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Introduction

HE interaction of cosmic rays with matter
gives rise to a great variety of secondary
cffects. Some involve nuclear transformations,
as is clearly shown by the occurrence of ‘‘stars”
on photographic plates exposed to the cosmic
radiation. The production of mesotrons, too, is
probably a nuclear process.

Nuclear processes, however, are comparatively
rare and do not seem to play any essential role
in the cosmic-ray effects which are most com-
monly observed, such as absorption and scat-
tering of mesotrons, or shower production by
electrons and photons. As far as we know, these
phenomena can be interpreted as electromagnetic
effects; i.e., as effects caused by the interaction

between cosmic-ray particles and the electric
fields of nuclei and electrons. A quantitative
theory of the cosmic-ray effects caused by
electromagnetic interaction has been developed
under the assumption that the ordinary laws of
quantum electrodynamics can be extrapolated
to cosmic-ray energies. The results have proved
extremely useful in disentangling some very
complex cosmic-ray phenomena. It is hoped
that they will be of further help in separating
electromagnetic from non-electromagnetic cos-
mic-ray effects, as well as in determining the
limits of validity of quantum electrodynamics.
The quanta of the primary cosmic radiation
have exceedingly high energies. However, by the
interaction of cosmic rays with matter, the pri-
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TABLE 1. System of units.

QUANTITY DEFINITION SyMBOL
Length Centimeter cm
Velocity Velocity of light ¢
Electric Charge Charge of the electron e
Potential Diff. Volt v

TaBLE 11. Natural constants.

Number of atoms per gram atom
(Avogadro’s number)
Classical radius of the electron

N =6.02395 X102
70=2.8176 X10~13 cm

Fine structure constant a=1/137.036
Mass of the electron pe =5.109 X105 ev/c?
Mass of the mesotron (tentatively) # =108 ev/c?

Mass of the proton pH =9.315 X108 ev/c?

The constants in Table II have been computed with the following
values for the fundamental constants:

electric charge of the electron (B40)
specific charge of the electron (B40)
fine structure constant (B40)
velocity of light (B29)

Faraday (B29)

and from the formulae:

N =Fc/e,

e =4.802 X107 e.s.u.
e/mc=1.7591 e.m.u./g

a=e?/hc =1/137.036

¢ =2.99796 X10!° cm/sec.

F =9648.9 e.m.u./g-equiv.

ro =e2/mc? pe=(c/108)mc%/e, pg =(c/10%)c/F.
mary energy is subdivided into smaller and
smaller quanta, until eventually it is completely
transformed into excitation and ionization energy
of atoms. It is convenient to set an arbitrary
energy limit 7o below which a ray ceases to
belong to what we call cosmic radiation and its
energy is considered as dissipated. We shall take
no="5X10% ev, which is approximately ten times
the rest energy of the electron. Thus, most of
the rays in the radioactive energy region are
excluded from the ‘‘cosmic radiation.” This
limitation will enable us to use some simplifica-
tions which are allowed when the rest energy of
the electron is small compared with the kinetic
energies under consideration.

The main secondary effects produced by the
passage of charged particles through matter are
(a) excitation of atoms, (b) ejection of electrons
from atoms and (c) emission of photons. The
first two phenomena can be considered as the
result of a direct interaction between the pri-
mary particle and atomic electrons; we shall
refer to them as non-radiative collision processes,
or, shortly, as collision processes. The emission
of photons is caused by the acceleration of the
primary particle in the Coulomb field of the
nucleus; this process will be denoted as a
radiative collision process, or, shortly, as a
radiation process.
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High energy photons traversing matter are
known to undergo the following secondary
processes. (a) Photoelectric effect, i.e., absorption
by an atom accompanied by emission from the
atom of a high energy electron. The photoelectric
effect becomes less and less frequent with
increasing photon energy, and can be disregarded
entirely for energies larger than 7o (b) Compton
effect, i.e., scattering by free electrons. (c) Pair
production, i.e., materialization of the photon
energy into a positive and a negative electron.

The theoretical formulae concerning radiative
and non-radiative collision processes, Compton
effect, and pair production are summarized in
the first part of the present paper together
with a discussion of elastic scattering. The
writers wish to thank Professor H. A. Bethe for
helpful discussions of the items contained in
this part. Part II describes the complex second-
ary effects (showers) arising from the repetition
of the elementary processes considered in Part I.
An attempt has been made to coordinate and
supplement the somewhat fragmentary results
on shower theory scattered in the literature.

We shall use throughout the paper the system
of units suggested by one of us (R40a), which is
based upon the fundamental units listed in
Table 1.

In this system, energies are measured in ev,
momenta in ev/c, masses in ev/c%. The mass of
a particle is expressed by the same number
which expresses its rest energy and its character-
istic momentum (defined as the product mass
times velocity of light). The symbol p will be
used to indicate any of these three quantities.
We shall further use the symbols 8, E and p to
indicate the velocity, the kinetic energy, and
the momentum of a particle, respectively. The
energy of a photon will be denoted, in general,
by W. Between B8, E and p there exist the
following well-known relations:

E=p/(1=p)t—y, (1.1)
E=(p*+p)t—p, (1.2)
p=uB/(1—p)% (1.3)

It may be appropriate to list here the values
of the natural constants which will enter in our
calculations (see Table II).
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Part 1.
Fundamental Processes

A. Collision Processes
§1. Application of the Conservation Laws

In this section and in the next we shall only
consider collision processes which result in the
ejection of electrons with energies large compared
with the binding energies. In such processes the
electrons can be considered as free, and the
conservation laws of energy and momentum can
be applied to determine the energy of the
secondary electron as a function of the angle of
emission. The result is expressed by Eq.(1.4),
where p is the mass of the primary particle, p its
momentum before the collision, u. the mass of
the electron, E’ its energy after the collision,
6 the angle between the initial trajectory of the
primary particle and that of the secondary
electron. The electron is supposed to be at rest
before the collision.

p? cos? 6

2pe .
“ Tt (¢ H12) = p? cos? 0

E'= (1.4)

E' increases with decreasing 6; thus, the
maximum transferable energy E'n is obtained
putting in (1.4) §=0 (head-on collision) :

p2
Fee .
et utt2p.(p+ )}

En=2 (1.5)

When p.<p (mesotrons, protons), u.? in the
denominator of (1.5) can be neglected. In the
limiting cases of small and large energies, Eq.
(1.5) can be further simplified as follows:

P/ pe » . g
E’,,.=2p.e(—) =2u, , (1.5a)
n —p
P>/ e
E,.=p=E (1.5b)

For comparatively small momenta [Eq. (1.5a)]
the maximum transferable energy depends only
on the velocity B of the primary particle. For
very large momenta [Eq. (1.5b)], the maximum
transferable energy approaches the primary
energy itself. When u=ypu,, E’s is obviously

equal to E for all energies. It may be noted that
12/ . is of the order of 2X 10! for mesotrons and
of 2X 10" for protons. Since most of the observed
cosmic-ray particles have momenta of the order
of 10? ev/c, the condition for the validity of
Eq. (1.5a) is fulfilled in many cases of practical
importance.

§2. Differential Collision Probability

Let x(E, E')dE'dx be the probability for a
particle of mass u, charge &1 and energy E,
traversing a thickness dx, to transfer an amount
of energy between E’' and E'+4dE’ to a free
electron. The function x will be called the
differential collision probability. It is convenient
to measure dx in g/cm? and to introduce the
constant

C=mN(Z/A)ri¢=0.150(Z/A), (1.6)

where Z and A are the atomic number and the
atomic weight of the material. C represents the
total ‘‘area’ covered by the electrons contained
in one g/cm?, considered as spheres with radius 7.

The interaction between charged particles and
electrons is mainly determined by the electro-
static attraction or repulsion. Only for very
large energies of the primary particle and very
close collisions, other forces, connected with the
spin, need to be taken into consideration.
Classical treatment of the problem gives, for
small values of E’, the following expression for
x, known as the Rutherford formula:

x(E, E")dE’ = (2Cu./BAE'/(E")*.  (1.7)
According to this equation, the collision
probability x does not depend explicitly on the
energy or on the mass of the primary particle,
but only on its velocity 8. The quantum-
mechanical treatment leads again to Eq. (1.7)
at the limit for small values of E’. The general
expression for x, however, is different from that
which could be derived from classical mechanics,
and depends in an essential way on the spin of
the primary particle and on whether or not it is
distinguishable from the secondary electron.
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(a) Electrons.—The collision probability for
electrons with electrons has been calculated by
Méller (M32) on the basis of the Dirac theory.
When the energy E of the primary electron is
large compared with u., x is given by the fol-
lowing expression :

1

2

"YAE' = N—————|. (1.7a

X(E, E)E' =2CudE [E,(E_E,) E] (1.72)

(For electrons, B is practically 1 for any E larger
than 7,.)

Since it is not possible to distinguish between
the primary and the secondary electron after the
collision, Eq. (1.7a) must be interpreted as giving
the probability of a collision which leaves one
electron in the energy state E’ and the other in
the energy state E—E'. Thus, one takes into
account all possible cases by letting E’ vary from
0 to E/2 (not to E!). Eq. (1.7a) is symmetrical
in E’ and E—E’ and reduces to (1.7) for E'<KE.

(b) Positrons.—The collision probability for
positrons with electrons has been calculated by
Bhabha (B38). For EX>u. it is

dE’ E’ E'\?
[1 _z—+3(—)
(E')? E E
E'\3 (E'\*
S(EY(E)] am
E E
The difference between (1.7a) and (1.7b) arises
from the fact that the exchange effect is different

in the case of electrons from that in the case of
positrons.

x(E, E"YdE'=2Cu,

(c) Mesotrons.—The spin of mesotrons is not
yet known. Thus we write the expressions for
the collision probabilities corresponding to the
values of the spin 0, 3 and 1. Quantities of the
order of u./u are neglected in comparison with
unity.

Spin 0 (see Bhabha, B38)

2Cu. dE’' E’
L2 (L)
g (E')? E'n

Spin % (see Bhabha, B38; Massey and Corben,
M309)

x(E, E')dE' (1.7¢)
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2Cu., dE'
g (B

e i)} o

Spin 1 (see Massey and Corben, M39; Oppen-
heimer, Snyder, and Serber, 040)

x(E, E')dE' =

2Cu. dE’ E’
x(E, E")dE' = [(1—-[32 )
g* (E')* E'n
1E
+~*— +- ( )( +- ], (1.7e)
E+4pu
where E,=u2/u.~2X10 ev,

As long as E’ is small compared with both E
and E,, Egs. (1.7d) and (1.7¢) reduce to (1.7¢),
which means that the collision probability is
independent of the spin. Eq. (1.7¢), in turn,
reduces to (1.7) when E'E’.. The difference
between the collision probabilities becomes
appreciable when E’ is comparable with E. or
with E, and this can only happen when E itself
is larger than E, [see Eq. (1.5)]. For these large
values of E’, the collision probability is an
increasing function of the spin. However, the
difference between spin £ and spin 1 is much
larger than the difference between spin 0 and
spin 3. Let us consider, in particular, the case
E'KE',. The collision probabilities for spin 0
and spin 3 are then given by the Rutherford
formula (1.7), while the collision probability for
spin 1 becomes

X(E, E"dE' =

2Cu. dE' 1E
(1 (1.7f)

B (E')? 3E,
This expression contains an additional term
which decreases with increasing energy as 1/E’,
whereas the Rutherford term decreases as
(1/E")% For energies larger than 3E, the addi-
tional term, which represents the interaction due
to the spin, becomes larger than the Rutherford
term, which represents the Coulomb interaction.

