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INTRODUCTION

Y micro-wave radio is meant the science of
electromagnetic radiations in, roughly, the

range of wave-lengths from one meter down to
one millimeter, that is, of frequencies in the
approximate range 3X10s to 3&(10" cycle/sec.
This region of the spectrum is marked oA at its
high frequency end by the fact that at higher
frequencies the techniques become more "opti-
cal" than "electrical. " At the lower end it is
marked off by the fact that for frequencies below
300 megacycles/sec. , the conventional methods
of radio engineering based on lumped constant
circuit analysis are quite adequate for under-
standing the phenomena.

The micro-wave field is thus principally
characterized by these three features:

(1) Its techniques are essentially electrical
rather than optical, particularly in the sense that
the sources are man-made oscillators built on a
macroscopic scale, rather than the non-coherent

*Prefa,tory ¹te—The following material is presented,
in some respects, particularly in the inclusion of exercises
for the reader, more in the style of a textbook than of a
review article. That is because it was originally intended
for publication as a textbook. Decision to publish it as a
paper in the Reviems of 3&dern PIIysk s was based on the
fact that pressure of war work is likely greatly to delay
completion of the manuscript, and on the fact that it
appears desirable to give the completed portion of the
manuscript wide circulation now. These circumstances
also account for the fact that the bibliographic notes are
not as complete as they should be. Nevertheless, it is felt
that they afford a reasonably adequate guide to the
literature. Plans are made for concluding chapters in a
later issue of this journal.

superposition of radiations from a large number
of atoms or molecules.

(2) The apparatus employed is always at least
comparable in size with the wave-length and
usually large compared with the wave-length.
This fact invalidates, or at least greatly compli-
cates, any attempt to understand the phenomena
with the aid of conventional circuit analysis or
even usual distributed parameter transmission
line theory. It looks as if the engineers will at
last really have to learn electrical field theory!
At any rate, so far there exists no technique Of

evasion of the use of field theory that corresponds
to the use of complex number algebra to avoid
the consideration of difI'erential equations in

analysis of steady state alternating current
circuit problems. No doubt something of this
sort will be worked out to correspond with the
growing practical needs, but at this stage it
seems desirable to consider the subject from the
viewpoint of electrical field theory. The peda-
gogical tricks will come in due course.

(3) The micro-wave electronic apparatus is
characterized by the fact that the time of flight
of individual electrons is not negligible compared
with the time of one cycle. Electrons in ordinary
apparatus go with speeds from 0.01 to 0.1 of the
velocity of light. Therefore they travel from 0.01
to 0.1 of a wave-length in one cycle. Usually it
is impracticable to design tubes for such short
paths when the wave-length itself is of the order
of centimeters. This fact brought about a
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breakdown in the usual modes of thinking about
electronic tubes. Recent progress in the held is
largely due to the discovery of ways to put finite
transit time to good use. In other words, finite
transit time is not a limitation on the electronics,
but a limitation on the traditional thinking
about the subject.

Historically, the earliest work of Hertz, by
which electric waves were first intentionally
produced by electrical means, was done in

what we here call the micro-wave region. But it
was characterized by very low radiated power
and by the fact that the oscillations were a
succession of highly-damped wave trains instead
of the much more useful continuous waves
which modern technique provides.

From the point of view of application to
communication, the principal importance of
micro-waves derives from two things: (1) new

frequency channels are made available in an
already crowded medium, and (2) owing to the
fact that for production of very sharply directed
beams the antenna must be large compared to
the wave-length, this requirement may be
satisfied with structures of more convenient size
than in the case of longer wave-lengths. The
subject is so new that very little work has been
done so far on the propagation of these waves
over land or sea, or in relation to the ionosphere.
iMuch work needs to be done in this direction.

Kith the current development of experimental
techniques and equipment in the micro-wave
6eld, physicists will have in their hands a tool for
investigation of properties of matter, opening up
a 6eld that is at present essentially unknown.
Yet we do know already that some molecules
(e.g. , ammonia) have characteristic frequencies
in this range that are of the utmost significance
for the understanding of molecular structure.
Probably much will be learned through the
molecular micro-wave spectroscopy of the future.
When ferromagnetic conductors are placed in a
micro-wave radiation field, the skin depth to
which the waves effectively penetrate is of the
same order as the size of the ferromagnetic
domains. There is, therefore, no question but that
the study of ferromagnetics at micro-wave fre-
quencies will contribute to a better understand-
ing of ferromagnetism. Similarly, many dielectric

substances show maxiiuum dielectric absorption
in the micro-wave frequency range so study of
their properties in this range will be essential to
a better understanding of the properties of such
substances, especially of the modern synthetic
resins and rubbers.

All such contributions to a better under-
standing of dielectric and ferromagnetic materials
are, in a larger sense, topics in "applied physics. "
However, if we look for future 6elds of applica-
tion of the micro-wave equipment outside of the
research laboratory, it is at once evident that
most of the developments now being made will

be directly applicable as aids to marine and
aerial navigation. Moreover we must not over-
look the fact that applicability of micro-waves
to medical diathermy is thus far completely
unexplored and that they may well prove to
have specific therapeutic eSects not possessed b~.

the lower frequencies in use at present.
So there is plenty to be done for a long time to

come. It is sincerely hoped that the exposition
which follows of some parts of the subject wi11

contribute usefully to a vigorous future develop-
ment of the subject.

CHAPTER I. CAVITY RESONATORS

Instead of the conventional coil and condenser
as the basic resonant circuit element, in micro-
wave radio the cavity resonator is used. By a
cavity resonator is meant a region of space
essentially totally enclosed by walls made of
good conductors which is used as an oscillating
circuit element. It is therefore desirable to begin
the study of micro-wave radio by getting a
thorough familiarity with the properties of
cavity resonators.

1'. Maxwell's Equations

All electromagnetic field problems are governed
by the basic equations of Maxwell which we
shall write in the following form:

div D =4+p, div 3=0,
(1'1)

curl E= —(1/c)B, curl H=4si+(1/c)D,

in which

E is the electric field in statvolt/cm;
D is the electric induction in statvolt/cm;
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E=pi, (1'3)

in which p is the resistivity of the material. A

simple checl- of the dimensions will show that
this resistivity is measured in cm. The usual
reference tables give p in ohm-cm which is the
relation between E in volt/cm and i in amp. /cm'.
If p is the resistivity in ohm-cm and p is the
equivalent quantity in the unit defined here,
which is the statvolt-cm/abamp. = cm, the
relation is

p =p'/30.

Thus for copper at room temperature for which
p'=1.7)&10— ohm-cm the resistivity in cm is

p = 5.7)(10 8 cm.
At the boundary between two different non-

conducting media the conditions are:

Normal components of D and B continuous,
Tangential components of E

and H continuous. (1'4)

Continuity of the normal component of D
implies that there is no surface charge density
on the interface. If there is a charge of o e.s.u. /cm-"

on the interface then there is a discontinuity of

p is the electric charge density in electrostatic
units of charge per cm';

H is the magnetic field in gauss;
B is the magnetic induction in gauss;
i is the conductive current density in

abamp. /cm'.

This is only one of many of the systems of units
now competing for public favor, but it is a
system which will be found convenient and useful
in practical work. Anyway we shall not fall

into the common error of becoming slave to a
particular unit system and shall not hesitate to
change the units whenever it is advantageous to
do so. In any ordinary medium we have,

3=pH and 9= eE, (1'2)

where p, is the magnetic permeability and e is

the dielectric constant of the medium. The
coefficients p, and ~ are here pure numbers and
equal to unity for a vacuum. They are thus
equal to the values always listed in the tables in

the reference books for these quantities.
In a conducting medium, the electric field

needed to produce a current density is given by

1 ( BB 8D)
div S+—

~
H —+E ~= —ci E, (1'6)

4~ E a~ a~ i

in which
S= (c/4s. )EXH erg/cm' sec. (117)

The vector S is called Poynting's vector and is

interpreted as giving the flow of electromagnetic
energy in the field. The exact flow of the field

energy is really not known from this or any
other consideration, since to S could be added

any other vector field S' whose divergence
vanishes everywhere without affecting the va-
lidity of (1'6). However, since electromagnetic
energy is only observed by the effects it produces
when converted into mechanical or thermal

forms, this ambiguity in the flow pattern does not
affect any observable results of the calculations.

In ordinary media having constant ~ and p,

the second term in (1'6) is the time derivative of
the quantity

W= —(yH'-+ eE') erg/cm'.
8m

4mr in the normal component of D at the
interface.

The charge and current density are connected
by the relation

div i+(1/c) p= 0,

which expresses the fact that a net flow of
electric charge out of a region is always accom-
panied by a corresponding diminution of the
charge density there.

In applications E is usually expressed in

volt/cm and the connection is 1 statvolt=300
volts. Likewise current is usually measured in

amperes, 1 abampere=10 amperes, and charge
in coulombs, 1 coulomb =3X10' e.s.u. Likewise
power is expressed in watts or volt-amperes,
whereas the unit of our system would be the
statvolt-abampere, 1 statvolt-abampere = 3 kilo-

watts. Although H is usually expressed in gauss
also in practical work, some people like to
express it in amp. /cm which is the field in an

infinitely long solenoid excited with 1 ampere-
turn/cm. The connection is 1 amp. /em=0. 4s.

gauss.
From Maxwell's equations we may derive the

general relation,
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F&f . 1'. The relation of vectors in plane wave propagated
toward the reader. o is out from the paper.

the apparatus involved. For this reason we
have to deal with the distributed fields in
accordance with the field equations. In other
phases of electrical work, the wave-lengths
involved are large compared to the size of the
equipment. It is this fact that has made it
possible to avoid the use of the field equations
in developing the usual lumped constant circuit
theory which is the basis of nearly all electrical
engineering.

2'. Plane W'aves

This is interpreted as the local density of
electrical energy in the field, the first term being
the magnetic energy density and the second
term being the electric energy density.

One advantage of the system of units we are
using is that in a plane electromagnetic wave,
E in statvolt/cm is equal to H in gauss. However
for practical work it is handy to have the
formula for Poynting's vector expressed in

practical units, thus,

S= (1/0.4s.)EXH watt/cm'

where E is in volt/cm and H in gauss. In a
vacuum in these units H in magnitude is

(1/300)B so the magnitude of the Poynting
vector is 5= (1/120m)E'. The numeric 120s = 377
is expressed in ohms and in the literature is often
dignified by giving it the imposing name,
impedance of free space

Referring again to (1'6) we see that in a
region where there is no current, so the right
side is zero, the equation expresses the con-
servation of electromagnetic field energy. It also
shows that changes in the held energy in any
totally enclosed region where there is no outward
Aow across the boundaries occur only by virtue
of Aow of electric currents in a direction having
a component along the electric field direction.
If the current flows with the field the electro-
niagnetic energy diminishes, if the current Aows

against the field the electromagnetic energy
increases.

The whole art and science of micro-wave radio
consists in dealing with the generation, trans-
mission, and reception of electromagnetic energy
at frequencies so great that the wave-length of
the associated waves is not large compared to

Before taking up the problem of the fields in

a cavity resonator it is instructive to get some
familiarity with the simpler solutions of the
field equations which correspond to progressive
and to standing plane waves.

We assume each field vector to be the real
part of a constant vector multiplying the factor,

g 27ri (v t—P r) (2'1)

showing that the wave amplitudes must be
transverse to the direction of propagation. We
shall refer to the direction of D or E as the
direction of polarization of the wave.

The two curl equations in (1'1) give

e XE= —(v/c)B, e XH = + (v/c) D, (2'2)

from which we readily find that

o X (cr XE) = —(v/c)'epE, (2'3)

Here e is the vector whose magnitude indicates
the number of waves per unit length and whose
direction is normal to the plane wave fronts in
the direction of propagation of the phase of the
wave, v is the frequency in cycle/sec. The
results which follow could equally well be
derived by choosing the opposite sign for the
exponent and, in fact, the other choice is more
common in the literature of electric waves. But
this choice is made to get a positive time factor
because that is the custom in other parts of
electrical engineering where the vectors in a
vector diagram in alternating circuit theory are
always regarded as rotating in the counter-
clockwise sense.

The two equations, div D=O and divB=O
give

D a=0 and 3 v=0,
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and hence, using e.K =0, that

I
eI =(v/C)(et ) ~. (2'4) Magnetic

Vt "- 0 energy at
maximum

Therefore the phase velocity of the wave is

c/(ep) &, that is, the refractive index of the
medium is n= (ep) &. From (2'2) it is easy to see
the vector directions are related as in Fig. 1'.
Also geE = gpH. In empty space all four
vectors, D, E, 3, H, are numerically equal. For
a plane wave the mean energy transport in
terms of the amplitude of E in volt/cm becomes

r ~rr
I

br
Poynting
vector at
maximum

t'watt) 1 1
Q 2f

0 cm' & 2 120m(p/e)'

As already remarked in the previous section the
coefficient in the denominator is expressed in
ohms. Hence we shall say that a medium is
characterized by an impedance for plane waves of

120' (p/e) & ohms.

The impedance of the plane wave in ohms can
also be defined as the ratio of the electric vector
(volt/cm) to the magnetic vector (ampere-
turns/cm). This de6nition leads to the same
numerical value.

Standing waves arise from the superposition
of two progressive plane waves of equal ampli-
tude travelling in opposite directions. Suppose,
for example, one has a wave travelling in the
+z direction, polarized in the x direction. Then
the electric and magnetic vectors are given by

E„=E,=O,
(2'6)

H„= (~/p) &Ei cos 2n (vt —~z), H, =H, =0.
E,=Eg cos 2m (vt —oz),

Similarly a wave polarized the same way but
travelling in. the opposite direction has fields
given by,

F.,=E2 cos 2~(vt+oz),

jv —jv —0

II„=—(e/p) ~E2 cos 2m. (vt+(rz),

II,=II,=O.

(217)

Suppose now the plane z =0 is a perfect
conductor. At its surface the tangential compo-
nent of E must vanish, and therefore the two
waves must be related in such a way that
I':~ ———FI. The combined 6elds of the incident

Electric
energy at
maximum

Fio. 2'. The pulsation of energy in a standing plane wave.

and reflected waves are then represented by,

I' =2EI sin 2~az sin 2~vt,
(2'8)

IIv=2(e/p)'Eq cos 2~hz cos 2~vt.

Ke observe that in the progressive waves E
and H are in time phase at each place, but that
in the standing wave they are in time and space
quadrature. Kith the phases as expressed in

(2'8), the energy is all magnetic at t=0, and a
quarter cycle later it is all electric. The energy
in a standing wave does, therefore, not stand
entirely still, but pulses back and forth a little
as set forth in Fig. 2'.

The reflection of the plane wave by the
perfect conductor comes about by virtue of the
flow of induced currents in the conductor. In
Chapter IV to be published in a later issue of
this journal we shall show how to calculate the
radiation from a given current distribution.
Here we may anticipate by saying that the
induced current sheet flowing in the surface
radiates a wave which just cancels the incident
wave on the far side of the surface and also
radiates the reflected wave on the near side of
the surface.

To see what is the magnitude of the induced
currents in the reflecting surface one may
proceed as follows: Looking at the yz plane
near the surface, z= 0, one has,

II„=2E~(e/p)& cos 2nvt for z)0,
for z &0.
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Hence the line integral around a path extending
for unit length in the y direction just outside the
metal and returning just inside the metal does
not vanish. By Maxwell's equations it gives the
conduction current Howing across the area
enclosed, namely, in the surface of the metal,
since the displacement current contribution is
zero because tangential E vanishes at the surface.
Therefore the surface current density is

2Eg
(6/ii) ' cos 27rpt,

4m

where i, is in abamp. /cm if Bi is in statvolt/cm.

3'. Rectangular cavity resonators'

Any region of space totally enclosed by a
good metallic conductor may serve as a cavity
resonator or "rhumbatron. "

Any such resonator
has an infinite number of resonant frequencies
and associated wave fields. First we develop the
theory for walls of zero resistivity and later
consider the effect of the resistivity of the walls.
Also it is more suitable to illustrate by working
out. the case of a rectangular box since this
involves only trigonometric functions.

We have to sol~e the field equations (1'1)
subject to the boundary conditions that E must
be normal and H tangential to the perfectly
conducting boundaries. Assume each vector to
have a time dependence represented by the
factor e' '"'. Then the equations for the positional
dependence, when e and p, are assumed constant
throughout the medium, may be written

div QeE = 0, div QiiH = 0,
curl geE = i (2m ni /c)—giiH, (3'1)

curl gpH =+i(2mnv/c) geE
Here n= (eii)&, the refractive index as defined in

Section 2' and the combination 2irni/c will be
denoted by k. From the form of the equations
it is evident that geE and giiH satisfy the
same equations, with c replaced by c/n, as do
E and H in free space. From this it follows that

' Earliest development of this topic in physics was made
in connection with the theory of blackbody radiation.
Compare Jeans, Dynamical Theory of Gases (Cambridge
University Press, London, 1921), third edition, chapter 16;
or Fowler, 5tatistical mechanics (Cambridge University
Press, London, 1936), second edition, chapter 4.

the theory for a resonator filled with any
ordinary medium can be easily derived from the
theory for the corresponding shape of empty
resonator. For this reason and especially because
nearly all the resonators used in practice so far
are empty, we shall henceforth suppose e and p,

equal to unity.
From (3'1) we readily find by taking the curl

of each curl equation and doing a little reducing
that E has to satisfy,

v~E+0"-E =O. (3'2)

If an appropriate solution for E has been found
it is not necessary to solve the corresponding
equation for H separately, since the associated
magnetic field can be calculated from the E
field by means of the curl E equation of (3'1) in
the form

H=(i/k) curl E. (3'3)

The magnetic field so calculated will automati-
cally satisfy the correct boundary condition.
If we take any path lying in the boundary then
the line integral

E ds=O

since E is everywhere normal to the bounding
surface. Therefore

curl E.ds=0,

where the surface integral extends over any
portion of the bounding surface. Hence it
follows that the normal component of curl E
vanishes everywhere on the boundary which is
therefore true of the magnetic field calculated
from (3'3)

There is no general way of solving (3'2) for
cavities of arbitrary shape, and in fact solutions
are only known for a very few special shapes.
The problem has many points in common with
the corresponding acoustical problem of finding
the resonant sound waves in a closed cavity.
However the electromagnetic problem is more
complicated because the wave amplitude is a
vector, each component of which must satisfy
(3'2) and also satisfy div E=O; whereas in the
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acoustic problem there is only a single scalar
wave amplitude, for example, the pressure in

the wave.
Ke nov consider the solution of the special

problem of the rectangular cavity resonator
whose walls are at the ends of the ranges,

If we write
COS COS COSI'.=Eg k1x k.y k3s,
sin sin sin

COS COS COS
E',„=E. k 1x k2y kgb,

sin s1n sl n

COS COS COS
Ez —E3 k1X k2y kent)

sin sin sin

then (3'2) is satisfied for any combination of
cos or sin provided the three k's are such that

ki2+k2'+kg' ——k'.

