JANUARY, 1942

Dielectric Relaxation as

REVIEWS OF MODERN PHYSICS

VOLUME

a Chemical Rate Process

14

WALTER KAUzMANN*
Westinghouse Research Laboratories, East Pitisburgh, Pennsylvania

TABLE OF CONTENTS

1. THEORY
A. Derivation of the Differential Equation for the Relaxation of the Dielectric Polarization. 14
1. Continuous Distribution of Dipoles over Different Directions in Space. ............... 14
2. Dipoles Distributed among Discrete Orientations. .. ............coovviieiiiiiinn. .. 15
3. Simplifying AsSUmPLIOnS. . . .. ..ottt 15
B. Solution of the Relaxation Equation for Static and Oscillating Fields.................. 19
C. Physical Nature of Energy Losses in Dielectrics. . ................................. 20
D. Discussion of Debye’s Molecular Model for Dielectric Losses. ...................... 22
E. Factors Determining the Transition Probabilities .. .............................. .. 23
II. COMPARISON OF THE THEORY WITH EXPERIMENT
A. The Existence of Distributions of Relaxation Rates................................. 26
1. Evidence for Distributions of Relaxation Rates. ............. ... ... . ... ........ 26
2. Probable Origin of the Distribution. ... ..........ooooiiiiiiiiiiinan, 27
3. The Form of the Distribution Fumction. ...............c.ouiiiiiniiiniiinaninnnn 29
B. Summary of Observed Data on Dielectric Relaxation Rates. ........................ 30
C. Interpretation of the Observed Data on Relaxation Rates in Terms of Molecular Processes 33

Relaxation in Solids

1
2
3
4.
S
6

. Relationship between Viscosity, Direct Current Conductance, and Relaxation
. Probable Significance of the Large Values of the Entropies of Activation
. Interpretations and Calculations of the Actual Numerical Values of AEY and ASY
. Relaxation in Polymers................
. Factors Determining the Distribution of Relaxation Rates...........................

33

HIRTY years ago, Debye! showed that the
polarization of a dielectric medium in an
electric field might arise from the partial orienta-
tion of permanent molecular dipoles by the field
as well as from the distortion of electronic orbits
in the molecules. This suggestion has since proved
to be of very great value in dielectric research
and in the study of the structures of molecules
and of the natures of the solid and liquid states.?~”
For our present purposes it is sufficient to remark
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that when the dielectric constant of a liquid or
solid is much greater than about 23 or 3, perma-
nent molecular dipoles almost certainly play an
important part in determining the dielectric
properties of the medium. For a substance such
as water, with a dielectric constant of about 80,
dipoles clearly play a dominant role; this is also
true of a great many commercially important
dielectrics. Since much will be said about dipoles
on these pages, it may be helpful to remind the
reader that the actual magnitudes of the perma-
nent dipoles typically found on ‘“‘polar’’ molecules
(H:0, CH,Cl, CH;3;0H, etc.) is such as would
result from the separation of an electron from a
neutral atom by a distance of the order of mag-
nitude of a quarter of that usually observed
between adjoining atoms in a molecule.
Relaxation may be defined as the time lag in
the response of a system to a change in the

12



DIELECTRIC RELAXATION 13

physical forces to which it is subjected. From
thermodynamics we know that processes are
most efficiently carried out when they proceed
under conditions of thermodynamic reversibility.
Relaxation phenomena prevent the attainment
of these conditions and thus give rise to energy
waste which it is frequently highly desirable to
reduce. A knowledge of the mechanisms of relaxa-
tion phenomena may therefore often be of great
practical use.

Relaxation rates are, of course, the rates at
which a system comes into equilibrium with its
surroundings when various physical aspects of its
surroundings (temperature, electric field, mag-
netic field, stress, etc.) are changed. These rates
may be arranged in two more or less distinct
groups, depending on how rapidly they change
with the temperature. In one group we have
those rates which depend on such properties as
the thermal conductivity, the electrical conduc-
tivity of metallic conductors, and the velocities
of sound and light, which do not vary markedly
with the temperature. In the other group we have
those rates which do change considerably with
the temperature ; the rate at which the portion of
the dielectric polarization arising from the orien-
tation of permanent molecular dipoles comes into
equilibrium with an applied field belongs to this
class. This is evident from Fig. 1, which shows
that the frequency above which the contribution
of dipolar orientations to the dielectric constant
becomes negligible changes very rapidly with the
temperature for a typical dielectric. This fre-
quency is obviously closely related to the relaxa-
tion rate. Figure 1 also illustrates that in the
region of the greatest irreversibility, the energy
dissipation during each process of polarizing the
dielectric is a maximum.

The fact that these dielectric relaxation rates
depend markedly on the temperature is a very
significant one insofar as an understanding of the
detailed physical nature of the process is con-
cerned. Whenever the rate of a process depends
markedly on the temperature, it is quite certain
that at some stage in the process a molecule or
other unit involved is forced to wait until it has
acquired, by thermal fluctuations, a considerable
amount of energy in excess of the average thermal
energy in the medium. Now the factors which
govern the rate of acquiring large amounts of
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Fi1G. 1. Temperature dependence of dielectric relaxation
rates for a chlorinated diphenyl [from A. H. White and S.
O. Morgan, J. Frank. Inst. 216, 635 (1933)].

energy through thermal fluctuations have long
been the object of study by chemists in their
investigations of the very similar problem of the
rates of chemical reactions. At the present time
fairly complete ideas about these factors have
been developed, so that it is natural to apply
these notions to dielectric relaxation rates with
a view toward obtaining a better understanding
of their fundamental mechanisms. Such an appli-
cation will be the basic purpose of the present
paper.

The suitability of the approach to dielectric
relaxation rates from the standpoint of chemical
rate theory was first pointed out by Eyring.?
Applications to isolated problems in dielectrics
have been made by Frank,® Stearn and Eyring,?
and Baker and Smyth.!! In this paper a more
general attack will be carried out. We shall begin
by outlining a general theory of dielectric relaxa-
tion in terms of the frequency of discontinu-
ous molecular reorientations (hereafter called
“jumps’’). The more common quantities (such as
the loss factor) used in describing the behavior of
dielectrics in oscillating fields will be formulated
in terms of the quantities appearing in the
theory. This treatment is closely similar to that
already given by Debye!? in terms of rotatory

8 H. Eyring, J. Chem. Phys. 4, 283 (1936).

*F. C. Frank, Trans. Faraday Soc. 32, 1634 (1936).

10 A, Stearn and H. Eyring, J. Chem. Phys. 5, 113 (1937).
( 1‘3\)3’ Baker and C. P. Smyth, J. Chem. Phys. 7, 574
1939).

12 P, Debye, Physik. Ber. 15, 777 (1913) and reference 2.



14 WALTER KAUZMANN

Brownian motions, but it will be shown that the
fundamental picture of molecular motions used
by Debye is probably inaccurate, or at best ill-
suited to the study of most dielectrics of prac-
tical interest. Before applying the theory to
actual data, a brief review of the principles of
chemical kinetics will be presented. Eyring’s
general rate theory will be stressed here, it being
particularly well adapted to the problems likely
to be encountered. Finally, the available data on
dielectric relaxation will be considered and the
general features of the phenomenon as well as
some more specific details will be investigated
with a view to understanding the mechanism of
the relaxation process in terms of molecular
dynamics.

I. THEORY

A. Derivation of the Differential Equation for the
Relaxation of the Dielectric Polarization

1. Continuous Distribution of Dipoles over
Different Directions in Space

In common with the usual methods of calcu-
lating dielectric properties, let us consider a
medium containing N, dipoles per cubic centi-
meter, each possessing a dipole moment u point-
ing in a direction having a polar angle 6 and
longitude ¢ with respect to some fixed set of axes.
(Usually 8=0 will be taken as the direction of
the applied field, when there is a field.) Then
there will be at any time ¢ a distribution of the
dipoles among the various directions in space
such that the number of dipoles out of one cubic
centimeter whose directions are included in an
element of solid angle d@ around the direction 4,
¢ will be given by

N(8, ¢, 1)dQ,
thre function N being normalized such that

f N, o, )d2=N. (1)

At any time the polarization along the direction
=0 contributed by the dipoles will be

Pl)=p f N cos 6d9. )

Our problem is to find P as a function of the
time from a knowledge of the details of the mo-

tion of the individual dipoles. The latter are most
easily described in terms of transition probabili-
ties defined as follows: Suppose that a molecule
has an orientation 6, ¢. The probability that it
will move to a new position, ¢, ¢’, within a
solid angle d?' in an interval of time dt will be
k(6, o—0', ¢')dtdQ?’. Now it is practically uni-
versally observed that the rate of decay of the
polarization in condensed phases (or properties
dependent upon this decay rate) is very strongly
dependent on the temperature. This indicates
that the transition probability is governed by the
rate of thermal activation of the dipoles. That is,
the rate of reorientation is proportional to the
Boltzmann factor e~£/*T  where E is the energy
which must be furnished before the dipoles can
dissolve the bonds which hold them in one posi-
tion and re-establish themselves in another. Even
in the simplest molecules in condensed phases, E
is of the order of 10 2T at room temperature, but
it is often much greater, as we shall see, so that
this factor must be of dominant importance in
any consideration of dielectric relaxation. This
fact forces us to the conclusion that the dipoles
change their directions, not continuously, but in
a series of sudden jumps. The transition prob-
ability, k(6, o—¢’, ¢')dtdQ’', may then be regarded
as the probability that a jump will occur in an
interval of time d¢ resulting in the indicated
change of orientation.

The total number of molecules in a solid angle
dQ about the direction 8, ¢ which leave that di-
rection in an interval d¢ will be

Am=me¢wuawwxwmmv,@)
nl

where the integration is over &', the directions
into which the dipoles jump. Similarly, the num-
ber of dipoles entering the same solid angle dQ
from other directions will be

Bdt= f N, o, Ok(O', o'—b, £)d1dde. (4)
.

The net rate of change in the probability function
N is thus

AN, ¢, 1)/di=B— A4
- f [N, o, Dk, o'—0, )

_N(Gr [4) t)k(av (P—>0,, ‘P’)]dQ" (5)
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The two sides of this equation may be multiplied
by u cos 8 and integrated over all 6, ¢, and we
find, remembering Eq. (2),

dP(t)/dt=B'— A’
—u f f cos8IN(@', ', Dk(@, &'—0, )

—N(@, ¢, )k, ¢, 0, ¢')1d2dQ’. (6)

This equation, which gives the time rate of
change of the macroscopic polarization in terms
of the motions of the individual dipoles, cannot
be further reduced unless we make simplifying
assumptions concerning the dependence of the
transition probabilities on direction ; a very com-
plex result is possible if this dependence is not
simple, but usually considerable simplification
will be possible, as will be shown below. In
general, too, k will depend upon the applied field
which may in turn vary with the time, so that
k may also be a function of the time. This will
be a factor when we apply Eq. (6) to the calcula-
tion of the properties of the dielectric in alter-
nating fields.

2. Dipoles Distributed among Discrete Orientations

The above treatment is best suited to media,
such as liquids, in which there is a certain amount
of over-all homogeneity. In crystalline solids, on
the other hand, another treatment will usually
be more suitable. Here we must realize that, in
many cases at least, each dipole can point only
in certain general directions, giving rise to a
discrete series of possible orientations. The dis-
tribution function is now written as

N1=N(0u iy t)y (7)

which gives the number of dipoles in unit volume
which have an orientation 7. The transition prob-
abilities may be written as ki,;, or more simply
as k;;, N.k;dt being the number of molecules in
unit volume whose position changes from that of
state ¢ to that of state j in an interval dt. For
the net polarization along the axis, =0,

P(t)=p X N;cos b;; (8)

for the net rate of change of the number of di-
poles in orientation z,

le/dl=Z] (N,k“—‘N,k”). (9)

and for the rate of change of the polarization,
dP(t)/dt=p 3 cos 0;- (AN ,/dt)
= Z,',,‘ (Njkji cosf;— Niki;' COs 0«;). (10)

Equation (10) is the counterpart of Eq. (6) for
the case of discrete orientations.

3. Simplifying Assumptions

a. Assumption of jump probabilities independ-
ent of the sizes of the jumps; no field.—Suppose
that in Eq. (6) k(6, ¢—¢’, ¢’) depends only on #,
the polar angle measured from the direction 6, ¢,
and not on the particular value of 6 and ¢. That
is, suppose (as may frequently be the case) that
the probability of a jump depends only on how
far away the final position is from the initial posi-
tion. This, of course, implies that neither external
nor internal fields act on the dipoles. Then we
may write Eq. (6) as
dP(t)

T _27rP(t)f k(&) sin 8dd
dt 0

+#ffcos ON(0', ¢, k(8)dQdQ’. (11)

The first term here arises from term 4’ of Eq. (6)
because the two integrations there may now be
carried out independently.

Next assume that k is not only independent of
6 and ¢, the original orientation of the dipole,
but also of &, the angular distance through which
it jumps in a transition. Interpreted in the light
of our previous remarks on the role of thermal
activation, this is to say that whenever a mole-
cule is activated sufficiently to allow reorienta-
tion, it is so completely disconnected from its
former direction that all possible new directions
are equally likely. We shall see in Section II that
in the light of the experimental observations,
such an assumption is quite reasonable for many
substances.

Under these circumstances, the integral B’ in
Eq. (6) is zero, since S cos 6d2=0; or more
physically, this term must be zero since it gives
the net amount of polarization re-established by
jumps from other orientations, and due to the
assumed equal probability of all jumps, no polari-
zation can be established in this way. Then

dP(t)/dt= —4xkP(t) = —k,P(t). (12)

This, of course, is the differential equation lead-
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ing to an exponential decay of the polarization:
P(t) =Pye o, (13)

Owing to the manner in which k was defined, ko
is the rate constant for the activation of dipoles,
i.e., the jump rate, or the mean number of jumps
made by a dipole in unit time. We may define a
relaxation time, r=1/K,, such that in this time
the polarization will fall to 1/eth of its initial
value. This is the usual quantity used to describe
the dielectric relaxation; in this paper, however,
we shall make a point of using the dipole relaxa-
tion rate or the jump rate, k, itself, in describing
the relaxation, since this tends to emphasize the
important similarity of the relaxation process to
a chemical reaction.

The above assumption may also be applied to
Eq. (10); if all of the k;;'s are equal to a con-
stant, k,

dP/dt=—ku(Y i nN;cos 6;— Ny Y_; cos ;)
= —nkP(t)+Noku Y ; cos 8, (14)

where 7 is the total number of orientations al-
lowed. If there is anything like a symmetrical
arrangement of possible directions, the last term
will vanish and again we will have that

dP/dt= —nkP(f) = —koP(f). (15)

ky is here again the frequency with which dipoles
change their orientation in unit time.

b. Effect of an applied field.—All of the as-
sumptions in the previous section imply that no
electric field is acting on the dipoles. Now let us
suppose that a field F is acting along the =0
direction. Let F be so small that uF<KkT (which
is true for fields up to 10°® volt/cm). Note that F
is the field acting oz the dipole and may not be the
same as the externally applied field E either in
direction (due to crystal anisotropy) or in magni-
tude (due to internal field effects such as that of
Lorentz or of Onsager). The crystal anisotropy
effect need not concern us here, though it might
lead to very interesting considerations in the
relaxation of single crystal dielectrics.

