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PART I
Introduction

HE typical polymethine dye, represented!
by ion (I), may be discussed theoretically
by either the valence bond method of Heitler-
London-Slater-Pauling (HLSP) or by the mo-
lecular orbital method, (LCAO), of Hund-
Mulliken and Hiickel.? Since the phenomena

T1 TZ
/
=CH—(CH=CH),—N )
AN
7’ T’
S
/ \\
C—(CH=CH),_—CH=
74
N4
N /S\
|
/
C2H5 =C (II)
11\*
CzHa

described in the preceding paper® can be quali-
tatively understood more easily from the former
method we shall first limit our discussion to the
HLSP method and only in the last section sum-
marize the results of the LCAO molecular orbital
method, which, however, from a quantitative
point of view, are better.

Since the atoms in the chain, formed by the
nitrogen atoms in ion (I) and the carbon atoms
between them, are joined by a system of al-
ternately single and double bonds we can expect
the charge distribution of the electrons on the

! It is understood that the groups 7" which are attached
to the nitrogen atoms may bend back and join to the
chain as in ion (I’).

2 L. Pauling-Gilman, Organic Chemistry, Vol. 2, p. 888;
R. S. Mulliken, J. Chem. Phy: s 7, 570 (193 9) K F.
Herzfeld, <bid. 10, 508 (1942); L. Sklar, bid. 10, 521
(1942).

3L. G. S. Brooker, Rev. Mod. Phys. 14, 275 (1942).
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carbon atoms to be just like that of the atoms
in benzene. That is, we can expect the chain to
be planar and each carbon atom to have one
“unsaturation electron.’”’* As discussed in refer-
ence 4, the visible and near ultraviolet absorp-
tion is associated with the system of unsatura-
tion electrons, which can be treated inde-
pendently of the electrons whose charge distri-
bution is concentrated in the plane of the chain.
Besides the (2n+1) unsaturation electrons on
the (2n+1) carbon atoms of the chain in ion (I)
there is also another one on the positively
charged nitrogen and a pair on the nitrogen
atom.

In addition to the structural formula drawn
for ion (I), one can equally well write a second
structure which differs from the one drawn in
that an unsaturation electron has been moved
from the right- to the left-hand nitrogen atom
and the bonds readjusted. In the case of a sym-
metrical ion (T;=T3) these two structures are
degenerate and the ion is analogous to benzene
which has the two Kekulé structures as degener-
ate ground structures. A difficulty, however,
arises in carrying over from benzene to ion (I)
the view that the longest wave-length electronic
absorption is associated with a transition be-
tween the two molecular states which arise from
a resonance splitting of the degenerate ground
structures.* The electron distributions in the
two (I) structures, which. differ in that an elec-
tron has moved from one end of the molecule
to the other, do not overlap appreciably. The
resonance splitting of these two structures would
thus be expected to be negligible instead of the
observed value of the order of a few volts.

Pauling,’ however, has pointed out that one
must consider, in addition to the two structures
(I), the following set of intermediate structures
(X2541)(j=0 to n).

4 A. L. Sklar, Rev. Mod. Phys. 14, 232 (1942); J. Chem.
Phys. 10, 521 (1942).
5 L. Pauling, Proc. Nat. Acad. Sci. 25, 577 (1939).
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Since the overlap of electrons on atoms sepa-
rated by even two interatomic distances is very
small, we shall also have to include the set of
structures (V2;)(j=1 to n):
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For every structure in the set consisting of (I),
(X), and (Y) there is a second structure which

a, ay, ap are, respectively, the interaction ener-
gies between an intermediate structure, and
either a second intermediate, or one of the two
ground structures; e; and e; are the energies of
the two ground structures (I) ; and f is the energy
of an intermediate structure,® (X) and (Y).
Since E is the energy of all the unsaturation
electrons in the molecule, the transition energy
in question is the difference between the two
smallest values of E.