To make E normal to all walls we have to
specialize the cos or sin alternative and restrict
the k's to the following discrete set of values:

ki lir/A, k, ——mar/8, k3=nor/C ——(3'4)

in which (f, m, n) are integers. The solution for
E is therefore

E,=Zi cos (lmx/A)

Xsin (miry/8) sin (nirs/C),

L„=E.& sin (hrx/A)
(3'5)

Xcos (may/8) sin (nss/C),

E,=83 sin (ln.x/A)

Xsin (may/8) cos (Nirs/C).

The three constant amplitudes, E1, E2, and E3,
cannot be chosen independently, but the condi-
tion div E=0, imposes the restriction,

(Eir/A)E, + (mm/8)E2+ (em/C)ES 0. (3'6)——

Therefore, for each set of integers there are tw'o

linearly independent modes of oscillation: if we
think of (ki, k2, k3) as the components of a vector
and (Bi, F2, Bn) as those of another vector, then
any vector (Zi, Bi, Zs) perpendicular to k is
permissible.

The possible resonant frequencies are given by

(i/c)'= (f/2A)" +(-m/28)'+(n/2C)' (3'7)

where (l, m, n) are integers, at least two of which
are not zero.

For the modes in which one of the integers is

zero, the electric vector is everywhere parallel to
the axis whose integer is zero, and the resonant
frequency is independent of the dimension along
that axis. For each such set of integers there is
only one vector satisfying (3'6), and so only a
single solution for such a set, although as
already remarked there are in general two
linearly independent solutions associated with
each set (f; m, n)

The least resonant frequency for the box is
that which corresponds to putting the integers
associated with the two larger dimensions each
equal to unity, and the third one equal to zero.
Thus if A and B are the two larger dimensions,
the lowest mode will be polarized with the
electric vector along the shortest dimension and
the wave-length ) will be

(A '+8 ')&

In particular for a cubical box the lowest mode
has a wave-length equal to the face diagonal of
the box, ) =VZA.

The number of different resonant modes
mounts very rapidly as one goes up the frequency
scale. For example consider a shallow square
box (8=A, C((A) for which the lower frequency
modes will all correspond to n =0. The values of
2Aa. are given by

2A 0 = t'2+ m'+n'(A/C)' j&

One can easily count up and find that there are
33 di8'erent sets of the integers giving rise to
frequencies less than or equal to five times the
lowest frequency. It should also be observed
that the frequencies can be arranged in series:
the fundamental is accompanied by all its
integral multiples forming the series (110), (220),
(330), etc. ; another series begins with (120) and

(210) and includes their integral multiples as
(240) and (420), (360) and (630), etc. This
occurrence of the integral multiples among the
allowed frequencies is, however, a special
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property of the rectangular box which other
shapes do not possess.

It is important to define some terms which
will be used in discussing cavity resonators.
Each frequency for which there exists a solution
of the field equations satisfying the boundary
conditions will be called an allowed frequency or
a proper frequency Th. e least allowed frequency
is called the fundamenta/ Th. e higher allowed
frequencies are only called harmonics if they are
integral multiples of the fundamental.

A particular solution for E and H will be
referred to as a mode of oscillation: Any fre-

quency for which there is more than one mode
is referred to as a degenerate frequency. ' The
order of degeneracy is the number of linearly
independent modes associated with the degener-
ate frequency. Thus in the example just con-
sidered the fundamental is not degenerate, but
the next higher frequency is, because (1, 2, 0)
and (2, 1, 0) are linearly independent solutions
each having this same frequency. As we have
seen all of the modes for which no one of the
integers is zero are twofold degenerate because
of the two linearly independent solutions of
(3'6) that are possible. This type of degeneracy
we shall call polarization degeneracy Degenera. cy
also arises from symmetry in the shape of the
resonator, thus (1, 2, 0) and (2, 1, 0) have the
same frequency only because we assumed a
square cross section A =8. Degeneracy arising
in this way we shall call symmetry degeneracy.

A slight departure from the condition A =B,
intentionally or due to some imperfection of
manufacture or an unsymmetric location of the
coupling device by which the resonator is placed
in a circuit, will cause the degenerate frequencies
to become slightly separated. We say that such
changes remove the degeneracy.

It is important to recognize a lack of unique-
ness in the wave fields associated with a de-
generate frequency. For example, in the case of
polarization degeneracy, one may choose any
two (preferably mutually perpendicular) vectors
satisfying (3'6) as the basic modes. Any linear
combination of them is a possible mode of
oscillation associated with that frequency. Simi-
larly, though our particular analysis may present

' The terminology is obviously borrowed from that of an
analogous mathematical situation in quantum mechanics.

us with certain particular fornss for the degener-
ate modes in the case of symmetry degeneracy,
these have really no special standing in the
physics of the problem and the actual mode of
oscillation may be any linear combination of
these.

For example, consider the modes (1, 2, 0) and

(2, 1, 0). From (3'5) these have only a z compo-
nent of E which in the two cases is

E»& ——C sin (sx/A) sin (2sy/A), .

E2M =D sin (2sx/A) sin (sy/A),

where C and D are arbitrary relative amplitudes.
At this frequency quite a variety of different
modes are possible according to the relative
magnitudes of C and D and the phase relation
existing between them. Some of the field distri-
butions which can arise from diA'erent relative
excitations of these two modes are sketched in

Fig. 3'. Since the combination with C=D has a
node on the line y=A —x as well as y=0 and
x=0, it obviously satisfies all the conditions to
be the fundamental mode for a right triangular
prism whose cross section is formed by these
three lines. By this means one can often find

particular solutions for special shapes which
would not otherwise be easy to find. The trick
does not work for a right triangular prism of
unequal sides for in that case the two modes of
the corresponding rectangular prism would not
belong to the same frequency and so could not
be superposed in this way.

Exercise: Discuss the modes corresponding to
D = ~iC, that is, where the two degenerate
modes are in time quadrature.

4'. Resonator Coordinates'

By working out in detail the solution for a
rectangular cavity resonator in the preceding
section, we have learned most of the general
properties which are applicable to resonators of
any shape. These are, that the fields in the

3 Most of this section can be skipped at a first reading,
but it should be scanned to see the main results concerning
orthogonality of the wave functions (4'5) and the dynami-
cal equation for a mode amplitude {4'10).The results are
an application of the formalism used in quantum electro-
dynamics. Compare E. Fermi, Rev. Mod. Phys. 4, 87
{1932),or %. Heitler, Quantum Theory of Radmtion (Ox-
ford University Press, London, 1936), p. 40.
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—7'A+ (1/c') A

+grad
~

div A+ —y (
=4wi,

E c J

C&O, D=O C=O, D&O

—V"y+ (1/c-")j
1 8 ( 1———

(
div A+ —j )

=4wp.
cary c )

C D x C= -D

Frt'. 3'. The different types of field distribution resulting
from co-existence of the degenerate modes (1, 2, 0) and
(2, I, 0).

KVe are at liberty to assume some further relation
involving div A to simplify the equations, and
evidently they will be simplified very consider-
ably if we put div A+(1/c) rp=0, which gives us
the following set of equations for the potentials:

1..—A —V'-'A = 4mi,
c"

resonator can be made to satisfy the boundary
conditions only for certain discrete allowed
frequencies and associated with each frequency
there may be one or more wave patterns.
Evidently the most general state of excitation
of a resonator would be for all of the possible
modes to be simultaneously present, just as
niany of the diferent possible modes of vibration
of a drum-head are simultaneously present when
the drum is struck. To deal mathematically
with this situation calls for introduction of a
convenient means of describing such general
states of oscillation. This we can do by means
of resonator coordinates, which are simply the
amplitudes of each of the basic wave fields in

the actual state of motion.

1—p —V p =4Ãp,
c2

(4'3)

div A+(1/c) j =0.

(18' yp 1 q
dfv A+ &l =O. -

Ec' a&' ) E c )

These same equations will play a basic role in

Chapter IV when we develop the theory of
radiation from a system of moving charges and
conductive currents. If we take the divergence
of the first equation and take (1/c) times the
time derivative of the second and add, we find
an equation for the time dependence of Ldiv A

+(1/c) j$, namely,

Vector Potential

Instead of dealing directly with E and H it is
convenient to derive the electromagnetic fields
fron& the usual scalar and vector potentials, A
and q, according to the relations

E= —(1/c)A —grad p, H=curl A. (4'1)

Here the vector potential is measured in the
same units as current, namely abamperes, and
the scalar potential is in statvolts. This mode of
representation of the field satisfies the field
equation for curl E automatically, as also the
equation div H=0. Substituting from (4'1) into
the other two field equations we find,

The right side is zero since the charge and current
satisfy the conservation equation (1'5). This
shows that if we admit only solutions which at
/=0 satisfy the third equation of (4'3) together.
with the time derivative of that equation, then
the third equation will be satisfied at all times.

Suppose now that the mathematical problem
of finding the allowed frequencies and associated
wave patterns for the cavity has been solved by
some such procedure as that of the preceding
section. This means that we know the set of
values ki, k2, k3, etc. , and associated solutions
A&, A2, A3, etc. , which satisfy the equations

P'A+k'A=o, div A=O,
A normal to walls or zero.
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As we have seen, it is possible for an allowed
value k to be degenerate, that is to have more
than one linearly independent solution A,
associated with it. Thus a comp1ete enumeration
of the A's requires another "degeneracy" index,
to distinguish the different A belonging to the
sante k„. Ordinarily it will not be necessary to
v rite this explicitly: in the formal mathematics
wc can regard the index a as labelling all of the
independent wave functions, then it will happen
t hat the associated k are equal for several
Ri Heren t values of the index a.

Ortkogonality of Wave Functions

The A wave patterns have an important
orthogonality property which makes it con-
venient to use them to represent other functions
in a manner similar to I'ourier series. Write
down the curl curl equation satisfied by A and
by At„multiply the former by A&, the latter by
A and subtract:

Ag curl curl A —A, curl curl Ab
= (k,"- —ki,")A. Ai, .

Now use one of the basic identities of vector
analysis,

div (uXv) =v. curl u —u curl v

to transform the left side of this equation into

div (A, Xcurl Ai, +(curl A~) XAi,).
Next integrate both sides over the volume of the
cavity. The integral of the left side vanishes
because it can be transformed to a surface
integral over the surface which vanishes because
A, and A~ are normal to the walls. Hence,

A. Ab d V=o, if kgNki,

convenience. It turns out that for the work
which follows it is convenient to normalize the
functions in such a way that

t )~ tA A.*dV= V (4'6)

in which A is the conjugate complex function
to A, . With this choice of normalization, the A.
functions are physically dimensionless; V is the
volume of the cavity.

Let us 6rst consider the case in which the
currents in the cavity are distributed in such a
way that the charge density is everywhere zero
at all times, then y=0 and we may try to find
a solution of the first of (4'3) by writing

A =g. Jo(t)A, (x, y, s). (4'7)

There is one time-dependent coefficient for each
wave pattern. Since the A, as normalized by
(4'6) are dimensionless, the J,(t) are measured
in the same units as A, namely abamperes.
Each J, gives the amplitude of excitation of its
particular mode at a particular instant and is
for that reason called a resonator coordinate.
There is one for each mode and hence an infinite
number of them for a particular cavity resonator.

i(x, y, s, t) =P. I,(t)A.(x, y, s). (4'8)

The determination of the coef6cients in this
expansion is particularly easy formally. Because
of the orthogonality property of the A functions
it is just like the method used in Fourier series,

Exciting Current

Similarly we may expand the given current
distribution inside the resonator i(x, y, s, t) in
terms of the A, functions, denoting the time-
dependent coeKcients by I,(t),

In the case of a degenerate value of k, it is
possible to choose the several A's belonging to it
so they are mutualIy orthogonal by taking
appropriate linear combinations of the original
ones if those found in the original solution do
not already have this property.

Since a particular solution is still a solution
when multiplied by a constant, the constant
multiplier of each A, may be chosen to suit one' s

(4'9)

Thus each I,(t), like i is a current density,
abampere/cm'. We shall call I (t) the exciting
current of the ath mode. It may be remarked in
passing that a current distribution i is most
eA'ective in exciting the ath mode if its spatial
distribution is like that of the mode it is to excite.
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Dynami co/ Bqlation

Now substituting (4'8) and (4'7) in the first
of (4'3) we may equate coeHRcients of each A,
and thus obtain a simple differential equation
for the time dependence of each resonator
coordinate, (curl A„curl Aq)d V=

k„2V b=a,

The integral of the divergence vanishes because
it can be transformed to a surface integral of
A, g curl A~ which has a vanishing normal
component at the boundary. Therefore,

J,(t) + (ek,) 'J,(t) =4rrc'I, (t) 4'10
so the magnetic energy is

This equation is just like that for a simple
harmonic oscillator of natural frequency (ck,/2s. )
driven in forced oscillations by the exciting term
on the right side. If the exciting term is zero then
the corresponding J, executes harmonic time
variation at its natural frequency with constant
amplitude. The free oscillations are undamped
because we have supposed the walls to be of zero
resistivity: the effect of finite resistivity is

considered in Section 8'.
It will make the rest of the discussion easier to

follow if we suppose that all of the A, are real
functions: this is no restriction as it is always
possible to choose them in this way.

W =(V/87r) Q k, 'J,'. (4'12)

KVe can derive an expression for d W /dt from
(4'10) in just the same way as is done in ob-
taining the energy integral in particle dynamics.
A'multiply through by (V/4sc') to obtain,

Ke shall write W for the energy associated
with the ath mode of oscillation. There is no
mutual energy between different modes in

consequence of the orthogonality of the A

functions. For W we have

W, = ( V/8irc'-) $J 2+ (ck ) ~J "-]. (4'13)

(d W./dt) = l'I. (t)J„(t) (4'14)

Expressions for Enert, y

The electric field energy in the cavity is

lin ergs)

W, =, I
~ (¹/8s)d V=(U/8s. c') Q.J.' (4'11)

as can be found by substituting the expression
for E in terms of A and using (4'5), (4'6), and
(4'7). Similarly the magnetic field energy in the
cavity (in ergs) is

' (FP/'8m)d V

f'

J..J~(curl A, curl Ai, )d V.

To simplify this v e need to evaluate,

(curl A, curl &)d l'

I div (A, Xcurl Ai, )d VJJ~
+kg' I l~ ~A, AutV

In words: the instantaneous rate of increase of
the field energy in the ath mode is equal to the
volume times the ath exciting current times the
rate of increase of the ath resonator coordinate.
This is fully analogous to the expression for
power as a force (in this case I,) multiplied by
a velocity, in this case proportional to the rate
of increase of J,.

L'+ective Inductance and Capacity

Those who are accustomed to thinking in
terms of resonant circuits in terms of their
inductances and capacities will grope for a
definition of some sort of effective inductance
and capacity which is applicable to the cavity
resonator. This can be done as soon as one has
fixed on a proper current coordinate by means
of which to measure the amplitude of excitation.
In an ordinary inductance the magnetic energy
is W =Li /2 where W is'in ergs if L is in cm
and i in abamperes. Here we measure the
amplitude of the ath mode by giving the value
of its resonator coordinate J which is a current,
hence we may properly identify the coefficient
of J,' in the expression for the magnetic energy
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as half the effective indttctance L,. of the ath
mode. This gives, for I, in cm

L„=Vk '/4s = s V/li. '. (4'15)

In this way it is easily found that the electro-
static capacity in cm to be associated with the
ath mode is

C„=4ir/ Vk„'.

L~xerczse: Show that the normalized A, for the
(110) mode of a cubical resonator of edge A is

A»o ——2k sin (7rx/A) sin (iry/A),

where k is a unit vector parallel to the s axis.
Also show that the maxim um val ue of the
electric vector occurs at points along the line
x=A/2, y=A/2 and that when the resonator
coordinate J~IO = 1 abampere, this maximum
electric vector equals (4s/X) statvolt/cm where
), =&2A as worked out in the preceding section.

Egect of Charge in Cavity

Let us now turn to the more general case in
which there is charge density as well as current
in the resonator. The expansion (4'7) is no
longer adequate, since it gives div A=O which
is no longer true. A similar remark holds for (4'8).
The necessary generalization runs as follows:

Suppose the scalar boundary value problem,

~ Pb+~b qb=O,

yb=O on walls,
(4'17)

has been solved so its allowed functions and
allowed values are known. The functions yb may
he proved to be orthogonal:

cp.V'pi, —vi V'y. + (ki,' k.') vaq, =0, —

e,V'ipse, —ipiV'v, =div (ip. grad yi, —ea grad y,).

For conversion to practical units, note that 1 cm
of inductance is equal to 10 ' henry. To get a
correspondingly appropriate definition of the
capacity of the uth mode we must choose C, in
such a way that the product I.,C, gives the
correct resonant frequency in accordance with
the equation,

X.= 2v (L.C.) &.

Integrate over the volume. The volume integral
of the divergence may be seen to vanish by
transforming to a surface integral. Thereforefff yi, rpgV=O if ki, gk, In. the case of degen-
eracy we may choose orthogonal linear combina-
tions of the degenerate wave functions so all q's
are orthogonal. We shall consider the p's to be
normalized as the A's )compare (4'6) )

(4'18)

Next we assume that p(x, y, e, t) is expanded
in terms of the yi„so, analogous to (4'8),

Substitution of these in the equation for q in
(4'3) leads to equations of motion for the
coe%cients in (4'20), analogous to (4'10),

~ ~

C'a+ (ckt, ) 2C b = 47rc'Ri, (4'21)

In addition the expansions for A and i have to
be extended by bringing in additional terms for
which the divergence does not vanish. The
functions

Bi, =(1/ki, ) grad qi„curl Bi,——0 (4'22)

are appropriate for this purpose. They are all
orthogonal to each other and to the A. functions.
To prove Bb orthogonal to A, apply the general
formula

" f f (curl u. curl v+div u div v+u av)d V

uXcurl v dS+~t
~

div v u dS.

Identify v with A and u with Bb. Then on the
left the first integral vanishes since curl Bb=O,
the second since div A =0, and the third reduces
to —k,'J'J'J'A, Bvd V. On the right the first
integral vanishes because Bb is normal to the
surface and the second because div A =O. Hence
the functions are orthogonal.

