for the "actual world. " It is
interesting, however, that these rules have a
similarity to the other rule, which was already
well known, for translation of results concerning
negative energy states of matter into a descrip-
tion of the actual world. In Dirac's positron
theory one has to replace the number 3f, of
electrons (n) in a given state of negative energy
(this number can have only the values 0 or 1

because of the exclusion principle) by the actual
number m, „ofpositrons (p) with positive energy
which is given by.

m, „=1—M, , while m, , .=cV,, ~ (199)

in order to obtain the actual transition proba-
bility. These relations have a close analogy to the
relations (198) for Bose statistics. If one adds
this rule for the interpretation to the original
form of the theory (where the number of particles
is conserved "in the hypothetical world" ) one
neglects to take into account the Coulomb
interaction between generated pairs, as Dirac
pointed out. This neglect is intentional, in order
to get rid of any convergence difficulties. In the
other alternative, where the redundant second
spinor field is introduced LEqs. (140)—(142)$ the
Coulomb interaction between generated pairs can

"Professor Dirac pointed out in a letter to me that the
cases where both p, , +, p, , are diferent from zero for the
same s, and for which p, , +—p,, has the same value, cannot
be directly distinguished physically. Their physical inter-
pretation, however, is expressed by a dependence of the
transition probability on n, which is different from the case
where one of the p,, + or p, , is zero.



be taken into account. One has to consider only
those processes where 3f„, and 3I„, either
decrease or stay unchanged, and M„,+ and 3I„,
either increase or stay unchanged. The p particles
in the hypothetical world are used to describe
pair generation, the n particles to describe
emission of radiation, the negative energy
photons to describe absorption of radiation. But
as we have seen, this second alternative gives
rise to a divergent self-energy.

Quite similar is the situation for the physical
interpretation of spinless charged particles which
obey Bose statistics. For the form of the theory
in which the number of particles is conserved
[Eqs. (117)—(121)j it is not necessary to use at all
the field U„(x), U„*(x) (which was introduced for
reasons of symmetry in order to compensate the
charge of the vacuum) for the physical interpre-
tation. Ke have then in the hypothetical world
(eventually in an external electromagnetic field)
transitions from a positive energy state s to
negative energy states s' with a probability

—a„X,+(I+X, ),

and for the reverse process

—a., X. , (I+X,, +).

For the interpretation in the actual world we
have to put

m, „=X,, , m, , „=—(I+X,, ) (200)

which makes the first process to a pair annihila-
tion with the transition probability

and the second process to a pair creation with a
probability

+a, , (I+m, , „)(1+m, , „).
If one does not use the field U„(x) for the physical
interpretation, it is not necessary to include here
a factor 2 as was the case with the photons.
Again in this form of the theory one has to leave
out the Coulomb interaction between generated
pairs, and gains for it the convergence of the
theory.

For the other alternative of the theory of
charged particles without spin [Eqs. (135)—
(139)], in which no transition from positive
energy to negative energy states occurs, one can
use the positive energy states for the description
of pair creation and the negative energy states
for the description of pair annihilation, but as we
have seen, the self-energy then becomes infinite.

The arbitrariness of the rules for the translation
of results concerning the hypothetical world into
results concerning the actual world and the lack
of uniqueness of these rules seems to indicate
that new ideas and more radical changes of the
present formalism will be necessary in order to
get a really satisfactory quantum theory of the
electromagnetic field.