The roots of determinant (II) have been dis-
cussed in detail as a function of the number of

¢ It is sufficiently accurate for our purposes to take the
energy of all excited structures, (X) and (Y), to be the
same, since small differences in their energy should not
affect our discussions.

ae—E; o ; o ; 0; ..
ar ; f—E; a ; 0; ..
0 ; a ; f—E; «a; ..
AN
0 ; 0 a; \
. N
N
0 0 i 0
0 ; 0 ; 0 ;
0 ; 0 ; 0 ;

295

differs from the former in that an electron has
been moved to the neighboring atom on the left.
Thus, although the two (I) structures do not
appreciably overlap directly, one (I) structure
overlaps with (X,), (X;) with (Y3), (Y2) with
(X3), and so on until (Xs,,1) interacts with the
other (I) structure. The two ground structures
(I) can split through this chain of interactions
with the intermediate structures (X) and (Y).

In all we have 2n+43 structures, two (I),
(n+1)(X), and n(Y) structures. If we neglect all
integrals, Coulomb and exchange, which are
smaller than the product of the first power of the
overlap integral of electrons on neighboring
atoms times the ordinary integrals, Coulomb or
exchange, and also neglect terms containing
overlaps of electrons on non-neighboring atoms,
the molecular energies resulting from resonance
among the 2n+3 structures are given by the
roots of the secular determinant (II).
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0[; 0 ; 0 ; 0
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rows in an earlier paper? for various ranges of the
parameters R=a/(e;—f) and R'=a/(e2—f). The
results will now be applied to a discussion of
Brooker’s results.?

PART II

Symmetrical Ions

If we, for the moment, limit our discussions to
symmetrical ions, in which the two ground struc-
tures (I) are necessarily degenerate and in
addition assume that the excited structures (X)
and (Y) are considerably higher in energy than
the ground structures (i.e., R is small), then we

7K. F. Herzfeld, ] CHem. Phys. 10, 508 (1942).
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F1G. 1. The solid points in the figure give the wave-
length of the absorption peak for ion I’ as a function of
the number of double bonds between the nitrogen atoms
(NH). The empty circles give the same data for an ion
which diﬁ’er(s) from ion I’ only in having an acetoxy group

7
(CH3—C-0-) in place of the hydrogen atom on the
sixth carbon atom of the polymethine chain.

can reach certain qualitative conclusions concern-
ing the electronic band system with the longest
wave-length. This band system arises from a
transition between the two levels into which the
doubly degenerate ground structures are split by
resonance interaction. Since the two ground
structures do not interact directly but only
through a chain of interactions with the excited
structures, one should expect the resonance
splitting of the ground structures to decrease as
one increases the number of intermediate inter-
actions of like character through which the

K. HERZFELD AND A.
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chain of interactions must be handed on. As the
chain length of ion (I) increases the number of
excited structures also increases, each interact-
ing only with its ‘“‘neighboring’’ structure. One
should, accordingly, expect the resonance split-
ting to decrease as the chain length increases
and the absorption to shift toward the red.

The usual dependence of the absorption peak
of symmetrical polymethine ions on the chain
length, illustrated® in Fig. 1 by the thiocyanines,
ion (I’), is in accord with this expectation.

Figure 1 shows that for the symmetrical
thiocyanine ions the wave-length of the absorp-
tion peak varies linearly with the chain length.
Theoretically, at least in HLSP approximation,®
the algebraic relationship between the peak
wave-length and chain length depends on the
order of magnitude!® of R, the ratio between the
interaction energy o« and the energy difference
between ground and excited structures (e—f).
For the small values of R under discussion the
HLSP method gives an exponential dependence
of the transition energy on the number of carbon
atoms in the chain for large values of N=2n+1.

The theoretical (HLSP) value for the transi-
tion energy is directly proportional to! «, but
the ratio of the transition energies of a given
ion to its next homologue (n increased by one)
does not explicitly depend on «. In HLSP
approximation this ratio does, however, depend
on R. The ratio of the transition energies for an
ion with N=7 to one with N=9 varies from 1.2
to 1.4 as R varies from one-half to ten. The
experimental value of the ratio of the peak
wave-lengths of ion (I’) with N=9 to ion (I’)
with N=7 is'? 1.19.

8 The data in Fig. 1 were obtained at the Eastman
Kodak Laboratories and communicated to the author by
Dr. L. G. S. Brooker.

9 In LCAO approximation the observed linear relation
is obtained for all values of R.

0 In order to simplify the calculation of the roots of
determinant (II) the end interaction integrals a; and as
are equated to a, since the a's are of the same order of
magnitude and since a small difference between them
would not be expected to affect the general questions
treated here, except for very small values of 7.