(4'19)

and likewise that the scalar potential can be so
expanded,

(4'20)
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The factor (1/kb) is inserted in (4'22) to take
care that the Bb are normalized like the A' s:

rs

Bb BgV=
0 bgc

V b=c.
(4'25)

This follows from the relation,

"grad bb grad s, dV
J

jf'
div (Sb grad S,)d U . l' —

~ ~I Sbhe+V,JJ6
both as regards orthogonality and normalization.

VA may now asume (4'7) and (4'8) extended
as follows:

A= Q. J.(t)A„+Qb Zb(t)Bb,

i=+.I.(t)A. +P bEIb(t)Bb.
(4'24)

Substituting these into the equation of motion
for A in (4'5) we find

Eb+ (ckb) 'Eb =4s c'Hb (4'25)

—(Cb —ckbEb) = 0

initially, then they will remain zero at all times.
Hence the solutions of (4'10), (4'21), and (4'25)
have to be chosen so as to satisfy these conditions
as part of the initial conditions.

If now we compute the electric and magnetic
energy expressions, we hand no change in the
magnetic energy since the curl of the additional
terms in A is zero. But there are added terms in
the electric energy and the complete expression
to replace (4'11) is

W.= ( V/8sc') P, J.'+( V/8sc') Qb K'b'

+ ( V/8') Qb kb'4'b' (4'26)

which, together with (4'21) and (4'10), gives
the equations of motion of all of the resonator
coordinates. A considerable complication has
resulted from the introduction of charge into the
cavity: not only was it necessary to introduce
the scalar potential, but to extend the expansion
for A as well. The unnumbered equation following
(4'5) gives a proof that if

Cb —ckbEb= 0
and

div E=O div H=O
curl E= —ikH curl H=+ikE. (5'1)

It is natural to expect the solutions to depend
on s through a cos kas or sin k3z factor as in the
case of the rectangular box (which is a special
case of the class of cylindrical resonators).

The modes can be classihed into types as
follows:

E type, for which E,WO, but H, =O,
H type, for which H, WO, but E.=O.

E (Electric) Modes

Let us consider first the modes of F type.
Since FI,=O we have, from the curl H equation,

ikE.= —(BH„/Bs)

ikE„=+ (BH./Bs)

ikE, = (BH„/Bx) —(BH,/By),

and, similarly, the curl E equation gives

ikH, = (B—E,/By) —(BE„/Bs),

i kHr (BE./Bs)——(BE,——/Bx),

ikIi, = (BE„—/Bx) —(BE./By) (5'4)

Using the x and y components of these equations
we can express 8, and 8„in terms of derivatives
of F, :

B'E. B (BE.)
+k2E.=—

IBs' Bx& Bs i
028„8 (BR,p

as'- ay E as )
' The literature dealing with special properties of

resonators of particular shapes is becoming quite extensive.
Some useful general references are: Stratton, Electro-
magnetic Theory (McGraw-Hill, New York, 1941),chapters
6 and 7; Bateman, ELectricaL and OPticaL Wave Motion
(Cambridge University Press, London, 1915); Borgnis,
Ann. d. Physik 35, 359 (1939).

5'. Cylindrical Resonators'

By a cylindrical resonator is meant one which
is bounded by the planes s=0 and z=C and
whose cross section in any plane z= constant is
the same curve. The three-dimensional problem
can be reduced quite generally to a two-dimen-
sional problem for such resonators. VA start
with Eqs. (3'1) in which b=bi=1,
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E,=E,i+E„j,
(k' —k, ')E,=grad. (aE,/as),

(5'5)

The ldt-hand side of these becomes (k' —k~".)
times E, or E„no matter whether the z de-

pendence contains a cos or sin factor, so we can
write for the component of E in the cross section

known in the mathematical literature for a
variety of shapes since they occur in other
branches of mathematical physics, for instance,
the vibrations of a drumhead of the same shape
as the resonator section.

Summarizing the results for the E type modes

we have,

7,'E,+ (k' —k3') E.= 0, (5'6)

where grad, means gradient in the section and
is the usual gradient with the z component
omitted. Next use (5'4) to eliminate the II
components from the s component of (5'3) to
obtain the basic differential equation which

governs the variation of E, over the cross section

E type:

E,=A/ (x, y) cos kgs,

k'=k '+k '

(ap, a$
E,= —(k~/k. ')A

} i+ ] }
sin k3s,

&ax ay )
(5'10)

—ik BE,
(5'7)

ik BE,
II„=

k' —k3' By k-'—k3' Bx

where 7',' is the sectional Laplacian, obtained by
omitting the z component from the three-
dimensional Laplacian.

Finally we may use (5'4) to express H in

terms of E:

H, = —f(k/k. ')A} — i+ j } cos k~s.
ay ax )

In terms of the normalized vector potentials of
Section 4' we have for the vector potential A

A=8}g (x, y) cask, sk

—(kz/k, 2) grad, P, sin kas}, (5'11)

or, in vector form,

—ik

here 8 is the normalizing factor to be chosen
to satisfy (4'6). We have

H= kXgrad, E„
k-' —k ' (5 8)

g2d @=g~(g/2)JJ
in which k is the unit vector in the z direction.

The boundary conditions on E require that E
be normal to all bounding surfaces. This calls
for the choice of the factor cos k3z instead of
sin kaz in the expression for E, in order that the
sectional component E, shall vanish at the ends.
The condition on the cylindrical walls requires
that only solutions of (5'6) which vanish at the
boundary be admitted.

Suppose we denote bv P.(x, y) and ko the
associated functions and proper values which
satisfy the two-dimensional boundary value
problem

~ V.(k, y)+k.V (x y)=o

P (x, y) =0, on boundary.

kP
X

~ i P.'dxdy+
~

(grad 4.)'dxdy .
k.'~ ~

Since (grad P)'=div (P grad P) PV'Q this re--

duces to

X (1+(k32/k. ') j I )I P, 'dxdy,

so if V is the volume of the resonator, the
normalizing factor is

2Uk '

This two-dimensional problem de6nes a sequence
of proper functions and proper values. They are

Ck') ) P.'dxdy
(5'12)
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H tyPe:

Summarizing the results for the II type modes
we have,

The theory for the modes of II type is quite
similar. In place of (5'3) and (5'4) we have

ikP, =
BII BIIy

Bs

BIIy BII
ikE, =—

Bx

BL,—ikR, = ———,
BF,—ikII„=
Bs

BEy—ikII, =
Bx

f&Hz)
(k' —ks')H, =grad,

i

—).
(as&

(5'13)

These permit us to express II and II„ in terms
of II„and yield a relation analogous to (5'5)

II,=A pb(x, y) sin k;s,

k'-=k "-+O '-

H, = (k3/kq')A grad, yq cos k3s,

( BPb
E, =i (k/k~') A

(
— i+ j ~

sin k&s.
By Bx )

I'or the vector potential describing these modes
we may take

t' &y~
A=a~ — i+ ~

~

sink. s,
By Bx &

where 8 is the normalizing factor whose value
is readily calculated to be,

2V

Similarly we 6nd in analogy with (5'6)

V', "-II,+ (k' —kg')H, =0, (5'14)

Ckb pb dxdy
J J

(5'18)

and in analogy with (5'8)

kg grad, II,.
k' —k32

Note that there are modes of I: type for
which k3 =0, and that for these the resonant
frequencies are independent of the height of the

(5&]5) cylinder, but that the H type modes require
k3/0. The allowed values of k3 are, of course,

Since the boundary conditions require that H
be tangential at the walls, this calls for the
sin k3s factor in H, which will also make E,
vanish at the two ends. From (5'l3) we see that,
in order to make H, be tangential at the cy-
lindrical surfaces, the normal gradient of II,
must vanish at the walls.

Suppose we denote by qs(x, y) and k& the
proper functions and proper values which satisfy
the two-dimensional problem

V.'qt, +ka'qb=0)
(5'16)

&pb/&n =0 on boundary,

where &/&n means di6erentiation in a direction
normal to the boundary. The difference in
boundary conditions between (5'9) and (5'16)
gives rise to a different set of proper functions
and proper values in the two cases.

ka ——nm/C (n, an integer). (5'19)

Double- R'alled Resonators

If the section of the cylindrical resonator con-
sists of the region of space external to curve C~ and
internal to curve C2 as in Fig. 4, then the interior
of the cavity resonator is not a singly-connected
region (which means simply that an arbitrary

Ke shall need a notation to designate a
particular mode in a cylindrical resonator. A
convenient notation is Z(n, a) and H(n, b) to
denote an 8 type or H type mode, respectively,
built on the use of ka ——nn/C and the scalar
functions P, or yq, respectively. When we deal
with cylindrical resonators of particular cross
section the general notations a and b are replaced
by more specific designations referring to special
properties of the functions f, and q ~.
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and the third requires that

t
B2 B2 q ~BUq

+
(Bx' By'j ( Bz l

Fr@. 4'. Sketch of double-walled resonator section.

closed path in the region cannot be shrunk
continuously to zero while staying entirely in
the region). This gives rise to some special
electromagnetic properties which are important.
In practice the curves C~ and C2 are usually
concentric circles but we shall see that the general
properties to be discussed are independent of this
particular shape.

The two most important properties to be
developed are, first, that there exist zero fre-
quency modes giving rise to an internal magnetic
field not associated with an electric field, and
secondly, that there exist modes for which both

8, and II, vanish, whose frequency depends
only on the length, not on the cross section of
the cylinder. These will be called coaxial cable
lllodes.

II F, as well as H. vanishes then (5"3) and
(5'4) become

&k~*= —BH,/Bz, ikE'„= +BII,/Bz,

0 = (BH„/Bx) —(BH,/By),

The s component of these shows that E or H
inay be expressed as the gradient of a scalar
function U(x, y). Write

E,= —grad, U(x, y, z);

ikH. =k Xgrad (BU/Bz) .
(5'20)

The first two equations require

B' /BUq )BUq
)+k

~
~=0,

Bz' E Bx ) E Bx )
B'

t BUy t BUy
1+k'i

Bz'&By& (By)

&kHg = B—B„/Bz, —zkH„= +BE,/Bz, —

0 = (BZ„/Bx) —(BZ,/By)

The boundary conditions require that E,
vanish at z=0 and z=C so U(x, y, z) must
contain the factor sin nmz/C .Wri. te

U(x, y, z) = u(x, y) sin nxz/C,
where

7'-u(x, y) =0.

To satisfy the boundary conditions on the
cylindrical walls we must have u=constant on
the boundary curves C& and C2.

From potential theory it is known that if the
boundary consists of the single curve C2 so the
region is the entire region interior to C~, then if
u =constant on the boundary it is constant
throughout the inside. Such a solution for u
gives vanishing electric and magnetic fields
inside the resonator which shows that for such
a resonator there are no modes with E, and II,
both zero. But if the region is bounded by two
curves C& and C2 we may satisfy the boundary
conditions by putting u= ui on C~ and u = u2 on

C2 where ui and u2 are two different constants.
This gives rise to a non-constant solution u(x, y),
which in fact is the same function of position as
the electrostatic potential distribution between
the two cylinders if C& is at potential uj and C2

at potential u2.

Since k is not involved in the boundary value

problem in the section it follows that k is
determined entirely by the length, so k=n7r/C
Hence the result: For any shape of the bounding
curves Ci and C2 the double-wa)led cylindrical
resonator possesses modes whose frequencies are
such that C=nh/2 where n is an integer.

If we pass to the limit k~0 in U= u(x, y) sin kz

we get E,=0, but

H, =kygrad u.

Hence the equations are satisfied by a steady
magnetic field, produced by circulation of steady
current up the inner cylinder and down the
outer cylinder. Such zero-frequency modes al-

ways occur if the interior of the resonator is a
multip1y-connected region.
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w=u(x, y)+iv(x, y). (5'21)

The (".auchy-Riemann conditions for the exist-
ence of a unique dern ative f'(z) are:

Bu/Bx = Bv/By, Bu/By = Bv/—Bx, (5'22)

from which it follows that u and v each satisfy
Laplace s equation.

From (5'19) it follows that, except for the fact
that E contains a sin factor and H a cos factor
in its dependence on the coordinate along the
length of the cylinder, we have:

F,= —(Bu/Bx), F.„=—(au/ay),

iEE, = —(Bv/Bx), iH„= —(Bv/By),

which can be summarized in the vector formula

E—iH = —grad m. (5'23)

Consider now a,ny function, w=f(z) such that
the equation u(x, y) =constant, de6nes a family
of closed curves, successive members of which
enclose the preceding members. Any two of these
curves may be chosen as the bounding curves
C& and C2 of a double-walled cylindrical cavity
resonator, and therefore each such function
provides the solution for the fields in a whole
family of such cavity resonators.

Use of Function Theory

Since I satisfies Laplace's equation in two
dimensions, many results obtainable from the
theory of functions of a complex variable are
applicable here, For the calculations which
follow let z=x+iy (not to be confused with
previous use of z as the coordinate along the
length of the cylinder). Also let w =u+iv. Then
if w=f(z) is an analytic function of z we have,

and

so
v=arc z= p,

log z= log r+i y.

The electric field is directed radially and the
magnetic field is directed circumferentially and
each varies as the inverse first power of the radius.

If the inner radius is a and the outer radius
is b, then the current flowing axially in the inner
conductor is 1/4na abamp. /cm and on the outer
conductor is 1/47rb abamp. /cm. The total
current flowing on either is the same and is equal
to 2 abamp. The line integral of E from r =a to
r =b is log (b/a) statvolt.

Therefore if the amplitude of excitation of the
resonator is such that the maximum current
amplitude is j. ampere at z= 0 or any other place
where cos nzz/C equals &1, the maximum
voltage amplitude, which occurs at places where
sin nnz/C equals ~1, is equal to 60 log (b/a)
volts. This relation is expressed by saying that
the impedance of the circular coaxial cable
resonator is 60 log (b/a) ohms.

More general shapes may be treated by
remarking that the positional coordinates (x, y)
must be periodic functions of v. There is no loss
of generality in assuming the period to be 2m,

and the most general complex function having
this property is the Fourier series,

+oo
em(«+i u) (5'26)

Therefore the lines of constant u are the circles
r=constant and the lines of constant v are the
radial lines of constant y. The electric and
magnetic fields are given by

E—iH = —grad w = —(1/r) ro i(1/r—) po (5'2.5)

Circular Coaxial Cable

The simplest application of thisgeneral method
is the solution which applies to the circular
coaxial cable. This is given by the function,

No extra generality arises from the inclusion of
the Ao term since this simply provides for a shift
of origin in the (x, y) plane. The circular coaxial
cable, already discussed, is obtained by putting
A 1.

——1, and A =0 for m Q 1.

from which we find,

a=log z,

eQ+zv —z

(5'24)
Elliptic Coaxial Cable

An important simple interesting case is
obtained by using (5'26), and by putting

e"= ~z~ =r, that is, u=log r, A& ——A & f/2, A =0 for ——rnid &1,
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which gives, and the line integral of the electric vector from
inner to outer conductor is u2 —Ij statvolt if thez= cosh u cos v+i sinh u sin v .
conductors are given by u=u& and u=up,

From this it follows that the curves of constant u «spectively. Therefore the impedance of such

are the ellipses a resonator is given by

I+I
3'

& f cosh ul k f sinh uI

60(up —uy) ohms

for any shape whatever.

(5'28)

that is, confocal ellipses whose foci are at the
points (x, y) = (&f, 0). Hence this special case is

appropriate to the case of a double-v alled
resonator where the bounding curves are con-
focal ellipses. Thus if the inner and outer ellipses
have semi-major axes a and b, respectively,
(both greater than f) then the inner and outer
walls are given by N,~ and N2 where

cosh u~=a/f and cosh u& ——b/f

The line integral from inner to outer wall is

up —u~ =cosh ' (b/f) —cosh ' (a/f)

The magnetic field at the point (u, v) is —grad v,

so the axial current per unit length on either
wall is (1/4pr) grad v abamp. /cm. Therefore the
total current on either conductor is ~ abampere
since the integral of grad v around either cylinder
is 2m. Hence, using the definition of impedance
introduced in discussing the circular coaxial
cable, we find

60[cosh ' (b/f) —cosh '(a/f)j
&+ (b' f')'*-

= 60 log ohms (5'27)
a+ (a" f')i.—

for the impedance of the cylindrical resonator
whose walls are confocal elliptic cylinders.

Ke can give a more general result for the
impedance of the resonator formed by two
cylinders of arbitrary shape. No matter what
the coefficients in (5'26), the total current
Howing in inner or outer conductor is —,

' abampere,

6'. Circular Cylinder

The general results of the preceding section
may be illustrated and useful practical results
obtained by specializing to the case of a circular
cylinder of radius R. In place of the coordinates
(x, y) it is convenient to use polar coordinates
(r, V)

Equations (5'9) and (5'16) are satisfied by

J„(k.r)e'"" (6'1)

where J (x) is the Bessel function usually
denoted this way, and m is an integer. The
boundary conditions for modes of 2 type are
satisfied by choosing k such that

J (koR) =0. (6'2)

kz...,=X „/R +n'7r'/C' (6'3)

The demode of, lowest frequency is E(0, 0, 1)
for which

kgppy = 2.405/R or Xzppg = 2.61R. (6 4)

This leads us naturally to replace the general
label "a" by two integers ns and p, where vp is
the order of Bessel function used and p is the
ordinal number of the root when they are
numbered in order of increasing magnitude.

Some of the roots are given in Table I. Thus
we denote a particular 8 mode by E(n, m, p)
and the frequencies are given in terms of the
dimensions R and C by

TAai.E I. Values of X „for which J,{X„)=0. The next higher mode in the symmetric m=0
series is Z(0, 0, 2) for which

p=1
2
3

2.405
5.520
8.654

11.792

3.832
7.016

10.173
13.323

5.135
8.417

11.620
14.796

6.379
9 760

13.017
16.229

kzppp = 5.520/R or Xzppp = 1.14R. (6 5)

Notice that the frequency of B(0, 0, 2) is
considerably greater than twice that of Z(0, 0, 1).
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Similarly for the modes of H type the boundary
conditions require that kb be such that

J '(ki,R) =0. (6'6)

Hence for H type waves we need a table of roots
of the equation J„'(x)=Q. (See Table II.) The
frequencies of the II modes are therefore given
by,

kyar„„—V „/—R +n's'/C' (6'7)

P, (r, p) = (Jmvr/n)(k, r) sin (may/n) (6'8)

From Table II we see that VII is smaller than
any of the X „. However since n =0 is not
allowed with an H wave we find that E(001)
has a lower frequency than H(111) for C(1.15R
but the order is reversed for C) 1.158.