It may be noted that the influence of the spin
on the collision probability of mesotrons mani-
fests itself only for very close collisions. The
theoretical predictions depend essentially on the
hypothesis that the electromagnetic field of the
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mesotron can be described in the ordinary way
even at distances smaller than 1078 cm from the
“center’”” of the mesotron itself. So far, this
hypothesis lacks any experimental support,
although some theoretical justification for it can
be found in Oppenheimer’s arguments, which
show that even for very close collisions the
interaction between mesotron and electron
remains small compared with the kinetic energy
of the mesotron (see 040 and O41). At any rate,
the wvalidity of the formulae expressing the
probabilities of large energy transfers from
mesotrons to electrons cannot yet be considered
as established.

(d) Protons.—In the case of protons the
interaction due to the spin can be neglected as
long as the energy is small compared with
ur?/ue=2X102 ev. Since this is practically
always the case, we can use for protons the
collision probability (1.7c).

§3. Collision Loss

Let K,(E) be the average energy loss per
g/cm? caused by collisions in which secondary
electrons of energy larger than n are produced.
If 5 is large compared with the binding energy
of the electrons, K, can be obtained from the
expression for the collision probability given
in §2:

E'm
K.(E) =f E'x(E, E')dE'. (1.8)

For example, if one considers mesotrons or
protons of moderate energy and assumes n<KE’p,
Egs. (1.7¢) and (1.8) yield

’

2Cu, E.,
K,(E)= [log ——ﬂz]. (1.8a)
B 1

The calculation of the collision loss caused by
small energy transfers requires a separate
treatment because in these processes the electron
cannot be considered as free. In other words,
instead of calculating the transition probability
for the system formed by the primary particle
and a free electron, one has to calculate the
transition probability for the system formed by
the primary particle and an atom. The atom is
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considered initially in the ground level; its final
state is an excited level which can belong either
to the discrete or to the continuous spectrum
(excitation or ionization). A theory of collision
losses has been developed by Bethe on this
basis, using Born’s approximation (B30, B32;
see also L37), and the result is represented by
the following equation:

Cﬂel— 2u.8%
1 —-p2l, (1.9
gLt a—pre) ﬂ] (1)

where k, is the energy loss per g/cm? caused by
collisions in which the energy transferred is
smaller than 5, and I(Z) is the average ionization
potential of an atom of atomic number Z. The
function I(Z) cannot be determined theoretically
with any great accuracy, and the most reliable
values of I(Z) are probably those deduced from
empirical data (see Livingston and Bethe, L37).
Since, however, I(Z) enters only in the logarithm,
an approximate expression will be sufficient for
our purpose and we shall use the following
formula given by Bloch (B33):

1(2)=1IxZ,

2
ky(E) =

(1.10)

where Ig=13.5 ev is the ionization potential of
hydrogen. Equation (1.9) is valid under the
following conditions: (a) velocity B of the
primary particle large compared with the veloci-
ties of atomic electrons, (b) 5 large compared
with the binding energy and (c) » small compared
with the maximum transferable energy E/,,.

For a given velocity 8, k, is independent of
the mass of the primary particle. Since p/u
=B/(1—p%% we may also say that k&, is a
function of p/u only. This function is graphically
represented in Fig. 1 for n=10* ev and Z=7.3
(air). The initial decrease of k, with increasing
p/u is caused by the factor 1/82 It corresponds
to the fact that, for a given impact parameter,
the interaction between the passing particle and
the atom becomes weaker as the time spent by
the particle in the neighborhood of the atom
becomes shorter. When B approaches its limiting
value 1, the factor 1/8% becomes practically
constant and &, increases with increasing mo-
mentum because of the factor 82/(1—42%) in the
logarithm. The reason for this increase has to be
sought in the Lorentz contraction of the Coulomb
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field of the passing particle, which causes the
electric effect of this particle to be felt at larger
distances from its geometrical path.

Upon substitution of the numerical values of
the constants, and considering only the extreme
relativistic case, Eq. (1.9) becomes

Z n
k,=1.53X 10"’—[21.4-{-10{.{———
A 108

+2 logé—Z log Z]. (1.9a)
“

The total energy loss (—dE/dx) . is obtained
by adding k, and K,. Thus, for mesotrons or
protons with energy smaller than u?/u., Egs.
(1.8a) and (1.9) give

dE 2Cpg|" 2uBE
G

dx) e gL (1-)2)
The total energy loss for mesotrons in air, iron,
and lead is plotted as a function of p/u in Fig. 2.

If p<u?/u.,, E'n can be approximated by
Eq. (1.5a), and (1.11) becomes

( dE) 2Cu,
dv ) B2

4#e2ﬂ4
g2
(1-p2)1%(2)

252}. (1.11)

-—-2ﬁ2]. (1.11a)

Within the limits of walidity of (1.11a),
(—dE/dx)con, as well as k,, is a function only of
B, or of p/u. In the extreme relativistic case,
(1.11a) can be written as follows:

dE
(—~——) =1.53 X103
dx coll

Z b
XZ[20.5+4 log ——2 log Z]. (1.11b)
m

The total energy loss of electrons and positrons
can easily be calculated using Eq. (1.9a) and
Egs. (1.7a) and (1.7b), respectively. The results
are almost identical for both types of particles,
and can be expressed in close approximation by
the formula
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dE
(———) =1.53 X105
dx coll

Z 2
X——~[20.2+3 log ——2 log Z]. (1.12)
A "

The momentum loss is easily obtained from the
energy loss. Indeed, since dp/dE=1/8, it is
simply

dp 1dE
—_———— (1.13)
dx B dx

§4. Density Effect

So far, in investigating the interaction of
charged particles with atoms, we have con-
sidered the latter as isolated. This is permitted
when the particle travels in a gas. When the
particle travels in a condensed material the
atoms can still be considered as isolated in the
case of a close collision, but no longer so when the
impact parameter is larger than the atomic dis-
tances. For such distant collisions one has to take
into account the screening of the electric field of
the passing particle by the atoms of the medium.
The screening reduces the interaction and de-
creases, therefore, the energy loss. Since distant
collisions become more and more important as
the velocity increases, the correction to be applied
to the expression for the energy loss is an
increasing function of the velocity. The influence
of the density on the collision loss was first
suggested by Swann (S38b) and quantitatively
investigated by Fermi (F39, F40). According to
Fermi, the quantity to be subtracted from the
energy loss calculated by considering the atoms
as isolated is given by the following formulae:

2Cu.
for B<e 3, A(B)=—Il0g e,
32
2Cu. —1 1—ep2
for >e%, A(B)= “rloge + eﬂ],
gl T1—g -1

where ¢ is the dielectric constant of the medium,
relative to vacuum.

A more refined analysis by Halpern and Hall
(H40; see also W40) confirmed the existence of
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the density dependence of the collision loss, but
showed that the effect is considerably smaller
than predicted by Fermi. No numerical calcula-
tions based upon the theory of Halpern and
Hall have yet been published. But the authors,
in a private communication to one of us, have
indicated that in the case of mesotrons of 8 X108
cv energy, the correction amounts to (2Cu./3%)0.4
for iron and (2Ck./B%0.55 for lead. It would
seem, therefore, that the density effect is com-
pletely negligible, at least as long as the kinetic
energy is not very large compared with the
rest energy.

In what follows, the correction for the density
effect will be disregarded.

§5. Range of Mesotrons and Protons

Mesotrons and protons of moderate energy
traversing matter lose energy almost exclusively
by collision processes. Since the average energy
transfer in each collision is small, a very large
number of collisions is required to decrease the
energy of the primary particle by any appreciable
fraction. Consequently, the fluctuations in the
energy loss are small and in a given material
all particles of the same energy travel practically
the same distance R before being stopped. This
distance is called the range, and, as a function
of momentum, satisfies the following differential
equation :

dR 1
—=— , (1.14)
dp (dp/dx)
which can be written as
dR 63 / 3
n n (b/m) (1.142)

d(p/w) 2CuB 2CuwB [1+(p/w) ]

In the case of energies small compared with
u/u., B is only a function of p/u (see §3):

4u£(ﬁ/#)‘_2 (p/n)?
(2) 14+ (p/w)?

Equation (1.14a) shows that, for a given value
of p/u, the range is directly proportional to the
mass of the particle. B is a slowly varying
function of p/p and can be considered as a
constant over a small momentum interval.
Equation (1.14a) then yields (see H38)

B=log (1.15)

B. ROSSI AND K. GREISEN

R(%) _R(%) 103
(Po/uf+2  (pr/w)+2 1
1[(?2/#)2—{-1]* [(pl/u)zﬂjg}- (1.16)

The range of particles with a given momentum
p can be obtained by application of Eq. (1.16)
to successive momentum intervals from 0 to p.
In this way the graphs in Fig. 3 have been
calculated. A small error is involved in these
calculations because the expression (1.11a) for
dE/dx is not valid when the velocity of the
primary particle is reduced to a value comparable
with the velocity of the atomic electrons. This
error, however, is mostly negligible because the
residual range of such a slow particle is only a
small fraction of one g/cm? while the observed
cosmic-ray particles have in general ranges of at
least several g/cm? Only for the discussion of
mesotron or proton tracks ending in the gas of a
cloud chamber may a more accurate evaluation
of R be desirable. The energy-range relation for
protons of low energy has been calculated by
Livingston and Bethe (L37) using the correct
expression for dp/dx. R/u, as deduced from the
calculations of Livingston and Bethe, is plotted
against p/u in Fig. 4. According to our previous
discussion, this graph can be used for mesotrons
as well as for protons.

§6. Primary Specific Ionization

By primary specific ionization we mean the
number of collisions per g/cm? resulting in the
ionization of atoms. The primary specific ioniza-
tion in hydrogen has been determined theoreti-
cally by Bethe and is given by the following
equation:

2u.B3°
og
(1-p3)I,

jp= -

2Cu. a[
g* Iy

+b—,8‘2], (1.17)

where Iy=Iy=13.5 ev is the ionization potential,
and the constants a¢ and b have the values
2=0.285, b=3.04 (B33a). The primary specific
ionization in gases other than hydrogen should
still be represented by an equation of the type
of Eq. (1.17), in which I, is the ionization
potential of the outer shell, and with different
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values of the constants ¢ and b. No theoretical
determination of ¢ and b as a function of the
atomic number is available. However, b should
not change very much and, since it is small
compared with the logarithm, in first approxi-
mation it can be considered as independent of Z.
The only arbitrary constant is then e, which can
be determined empirically by measurement of
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the primary specific ionization at a given
velocity.

Equation (1.17) shows that the primary
specific ionization is independent of the mass of
the particle, for a given value of the velocity.
Comparison with Eq. (1.9) indicates that &,
and jp have a very similar functional dependence
on (3,
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F16. 3. Range of mesotrons or protons in air, iron and lead [from Eq. (1.16)7]. Abscissa /g, ordinate RX 108/ in g/cm?.

For mesotrons with u =108 ev/c?, therefore, the ordinate represents the range in g/cm?. Th

e graphs are valid for particles

with unit charge and arbitrary mass, provided other losses are negligible compared with the collision loss.
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. [ . 10 i i 16 8

F1G. 4. Range of low energy mesotrons or protons in air (from the calculations of Livingston and Bethe, L37). Abscissa
p/u, ordinate %X 108/u in cm of air at N. T. P. For mesotrons with u= 108 ev/c?, therefore, the ordinate gives the range
directly in cm of air. The graph is valid for particles with unit charge and arbitrary mass, provided other losses are negli-
gible compared with the collision loss.
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B. Compton Effect
§7. Application of the Conservation Laws

The Compton effect can be described as the
collision between a photon and a free electron.
Let W be the energy of the primary photon and
suppose the electron to be initially at rest. As a
result of the collision, the photon is scattered
at an angle 6 with a reduced energy W’ and the
electron acquires the energy E=W—W'".

The conservation laws of energy and momen-
tum yield the following relation between W, W’
and 9 (Compton formula):

W,

W=W—-E=—————.
e+ W(1—cos 8)

(1.18)

W' decreases and E increases with increasing
6. It may be noted that, when W>pu., W' is of
the order of . and E is of the order of W for all
collisions except those for which cos 8 is very
close to 1, and that the minimum value of W’
is ue/2.