1 A surprisingly large value of « is required to bring
the HLSP value for the transition energy into line with
experiment (cf. reference 4); this dificulty does not
appear in LCAO approximation.

12 In LCAO approximation the ratio is insensitive to R
and gives, for tﬂls case, values which vary only between
1.20 and 1.24, as R changes, in good agreement with
experiment for all values of R.
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From the discussion at the beginning of this
section, one would also expect the resonance
splitting of the ground structures to decrease as
the energy difference between ground and ex-
cited structures (f—e) increases. This is borne
out by the calculations of reference 7.

PART III
Unsymmetrical Ions

The charge distribution on the nitrogen atoms
in ion I depends, to some extent, upon the
character of the groups joined to them. If the
groups T; which are joined to the right-hand
nitrogen atom in ion (I), differ from those, T},
attached to the left-hand one, then the ionization
energies of the two nitrogen atoms will, in
general, be different. We should, accordingly,
expect that, in the case of an unsymmetrical
ion, the two ground structures have somewhat
different energies, e; and e,. Since the resonance
splitting of the energies of the ground structures,
which determines the erergy difference between
the ground and lowest excited state, depends on
and is superimposed on the difference (e;—es),
we should clearly expect that the lack of de-
generacy of the ground structures in unsym-
metrical ions should cause differences in kind
between the class of unsymmetrical and that of
symmetrical ions.

If we, then, set!® a;=as=a in the secular
determinant (II) but keep e; and e, different, we
obtain a transition energy for the unsymmetrical
ion. The results depend upon the order of magni-
tude of R=a/(ex—f) and R'=a/(es—f). We
shall limit our discussions in this section to the
case which is easiest to discuss qualitatively,
namely, that of small values of R and R’, which
is the case when the intermediate structures,
(X) and (Y), are considerably higher in energy
than the ground structures (I). In this case it
turns out that the transition energy, AEy, is:

20Ey = {(e1—€2)*+ (aow)?}?
+ {(e1—e2)*+ (aon)?}}, (1)

where asy (or acy’) is essentially the transition
energy of the symmetrical ion with end groups
which are equal to the left- (or right-) hand side
of the unsymmetrical ion.
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The transition energies of the two parent
symmetrical ions, for a common chain length,
differ because the energy difference of the two
ground and many excited structures, (e—f), is
different in the two cases. In order to observe
the effect of the energy difference (e;—e2) one
should, then, compare the unsymmetrical ion
to a hypothetical symmetrical ion whose de-
generate ground structures have the energy.
(1/2)(ex+e2), the mean of those of the ground
structures of the unsymmetrical ion. Now the
hypothetical symmetrical ion will have an
absorption peak which is intermediate between
those of the two parent symmetrical ions.

The difference between the peaks of the two
symmetrical ions may also be in part due to the
fact that the interaction energies (a; and az)
between electrons on a nitrogen and its neigh-
boring carbon atom, are different in the two
cases. It seems quite probable, however, that
an ion in which o; differed from «; would ab-
sorb at some sort of mean of the frequencies of
those ions which had both its end a's equal,
respectively, to a; and as.

The properties then which are peculiar to un-
symmetrical ions will be sought experimentally
by comparing the absorption peak of the un-
symmetrical ion with the mean of its two sym-
metrical parents.?

It is too complicated to say theoretically which
type of mean should be used in the experimental
comparison of an unsymmetrical ion with its
parent symmetrical ions. It has, however, been
found empirically that, for quite a large number
of “slightly” unsymmetrical polymethine ions,

AE,
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F1G. 2. Dependence of the transition energy, AEx on
the energy difference between the two ground structures,
e;—es. Each scale division represents one-tenth. The
abscissa runs from 0 to 1.9, the ordinate from 1.0 to 2.2.
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the wave-length of peak absorption is very
closely the arithmetric mean of the wave-length
of the peaks of the parent symmetrical ions,
when (e;—e2) is sufficiently small.

This suggests that the absorption wave-length
of unsymmetrical ions be compared to the arith-
metic mean of the wave-length of its parents
since it will be shown in the following!* that the
effect of (e;—e.) on the transition energy of un-
symmetrical ions is a second-order one.