The modes for a resonator whose shape is
that of a sector of a circular cylinder are obtained
by an easy generalization of the foregoing.
Suppose the sector is bounded by the planes

q =0 and q =n where a&2m.
For the E modes we must have E,=O on

these bounding planes, which will be satisfied

by using for f(r, p)

7'. Figuxe of Revolution

In practice, resonators in the form of figures
of revolution are often useful. In discussing
them we use cylindrical polar coordinates
(r, y, s) whose axis is the axis of symmetry of
the resonator. Such resonators possess sym-
metrical modes in which E„=0 and H~ is
independent of y. This section will develop the
theory for modes of this class.

In cylindrical coordinates the curl equations
of (5'1) become:

1 BH, BH„
ikE =—

I

Bs

BH„BII,
ikE„=

Bs'

1 BE, BE„—i kII„=—
f Bp Bs

BE„BE,—ikH„=
Bz Bf

in place of (6'1). The boundary condition at
f =R will require the Bessel function to vanish,
and therefore the determination of the allowed

frequencies calls for a knowledge of the roots of
Bessel functions of fractional order for which
the designation X„~ „is a natural notation.

Similarly for the H modes we must use,

1 BE„
ikH, = (rE,) ——— —

r Bf r Br@

Now assume that H„=H, =O and that H„ is
independent of p. These reduce to

BH„
ikE„=—(a)

vi,(r, p) =(Jms/a)(ki, r) cos (msp/a), (6'9)

and the allowed values of ki, will be determined b

by requiring the radial derivative of the Bessel
function to vanish at r=R. This calls for a
knowledge of the roots 7 ~, „in an obvious way.

Exercise: If the cross section is a sector of
opening n bounded by two circular radii,
A &r (8, show that the appropriate Bessel
ji&nction for the E modes is

ikE„=O,

1 B
ikey, =——(rH„),

f Br

1 BEz0=-
B(p

'I ADOLF. II. Values of Y„,„for which J '( V ~}=0.

P = I CJ(k,r)+DN(k, r) j sin mxrp/n,

where J and X are two associated Bessel func-
tions of order ms/u Discuss th. e dependence of
the fundamental frequency on a and on A/B.

p=1
2
3
4

3.832
7.016

10.173
13.323

1.840
5.335
8.535

11.705
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(e)
BE„BE,—ikII =-
Bs Bf

The form of this suggests the convenience of
introducing the quantity

1 BE„
0= ——

f

Of these (d) and (f) are satisfied because by (c)
and (a), F, and 2, are expressed in terms of H„
which is independent of cp. A differential equation
for II~ is obtained from (e), by the use of (a)
and (c):

O'H„1 BH„B'H~ f' 1 )
+( k~- —~H„=0. (7i3)

Bf' f Bf Bz' E f')

The boundary condition on H is satisfied without
restriction on solutions of 7'3, but these must
be restricted to fit the boundary conditions on E.
From (a) and (c) of (7'2) we have

E,=E,xo+Z, qo ——(i/kr)poXgrad (rH„). (7'4)

Suppose the boundary of the figure of revolution
is the curve f(r, s) =0, so the normal to it is
given by

n=grad f
The boundary condition on E requires that E
have a vanishing tangential component, that is
n&E, ='0 which gives the boundary condition
in the form

Bf8 Bf8
(rII,)+——(rII. „)=0 on f—(r, s) =0. (7'5)

Bf Bf B2 Bs

X

X X

(7'6)

as the basic scalar function from which solutions
are to be derived. The differential equation for
u follows from (7'3):

1 Bu B2u
———+ +k'u =0,

Bf f Bf Bs

BQ
u=0 at r=0, —=0 at f(r, s) =0. (7i7)

As a simple example let us consider a length
0&a(C of coaxial cable bounded by the radii
f=A and f =B.Write

u(r, s) = v(r) iv(s);

then (7'7) is satisfied if

v" —(1/r)v'+k. 'v =0, iv" +k, 'u =0,
k' =k.'+kg'. (7'8)

The equation for m together with its boundary
conditions is satisfied by writing

m(s) =cos kqs with ks n~/C. ——

The simplest solution for v is obtained by
putting @=1 and k, =0. The lowest frequency
mode is that corresponding to this solution for v,

and to n=0. Its frequency is zero and it corre-
sponds to a steady magnetic field, unaccompanied
by an electric field due to circulating steady
current as shown in Fig. 5'. The first mode of
non-zero frequency corresponds to n = 1. Its
frequency is independent of the radii A and 8
and is such that the length C is half a wave-
length. The series of higher modes going with
v=1 are the harmonic series such that C=nX/2.

The equation for v(r) for k, /0 is satisfied by

v(r) = rZi(k. r),

in which Zi is written for the general Bessel
function of the first order. We have

Zi(x) =aJi(x) +b¹(x). '

(7'10)

Fir. 5'. Sketch of currents ynd magnetic field in zero
frequency mode of coaxial cable resonator.

The ratio a: b and the parameter k now have
to be chosen in such a way that v'(r) =0 at
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r=A and r=B. In this way the frequencies of
the higher modes can be calculated if necessary. '
This boundary value problem defines a sequence
of values of k each of which can be associated
with any value of n to give a mode of symmetric
type.

Quarter Wav-e Coaxial Resonator

u, =acosks. (0&s(C) (7'11)

A form which has found much practical
application is the quarter-wave coaxial resonator.
It is generated by revolving the figure shown in

Fig. 6' about the s axis. It is not susceptible of
exact calculation. An approximate treatment
runs as follows. ' Consider separately the three
regions I, II, and III. In I, especially near s=o
we expect the fields to be quite accurately
represented by the coaxial cable solution, so we
as™ 1

FIG. 6. Sketch of cross section of quarter-wave
coaxial resonator.

in the region II; hence the line integral from
s=C to s=D on r=A is ib(D C—). —

Along the line s= C, from r=A to r=B, we
have approximately

E, = —(ia/r) sin kC,
Here k = k3 since k =0. By analogy with lumped-
constant circuit ideas we might expect a voltage
node at the end s = C or D, provided the capacity
formed by the region II is great enough to
store the charge carried by the current in the
walls without developing an appreciable voltage
across the region II. That would call for infinite
capacity in II: since it is actually finite there
will actually be voltage across II.

In the region II we assume

so the line integral of F- on this path is

ia sin kC l—n (8/A).

If we neglect the Aux which goes through the
region III then the line integral of I-' around III
must vanish and therefore

a sin kC In (8/A) =b(D —C). (7'13)

uir brJi(kr)——
Ke must also have continuity of the magnetic

field in the two regions, so equating them at the
point r =A, s = C we have

t7I&2~

(k= k, since here k3=0.) In most practical cases
8 is small compared with a quarter wave-length
so kB«x/2. In this region xJi(x) is practically
equal to the first term in its power series x'/2
so to a good approximation

urr =bkr'/2,

which represents a uniform axial field

' This problem is treated in explicit detail by Borgnis,
Zeits. f. Hochfrequenztechnik 55, 4' (1,940).' A more accurate analysis of this problem was given
by W. W. Hansen, J. App. Phys. 10, 38 (1939). Some
interesting experimental results are given by Barrow and
Mieher, Proc. I. R. E. 2S, 184 (194O).

a cos kC=bkA'/2. (7'14)

Lacking a more accurate analysis we might just
as well equate the magnetic fields at any other
point in III. This point is simply preferred
because ul and N» are probably better approxi-
mations to the true function there than deeper
in region III.

Dividing (7'13) by (7'l4) we get

2(D —C)/A'
tan kC=

k ln 8/A
(7'15)

which determines the value of k in terms of the
given dimensions.

The preceding analysis is quite crude, and
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should leave the reader dissatisfied. Nevertheless,
it corresponds to the result obtained by applying
the standard engineering form of transmission

line theory, as will be shown in Section 8'. This
mode of derivation has the merit that it shows

more vividly what approximations have been

niadc. The ratio of a to b can be obtained from

either (7'13) or (7'14), after k has been calculated.

b sin kC ln 8/A 2 cos kC
(7'16)

i7'ik+ k'ik =0, (7'17)

then it is easily verified that if C is any constant
vector, the vector,

A=CXgrad f (7'18)

satisfies the vector wave equation

curl curl A=A'A

as does also 8=curl A.

(7'19)

The foregoing theory will now be illustrated

by a numerical design example. Suppose the
frequency is l50 mc so the wave-length is 200 cm.
Suppose we wish to make a resonator with

D —C= 3 inches, A = 6 inches, B= 10 inches,
what is the proper value of C? From (7'15),
since k = 1/12.5 in. ',

tan AC=4.07 so kC= 76 2'

and therefore the proper value of C is

C= (76.2/90) (X/4) = 16.6 inches.

Therefore the resonator in this case is about
15 percent shorter than a quarter wave-length.
We find from (7'16)

b/a =0 0647.
Hence, if the excitation is such that the magnetic
field amplitude is 1 gauss in the corner, z=0,
r =A, the amplitude of the electric field on the
axis in region II is 0 statvolts with a=15.26
(since 2 =15.26 cm); therefore b=0.986 so the
line integral of electric vector from z=C to
z=D on r =0 is 2260 volts.

Another method of deriving the symmetric
modes of a figure of revolution is sometimes
useful. If P is any function satisfying the scalar
wave equation

Suppose that we use particular solutions of
(7'17) that are independent of e and that we

choose for C the unit vector k in the direction
of the axis of revolution. Then A is entirely in

the direction of yo and so is suitable to represent
the magnetic field in the symmetric modes of a
figure of revolution. Meriting

8
H=kXgrad P=—p,

Br
(7'20)

we have for the associated electric field

p = J»(ar) e'~' a2+ p' =k'-;

hence a general solution will be

~+I'

$(ey r) = g(P) J»(k' P'r) le'e*d—P

where g(p) is an arbitrary function. Since
J»'(x) = —Ji(x),

~+»
u = r =r k(P) Ji(k' P'r) le——'~'dP

Br

where k(p) is an arbitrary function.

8'. Skin EBect

In preparation for developing the theory of
losses in a cavity resonator due to the finite
conductivity of the metal walls let us consider
the propagation of an electromagnetic wave in a
good conductor. From the field equations (1'1)
for a medium with constants e, p, , and p we can
find the wave equations that are satisfied by
the space dependence of the field quantities
whose time dependence is represented by the
factor e'"' to be

curl curl E =k'u(» —2iP /p)E,

curl curl H = k»u(» —2iX/p)H,
(8'1)

»l'ik 1 8 (»lP)
ikE=curl H= — r»+ ——

(
r ~Q. (7i21)

»lz»7r r itr (»7r)

The boundary conditions, when we compare
with (7'5), are that the normal derivative of
u=r(8$/Br) be zero on the boundary and that
u=0 at r=0 The so. lutions of (7'17) that are
finite on the axis and independent of y are of
the form,
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where, as usual, k=&d/c. These equations are of
the same form as those governing propagation
in a non-conducting medium except that the
medium is characterized by a complex index of
refraction,

= ti(6 2zli/p) ~

Since for nietals p is of the order of 10 cnl lt
follows that the pure imaginary component of n-'

is very large compared to the real part. In fact
this is true even at optical frequencies. Hence we
may neglect e in comparison with X/p, which
amounts physically to neglecting the displace-
ment current relative to the conduction current,
which gives as an entirely adequate approxi-
mation to the index of refraction,

n = (tiX/p) l (1 i)— (8'3)

I he general plane wave solution thus appears
in the form

E=Eoe'"' ""'=Roe *"cos (ddt —x/ti), (8'4)

in which the quantity 5 is called the skin deptfz

and ls given by

1
t' =—(t»/t ) '*.

2'
(8'5)

Evidently the length 6 in cm, if p and X are in

cm, gives a measure of the depth of penetration
of the rapidly damped wave in the metal. For
copper the values of 8 at some representative
wave-lengths are given in Table III. At 60
cycle/sec. the value of 8 in copper is 0.85 cm.

If we have a wave propagated into a metal in
the s direction with its electric vector along the
x axis when its magnetic vector is along the
v axis so,

H„=H„oe *"cos ((ot —z/5),
- (8'6)

then the associated set of conduction currents is
obtained by calculating i=(1/4ir) curl H which
gives i„=i, =0 and

where, of course, i, is in abamp. /cm if H is in
gauss.

i, = —(H„o/4mb)e "Leos (rat z/li)—
—sin ((ot z/h) j (8'7)—

TAM, E III. Depth of penetration (5) in copper.

'A cm

1
3

10
30

100
1000

8 cm in copper

0.368X10 '
0.670X 10-'
1.22 X10 4

2.11 X10 4

3.86 X10 4

12.2 X10 4

c
pH'dS,8X» (8'9)

where the integral is extended over the whole
bounding surface and H is the tangential
magnetic vector at the surface.

Because of the finite conductivity of the
walls, the electric vector is not strictly normal
to a metal wall. From the expression for i,
evaluated at s = 0, we find

E,p
——pz, =

v2 pH„O
sin

~

cot I. (8'10—)—
4~6 & 4)

Therefore the actual tangential electric field at
the surface is small compared with the tangential
magnetic field in the ratio of VZp/4z 8.

As will be seen in later sections, the losses in
one cycle in a cavity resonator are small com-
pared to the energy stored in the resonator.
For this reason the approximation procedure by

The power instantaneously converted into
heat in unit volume is pci"-erg/cm' sec. , so the
power loss below unit area at all depths and
averaged over a cycle is

2 C)

II„p (™ m 6 pH„p
pc )

e-'"dz =—c . (8'8)
4-82 . X 8m

2
In this expression, tiH„o/8m represents magnetic
energy density at the surface (erg/cm') which
multiplied by c gives power per unit area
(erg/cm' sec.), a small fraction of which, orb/li,

represents the power per unit area that is ab-
sorbed in the walls.

In view of the extreme smallness of 8, we may
neglect the curvature of the walls in all practical
work (except very fine wires) and suppose the
actual losses in unit area of a wall to be given
by (8'8) even where the walls are curved. If this
assumption is made, the whole power loss in the
walls of a cavity resonator is given by
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which we 6rst 6nd the fields which would exist
in case of infinite conductivity and then calculate
the losses gives a very good approximation.

9'. Resonatox Losses

In radio engineering, the losses of an oscillatory
system are conventionally measured by giving
the Q value, a kind of figure of merit which is an
inverse measure of the damping. ' The quantity
Q can be defined by saying that the damping of
a free oscillation is such that the amplitude of
free oscillation contains a factor

(9'1)

so the total field energy in the oscillator during
free oscillation is

resonators varies as the square root of a linear
dimension and hence as the square root of the
wave-length of any particular resonant mode.

In practical cavity resonators in the micro-
wave region one may expect Q) 1000 and there-
fore the actually existing fields in the cavity
are only very slightly different from those
calculated on the assumption of perfect con-
ductivity of the walls. In applying (9'4) one
uses therefore the fields as calculated by assuming
perfect conductivity. This is the basis of all the
calculations of Q that have thus far been made.

As an illustrative example, consider the Q
value for the (0, m, n) mode of a rectangular
resonator of edges A, 8, and C as discussed in
Section 3'. It is easily calculated to be

which amounts to saying that

I ABC
(9'2)

8p, (m/8) '
BC+2A C

(m/8) '+ (n/C) '

(9'6)

Energy stored in oscillating system
=2K (9'3)

Energy dissipated in a cycle

(n/C) '
+2AB

(m/8)'+ (n/C)'

Using the formula of the preceding section for If the prism is square p = C this reduces to
the losses in a cavity resonator we have, therefore,

~" "~"H'dU

Q=(2/4)
~ "lldS

J

A/8
Q= (8/&)

1+2(A/8)
(9'4)

and for a cube this reduces to Q~A/3ii. For the
mode of lowest frequency X =%2A and, therefore,

Q = (X/3v2bii).

Q = 5920+X= 7040 Av,

For rough order of magnitude ideas, we observe
that since H has a looP at the surface, the mean The Q value of a copper cube filled with material
value of H on the surface will be roughly twice of unit permeability is, therefore,
the mean value in the volume, and therefore,
very roughly,

Q= U/8ii5,

where V is the volume and S the bounding area
of the resonator. Hence for a resonator whose
linear dimensions are large compared with 8 we
may expect that Q will be of the order of a
linear dimension divided by the skin depth.
Since the ratio of integrals in (9'4) has the
dimensions of length and 8 varies as gX, it
follows that the Q value of geometrically similar

so the Q value for a copper cube resonator
designed for X =10 cm is Q = 18,800.

Next we consider how the losses affect the
equations of motion of the resonatorcoordinates
J (&) introduced in Section O'. When we take
account of the losses it becomes necessary to
introduce a damping term in (4'10). It is easily
verified that the damping is correctly repre-
sented if we replace (4'10) by

' Compare Terman, Radio Engineering (McGraw-Hill,
New York, 1937), p. 37 et seg. and chapter 3. J'„+( ./Q. )g.+ -J.=4 1.(i). (9'7)



Multiplying this through by (V/4sc') J„we find
t.he equation for W„which replaces (4'l4):

IV„= VI.(t)J.(t) —( V~„/4~c&Q. )J„'. (9i8)

The second term on the right, which represents
thc losses, is essentially negative, since it con-
tains the square of thc speed of the resonator
coordinate.

In the steady state in which J„(t) executes a
harmonic time variation, the mean rate of
conversion of energy into heat due to losses in
thc cavity walls is, therefore,

P = (Vo),/4 scQ,)(J,'/2) = (2n' Vc/X 'Q„)(J,'/2),

in which J stands for the amplitude of the
sinusoidal variation of J.(t). If P is to be ex-
pressed in watts and J in amperes, then we need
to write c=30 ohms. The coelficient of J„'/2 in

this expression will be called the resonator
resistance R, of the ath mode. Hence we have,

thc shunt resistance and is dependent not only
i)n thc resonator and thc particular mode of
oscillation in question, but also on the particular
path in the resonator along which V is calcu-
lated. Calling the shunt resistance S., we have

V„'-/2S„= (60m' V/Q„X„') (J,'-/2),

and, therefore,

I
g

A. «I
S„=60Q„X.— (9'11)

IA„«
i480s' I ~

On substituting for Q its expression by (9'4)
and using the vector formula in the equation
just preceding (4'12) we may write the following
expression for thc shunt resistance:

R.=60s' V/Q, X,' ohms. (9'9) (9'12)

Thus, for a cube resonator of edge A with
copper walls, we have for the (011) mode,
R, =0.0112 ohms.