§8. Differential Scattering Probability

Let «(W, W)dW'dx be the probability for a
photon of energy W traversing a thickness dx
g/cm? to undergo Compton collision in which
the scattered photon has an energy between W’
and W' 4dW'’. The function « has been calculated
by Klein and Nishina (K29) and is given by
the following equation :

Cue dW’ W'\?
(W, W)W’ =— [1—}-(——)
w w w

WI

——sin? 0|, (1.19)
]

where C is defined by Eq. (1.6) and 6 by Eq.
(1.18). When W>u,, W//W sin® 8 is negligible
compared with 1 because W’/W is much smaller
than 1 except when 6 is nearly 0. Thus (1.19)
can be simplified into

Cue dW’ w'y\?
(W, W)W’ = [1+(——) ] (1.19a)
w w w

It appears from Eq. (1.19a) that the scattering
probability decreases rapidly with increasing W’;
i.e., with decreasing E.
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§9. Total Scattering Probability

Let =, be the total probability for a photon of
energy W to undergo Compton scattering in a
thickness of dx g/cm?. Z. is obtained by integra-
tion of xdW' from u./2 to W. When W>y,,
we get, using Eq. (1.19a):

Cue 2W 1
He

(1.20)

The expression (1.20) for the total scattering
probability has been calculated assuming Eq.
(1.19a) to be valid for all values of W’. Actually
Eq. (1.19a) is only valid for those collisions in
which the energy of the recoil electron is large
compared with the binding energy, because
otherwise the electron cannot be considered as
free. The error, however, is negligible because of
the small number of recoil electrons of low
energy produced by Compton effect. This con-
trasts with the case of collision processes, in
which most of the secondary electrons have
small energies, so that it is necessary in the
latter case to take into consideration the binding
forces. A plot of the total scattering probability
as a function of energy is given in Figs. 13 and
13a (air and lead).

C. Radiation Processes
§10. General Remarks

The emission of photons by charged particles
is closely connected with their deflectipn in the
electric field of the nucleus. According to the
classical electromagnetic theory, a charged
particle emits electromagnetic waves whenever
it undergoes an acceleration, and the intensity
of the emitted radiation is directly proportional
to the square of the acceleration. According to
the quantum theory, a collision of a charged
particle with a nucleus may or may not be
accompanied by the emission of radiation, the
latter case (elastic scattering) being the more
probable. However, some qualitative results on
the radiation probability can easily be derived
by classical considerations. Thus, classically, for
a given distance of approach the acceleration is
directly proportional to the charge of the
nucleus; it follows that the radiation loss will be
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a rapidly increasing function of the atomic
number. On the other hand, the acceleration is
inversely proportional to the mass p of the
particle; thus the radiation loss of electrons will
be much larger than that of heavier particles
like mesotrons or protons. We may also say
that the intensity of the field in which a particle
radiates appreciably increases as the mass of the
particle is increased and, therefore, that the
radiation losses of heavy particles arise only
from much closer impacts than those responsible
for the radiation losses of electrons. Also, the
impact parameter of radiative collisions increases
as the energy of the particle increases, because
of the Lorentz contraction of the electric field
of the moving particle.

The distance from the nucleus at which
radiation phenomena occur plays an essential
role in the development of the theory. If this
distance is large compared with the nuclear
radius and small compared with the atomic
radius, the field acting on the particle during the
radiation process can be considered as the
Coulomb field of a point charge Z concentrated
in the nucleus. If the distance is of the order of
the atomic radius or larger, the screening of the
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F1G. 5. Functions fi(y) and fa(y) in Egs. (1.24) and (1.43)
(from Bethe and Heitler, B34).

nuclear field by the outer electrons must be
taken into account. If, finally, the distance is of
the order of the nuclear radius, the nuclear field
cannot be considered any longer as that of a
point charge.

In the radiation processes the energy W of the
emitted photon is not determined by its angle of
emission because the nucleus takes part of the
momentum. However, it can be proved that the
average angle of emission of photons of energy
W by particles of mass u is of the order of u/W.

§11. Differential Radiation Probability of Electrons

We shall first consider the radiation processes of positive or negative electrons. Let U=E+-pu,. be
the total energy of the electron, inclusive of the rest energy. Let ®(U, v)dvdx be the probability for an
electron of energy U traversing a thickness of dx g/cm? to emit a photon with fractional energy be-
tween v and v+dv, the fractional energy v being defined as the ratio W/ U of the energy of the second-
ary photon to the total energy of the primary electron. Thus the maximum value of v is 1 — (u./U).
Since we only consider energies large compared with u., in most cases the total energy U can be
identified with the kinetic energy E.

The radiation losses of electrons take place at distances from the nucleus which are always large
compared with the nuclear radius. Thus, the nuclear field can be described as that of a point charge.
The screening effect of the outer electrons has been calculated by Bethe and Heitler (B34) on the
basis of the Fermi-Thomas model of the atom. It turns out that the influence of the screening on a
particular radiation process is determined by the quantity

He U
y=100— —2-}
Ul—v

(1.21)

and increases with decreasing v. For ¥>>1 the screening can be practically neglected. In the case vy =0
we shall call the screening “‘complete.” For a given value of v, v decreases with increasing U. Thus,
if the primary energy is large enough, the screening can be considered complete for practically all
energies of the emitted photon.
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If U is assumed to be large compared with u., the expressions for ®(U, v) for various ranges of v are
found to be as follows:

no screening, y>1

N dv 2U01—9\ 1
&(U, v)dyv=4a—2%>—[14+(1—2)2—3%(1 —v)][log (— —_ ——]; (1.22)
A Y e O 2
complete screening, y=~0
N dv
(U, v)dv= aZZ2rO {[1+(1—92)2—2%2(1—v)] log (183Z~H)+§(1—v)}; (1.23)

intermediate cases

vy<2

N 1 1
(U, v)dv= 4aZZQr0 {[1—}-(1——1})2][&——1 ] ¢! —v)[f (7)—glogZ]}, (1.24)
2<y<15
2U1—v 1

N dy
®(U, v)dv=4a—Z2ro2—[1+(1—v)2—-%(1—v)][log ——'——) ———c('y)]. (1.25)
A ] e O 2

The functions fi(vy), f2(v), and c(v) are given by Fig. 5 and Table III. Equation (1.23) shows that
when the screening can-be considered as complete the probability for a given fractional energy loss
does not depend on the primary energy U.

§12. Average Radiation Loss of Electrons

The average energy loss per g/cm? due to radiation processes is given by the equation
1—pe/U
—(AE/d%x) taa= Uf v®(U, v)dv. (1.26)
0

At the limit for small and large energy, respectively, Egs. (1.22) and (1.23) can be used and the
energy loss becomes:

20 1
peLUK137u.273, —(dE/dx)ra= 4a—Z2ro2 U(log —-———) , (1.27)
A pe 3
N 1
U>137u.27}, —(dE/dx) md=4aZZ2ro2~ U[log (1832-1Y) +E] (1.28)

For the intermediate cases the integral in (1.26) must be evaluated numerically. It is seen that the
average radiation loss increases with increasing energy and is proportional to the energy for large
energies.

§13. Radiation Length. Simplified Formulae
We shall define as radiation length the thickness X,, where
1 N
—=4a—2%® log 1832}, (1.29)
o A

and shall denote by ¢ a thickness measured in radiation lengths. We shall then introduce the differ-
ential radiation probability per radiation length

e(U, v) =X o®(U, v) (1.30)



254 B. ROSSI AND K. GREISEN

Fi1G. 6. Differential radiation probability per radiation length of air for electrons of various energies. Abscissa, v=W/U
ordinate, v¢( U, v). The numbers attached to the curves indicate the energy U of the primary electron.
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F16. 7. Differential radiation probability per radiation length of lead for electrons of various energies. Abscissa, v=W/U;
ordinate, v¢(U, v). The numbers attached to the curves indicate the energy U of the primary electron.
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TABLE 111. Numerical values of the function c(v) in Eqs. (1.25) and (1.44) (from Bethe and Heitler, B34).

2

v 2.5 3 4 5 6 8 10 15
c(v) 0.21 0.1

6 0.13 0.09 0.065 0.05 0.03 0.02 0.01

and the average fractional energy loss per radiation length

1 /dE 1 /dE !
__._(__._) =_X0._(——«—) zf vo(U, v)dv. (1.31)
E dt rad E dx rad 0

The function ve(U, v) is plotted against v for various U and two’substances (air and lead) in
Figs. 6 and 7. The average fractional energy loss — (1/E)(dE/dt)rsa is given as a function of energy in
Fig. 9. It appears that the description of radiation phenomena is only slightly dependent on atomic
number when thicknesses are measured in radiation lengths. Moreover, the dependence on atomic
number is reduced with increasing energy and disappears almost entirely for large energies. In fact,
in the case of complete screening the differential radiation probability per radiation length is

eo()dv=[14+(1—2)*— (1 —v)(2—2b) ](dv/v) (1.23a)
and the average fractional energy loss
—(1/E)(dE/dt) = 1+, (1.282)

where b=1/[18 log (183Z7%)]. b is very small compared with 1 and its value ranges from 0.012 to
0.015 when Z changes from 7.3 (air) to 82 (lead). Thus, no appreciable error is made by taking
b=0.0135 for all elements.

Equations (1.23a) and (1.28a) are also valid for substances other than pure elements, provided we
take

1/Xo=p1/X14+p2/Xo+ -, (1.29a)

where py, ps, -+, are the fractional weights of the various components and X;, X, - - -, the corre-
sponding radiation lengths. The values of X for various substances are listed in Table IV (see p. 271).
In many instances it is convenient to substitute,

in place of the correct expressions for the radiation 1§
probability, approximate expressions which have a "’; L
simpler mathematical form. Three of these simpli- ‘\“\\
fied expressions are given in the following equations:  12—NpeT— 7t
% ~L
v) y A\ o e
e1(v)dv=dv, v, (1.32 VRS — P B—
8 \\\ N \\ :\
\ v \\ 108
o= ——— (1.33) S =R
o2(v)dv= — S— . ’ ~ \‘\
log 2 log (1—v \
g 2 log (1-2) . \}{ \
4 dv 2 R
e3(v)dv=—(1—2)—. (1.34) "N
3 v N
0 . 2 . 4 5 [ K K S 10

Inspection of Fig. 8 indicates to what degree the Fi16. 8. Comparison between the approximate expres-

simplified formulae approach the correct expressions ~ SiOnS ¢1, ¢z, ¢s for the differential radiation probability
. ) (dashed lines) and the correct expression for the same
for various energies. quantity at various energies in air (solid lines).
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16 §14. Comparison between Radiation Loss and Collision
\ Loss. Fluctuations in the Radiation Loss

14 As already pointed out, the average energy loss by

\ radiation increases rapidly with increasing energy,

1.2 while the average energy loss by collision is practi-

\ cally a constant. Thus, at large energies radiation

______ losses are much more important than collision losses,
radiation while at small energies the reverse is true. In Fig. 9
i the curves giving the fractional energy loss by colli-
7 sion in one radiation length of air and lead are drawn

( for comparison with the corresponding radiation
6 w y W\ losses. It is apparent that the energy at which the

Fractional energy loss
) o
/W|
1l
1
‘

radiation loss overtakes the collision loss decreases
with increasing atomic, number.

4 \

\ Another characteristic difference between radiation
. N collision losses and collision losses is caused by the fact that
' \ AN the energy loss by radiation occurs in fewer and larger

S~ \ steps than the energy loss by collision. Thus, while

- 8 s %o electrons of a given energy traversing a given thick-

log,o E ness all lose practically the same energy by collision,

FiG. 9. Fractional energy loss by collision — (1/E) there is a considerable straggling in their energy loss

X(@E/dl)co11 and fractional energy loss by radiation by radiation. We may ask what the probability is for
— (1/E)(dE/dt);s4 for electrons per radiation length e e,

of air and of lead. an electron of initial energy U, to have an energy be-

tween U and U+4dU after traversing a thickness ¢.