For dyes with very different ends, however,
such differences do exist. Brooker? has em-
phasized that the peak of the unsymmetrical
ion often ‘‘deviates” to high frequencies by sig-
nificant, and occasionally very large, amounts
from the mean of the absorption peaks of the
two parent symmetrical ions which have ends in
common with the left or right half, respectively,
of the unsymmetrical ion.

This is in agreement with formula (1), since
AEy is greater than (a/2)(ex+ax’), the arith-
metic mean'® for the transition energies of the
parent dyes.

It is also clear that deviation to shorter wave-
lengths due to the fixed energy difference (e;—ez),
becomes larger as the two agy become smaller.
Now, as discussed in the preceding section, asy
decreases as the chain length N increases. We
should, accordingly, expect the deviation to
increase as the chain length increases. This has
been found to be the case by Brooker and is
illustrated in Fig. 4 of the preceding paper.?

Since the aoy decreases with increasing N,
one can see from Eq. (1) that as N increases,
AEy decreases. Now in a symmetrical ion
(ex1=e2), AEy would approach zero as N increases
indefinitely but in an unsymmetrical ion AEy
should decrease and asymptotically approach
the magnitude of the energy difference (e;—es).
It has indeed been found by Brooker that for a
series of unsymmetrical ions differing only in the
value for N (homologous series), the absorption
peaks appear to converge to a finite wave-length
limit as NV increases whereas the peaks for a
corresponding series of symmetrical ions do not

13 B, Beilenson, N. I. Fisher, and F. M. Hamer, Proc.
Roy. Soc. A163, 138 (1937).

14 See discussion of the ‘“‘sensitivity’’ rule.

15 The difference between the harmonic and arithmetic
mean of the transition energies is not very great except in
extreme cases.
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converge when plotted on a wave-length scale.!®

Equation (1) also affords an explanation of
Brooker’s sensitivity rule which states that the
change in the deviation produced by introducing
a given alteration in the molecular structure of a
symmetrical ion (e;=e,) or a ‘slightly”’ unsym-
metrical ion (e;#ez) is much smaller than the
change in deviation produced by making the
same change in the molecular structure of a
highly unsymmetrical ion (e;=es).

This may be seen for a chain which is not too
large to be a consequence of the fact that the
resonance interaction as and the energy differ-
ence (e1—e;) enter into the transition energy as
a sum of squares. When the difference (e, —ey) is
small compared to the as, a given increase in
(e1—es) affects AEy much less than would the
same increase if (e;—e,) were already of the same
order of magnitude as ac or larger. That is, if one
plots the transition energy against (e;—e;) for
fixed” ac; and ao: one gets, because of the
quadratic relationship, the curve of Fig. 2 from
which it is clear that the effect on the transition
energy of increasing (e;—e;) by an amount Ae is
very much less when (e; —e5) is zero or small than
is the effect when (e;—e,) is already appreciable.

Another interesting effect may be obtained
if we look into the resonance stabilization of the
ground state. Although the transition energy
AEy is always larger for unsymmetrical ions
(e1#e2) than for symmetrical ones, the resonance
depression of the lowest level is always less when
e1e; than when e, =¢,.!® One should accordingly
expect that symmetrical ions, in virtue of their
larger resonance stabilization, should be more
stable than unsymmetrical ones. The former
should, for example, be more resistant to fading.

An interesting application of this effect should
show up in the measurements of the pH at
which the ion is half transformed by acid or
alkali (pK value). The polymethine dyes act as
indicators in both the acid and alkali range and
so have two pK values. Now the difference
between the two pK values for a given ion
measures (except for a factor RT) the free energy
difference involved in changing two of the given
ions into two new ions. The new ions differ

18 Cf. Fig. 9 of reference 3.

7 g, and o3 are taken to be equal in drawing the figure.
18 Cf. Egs. 20 and 45 of reference 7.
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from the original given ion in that a proton or
hydroxyl has been attached, or perhaps a proton
deleted; in any case, however, the resonance
system no longer runs through the original
chain. In other words, the resonance stabiliza-
tion which is present before the original ion is
transformed and which is, at most, only in
small part present after transformation, will
resist any change. The entropy change also
plays a role through the symmetry number
since the product formed is unsymmetrical
regardless of whether the original ion is or is not.
It is easily checked, however, that the effect
of the symmetry number amounts at most to a
few tenths of a pH unit and is in the opposite
direction to the effect of the energy. One can
thus understand and expect the applicability
to the polymethines of the following rule which
Schwarzenbach has found for the triphenyl-
methane dyes:!® “The difference between the
pK values in two regions is larger for symmetrical
than for unsymmetrical dyes.”