The assumption that the transition probabili-
ties are independent of the nature of the jump
will have to be modified in the presence of a field,
since, starting with an unpolarized medium,
jumps into the direction opposing the field will
have to become less frequent, while those toward

the field will have to become more frequent;
otherwise there would be no way for an unpolar-
ized medium to acquire polarization in the field.
If we agree to the importance in dielectric relaxa-
tion of the role of energy barriers which are only
occasionally overcome by thermal agitation, this
is easily accounted for: If the dipole formerly, in
the absence of a field, required an energy E, in
order to change its orientation (E, being inde-
pendent of the size of the jump), it will now need
an additional energy uF(cos §—cos 6g-), in order
to move from a position with a polar angle 6 to
one with polar angle 6’. (64 is the polar angle of
the dipole at the top of the energy barrier be-
tween the two positions.) Since k=A4e E/*T,
where E is the height of the energy barrier above
the initial state, the transition probability in the
presence of a field will be

k(0—0")=A exp [— (Eo+rF(cos 8
—COs 909!)/kT:|

uF
=k; exp [k_T(COS e — COS 0)]

uF
ékl[l +;}—(cos Gpsr — cOS 0)] (16)

since uF/kT<K1, k; being the jump rate in the
absence of the field. Substituting in Eq. (6) we
find

dP/dt=B'\+B's+B/3—A"1—A's—A’;
where

B’1=yk1fcos 0d9fN(0’)dS2’=0

(17a)

wk, F
B,= f f cos g9 cos AN (6")dQdQ’
kT
wk, F
Bl3=— T fcos GdeN(H') cos §'d2' =0

A'1=uk1fcos 0N(0)d9fdﬂ'=41rk1P

pi F

Aly= T f f cos Bgy: cos 6N (6)dQdQ’

2

13 k1F
Alg= fcos2 0N(0)d§2fd9'.
kT

Since uF, the orienting energy, is in practice
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almost always very much smaller than the
thermal energy kT, the distribution function N(6)
will usually be very nearly uniform. That is,

N@)=N(@')=N,/4r+terms in F,

where N, is, as defined before, the number of
dipoles per unit of volume. The terms in F here
can be neglected in the integrals of B’s, A’,, and
A's, giving

Noﬂzle
B'2=———————ffcos 09+9 cOs 6dQdASY
4nkT

No}l,2k1F
Aly=—-— f f cOs g cos 0dQdQ’
47kT

Nopk, F
Als= ffcos2 0dedQ 41rk1
4rkT

Now it must always be true that the position of
the top of the energy barrier (i.e., the nature of
the activated state) for any transition must be
the same as that for the corresponding reverse
transition; were this not so, thermodynamic
equilibria would not in general be possible.
Therefore,

2

0616 = Bgo-

B’z =A,2.

and

Collecting all terms, we arrive at the expression

Noﬂtz
dP/dt= —41rk1(P—- F)
3kT

= —ko(P— Ny, F). (17b)

We see that at equilibrium, when dP/dt=0, this
gives the correct relationship between field and
polarization, since a, = u?/3%T is the contribution
to the polarizability due to a dipole.

The same treatment may be carried out for the
case of a discrete set of orientations to give

dpP Nou? Y cos?b;
i ~k0(P—— ‘ ——F). (18)
kT n

dt
Here # is the total number of orientations avail-
able to a dipole. Since the dipolar contribution to
the polarizability is easily shown to be
u? Y cos?é;
a’“ T

kT n
we have as before dP/dt= —ko(P— Noa,F).

(19)

c. Assumption that individual jumps involve
only a very small change in direction.—Equation
(6) can also be thrown into simple form if in each
jump the dipole changes its direction by a rela-
tively small amount. This treatment is very
similar to that given by Debye, and with certain
further assumptions leads to his well-known rela-
tion for the relaxation rate in terms of the
viscosity.

Assume, as in the first paragraph of Section a,
that in the absence of a field the probability that
a dipole will jump from one position (8, ¢) to
another (¢, ¢’) depends only on ¢, the angle be-
tween the two directions. Then, including the
effect of the field as before,

k(8, ¢—b', ¢') =ko(d)

uF
X[l +—/(cos 64:¢— cos 0)] (20)
kT

Assume further that ky(¢) decreases very rapidly
with increasing ¢, so that both N(¢’, ¢, t) and
cos ' may be expanded about (8, ¢). (Having
chosen the field direction as §=0 we can safely
assume that IV depends on 6 and not on ¢.) Then

oN
N, ¢, ) =N@@)=N@O)+ (¢ —0)5

62
-0+ 1)
062
cos 6’ =cos §— (8’ —6) sin 6
-3 —6)2cos+--- (22)

Remembering that the derivatives of N are all
proportional to the field F at the small fields we
are concerned with, so that they may be ne-
glected in integrals B’s, B’;, A’; and 4’3, we may
substitute Egs. (20), (21), and (22) into Eq. (6)
and again obtain Eq. (17a), where

A=y f f Ko(9) N (8) cos 6d0de
uw?F
! 2=—; f f oS Bggr cos 6Ko(3) N(0)dQdY’

A=t f f Ko(8) N(6) cos? 0d0de’
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ON
Bhi=A'1tu f f ko (4)N(0) () cos dadg’

" 2N
+—ffko(z9) (8" —6)2 —— cos 6dQdQ’
2 96?2

B’;=A’, (since 6:¢="6gs: as before)

’ ’ #2F ’
B 3=A 3+;‘7—:ffk0(0)(0 —-0) cos 6

Xsin 0N (6)dQdQ’

+§ f f ko(8) (0'— )"

Xcos? ON(0)ddQ’. (23)

These integrals are evaluated by transforming 6’
to a new polar coordinate system, ¢ and ¢, whose
pole is along (8, ¢), the new polar angle & being
the same as the argument in k¢(#), while the new
azimuthal angle ¢ is measured from the plane
made by the 6=0 and 60=0, ¢=¢ directions.
Then it can be shown that®®

cos @
0'—0=—19 cos p+39> ——sin2 p+---  (24)
sin
The net result of the integration is that
AP /dt= — }k8?) (P N""zp)
2 Av 3kT
= — }(kd)n(P — Noa, F), (25)

where (k9?)ndt is the mean square angle moved
in an interval of time d¢f, and is defined by
k9= [ 9ko(0)d. (26)

It is interesting to note that whereas with the
previous assumption all of the change in the
polarization comes from A4’; and A’s, here the
contributions from these terms are cancelled out
by similar terms in B’; and B’; and 'the total
change comes from the remaining terms in B’y
and B’;. This signifies that for the present type of
behavior the change in polarization with time
comes predominantly from motions in which
dipoles return to their original orientations several
times before finally wandering out on the road
toward complete equilibrium. The indecisive con-
tinuity of this motion is in direct contrast to the

13 See reference 2, p. 80.

prolonged hesitancy and sudden, unrestrained de-
cision which may be said to characterize the
motion of a dipole obeying the kinetics previously
considered.

Equation (6) can be thrown into a form which
will give Debye’s theory of the molecular process
determining the relaxation rate if we alter the
interpretation which we have made of the transi-
tion probability k. We have up to now regarded
k(6, o—0', ¢')dt as the probability of a single
jump in a time interval df. Instead, we may re-
gard it as the probability that, in an interval dt
sufficient for a relatively large number of jumps
to have taken place, a dipole originally in one
specified direction will be found in another speci-
fied direction. (The minimum number of jumps
considered here must be at least such that by the
time of the last jump, all memory of the direction
of the first jump is gone.) Under these circum-
stances, Einstein!* showed that

f 9ko(9)d0= (ko= 4RT/5,  (27)
where (kd#?)y, is the mean square deviation of angle
per unit time and { is the average coefficient of
frictional resistance opposing the angular rota-
tion, such that the torque required to maintain
a given average angular velocity d6/d¢ is

T=¢d6/dt. (28a)

If we assume that the rotatory motion of a
dipole in a liquid may be adequately described
as that of a sphere of radius ¢ immersed in a
homogeneous medium of viscosity 5, hydrody-
namics (Stokes' law) tells us that

¢=8mnad. (28b)
Substituting in Eq. (25) one finds that,
1
dP/dt= ——(P— Ny, F), (29)
T

where 7=4ma3/kT, which is Debye’s familiar
result.

It should be clearly realized that for Eq. (29) to
be true, it must be possible to choose an angular
displacement which is large enough that several
jumps are on the average required in order to

1 A, Einstein, Ann. d. Physik 17, 549 (1905); 19, 371

(1906) ; Theory of the Brownian Movement (ed. by R. Fiirth)
(Methuen, 1926), p. 32.
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cover the interval; at the same time it must be
small enough for only a small fraction of a rota-
tion to have taken place. Even if the individual
jumps cover angles large enough to make the use
of the expansions of Egs. (21), (22), and (23)
questionable, the treatment leading to Eq. (25)
may still be fairly accurate, whereas that leading
to Eq. (29) will be invalid. It is far from certain
that this condition will be met in general even
for Eq. (25) in dielectrics in which the rotating
molecules are of about the same size as those in
which they are embedded.

d. Before going on to a review of the solutions
of Egs. (17), (25), and (29) in terms of more usual
electrical quantities, it is well to mention three
significant facts. First, the same differential equa-
tion may be obtained with the present ‘‘chem-
ical kinetic”’ point of view for dipole relaxation
as is obtained with the older ‘‘rotatory Brownian
motion” point of view. Therefore, no judgment
between them is possible on the basis of the
phenomenology of dielectric behavior. Second,
only rather special kinds of kinetics will lead to
the simple form of Egs. (17), (25), and (29). In
general, we can go no further than Egs. (6) and
(10). It is possible that this accounts for some of
the discrepancies which exist between the results
of the following section and experiments on the
frequency dependence of dielectric loss and di-
electric constant. Third, the discussion has been
carried out with reference to the rotation of indi-
vidual dipoles; actually there is no point in the
presentation which requires us to restrict our-
selves to relaxation processes involving only
single molecules; the treatment will be just as
valid if we wish to speak in terms of the net
dipole moment of a larger region which may
actually be involved in the unit molecular process
of relaxation in many cases.!5

B. Solution of the Relaxation Equation for
Static and Oscillating Fields

The relaxation equation in the form in which
we have it in Egs. (17), (25), and (29) can be very
readily manipulated to give the relaxation and
dispersion properties of real dielectrics, and in
this way we may gain a clearer physical insight

15 Cf. Kirkwood’s discussion of the dielectric constant of
polar liquids and the role of association between molecules

in determining the effective dipole moment, J. Chem.
Phys. 7, 911 (1939).

into these properties than is possible with the
more usual methods of derivation.

First suppose that for <0 there is a constant
external field E acting on a specimen of the
dielectric, and that at {=0 this field is removed.
Then for >0 we have the differential equation

dPu/dt= _kO(Py—NoauF)l (30)

where we now write P, to signify that we mean
only that part of the polarization which is con-
tributed by the dipoles. If we assume the Lorentz
field, F=E+4xPr/3, to be acting, since E=0
and Pr=P,+ P, (where P, is the portion of the
polarization contributed by the distortion of
the electronic orbits by the field, given by
P,=Noa,F, and Pr is the total dielectric po-
larization), we find

4
F= ?(Pu'l'NanlF)

4

=? ./ (1—4xNyaa/3). (31)
Now 4rNoaa/3=(eo—1)/(e0+2), where e is
the dielectric constant measured at frequencies
much greater than the relaxation rate, while
(47No/3) (aa+a,) = (es—1)/(es+2), where ¢, is
the statically measured dielectric constant ‘to
which the dipoles contribute their full share.1®
Thus we find that

F 4r(60+2)P (32)
3\ 3 /)"
and
41I‘N0 60+2
dP,/dt= —ko[l - ay ]P,, (33)
£0+2
= —'ko( )P‘,= ""ko’P,,,
€ +2

so that the rate of relaxation of the dielectric
should be decreased by the factor (eg+2)/(es+2)
under the jump rate for the dipoles in the absence
of all fields, simply because of the tendency of the
polarization already present to maintain itself.
This is the same sort of behavior which leads to
the prediction of a Curie point and ferro-electric
behavior for strongly polar liquids when the
Lorentz field is assumed. The latter prediction

16 These relations are derived in Debye, Polar Molecules,
Chap. 1, and in many elementary texts.
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F16. 2. Frequency
dependence of the
ol dielectric constant
and loss factor ac-
1 cording to Egs. (37).

S/

=50  -100 =50 .50 1.00 150
LG EZy —

o

is, of course, not found to be verified because of
the inadequacy of the Lorentz field for pure polar
liquids;!” nevertheless, such an effect of the in-
ternal field on the dielectric relaxation should
always be present to some degree.

For the case in which the external field E is not
zero it is easily seen that (again assuming the
Lorentz field)

€+2
dP,,/dt = —ko’[P,, - Noa‘.(T)E] (34)

When E is periodic with a frequency v,
E=R[E?*»*], where R[ ] means that we are
to take the real part of the expression in the
brackets; when the transients in the dielectric
have died out, we can assume that P, is periodic
with the same frequency as E, P,= R[ Py,e?*"!].
Substituting in Eq. (34), it is found that

Noa, €&+2
Po,, = ( )Eo
142mw/ky\ 3

If we regard [(e,+2)/3]Eo as the total field
acting inside the dielectric, then a,/(1427iv/k’)
performs the function of the contribution to the
polarizability due to dipole orientation, in agree-
ment with the well-known rule of Debye. To
obtain the total polarization in terms of E, we
must add Pog= NeaaF, to (35).

Noa, /e,-I—Z)
14 2miv/k/\ 3

(35)

P0T=P0u+P0el =

47
XE,+ aez(Eo+—3“Por) . (36)

It is a simple matter to solve this for Pyr in
terms of E,. And since we know that 47P,r

17 J. H. Van Vleck, J. Chem. Phys. 5, 556 (1937).

= (e—1)E,, we have a relation for the dielectric
constant e in terms of the frequency. e is evi-
dently complex, showing that P and E are out
of phase. If we write e=¢ —1¢’’, we find very
easily that

€3 — €
= +€ (37a)
142
and
(es—€0)x
¢ = (37b)
14«2
where
v feo+2
x=21rv/ko'=21r——( ), 37¢)
ko €

which are the familiar dispersion equations,
whose form is given in Fig. 2, and which are
well known to give a fairly close (but rarely
precise) description of dispersion effects in
dielectrics.

The relationship of ¢ and €’ to the quantities
usually used in describing dielectric behavior is
as follows: € is the dielectric constant as it is
usually measured. €’ is usually called the loss
factor. The ratio €’/€¢ is frequently called the
dissipation factor. The angle & defined by tan 6
=¢'’/¢ is known as the loss angle, while its com-
plement, §=90°—§, is the phase angle. The quan-
tity sin d=cos 0 is the power factor. For small
values of €¢'’/€, the power factor, loss angle and
dissipation factor are for all practical purposes
equal.

C. Physical Nature of Energy Losses in
Dielectrics

For convenience, suppose that F=E and

dP/dt= —k(P— NoaE). (38)

Now the rate of dissipation of energy per unit
volume is given by Ei, where 7 is the current
density in the medium. It is easily seen that when
the polarization of a dielectric is changing there
is flowing an effective current ¢=dP/dt. Thus
the polarization current flowing in a dielectric at
any time is given by the relaxation rate multi-
plied by the difference between the actual
polarization and the equilibrium value corre-
sponding to the applied field at the moment; this
makes possible a very simple formulation of the
physical nature of the losses at high frequencies.