A solution of this problem has been given by Bethe and Heitler (B34), using the simplified formula

(1.33) for the radiation probability, and is expressed by

0

dU (log U,/ U)o -1
w(ab=—1- : (1.35)
Uy I'(¢/log 2)

Equation (1.35) is valid when collision losses can be neglected.

§15. Radiation Processes of Mesotrons

The emission of photons by mesotrons takes place at much smaller distances from the nucleus than
the emission of photons by electrons. Therefore, in the theory of radiation processes of mesotrons the
screening of the nuclear field by the outer electrons can be neglected to a greater extent than in the
corresponding theory for electrons. Instead, it is necessary to take into account the fact that the
nuclear field at distances smaller than the nuclear radius cannot be considered as the Coulomb field
of a point charge.

In radiation phenomena the spin of the mesotron plays an even more essential role than in collision
processes (see §2). This is so because the average impact parameter for radiation is much smaller than
for collision, and because the spin-dependent forces have a small range. According to Christy and
Kusaka (C41) the differential radiation probabilities per g/cm? for mesotrons of spin 0, %, and 1,
respectively, are as follows:

Spin 0

2161 —v [ 121—9 U 1]
og .
v wpZt 2

N
®(U, v)dv= a—Z"’ro'l( — ——d'v
4 "

(1.36)
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Spin 3
N p\2 16 21—y Uy 1

®(U, v)dv=a—~Z2ro2(—) — [log —_——— ——]. (1.37)
A M 3 v uZ? 2

Spin 1

e 61— 13 5 o rl—v U v /10— 100+302
®(U, v)do= a—Z%( ) [[—_-+_-,, ] vty ( )
v 12 241-9 v wzt] 1w 8

521—v v /34—34v+702 27 1—o U U /2—21}-}-71}2
- + ( )log2 (————~— + )} (1.38)
9 » 1—yp 24 5 v wzd)  suzi\ 12

where U is the total energy of the primary mesotron and v=W/U is the fractional energy of the
emitted photon. The above formulae have been calculated on the assumption that U3y, that the
screening of the outer electrons may be neglected, and that the electric potential of the nuclear field
may be considered to be that of a point charge for distances larger than the nuclear radius & and
constant for distances smaller than d. d was taken as equal to (5/6)(rope/au)Z¥=0.57r,Z%. The ex-
pression for the radiation probability for mesotrons of spin % is very similar to that for electrons (see
Eq. (1.22)). The factor (u./u)?is due to the difference in mass, and the factor (6/5)Z~%¥in the logarithm
is connected with the cut-off of the nuclear field at d. The neglect of screening sets an upper limit
U=~5X10" ev to the validity of the expressions for the radiation probabilities for spin 0 and spin %
(Egs. 1.36 and 1.37). The radiation probability for spin 1 (Eq. 1.38) is less affected by the screening,
but includes terms describing processes which cannot legitimately be computed by the existing
theories when U is larger than about 2X 10 ev. Thus (1.38) is only valid for primary energies smaller
than this limit. A minimum estimate of the radiation probability for U>2X 10 ev can be obtained,
according to Christy and Kusaka, neglecting the doubtful phenomena altogether. By doing so, Eq.
(1.38) becomes

N Pe 161—v 13 v 2r1—v U
®(U, v)dv=a—2Z%y? ( ) dv[[—__+_7) ] -
4 B 3 0 12 21— A

v £10—10v4 32 521—v v s34—34v+4 702 21— U
RSy T
1—v 8 9 v 1—9v 24 5 v uZ?

2—29+4 792
—log? ( ]+[A +4 log ( ](——) }, (1.382)
54 uZ‘ 54 ;LZ§ 12

where 4 is a constant of the order of 1/a=137.

Comparison between Egs. (1.36), (1.37) and (1.38) or (1.38a) indicates that the probability of large
radiation losses is much greater for mesotrons of spin 1 than for mesotrons of spin %, and somewhat
greater for mesotrons of spin  than for mesotrons of spin 0. Hence the probability of large radiation
losses by mesotrons depends on the spin in the same way as the probability of large collision losses.
Numerical evaluation of the formulae shows that, for any value of the spin, large energy transfers are
more likely to occur by radiation than by collision. The fotal energy loss, however, is mainly de-
termined by collision processes up to much larger energies than in the case of electrons.

It must be emphasized that the above conclusions on the radiation losses of mesotrons do not have
the same degree of certainty as do the corresponding results on the radiation losses of electrons, be-
cause the theory involves the properties of the electromagnetic field of mesotrons at distances smaller
than 10~ ¢cm from the mesotron (see §2).
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D. Pair Production
§16. General Remarks

A high energy photon, traversing the intense electric field in the neighborhood of a nucleus, has a
certain probability of transforming itself into a positive and a negative electron. Conservation of
energy yields the following relation between the energy W of the primary photon and the fofal
energies U and U’ of the electron pair:

U4+U=W, or u+u'=1 (1.39)

if we introduce the fractional energies u= U/W and ' = U’/W. The fractional energies « and %’ vary
from u,/W to (1—u./W). Since the energies under consideration are large compared with g., in most
cases the total energies U, U’ can be identified with the kinetic energies E, E'.

The process of pair production can be looked upon as a photoelectric effect, whereby an electron is
raised from a state of negative energy to a state of positive energy leaving a ‘‘hole” in the infinite
distribution of negative-energy electrons. The theory of pair production is closely related to the
theory of radiation processes. Indeed, in the case of a radiation process an electron makes a transition
between two states of positive energy and a photon is emitted. In the case of pair production a photon
is absorbed and causes an electron to make a transition from a state of negative energy to a state of
positive energy.

The energy distribution between the two electrons of a pair is not determined by the direction of
their motion with respect to that of the primary photon, because the nucleus takes part of the
momentum. However, it can be proved that the average angle of emission of an electron of energy U
is of the order of u./U.

§17. Differential Probability for Pair Production

Let ¥ (W, u)dudx be the probability for a photon of energy W traversing a thickness of dx g/cm? to
produce a pair, in which the positron has a fractional energy between # and #-+du. As in radiation
phenomena, it is important to consider the distance from the nucleus at which the pair production
takes place, because of the screening of the nuclear field by the outer electrons. The influence of the
screening is determined by the quantity

y=100— ————Z-} (1.40)

and decreases with increasing y. We shall neglect the screening when ¥>>1 and we shall call the
screening ‘‘complete’” when y=0. For a given value of u, v decreases with increasing W. Thus, for
large energies of the primary photon the screening can be considered as complete for all processes of
pair production.

Under the assumption that W>>p,, the expressions for ¥(W, u) for various ranges of vy have been
given by Bethe and Heitler as follows:

no screening, y>>1

N 2W 1
v(W, u)du=4aZZﬂrozdu[u2+(1 —u)242u(l —u) ][log u(1—u) _E]; (1.41)
. e

complete screening, y =0

N
(W, u)du=4aZZZr02du{[u2+(1 —u)?+2u(l—u)]log (1832~ %) —3u(l—u)}; (1.42)
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intermediate cases

v<2
N 1 2 1
v(W, u)du=4aZZﬁrozdu{ (w241 —u)Z][fl(y) —g log Z] Zu(1 —u)[f——-—iﬂ —g log Z], (1.43)
2<y<15
N 2W
V(W, u)du= 4aZZ2ro2du[u2+ (1—u)2+3u(l—u) ][log —u(l—u)—%— c(y)]. (1.44)
Me

The functions f1(v), f2(v) and ¢(y) are the same as those which enter in the expressions (1.24) and
(1.25) for the radiation probabilities, and are given by Fig. 5 and Table III. The functions ¥ are
symmetrical with respect to » and (1 —u) ; i.e., with respect to the energy of the electron and that of
the positron. In the case of complete screening [Eq. (1.42)], ¥ is a function of the fractional energy «
only.
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F1c. 10. Differential probability of pair production per radiation length of air, for photons of various energies. Abscissa,
u=U/W;ordinate, (W, «). The numbers attached to the curves indicate the energy W of the primary photon.
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§18. Total Probability for Pair Production

Let Z(W)dx be the total probability for a photon with energy W to produce a pair in a thickness of
dx g/cm?; i.e.,

1—ue/ W
(W) ==f (W, u)du. (1.45)

/W

At the limit for small and large energies, respectively, Eqgs. (1.41) and (1.42) yield
e K W<K137pu, 24

N 7 2w 109
E(W) =4052Z2702(6 lOg '———‘5—4‘- y (146)
Me
W>>13Tu.Z~?
N 7 1
(W) =Eo=4a—22ro2[— log (183Z-Y) ——]. (1.47)
A 9 54

For the intermediate cases the integral in (1.45) must be evaluated numerically. Equation (1.47)
shows that the total probability for pair production at large energies is a constant in a given material.
§19. Probabilities per Radiation Length. Simplified Expressions

The probabilities for pair production can conveniently be expressed in terms of the radiation length
defined in §13. Let

Y(W, u)=Xo¥ (W, u) (1.48)
be the differential probability for pair production per radiation length and
a(W)=XZ(W) (1.49)

be the total probability for pair production per radiation length. The function ¢ is plotted against u
for various W in Figs: 10 and 11 (air and lead). The function ¢ is plotted against W in Figs. 13
and 13a (air and lead). The analytical expressions for ¢ and ¢ in the case of complete screening are

Y(W, w)du=yo(u)du

(1.42a)
=4+ 1 —u)2+ (3 —2b)u(1 —u) ]du,
7 0
a(W)=0o=——~ (1.47a)
9 3

where b is the same as in Egs. (1.23a) and (1.28a).

It appears that the equations describing pair production, like those describing radiation processes,
depend only slightly on the atomic number, when thicknesses are measured in radiation lengths, and
are entirely independent of Z at the limit for large energies. The differential probability ¢(W, u) for a
given W does not change very much with #. Therefore, in first approximation, one can use the
simplified expression

Yi(W, u)ydu=o(W)du (1.50)
or, at high energies,

7
i(W, u)du=o0du z;du. (1.50a)
The approximation (1.50) is good at low energies. At intermediate energies a better approximation
is given by the following equation:

(W
Yo(W, u)du=

(]

)wo(u)du. (1.50b)
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Fi16. 11. Differential probability of pair production per radiation length of lead, for photons of various energies. Abscissa,
u= U/W;ordinate, (W, ). The numbers attached to the curves indicate the energy W of the primary photon.

A comparison between the approximate expressions ¥1, ¥» and the correct expression ¢ is found
in Fig. 12.

§20. Comparison between Pair Production and Compton Effect

The total probability for Compton scattering (see §9) decreases rapidly with increasing photon
energy, while the total probability for pair production is a slowly increasing function of the energy.
Thus, at large energies most of the photons are absorbed by pair production, while at small energies
most of the photons are absorbed by Compton effect. The absorption of photons by pair production
and Compton effect in lead and air are compared in Figs. 13 and 13a. It is seen that the energy at
which the pair production becomes dominant decreases with increasing atomic number.
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E. Scattering
§$21. Differential Probability for Elastic Scattering

It has already been pointed out that when a charged particle passes near a nucleus it undergoes a
deflection which, in most cases, is not accompanied by loss of energy. This phenomenon, called elastic
scattering, is caused by the same electric interaction between the passing particle and the Coulomb
field of the nucleus, which also determines the radiation processes (see §10).