Shunt Resistance

Another measure of the losses which is often
more convenient, is called the shunt resistance
of the resonator. In some calculations of the
theory of electronic oscillator tubes involving
cavity resonators we like to specify the ampli-
tude, not by J, but by the magnitude of the
line integral in volts of the electric vector along
some particular path through the resonator.
We have

E= —(1/c)J,A„

so the amplitude of the electric vector is k,J,A„
statvolt/crn if J, is in abamperes or 30k,J,A, if
E is in volt/cm and J, is in amperes, so the line
integral of E in volts is

tH'dS
J

By taking the path to be from a=0 to a=A on
the line x=A/2, y=A/2, one readily finds, for
the (110) mode of a copper cube of edge A, the
shunt resistance to be S=105600A"' ohms where
A is in cm.

E(00p) Modes of Circular Cylinder

It is, of course, not necessary nor even desirable
to refer the calculation back to normalized
vector potentials when one is seeking explicit
results for a particular mode. To illustrate, let
us derive the formulas for the E(00p) modes of
a circular cylinder.

From (6') we know that

E,=A Jo(kr) statvolt/cm,

where kR=XO~, the pth root of Jo(x) =0. Hence
the statvoltage amplitude for a path along the
axis from s=0 to s= C is

V=A C statvolt.

H =A Ji(kr) $0 gauss.

We can now calculate the resistance which From (5'8), the magnetic field, except for the
when shunted across a voltage of this magnitude time phase which does not enter this calculation,
will dissipate power at the same rate as the
actual dissipation in the resonator. This is called
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From (8'9) the power loss on each end is

Ps =A'(irc8ii/4X) Ji2(kr)rdr

R'
= A'-(irc&p/4l~) —Ji'(Xo,),

2

and the power loss on the cylindrical wall is

Pc A'(7r——cbp/4X)RC Ji2(XO„),

so the total power loss is

(Pc+2Pz) =A'(eche/4X) (R'+RC) Ji'(Xo,).

The energy stored is

W=&t " "H/S dV=(A/8)CR J, (X,„);

therefore from the definition of Q in (9'3) we have

Comparing the formula for S„with the one for

Q~ we find that they are simply related,

S„=120(C/R) [1/XO„Ji-"(Xo„)]Q~ ohm. (9'15)

In making numerical applications of (9'14)
Table IV is useful. Here Xp& is the pth root of
Jp(x) =0 as in Section 6'.

Coaxial Cable 3fodes

Another example that is important in practice
is the circular coaxial cable of inner radius r=a
and outer radius r = b, terminated by z = 0 and
z= C. The fields have been discussed in (5') and
are given by (5'25). From (5'25), inserting the
dependence on s' which is not explicitly written
there, we have,

H = (A/r) cos nzz/C(o gauss.

C
Qp= (2~R/pp)'- —(Xo )'

R+C

By applying (8'9) we find the losses in either

(9113) end are
Pz=A'(ncbp/4)) log b/a,

It is interesting to note the enect of varying
C with a fixed value of R. This does not affect
the frequencies of the modes, which depend
solely on R. For C small compared to R, the Q
value is small because the end losses remain as
a "fixed charge" although there is very little
volume for stored energy. As the height C is
increased, Q increases, but approaches a limit as
C becomes large compared to R for then the
gain in extra field energy stored is offset by the
corresponding increase in losses in the extra
length of side wall.

The shunt resistance S„ is now obtained by
equating V'/2S„with V in volts to the total
power loss expressed in watts. This gives,

S„=120(2sR/ pp) l

and the losses on the inner and outer walls are,
respectively.

Pr=A (ircbii/4X)C/2a, Pa=A (zcbp/4X)C/2b

Hence the total power loss is

(Pi+P p+2Pz) =A '(s cbp/4), )

X (2 log b/a+ C/2a+ C/2b).

The energy stored is

W = (A '/8) C log b/a,

and, therefore, from the definition of Q we have

2ir log b/a
Q«= (2C/pp)'* Qn. (9'16)

4 log b/a+ C/a+ C/b

X— — ohm. (9'14)
R'+RC (Xo„)&Ji'(Xo„)

TABLE IV. Values useful in calculating the
shunt resistance S~.

The most natural path with respect to which
we may define the shunt resistance is from r=a
to r = b in a plane of constant s for which
sin nsz/C= ~1, that is, at a voltage loop. On

any such path
Xnr

2.4048
5.5207
8.6537

1).7915
14.9309

Jt{Xop)

+0.5191
.3403

+ .2705
.2325

+ .2065

QXopJ tz(Xo~)

0.417
.272
.216
.186
.165

V=A log b/a statvolt.

Calculating the shunt resistance S„ from this
expression and that for the power loss, we get,
in ohms,



AI I CRO —KA Vl. ICA I3IO

2(log b/a)' 1
5„=120(2C/pp) & . (9'17)

4 log b/a+ C/a+ C/b Qn

Hence the relation between 5 and Q which is
the allalogue of (9 15) ls

S.=(120Q„/ urn)log b/a ohms. (9'18)

f~'xerci se: Consider a resonator for which
C=150 cm, and hence the wave-length of the
lowest resonant frequency is 3 meters. Suppose
a=30 cm and b=45 cm, what power will be
required in a copper resonator to get a voltage
amplitude, at a voltage loop, of one million
volts& Answer: 1720 kilowatts.

type and H type, corresponding to the
classification already introduced in (5').

For the 8 type modes II&=0. The fourth of
(10'3) is satisfied if we write,

eiE2 ——(8P/Bx2), e3Ei (BP/——Bxa).

If we write P=(8 U/Bx )ithen the second and
third of (10'3) give

IIi (ik/e——3) (8 U/Bx3), FI3 —(ik/——e,) (8 U/8x:)

The first and fifth of (10'3) give two diRerent
expressions for Ej in terms of U. The condition
that these be consistent leads to an equation
for U:

ds'- =ei2dx '+e2'dx2'+ea"-dx ' (10'1)

J or exan~ple, for spherical polar coordinates we
have

and hence

2 dy2+r2dg2+y2 sitq2 ++2 (10'2)

Xg ea=r sin 0.

10'. Spherical Resonators

The theory of the modes of oscillation of a
spherical cavity resonator may be developed as
a special case of a method which is capable of
inore general application. Use an orthogonal
curvilinear coordinate system x~, x2, x3 such
that the line element is

82U 1 ( 8 e3 BU 8 e, BU)
+ i

— + — i+k'-U=O,
Bxi' e2e3 k&x.. ei &xi &x3 e3 I3x3~ (10'4)

the most convenient expression for J' j in terms
of Ubeing

Ei O' U+ (O'——U/Bx &-') .

With these choices the sixth of (10'3) is satisfied
identically.

In a similar way the II type modes are give»
by putting B&=0.This leads to a similar scheme
of equations for deriving field components from
a scalar function U which satisfies the same wave
equation (10'4). To summarize, the equations
for the field components in terms of U are:

In such a general curvilinear coordinate system
the curl equations of (5'1) become:

ike&e3Ei ——(8/Bx2) (e&H3) —(8/Bx&) (e2H2),

ike, eiEi (8/Bx3) (eiH——i) —(8/Bxi) (esII3),

ikeie, E,= (aj axi) (e.H, ) —(&/&x2) (e,IIi),
(10'3)

ikeie3FI, = (8/B—x2) (e3E3) —(8/Bxs) (e2E2),

ikeie, II2 (a/Bx—a) (eiEi) ———(8/8xi) (e3E3),

ikeie2H~ —(8/Bxi) (e—i—E.) —(8/Bx, ) (eiEi).

Suppose further that the choice of x~ is such
that e~ ——1, as is the case with ordinary spherical
polar coordinates, and, moreover, that the
coordinate system is such that e2/ea is inde-
pendent of x~. We find now that the modes fall
into two types, each derivable from a scalar
~vavc function. The two modes will be called

II kyrie:

g2U
E g

——O'U+, IIg =0,
Bxy

1 O'U ik BU
II2 ———

es BX3

1 O'U ik BU
jV, — II3———

83 Bxy&X3 82 BX.

Eg ——0,
O'U

JIg ——O' U+
Bxi

ik BU 1 O'U
E2 = —— H2 ——

e3 BX~ 82 BxyBX2

ik 8U 1 O'U
K~=+—

82 i9X2 83 Bxyl9X3

(10'5)

(10'6)
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Now we may specialize this general method
to the case of a sphere, using spherical polar
coordinates as in (10'2). Equation (10'4) for U

becomes,

O'U 1|r 1 8 ( BU)
+—

I
—

I
sin8

8r"- r'E sin8 88 ( 88)

1 O'-' U)
I+k U=o.

sln2 8 Brp2 ~

The general solution of this is of the form

(d/dx)s (x) =[ns, g
—(n+1)s„+g)/(2n+1),

(10'11)
(d/dx)x"+'s. =x"+'s„~

(d/dx) x—"s.= —x-"s„+g.

It is necessary to specialize to the particular
Bessel function which is finite at r=0. These
are denoted by j&(x). The functions j&x are given

in Table V.
The spherical harmonics will be used in the

following notation:

where

U=g(r) Q~(8 cp)

where

O(8, s) = O(l, m)e'"'&, (10'12)

0'0

+l(l+1)(-)=0 (10'8) ) 0

1 8 ( 80$
——

]
sin8 I+

sin 888( 88) sin'88''
(1—m)! l

O(l m) =(—1)" (2l+1)
(1+m)!

d'-'R ! l(l+1) iiz=o.
)

(10'9)

&sin'" 8 Pi(cos 8)
d(cos 8)

, O(l, —m) = +same expression

'I'ABLL V. Values of j&{x}.

sin x/x
sin. x/x' —cos x/x
(3/x3 —1/x) sin x—(3/x2} cos x
() 5/x4 —6/x~) sin x—(15/xI —1/x} cos x

in which P&(cos 8) is the 1th Legendre polynomial.
A list of explicit expressions for some of the

spherical harmonics is given below:

O(0, 0) =1,

O(1, 0) = &3 cos 8,

where
R(r) = (kr)si(kr),

si(x) = (w/2x) &Z)~)(x).

(10'10)

For any spherical Bessel function we have,

s„g+s„+g ——(2n+ 1/x) s„,

The quantity l assumes integral values for
solutions of (10'8) that are finite and single-

valued in all directions. Any solution of (10'8)
is known as a spherical harmonic and a great
deal of information can be found about them in

books on harmonic analysis. The solutions of
(10'9) will be called spherical Bessel functions,
from a terminology introduced by Morse.

O(2, 0) = Q5/2(3 cos'-8—1),

O(3, 0) = QT/2(2 cos' 8 —3 cos 8 sin' 8).

The coefficients appearing here are chosen to
normalize in such a way that

") I
OI' sin 8d8ds =4~,

the integral extending over all directions in space.
In calculations involving the spherical har-

monics the following properties of them are
useful,
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—O(l, m) =p[(l —m) (i+m+1)]&O(l, m+1) ——,'[(l+m) (l —m+1) ]&O(l, m —1),
88

-(l+1 —m) (i+1+m)- ~ (l —m) (l+m)
cos 8 O(l, m) = O(l+1, m) +O(l —1, m)

(2l+1)(2l+3) (2l —1)(2l+1)
(10'13)

(i+m+1)(i+m+2) l

sin 8 O(l, m) = —O(l+1, m+1)
(2l+ 1)(2l+ 3)

= O(l+1, m —1)—O(l —1, m —1).

(l —m) (l —m —1)
+O(l —1, m+1)

(2l —1)(2l+ 1)

I'he final result is that the 8 and II modes of
the sphere may be derived from the following
expression for U:

ik
E,= krj—z(kr) O(—l, m) e""",

r 88
(10'17)

U=kr jz(kr)O(l, m)s*"'&, (10'l4)
k'

H„=—l(l+1) U,

E,= (k'/r') l(1+1)U,

k
Ezz ——— [krj z(kr)] —O(l, m) e'"',

r 8(kr) 88

ikm
[krjz(kr)]O(l, m)e""&,

r sin 8 8(kr)

JI„=0,

—km
Hg ———— U,

rsin 8

zk 8
H„= ——[krjz(kr)]—O(l, m)e'"'.

r 88

(10'l5)

The boundary conditions require that Ez= 8„
=0 at r =R, if R is the radius of the sphere.
Hcncc for the 8 type modes we must have

kR=S„), (10'16)

with ~m~ ~&1, and l=0, 1, 2, 3
The modes of electric ty pe are given by applying

10'5:

kR= T„E, (10'18)

where T z is a root of the equation jz(x) =0.
The modes will be designated by the notation

E(rz, l, m) and H(n, l, m) Inspecti. on of (10'15)
and (10'17) shows that there is no solution
corresponding to 3=0, m=0, hence the least
value of l is unity. Since the roots 5„& and T„&
are independent of m, it follows that there are
(2l+1) modes of either E or H type going with
a pa, rticular (rz, , l) all of which have the same
frequency. This degeneracy arises from the
spherical symmetry.

The values of the roots for the fundamental
modes of each type are

k
H6 [krj——z(k—r)]—O(l, m)e'"'&,

r 8(kr) 88

ikm
H, = [krj z(kr—)]O(l, m)e""'

r sin 8 8(kr)

For the modes of magnetic type the boundary
conditions require that

5ij ——2.74, Tgg ——4.49. (10'19)
where S„l is a root of the equation

(d)dx)(xj z(x)) =0.

Similarly for modes of magnetic type:

E,.=O,

Ezz= (kmzzr sin 8) U,

Therefore, the resonant wave-length for the
E(11) modes is 2.29R.

The spherical harmonics introduced in (10'12)
are appropriate for problems involving the
complete sphere for they are finite at 8=0 and
8=x, the singular points of (10'8). Spherical
coordinates may also be used to discuss the 6elds
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in a conical resonator bounded by 8= Hp as well

as r =R, or in a region consisting of a sphere
with two conical dimples cut out of it, that is
the region 0 &r &R and Hp & 8 & 8~. To deal with
such cases it is necessary to introduce more
general solutions of (10'8) which have singu-
larities at the excluded poles 0 or x for 8.

U= log tan (8/2) (sin kr/kr) (10'20)

which would not be admissible for a complete
sphere because of its logarithmic singularities.
Since this corresponds to an l=0 solution, it
follows that E„=O, as well as H„=O. Applying
(10'15) we find that the only non-vanishing
held components are

Ep =k'(1/sin 8) (cos kr)/kr,

H~= —ik'(1/sin 8)(sin kr)/kr.
(10'21)

Since E„and E~ vanish everywhere the only
boundary condition to be imposed is that Bg =0
at r =R, which requires that

kR = (n+-', )

independently of the location of the angular
boundaries. The lowest mode is that for which
n=0 and for this the wave-length is exactly
equal to four times the radius of the sphere.

For this solution Eq becomes inhnite as r
approaches zero, but in such a way that the line
integral of 8 along a path of constant r from
one dimple to the other is 6nite. The solution is
therefore appropriate for representation of the
fields which exist when the apices of the two
conical dimples are not quite in electrical
contact.

Exercises: 1. Show that the Q value for this
mode of the dimpled spherical resonator is

)4Rq &

( pg ) log tan 8i/2 —log tan Hp/2

log tan Hi/2 —log tan Hp/2

+I(csc Hi+csc Hp)

W. %'. Hansen and R. D. Richtmyer, J. App. Phys.
10, 189 (1939).

SPhere with Conica/ DimPles

As a specihc example consider the fundamental
electric mode for the sphere with conical dimples. '
For this the appropriate U function is

in which
p~" sin' xI= dx =0.825.
p X

Show that if 8i ——~ —8p, the Q value as a function
of Hp has a maximum at about Hp=34'.

2 ~ Show that the shunt resistance for this
mode, with voltage measured from apex to apex
1S

(4R) i lo ' (tan 8,/2/tan 8,/2)

E pp) tan Hi/2
log +I(csc Hi+csc Hp)

tan Hp/2

Show that for 8~ = m —Hp, the shunt resistance as
a function of 8p has a maximum at about 9'.

CHAPTER II. TRANSMISSION LINES'

In low frequency radio work, power is trans-
mitted from one place to another by transmission
lines consisting of two conductors, such as parallel
wire lines, or coaxial cable. Such lines also play
a great role in micro-wave radio. In addition it
becomes practical at the shorter wave-lengths to
transmit power through hollow pipes. In the
literature it has been customary to call two-
conductor lines transmission lines and to call
hollow pipes wave guides. This chapter deals with
two-conductor lines while the properties of hollow
wave guides will be developed in Chapter III.

1'. Two-Conductor Transmission Lines

The commonest form of two-conductor trans-
mission line is the coaxial cable, consisting of an
inner circular conductor of radius r =a, and an
outer circular conductor of radius r = b. The
theory is very closely related to that of coaxial
cavity resonators discussed in (5') under the
subhead, double-walled resonators.

Let 2' be the coordinate along the length of the
line and suppose any section by a plane a=con-
stant, gives a region bounded by two curves C~

and C~, the latter enclosing the former, as in

Fig. 4'.

' The general literature on electrical transmission lines
is very extensive since this topic is important for long
power transmission lines as well as in telegraphy and
telephony. In this chapter a brief account of the subject
is given from the point of view of micro-wave applications.
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We seek solutions of (5'1) in which the de-

pendence on s is given by a factor exp ( i—k3s),
which when combined with the time factor e' ',
represents a progressive wave moving in the +z
direction. The phase velocity v~ is given by

s~ =Cd/k3.

If one writes k=cd/c and assumes F,=H. =O,
then Eqs. (5'1) are found to give the following

for the factors which represent the dependence
of the field components on x and y,

0 = (BH„/Bx) —(BH./By),

and for a wave propagated in the —z direction,

E,= —grad tc(x, y) cos (cdt+ks),
(1'5)I,=+kXgrad u(x, y) cos (cdt+kz).

Characteristic Im pedance

As remarked just before Eq. (5'28), the solu-

tion in which (x, y) have the period 2m in rc,

corresponds to a current amplitude of ~ abampere
in the inner and outer conductors, and to a stat-
voltage amplitude (u2 —u&) in the line integral of
E from one conductor to the other in a plane of
constant s. Hence the ratio of voltage amplitude
to current amplitude in amperes is

—kH. =k)E„, —kH„= —k3E„
Z= 60(u2 —u~) ohm. (1'6)

0 = (BE'„/Bx) —(BF./By)

The s component of these shows that E or H
may be expressed as the gradient of a scalar
function, n(x, y). Write

E,= —grad u(x, y),

—kH, = knit Xgrad u(x, y),
(1'2)

which are the transmission line analogues of
(5'19). These equations imply that k~ ——&k,
hence, the phase velocity of the waves is ~c.
The s component of the equation for curl H
requires that u(x, y) satisfy Laplace's equation
in the cross section

V"u(x, y) = 0. (1'3)

Since this is the same as (5'20) with the same
boundary conditions, namely u =constant on Cj
and C2 it follows that the discussion following
(5'20) is applicable here.