Suppose that E is a very high frequency field
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with »>>k,, so that at no time does the polariza-
tion have a chance to build up appreciably. Then
P20 and dP/dt=kN,aE and the average power
loss is at the rate of koNVoa(E?)s per unit time or
koNoa(E*)n/v per cycle. This behavior is identical
with that of a conductor having a specific con-
ductivity of koNoa reciprocal ohms. Physically it
arises from the fact that if a dipole be regarded
as a positive and a negative ion separated by a
fixed distance, we cannot detect the fact that the
ions are bound to one another unless we use
fields which oscillate so slowly that the ions can
move a distance greater than that separating
them during a single oscillation (i.e., fields with
periods greater than the time required on the
average for one complete rotation). It is as if in
an ionic solution we were to connect each pair of
oppositely charged ions with a long thread; the
solution would act as an ohmic conductor only
as long as the field was reversed before the ions
could move roughly the distance corresponding
to the lengths of one of the threads.

At low frequencies (v<k,) the physical nature
of the loss is less obvious. Here P lags slightly
behind E. If P is broken up into two parts, one
part in phase with E, and the other out of phase
by 7/2, it is readily found that the in-phase part
of Pisgiven by NoaE(1 —4n%2/ky?). (The out-of-
phase part of P in Eq. (38) will, of course, con-
tribute nothing to the polarization current which
will result in the dissipation of energy as heat.)
Substituting this in Eq. (38) to obtain the energy
dissipating ‘‘current,” we find that

dP/dt=4n*av?E /K,

and the average energy dissipated per unit time
is (47*Noar?/Kko)(E?)a, while the energy lost as
heat per cycle is (4n2Noav/Ko){E?)a.

Thus we see that if we plot the energy loss per
cycle against the frequency, we get a direct pro-
portionality at low frequencies and a hyperbolic
relationship at high frequencies, with a maximum
in between. Since the energy loss per cycle is also
given by e(E?)y, the form of this energy loss
curve should be similar to the €’ curve given in
Fig. 3; by the above arguments, therefore, we see
the physical reason for the familiar symmetrical
¢’ vs. log v plot of Fig. 2.

The actual conversion of electrical energy into
heat in a dielectric may be regarded in the

€s~€o - I): —

2]

F1G. 3. Linear and inverse dependence of the loss factor
on the frequency.

Debye Brownian motion treatment as the result
of the viscous resistance offered by the medium
to dipole rotation. In the chemical kinetic theory
the conversion results from the transformation
of the potential energy of the misaligned dipole
into kinetic energy when the dipole jumps
toward the field direction. This last is the same
in principle as the conversion of chemical energy
into heat during an ordinary chemical reaction.
Since viscous flow in condensed phases is prob-
ably most readily interpreted in terms of reaction
rate theory, the ultimate dissipation mechanism
in the two theories is really essentially the same.

A class of dielectrics exists in which the energy losses
per cycle are independent of the frequency over wide
ranges of frequency. These clearly have the important
property that the energy dissipated per unit time increases
with the frequency, so that they may be expected to tend
to lose their usefulness at high frequencies. Glass, hard
rubber, polystyrene, and non-polar materials in general
act in this manner, though these losses are apparently
to be found as a background in polar materials as well.

Such behavior is clearly very different from that de-
duced above although it might be explained if a uniform
logarithmic distribution of relaxation rates—see Section
ITA below—were assumed to exist. B4z!8 found that for
polystyrene (‘“‘trolitul”) the power factor changes only
from about 5X 10~ to about 7X10~* when the frequency
is changed by a factor of 104, and hard rubber, porcelain,
and phenol-formaldehyde-paper pulp (‘“pertinax’’) showed
about the same small relative change in power factor with a
frequency change of 105, That a uniform logarithmic dis-
tribution of relaxation rates should exist over such a wide
range seems hardly plausible.

Such losses may well arise from dimensional changes of
the dielectric due to electrostriction, with consequent
rubbing over electrode surfaces, etc., with which the dielec-

18 G, Baz, Physik. Zeits. 40, 394 (1939).
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tric is in contact while subject to an oscillating field.
If the frictional force between the dielectric and the elec-
‘trode were independent of the velocity (as is characteristic
of solid-solid interfaces), the same amount of work would
be expended in a single cycle of a given amplitude no
matter what its frequency. Also, the electrostriction varies
as the square of the field, as does the total energy stored,
so the power factor (which is the ratio of losses per cycle
to energy stored) would be independent of the amplitude,
as is observed. A calculation on the basis of this picture
shows, however, that power factors of only the order of
magnitude of 1078 are possible from this source acting
alone. Inhomogeneities in the dielectric, such as micro-
scopic cracks, might give rise to similar effects many times
as great if there were enough of them. In any case the
phenomenon of frequency-independent power factors
probably arises from something more nearly like ordinary
friction or certain types of plastic flow, where dissipative
forces are essentially velocity independent, rather than
from forces similar to those arising from fluid viscosity
such as are the subject of this paper. In this connection, it
seems likely that a comparison of the behavior of the
damping capacity for mechanical vibrations with this
frequency-independent dielectric loss factor in various
substances would shed some light on the origin of both of
these little understood phenomena.

D. Discussion of Debye’s Molecular Model for
Dielectric Losses

In Sections A3b and ¢, above, using three
essentially different assumptions, we have re-
duced the relaxation equation, Eq. (6), to the
simple form from which dispersion effects are
obtained more or less in agreement with the
actual observations. Previously the method of
Debye has been used almost exclusively in inter-
preting the results of dispersion experiments,
partly because it was for long the only one avail-
able, and partly because it gives such a clear and
sometimes quantitatively satisfactory physical
picture of what the relaxation process is. Because
of this wide use, it has been thought desirable
here to devote some space to a criticism of this
treatment (and similar treatments) when applied
to condensed phases in which the rotating dipolar
molecules are of about the same size as the
molecules of the surrounding medium. It is to be
emphasized, however, that the use which is made
of this theory in the investigation of the sizes and
shapes of large, rigid molecules, such as cellulose
derivatives and proteins, in low molecular weight
solvents is not seriously affected by these argu-
ments insofar as the molecules are large and rigid.

A. The most obvious objection to the develop-
ment is in its use of Stokes’ law for rotating
spheres, Eqgs. (28a) and (28b), in giving the
torque resisting rotation. This relation is derived
hydrodynamically assuming stream-line motion
in the surrounding fluid and using as one
boundary condition that the layer of liquid in
contact with the surface of the sphere moves
about with the same velocity as the sphere. For
this latter condition to be met by a molecule
surrounded by others of about the same size
would mean that the effective radius of the
“sphere’’ would have to be multiplied by three.
If on the other hand we are willing to allow for a
certain amount of slippage between the two, we
must decide just how much slip to allow, and this
is indeterminate without further information.
There is certainly no reason to believe that the
slip would be just sufficient to give the same
effect as a sphere in a homogeneous fluid.

If this criticism is to be admitted, then the
entire picture of stream-line flow here becomes
questionable. Thus the most that can be said for
this assumption is that it might (and apparently
sometimes does) give the correct order of mag-
nitude for the relaxation rate. Discrepancies
between observed viscosities and those calculated
from the known molecular radii and the observed
relaxation rate by means of Eq. (29), or dis-
crepancies equivalently stated, should not be
taken too seriously, and the relationship between
viscosity and the dielectric relaxation must be
regarded as somewhat less direct, at least, than
is implied in Eq. (29).

B. As we learn more about the structure of
liquids, the picture of a dipolar molecule as a
sphere or other solid body immersed in a homo-
geneous viscous fluid which shows stream-line
motion becomes less and less pleasing, even as a
crude approximation. Thus we know today that
in the immediate neighborhood of a molecule in
a liquid the molecular arrangement approaches
that found in a crystal; this is especially true of
polar liquids, but is also true of non-polar liquids.

Debye and Ramm® have used the picture of
restricted molecular rotation in condensed phases
in order to improve the agreement of Eq. (29)
with the observed relaxation times for certain

pure polar liquids. They assume that, because of

13 P, Debye and W. Ramm, Ann. d. Physik 28, 28 (1937).
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the quasi-crystalline structure, a molecule is
subject to an angular energy dependence, given
by —E sin 6, in addition to that arising from the
external field, where 6 is the angle between the
dipole and a slowly changing direction of stability
for the dipole which is determined by the
structure of the surrounding medium, and 2E is
the height of the energy barrier preventing
rotation. E is known from other applications?
of the theory to have values up to 10kT at
around room temperature. If this is to be
accepted as a valid description of the environ-
ment of a molecule, it becomes exceedingly
difficult to understand why the macroscopically
observed viscosity, let alone any viscosity what-
soever, can still be accepted as useful in describ-
ing the relaxation process. The attempt to
improve the agreement with experiment in this
way seems only to undermine further our faith
in what is started out to support, and makes even
more questionable the picture of stream-line flow
in the description of the molecular process in-
volved in dielectric relaxation.

¢. Inintroducing the viscosity in the way that
it does, this theory throws much of the burden
of the task of formulating a molecular theory of
dielectric relaxation upon those who seek to
explain liquid viscosity on the basis of a molecular
theory. A truly molecular theory has thus been
only half achieved. Actually the problem of
viscous flow is probably considerably more
complex than that of the mere rotation of a
molecule, particularly when the latter can be so
readily pictured in terms of the much more
thoroughly understood unimolecular reaction
rates. We would, therefore, be much more jus-
tified in calling upon the dielectric relaxation to
help us in formulating a molecular theory of
viscosity than we are in attempting the reverse.

The most fruitful attitude in this connection
would probably be to maintain that when there
is a correlation between the viscosity and the
relaxation, the molecular motions involved in
each must be similar. When these motions are
understood, we will understand both phenomena.
And if the correlation between the viscosity and
the relaxation is not so direct, as is sometimes
the case, we may conclude that the molecular

20 P, Debye, Chem. Rev. 19, 171 (1936); Physik. Zeits.
36, 100, 193 (1935).

motions involved are not quite similar and
proceed to investigate the reason why.

This criticism is even more justified when the
dispersion of solids and polymers is interpreted
in terms of the Stokes’ law relation for the
relaxation time. The concept of an ‘“‘internal
viscosity’’ must be invented if we are to proceed
on the assumption that the same type of process
is involved here as in liquids. The difficulty which
one has in picturing the real physical nature of
this internal viscosity makes it very questionable
if anything useful has been accomplished in this
way.

D. In the process of deriving the relaxation
equation from the standpoint of ordinary
Brownian motions it was pointed out that the
treatment is valid only if after several jumps the
dipole has moved through but a small angle (that
the molecule must move by jumps being clearly
indicated by the exponential dependence of the
relaxation rate on the temperature, and whether
this dependence comes in through the viscosity
or otherwise being of no consequence here). It
will become evident in Part II of this paper that
in the majority of cases of dielectric relaxation
which have been studied experimentally, there
is reason for strongly suspecting the validity of
such an assumption in general.

E. In Section IIC3a, below, it will be shown
that the Debye relation for the relaxation time
neglects certain effects analogous to those ap-
pearing in the Debye-Hiickel theory of ionic
conductance. In polar liquids these effects should
be very considerable and are such as to make the
agreement of the Debye relation for the relaxa-
tion rate with experiment even poorer than is
usually found for such liquids.

E. Factors Determining the Transition
Probabilities

In Eqgs. (37) we have at least an approximate
description of the dispersion phenomena of die-
lectrics in terms of molecular dynamics described
by the transition probabilities ko. It has been
suggested that we focus our attention on this
quantity rather than on Debye’s relaxation time,
r=4mna®/kT, which we have seen is based on
assumptions unsuited for use in studying
ordinary dielectrics.

Little has been said of the factors which deter-



24 WALTER KAUZMANN

mine the magnitudes of these k¢'s, other than to
say that their large temperature coefficients
indicate that they almost certainly depend upon
thermal activation similar to that required in
many chemical reactions. This last fact led
Eyring to point out that the relaxation rate may
be regarded as equivalent to a chemical rate
constant for a unimolecular reaction and as such
that it should be amenable to the same sort of
interpretation as are such reactions. In the next
sections such an interpretation will be applied to
available dielectric data, but in order to make
this more intelligible to the reader who is not
familiar with the mode of reasoning employed in
interpreting chemical rate constants, it is
probably well to present at this point a brief
resumé of this field. More complete details, with
applications to chemistry, will be found else-
where. 2!

For chemical reactions taking place in gases
the most obvious procedure to be used in cal-
culating the reaction rate would start from the
kinetic theory of gases. For bi-molecular reac-
tions, i.e., reactions in which two molecules react
with one another (as in Hy+1,—2HI), the total
number of collisions per second Z is easily cal-
culated; the large temperature coefficients for the
rates of such chemical reactions indicate that of
these Z collisions only those involving more than
a certain amount of energy E will result in
reaction, this fraction being given roughly by
e~ EkT, Then Ze E*T should give the reaction
rate at any temperature 7. Actually rates are
found to be somewhat smaller than those cal-
culated in this way—usually by from 1/10 to
1/1000—a result which is ascribed to a further
requirement that only for those collisions in
which molecules are favorably oriented will
there be a reaction. Unimolecular reactions in
gases (i.e., reactions whose rate is independent of
concentration of reactant) presumably result
when the slow process in the reaction is not the
occurrence of sufficiently energetic collisions, but
the localization of the energy at the point in the
molecule at which the reaction is supposed to
take place.

21 C, Hinshelwood, Kinetics of Chemical Change (Oxford,
1940) ; R. Fowler and E. Guggenheim, Statistical Thermo-
dynamics (Macmillan, 1939) ; S. Glasstone, K. Laidler, and
H. Eyring, Theory of Rate Processes (McGraw-Hill, 1941).

This simple procedure loses its usefulness when
it is applied to reactions in condensed phases in
which the reaction involves the activation of
groups of molecules—as is likely to be the case
with dielectric relaxation. The difficulties of
determining the effective collision frequency and
of enumerating the relative numbers of ways,
favorable to reaction, in which the activation
energy can be distributed in the group here
become very difficult. Fortunately, another ap-
proach to the problem is available in the absolute
rate theory of Eyring,” which we shall now
outline.

When a system, say one made up of two atoms
of hydrogen and two of iodine, goes from one
state of equilibrium (say Hz+1;) to another (say
HI+4HI), there will be some point along the
easiest and hence most usual path of reaction at
which the system will have a maximum of poten-
tial energy—corresponding to the ‘‘activation
energy.” If we describe the configurations of the
system in terms of suitable coordinates, it will
be possible to choose one coordinate—the reaction
coordinate—motion along which will correspond
to motion along this easiest path of reaction.
Plotting the potential energy against the value
of this coordinate we will in general obtain a
curve similar to that shown in Fig. 4. Now owing
to our choice of coordinates, at any point along
the reaction path the system is in a state of
minimum potential energy with respect to all
coordinates save the reaction coordinate. But
analysis of our notion of what is ordinarily
meant by the term stable molecule shows that we
may define a stable molecule as a complex of
atoms in a local potential energy minimum with
respect to motions along the internal coordinates
of the complex; applying this to our present
example we see, therefore, that at any point
along the reaction path we may regard our
system as a molecule in all respects save its
behavior along this single reaction coordinate. In
particular, all configurations in the neighborhood
of the energy maximum along the reaction path
may in this sense be regarded as corresponding
to a molecule, which is usually called an activated
complex. Centering our attention on this ‘‘mole-
cule,” it is easy to see that the rate of formation
of one stable system (say HI+HI) from another

22 H. Eyring, J. Chem. Phys. 3, 107 (1935).
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ACTIVATED
COMPLEX

Fic. 4. Sche-
matic diagram of
the course of a
chemical reaction.