On the basis of the foregoing discussion one
should, furthermore, expect, at least so far as
the energy is concerned, the following rule:
The pK values for acid transformation of a
homologous series of polymethine ions should
decrease and those for basic transformation
should increase as the chain length increases.
In this it is assumed that entropy changes will
not upset this result which is due to stabilization
energies.

PART IV
Theory of Symmetric Ions

We wish now to calculate the energy levels of
the symmetric ion according to the HLSP
method. As mentioned before, the energy values
are the roots of determinant (II), in which e
is the energy of the ground structures (I), f
that of the excited structures (X), (Y), and «
the interaction integral between structures.

The method of solution is as follows: One finds
exactly the same determinant (II) in the solu-
tion of a classical chain vibration problem.
Consider N+2 particles of mass I. The first is
tied by a spring to a position of equilibrium in
TG.Elwarzenbach, Zeits. f. Electrochemie 47, 40

(1941). A similar argument can be made for Schwarzen-
bach’s examples.
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space, to which it is pulled by a restoring force
—(e—a)X (X being its deflection). It is also
tied to its neighbors by a spring with a restoring
force —a(X —x;). The next particle, which repre-
sents the first carbon atom, is tied to its point of
equilibrium in space by a spring with a restoring
force — (f—2a)x; and to its neighbors by springs
exerting forces —a(x;—X) and —a(x;—x2),
and so down the chain to the last particle, which
is pulled back to its equilibrium position by
a force —(e—a)Y and is acted upon by a force
—a(Y—xy) from the preceding particle.

The secular equation for this problem is ex-
actly our determinant, with «? instead of E,
w being 27 times the frequency.

This problem has been treated by Bartholomé
and Teller.?® The method of solution can be
described as follows. One looks for all possible
standing waves in the chain. If the end springs
were equal to the interior springs, the wave-
length (speed of propagation) of the standing
waves would be the same in all parts of the
chain. However, because the end particles are
attached with a different force, the wave-length
(speed of propagation) is different for the end
members. Nonetheless, the total number of half
wave-lengths has to be an integer.2! Once the
wave-length is known, the frequency of the
vibration (and E of the quantum problem, corre-
sponding to w?) can be found easily. By such a
procedure, the determinant is not directly
attacked.

In a given mode of vibration—which corre-
sponds to a given quantum state—the particle
number s will have a given amplitude x,. In
quantum theory this amplitude is proportional—
apart from normalization—to the coefficient with
which the structure number s contributes to this
state.

One finds, from the differential equations of
the vibration problem, the connection between
the wave-length of the standing wave and the
energy to be

E=f+2a cos k, (2)

where k is the ‘““wave vector” of the standing

2 E. Bartholomé and E. Teller, Zeits. f. physik. Chemie
B19, 3 (1931).

2 If we had a continuous medium, the problem would
be that of finding the standing waves in a stack made up
of a glass block with thin plates of different refractive
index at the end.
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wave. It is determined by

N+1 N+3

k=R cos k 3)

Ccos

for ‘‘symmetric’’ vibrations, where the two ends
of the chain are in the same phase, and by

N+1 N+43

k=R sin

sin k 4)
for “antisymmetric’’ vibrations, where the two
ends of the chain are in opposite phase.

Here, R is given by oa/(e—f). For R<1
—(2/N+3), the two lowest states are not given
by (3), (4). For 1—(2/N+3) <R<1, the lowest
state is not contained in (3). To find these states
it is necessary to replace e* by a real quantity v
in (2), (3), (4). One finds then the values of
k and AE, the energy difference between the
two lowest states, approximately. The results

are obtained for the energy of the first transition
according to HLPS.