Suppose N(x, y) is a solution of the boundary
value problem such that the coordinates (x, y)
are periodic functions with period 2m in the con-

jugate harmonic function s(x, y), as in (5'26).
Let the values of zc corresponding to the inner
and outer conductors be I& and N2, respectively.
Then for a wave propagated in the +z direction
we have

Z = (300 V/10Ci V) = 30/Ci ohms. (1'7)

If the space between the conductors is filled with
a medium whose constants are (e, tc) it is easy
to see that the input impedance of the line is

(1'8)Z= (tc/e)' 30/Cq ohm,

in which C& is the geometrical capacity per unit
length in the absence of the medium.

For circular coaxial cable, the capacity per unit
length isE.= —grad u(x, y) cos (cdt ks), —

(1'4)
H, = —IrXgrad tt(x, y) cos (cdt ks), — (1'9)Cc ——1/(2 log b/a)

This quantity is called the characteristic im-

pedance, or surge impedance of the transmission
line. The surge impedance of the line, as thus
defined, is therefore the same as the impedance
of the double-walled cylindrical cavity resonator
as introduced in Section 5'.

Another way of looking at the surge impedance
may help to bring out more clearly its physical
significance. Let Cj be the capacity per unit
length of the condenser formed by the two con-
ductors of the line. Suppose one of them is at
potential 0 and the other at Vstatvolt. Then the
charge per unit length is C~ V e.s.u. /cm. If now

the line is to be fed in such a way as to set up on
it a wave travelling from left to right with speed
c, then at the input end one must supply current
which will keep the charge on each conductor at
its requisite amount. This is a current cCIV
e.s.u. /sec. or C~V abamp. Hence the input im-

pedance in ohms, the ratio of voltage to current
in amperes, is
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so
C&=1/(4 cosh ' d/2a)

Z= (p/e)& 120 cosh ' d/2a. (1'12)

Another example is the parallel plate transmis-
sion line, made of two plates whose width is b,

separated by a distance d which is small com-

pared with the width. For such a line

Ci ——d/4s b so Z = (p/e): 120' d/b. (1'13)

Exercise: What separation between the sur-
faces of the wires of a parallel wire transmission
line is required to make the surge impedance of
the line equal to 73 ohms& Answer: About 19
percent of the diameter of a wire.

%hat should be the ratio of the radii of a
coaxial cable in order to give a surge impedance
of 73 ohms? Answer: b/a = 3.36.

(The point of these questions is that the radi-
ation resistance of a half-wave dipole is approxi-
mately 73 ohms. )

Transrfrission Line Bquafions

AVe have developed the theory of transmission
lines from the point of view of the field theory.

and, therefore, the surge impedance of such a
transmission line is

Z= (p/c) & 60 log b/u. (1'10)

Likewise for coaxial confocal elliptic cylinders of
focal length f and inner and outer semi-major
axes a and b, as in (5'27), the surge impedance is

Z= (p/e)&60Lcosh ' (b/f) —cosh ' (a/f)] (1'11)

Transmission lines in which one conductor
completely surrounds the other are to be pre-
ferred to "open" lines like a pair of parallel wires,
because they are self-shielding and do not
interact with nearby conductors. The theory
developed in this section is, however, equally
applicable to open lines in which the curves C~

and C2, which bound the conductors, lie external
to each other. The result in (1'8) is applicable in

this case as well, it being supposed that the line

is "balanced to ground, " that is, that the poten-
tial of C2 is as much negative with respect to
distant points as C~ is positive.

An important special case is the pair of round
wires each of radius a, whose center-to-center
distance is d, for which

I„,R

FrG. 1'. Equivalent lumped-constant circuit of a
transmission line.

In the engineering literature' the subject is
usually approached as an extension of the theory
of networks having lumped constants. This
method will now be brieHy presented in order to
compare it with what has gone before. (See Fig.
12 )

The line is regarded as equivalent to the
limiting case of a circuit of the type shown, in

which the meshes are assigned smaller parameters
and more meshes are put in per unit length in

such a way that, for example, the inductance per
mesh multiplied by the number of meshes per
unit length approaches a definite limit L, the
inductance per unit length. A similar situation
exists for the resistance R, the conductance G

and the capacitance C per unit length.
If V(z, t) is the potential difference (volts) of

the upper line with respect to a point on the
lower at the same z, and if I(z, t) is the current
(amperes) flowing toward the right in the upper
line and toward the left in the lower line, then
we must have

(8 V/Bz) = RI L(8I/B—t), —(1'14)

where R and I, are resistance (ohms) and in-

ductance (henries) per unit length. Similarly if
G and C are conductance (mhos) and capacitance
(farads) per unit length then

(BI/Bz) = —G U —C(8 V/Bt) . (1'13)

These two equations form the basis of the circuit
theory approach to transmission line theory. The
6eld theory treatment given in the first part of
this section corresponds to the ideal case in

which R and G are negligible.

1' For a good elementary introduction see Everitt,
Comnzun~ation Engineering (McGraw-Hill, New York,
1937), chapters 4 and 5. Also Guillemin, Comrnlnkation
¹Imorks (John Wiley, New York, 1935), Uol. 2. Some
important recent papers are: Nergaard, RCA Rev. 3, 156
{1938);Nergaard and Salzberg, Proc. I. R. E. 21, 579,
(1939); Reukema, Elec. En g. 55, 1002 (1937); King,
Proc. I. 8,. E. 23, 885 (1935); Mason and Sykes, Bell
Sys. Tech. J. 16, 275 (1938).
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The line integral is over the path just described;
the surface integral is on a plane of constant z

bounded by this path. The displacement current
»iakes no contribution to this line integral
because it is everywhere normal to the conductor.
Hence the total current I(s, t) in a conductor is

I(s, t) =(1/4ir) lH ds, (1'16)

Before going on to discuss solutions of (1'l4)
and (1"-15) it is desirable to connect their deriva-
tion with the field theory. In the first place we

speak of "potential difference" between the two
lines. Yet we know that a rapidly-varying electric
field is not derivable from a scalar potential. AJ'e

can remove this ambiguity by agreeing that
V(s, i) means the line integral of E(x, y, s, L) on
a path from one line to the other, in a plane of
constant z. Since we have seen that in such a
plane the E, is derivable from a scalar potential
(1'-2) there is no need further to specify the path
i» the plane of constant z.

The connection of "current" with the field

quantities is to be understood as follows. Ke take
the linc integral of H around a closed path sur-
rounding either line in a plane of censtant z and
very close to one of the conductors. From the
equation curl H =4iri+ (1/c) D we have

fH ds= ~ curl H dS=4ir i dS.
~J

If J is in statvolts and the energy is in ergs, then
C is a pure number. It can be shown that
LC= j. at frequencies such that the magnetic
flux in the conductors is negligible. The resistance
per unit length has to be defined with due regard
to the skin effect and is the sum of the resistance
per unit length in each of the two lines. The con-
ductance per unit length arises from the dis-
sipative characteristic of the dielectric as dis-
cussed further in Section 5'-.

Uei (~ t—kz) J ge i(co t—kz) (1"-17)

Substituted in (1"-14) and (1'15) this gi~es for the
voltage and current amplitudes

ik V= (R+i(aL)I, ikI= (G+icoC) V. (1'l8)

This pair of equations leads to non-vanishing
values of U and J only if the propagation con-
stant k have the value

fr,
' = uP (L iR/cv) ( C— iG/(o)—
= —(R+i cdL) (G+i(u C)

(1-'19)

In case the line is without loss, so that R =0 and
G=O, this reduces to

Uoltage and Current Distribution

KVe look now for a solution of (1'14) and (1"15)
in which the dependence of U and I on position
is that associated with progressive simple har-
monic waves, hence,

fr =a)(LC)&, (1-"20)

u.herc J is in abamperes if H is in gauss.
As to inductance per unit length, that is to be

understood as follaws. The spatial distribution
of magnetic Field in the space between the con-
ductors is the same for the high frequency case
as it is for the direct current. The magnetic field

energy stored between z and z+dz can be re-
garded as J J' J'(H'/8ir)dv in the space between
these planes. Equating this to (Lds) I2/2 we
obtain a suitable precise definition of L, , the
inductance per unit length. If I is in abamperes
and the energy is in ergs then J- is a pure number.

In the same way the capacitance per unit
length is related to the electric Field energy
stared between the planes z and z+dz by the
relation,

(Cds) V'/2 = j/)~) (8'-/8ir)dv.

and the waves are propagated v ithout attenu-
ation in either direction and with the phase
velocity 1/(LC)&. From the definitions of I. and
C it follows that this is equal to c, the velocit~
of light.

In the general case of a line with loss, Eq. (1'-19)
leads to a complex value of k which means simply
that the wave is attenuated in being propagated
along the line. In general the magnitude of the
attenuation (measured by the imaginary part of
k) depends on the frequency, and the line
introduces distortion in transmitting a signal
which is not a monochromatic wave. However,
in the special case that I.G =AC it is easily seen
that the attenuation is independent of co and the
real part of k is proportional to co, hence, the
phase velocity is the same for all frequencies.
Such a linc is galled distortionless.
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different at different points on the line. Suppose
the line characteristic impedance is Zo.

If the voltage amplitudes of the waves trav-
elling toward +s and —s are V~ and V~,

respectively, then the voltage at any point s is
the real part of

V —
( V s—iks+ V s+ikz)ski (2'&)

and the total current Bowing in the line at s is

I—($/Z )(V' s—ik* V s+iks)eiui (2'2)

lX~ote that Vj and U2 are in general complex
numbers.

At @=I., where the line is terminated in the
impedance ZI. we must have V=ZI,I so

V g
—ikL+ V g+ikI

Zo
g
—tI'I V g+ikL

—Zl, e (2'3)

0 ',
'

Z2

At the other end of the line v=0, the input
impedance Z is the ratio of U to I so

Zp( Vi+ Vp) /( Vi —V.) =Z. (2'4)

c(v~+zkL) &

FIG. 2~A. Geometrical construction for determining Zo
and kl. , given Zo and ZL,.Detailed construction for one case
is shown in the upper figure.

Further developments of the theory along
these lines are of the greatest importance in

power engineering for long-distance transmission
of electric power, and in telephony at audio- or
carrier frequencies. For that reason the theory
has had a very thorough practical development
which can be found in standard textbooks and
will not be fully developed here.

2'. Transmission Line with Load

Here U2e'~~ is the amplitude of the reHected wave
at a=J and V~e '~~ is the amplitude of the
incident wave at the load. From (2'5) we see
that V~ =0 if ZL, =Zo, that is, the rejected wave
vanishes if the load impedance matches that of
the line.

It is convenient to introduce an auxiliary
quantity i' by the defining relation

Vp/Vi= —e '&, (2'6)

in terms of which we note that (2'3) and (2-'4)

can be written

Equation (2'3) determines the ratio Vp/Vi of
reHected to incident waves. Solving for this ratio
ve have,

( Vpe'~ / Vie '~~) = (ZL, Zp)/(ZI. +Zp). —(2'5)

ZJ = Zp tanh (i' i lpL), —
Z=Zp tanh P.

Z =Zp tanh (u+ iv),
Zg ——.Zp tanh (ug+ivl),

we see that

u+iv =P and u&+iul. =f ijpL, —

Consider a transmission line terminated at
a=I by a load of arbitrary impedance ZI.. In IfIf we write
general, waves will. exist on the line which are
travelling both to and from the load. These inter-
fere with each other, producing a standing wave
system superposed on a progressive wave. In
consequence, the ratio of voltage to current is

(2"-7)
(2"-8)
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and, therefore,

u= xi and V=vi+kL.

Suppose now that on an impedance plane,
Z =8+iX, we plot the two mutually orthogonal
families of curves corresponding to u =constant
and v =constant. The load impedance Z I will

correspond to a pair of values u~, v~. From (2'9)
we see that the impedance transformation pro-
duced by putting in an electrical length kL of the
transmission line corresponds to a displacement
along the curve u =ul from the point v =v~ to
the point v =vL+kL. It is therefore of great
importance to learn more about the curves
defined by the transformation

tanh u+i tan v
Z=Z, tanh (u+iv) =Zo

1+i tanh u tan v

The curve u =0, gives Z =iZp tan v, hence, Z
sweeps out the imaginary axis as v increases from

0 to x. For u infinite we have Z =Zp for all values
of v, and the "curve" has shrunk to a point. For
v =0, we have Z =Zp tanh u which sweeps over
the part of the real axis between 0 and Zo as u

increases from 0 to infinity. For v= ~/2, we have
Z =Zo coth u which sweeps over the real axis
from infinity to Zp as u increases from 0 to
infinity Therefore the curve u =constant inter-

sects the real axis at two points, namely
(Zo tanh u, 0) and (Zo coth u, 0). The curve
u= constant is, in fact, a circle whose center is at

(Zo coth 2u, 0)

and whose radius is Zo/sinh 2u.
Similarly the curves v =constant form an

orthogonal family of circles with center at

(0, —Zo cot 2v)

and with radius equal to Zo/sin 2v.

Suppose we are given ZL and wish to determine
what kind of line, as regards the value of Zp, and
how much, given by kL„should be introduced in

order to transform to a given .input impedance Z.
In Fig. O'A, we draw the perpendicular bisector
of the line Z~. Its intersection with the real
axis will be the center of the circle u =u~ along
which the transformation proceeds as various
lengths of line of the as yet unknown Zp are
introduced. This circle will intersect the real axis
in two points, the product of whose abscissas is
equal to the square of Zp. This enables the cal-
culation of Zp after which it can be plotted on
the diagram. With Zp known we can now carry
out the construction indicated in detai1 in the
upper part of Fig. 2'A which permits us to locate
C(v') and C(vr, +kL), the centers of the circles

0.8
X
Zo

0.5

d l875

Ooeaa
Q.4

0.2

Q=aooo 0.250

-0.2

Q.4
0.4375

-0.5

O. O Oa a4 Oe Oa i.O i.2

E
&o

L4 I.S l. 20 2 X 2A

Fir. 2~8. Special plotting paper for impedance calculations with the circles,
'8 =constant, v= constant superposed on Cartesian scales for R and X.
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v =vz, and v =vt. +kI. Finally 2kI. is the angle at
Zp subtended between the lines drawn out to the
centers of the two circles.

It is evident that the frequency dependence of
Z arises jointly from any inherent frequency
dependence there may be in Zl, and the variation
of electrical length of the line due to the variation
in k. If Zz, (k) is given one may construct a series
of points giving the corresponding values of Z(k)
as a means of determining the frequency de-
pendence of line and load. In this connection it
is instructive to note that if the line is many
wave-lengths long then a small fractional change
in 0 will cause ki. to change by several times 2m.

This in itself produces a variation of several
revolutions around the Zp point on the plane
v hen connected with what is usually a rather
slow variation with k of ZL„except in case ZL,

exhibits a sharp resonance in the range of fre-
quencies involved.

If very many calculations of this kind are to
be made it is convenient to prepare special
plotting paper, as in Fig. 2 8, on which the circles
u=constant and v=constant are superposed on
ordinary Cartesian scales for R and X, for some

ZQ

FIG. 2'C. (Upper) Stereographic projection of the RX plane
on a sphere with diameter ZQ.

Ftt-. O'D. (Lower) A section through the imaginary axis
and Q. u=o.

particular value of Zp. The values of u and v cor-
responding to given R and X then can be read
at a glance with sufficient accuracy for most
purposes.

These geometrical constructions suffer from
the complication that the motion of Z along the
circle u =u I, is non-uniform as kI. is increased at
a constant rate, Another disadvantage is that an
in6nite haIf-plane is required on which to carry
out the calculations for all possible impedances.
This suggests seeking a diagram in which the
circles u=uI, are all concentric and the curves
v=constant become straight lines running out
from the common center, as in ordinary polar
coordinates.

Ke can see that this is possible, and how to
construct the new kind of diagram, by making
use of the properties of the stereographic pro-
jection of a plane on a sphere. Suppose in Fig.
2'C a sphere of diameter Zp is tangent to the RX
plane at the origin and let Q be the end of the
diameter through 0 that is opposite O. Any point
Z in the RX plane is associated with a point Z'
on the sphere which is the intersection of the line

QZ with the sphere. It is a property of this pro-
jection that any circle on the plane transforms
into a circle on the sphere, and vice versa.

If now we think of the system of small circles
and meridian great circles laid out on the sphere,
having as its axis a diameter parallel to the R
axis, then we can readily see that the system of
circles u =constant on the Z plane corresponds to
the circles of constant "latitude" and that the
circles v =constant on the Z plane correspond to
great circles on constant "longitude" on the
sphere.

The situation for u=0 is shown in Fig. 2'D,
a section through the imaginary axis and Q.
Since for u=0 we have Z=iZp tan v, it follows
that the angle OQZ is v and therefore the
angle OCZ' is 2v. Hence an increase of v by m

corresponds to a variation of 2v through its
entire period 2x. The lines of constant v are
therefore the meridian circles for which the
longitude is 2v.

Figure 2'E shows a section through the real
axis and Q. The quadrantal arc OP is the locus
v=0, and the quadrantal arc PQ is the locus
v =w/2. The value of u corresponding to
any particular small circle is that for which
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u=tanh ' (R/ZD), the small circle being drawn
through the point Z' on the sphere associated
with the point (R, 0) on the plane. In particular,
the equator is the circle u =0, and the pole is the
limiting circle u = infinity.

AVe may also project on the sphere the Car-
tesian coordinate lines for R =constant and
X= constant. Evidently the locus of points
belonging to R=constant will be the small circle
which is the intersection with the sphere of the
plane through Q and the line R=constant. This
family of circles will have a common tangent at
Q. Similarly the lines X=constant project into
a similar set of circles orthogonal to the first set
and also ha~ing a common tangent at Q. Thus
the appearance of the sphere in the neighbor-
hood of Q with lines of constant R and X drawn
on it will be as in Fig. 22F.

With this system of R = constant and X=con-
stant circles mapped out on the sphere, one can
now dispense with the impedance plane alto-
gether. On the sphere we have two systems of
mutually orthogonal circles, one giving the
(R, X) coordinates of a point, the other its (u, v)

coordinates. If we are given RL„Xg we locate it
on the sphere by using the (R, X) nets. Then the
change in impedance due to a length of line kI.
is obtained by moving along the small circle
u=uz, until the longitude has been increased by
an amount 2kL, .