HI+HI

HH 1,

REACTION COORDINATE —
(say Ha+1,) is given by

Number of molecules reacting in unit time

=«kN*z, (39)

where N* is the number of activated complexes
present, z is the rate at which each decomposes
in the proper direction (i.e., the inverse of the
mean life of an activated complex), and « is the
fraction (usually very close to unity) of those
complexes which, having started decomposing in
the right direction, actually end up as two
hydrogen iodide molecules rather than somehow
getting turned around and going back to their
initial state of Hy+1I,. The so-called absolute rate
theory consists in formulating an expression for
these various quantities in terms of the potential
energy function of the system as a whole. Since
the latter can in principle always be determined
from the fundamental laws of motion of ele-
mentary particles, we have here a method for
calculating rates of reaction from first principles
—whence the adjective ‘“‘absolute.”

The number N* of activated complexes present
in an actual ensemble is calculated by assuming
that these are in thermodynamic equilibrium
with the reactants. There will then be an equi-

# 1t should be noted, however, that the method is
actually an approximate one in the sense that, from what
we know of quantum mechanics, the above formulation is
inconsistent : we have specified both a configuration and an
internal velocity of the activated complex, and we know
from the Heisenberg uncertainty principle that such a
specification is limited. But it can be shown that for
particles as heavy as ordinary molecules moving over
potential energy surfaces of the sort that are likely to be
encountered in most reactions, the error thus introduced is
not serious, particularly when we are interested only in
determining orders of magnitude, as will be the case in
our present applications to dielectric relaxation. Indeed,
it is not difficult to show that even in the very unfavorable
case of reactions involving hydrogen atoms alone (e.g.,
reactions of the type Ho+ D;—>2HD), errors of something
less than factors of two are introduced into the expression
for the reaction rate by this assumption. We shall usually

be interested in much larger molecular weights and not be
worried by uncertainties as small as this.

librium constant K whose value will be given by
the ratio of the partition function F* of the
activated state of those, F,, of the reacting mole-
cules; the number of activated complexes can in
turn be found from the numbers of reactant
molecules multiplied into the constant K.

K =F*/x.F.. (40)

It may be objected that this assumption of
thermodynamic equilibrium is a very serious one;
actually it probably is not. As long as molecules
are activated and deactivated frequently com-
pared with the rate at which they react once
activated, this assumption will be satisfied. In
unimolecular reactions, such as we are concerned
with here, this condition breaks down only in
gases at low pressures (that is, where energy
interchanges between molecules are rare)—quite
the opposite of what we shall be dealing with.

The partition function F* above contains in it
a factor dependent upon motion along the reac-
tion coordinate. If we regard this coordinate as a
translational degree of freedom in the neighbor-
hood of the activated complex, this factor will be
given by (2xm*kT)¥/h, where m* is the inertial
mass corresponding to motion along this coor-
dinate, / is the linear dimension along this coor-
dinate of the region included by the activated
complex, and k, T, and % are Boltzmann’s con-
stant, the absolute temperature, and Planck’s
constant. In addition, the mean velocity along
this coordinate in one direction is

5= (BT/2mwm*)t (41)

and the mean rate of passage through the acti-
vated state is

=5/l=(kT/2xm*)/L. (42)

If we restrict ourselves to unimolecular reac-
tions, the equilibrium constant K can be written,
as a simple ratio F*/Fy= (2xm*kT)¥(l/h)Fi,/ Fo,
where Fi, is a new partition function including
only those motions of the activated complex
which typify its molecule-like aspect (i.e., which
omits the contribution due to the incongruous
reaction coordinate). Collecting the factors and
expressing the rate of reaction as the mean rate
of reaction of a molecule [which is the unit in
which k of Eq. (6) is expressed ], we get for the

2 This point is lucidly discussed in Chapter 12 of Fowler
and Guggenheim, Statistical Thermodynamics,
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reaction rate

k=«kKz=x(kT/h)(Fio/Fo). (43)

Since Fi, and F, can be calculated from the
potential energy function of the system, and «
can usually be estimated sufficiently accurately
(for our purposes, it can always be taken as
unity), this is a satisfactory expression for the
reaction rate. It is more convenient, however, to
throw the factor F}o/F, into another form.
F1o/F, is itself a sort of equilibrium constant,
and thermodynamics tells us that equilibrium
constants for reactions can be written in terms
of the free energies or of the entropies and
energies of the reaction as follows:

K= FIO/F():e—AFi/RT

= ¢AS3/Rg—AEYIRT, (44)
where AF}, ASf, and AEf are the molar free
energy, entropy, and energy increases required to
convert one mole of the normal state into one
mole of the activated state, disregarding, how-
ever, the contributions to these quantities by the
motions along the coordinate of reaction in the
activated state. (AEf is thus essentially the
activation energy of which we have been speaking
previously in this paper.)
Then we can write the reaction rate as

kT
K= k—eA St/Rg—AEL/RT

= k—e—AFLIRT,

(45)

The quantities AS} and AE] may be evaluated
from experimental data by obvious methods (see
below, Section 1IB).

The value of this formulation of reaction rates
is that if we know something of the thermodynamics
of the normal state, we can, from it and from the
observed reaction rate constants, learn something
of the thermodynamics of the activated state. Since
thermodynamics, through statistical mechanics, is
related to the properties of molecules, this in turn
tells us something of the molecular nature of the
activated complex, which is equivalent to under-
standing the molecular dynamics of the rate process
in question.

II. COMPARISON OF THE THEORY
WITH EXPERIMENT

A. The Existence of Distributions of
Relaxation Rates

1. Evidence for Distributions of Relaxation Rates

Equations (17), (31), (37a), and (37b) should
suffice for a complete description of the dielectric
behavior of a medium with respect to tempera-
ture, density, and frequency of applied fields,
in terms of molecular properties, since a,; and
a, can be calculated from the number of mole-
cules per unit volume, the dipole moment, the
temperature, and the average polarizability of a
molecule, while k¢ can be found from the
molecular relaxation rate ko. Actually, however,
this is never found to be the case; dielectric
properties are well known not to vary with fre-
quency, density, and temperature as predicted
here in anything like a satisfactory manner from
a quantitative standpoint. Qualitatively, how-
ever, the agreement is definitely as predicted,
showing that the general approach first used by
Debye is correct, and that the discrepancies
involve only matters of detail.

Much of the discrepancy in the static proper-
ties (i.e., for dP/dt=0) probably arises from the
error of assuming that the Lorentz field is valid
for condensed media. The relationship between
ko and Kk, the relaxation rates of the dielectric
and of the individual uncoupled molecules, is
also affected by this. That the general form of the
frequency dependence of the loss factor, €,
should not be changed much by this factor,
however, is shown by the work of Cole;?® the
frequency of the maximum loss factor is shifted
about for the different kinds of reasonable
internal fields, but otherwise the shape of the
dispersion curve remains nearly the same. Yet
it is in just this latter respect that the loss
factors often deviate most markedly from pre-
dictions: according to Eq. (37a) and more ob-
viously from Fig. 2, the dielectric constant should
have dropped effectively to its high frequency
value €, when the frequency has changed from
that at the maximum of absorption by a factor

“of about 10. The frequency change actually

required is usually several times as great as this,
a typical example being given in Fig. 5, for

% R. Cole, J. Chem. Phys. 6, 385 (1938).
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vulcanized rubber, where the factor is about
300. For polyvinyl chloride polymers? it can
under some conditions become so great that
only about half of the entire change between
¢, and € can be measured on an ordinary
bridge going from 60 cycles to 10,000 cycles,
showing that the frequency must be changed by
a factor of something like 5,000,000 in order to
bring about an amount of change equivalent
to that which would be predicted from Eq.
(37a) to occur in the change by a factor of 10.
This discrepancy can be expressed in other
ways. Thus, Cole and Cole?” have pointed out
that according to Egs. (37a) and (37b), a plot
of ¢ vs. ¢ for different frequencies at a given
temperature should give an arc of a circle, as
shown in Fig. 5 for vulcanized rubber, with the
center of the circle falling on the ¢ axis. They
have shown that while circular arcs are usually
obtained with real dielectrics, the centers ac-
tually fall considerably below the ¢ axis, a
measure of the extent of the discrepancy being
given by them as the angle ar/2 in the figure.
They have also shown that simple equivalent
forms of Egs. (37) can be written introducing
a as a parameter. This result of the Coles is very
probably a consequence of the same factor
which causes the other discrepancy noted above.
A third and equivalent way of expressing the
magnitude of this discrepancy is to compare the
magnitude of the maximum loss factor, €’max,
with that predicted by Eq. (37b). Since the
maximum occurs at such a frequency that x=1,

we have
(46)

for the value of the predicted maximum. Ob-
served loss factors rarely ever become this great;
the ratio R of the observed maximum to that
calculated from Eq. (4b) will then be a very
convenient measure of the deviation of the
behavior of a dielectric from that given by the
simple theory. Values of R may vary from 20
percent or less to nearly 100 percent. For vul-
canized rubber in Fig. 5, R=45.6 percent.

It will be well to emphasize at this point,
however, the significant fact that in spite of
frequently large discrepancies of these more or
less equivalent types, a plot of the energy

26 R. M. Fuoss, J. Am. Chem. Soc. 63, 378 (1941).
27 R. Cole and K. Cole, J. Chem. Phys. 9, 341 (1941).
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F16. 5. Dielectric behavior at 0°C of rubber vulcanized
with 8 percent sulphur. Dotted curves calculated from
Egs. (37) with €,=3.65, €=2.56, logi, ko'/2r=3.48.
(Data from reference 11, Table II1.) Upper curve, de-
pendence of dielectric constant on frequency. Middle curve,
dependence of loss factor on frequency. Lower curve, plot
of loss factor against dielectric constant as suggested by
Cole and Cole.

loss per cycle, or its equivalent ¢, against the
logarithm of the frequency is almost always
found to be very nearly symmetrical about a
central value of logy; the symmetrical bell-shape
of the loss curve of Fig. 2 is thus usually main-
tained for real dielectrics even though its maxi-
mum value is reduced below the theoretical one.

2. Probable Origin of the Distribution

We must now inquire, what in the theoretical
development might give rise to these observed
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discrepancies. As already noted, Eqgs. (17), (25),
and (29) result only when certain simplifying
assumptions are applied to the more general
Eq. (6), so that Egs. (37), which result from the
former, may not always be correct. This may
result in some change in the frequency depend-
ence of the loss factors, but it does not seem
likely that such drastic deviations as those
found, for instance, in polyvinyl chloride, can be
expected from this source.?8

There seems to be no other way out of the
difficulty than to accept the long recognized?®
possibility that in our relaxation equations, as
they apply to many substances, at least, there
is not one single relaxation rate constant ko, buta
distribution of these constants about a mean
value. This distribution tends to spread out the
frequency range over which the dispersion effects
take place; the range of the distribution is
roughly of the same order of magnitude as the
observed frequency range ratio in which the
dispersion takes place is to the calculated range
ratio of about 10, as shown above. Thus, in the
case of the polyvinyl chloride cited above, the
relaxation rates vary by a factor of roughly
5,000,000/10, or about 500,000, on either side
of the observed maximum. This is an unusually
large value for such a factor, but values of ten
to one hundred are very common in other
substances. For vulcanized rubber in Fig. 5,
a value of about thirty is found (=300/10).

Such frequently very large factors lead us to
ask what, after all, can be the significance of the
rate ‘‘constant” Kk, if it is subject to so large a
variation. A little closer examination of the
problem, however, shows not only that such
factors are very easily understandable, but that
it is also possible to explain the symmetry of the
dispersion effects in the logarithm of the fre-
quency on the basis of the concepts already
outlined : if we were able to get a close look at the
molecules in a liquid or a solid which shows
dielectric dispersion, we would find that due to
thermal fluctuations the conditions in the neigh-
borhood of all molecules at any given moment
are not at all identical. In particular, the energy
of activation or, even more generally, the free

28 In Section II C4 a more quantitative attempt will be
made to assign to this source a part of the discrepancy

found for the particular cases of the methyl chlorobenzenes.
29 E. von Schweidler, Ann. d. Physik 24, 711 (1907).

energy of activation required for rotating the
molecules into new positions of equilibrium
would very probably be found to vary about a
certain mean value in going from one molecule
to another at any given time. In other words,
there should be a distribution of free energies of
activation AF{ in Eq. (45). From the nature of
thermal fluctuations, it is reasonable to suppose
that this distribution will be more or less sym-
metrical about the mean value. This means
that the distribution of the relaxation rates
themselves will be symmetrical only when
expressed in terms of the logarithms of the
relaxation rates, since the rates depend ex-
ponentially on the free energy. This in turn
means that the loss factor ¢’ will be symmetrical
in the logarithm of the frequency, which is just
what is so frequently observed to be true.

If we were to use the Debye treatment to ex-
plain this result, we would conclude that the
uncertainty in the relaxation rate must come
from an uncertainty in the viscosity of the
medium surrounding the rotating dipole, the
viscosity in turn being variable due to a similar
variability in the exponential energy factor which
is now well known3?® to play a dominant role in
the viscosity of liquids.

That large changes in the relaxation rate can
result from reasonably small values of the un-
certainty in the activation energy is easily
shown: thus an uncertainty of only double &7,
the mean thermal energy, will result in a varia-
tion of the relaxation rate by a factor of more
than seven. Considerably larger variations of the
free energy of activation than this are easily
imaginable.

If this interpretation is correct, we may ask
why the same effect is not observed in the kinetics
of ordinary chemical reactions, for instance,
because similar causes for distributions of
activation energies must often operate there,
especially in condensed phases. And since the
factors involved are usually so large, they should
surely have the effect of making it impossible
for ordinary chemical rate expressions to account
for the observed course in time of chemical
reactions, at least in condensed phases. If, for
instance, the rate of a unimolecular reaction in

30 J, Frenkel, Zeits. f. Physik 35, 652 (1926); Trans.
Faraday Soc. 33, 58 (1937); E. Andrade, Phil. Mag. 17,
497, 698 (1934); H. Eyring, reference 8.
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F1c. 6. Distributions of relaxation rates given by
various empirical functions. a. (lower) Corresponding to
R=¢€"max obs/3(es—€0) =0.333. b. (upper) Corresponding
to R=0.667.

solution is indefinite by a factor of ten (and such
factors of distribution are commonplace in
dielectric relaxation), the final stages of the
reaction should appear to have a rate constant
ten times smaller than that found for the begin-
ning of the reaction. Such effects are not, how-
ever, known to occur.

The resolution of this problem involves the
relative magnitudes of the rates at which the
molecules respectively rotate or react and the
rates of migration from one molecule to another
of the thermal fluctuations leading to the varia-
tions in the activation energy. If the rates of
migration are of the same order as or smaller
than the rotation or reaction rates, as we can
easily expect them to be for dielectric relaxation,*
the medium could as well be considered as more
or less frozen into whatever configuration it
might have at any given time as far as the
effect on the kinetics of relaxation is concerned,
and there will be a distribution of relaxation
rates. On the other hand, if the process we are

3L This is true because the two phenomena very probably

involve similar types of molecular movements. This point
will be discussed in a forthcoming paper.
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measuring goes on over a period of seconds or
minutes, as with nearly all measurable chemical
reactions in condensed phases, while the fluctua-
tions leading to the distribution change many
times a second, the time average of the activation
energy alone will govern the reaction rate, and
there will be only one rate constant.