RK1. AE=2a(1—R?):?2RN, (5)
™
R=1. 4a sin? ———, (6)
2(N+2)
3 T
R>1. 4a sin — i (7)

sin .
2 N+3  2(N+3)

All of these AE go to zero with increasing N i.e.,
the wave-length

A=hc/AE

goes to infinity, but it does so for R<1 expo-
nentially, for R=1, like N2. For R<1, we have
also calculated the case in which «;, the overlap
of the two end groups, is different from «, that
of the inner groups. One finds, nonetheless, the
same dependence on N as given above, only the
constants are different.
If we set

v=(a’—a?)/ar
one has to replace R by
(14+4yR?t—1
2vR
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and 2a by
4Ry

“144yR?— (14+47R2)¢

In the LCAO approximation, we use a skeleton
made up of ions only. This skeleton has then
(N+2) orbits, into which N+1 electrons are put.
In this procedure one unpaired electron on one N
has been left on the ion. With this treatment one
gets again determinant (II), and the calculations
of the states and orbits can be taken over for-
mally but there is a considerable difference in the
interpretation. The expression, which in the
HLSP method describes a state, now describes a
molecular orbital. The role of the valence struc-
ture s is played now by the atomic orbital of the
atomic ion s. The quantities x,, the relative
amplitudes of the classical oscillation, which in
HLSP give the contribution of the different
structures to a state, now give the coefficients
of the sth atomic orbital in a molecular orbital.?
As a consequence of this, e and f are now the
ionization energies of the N and C atoms and «
is the overlap of the atomic wave functions.
In the ground state, therefore, the (N+1)/2
lowest molecular orbitals are filled. In the first
excited state, one electron is taken from the mo-
lecular orbital (N+1)/2 and put into (N+3)/2.
The previous calculations of the energy of these
orbitals (states in HLPS) remain unchanged.
The transition energy is to a first approximation :

™

for RK1, AE=2a sin , (8)

N+1,

™ ™

for R=1, 4a cos sin

(N+2) 2(N+2)

(exact value), (9)
. ™

for R>1, 2asin . (10)

N+3

For large N, the AE values for the three cases
are, in lowest approximation, ~ N, which is the
value found theoretically for a polyene chain.
Figure 1 shows that experimentally the connec-
tion between the wave-lengths (hc/AE) and N
is a straight line. However, U. Fano pointed out

2 This corresponds to the Bloch method in metals.
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in the discussion that this straight line does not
go through the origin. If one takes higher mem-
bers in the development in powers of IV, one finds

he
R<1. )\=~———|:N+1
27
w1 48R
S
6 N+1 T
he 13 =2
R=1. \=—{N+2+— ] 9"
27 24 N+2
he 2
R>1. )\=—[N+3——-
27 R?
1 x 6
——(=-=)] an
N+3\ 6 R?
Figure 1 can be represented by
A=550(N+5). (11)

The constants in Eqgs. (8’) (9’) (10’), which
are added to N, are smaller than 5. Therefore,
the theory is not accurate enough to give this
feature.

Nonetheless, the general behavior of the sym-
metric ions is represented much better by the
LCAO than by the HLSP method, not only
because of the general dependence on N but
also numerically .4

A different assumption about the energy of the
different structures in HLSP approximation was
also tested. It was assumed that the (X) struc-
tures had the same energy e as the ground
structures instead of having the energy of the
more highly excited structures (Y), namely, f.
With this assumption, there are then N+2
structures, those with energies e and f alternating.
The result is (independent of the size of R):

For HLSP approximation (difference between
the two lowest states)

3
N+3}

2r 1}
} ] (12)
+3

- { (e—f)*+16a?—16a? sin?
N

1
AE=§H (e~ f)*+16a2— 16a? sin?

which, for large N, approaches
2

b . Q2
(N+3)? (az)

AE=4a%*{(e— f)?+16a?}~
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For LCAO (transition between the (N+41)/2th
and (N+3)/2th level),
e— 1 r P
]. (13)
3

AE= —-—f—i---[(e—f)"'—i-16(::2 sin?
2 2 N+

In the limit of large N, this gives
4a? w3

- (13%)
e—f (N+3)

and is therefore of the same character as (7),
and yields A\~ N? instead of ~N.

PART V
Theory of Unsymmetrical Ions

Here we make the ¢ of the two ends unequal,
€1>¢€,, but keep the end interaction integrals «
still the same as those within the carbon chain.
The result is that the standing wave is no
longer symmetrical (or antisymmetrical) with
respect to the center of the chain. The situa-
tion is as if, in the continuous optical analogy
mentioned before, the two end plates had differ-
ent refractive indices.