In investigating the elastic scattering, the nuclei will be considered as fixed point charges of magni-
tude Z. We shall denote by £(0®)dwdx the probability that a particle of charge =1, momentum p and
velocity B, traversing a thickness of dx g/cm?, undergoes a nuclear collision which deflects its trajectory
into the solid angle dw, at an angle © to its original motion. In the calculation of £, the spin of the
incident particle must be taken into account. The expressions for ¢ corresponding to the values 0, 3,
and 1 of spin are, respectively :

Spin 0 (see Williams, W39)

K@) N O (1.51)
B)dw=N—— . .
A 4 p*R2sint 10
Spin § (see Mott, M29)
(©)do= N sine 1) (1.51a)
£(0)dw=N—— —B2sin? 1€ . Sla
A 4 p*p? *sin 10
Spin 1 (see Massey and Corben, M39)
VAR IR 1 262 dw
£(0)dw= N— — 14— gin? @) : (1.51b)
A 4 p23? 6 u? sin 10

It is seen that the probability of large deflections is different for different values of the spin. For
small deflections, however, the terms depending on spin are negligible and one can use for particles
of any spin the following expression :

Z* .t dw
£(0)dw=4N—rd— —. (1.51¢)
A PZB‘Z @4

The finite size of the nucleus and the screening of the nuclear field by the outer electrons limit the
validity of the above equations for large and for small values of 0, respectively. Following Williams
(W39), we may take into account the finite size of the nucleus by assuming that its electric charge,
instead of being concentrated in a point, is distributed in a sphere of radius d. It can be shown that
this assumption does not affect materially the calculated value of the scattering probability ¢ for
© <X/d, while it causes ¢ to go rapidly to zero for ® >Xx/d, where X is the De Broglie wave-length of
the incident particle divided by 2#. Similarly, if we put a=(137)%¢Z~* (¢ may be denoted as the
atomic radius), it can be proved that the screening of the nuclear field by the outer electrons does
not affect the scattering probability £ for @ >X/a, while it causes £ practically to vanish as soon as ©
becomes smaller than X/a. Taking for d the value d=0.577,Z%, as in §15, we can assume that £ is given
by Egs. (1.51) to (1.51c¢) for Opnin <O < Onax, where

Omin=XZ}/(137)70, Omax=%/0.57r,Z> (1.52)

and is practically zero for ® <O, or 0> Opax.
It is, of course, possible that forces other than electromagnetic may play a role in the scattering of
cosmic-ray particles. This possibility, however, will not be taken into consideration.



COSMIC-RAY THEORY 263

10 F1G. 13. Total

i / 4 probability per
o »3 radiation length

of air for pair

N . production (o)

P
7"

and for Comp-
ton scattering
(a¢) as a function

|,
|
\
).

of the photon
energy W. The

-
£ L £.
/ N
’ Y o~ de - sum of the two
5 b R S N probabilities (o,
~

+o0.), giving the

1 total absorption

4 s c coefficient per

2497 z P
H — 7?3--\-:-; ot s ety O -?\-\- 7 radiation length,

2 /£ e S is also indicated.

’ % For W<107 ev,
+ op cannot be
2 / \
| |
u

.
\
\*

L —]

the formulae
given in the
text, which are
only valid when

calculated with

>

&

0 2 3 E L 4 [ 9 10 // W >>u., and a

Pid more accurate

F1G. 12. Comparison between the approximate expres-  ° g w © €quation must
sions 1, ¥ for the differential probability of pair produc- © be used (see

tion (dashed lines) and the correct expression for the same B34).
quantity (solid lines). The graphs have been calculated
for lead and for W equal to 2X 107, 108, 10° ev.

§22. Multiple Scattering. Calculation of the Mean Square Angle of Scattering

The deflection that a cosmic-ray particle undergoes in traversing a plate of finite thickness may be
caused either by a single collision, or by many subsequent collisions. It can be proved that large
deflections are more likely to occur in single collisions, while small deflections are generally caused by
many collisions.

The result of single collisions is referred to as single scattering, the result of a small number of
collisions as plural scattering, and the result of a large number of collisions as multiple scattering. The
theory of single scattering, which is of importance for large deflections, is contained in the formulae
given in the foregoing section. The theory of plural scattering is very complicated and will not be
investigated here. The theory of multiple scattering, which is of importance for small deflections, can
be treated in a simple way by statistical methods. We shall develop it using Eq. (1.51c) as the
expression for the elementary scattering probability. This is allowed because only small deflections
play an important role in multiple scattering. Since Eq. (1.51c¢) holds for all particles with unit charge,
the results will be valid for electrons, mesotrons and protons indifferently.

As a first step, we want to calculate the mean square angle of scattering in an infinitesimal layer dx.

emnx

<®2>Av(dz) =dxf @25(@) 21r(~)d@ (153)
BOmin

It follows immediately from (1.51c) and (1.52) that

Z2 pez ®max
(Op (az) =dx - 8 N—r? log
A P Omin

(1.53a)
AR T
=dx-16r N—ro—— log (181Z7%).
A p‘.’52
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It will be noted that {©®2)a4z) depends on atomic number in much the same way as the radiation loss of
electrons [see Eq. (1.28)7]. The difference between the numerical factors (183 and 181) in the loga-
rithm cannot be considered as real, and has a negligible effect on the result. Hence, the description of
scattering phenomena will be simplified by measuring thicknesses in radiation lengths [see (1.29)].
Indeed, the mean square angle of scattering in a thickness of d¢ radiation lengths becomes independent
of atomic number, and is given by

(O p(ary=4mr-137Tu2dt/ p*p> (1.53b)

If we introduce the constant E, with the dimension of an energy:
E,=u,(47137)}=21X10% ev, (1.54)
(O)nan = (Es*/p*8)dt. (1.53c)

Eq. (1.53b) becomes

According to a general rule on the superposition of small and independent deviations, the mean
square value of ® in a finite thickness ¢ can be obtained by integration of (1.53c) from 0 to ¢.

¢t ay
(@%)(n=E f R, (1.55)
o PP
If the energy loss is negligible, p and 8 can be considered as constant, and (1.55) reduces to
(Omey = (E&/p*B)L. (1.55a)
In general, Eq. (1.55) can be written as follows:
noo1 0 dp
(@i =B [ ——— (1.55b)
e —(dp/dt) p**

where (—dp/dt) is the momentum loss per radiation length and p; and p, are the momenta at the
thicknesses 0 and ¢, respectively. In the case of mesotrons, according to Egs. (1.11a) and (1.13),

_ d_? _ XOZ C,U'eB (P//_#_)

) (1.56)
dt s
8. — - — ——
e|
A
o y
\
\
\
\\ F1G. 14. Illustrating the
a \ calculation of the sidewise
\ distribution at the center
oo 0 of the trajectory of cos-
S :\\ mic-ray particles passing
/ Sp " through two fixed points.
2 \< 1\
]
[
// o [
Ol z - g
7 € ) 10
log,, W %

FiG. 13a. o5, oc and ¢p+o. for lead.
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where B is a slowly varying function of p/u given by Eq. (1.15). If one considers B as a constant,
Eq. (1.55b) yields

(@2) LA fplﬁd
MO N 2CwB .

" X02CwB u

1 E? lf”'“‘ d(p/m)
Polu P//ﬂ[(P/#)Z‘}'l]%

1 E2 1 [1+[1+(P2/#)2:|*X p1/u ]

=— «-— 10
Xo2Cu.B u po/p 1+[14(py/w)* ]

With the same approximation (constant B), p, and p; are related to the thickness ¢ by the equation
(see 1.16)

1w [(Pl./#)2+2 (Pz/#)2+2]

t=—o -
Xo2CuBLL(p /w2417 [(po/w3+17
It follows that
14y: Py
log[ ——]
Esz 1+yl P2
(OHny=—1 (1.57)

u? y1+1/y1~y2—1/3’2,

where y=[(p/u)?+1])i=(E+u)/u is the total energy divided by the rest energy. In the practical
cases, the thickness ¢ as well as the final momentum p. is known, and the initial momentum p, can be
obtained from the graph in Fig. 3.

Instead of considering the total deflection O, it is often more convenient to consider the projection
6 of the deflection on a plane containing the initial trajectory. It can easily be shown that the mean
square value of 6 is one-half the mean square value of ©. Therefore,

t
(0Hny=3ES f ar'/ p*p* (1.58)
0

or, if the energy loss is negligible,
0oy =32E/p*B (1.58a)

§23. The Distribution Function*

Let us consider a parallel and infinitely narrow beam of cosmic-ray particles incident on a plate
of some scattering substance. The particles are all supposed to have the same energy, and their energy
loss in the scattering substance is neglected. We ask for the space and angular distributions of the
beam after traversal of a thickness ¢ of the scattering substance.

Let us take a system of Cartesian coordinates with the origin at the point of incidence and one of
the axes in the direction of the motion of the incident particles. This axis will be denoted as the ¢ axis,
while the other two will be the y and 2 axes, respectively. Let us consider the projection of the
motion of the particles on the (¢, ¥) plane and let F(¢, y, 6)dyd8 be the number of particles at the
thickness ¢ having a lateral displacement (y, dy) and traveling at an angle (6, d8) with the ¢ axis. For
reasons of symmetry, the same function F describes also the space and angular distribution in the

* The developments in this article follow closely a lecture given by Professor Fermi at the University of Chicago in
the summer of 1940 and include some unpublished results. The writers wish to express their sincere appreciation to
Professor Fermi for allowing them to make use of these results.
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(¢, z) plane. Since deflections in the two orthogonal directions y and z are independent of each other,
the number of particles having a lateral displacement with components (y, dy) and (2, dz) and
an angular deflection with components (6,, d6,) and (6., df.) at the thickness ¢ is given by
F(¢t, v, 8,)-F(, 2, 6.)dydzd8,d8.. We want to calculate the distribution function F under the usual
assumption that the angle 6 is small.

Let pa.(6)d8 be the probability that a particle traversing the thickness At will be deflected through
an angle (8, d8). The deflection 6 is not necessarily caused by a single collision. Hence, the function
p(6) is not immediately related to the function £(0) defined previously. By its definition, p(6) satisfies
the following equations:

par(8) =pac(—90),
fwPAt(o)(w: 1,

-—00

f Bpa(8)d8=0, (1.59)

@ 1 ESZ
f 6%pa t(e)d0= (02>Av(Az) =-

> 2 p?ﬁz

Since p has a very sharp maximum at §=0 and goes rapidly to zero on both sides of the maximum,
the integrals can be extended from — « to 4 .

We ask now for the change that the function F undergoes in the layer from ¢ to ¢4 At. The function
F changes because both the space distribution and the angular distribution of particles are modified by
the traversal of the layer At. The space distribution is modified because particles traveling at an angle 8
undergo a lateral displacement 6At in the layer A¢. The scattering in this layer represents only a second
order effect and can be disregarded as far as the change in the space distribution is concerned. It
follows that the particles having a lateral displacement y at the thickness {4 At are those which had a
lateral displacement y — #At at the thickness t. Hence, neglecting the change in the angular distribution,

At.

F(t+At, v, 8) = F(t, y— 0At, 6) = F(t, v, 6) — 0AL(dF/dy).

In order to calculate the effect of the change in the angular distribution, let us consider two angular
intervals (6, df) and (9, d@’). There are F(¢, v, 8')dyd6’ particles in (8’, d8’) at the thickness ¢ with a
lateral displacement (y, dy), and a fraction pa:(8 — 6")d6 of these particles is scattered into the angular
interval (8, dd) while traversing the layer At. Hence, if we neglect the change in the space distribution,

F(t+At, y, 6) =f F(t,y, 0")pa:(6—06")d0’.

Since pa (8 —6’) is different from zero only for very small values of the argument, F can be developed
in Taylor series of (§— #’). Dropping the terms beyond the second order and taking into account Egs.
(1.59), we obtain

1 E2 3*F
F(t+At, y, 0)=F(, v, 6)+— —AL.
4 p2ﬂ2 062

Hence the total change of the distribution function F in the layer At is

dF 1 E2?dF
£
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If we set
w=2pB/E, (1.60)
we obtain for F the differential equation

aF dF 1 9*F
—_———f—— ——, (1.61)
ot dy w? 96?

It will be noted that, for large values of p, w represents twice the energy of the incident particle in
units of the characteristic energy E,, while for small values of p, w represents four times the energy
in the same units.