This fact leads to the rather interesting and
significant conclusion that by means of a study
of dielectric properties in alternating fields we
may gain information concerning some kinetic
aspects of the structure of matter which few other
properties are capable of uncovering in so direct a
form. The ordinary chemical kinetic properties,
while they should show such a distribution
effect in the very first stages of reaction, cannot
be measured rapidly enough, while the viscosity
or d.c.-conductance, which undoubtedly involve
movements of molecules rapid enough to show
such an effect, can by their nature furnish only
average rates and not distributions.

The derivation of the dielectric properties by assuming
the distribution of relaxation times has been carried out
by Kirkwood and Fuoss,® who have also shown how to
obtain the distribution function from observed data.
The reader is referred to this paper for the details.

3. The Form of the Distribution Function

So far in the literature four different distribu-
tion functions for relaxation rates have been
utilized. These can be and usually are given in
terms of the logarithm of the relaxation rate,
in which three of them are symmetrical about a
certain maximum value.

Wagner®® and Yager®* have shown that some
data, at any rate, can be duplicated if we assume
a Gauss-error distribution:

b
f(s)=—exp (—b%?), (47)
/T

where s=Ink/ky, ko is the most probable
relaxation rate, and b is a constant which de-
termines the breadth of the distribution. f(s)ds,
of course, is the probability of finding a relaxa-
tion rate Kk, the logarithm of whose ratio to Ko
lies between s and s+ds.

32 R. Fuoss and J. Kirkwood, J. Am. Chem. Soc. 63,
385 (1941).

3 K. W. Wagner, Ann. d. Physik 40, 817 (1913); Archiv

f. Elektrotechnik 3, 83 (1914).
3 W. A. Yager, Physics 7, 434 (1936).
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Fuoss and Kirkwood (reference 32), applying
their method of determining the distribution
from the observed dispersion to an empirical
relation for the loss curve which they find holds
for certain polymers, obtain as the logarithmic
distribution function

a cos yar cosh as

fis)=-

m cos? far+sinh? as

(48)

The Coles’ arc function (i.e., the circular arc il-
lustrated in Fig. 5) arises when we have the dis-
tribution

1 sin B

f)=—

_ (49)
27 cosh Bs+cos B

Kirkwood and Fuoss®® have obtained theoret-
ically for an isolated long chain molecule execut-
ing free rotations about the bonds within itself

fs)=e/(e+1)% (50)

This is not quite symmetrical about s=0, but
gives a loss curve which is so nearly symmetrical
as to be effectively so within ordinary experi-
mental limits.

When the parameters in the three empirical
distributions, Egs. (47), (48), and (49), are
adjusted so as to give the best possible fit for
any particular set of data, it is found that the
resulting distributions are rather closely similar.
This is evident from Fig. 6, where the distribu-
tions which result in ratios R of observed to
calculated loss maxima, €’max obs/3(€s— €), Of
663 percent and 33% percent are plotted. It is
also evident from Fig. 7, where the half-widths
of the distribution functions at the points at
which they have fallen to 1/eth of their maximum

% J. Kirkwood and R. Fuoss, J. Chem. Phys. 9, 329
(1941).

values have been plotted against the correspond-

ing values of R.

B. Summary of Observed Data on Dielectric
Relaxation Rates

In Tables I, II, and III are given the values of
various quantities derived from observed relaxa-
tion rates, these quantities having significance
in terms of the development of the previous
sections. The procedure used in analyzing the
observed data was as follows.

The dieleciric relaxation rate ko was taken
as 2w times the frequency giving the maximum
loss factor at each temperature. For ice and the
monohydroxy alcohols, the Lorentz field correc-
tion, (e+2)/(es+2), was applied to this value
of k¢ to obtain the molecular relaxation rate
ko; this undoubtedly overcompensates for the
internal field effect. In all other cases it was
assumed that ko =k, which will be sufficiently
accurate for our purposes.

Some assumption must be made concerning
the change in direction which results on the
average from a single jump in order to evaluate
the jump rate from the relaxation rate. Here it
has been assumed throughout that the molecular
relaxation rate is equal to the molecular jump
rate, which means that the point of view of
Sections IA3a and b has been utilized—i.e.,
that jumps into all new directions are equally
probable, regardless. of the size of the jump.
This has the effect of making the tabulated
entropiesof activation minimum possible values.%
These minimum values are already usually
significantly large; since the more important
conclusions of this part of the paper are based
upon the largeness of these values, this assump-
tion is not serious. Indeed, we shall see that the
very fact that the entropies are large offers
strong support for this assumption.

The activation energies AE} were found by
plotting the Briggsian logarithm of the observed
molecular jump rate against the inverse of the
absolute temperature. If ¢ be the slope of this
curve (usually a straight line), the activation

36 Thus, comparing Egs. (25) and (17), we see that if each
jump results in a root mean square change of direction of
1°, the jump rate would be of the order of 2X180?/#2, or
about 6600 times greater than the relaxation rate of the

dielectric, and AS] would be about 17 entropy units
larger than that given.
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energy is given by

AE}f=2.303Ro—RT; (51)

the variation with the temperature of the factor
kT/h in Eq. (45) has thus been neglected, but
this is insignificant in practically all cases.
(The extra term of RT in Eq. (57) arises from
the absence of one degree of freedom in Fi, of
Eq. (43).)

The entropy of activation is found from the
activation energy and the jump rate kor at any
given temperature " by

ASI = 2.303R(10g10 kOT T

A method of evaluating the activation energy different
from that used here has been utilized by Fuoss® and by
Davies, Miller, and Busse.?® These authors have supposed
that [as is suggested by the form of Eq. (37b)] the value
of x in the expression €’ =2¢""naxx/(1+%2) is at any given
frequency and at different temperatures proportional to
the relaxation time. Thus from the values of ¢’ as a func-
tion of the temperature at constant frequency the tem-
perature variation of the relaxation rate can be determined
and the activation energy obtained. A comparison of the
results of this method with the results of the method used
here, however, shows that the two are not in agreement.
Thus for pure polyvinyl chloride we find an activation
energy of 116,000 cal. per mole from the temperature effect
on the maximum loss frequency, while Davies, Miller, and
Busse get 40,000 cal. per mole—obviously a very serious
difference. Also, it is found that the calculated activation
energy depends on the frequency which is used in obtain-
ing the €’ vs. temperature curve. The explanation of this
difference is to be found in the distribution of relaxation
rates; owing to the distribution, which is very broad for
pure polyvinyl chloride (and which in addition changes
considerably with the temperature, see Fig. 8), ¢’ changes
much more slowly as frequencies diverge from that corre-
sponding to the relaxation rate of the dielectric than would
be supposed from the dispersion equation for a single
relaxation rate. Therefore, the activation energy appears
to be much smaller than it actually is, and it is likely that
more reliable values can be obtained from the frequency
maxima. Frank® has also given various methods of ob-
taining activation energies from loss data, but the method
used in this paper is, as he agrees, probably the most
reliable.

An additional quantity which should be of
interest in investigating the mechanism of
dielectric relaxation is 8AFf, the range of dis-
tribution of the free energies of activation for

37 See reference 4, Table II1.
38 See reference 8, Table II1.

/MOLE —»~

[TRICRESYL PHOSPHATE @

o T
o | o2 TeTRALN

’

as¥ CAL/oeonés
§)

% [ 0. 3 20 %
WEIGHT % PLASTICIZER —»

\\\Ncazsw_ PHOSPHATE
\?‘mz "y \‘7\7\1 (b
N
o

\M?ETRAL'N

AE¥ K CAL /MOLE—~
e

20 30 40 50
WEIGHT % PLASTICIZER—

%DIPHENYL : 0%

(c)

8 AF ON CAL /MOLE) —
—

1 20 40 60 80 100
-~ TEMPERATURE (IN°C)——
w
§ g%g;TETBALIN
5000+ 25.9% "
; \ \0\ 83% (d)
c 171%
< ! ! 1 1
e 00

20 40 60 80
TEMPERATURE (IN °C)—

FiG. 8. Dielectric properties of polyvinyl chloride and
their dependence on plasticizer concentration. a. (top)
Activation entropies of polyvinyl chloride with various
plasticizers. (Data from references 6, 7, and 8 of Table I11.)
b. (upper center) Activation energies of polyvinyl chloride
with various plasticizers. (Data from references 6, 7, and 8
of Table II1.) c. (lower center) Effect of temperature and
concentration of diphenyl on the breadth of the distribu-
tion of free energies of activation for polyvinyl chloride.
(Data from reference 32.) d. (bottom) Same for tetraline on
polyvinyl chloride. (Data from reference 6 of Table III.)

relaxation on either side of the average free
energy of activation. In attempting to estimate
the magnitude of this range, some decision must
be made as to the nature of the distribution
function which is to be used in describing the
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rate distribution. Fortunately, as we have seen,
any of the three empirical distribution functions
mentioned previously, when so adjusted as to
yield a given ratio R of observed to calculated
maximum loss factors, furnishes very similar
distributions.

In the actual calculation of the values of
SAFt for Tables I, II, and III, the Wagner-
Yager function, Eq. (47), was assumed. The
theoretical value of the maximum loss factor at
a given temperature was calculated from the
relation €'max=3(es—€), using observed or
extrapolated values of ¢, and ¢ at each particular
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F1G. 9. Dielectric properties of vulcanized rubber as a
function of sulphur concentration. (Data from reference 11
of Table II1.) a. (upper) Static dielectric constant at 50°C.
b. Energies of activation for relaxation. c. (center) En-
tropies of activation for relaxation. d. (lower) Distribution
of free energies of activation.

TasBLE I. Quantities governing the dielectric
relaxation of solids.

AE} ASt
kcal./ cal./°C/ dAFL
Solid Ref mole mole cal./mole
Ice 1 9.3 0 —
2 14.6 17 100-600
3 12.2 13 <100
Chlor pentamethyl 4 7.7 0 500-710
nzene
1,2-dichlortetramethyl 4 7.8 2 750
benzene
1,2,4-trichlortrimethyl 4 8.9 3 600
benzene
1,2,3-trichlortrimethyl 4 9.1 5 470-800
benzene
1,2-dimethyltetrachlor 4 9.1 0 500
benzene
1,3-dimethyltetrachlor 4 8.3 -2 500
benzene
Methyl pentachlor 4 111 3 600
benzene
Equimol. solid solu- 4 9.1 2 800
tion of methylpenta-
chlor benzene and
1,2-dichlortetra-
methyl benzene
CsH; —CO —C¢Hs 5 45.0 103 —_—
Alpha-terpineol 6 42.3 160 1450
d,1-camphor 7 10.0 14 1550
Cyclopentanol 8 8.5 2 400
d,1-bornyl bromide 8 114 26 2000
3,x-dichlor-d,1- 8 34.7 123 800-1000
camphor
3-nitro-d,1-camphor 8 274 91 900
Halowax (solid solution 9 16.0 38 (1100-2400?)
of di-, tri-, and tetra-
chlor naphthalenes)
Dry paper 10 9.6 7 —_
Solid solutions in
paraffin wax:
Paraffin _heated to 11 30.2 61 —
100°C for 10 days
Cetyl palmitate in 11 28.6 68 (400)
paraffin
Amyl stearate in 12 16.6 31 —
parafin .
Butyl stearate in
paraffin
spec. I 13 17.6 40
spec. II 13 15.5 35 —
spec. I1I 13 15.0 22
Cetyl palmitate in 13 16.0 23 —_
paraffin
Octyl palmitate in 13 16.7 30 —_—
paraffin
Ethyl stearate in 13 15.2 32 —
paraffin

1 H, Wintsch, Helv. Phys, Acta 5, 126 (1932).

2 E. J. Murphy, Trans. Am. Electrochem. Soc. 65, 133 (1934).

3 C.P.Smythand C. S, Hitchcock, J. Am. Chem. Soc. 54, 4631 (1932).

4(A. H) White, B. S. Biggs, and S. O. Morgan, J. Am. Chem. Soc. 62,
16 (1940).
( ;3C) E. Sun and J. Williams, Trans. Am. Electrochem. Soc. 65, 129
1934).

6S, O. Morgan, Ind. Eng. Chem. 30, 277 (1938).

7W. Yager and S. O. Morgan, J. Am. Chem. Soc. 57, 2075 (1935).

8 A. H. White and W. Bishop, J. Am. Chem. Soc. 62, 8 (1940).

9 W. Yager, Conf. on Elect. Insul., Nat. Res. Council (1937), p. 12.

10 G, T. Kohman, Ind. Eng. Chem. 31, 807 (1939).

11'W. Jackson, Proc. Roy. Soc. 150, 197 (1935).

12D, R. Pelmore and E. L. Simons, Proc. Roy. Soc. 175, 253 (1940).

13 R, W. Sillars, Proc. Roy. Soc. 169, 66 (1938).

temperature. In Fig. 7 is a plot of the ratios of
observed to theoretical loss maxima against the
half-width W of the corresponding Wagner-
Yager distribution function when this function
has fallen to 1/eth of its maxima value, or
equivalently stated, the half-width within which
84.3 percent of the relaxation rates are to be
found, assuming this distribution. These half-
widths being given in the figure as Briggsian
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TaBLE II. Quantities governing the dielectric
relaxation of liquids.

ASE
AE}  cal./°C/ 8AF%
Liquid Ref. kcal./mole mole cal./mole
Nitrobenzene in Shell 1 58 9 —_
oil
Transformer oil 2 16.8 26 nearly 0
Ethyl alcohol 3 4.7 6 —
Propyl! alcohol 4 5.0 5 <300?
Propyl alcohol 5 4.0 1 —_
Propyl alcohol 6 8.0 15 -—_
Propyl alcohol 3 9.4 20 —
Propyl alcohol 7 14.6 63 —_
(supercooled)
n-Butyl alcohol 6 6.1 7 —
n-Butyl alcohol 3 7.5 13 -
Isobutyl alcohol 7 18.2 75 —
(supercooled)
n-Amyl alcohol 5 5.7 5 _
n-Amy!l alcohol 6 6.1 7 —
Isobutyl bromide 8 22.7 156 300
(supercooled)
Isoamyl bromide 8 15.8 84 150-300
(supercooled)
Isobutyl chloride 8a 19.0 139 350
(supercooled)
1,2-dichloro-isobutane 8a 23.2 136 500
(supercooled)
32.5 106 at —60°
23.0 60at —50°
Glycerol (supercooled) 4,9 21.2 53at —20° »>~600
15.6 31jat 0°
12.4 20at 10°
Propylene glycol 10 20.0 66 1500
(supercooled)
Trimethylene glycol 10 13.0 32 1150
(supercooled)
2-methyl pentandiol 2,4 10 24.0 71 1200
839% methyl pentandiol 10 24.0 72 1200
in dioxane
Glucose (supercooled) 11 78.0 192 —
Chlorinated diphenyl 12 53.8 150 500-1000
(4 CI's per mole)
Chlorinated diphenyl
No. 1-mobile oil 13 47.3 136 700
No. 2-viscous oil 49.4 123 800
No. 3-sticky resin 55.4 128 850
No. 4-brittle resin 63.0 133 1200
Abietic acid 9 50.4 103 2500
Ethyl abietate 9 37.7 109  1500-2000
Phenolphthalein 7 137.0 310 (~1500)
(supercooled)

1F. H. Miiller, Ann. d. Physik 24, 99 (1935).

2 H. H. Race, Phys. Rev. 37, 430 (1931).

3W. Hackel, Physik. Zeits. 38, 195 (1937).