If we call
[s4 (24
R= , R'= , (14)
en—f ex—f
0?2=4R*™(1—R?)(1—RR’) (15)

and ¢’ the quantity with R’ and R exchanged,
we obtain for the transition energy of unsym-
metrical ions for large NV according to HLPS the
following values.

R1
AE=1}{(e1—e2)?+0a%?}}

R'«1
+H{(er—en) a2}
R}
- %RR'{ (e1— ez)2+a202—}
R
R}
—%RR'{ (e;—&_:)“-{—-aza'zF] . (16)
RR' =1
1 T
AE=a[R+-E—2 cos N+2]' an
(exact value)
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R>1,R'>1

T \2 1 17
AE=3a( )x[1+—+—] . (18
N+3 R R

R<1,R'>1, RR'+1

™

1
AE= +a(R+——) —2a cos
R’ N+2

(17

(17") is equal to (17). Therefore in all cases
where at least one of the R values is not larger
than 1, AE approaches a finite limit as N in-
creases indefinitely.

On the other hand, the LCAO method gives
for unsymmetric ions the following transition
energies.

R<1,R'<1

AE= 2—3‘”—(1 —RR)(QA+R»)}(14R"%)~3 (19)
N+1

RR'=1
m
AE=2a sin , (20)
N+1
R>1, R'>1
2 1
AE= (-—
N+3 RR’
1\~ 1 -}
X(H——) (1+——) , (21)
R? R’?
R<1,R'>1, RR' 1
m ™
AE=4a sin cos 23 (22)
2(N+2) N+2

All of these approach zero with N= =, i.c., the
wave-length approaches infinity in the same way
as for symmetric ions. This can be understood
from the nature of the approximations made.

PART VI
Discussion

We therefore find the following situation.
Both the HLSP approximation and the LCAO

% In J. Chem. Phys. 10, 518 (1942), Eq. (71), sin and cos
are exchanged in the first line.
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approximation give the general behavior for the
symmetrical ion, namely, that the wave-length
goes to infinity for increasing N (just as in
polyenes), but HLSP gives the wrong functional
dependence. LCAO gives A correctly as K(N+C)
but is not able to provide the correct value of the
constant C.

For the unsymmetrical ion, only the formula
according to HLSP can explain the experimental
result that there is a finite wave-length limit
with increasing chain length, while for LCAO
there is no essential difference in the behavior of
symmetric and antisymmetric ions. No closer
check on the functional dependence of A on N
has been made in this case.

It must be pointed out that the LCAO method
as used here does not take into account repulsion
between electrons and the wave functions are
not antisymmetrized. Whether the inclusion of
the repulsion and antisymmetrization would help
matters cannot be said.

Also, the effect of the overlap integral, dis-
cussed by Professor Mulliken in this symposium,
is not taken care of in setting up the determi-
nant (II).

Historical Note

The case of the polyenes—i.e., neutral chains
in which the ends are of the same nature as
the inner members—has been extensively dis-
cussed by Hiickel, Mulliken, Lennard-Jones, and
co-workers and Coulson.?* Mulliken has dis-
cussed chains with different ends but his interest
was notdirected to the influence of this difference.

Th. Foerster® has made a very interesting
investigation of the dyes considered here, and
also of phenylmethane dyes. He has used
methods very similar to those used here, but the
dependence on chain lengths was outside his
interest.

Lennard-Jones and Coulson have refined the
treatment of the polyene dyes considerably
beyond the methods used here.

# E. Hiickel, Zeits. f. Physik 70, 204 (1931); 76, 628
(1932). Zeits. f. Electrochemie 43, 752 (1937). R. S.
Mulliken, J. Chem. Phys. 7, 364, 570 (1939). J. E. Lennard-
Jones, Proc. Roy. Soc. 158, 280 (1937). J. E. Lennard-
Jones and J. Turkevich, Proc. Roy. Soc. 158, 297 (1937).
?. ?.)Coulson, Proc. Roy. Soc. 164, 383 (1938); 169, 413

1939).
% Th. Foerster, Zeits. f. physik. Chemie B47, 245 (1940).