We look for a solution of Eq. (1.61) which corresponds to a single incident particle. The function F
will then represent the probability for a certain lateral displacement and a certain angular deflection
at the thickness ¢. It can easily be proved that such a solution (given by Fermi ; see footnote, p. 265) is

23 w? 6> 3y0 3y
[ ] (1.62)
t 2 t3

F(t, y, ) =— —exp
2r 12

Indeed, it is seen upon substitution that (1.62) satisfies (1.61). That the boundary conditions are
also fulfilled will be made apparent by what follows.

By integrating the distribution function F over y, one obtains a function G(¢, §) which represents
the angular distribution irrespective of lateral displacement.

G(t, 0) = f F(, v, 0)dy=7 —%exp [—$(w62/t)]. (1.63)

Similarly, by integrating the function F over 6 one obtains a function H(¢, y) which represents the
distribution in space, irrespective of angle.

; exp [— 3(wty?/13)]. (1.64)

T

H(t, v) fmF( 0)d V3
t,y)= t, y, 0=
PRIy
It follows from (1.63) and (1.64) that, for all values of ¢:

f G(t, 0)d8=f H(t, y)dy=1. (1.65)

Moreover, at the limit for t=0, G is zero for all values of 6 except §=0, and H is zero for all values
of y except y=0; i.e.,

where 8 is Dirac’s improper function.

This proves that the solution (1.62) actually corresponds to a single particle incident at t=0, y=0
in the direction of the ¢ axis.

Equation (1.63) shows that, at every thickness, the angular distribution irrespective of position is
Gaussian. The mean square angle of scattering is given by

(6w =2t/w*=3E/p*B? (1.67)

in agreement with (1.58a).
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Similarly, Eq. (1.64) shows that at every thickness the distribution in space, irrespective of angle,
is Gaussian. The mean square displacement is

213 1 E;?

R 1
ODny=—; ie, Ony=——==12()nn. (1.68)
3w? 6

p?BZ 3

It may be noted that, if we only consider those particles which have a certain displacement at a
given thickness, their angular distribution is not Gaussian. The same remark applies to the space
distribution of particles which have a certain angular deflection at a given thickness.

The distribution function (1.62) can be used to solve various problems arising in the discussion of
cosmic-ray experiments. Suppose, for instance, that a beam of cosmic-ray particles is known to pass
through two points A and B (more precisely, through two small areas at 4 and B) and one wants to
determine the sidewise distribution of the trajectories with respect to the straight line connecting
A and B at half the distance between A and B. Let us take 4 as the origin of a system of coordinates
and A B as the ¢ axis (see Fig. 14). As before, we shall consider the projection of the trajectories on a
(t, ) plane through AB and suppose that the angles of the trajectories with the ¢ axis are small. We
draw a straight line perpendicular to the segment 4 B through its center O and consider a point C of
this line at a distance y, from O. Let ty=(40) = (OB) and let us consider three elementary segments,
dy, at A(t=0), dyo at C(¢t=t) and dy, at B(¢t=2t,). Suppose cosmic-ray particles are incident at 4
uniformly in the different directions; we ask for the probability f(yo)dy, of a sidewise displacement
(yo, dyo) at t=to.

Let Kd6:dy, be the number of particles incident upon dy, in the angular interval (61, d6:). The dis-
tance of C from their original trajectory is yo— o6 ; hence, the number of these particles going through
dyo at an angle (8o, dfo) is

Kdo\dy1F(to, yo—tob1, 60— 01)d0odyo

and the total number of particles coming from any direction and going through dy, at the angle
(00, d00) iS*

w0

V3w
Kdyldyod()of F(to, Yo— tofy, 60— Bl)del = Kdyldyoz —i exp ['— %(w"’/toa) (yo “t000)2]d00.

—0 g

A particle passing through dy, at an angle 6, has a probability H (¢, —yo—£tof0)dy: of going through
dys at B. Hence the number of particles going through dy1, dy, and dy, is

3 ¥ w 3 'w“’yo2
st L) o] 422

™ t05/2 2 to3

while the total number of particles going through dy, and dy: is
1
——-Kdyldyg
2ty
The probability f(y.)dys is the ratio between the two above numbers and is therefore given by

3\ w 3 wly,?
F(yo)dyo= (2— — exp [“" ]dyo.
™

to} 2 tod

(Fermi; see footnote, p. 265.)

* This result becomes an immediate consequence of Eq. (1.64) if one imagines the particle as moving in the opposite
direction.



Part II.

Multiplicative Showers

§24. General Remarks

It has been shown in the first section that
charged particles traversing matter lose energy
by collision and by radiation. Most of the energy
lost by collision is spent in exciting the atoms or
ejecting from the atoms electrons of small
cnergy, and must be regarded as dissipated,
according to our definition (see Introduction).
The energy lost by radiation, on the contrary, is
fairly uniformly distributed among secondary
photons of all energies from zero up to the energy
of the primary particle itself. For electrons of
small energy and for mesotrons of practically all
energies the collision losses are more important
than radiation losses. Hence the interaction of
mesotrons or of low energy electrons with matter
results mainly in an energy dissipation. Electrons
of large energy, however, lose most of their
energy by radiation. Hence by the interaction
of high energy electrons with matter only a small
fraction of the energy is dissipated, while a large
portion is spent in the production of photons of
high energy. The secondary photons, in turn,
undergo materialization or Compton collision.
In either process electrons are produced of energy
comparable with that of the photon. These new
electrons radiate more photons, which again
materialize into electron pairs or produce
Compton electrons. At every new step the
number of particles increases and their average
energy decreases. As the process goes on, an
increasing number of particles falls below the
limiting energy mo, until eventually the energy
of the primary electron is completely dissipated.

The phenomenon outlined is called a multi-
plicative shower, or a cascade shower. It is clear
that a shower can be initiated by a high energy
photon as well as by a high energy electron.
Mesotrons, too, can give rise to a secondary
shower by producing a high energy electron or
photon.

The theory of cascade showers was first
developed independently by Carlson and Oppen-
heimer (C37) and by Bhabha and Heitler (B37).
Further contributions were published by Landau

and Rumer (L38), Snyder (S38), Serber (S38a),
Nordheim and Hebb (N39), and others (see F37,
138, E38, H38, A38, T39, A40, N40, S40). The
mathematical aspect of the theory has recently
been discussed in detail by Scott (S41).

In our discussion we will first consider the
problem as unidimensional; i.e., we will assume
that all shower particles (electrons and photons)
move in the same direction as the primary
particle which has produced the shower. The
spread of a shower caused by scattering will be
discussed later (§44). One is justified in treating
the problem of the longitudinal development of a
shower separately from the problem of its
lateral spread because the change in path length
due to scattering is, in general, negligible.

§25. Definitions, Notations, and Approximations

Since the phenomena mainly responsible for
the generation of showers are radiation processes
and pair production, it is convenient, in the
following discussion, to measure thicknesses in
radiation lengths (see §13). We shall further
introduce the following definitions and notations.

(a) Differential electron spectrum, w(E, t)dE:
average number of electrons (positive and
negative) at the thickness ¢ with energy between
E and E4dE. If we want to specify that the
shower has been produced by an electron of
energy E, or by a photon of energy W, we shall
write w(Eo, E, t)dE or #(W,, E, t)dE, respectively.

(b) Differential photon spectrum, v(W, t)dW:
average number of photons at the thickness ¢ with
cnergy between W and W+HdW(y(E. W, t)dW
or y(Wo, W, t)dW for a shower produced by an
electron of energy E, or by a photon of energy
Wy).

(c) Integral electron spectrum, II(E, t): average
number of electrons with energy larger than E
at the thickness {(II(E,, E, t) or II(W,, E, t) for
a shower produced by an electron of energy E,
or by a photon of energy Wy).

(E, f) = f m-:r(E’, 1)dE'. (2.1)
E
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(@) Integral photon spectrum, T'(W, t): average
number of photons with energy larger than W
at the thickness ¢{(T'(Eo, W, t) or T'(W,, W, ¢) for
a shower produced by an electron of energy E,
or by a photon of energy Wy).

I'(W,¢) =fw'y(W’, HAwW'. (2.2)

(e) Differential electron track length, z,(E)dE:
total distance traveled by all shower electrons
while their energy lies between E and E+dE.

2.(E) =fw1r(E, t)dt. (2.3)

Similarly,

2 (W) = f "W, (2.4)

gives the differential photon track length, z.,(W)dW.

(f) Integral electron track length, zn(E): total
distance traveled by all shower electrons while
their energy is larger than E.

zn(E)=fwz,(E’)dE’=waI(E, t)ydt. (2.5)

0

Similarly,

zI‘(W)=fwz,(W’)dW’=wa’(W, t)dt (2.6)
w

0

defines the integral photon track length, Zr(W).

The functions 2., 2,, zn, and zr are easier to
calculate than the corresponding functions , v,
II, T, and knowledge of them is sufficient to
solve several problems; for instance, to determine
the number of electrons and photons in equi-
librium with a mesotron beam (see §40).

(g) Specific tonization, j(t)dt: total number of
ion pairs produced by all shower particles in the
layer between ¢ and ¢+dt.

(k) Total ionization, J: total number of ion
pairs produced by all shower particles until the
absorption of the shower is completed.

J= f mj(t)dt. .7
0

(¢) Center of gravity: The position i,(E) of the
center of gravity of shower electrons of energy
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E is defined by

f tn(E, 1)dt
i (E)=— - f tn(E, H)dt.

® Z,E 0
f Y

Similar expressions give the positions of the
centers of gravity of photons of energy W(i,(W)),
of electrons with energy larger than E(in(E)),
of photons with energy larger than W(ir(W))
and of the ionization (i;).

(7)) Longitudinal spread of a shower, r: The
longitudinal spread 7,(E) of shower electrons of
energy E is given by

(2.8)

f [t—i,(E) Tr(E, )it

0

[T,(E)]2=—'.— -
f w(E, t)dt
1 “ i 9
=ZK(E) j; 2w (E, t)dt—[t(E)]> (2.9)

Similar expressions define the quantities 7.,(W),
n(E), 7r(W) and r;, which are, respectively, the
longitudinal spread of photons of energy W, that
of electrons of energy larger than E, that of
photons of energy larger than W, and that of
the ionization.

The quantities defined above describe the
average behavior of showers. The actual behavior
of an individual shower may differ considerably
from the average. Thus, the problem arises to
determine the probability for a certain behavior
(for instance, the probability that N electrons
with energy larger than E are found at the
thickness ¢, etc.). This problem is referred to as
the fluctuation problem and has not yet been
solved satisfactorily. It will be discussed briefly
in §43.

Even the discussion of the average behavior
of showers cannot be carried out mathematically
without certain simplifications. We have pointed
out repeatedly that for large energies the
dominant processes are radiation losses of elec-
trons and pair production by photons. When the
energy is decreased, collision losses become
important and for still smaller energies the
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Compton effect has to be taken into account.
It is convenient to introduce a quantity e called
critical energy, which is defined as the energy
dissipated by collision in one radiation length,
by electrons of energy e. Remembering that for
cosmic-ray electrons energy and momentum are
practically identical, Eq. (1.9a) with n=35X108
vields the following equation for e

zZ
e=1.53X105—X,
A

€
X(23.0+2 log ——2 log Z). (2.10)
Me

The values of e for various substances are
listed in Table IV. In first approximation, e turns
out to be inversely proportional to the atomic
number, since X goes approximately as 4/Z2.

As long as we confine our attention to energies
large compared with the critical energy, the
theory of showers can be developed considering
only radiation phenomena and pair production.
Furthermore, if the energies under consideration
are also large compared with 137u.Z7%, radiation
phenomena and pair production can be de-
scribed by the asymptotic formulae for complete
screening. In what follows we shall call “approxi-
mation A" the approximation in which collision
processes and Compton effect are neglected, and
the asymptotic formulae are used to describe
radiation processes and pair production.