4S. Mizushima, Physik. Zeits. 28, 418 (1927).

5 W. Ziegler, Physik. Zeits. 35, 476 (1934).

6 E. Keutner, Ann. d. Physik 27, 29 (1936).

7 E. Kuvshinsky and P. Kobeko, Tech. Phys. U.S.S.R. 5, 401 (1938).

8 W. O. Baker and C. P. Smyth, J. Chem. Phys. 7, 574 (1939); J. Am.
Chem. Soc. 61, 2063 (1939).

8 A, Turkevich and C. P. Smyth, J. Am. Chem. Soc. 64, 737 (1942).
These authors have found that at higher temperatures the observed
loss factor maxima become considerably larger than }(es —eo)—a very
remarkable result, which deserves further investigation. An apparently
similar result reported by Baker and Smyth, reference 8, seems, how-
ever to be due to an arithmetical error.

9 8. O. Morgan and W. Yager, Ind. Eng. Chem. 32, 1523 (1940).

10 A, H. White and S. O. Morgan, Physics 2, 312 (1932).

11 B, Thomas, J. Phys. Chem. 35, 2103 (1931).

12 W, Jackson, Proc. Roy. Soc. 153, 158 (1935).

13 A, H. White and S. O. Morgan, J. Frank. Inst. 216, 635 (1933).

logarithms, they must be multiplied by 2.303RT
to give the 8AF{ of Tables I, II, and III, which
is thus the range of variation of the free energies
of activation on either side of the average free
energy of activation, within which the free
energies of activation of a major part (about
84.3 percent) of all the relaxing molecules are
to be found.

In Figs. 8 and 9 are given the variations of
AE}, ASt, and 8AF} with composition for poly-

vinyl chloride with various plasticizers and for
rubber vulcanized with different amounts of
sulphur.

C. Interpretation of the Observed Data on
Relaxation Rates in Terms of Molecular
Processes

1. Relationship between Viscosity, Direct Current
Conductance, and Relaxation

In Fig. 10 are plotted logarithmically the
relaxation rates at different temperatures against
the viscosities at the same temperatures for a
number of pure substances for which such data
are available. It is apparent from the nearly
unit slopes usually obtained that there is a
fairly close relationship between the two. This
signifies that the molecular motions involved in
the two phenomena are, for the substances
shown in the figure (with the possible exception
of supercooled glucose), closely similar.

According to the Debye relation, 1/k/=27
=4ra’n/kT, the intercepts of these lines at, say,
log =0 should show some dependence on the
volume of the rotating dipole (the temperature
T having nearly the same value for all substances
under the conditions of measurement used here).
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F16. 10. Relationship between viscosity and dielectric
relaxation. [ Data on glycerol, i-butyl alcohol, and n-propyl
alcohol from P. Kobeko, E. Kuvshinski, and N. Shishkin,
Tech. Phys. U.S.S.R. 6, 413 (1938). Viscosity of glucose
from G. S. Parks, L. E. Barton, M. E. Spaght, and J. W.
Richardson, Physics 5, 198 (1934). Viscosity of abietic
acid from G. S. Parks, M. E. Spaght, and L. E. Barton,
Ind. Eng. Chem. Anal. Ed. 7, 115 (1935). Other data, see
Tables II and II1.]
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If the rotating unit is to be identified with the
molecule (as is certainly reasonable), no such
relationship is very evident from the figure.
Although the large resin molecules as a group
have the smallest intercepts (corresponding to
the largest radii®?), the relationships for other
molecules bear no apparent relationship to
expected molecular dimensions. Indeed, the
apparent volume for normal propyl alcohol
(molecular weight 60), the smallest molecule
for which data are shown, is 16 times greater
than that for abietic acid (molecular weight
302), 20 times greater than that for Jackson’s
chlorinated diphenyl (which has about 4 chlorine
atoms per molecule, or a molecular weight of
about 300), 300 times greater than that of glycerol
(molecular weight 92), and nearly 10,000 times
greater than that of supercooled glucose (molecu-
lar weight 180). It is once again difficult to
avoid the conclusion that the Debye-Stokes’
law theory of relaxation is unsuitable for the
interpretation of data of this kind.

A similar plot is made in Fig. 11 for solutions
of nitrobenzene in various hydrocarbons. The
dotted lines give the relationships which would
be expected for radii of 3.0A and 1.2A, the former
being more nearly what one would expect for the
nitrobenzene molecule, though it is in poorer
agreement with the results. In order of magni-
tude, however, the agreement is about all one
can expect for the low molecular weight solvents,
though the theory obviously fails badly even in a
qualitative sense for the solutions in the heavier
“Shell oil BL3.”

A comparison is made in Table IV between the
activation energies for direct current (probably
ionic) conductance and those for dielectric
relaxation in several polymers measured by
Fuoss. It is apparent that there must be a
considerable difference between the molecular
processes involved here, and that any concept of
an ‘“‘internal viscosity,” such as it would be
natural to apply here, must be a very vague one,
with little real physical meaning. It should be
mentioned, however, that Kobeko, Kuvshinski,

39 In this connection it should be pointed out that the
very small radii found by Hartshorn, Rushton, and
Megson (see reference 1, Table III) for the phenol-
formaldehyde thermoplastic resins are apparently the
result of an error in calculation. They find values of around
1A for a, the dipole radius, and identify this with the radius
of a hydroxyl group; values of around 100A seem to be
more nearly in accord with their data, however.

TaBLE III. Quantities governing the dielectric
relaxation of polymers.

AST
AEf cal./°C/ 3AFT
Polymer Ref. kcal./mole  mole cal./mole

Phenol-formaldehyde 1 84.5 208 3800
m-cresol-formaldehyde 69.7 155 3500
m-5-cresol formaldehyde 73.8 164 3900
o-cresol formaldehyde 83.6 225 (2500)
p-cresol formaldehyde 69.7 173 3500
Benzylalcohol formaldehyde 52.6 122 (1600)
Polytrimethylene succinate 2 26.3 64 -
Polytrimethylene malonate 22.1 52 —_
Ethylene glycol phthalate 3 52.7 112 2000
809% polychlorstyrene 4 48.0 103 —
10% o-chlor diphenyl
10% p-chlor diphenyl
809%, polystyrene, 4 18.5 23 —

20% p-chlor diphenyl!
80% polyvinyl chloride of 5 50.0 106 to 2300 to 3300

various molecular 120

weights, 209, diphenyl
Polyvinyl chloride plus:

8.39%, tetralin 64.0 130 (4000)=
17.19%, tetralin 36.0 70 (3500)
25.9%, tetralin 39.8 90 (4000)
32.6% tetralin 32.0 68 (4500)
39.1% tetralin 30.0 64 (4500)

Polyvinyl chloride plus:

09, diphenyl 120.0 300 7500—-16000b

1%, diphenyl 152.0 363 6500-7500

3% diphenyl 95.0 214 4700-10500

6% diphenyl 83.0 185 4400-9000

9%, diphenyl 78.0 178 3800-14000
12%, diphenyl 70.0 158 3700-14000
15%, diphenyl 62.0 139 3300-11000
20%, diphenyl 56.0 127 3000-9000

Polyvinyl chloride plus:

09, tricresyl phosphate 116.0 263 3900
109, tricresyl phosphate 88.0 199 .
209, tricresyl phosphate 74.0 170
309, tricresyl phosphate 66.0 156
409, tricresyl phosphate 57.0 133
509, tricresyl phosphate (59.0) (154) .
609, tricresyl phosphate 49.0 127 3200

Vinsol (mixtures of highly 9 59.0 115 4400

Petrex 5 polymerized 41.0 76 3000

Petrex  abieticacid and 43.0 101 1800
terpenes)

Rubber plus 10% sulfur 10 31.0 62 1800

Rubber plus:

29, sulfur 11 25.2 58 900-1600¢

49, sulfur 26.1 59 900-1600

8% sulfur 28.6 61 1600-1900
129, sulfur 32.3 66 2000-2300
189, sulfur 38.6 71 2600-3100
239%, sulfur 46.0 80 3100-3200
26% sulfur 49.6 82 3200-3600

Polyvinyl acetate 12
Gelva 7.3 1200
Gelva 15 [57.314 123 1200
Polyvinyl chloracetate 12 57.3 122 1200
2 See Fig. 8d.

b See Fig. 8c. These numbers are based upon the results of Fuoss and
Kirkwood, ref. 32, Fig. 2, and may be somewhat in error owing to the
uncertainty in the static dielectric constant, which was there evaluated
by a rather long extrapolation of an empirical relation.

¢ See Fig. 9d.

d Assumed value.

1 L. Hartshorn, N. Megson, and E. Rushton, J. Phys. Soc. London
52, 796 (1940).

2D, R. Pelmore and E. L. Symons, Proc. Roy. Soc. 175, 468 (1940).
G. Garton, J. Inst. Elect. Eng. 85, 625 (1939).

M. Fuoss, J. Am. Chem. Soc. 63, 377 (1941).

M. J. Am. Chem. Soc. 63, 2401 (1941).

M. Fuoss, J. Am. Chem. Soc. 63, 2410 (1941).

M. Fuoss, J. Am. Chem. Soc. 63, 378 (1941).

; M.I)Davies. R. F. Miller, and W. F. Busse, J. Am. Chem. Soc. 63,
1941).

9 See reference 9, Table II.

10 F, Miiller, Kolloid Zeits. 77, 260 (1936).

11 A, H, Scott, A. T. McPherson, and H. L. Curtis, Bur. Stand.
J. Research 11, 173 (1933).

12D, Mead and R. M. Fuoss, J. Am. Chem. Soc. 63, 2832 (1941).
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TaBLE IV. Activation energies for d.c. conductance
and dielectric relaxation.

Substance AEf alax AE% ond
809 Polyvinyl chloride of 50.0 40.0
various molecular weights
with 209, diphenyl
Polyvinyl chloride with
8.39, tetralin 63.5 24.8
17.79%, tetralin 35.8 24.0
25.99, tetralin 39.8 24.2
32.69, tetralin 32.0 20.2
39.19, tetralin 30.0 18.1
Polyvinyl acetate
Gelva 60 57.3 40.0
Gelva 15 [57.3] 31.0
Polyvinyl chloracetate 57.3 46.0

and Shushkin® found that log-log plots of
viscosity against d.c. conductance give straight
lines of unit slope for normal and isobutyl
alcohols and glycerol.

Danforth* has found that the viscosity of
glycerine increases with the pressure much more
rapidly than does the relaxation rate.*?

2. Probable Significance of the Large Values of the
Entropies of Activation

In the tables given, one is struck by the fre-
quent occurrence of very large positive entropies
of activation. It may help in our formulation
of a more physical feeling for just how large these
values really are if it is pointed out that an
increase in the entropy by 50 entropy units
(which is an average value here) implies an
increase in the number of configurations avail-
able to the molecule or molecules involved in an
activated complex by a factor of e%2=10!.
Furthermore, most of the approximations which
we have made in our treatment would tend to
lead to an underestimation of this factor.
Frank® and Baker and Smyth!! have noticed
similarly large entropy effects (or their equiva-

40 P, Kobeko, E. Kuvshinski, and S. Shushkin, Tech.
Phys. U.S.S.R. 6, 413 (1938).

4 'W. Danforth, Phys. Rev. 38, 1224 (1931).

42 Attempts at correlating the relaxation rate with other
mechanical properties have been made. Thus, Davies,
Miller, and Busse (see reference 8, Table III) have ob-
tained an ‘‘activation energy’’ by plotting the logarithm
of Young's modulus for polyvinyl chloride—tricresyl
phosphate against 1/7. Now only the slope of a 1/T plot
of the logarithm of something proportional to a rate can
give an activation energy, just as only the slope of a 1/T
plot of something proportional to an equilibrium constant
can give a heat of reaction. The elastic modulus itself
is not a rate, so that until a proportionality between it and

some rate has at least been suggested, the significance of
this type of plot must be questioned.

lent) in the more limited number of compounds
which they have examined; here we see that
they are of wide occurrence indeed, so must be
recognized as being one of the essential features
determining the mechanism in general for the
types of materials in Tables I-III.

It is obvious from the physical nature of
entropy that some originally more or less rigid
structure containing the dipole must become
temporarily non-rigid in order that there can
be a positive entropy of activation. Furthermore,
when the values of this entropy are as large as
they often are here, we know that the activation
must involve more than merely a single mole-
cule, or, in the case of the polymers, the few
atoms making up the dipole and its immediate
attachments.

Now from what we know of liquid and solid
structure it is not difficult to see how this situa-
tion might come about. We know that even in a
liquid the state of affairs in the immediate
neighborhood of any single molecule is very
probably almost the same as that in a crystal.
This means that such requirements as the proper
spatial packing of molecules, low energy mutual
orientations of dipoles, and a maximum amount
of intermolecular bonding (such as hydrogen
bonds), when such bonds are possible, must be
complied with in setting up any arrangement of a
molecule among its neighbors which is expected
to be stable. Keeping these prerequisites for a
stable state in mind, suppose we attempt to go
from one stable arrangement of a small region
in a dielectric to another in the most rapid man-
ner possible, utilizing only the thermal motions
of molecules. It is clear that in general no new
stable arrangement will result as far as the state
of dielectric polarization is concerned if we
attempt to reorient only a single molecule,
since in that case no provision will have been
made to adjust the molecule’s surroundings to its
new position. This will be particularly true of very
irregularly shaped molecules and of molecules
which make strong directional bonds with their
neighbors. Therefore, the surroundings of a given
molecule must move simultaneously with the
molecule.

This might occur in two ways: (a) The various
molecules involved may cooperate in their
movements and rotate together in much the
same manner as a set of interlocked gears is
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F1G6. 11. Relaxation of nitrobenzene in various hydro-
carbon solvents. [Data from H. Mueller, Erg. d. Exakten
Naturwiss. 18, 202 (1938). Dotted lines calculated from
Eq. (29).]

caused to rotate when any one of the set is
rotated ; or (b) the molecules may momentarily
completely disengage one another (“jump their
gears’’) and reassume their stable configuration
with their net dipole moment oriented in a new
direction. Process (a) will presumably require
relatively little energy, while (b) will require
considerable energy. Since only a very special
type of movement will be successful for the first
mechanism, the entropy of the activated com-
plex here will not be increased very much over
that of the normal state, and might well be
decreased. With mechanism (b), on the other
hand, there will be a great increase of freedom
in the activated complex, so giving a positive
entropy of activation whose magnitude will be
a measure of the extent of the momentary viola-
tion of the requirements for stability.

The data of Tables I-III rather clearly indi-
cate that mechanism (b) is almost always the one
which actually operates. This is found to be not
too surprising when one attempts (using actual
models) a more precise specification of the first
mechanism for some real substances; it is soon
realized that molecules will probably not behave
in any way like gears, and that (b) is after all
the most plausible mechanism available which
can accord with observations.