It is quite instructive to think this all through
but it is not very practical to work out the
impedance transformations by reference to
curves drawn on a sphere. But we can now go
back to a wide variety of diagrams on a plane
by reprojecting the sphere from any point Q'

on it to a plane tangent at the opposite end of
the diameter through Q'. Of all the plane dia-
grams which might be made in this way one is
particularly valuable, namely, that in which Q'

is chosen to be the pole opposite the point cor-
responding to Z =Zo on the sphere. It is eviden t
in Fig. 2'G that the hemisphere corresponding to
positive resistances projects into a circle of radius
Zo, which is the projection of the equator u =0,
and the center corresponds to the pole u = infinity.
Other values of u are represented by concentric
circles. Likewise the meridian circles, v=con-
stant, project into radial lines on the plane. The

circles on the sphere for R =constant and
X=constant project into a similarly disposed
set of circles on the plane, as indicated in Fig.
2'G.

Thus we have achieved the purpose of con-
structing a diagram on which the u =constant
circles are concentric and v =constant circles are
equally spaced radii for equal intervals of v. In
Fig. 2'H a diagram of this type is presented to
show its general appearance. For practical work
one may prepare diagrams of this type on a large
scale as a means of making transmission line
calculations rapidly to an accuracy quite suf-
ficient for most purposes.

Exercise: Given ZL, and Z0, find the input im-

pedance graphically for any length of line kl..
In Fig. 2'I, the circle v=v~ has its center on the
imaginary axis and passes through both Zz, and

ZQ

x&o

L

I

/

x&o

Fre. 2~E. (Upper) A section through the real axis and Q.
v=o.

Frr. 22F. (Lower) Projection onto the sphere of the Car-
tesian coordinate lines, R=constant, X=constant.
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F/G. 2'G. Reprojection of the sphere from any point Q' on it to a plane tangent
at the opposite end of the diameter through Q'.

Zo. Construct the perpendicular bisector of the
line ZOZq, its intersection of the imaginary axis
is the center of the circle v=vt. . To find the
center of the circle u = ul, draw a perpendicular to
CZI. at ZL„ the center is at the intersection of
this perpendicular with the real axis. Next draw
the circle u = n J.. The impedance transformation
introduced by the line length kL is obtained by
adding kl to vt. , 6nding the new center C', and
drawing the new circle v=vt, +kL to its inter-
section with the circle u =uL, .

iZO tan kL~. Since it is connected in parallel with
the load it is more convenient to carry out the
calculations with reciprocal impedances, that is,
admi ttances.

Let YI.——GI, —FBI, be the admittance of the
load and —iYocot kL~ be that of the parallel
shorted line, where Y0=1/Zo is the surge admit-
tance of the transmission line. Then the com-
bined admittance of the two in parallel is

Yq= Yl.—iYO cot kI.i.

3'. Variable Impedance Transformers

Since there are losses in transmission lines as
well as possibility of insulation failure in power
lines, it is desirable to lead power into a load in

such a way that there is no rejected wave.
This requires that the load impedance Zl, be
"matched" to the line impedance Zo, which then
raises the question of design of adjustable trans-
formers to be inserted between the line and the
load to permit matching the load to the line.

First let us see what can be done by connecting
a shorted line of adjustable length L~ in parallel
with the load. Assume the surge impedance of the
parallel unit to be the same as that of the line.
By Eq. (2'9) the impedance of the unit is

By varying Lj over the range of one-half wave-
length the second term can be made to take on

any numerical value, hence, the resultant admit-
tance can be made to assume any value on a
vertical line through YI. on the complex admit-
tance plane. Therefore if the real part of Yg

happened to be equal to the characteristic ad-
mittance of the line it would be possible to get
a perfect match by an appropriate choice of L j.

Since a complete match involves equating two
complex numbers, it is evident that a transformer
suitable for all cases must involve at least two
adjustable elements. Let us see what can be done

by inserting another parallel shorted line of
adjustable length L2 into the line at a distance
L3 away from the load.
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The admittance given by (3'1) is transformed

by the length L,3 of line to

Vo —Yg

~o+ ~i

and the effect of the second shorted linc in

parallel with this will be to add —i Yo cot kLp.
'I he second shorted line or piston can thus be
used to balance out any reactive component there
is in V. The problem thus reduces to a study of
the range of values which the real part of V may
be made to assume for various choices of I ~ and
I.i. Writing Yi/Yo ——g —ib we find

G

l~

/
I

+t2N

Y g

Fo (cos 8 bsin —8)'+g' sin' 8

sin 8 cos 8(1 —g' —b')+b(cos' 8 —sin' 8)
(3'2)

(cos 8 bsin 8—)'+g' sin' 8

Hence, by varying b we can make the real part
of 1"/ Yo take on all values from 0 (for b infinite)
to 1/g sin~ 8 [for (cos 8 bsin 8) =0—$. Therefore
it will be possible to match any load to the line
for which g sin' 8 is less than unity. Since the
real part of V& is the same as that of YI, it
follows that with the two-piston transformer it

0,0,

FIG. 2 H. 5ets for impedance calculations, in ~vhich
the circles u, =constant are concentric and the circles
v =constant are equally spaced radii.

Fio. 2'I. Construction for determining Z for any EL,,
given Z0 and ZJ..

will be possible to match any load admittance
such that

Gr. sin'- 8& Yo. (3'3)

At first sight it might appear that this restriction
could be removed simply by choosing L, 3 such
that 8 = nm, so sin 8 =0. However if this were
clone the 6rst piston loses control, since its posi-
tion appears in the combination b sin 9 in the
real part of (3'2). Therefore one is confronted by
the need to compromise as follows: In order to
make (3'3) as little restrictive as possible one
should design for a small value of sin 8, but in

doing this it becomes necessary to be able to
intake very accurate adjustments of position of
the piston I.~.

A reasonable choice of 8 is to make Li ——X/8 or
3X/8 so the sines and cosines are each equal to
1/v2 in magnitude. This permits matching of all
impedances for which Gl. &2 Yo without a very
great sacrifice in control by the first piston. If
Zi, =As" then Gi, ——A ' cos a, hence, (323) re-
quires that A ' cosa be less than 2/Zo. On the
impedance plane for Z~ this means that Zl. must
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between them. In coaxial cable, for instance, it is
necessary to use dielectric to give mechanical
support to the center conductor. If the cable is
to be fIexible it is almost necessary to use solid
(plastic) dielectric filling the whole cable to 1&eep

the center conductor in place when the cable is
bent.

The losses in the conductors have to be handled
as in Section 8'. From (8'9) the power loss in unit
length of the line is

3'. A quarter wave-length coaxial section w&th

variable surge impedance.

c5p

)
Ii"dS, -

lie outside a circle of radius Zo/4 whose center
is at (Zo/4, 0).

Another useful type of variable element con-
sists of a section one quarter wave-length long
whose surge impedance can be continuously
varied from a maximum to a minimum value.

suitable construction is indicated in Fig. 3.
An inner conductor is eccentrically mounted on
an eccentric shaft so on turning it through 180'
it varies from the coaxial position (dotted) to
one in which it comes very close to the outer
conductor. In the coaxial position the surge
impedance of the section is a maximum while in

the position where the center element is closest
to the wall it is a minimum.

If Zl. is the load impedance connected to such
a unit then the input impedance from (2'6) is,

Z =Z.'/ZI. .

Thus one can use a single piston in parallel with

Zy. to cancel out the reactive component of Zl.
followed by a quarter-wave unit of the type just
described to transform the magnitude of Rl. so
as to make it match the line impedance Zo.
Alternatively one can use the quarter-wave
section 6rst to effect a reciprocal transformation
on Z~ followed by a piston in parallel to cancel
out the reactive component remaining after the
reciprocal transformation.

4'. Losses in Transmission Lines

Losses in transmission lines arise from the lack
of perfect conductivity of the conductors and
from the imperfection of the dielectric which is

which means that the line has an effective re-
sistance per unit length of

R& = 15(pp/X) &(1/a+1/b) ohm/cm. (4'-'2)

The mean power How down the line at a place
where the current amplitude is I is ZOI2/2 watts
if I is in amperes and Zo is the surge impedance
in ohms, while the mean power loss per unit
length is RiI2/2 in watts/cm if I is in amperes
and Ri in ohm/cm. Hence the power level P is
attenuated according to the lav;,

and
(dP/dx) = —(Rg/Zp)P,

P(z) =P(0) exp [—(Ri/Zo)z]. (4'3)

Therefore, the quantity Zo/Ri gives the distance
along the line in which the power level drops by
a factor e—' because of the losses in the con-
ductors. This quantity is large if the losses ar
low and so is qualitatively analogous to the Q
value for a cavity resonator. %e shall denote it
by I.. For coaxial cable we have

log b/aI =4b(X/pp)& cm for e ' loss. (4'4)
1+b/a

where the integration extends over unit length
of both line conductors. For coaxial cable, if I
is the current amplitude in abamperes in either
conductor [I(t, z) =I cos (a&t kz) g, —then the
field at the inner conductor is (2I/a) cos (&ot —kz)
and at the outer conductor it is (2I/O) cos (art kz). —
Hence the time average of the power loss in unit
length is

(7rc6p/2X) (1/a+1/b) I'
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This factor is quite closely analogous to (9'16)
for the Q value of a coaxial cable resonator of
finite length. The principal difference arises from
the fact that here there are no end losses to be
considered.

In radio engineering power ratios are usually
expressed in decibels (db) where 1 db corresponds
to a power ratio of 10 '=1.258. Since logip e

=0.434, a factor e—' corresponds to a loss of 4.34
db in the power level. Since the losses are not
great in copper coaxial cable it is convenient to
express L in meter/db loss. Using p=5.7 10
cm we have the practical formula

Since Ig'(s) I =1/I f'(w) I, the integral appearing
in (4'1) is

where the integral is to be evaluated with u=ui
for the inner conductor and u= u~ for the outer
conductor.

This gives the losses associated with a current
of —,

' abampere in either conductor. Therefore, by
steps analogous to those used in deriving (4'2),
the effective resistance per unit length in ohm/cm
1S

log k/a meter
I.= 10.72b+X

0.279(1+b/a) db
(4'5) Z, =15 („/»

where b, 0, and X are in cm. The factor depending
on b/a has a rather Hat maximum at b/a=3. 58,
the maximum value being equal to 1. Since the
maximum is so flat it is not necessary to design
close to the optimum value to get a good line,
as the list of values in Table I' shows. As a
specific design example, suppose the outer
diameter is —, inch and the line is used for 15-cm
waves, then the maximum value of L is obtained
if the inner diameter is 175 mils. For such a line
L=33 meter/db loss.

Exercise: Show that if the cable is filled with
perfect dielectric of dielectric constant e, and that
if the inner and outer conductors are made of
diferent metals having resistivity and perme-
ability, p,p, and p&p, &, respectively, then the
appropriate generalization of (4'4) is

(X/e q & log b/a
L=4bI

I
. (4'4 )

&~w & 1+(t.u./~w )'8'/a)

In Section 5' we learned how functions of a
complex variable of the form (5'26) can be used
to work out the fields in two conductor lines of
more general shape. Let us now consider the
losses in such lines. If s= f(w) and the inverse
function is w=g(s), then

grad' v = (»/Bx) '+ (Bv/By) ' =
I
g'(s)

I

'

On a curve of constant u,

d~= I (~x/»)'+(~yl»)'3'= If'(w) Idv

dv )2r dv
+ , (4'6)

If'(w)
I

~ "o If'(w)
I

2-

and the quantity L is easily obtained from the
relation L=Z /0R ron using the formula (5'28)
fol Zp.

As a specific example consider the calculation
of Rj. for the line consisting of confocal elliptic
cylinders whose surge impedance was calculated
in (5'27). We have s=f cosh w, hence, f'(w)
=f sinh w and the integral to be calculated is

1 t2~ dv 1 ~ ~ 2dv
)

2v. ~0 f'(w) 2v f cosh u ~0 (1—k' sin'v)~

-12 )fq 12 t fq~ =15(»/»' --&I —I+--&I —
I

.
a v Ea) b v Eb

TABLE I . List of values for Eq. (4~5).

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

log x
0.279 (1 +x)

0.58
.83
.94
.98

1.00
.99
.98
.96

where k'=1/cosh' u. This is a complete elliptic
integral (see Peirce's Tables, No. 524 for defini-
tion and p. 121 for tables). Since cosh u=r/fa
and cosh u2 b/f the final——result for R~ is
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If f/a and f/b are small compared with unity,
the two elliptic integrals approach s/2 and this
result reduces to the formula for the effective
resistance of circular coaxial cable as it should.
The first-order correction to RI for small values
of f is obtained by using power series expansions
for the elliptic integrals to give the result

1 1 Pt'1 1y
~ = »(w/&)' -+-+—

~

—+—I+ (4'8)
a b 4 Ec'

Since the first-order correction depends only on
f' it is -evident that the losses are not changed
much by moderate Hattening of the conductors.

5'-'. Dielectric Losses

that is, in time phase with E and which can be
taken into account formally by means of an
imaginary term in the dielectric constant. In
addition there may be ohmic conduction of a
sort which would be represented by a resistivity.
These losses are dependent upon the frequency
and there is no unambiguous way in which dipole
turning losses can be separated experimentally
from ohmic conduction losses.

It is therefore more satisfactory to discard any
attempt at distinction between "true" ohmic
conduction and other dissipative mechanisms.
Phenomenologically the imperfect dielectric is to
be described by means of a complex dielectric
constant

Suppose the space between the conductors is
filled with dielectric of dielectric constant
Then, according to (1'8) the surge impedance is
changed from its vacuum value by the factor e &.

If the dielectric shows loss then it can be de-
scribed by a complex dielectric constant.

It is worth while to go back to (1'1) to the
equation for curl H. By assuming a time cle-

pendence by the factor e'"' it becomes

curl H =4mi+ikD.

If the material has a resistivity p and a dielectric
constant ~ then the right side of this can be
written

ikE (e—2A/ p),

as was already remarked in dealing with skin
effect in metals in Section 8'. In metals p is so
small that the second term is very much greater
than the first. For dielectrics the reverse is true.

The actual phenomena which occur in real
dielectrics are much more complicated than is
usually admitted in discussions of the formal
mathematical field theory. ' The actual molecular
processes involve dissipative energy losses by
other mechanisms than those represented by
ohmic conduction. Among these, for example, is
the dissipation represented by turning of
molecules with permanent dipole moments
against viscous dragging forces. But all such dis-
sipative processes have this in common, that
they give rise to current density in the dielectric,

3Manning and Bell, Rev. Mod. Phys. 12, 2i5 {1940);
9/. Kauzman, Rev. Mod. Phys. 14, 12 {1942).

in which the quantities e' and e" are frequency
dependent quantities characteristic of the ma-

terial. Sometimes the losses are measured by
giving the magnitude and phase angle of the
complex dielectric constant

e = ~pe
—~.

Before considering losses in lines due to im-

perfect dielectric it will pay to reconsider the
work of Section 3' to see how a cavity resonator
is affected by being filled with leaky dielectric.
Referring to Eqs. (3'1), let us agree to work with

QeE and gpH as the basic field vectors. In (3'1)
introduction of a complex dielectric constant
results in a complex index of refraction n= (cp) &.

The index of refraction appears in the combina-
tion k=na&/c. 1VIost of the theory of Chapter I
consisted in devising ways to find allowed values
of k which would give fields which fit the
boundary conditions. Since now e is complex and
the allowed values of k are real, this gives rise
to complex values for the frequency v.

Suppose that for a particular mode we have
found that k, is an allowed value. Then in vacuum
the resonator fields can execute undamped free
oscillations of frequency ck,/2s. . But when the
resonator is filled with leaky dielectric the fre-

quency becomes,

v, =v '+iv, "=k,c/2 ns

= (k.c/2 )(es' ie") & (5'3)-.
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The physical meaning of the imaginary part v
"

is that the time factor now is

exp (2siv, 't) exp ( —2~v,"t),

and the free oscillations are damped by the losses
in the dielectric.

The situation thus closely resembles that in

Section 9' where damping due to finite conduc-
tivity of the walls was considered. Ke can defirie

a Q" factor which measures the dielectric damping
in analogy with the definition of Q in (9~1). For a
resonator with walls of perfect conductivity the
damping factor will be exp (—cot/2Q') and

and, therefore, the power level in the line dies off
like e '~"'. Therefore the loss length L' for a line
with imperfect dielectric is

L'=1/2k" =(X/4zge) csc (6/2), (5'8)

where L' is expressed in cm per e ' power loss if
X is in cm. It should be noted that X is the vacuum
wave-length and X/ge is the wave-length in the
medium.

Since this loss is additional to the loss arising
from finite conductivity of the walls, the total
effective L, when both losses are present is given

by

Q' = v, '/2 v,"= (1/2) cot 5/2, (5'4) 1/L„= 1/I. +1/L', (5'9)

From the form of this result it is evident that if
t.he power factor of a dielectric is 1 percent
(which is another wayofsaying that tan 5=0.01),
then the Q value of a resonator filled with this
material cannot exceed 100. Moreover in such a
case the dielectric losses will be large compared
to those in the walls, under ordinary circum-
stances.

We consider 'now the effect of leaky dielectric
on a transmission line. A glance over the equa-
tions of Section 1' shows that they are satisfied
for a dielectric on writing geE in place of E and

by writing

and using the complex index of refraction in

place of its previous real value, m=1. The com-
plex index of refraction gives rise to a complex k
which can be written

k =k' ik"= ((o/c)—(e' ie")&, —(5'6)

which gives rise to damped propagation along
the line. The current, for example, is now given
hv

I= Inc ""cos (cot k'z), — (5'7)—

where 6 is the phase angle of the dielectric
constant.

In a resonator where there are additional
losses due to the finite conductivity of the walls
the factor (9'1) with Q defined as in (9'4) will

also affect the decay of the free oscillations and
therefore the complete damping Q, will be given

by
1/Q. = 1/Q+1/Q'

where L represents loss in the walls as in (4'4)
and L' arises from dielectric loss.

6'. Re6ection at Supports

Thin buttons of dielectric may be used to hold
the center conductor in place in coaxial cable.
Such buttons necessarily introduce wave reflec-
tions at each surface. However, by choosing the
button spacing properly one may reduce the
reflection to zero. Also, with a proper under-
standing of the effects of such buttons one may
design micro-wave filters which are analogous to
the recurrent-section lumped-constant wave
filters in use at lower frequencies.