For energies in the neighborhood of the critical
energy, the Compton effect can still be disre-
garded, but the collision processes must be taken
into account. These, however, do not contribute
appreciably to the production of high energy
secondary electrons, hence it will be sufficient to
consider only their influence on the energy loss
of electrons. Since the collision loss does not
change rapidly with energy, it can be taken as
constant and equal to e ev per radiation length.
We shall call “approximation B’ the approxi-
mation in which the Compton effect is neglected,
the collision loss is described as a constant energy
dissipation and the asymptotic formulae for
radiation processes and pair production are used.

For energies small compared with the critical
energy, both the Compton effect and collision
processes contribute considerably to the absorp-
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TABLE IV. Atomic number (Z), atomic weight (A), radiation
length (X o), and critical energy (e) for various substances.

SUBSTANCE VA A Xo (G/cm2) € (106 EV)
Hydrogen 1 1 138 815
Carbon 6 12 52 120
Nitrogen 7 14 45 103
Oxygen 8 16 39.7 90
Aluminum 13 27 26.3 52
Argon 18 39.9 20.8 37
Iron 26 55.84 14.4 25
Copper 29 63.57 13.3 22.4
Lead 82 207.2 5.9 7.0
Air N 76.99,*

0 21.89, 43 98
A 139,
Water H 11.19* 43 111
0 88.99,
* By weight.

tion, as well as to the production of shower
particles. In air, for instance (see Fig. 13), a
photon of 2.4X107 ev has the same probability
for Compton effect and for materialization. The
ratio between the probabilities of an electron of
energy E’ being produced by collision, and by
materialization of a photon of energy W, is
approximately given [according to Eqgs. (1.7)
and (1.50)] by

collision 2CXo pW

materialization o(W) (E')*

In air, where the average energy of shower
particles is of the order of 108 ev, and considering
that electrons and photons are present in
comparable number, electrons in the neighbor-
hood of the limiting energy 7o=5X10% ev are
much more likely to be produced by collision
processes of electrons than by materialization
of photons.

It will be shown that the shower problem
under approximation 4 can be solved completely.
When the energies under consideration are not
too close to the initial energy, an analytical
procedure can be used, on the basis of principles
laid down by Carlson and Oppenheimer, Landau
and Rumer (§8§26-30). For energies close to the
initial energy one can apply a method of succes-
sive approximations, developed by Bhabha and
Heitler (§31).

The shower problem under approximation B
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TABLE V. List of references for the calculation of the various quantities describing showers.

QUANTITY REFERENCE REMARKS
T(Eo, E\0) . .o Eq. (2.55) Appr. 4; <KXELKE,
Eq. (2.98) Appr. B; ~2e< EXE,
a(Wo, EJ by ... ... Eq. (2.58) Appr. 4; <KLELW,
| §36 Appr. B; ~2e< ELW,
Y(Eoy Wit). oo | Eq. (2.56), Fig. 16 Appr. 4; eLWKE,
| Table XI Appr. 4; W of the order of E,
Eqg. (2.99) Appr. B; ~2e<W<KE,
Y(Wo, Wob) .o Eq. (2.59) Appr. 4; <LWKLKW,
Table XII Appr. A; W of the order of W,
§36 Appr. B; ~2e<W <KW,
M(Eo, E,8) oo Eq. (2.57), Fig. 15 Appr. 4; <KX EXKE,
Table IX Appr. A; E of the order of E,
Eq. (2.100) Appr. B; ~2¢< EKE,
Eq. (2.104), Fig. 19 Appr. B; E=0
M(Wo, Eyt) ... oo Eq. (2.60) Appr. 4; KLELW,
Table X Appr. A; E of the order of W,
§36 Appr. B; ~2¢<E LW,
Eq. (2.105) Appr. B; E=0
JE), J(Wo)e oo oo Eq. (2.108)
J(Eo, 8), J(Wo, 8) . .o Eq. (2.110) Appr. B
2x(Eo, E), 2y(Eo, W). ...t Eq. (2.44) Appr. 4; €<<§V<<E°
Eq. (2.96) Appr. B; ~2e< fV<<Eo
(B0, E) . oo Eq. (2.44) Appr. 4; <KXEKE,
Eq. (2.96) Appr. B; ~2¢e< EKE,
Eq. (2.106) Appr. B; E=0
2x(Wo, E), 29(Wo, W) . ... . ... Eq. (2.45) Appr. 4; e<<fv<<Wo
Eq. (2.97) Appr. B; ~2e< 5V<<W°
sn(Wo, E) . ... o Eq. (2.45) Appr. 4; <KLELW,
Eq. (2.97) Appr. B; ~2e< ELW,
Eq. (2.107) Appr. B; E=0
ix(Eo, E), iy(Eo, W), Ix(Wo, E), ty(Wo, W)...| Eq. (2.46) Appr. 4; e<<§/<<§,°o
. E _E,
§36 Appr. B; ~2e< W<<Wo
in(Eo, E), in(Wo,E) . . ... ............... Eq. (2.46) Appr. 4; <XE <<f;o
§36 Appr. B; ~2¢<E <<I]/EVQ
0
Egs. (2.106), (2.107) Appr. B; E=0
22(Eo, E), 74(Eo, W), 7(Wo, E), 7y(Wo, W) | Eq. (2.47) Appr 43 L
.~ E Eo
§36 Appr. B; ~2e< W<<Wo
ri(Bo, E), 7u(Wo E) .| Eq. (247) Appr. 4; e<<E<<§,"o
§36 Appr. B: ~2¢<E <<5,°
o
Eq. (2.106), (2.107) Appr. B; E=0
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has been partially solved in the case of showers
produced by a primary particle with energy large
compared with the eritical energy. Following a
method first developed by Snyder, it is possible
to calculate the specific ionization as a function
of depth (§§32, 34, 35, and 37) and the energy
spectrum of shower particles down to energies
of about 2¢ (§832, 33, 34, and 35).

Some calculations have been performed on the
low energy end of the spectrum where neither
approximation 4 nor approximation B can be
used. In these calculations, however, the primary
energy was still regarded as large compared with

¢ (8§38). No theoretical data are available on*
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showers produced by primary electrons or
photons with energy of the order of the critical
energy, although it has been shown by Dresden,
Scott, and Uhlenbeck that the problem can be
solved, at least in principle, by a method of
successive approximations similar to that of
Bhabha and Heitler (D41 ; see also Scott, S41).

For convenience of the reader, we list in
Table V the fundamental quantities describing
the shower, along with references to the formulae,
tables, and graphs by which they can be evalu-
ated. The integral photon spectrum I' and the
other functions related to I' are of no great
practical use and will not be calculated explicitly.

A. Shower Theory under Approximation A
§26. The Diffusion Equations

We will here take into consideration only radiation phenomena and pair production, using the
asymptotic formulae for complete screening to describe the probabilities of these effects. According
to our previous discussion, such a theory will give accurate results for shower particles of energy
large compared with both e and 137u.Z73, the most stringent limitation being the first one in the
case of light elements and the second in the case of heavy elements.

The rest energy of the electron will be considered as negligible compared with the kinetic energy,
hence no distinction will be made between the kinetic energy and the total energy of the electron.

The equations satisfied by the differential spectra = (E, t) and v(W, ) can be obtained as follows.
In a given thickness d¢t the number of electrons with energy between E and E+dE undergoes a
change because of the following effects:

(a) Photons with energy W larger than E produce a certain number of electrons of both signs in
the energy range (E, dE). This number is

dEd 2fw W )¢(E)dW a2 [ (2 oo™
t- Y ,t )y = t- f (—rt) u)—,
E ’ W w 07 u ’ u

where Y, is given by Eq. (1.42a) and u=E/W.
(b) Some electrons with energy E’ larger than E enter the interval (E, dE) by radiating part of
their energy. Their number is

dEd fm (B 1) (E'_E Y R -2
t] w(E, e )———= tf 1r( ,t)cp )———,
E ' E E’ 0 1-v ’ 1—9
where o, is given by Eq. (1.23a) and v=(E'—E)/E’.

(c) Some electrons initially in the interval (E, dE) leave this interval by radiation loss. Their
number is

E WN\dW 1
m(E, t)dEdtf <po(—)—=1r(E, t)dEdtf vo(v)dv,
0 EJ E 0

where v=W/E. Both integrals (b) and (c) happen to be divergent, because ¢(v) behaves as 1/v
(“infra-red catastrophe’’). Their difference, however, remains finite.
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In the thickness dt the number of photons with energy between W and W4dW undergoes a
change because of the following effects:

(a) Electrons with energy E larger than W radiate a certain number of photons in the energy
interval (W, dW). This number is

® WN\dE v YW dv
detf m(E, t)gao(—)——-=detf 7r(—-, t)qoo(v)—,
w EJ E 0 v v
where v=W/E.

(b) Some photons initially in the interval (W, dW) are absorbed by pair production. According
to Eq. (1.47a) their number is

a«(j, 5)=2f01'y(%, t)%(u)dif—j;l[w(E t)————1r( )]gau(v)dv, (2.11)

v (W, a4
L(—t)=f (— t)soo(v)——aw(W £). (2.12)
at 0 v

Therefore

The functions ¢ and ¥ do not depend on the atomic number, hence the solutions of the Eqgs.
(2.11) and (2.12) are the same for all substances, provided, of course, we measure the thickness in
radiation lengths. The functions ¢y and ¢, depend only on the ratio between the primary energy
and that of the emitted particle. Hence any solution of Egs. (2.11), (2.12) remains valid if all energies
are multiplied by a constant factor.

§27. Elementary Solutions

We want to show that the diffusion equations (2.11) and (2.12) have solutions in which the vari-
ables energy and thickness are separated, of the type

T(E, ) =F(E)f(®),  v(W,)=F,(W)f®). (2.13)

Upon substitution in the diffusion equations, one obtains

F(E)—————f(t){ f (u)%(u)—“ [F (E)"T_T,F( _v)]m(v)dv}

ﬂ(W)——f(t)[ f ( )¢o(v)'——00Fv(W)}

The quantities in curled brackets are functions of E or W only. Therefore the ratio f(t)/f(¢t) does
not depend on ¢, but is equal to some constant, A.

af(t)/dt=Xf(2).

Hence
f(¢) =const. e

)\F,(E)=2‘[;1F.,(%)¢o(u)%t—]: [F (E)—l—_z—,F( _v)]¢o(v)dv

1 w dv
NF (W) = f F,(——)«po(v)———-aoF.,(W).
0 v v

and

(2.14)
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Equations (2.14) can be solved, and consequently the diffusion equations can be satisfied by
functions of the form (2.13). Before discussing the solution in the present particular case, we want
to point out that this conclusion is also valid when other terms, describing collision processes and
Compton effect, are included in the diffusion equations, and when more complicated expressions
are used for the probabilities of radiation phenomena and pair production. In other words, it is
always possible to find solutions of the diffusion equations in which the number of shower particles
varies exponentially with depth, while the proportion of electrons and photons and the shape of
their energy spectra remain unchanged as the depth changes. These solutions will be referred to
as elementary solutions of the diffusion equations.