3. Interpretations and Calculations of the Actual
Numerical Values of AE} and ASt

It is desirable to attempt some evaluation of
the significance of the actual numerical values
of AE} and ASY in terms of other quantities,
in order that a somewhat more precise picture of
the molecular movements in relaxation may be
attained. This, of course, is not easy to accom-
plish, owing to the complexity of most of the

substances listed in the tables; it is hoped, how-
ever, that the following considerations may
suggest some rough lines of approach to this
problem.

a. Possible role of electrostatic forces in determin-
ing relaxation rates for certain substances.—First
let us assume that the only forces acting be-
tween molecules tending to orient them in
definite directions relative to one another are
simple electrostatic dipole-dipole forces. In this
case, Onsager’s description®® of a polar liquid
may be of considerable use. Onsager showed that
if a molecule in a polar liquid be regarded as a
dipole embedded in a simple solid body (say a
sphere) which is immersed in a continuous
dielectric having the dielectric constant of the
liquid in question, then this molecule will
polarize the surrounding medium in such a way
as to give rise to what he calls a reaction field
parallel to the dipole. Now when a dipole seeks
a new orientation in space, it is necessary that
its reaction field also reorient itself, or a stable
arrangement will not result. Part of the reaction
field is due to the electronic polarization of the
surrounding molecules, and part is due to the
orientation of neighboring dipoles. The readjust-
ment of that part of the field due to the elec-
tronic polarization will present no difficulty
since the dispersion frequencies for electronic
polarization are much greater than the frequen-
cies with which the molecules change their
positions in a liquid. But the portion arising from
dipole orientation obviously changes at about
the same rate as the dipolar reorientation in
question, so will introduce a definite factor in
determining relaxation rates.

If Debye’s model for dipole relaxation were
accurate, this effect would have to be taken
into account. The problem is very similar to that
solved by Debye and Hiickel* in deriving the
square root relation for the dependence of ionic
conductance in solutions on concentration of
electrolyte, since here (as there) a partially
oriented (charged) ‘‘atmosphere” of dipoles
(ions) surrounding any given dipole (ion) gives
rise to a field whose motion lags behind that of
the dipole (ion) and tends to slow it down. This
is the so-called atmospheric relaxation effect; the
analogue of the electrophoretic effect in electro-

4 L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).
4 P. Debye and E. Hiickel, Physik. Zeits. 24, 305 (1923).
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lytic conduction would also appear here owing
to the entrainment of fluid with the rotating
dipoles surrounding the given dipole—which
entrainment would also tend to retard the rota-
tion of the given dipole. Both of these effects
thus tend to make the observed relaxation time
of a dielectric greater than that calculated for
the Brownian rotation of a sphere in a homoge-
neous fluid, and this in turn tends to result in an
overestimation of the apparent radii of the rotat-
ing molecules when therelationship, r=4wna?/kT,
is utilized. Radii as determined from this relation
for polar liquids are usually already too small,
however, so these effects merely make matters
worse for the Debye-Stokes’ law theory.

It having been previously shown that the
molecular aspects of Debye’s theory of dielec-
tric dispersion are probably not very well suited
to the study of most dielectrics, it does not seem
advisable to pursue the above modification any
further, although it might be interesting for its
own sake, and also would be important in
determining the concentration dependence of the
relaxation times of large molecules in low molecu-
lar weight solvents; this is, however, as yet an
unimportant phenomenon. Instead, we shall
now follow an alternative method of approach
morein line with the ideas developed in Section B.

The most direct way in which the reaction
field could be adjusted to a new dipole orienta-
tion would be to annihilate it, allow the dipole
to point in a new direction, and then reestablish
the field for the new direction. If the readjust-
ment of the reaction field (or more accurately,
that part of it arising from dipole orientation)
is the main factor in determining the reorienta-
tion of dipoles, it will then be possible to estimate
the energy and entropy of activation for dielectric
relaxation as follows.

From thermodynamics and electrostatics it
can be shown that the free energy stored up in
any region V due to an electric field E is

1
AFy=—(e—1) f EE(V, (53)
81r v
while the entropy due to the field is
1 de
AS,=— —fE2d v, (54)
87 dTJy

where E, is the field due to the same arrangement
of charges in a vacuum as gives rise to E. Using
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Onsager’s field, E=3E,/(2e+1), and Wyman’s*?
empirical relationship, that (e—1)=const./T,
we find that

(55)

For ethyl alcohol, assuming that all of the free
energy of activation arises in this way, so that
AF,=AF}=4700—6T cal.,, and taking e=25,
T=300°K, we see that AS,=AS}=21 entropy
unit, which is of the order of that observed.
This treatment is, of course, rather approximate,
since no effort has been made to separate the
energy stored up as electronic polarization from
that contributed by dipole orientation.

Formulae (53) and (54) tell us that the portion
of the entropy of activation arising from the
present source generally should be rather small.
We may invert this remark into the surmise that
when entropies of activation for dielectric
relaxation are small, it is possible that dipole-
dipole forces are the only significant ones which
cause molecules to assume definite relative
orientations. Small entropies of activation seem
to be characteristic of polar liquids of low
molecular weight at room temperature, so this
method of attack might prove fruitful in analyz-
ing the flood of data on such substances which
should in better days follow the recent rapid
development of ultra-short radio waves.

An actual calculation of the electrostatic
energy stored up in the medium around a dipole,
based on Onsager’s expressions® for the po-
tential about a dipole in a liquid and Eq. (53),
shows that for various simple polar liquids
(e.g., water, alcohol, acetone) the energy thus
stored is indeed of the same order of magnitude
as the observed free energies of activation for
these types of liquids. The value of such a
calculation as being more than a check on
orders of magnitude is impaired, however, by
the fact that it can be shown that the field
around many simple dipoles is large enough to
cause saturation effects to become pronounced
in just that portion of the dielectric which
contains the major fraction of the stored-up
energy. A better, but equivalent, method of
evaluating this energy might be to compare the
heats of vaporization of a given polar molecule
with that of a non-polar molecule of a similar

4 J. Wyman, J. Am. Chem. Soc. 58, 1482 (1936).
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shape and size (e.g., acetone and isobutane)
—which should give directly something close to
the true amount of electrostatic energy stored
up in the dielectric around each dipole, and
which should therefore be comparable with the
activation energy for relaxation insofar as this
is the only important contribution to that energy.

That this electrostatic field energy is not
always the dominant factor, in the relaxation
process, however, is proven by the large limiting
activation energy for vulcanized rubber as the
amount of sulphur present is reduced to zero
(see Fig. 9). Since the rubber hydrocarbon is
itself non-polar, the activation energy here must
arise from the operation of steric factors which
also, as is reasonable, involve larger entropy
effects. The same conclusion must also be reached
from the data (see Table I) on solid solutions
of polar molecules in non-polar paraffin wax.

b. Evaluation of the entropy of activation in terms
of a vaporization process.—Let us now consider
the values of the entropies of activation from
another point of view. We might characterize
the mechanism proposed in Section 2, above,
by the statement that a change in the position
of a molecule in a dielectric requires that the
crystalline structure surrounding the molecule
be momentarily ‘“‘melted”; actually, however,
the temporary local change is probably even
more severe than that which occurs in the
melting of a crystal, since in melting there
remains at least a part of the original crystal
structure, merely the long-range order of which
has been destroyed. It would probably be more
accurate to interpret the process as a ‘‘vaporiza-
tion,” since the status of a group of activated
molecules may be said to approach that of a
gas as far as forces tending to cause intermolecu-
lar orientation are concerned. If this is accepted
as approximately true, it is possible to arrive at
a rough estimate of the number of molecules
involved in each process of activation for
relaxation: from Trouton’s rule, the entropy of
vaporization per molecule is about 20-25 E.U.
for most liquids at the boiling point. This gives
us the entropy for vaporization to a gas at 1
atmosphere, while we wish the entropy for a
gas having the density of the liquid or solid in
question, so that from the Trouton entropy we
must subtract R In R'T/V, where V, is the molal
volume in the solid and R’ is expressed in cc

atmospheres. At about room temperature for a
substance with a molecular weight of 100, this
correction amounts to 10 E.U., giving us a net
entropy change of 10-15 E.U. per molecule
for the ‘‘vaporization” in question. By dividing
this into the observed entropies given in Tables
I and II for solids and liquids, we see that any-
where from zero to ten or more molecules may
be ‘‘vaporized” in each activation process, the
simpler molecules in general rotating with the
least trouble to their neighbors. The crudity of
this approach to the problem of evaluating the
quantitative significance of the observed en-
tropies* makes it unprofitable to go further with
such a calculation at the present time, but it is
quite apparent that these results, rough as they
are, do not lead to an unreasonable picture of the
relaxation process.

If the implications of these numbers are ac-
cepted, it is clear that the assumption made in
calculating the quantities in Tables I-III (that
the transition probabilities k of Section IA are
independent of the size of a jump) must be very
close to the truth, since very little memory of
any former orientation should remain with a
dipole which, along with a considerable number
of its neighbors, has been ‘‘vaporized” in the
sense outlined above.

Beside the large positive entropy of activation, there
are other evidences that more than the single rotating
molecule is frequently involved in the activation process.
Thus when a polar plasticizer is added to a polymer, as
when tricresyl phosphate is added to polyvinyl chloride,3
the dispersion does not seem to show any tendency to occur
over two separate frequency ranges, but the single loss
maximum observed in the pure polymer merely shifts its
position. The same behavior was found by Aleksandrov
and Dzhian?? for the loss maxima of rubber which had
absorbed varying amounts of bromobenzene; the original
peak in the rubber specimen became higher and moved
continuously toward higher frequencies as the amount of
bromobenzene increased, rather than a new peak typical
of the bromobenzene appearing while the old peak de-
creased. This can be taken as evidence that when one
dipole seeks to reorient itself, all of its neighbors, including
molecules of all types making up the mixture, are affected.
Another way of stating this is to say that because of the
coupling between dipoles arising from various causes,

4% Some improvement would result here if for V, we
employed the ‘‘free volume”; that is, the volume not
actually occupied by the molecules, these being considered
as hard spheres. This would make the number of molecules
vaporized somewhat larger, though still of the order of
tens of molecules.

47 A. Aleksandrov and J. Dzhian, Rubber Chem. Tech.
14, 877 (1941); Tech. Phys. U.S.S.R. 5, 836 (1938).
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it is no longer strictly correct to speak of the relaxation of
single dipoles, but that we must consider larger regions.
This agrees with the approach used by Kirkwood,!® who
shows that in pure polar liquids the molecular dipole
moment must be corrected by a factor depending upon the
average mutual orientations of neighboring molecules.
Indeed, accepting Kirkwood’s considerations it is difficult
to see how one can escape the conclusion that the relaxa-
tion process in strongly polar media must frequently in-
volve something approximating what we have suggested
here.

4. Relaxation in Solids

a. General remarks.—From the relaxation be-
havior of dielectrics as well as from other evidence
we may thus conclude that in liquids and solids
there is coupling between each dipole and its
surroundings. That is, if the orientation of any
one dipole is fixed, the orientations of its neigh-
bors are also fixed to a greater or lesser extent
in the normal state. If we say that the coupling
is strong we mean that the orientations of many
neighbors are relatively severely fixed. If the
coupling is very strong, the fixing of the direc-
tion of any one dipole may determine the
directions of the dipoles in an entire crystal.
In this case the dipoles in the crystal may either
be so lined up with respect to each other that
the net dipole moment of the crystal is zero—
in which case the dielectric constant of the
crystal will be close to the square of the optical
index of refraction—or they may be lined up in
such a way that there is a net dipole moment—
in which case the crystal will be ferro-electric,
as is Rochelle salt at room temperature. The
onset of crystal-wide coupling with decreasing
temperature gives rise to the widely observed
transitions in solids at which the dielectric
constant changes considerably;*® typical ex-
amples are given in Fig. 12. The transition
temperature is usually described as the tempera-
ture above which molecular rotation in the solid
sets in. Actually, of course, the molecules in the
solid need not be free to rofate in order to con-
tribute to the polarization, but need only be
capable of changing their orientations more or
less independently of one another.*?

Let us now see what we must expect in the
light of these remarks when we attempt to
change the state of polarization of a solid di-
electric. For ferro-electric materials, which have
" #8.C. P, Smyth, Chem. Rev. 19, 329 (1936).

49 A. H. White, J. Chem. Phys. 7, 58 (1939). This is
also evident from Eqgs. (18) and (19).
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F1c. 12. Dielectric constants of some polar solids.
[Data for hydrogen sulphide from C. P. Smyth and C. S.
Hitchcock, J. Am. Chem. Soc. 56, 1084 (1934); for the
camphors, from reference 7, of Table I.]

very strong coupling, so that the dipoles of an
entire crystal, or more probably of large regions
of it (similar to ferromagnetic ‘‘domains’),
have parallel components, the process of rota-
tion of dipoles may depend on many factors,
including such complex matters as internal
stresses, and a change in the polarization may
resemble the phenomena observed in the mag-
netization of ferromagnetic materials, where a
similar state of affairs probably exists.?® For
these substances, therefore, the present method
of attack requires supplementing, at least, by a
consideration of these other factors which may
be of importance.

When on the other hand the coupling is over
a shorter range, the values of the entropies of
activation probably give a very good idea of its
relative extent for different solids. In Table I
we see that this varies by a very considerable
amount from one compound to another. Some
compounds seem to show very little coupling—
as the methyl chlorobenzenes and camphor; in
general, it seems that these include the more
highly symmetrical molecules. As side groups

50 See, for example, H. Mueller, Ann. N. Y. Acad. Sci.

40, 321 (1940), for hysteresis loops for Rochelle salt similar
to those for magnetic materials.
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F1G. 13. Schematic diagram of the structure of ice.

become larger and shapes become more irregular,
however, the neighborhood of a dipole appears
to be much more extensively ‘“‘vaporized’’ during
a rotation, as one would expect.

It has been found by Yager and Morgan?
and by White and Bishop® that the dielectric
behavior of a pure solid optical isomer and that
of the racemic compound with its mirror image
are quite different for camphor (see Fig. 12) and
for nitrocamphor. This indicates that mere
questions of the sizes of groups and general
molecular shapes must not be alone considered
if we are to understand dielectric relaxation.
The more complex question of how molecules
pack together is also important.

For some polar solids there is a transition
below which the dipoles’ freedom of orientation
is only gradually lost, so that the dielectric
constant does not immediately drop to its
optical value. This is apparently the case with
racemic camphor, as is seen in Fig. 12. This
substance also shows anomalous dispersion at
low temperatures, the relaxation rates for which
were analyzed for Table I. An interpretation
of this type of behavior has been given by White.*?

b. Dielectric relaxation of ice.—The mechanism
of dipole orientation and relaxation in ice is
very probably entirely different from that in
other solids. It is possible that liquid water has
essentially the same mechanism of relaxation,
but more data are necessary before any decision
can be made here.

It was pointed out by Huggins® that it is

51 See reference 7, Table 1.

52 See reference 8, Table I.
5 M. Huggins, J. Phys. Chem. 40, 723 (1936).

much more reasonable to expect that dipole
orientation in ice occurs by means of movements
of protons between two positions of equal
minimum potential energy along a line between
the two oxygen atoms with which each is co-
ordinated rather than by the independent
orientation of dipoles by simple molecular rota-
tion. If we were to assume the latter, we would
have great difficulty in accounting for the very
open structure and low density which ice has,
since molecules capable of independent rotation
in this way would be expected to form a close-
packed lattice.

This movement of protons is conditioned by
the requirement that by far the greater fraction
of the oxygen ions in the lattice must be directly
bonded to but two protons at any one time. The
method applied by Slater® to the calculation
of the dielectric properties of KH,PO, is well
suited to the study of this problem, although
the geometry of ice is slightly more complicated
than that of KH,POy; a rough application shows
that Huggins' suggestion can indeed account
for the order of magnitude of the observed
dielectric constant of ice. Such being taken to be
the case, the relaxation process in ice must be
admitted to be quite different from that which
occurs in other substances.