Let n = ge be the refractive index of the
dielectric material. At any place s along the
cable there will be an advancing wave (propa-
gated from left to right, toward +z) and a
returning wave. Let A be equal to e V where V
is the voltage amplitude of the advancing wave,
and let B equal n U& be a corresponding measure
of the amplitude of the returning wave. Then the
electrical condition at a given point is described

by the two-component quantity
~

~. This will(8
be handled as a one-column two-row matrix ii&

the calculations which follow.
We assume, as always, a time factor e+'"'.

The dependence of A on position is given by a
factor e '"* where k =neo/c Similarly, th. e de-
pendence of 8 on position is given by a factor

e++*. Therefore the amplitudes ) ~
a,t any

E&]
point can be expressed in terms of those a dis-
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tance z to the right, in the same medium, denoted
(A,~

by
~

'
~

by means of the matrix equationBi)

-') ~ B) (6'1)

is simply a concise way of writing the two linear
equations

a =cg+dh, b= eg+ fh

For the reader who is not familiar with matrix
algebra it may be remarked that the matrix
equation

(a) (c dl (g)
&hi « f) &h)

(Ail (n '+1 n ' —1& (A„l
I
= (1/2)] ~f f

(6'2)
&Bi) &n ' —1 n '+1) (B„)

To bring out the physical significance of this
result suppose the dielectric fills the cable to the
right of the interface and that the cable is com-
pletely empty to the left of the interface. Suppose
the cable is properly terminated so that 8 =0.
Then we have

A i ——(1/2) (n
—'+1)A „, Bi (1/2)——(n—' —1)B

The energy flow in the incident wave is propor-
tional to AP or (1/4)(n '+1)'A„, and in the
reHected wave to Bi2= (1/4)(n ' 1)'—A„'. We
assume for simplicity that n is real. The fraction
of the incident energy that is reflected is

In particular (6'1) is a particular notation for the
pair of equations

A —g i,IczA P g
—i Iczg

(n-i-1)2 (n-1)"-
R=

(n '+1)' (n+1)'
(6'3)

The occurrence of the zeros in (6'1) expresses
the fact that A depends only on A& and not on
Bi which is the mathematical expression of the
fact that there is no reflection produced along a
uniform cable.

(A& .
Now consider what occurs to

~ ~
in going

from left to right across an interface where the
refractive index changes from 1 to n. The con-
ditions to be fulfilled are that the radial electric
vector must be continuous, and the circular

magnetic held must be continuous. Letting
~ B
(A, &

&Bi)

and
~

B"
~

be the amplitudes on the two sidesE&)
of the interface, we find these conditions are
expressed by

The equivalence of the two forms shows that the
reflecting power at a single interface is the same
whether the refractive index goes from 1 to n
or from n to 1.

As a numerical example, if the dielectric is
polystyrene for which &=2.7, we have

n= 1.65, R=5.8 percent.

MJith such a large amount of reHection at a
single interface it is obviously important to take
steps to produce destructive interference between
waves reflected from the difl'erent interfaces in
a cable.

At an interface where the index changes from
n to 1 we find, analogous to (6'2),

(A„) (n+1 n 11 (A—il= (1/2)
~

. (6'4)
(B„) &n 1++1) (B&)—

A i+Bi——n '(A„+B„), A i —Bi A„B„. —— —

Solving these for A ~ and B~ in terms of A „and
B„we find the result can be written in matrix
notation as

kXLLLLLLLLLL~~

l2 34
Fic. 4~. Single-button support in coaxial cable.

I his matrix is the reciprocal of the one occurring
in (6'2) as it should be. The rule for multiplying
matrices will be needed in verifying this state-
ment and in the following calculations. It is this:
If

(e f~ (' jI
(c d) (g h) (k l )

then

a=ei+fk, b=ej+f1, c=gi+hk, d=gj+hl.
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Consider now the over-all effect of a single
button of thickness I.. (See Fig. 4'.) By means

(A.~
of (6'4) we can express! ! in terms of!

I,8~) t &4)

Then (6'1) gives ! '! in terms of ! '! and

(A, ~ .
finally ! ! in terms of ! ! is given by (6 2).

Hence the over-all expression for !
'

! in terms(Bj)
(A, ~ .

of ! 8' ! is given by
&84)

(A ) & (n '+1 n ' —1) (e' 0 )
l8) 2(n ' —1 n '+1) gO e ')

1 (n+1 n —1) (Ailx-!
2 L n 1—n+1) &84)

where a=conk/c Mul. tiplying together the three

matrices (remembering that the order of the

factors is important ) we find a single matrix

representing the effect of a single button,

1 ([(n+1)'e"—(n 1)'-—e "5
4n g 2i(n' —1) sin a

—2i(n' —1) sin a

[(n+ 1)2e—ia (n 1 )2eia5)
(6'5)

with

(Ai& ('I'i Qi*l (A4)

EQi

.n'+1
~

Pj =cos a+i sin a,
2n

(6'6)

This will be called the one-button matrix. For
most purposes it is more convenient to write
(6'5) in the form

this makes a= 12' and so R~ is about 1.1 percent.
It is worth noting that these same beads would

give an extremely low reHecting power if the
cable is used at considerably longer wave-lengths.
That is why the problem of reHection from the
beads is not such an important one in ultra-high

frequency work as it is in the micro-wave region.

7'. Chokes and By-Pass Condeasexs
.n' —1

Qi ——i sin a.

For polystyrene, n= 1..65, this is

13.7 sin' a+10.8 cos' a

2n Suppose we wish to continue a transmission
line as a circuit for low frequency currents while

From this we And that the reHecting power of a having the high frequency power not go beyond
single button is a certain point. A suitable element for this is

called a choke. In Fig. 5' suppose that a cup-n' 1' sin—' a
(627) shaped member is attached to the inner con-

(n'+1) ' sin' a+4n' cos' a ductor of a coaxial cable as shown. Suppose the
load impedance as regarded from the closed end
of the cup is Z~. . If the length of the cup is L, the

2.89 sin' a impedance presented at the open end of the cup
Rl = is, from (2'5),

From these results we see that the reHecting

power vanishes if a =mm, that is for L, such as to
give an integral number of half wave-lengths in

the material. Maximum reHection occurs for an
odd integral number of quarter wave-lengths in

the material. For polystyrene the maximum is

21 percent.
From a mechanical point of view L=-,'" is a

good thickness for ordinary coaxial cable. Kith
polystyrene and a 15-cm vacuum wave-length,

Zl, cos kL+iZ2 sin kL
Z'=Z2.

iZI, sin kL+Z2 cos kL

where Z~ is the characteristic impedance of the

LCAD

Fit-. 5'. High frequency choke with voltage node at far
end of cup.
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element of concentric line formed by the outer
conductor and the outside wall of the cup.

Likewise the input impedance presented at the
open end of the cup is

Z"=iZj tan kL,

where Z~ is the characteristic impedance of the
line formed by the inner conductor and the inside

FtG. 6. High frequency choke with voltage node at near
end of cup.

wall of the cup. Regarded from the cross section
at the open end of the cup, these two impedances
are in series, for the currents Row as marked in
the sketch and the total voltage drop is the sum
of that over the two elements. Hence the total
input impedance is

Z=Z'+Z"-

If the length of the cup is a quarter wave-length
then

Z ='LZy pp +Zp /Zl. = pp .

Thus the impedance at the open end of the cup
is infinite. Hence there will be total reflection at
the cup of a radiofrequency wave in such a way
that there is a voltage loop and a current node
at the mouth of the cup, exactly as if the line
terminated there in an open circuit.

Next let us consider the same structure with
the cup turned the other way. (See Fig. 6'.) In
this case the cup impedance is iZI tan kL and
this is in series with the load impedance
ZI, . Therefore the resultant of the two is
(Zg+zZ~ tan kI). If the length of the cup is a
quarter wave-length, this is infinite. Viewed from
the bottom end of the cup this infinite impedance
becomes a zero impedance. Therefore, a wave
coming from the left is totally reflected with a
voltage node at the outside of the bottom of the
cup, just as if the cup constituted a complete
short circuit of the end of the line.

In other circumstances one may need to have
a break in the line for low frequency currents

while not interfering with the How of the high
frequency power. This can be done as in Fig. 7'.
If the overlapping portion of the separated outer
conductors is equal to a quarter wave-length
then the infinite impedance at the open end
between the two outer conductors transforms to
zero impedance between the two outer con-
ductors at the left end of the overlap. Hence the
current How in the large outer conductor is
carried on in the inner one without a voltage
drop, so the wave goes on, although low frequency
currents are blocked by the lack of contact
between the two outer conductors.

Another way of doing the same thing is to put
circular Ranges on the ends of the two portions
of outer conductor of the same size, as in Fig. 8'.
In this case the correct radius of the Hanged
ends has to be calculated as follows. Suppose
r =a is the radius of the outer conductor; then
we must have B,=O at r=a, so there will be no
potential drop across the gap between the
Ranges, just as if the outer conductor were con-
tinuous. We have, quite generally,

E,=A Jp(kr) +BNp(kr),

where Jo and Xo are the two Bessel functions of
zero order. The requirement B.=O at r=a gives
the equation

A Jp(ka)+BNp(ka) = 0,

which determines the ratio of 8 to A. At the
outer radius of the Range the radial current must

FrG. 7'. Low frequency choke, suitable for rotating parts.

sink to zero, giving II„=O which requires that
BE,/Br=0. This gives

A Jp'(kb)+BNp'(kb) =0,

which is the equation to determine b, the outer
Range radius.

As a specific example, suppose a=0.5 cm and
we are dealing with X =3 cm, giving 0 =2.08 and



ka=1.04. We have Jp(ka) =0.7473 and Xo(ka)
=0.1188 and, therefore, if we write

E.=0.1188Jo(kr) —0.7473%0(kr),

we have a suitable expression which vanishes at
r =a. %e have now to 6nd the value of kb such
that BE,/Br=0. This is best done by making a
graph of 8, against r from standard tables of
Bessel functions. In this way we find the function
has a maximum at kb= 2.4 or b=1.15 cm, as the

proper outer radius of the Hanges.

number of half wave-lengths. This is in agree-
ment with the field theory treatment given in

Section 5'.
Suppose now that there is a condenser of

capacity C (farad) across the otherwise open end
of a line that is closed at the other end as in the
sketch. The shorted line is in series with the
condenser so the input impedance at the ter-
minals 1,2 is the sum of the separate impedances.

8'. Transmission Line Resonators

Any finite section of transmission line may be
used either by itself or in connection with lumped
inductance and capacity to make resonant cir-
cuits. First let us consider a length z of trans-
mission line which is closed at one end and open
at the other. The impedance at the open end is,

by (2'7),

Z=iZO tan kz.

The free oscillations must be such that there is
zero current flowing even though there is a finite

voltage amplitude. Hence, the natural resonant
frequencies will be such as to make the impedance
at the open end be infinite. Therefore, the reso-
nant values of k are

ZI

It is, therefore,

Z=iZ0 tan ks+1/i(aC, (8'-2)

and the resonances are the frequencies for which

Z =0, since in the actual resonator in which the
terminals 1,2 are joined together current must
How there without a potential drop. This condi-

tion gives the equation,

Z2

FIG. O'. Resonator made from two shorted sections of line.

ks tan ks=s/cCZ, . (8'3)

which can be written

s= (n/2+-', )X, (8'1)

where n is an integer. The resonance of lowest

frequency is such that the length is a quarter
wave-length.

FIG. 8', Low frequency choke, for fIxed cables.

If the resonator is closed at both ends then the
frequency has to be such as to give zero im-

pedance at either end. This means one must
have kz=n~, and the length must be an integral

If C is small the roots of (8'3) are close to those

given by (821). If I. and C and Zo are given the

possible values of k can be conveniently found

by graphing x tan x against x from which the
allowed values of kz are readily found. From such

a graph it can be immediately seen that an

increase of the capacity has the general effect of
reducing all of the resonant frequencies. This
approximate treatment based on transmission

line theory should be compared with the 6eld
theory discussion given in Section 7'.

A resonator can be made as in Fig. 9' by joining
together a length zI of shorted line of character-
istic impedance Z~ and a shorted length z2 of
characteristic impedance Z2. The input imped-

ance presented by this combination to terminals
mounted on the disconnected outer conductors



is then

z(Zi tan ksi+Z2 tan ks, )

which must vanish at the resonant frequencies.
These can easily be located graphically by
plotting Z~ tan ks'~ and —Z2 tan ks2 against k
and noting the values of k at which the two
curves intersect.

Exercise: Calculate the lowest resonant fre-
quency of the resonator shown in Fig. 10'-(figure
of revolution about the horizontal center line),
where the dimensions are, in inches, a = 2, 5 = 3,
c = 1, d = -'„and e = -', . A nswer: 468 megacycle/sec.

(9'1)

where the units are: V, volt; s, cm; L, henry/cm;
I, ampere; t, sec. ; and C, farad/cm. Assuming
harmonic time dependence through the factor
e'"' we And that V and I satisfy the following
differential equations:

d logL
U"— V'+co'LC V = 0,

dlog CI"— I'+co-'LCI =0.

(9'2)

O'. Tapered Lines

By a tapered line is meant one in which the
proportions change along the length of the line—for example, a coaxial cable with a variable
ratio of inner to outer diameter. 4

It will be supposed that the dimensions in a
section are all small compared with the wave-
length. The theory may be developed by using
(1'-l4) and (1'15) as a starting point. Since in

practice tapered lines will be used only in short
transition sections we shall neglect losses, that is,
assume R=O and G=O.

The generalization now being considered is
that L and C are here functions of s. The basic
line equations are;

gh

Frr. 10'. Resonator with dimensions for exercise.

If e = p = 1 we have LC = 1/c' and the charac-
teristic impedance of the line Z in ohms is related
to I. and C by the expressions, Z=cL = 1/cC.
Therefore the two logarithmic derivatives ap-
pearing in (9'2) can be expressed in terms of the
logarithmic derivative of Z. With k = c0/c we have

d logZ
V"— V'+O' V= 0,

dlo Z
I'+k'I = 0.

(9'-3)

It is only necessary to discuss one of these,
since, if the solution is known for V(s), that for
I(s) may be obtained from the first of (9'1) in
the form

I= (i/(OL) (8 V/its) = (i/kZ) (8 V/Bz) (9'4).

V=QZ U, (9'5)

KVe have now to discuss the properties of the
first of (9'3) which determines the variation
along the line of the potential difference between
conductors in the line. For a line of uniform
properties d log Z/ds =0 and the equation reduces
to one which is satisfied by e+'~' or e—'~' giving
the usual propagation of undistorted harmonic
waves at the velocity of light. The term in the
derivative of V can be transformed away by
writing

' Eckart, Zeits. fur Hochfrequenztechnik 55, 173 (1940)
gives a very general treatment of the theory. Other
important references are: Ballantine, J. Frank. Inst. 203,
561 (1927};%heeler and Murnaghan, Phil. Mag. 0, 146
{1928); Starr, Proc. I. R. E. 20, 1052 (1932); Burrows,
Bell Sys. Tech. J. 17, 555 (1938};Wheeler, Proc. I. R. E.
27, 65 (1939).

in which case the differential equation for U is

U"+Lk'+ (Z"/2Z) —(3Z"/4Z') ]U= 0. (9'6)

There are two special cases in which the equation
for V can be solved in terms of known functions.
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Z(s) =Zo exp (2kos), (9 7)

t.lleil t lie dl ffcl cllt. lal cquatioi1 foI Li bcco111cs

U"+ (k"—ko'-) U= 0. (9"8)

aI&fl, therefore, the solutions for U depend on the

sign of

If k" is positive the solution for U is undamped
and oscillatory and there is real wave propaga-
tion along the line, with the voltage amplitude
building up exponentially as one goes in the
direction in which the characteristic impedance
increases. But if k" is negative the solution for U
is a real exponential function and the wave is

attenuated in going along the line. Such an ex-

ponentially tapered line therefore behaves like

a high-pass filter. It passes only those waves for
which k is greater than ko. Therefore the cut-OR

frequency is greater for more rapid rates of taper.
Suppose we have a wave traveling toward +s.

The voltage is represented by

V= Vo exp (kos) exp [i(~t—k's) 7,

and, therefore, by (9'4), the current is repre-
sented by

(k'+iko)I= ( Vo/Zo)
k

ExPonentia/ Line

The simplest special case is that in which the
line is tapered in such a way that the character-
istic impedance varies exponentially along the
line. Suppose

to zero if the frequency used is large compared
with the cut-OR frequency so k' is large com-

pared to ko.
Let us consider a particular example. Suppose

it is desired to design a transition section of
coaxial cable to pass from a characteristic im-

pedance of 50 ohms to a characteristic impedance
of 100 ohms in a meter of line length. If the inner
conductor is the same throughout and is 125 mils
in diameter, then the diameter of the outer con-
ductor at the two ends must be 288 mils and
660 mils, respectively. Since the transition takes
place in one meter we have 200ko=xln 2 or
ko ——3.47 10—'cm —'. Therefore the cut-OR wave-
length is 2s/ko ——1810 cm.

If this transition section is used for radiation
of 15-cm wave-length, or k=0.418 cm ' then it
can be calculated that the phase-angle of the
terminating impedance is less than one degree.

Z(s) =Zgs", (9'10)

where ZI is the characteristic impedance at a
point at unit distance from the place where Z
would vanish if this law were valid everywhere.
In practice, one will be dealing with 6nite sec-
tions of tapered line for which s/0, say the
portion extending from 2' = +u to s = +b; hence,
no difficulty arises from the vanishing or negative
values of Z seemingly implied by (9'10).

For this case d log Z/ds =n/s and (9'3)
bcconles

Line With Z Varying a Povoer of s

Another case which can be treated in terms of
known functions is that in which Z(s) is a simple
power of s measured from some origin. Suppose

Xexp ( —kos) exp [i(~t —k's)7. V"—(n/s) U'+k-'V=0, (9-'11)

The ratio of voltage to current at any place gives
the impedance of a load which could terminate
t:he line at that place without producing a
reflected wave. This terminating impedance is

Z;= Zo exp (2kos).
(k'+iko)

(9'9)

This terminating impedance must therefore be
somewhat reactive although its phase angle tends

an equation which can be solved in terms of
Bessel functions. The solution is

V(s) =s~Z (ks) with m=(1 —n)/2, (9'12)

where Z (ks) stands for the general Bessel func-
tion of order m. By making use of known proper-
ties of Bessel functions it is therefore possible to
make a detailed study of tapered lines of this
kind.