The most probable mechanism of changing the
state of polarization of a piece of ice is one which
is very similar to the chain reactions of chemis-
try; in Fig. 13 is given the projection of the
arrangement of the atoms in a basal plane of an
ice crystal (actually the plane is ‘‘puckered”
and each oxygen atom is bonded through a
hydrogen bond to a fourth oxygen atom al-
ternately in the planes above and below that
shown). A large number of arrangements of the
hydrogen atoms between the oxygen atoms are
possible, each arrangement giving a definite
net dipole moment in any specified direction.
Thus, in the presence of a field, certain arrange-
ments are favored, and if the field is changed,
there must be a change in these arrangements.
One of the hydrogen ions will move from its one
position of equilibrium to its other position of
equilibrium (say hydrogen ion @ moves from
O1 to OII). But this results in three hydrogen
ions adjoining O IT while only one is next to O I ;

5 J. C. Slater, J. Chem. Phys. 9, 16 (1941).
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that is, there is a separation of charge, which
requires energy and which energy appears as a
part of the observed activation energy. (The
rest of the activation energy is probably as-
sociated with the actual movement of the proton
over the barrier between the two equilibrium
positions.) Next, one of the other hydrogen ions
about OII moves toward a third oxygen (say
ion b moves to O III), relieving the unfavorable
situation about OII only to set it up again at
O I1I, while in the same manner the deficiency
of ions about OI will be transferred to other
oxygen ions in the lattice. This migration of
charged centers will continue until other centers
with one and three hydrogen ions are encountered
by the respective moving centers, when the
“reaction chains”’ will be broken. The analogy
to the well-known chemical chain mechanisms
such as that for the reaction of hydrogen and
chlorine is obviously very close, the initial step
in this case being the splitting of a stable chlorine
molecule into two active atoms which then start
two chains of reactions which are in turn ended
when a chain-breaking reaction such as a recom-
bination of atoms occurs.%

¢. Relaxation in the methyl chlorobenzenes.—
It is well known from the crystal structure of
solid hexamethyl benzene as determined by
Brockway and Robertson® that the observed
positions of the methyl groups in the crystal
preclude the possibility that the molecules in
hexamethyl benzene are freely rotating at room

% It may be of some interest to point out in connection
with the dielectric properties of ice that there is good reason
to believe that ice should show ferro-electric properties at
sufficiently low temperatures. Ice has a hexagonal struc-
ture, and it seems clear that of all the possible arrange-
ments of the hydrogen ions in the lattice some few should
be slightly more stable than others. A consideration of the
details of the structure shows that the most symmetrical
arrangements of hydrogen ions in ice result in very large
dipole moments along the hexagonal axis. Since the most
symmetrical arrangements are also usually energetically
the most stable, we should expect that at low enough
temperatures the ice crystal should become ferro-electric,
probably along its optic axis. Unfortunately, the relaxation
time of ice becomes very long at low temperatures, so
that it might not be feasible to wait long enough to observe
the ferro-electricity at the very low temperatures required.
Murphy (see reference 2, Table I) made a measurement of
the dielectric constant of ice at —139°C and found a value
of the dielectric constant of the same order of magnitude
as that at room temperature with a relaxation time of
about one hour, and third law treatments show that
during the periods of time utilized in specific heat mea-
surements, disorder remains in the crystal down to very
low temperatures.

8 1.. O. Brockway and J. M. Robertson, J. Chem. Soc.
London 1324 (1939).

>

F1G. 14. Energies
and entropies of acti-
vation for relaxation
in the methyl chlor-
benzenes,

Cs(CHj)6-2Cl-.
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temperature. Yet the closely similar substituted
polar methyl chlorobenzenes are all known from
dielectric evidence’” to behave as if they were
rotating in the solid down to very low tempera-
tures. There being little reason to expect any
such great difference in behavior among these
very similar compounds, it is obvious that this
suggests that the molecules of the methyl
chlorobenzenes are very probably not actually
freely rotating, but are merely free to choose
between (probably) six equilibrium positions.
This can be taken as an indication that the
treatment developed in Section IA2 for discrete
orientations of dipoles should be applied here.
It is possible to apply this picture to the relaxa-
tion process starting with two different assump-
tions. First assume that in any jump there is a
complete disconnection with the previous state
of affairs and that the new position taken up
may with equal probability be any of the six
possible orientations. If k is the probability of a
jump between two given orientations, we have
seen that [Eq. (15)] the relaxation rate will
be six times this jump rate. On the other hand,
each jump may only result in a change of orienta-
tion from a given position to an immediately
adjoining one. It is found on using this assump-
tion in Eq. (10), and utilizing the hexagonal
57 See reference 4, Table I.
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symmetry of the probable equilibrium positions,
that here the relaxation rate is equal to the
jump rate between two positions, k itself. Thus,
if the state of affairs in the crystal were such
that sometimes the jumps are random and
sometimes they are restricted, there would be a
distribution of relaxation rates varying by a
factor of six. But In 6=1.8=26AF/RT; for
T=200°K (which is roughly the temperature at
which the measurements were made for these
substances), 8AF=400 cal., which is only slightly
smaller than the observed values; this may
therefore be a significant contributing factor to
the distribution of relaxation rates found here.
This conclusion may be taken as evidence that in
some cases, at any rate, the observed ‘‘distribu-
tion of relaxation rates’”’ may be a result of the
non-reducibility of Eq. (6) to the simple form
of the differential equation leading to an ex-
ponential decay of the polarization with time.

From Fig. 14 it is evident that there is some
tendency for the compounds with the most
chlorine atoms to have the largest energy of
activation for relaxation, as is perhaps to be
expected. There is no similar tendency for the
entropies of activation, however. The generally
low values of these entropies are an indication
that here the relaxation involves only the rota-
tion of single molecules, while the dependence of
the activation energy on the number of chlorine
atoms present is evidence that the barrier is
determined by the sizes of the groups passing
one another, chlorine atoms each apparently
requiring on the average about (11,000-7,000)/6,
or 700 calories more energy to get past one
another than do methyl groups.

5. Relaxation in Polymers

The striking features of the data on the relaxa-
tion of polymers are the very much greater
energies and entropies of activation which are
found for these substances than for most others.
This is probably due to the greater size of the
region involved in the unit relaxation process,
which is in turn due to the fact that we are no
longer dealing with dipoles located in inde-
pendent molecules, but with dipoles linked to
one another by chemical bonds. Where these
bonds between dipoles are relatively long and

flexible and the concentration of dipoles is
relatively low, as for the polymers of malonic and
succinic acids with propandiol and for rubber
containing small amounts of sulphur, the en-
tropies and energies of activation are smaller,
but where dipoles almost directly adjoin one
another and the concentration of polar groups is
high (as in the polyvinyl polymers), or where they
are connected through more rigid links (as in the
phenol formaldehyde resins), they are much
larger. The increase in the energy and entropy of
activation for rubber as the amount of sulphur
present is increased (Fig. 9) is also probably a
result of the shorter distance between links
which comes about with the change in the
sulphur content and increased bridging between
chains.

Recently, Kirkwood and Fuoss®® have pre-
sented a theory of the relaxation of flexible, long-
chain polymers in dilute solution in low molecular
weight solvents. Relaxation under such condi-
tions is regarded by them as a result of readjust-
ments of the molecule to the applied field brought
about by the internal squirming motions of the
long, flexible chain. Their mathematical formula-
tion of the theory is based on the assumptions
inherent in the Brownian motion and Stokes’ law,
hydrodynamical types of development against
which some question has been raised previously.
Nevertheless, it is believed that, insofar as
application to truly dilute solutions alone is
made, the more important and general conclu-
sions of the theory may not be affected even if an
exact agreement with experiment cannot be
expected—such exact agreement having been
made impossible anyway by the nature of the
assumptions necessarily introduced in order to
allow the solution of this very difficult problem.
The most important conclusion of the theory
is that the frequency of maximum dielectric
absorption should be proportional to the molec-
ular weight of the polymer in question, since this
suggests a new method of determining the
molecular weights of long-chain polymers. The
distribution of relaxation rates given in Eq. (50)
also results from this theory.

The theory has been applied by Fuoss®® to
polyvinyl chloride plasticized with 20 percent of

58 See reference 5, Table III.
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diphenyl, and by Mead and Fuoss®® to pure
polyvinyl acetate. It should not, however, apply
to such concentrated polymers since no account
is taken in the theory of the important, probably
dominant modifying effects of the interference of
the chains with one another’s motions at such
high concentrations. Curiously, however, the
predicted linear relationship between the fre-
quency of maximum absorption at a given tem-
perature and the molecular weight as determined
from the relative viscosity of polymer solutions
by the Staudinger method actually seems to be
borne out. This is apparently taken as support
for the validity of the application of the theory
in concentrated solutions and even in the pure
polymer.

A little consideration will show that if there is
a linear relationship between the molecular
weight and the relaxation time for concentrated
polymers, it must arise from some other source
than that contained in the original Kirkwood-
Fuoss theory. Physically, the reason why, accord-
ing to this theory, the most probable relaxation
time, and hence the frequency of maximum
absorption, should depend on the molecular
weight arises from the fact that as chains get
longer the number of different types of internal
motions involving the chain as a whole increases
and at the same time the motions become more
complex and take longer to come about. The
effect of the interference of the chains with one
another’s motions, particularly in concentrated
polymer solutions, would seem to be to quench
these motions of the chain as a whole and
increase the relative importance of motions in
which shorter lengths of the chain readjust
themselves to the field without the rest of the
molecule’s having much effect on their motion.
Perhaps an equivalent way of stating this is to
say that the resistance to the movement of the
links of the polymer chain which is offered by
collisions with other chains is so completely
different from that offered by a simple liquid
that there is no reason whatsoever to expect that
a theory valid for the latter will be even approxi-
mately true for the former.

Studies of the viscosities of pure polymers
(“‘melt viscosities””) point very strongly to the
interpretation that the molecular motions in-

5% See reference 12, Table II1.

voked in the flow process here involve only small
portions of the whole molecule, these portions
being of about the same size for all molecular
weights of a polymer in the macromolecular
range. The evidence for this is to be found in the
relatively small values observed for the activa-
tion energy for viscous flow compared with the
value which would be expected if the entire
molecule were to move as a unit. Also, Flory?®®
has found that for linear polyesters of widely dif-
ferent molecular weights, the activation energy
for viscous flow is strictly constant. This has led
to the description of viscous flow in terms of
segments of the polymer chain.®* Estimates of the
size of the segments for a number of different
types of long-chain molecules give average values
for the lengths of these segments of anywhere
from 20 to 40 atoms.

It has also been suggested that the melt vis-
cosity of a polymer should not depend merely on
the motions of the individual segments of the
polymer, but that it should also depend very
much on the correlations and sequences of the
motions of different segments, since only very
few types of successions of segment motions can
be expected to lead to an observable deformation
of the polymer. The amount of this correlation
should depend very drastically on the chain
length. On the other hand, it was pointed out®
that if, as seems very reasonable, dielectric re-
laxation also results from segment motions, not
much cooperation of this type between the
motions of different segments should be required
here. Therefore, melt viscosities should be very
sensitive to chain length while relaxation rates
should not. This is now seen to be actually the
case: Flory has found an exponential dependence
of the melt viscosity on the square root of the
molecular weight—a result verified by Baker,
Fuller, and Heiss®?>—while Fuoss and Mead have
found the much more mild linear dependence of
relaxation rate on the molecular weight. For the
polyvinyl chloride employed by Fuoss,* samples
with molecular weights varying by a factor of
5.2 were studied, resulting in a variation of

60 P, J. Flory, J. Am. Chem. Soc. 62, 1057 (1940).

6. W. Kauzmann and H. Eyring, J. Am. Chem. Soc. 62,
3113 (1940).

&2 W. O. Baker, C. S. Fuller, and J. H. Heiss, J. Am.
Chem. Soc. 63, 2142 (1941).
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relaxation times by a factor of 3.4. If we assume
an average chain length of 1000 atoms for the
lowest polymer, and if we assume the melt
viscosity for polyvinyl chloride as a function of
the chain length to be given by a formula similar
to that given by Flory, then the melt viscosity
should vary by something like 30,000 for the
same molecular weight range. The prediction
made previously by Eyring and the author there-
for seems to have been fulfilled in its essentials,
although a relatively small but apparently real
effect does remain to be explained and it is not
immediately evident how this can be done.
(Effeets of ends of chains would be the obvious
first suggestion here, but it does not seem possible
that these could give rise to such large changes as
are observed.)

6. Factors Determining the Distribuiton of
Relaxation Rates

The extent of the distribution of the free energy
of activation 8AF$ for liquids and solids is seen
from Tables I and II to be generally such as
might be expected to arise from fluctuations due
to the thermal energy of the specimen. Addi-
tional factors, similar to those which have
already been given as possibly leading to some
uncertainty in the rate for the methyl chloro-
benzenes may also be acting in some instances,
so that it is not at all difficult to understand how
the observed distributions might arise.

The polymers (Table III), on the other hand,
show much broader distributions in their free
energies of activation. This undoubtedly arises
largely from the indefiniteness in the size of the
segments which are acting as the kinetic units in
the relaxation process. Certain portions of the
chain may be so arranged that they can reorient
themselves by movements over a length of, say,
30 atoms of the polymer chain at any one time,
while other portions may require a greater or
smaller length in order to change their orien-
tations.

In rubber (Fig. 9d) there is a marked effect of
increased amounts of sulphur in broadening the
distribution of relaxation rates; this is probably
due to the random distribution of inter-chain
sulphur bridges in the rubber such that the
distances between bridges fluctuate rather widely.

Thus, at higher sulphur concentrations there is
a marked diversity in the amounts of inter-
ference offered by the presence of one sulphur
link to the reorientation of another sulphur link.

The sharp increase in 8AF for plasticized
polyvinyl chloride below certain temperatures
(Fig. 8c)—ascribed by Fuoss to the onset of a
phase change in the polymer—will be discussed
elsewhere in connection with the question of
so-called “‘phase transitions’ in polymers, glasses,
and amorphous phases in general.

It seems to be generally true that for polymers
(and possibly also for lower molecular weight
substances), the Wagner-Yager distribution func-
tion, Eq. (47), decays too rapidly at large
departures from the most probable relaxation
rate to be able to account for the entire range of
frequency dependence of the observed disper-
sion.3? The Cole and Fuoss-Kirkwood functions,
however, are apparently more satisfactory in
this respect. Since the Wagner-Yager function
decays exponentially in the square of the devi-
ation, while the more successful functions decay
exponentially in the deviation itself (for large
deviations), and since fluctuations in the free
energy are likely to occur in accordance with the
latter type of decay (from the nature of the
Boltzmann type of factor e~£/*T), this behavior
is not surprising.

The wvalidity of the Coles’ arc method of
plotting dielectric dispersion effects on ¢’ and €'’
(Section IIA1) clearly rests on the accuracy of
Eq. (49) as a description of the actual distribu-
tion of relaxation rates. Aside from the fact that
its general form is reasonable—a characteristic
equally true of the Fuoss-Kirkwood distribution
and of many other similar possible expressions—
there is no evident reason for the particular
validity of this expression. Therefore, it would
be well to keep in mind that in spite of its
attractive simplicity, there is no a priori reason
why the Coles’ arc method should be regarded
as anything more than convenient empirical
approximation. It is easily possible that it will
be found to break down in some instances—
particularly when very broad distributions are
encountered.

The author wishes to acknowledge the helpful
criticisms given by Drs. E. U. Condon and T. W.
Dakin in the preparation of this paper.