Equations (2.14) are satisfied by power functions of the energy,

Fo(E)=aE-G+V,  F,(W)=bW-+D, (2.15)

where s is a positive number.
Inserting (2.15) in (2.14), we get

A= —A(s)a+B(s)b, A= C(s)a—aob, (2.16)

where

A(s)= f [1—(1—0) Jen(0)ds, C(s)= f v eu(®)dy,

. . (2.17)
B(s) =2 [ wpe(u)dn, ru= [ datayin
o 0
In order that (2.16) may be solved for ¢ and b, A must satisfy the quadratic equation
A +A(s) J(A+a0) = B(s)C(s) =0. (2.18)
Hence for every value of the exponent s there are two possible values of \:
A(S)+0’o .
Mifs)= —--2——+%{[A (s) =00 +4B(s)C(s) }},
(2.19)
A(S)+Uo
Aa(s) = ———-2*——-21—{[14 () =00 P+4B(s)C(s) 1
The ratio between the coefficients ¢ and b is
a B(S) 0’0+)\1(S) as B(S) 0’0+)\2(S)
= = (2.20)

b A®AMG) CE) | b A NG) )

according to the two possible choices for A. In conclusion, we have the two following sets of ele-
mentary solutions of the diffusion equations (2.11) and (2.12):

a,C(s)
m(E, t) =a,E~CtV exp [M(s)t], v(W,t)=——W-C+D exp [\(s)t],
Uo+>\1(s)
(2.21)
a2:C(s)
m(E, t) =aE-CtD exp [No($)t], v(W, t)=———W~C+D exp [Na(s)t],
0'0+)\2(S)

where a; and a, are arbitrary constants, and A; and \; are given by Egs. (2.19).
Explicit expressions for A(s), B(s), and C(s) are easily obtained by substituting in (2.17) the
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expressions for ¢o(v) and y¥o(u) given by (1.23a) and (1.42a). The result is
1 1

4 d 1
A(s)=(—+2b)(— log s'+y—14+—}+-———"——
3 ds s+1 2 (s+1)(s+2)

d 1
=1.36—log (s+1)! ———— —0.0750,
ds (s+1)(s+2)

1 1.36
B 2l ——— 2 - , 2.17
(%)= [s-i—l ( )(s+2 s+3)] [s+1 (s+2)(s+3)] (2.17a)

1.36
C(s)=( +2b)( )+ + y
s s+1 s+2 s+2 s(s+1)

70
go=——-=0.773.
9 3

Approximate expressions of simpler mathematical form can be obtained by using (1.32) and
(1.49a) instead of (1.23a) and (1.42a). They arc

A(s)=(d/ds) log s'40.5772, B(s)=20¢/(s+1), C(s)=1/s, oo=7/9. (2.17b)
In Egs. (2.17a) and (2.17b),
d 1
o !=f dx—
ds g s 0 x—5

indicates the logarithmic derivative of the gamma-function and y=0.5772 is Euler’s constant,
while 56=0.0135 is defined in §13. The values of A(s), B(s), C(s), Ai(s), Aa(s), for various values of
s are listed in Table VII.

The elementary solutions (2.19) have a direct physical meaning. Suppose a beam of electrons and
photons is incident at t=0, and let #(E, 0)dE be the number per second of incident electrons with
energy between E and E-+dE, while y(W, 0) is the number per second of incident photons with
energy between W and W+dW. Suppose that, for energies larger than a certain limit », both #(E, 0)
and v(W, 0) are represented by a power law with the same exponent:

7(E, 0)=K,E-G+D, (W, 0)=K,W-0+D,

The differential spectra of electrons and photons for E and W larger than 5 and for any thickness
¢ are then given by linear combinations of the two elementary solutions corresponding to the exponent

s+1, namely,
w(E, t)=E~®tV[a, exp [Ai(s)t]+as exp [N2(s)t]],

5 a,C(s) a2C(s)
Y(W,t)=W “’“’[————-——— exp [M(s)t]-}-——) exp [)\2(8)1]],

ago 1(8 () 2($

(2.22)

where the constants a; and @, are chosen so as to satisfy the boundary conditions
C(s) C(s)
+as =
ago+A1i(s) ao+Na(s)

aita:=K., a;

Thus, for energies larger than », the energy distribution of electrons and photons is independent
of thickness traversed. The variation of number with depth is different for electrons and photons
and depends on the initial proportion of the two types of shower particles. For large thicknesses,
however, the terms containing exp [As(s){] become negligible compared with the terms containing
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exp [A\i(s)t], because A is always negative and larger in absolute value than \,. Hence for £>1,
Egs. (2.22) reduce to
a:1C(s)

w(E, t) =a,E-¢tV exp [Mi(s)t], v(W, t) =—————W~6+D exp [\i(s)], (2.22a)
00+)\1(S)

which indicate that, at sufficiently large thicknesses, the numbers of electrons and photons are in a
constant ratio and both numbers vary exponentially with depth, though the rate of change with
depth depends on s and hence on the initial energy distribution. According to Table VII, A, is positive
for s<1, zero for s=1, and negative for s> 1, approaching —g¢= —0.7733 as s approaches infinity.
In the first case the number of shower particles increases with depth, in the second ease it remains
constant, and in the last case it decreases. The case in which the number of shower particles is
independent of depth is particularly important, and the corresponding spectra of electrons and
photons will be referred to as normal spectra. Under approximation 4 the normal spectra are given by

aC(1) 1 1.31a,

1roE=1E2, 0W= —_—= 8 223
By=a/B p(W)=——o=—0 (223)

§28. Mellin and Laplace integrals of =, v, 11

We encounter a more difficult mathematical problem when we try to solve the diffusion equations
(2.11), (2.12) under arbitrary boundary conditions, in particular under the boundary conditions
corresponding to a single incident electron or photon. As in many problems of a similar type, a
powerful method of attack is offered by functional transformations. In the following discussien we
shall make frequent use of the transformations known as the Mellin and the Laplace transformations.
For convenience of the reader, we summarize in Appendix I the fundamental properties of these
transformations.

Let us consider the Mellin integrals of = and vy with respect to the energy; i.e., the quantities

Em,(s,t)=f E*x(E, t)dE, IM,(s, t)=f Wey(W, t)dW, (2.24)
0 0

where s is a complex parameter. MM, and M, are defined for all those values of s which make the
integrals converge. Since m and v are identically zero for energies larger than the primary energy,
we only need to consider the convergence of the integrals at the lower limit. It follows that the
field of convergence of MM, and M, is the half plane defined by R(s)>s,, where R(s) indicates the
real part of s and sg is a real constant. It will be shown later than s,=0.

Let us consider also the Laplace integrals of = and v with respect to ¢; i.e., the quantities

2,(E,\) = f eMr(E, t)dt, 2,(W,\)= f ey (W, 1)dt. (2.25)

L. and &, are defined for all those values of the complex parameter X which make the integrals
converge. The field of convergence is defined by R(\) >\, where Ao is a real constant. It will be
shown later that A= — gy.

We shall finally consider the Mellin integrals with respect to energy of the Laplace integrals with
respect to thickness; i.e., the quantities

Nals, N) = f E*dE f eMr(E, )dt, My(s,\) = f WedWw f eMy (W, t)dt, (2.26)
0 0 (1} 0

which are functions of the two complex parameters s and A.
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The reason for introducing the transforms I, &, N is that they are more easily determined than
the original functions = and v. Some properties of showers can be derived directly from the knowledge
of the above integrals, while the functions = and y themselves can be obtained from the transforms,
by using the inversion formulae given in Appendix I.

The boundary conditions of the problem are determined by the functions x(E, 0) and v(W, 0),
which describe the radiation incident at ¢ =0. We shall consider in particular the boundary conditions
representing :

(a) a single primary electron of energy E,

(E,0)=0E—Ey); v(W,0)=0; (2.27)
(b) a single primary photon of energy W,
(E, 0)=0;  y(W,0)=s(W—-W,), (2.28)

where ¢ is Dirac’s improper function.

The Mellin integrals, as pointed out by Landau and Rumer (L38), satisfy a simple system of
differential equations, which can be obtained by multiplying both sides of (2.11) and (2.12) by E*
and W?, respectively, and integrating with respect to energy from 0 to «. The integrals on the
right-hand sides can be transformed as follows:

f E'E-2 f Y(E/u, o) (du/u)

= f www(w, HAW -2 f utpo(u)du, (W=E/u)
0 0

=M, (s, 1) - B(s),

£ 1 1 E
f E‘dEf [T(E, t) —-1—-——;# 1———2’, t):lgao(ﬂ)dv

=fw1r(E, t)E’dEf gao(v)dv—fw(E')‘-:r(E’, I)dE’f (1—2v)*po(v)dv, [E'=E/(1—v)]

=wa8w(E, t)dEf [1—(1—2)*]eo(v)dr,
=M. (s, t)-A(s),
wa'de w(W /v, t) ¢o(v) (dv/v) =f E*r(E, t)dEf v oo(v)dv, (E=W/v)

=M« (s, £)- C(s).
One finally obtains
M. (s, t) M, (s, t)
= —A()M:(s, ) + B(s)M, (s, 1), T=C(s)§m,(s, ) — ooy (s, 8). (2.29)

If one now multiplies both sides of (2.29) by ¢ and integrates with respect to ¢t from 0 to =, one
gets the following system of algebraic equations for I, and N, :

ARL(s, N) = (s, 0) = — A ()N (s, N +B(s)N, (s, \),

(2.30)
AR, (s, N) =M, (s, 0) = C(s)Nx(s, \) — oIy (s, N),
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where M, (s, 0) and M, (s, 0) are the Mellin integrals of x(E, 0) and v(W, 0). In particular,
(a) for an incident electron of energy E,

EUE:(S, 0) =E0’y 9)27(5, 0) =0; (2'31)
(b) for an incident photon of energy W,
S)J(‘,,.—(S, 0) =Os 9:)?1(5‘; 0) = W08~ (2.32)

The solutions of Egs. (2.30) are:
(a) for incident electron of energy E,

(g0+N)E¢* (go+N)Ey*

‘R,-r(Eoy S, )\) = = y

LA()+A](eo+N) —=B(s)C(s) [ A=Ni(s) A —Na(s)] 2.33)
| C(s)Eo' C(s)Eo" -
927(E0, S, )\) = = H
[4(s)+A](o0+N) = B(s)C(s) [A=Ni(s) JTA—Ne(s) ]
(b) for incident photon of energy W,
B(s)W,* B(s)W,*

s)21.—(W(), S, )\) = = y
LA +A](a0+N) —=B(s)C(s)  [A=Mi(s) ITA—Ns(s)] (2.34)
[A(s)+N]W* [A(s)+N] Wy o

gty(WO, S, )\) = = ,
LA +N](eo+N) =B()C(s)  A=Na(s) TN —No(s)]

where \i(s) and A,(s) are the functions defined by Eqs. (2.19).

Either by directly solving Egs. (2.29) with the boundary conditions (2.31) or (2.32), or by applying
the inverse Laplace transformation to M. and N, (see Appendix I), one easily obtains:

(a) for a primary electron of energy E,,

8

E,
M (Eo, 5, 8) = ——————{[ao+Ni(s) ] exp [Mi(s)t]—[oo+Na(s) ] exp [Na(s)t]},
N1(8) —Ne(s)

(2.35)
C(S)Eo”
My (Eo, 5, 1) =————{exp [Mi(s)t]—exp [No(s)t]};
)\1(5) —)\z(s)
(b) for a primary photon of energy W,
W Loo+M got A .
MW, s, t)=— Loothale) oot (S)]{exp [A(s)t]—exp [Aa(s)t]},
C(S) )\1(5) —)\2(8)
W (2.36)
My (Wa, 5, £) = ——————{[ootNa(s) ] exp [Ma($)] = [oot-Mi(s) ] exp [ha(s)E]1.

A1(s) —Ne(s)

For any given value of ¢, the functions on the right-hand sides of Egs. (2.35) and (2.36) are regular
for s>0 and tend to infinity at the limit for s=0, where \(s) becomes positively infinite. This
shows that the field of convergence of MM, and I, is the positive half plane. The expressions (2.35)
and (2.36) represent M, and M, only in this half plane, and give the analytical continuation of M,
and M, in the negative half plane.

The Laplace integrals ¢, and &, are obtained by applying the inverse Mellin transformation to
Nx and N, (see Appendix I) as follows:
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(a) primary electron of energy E,

1 1 8+iw (eo+N)ds
@, (Eo, B, ) =—— f (
271 E RERMONRE )\2(5)] 2.37)
1 1 pitie C(s)ds @
8, (Eo, W, \) =— —f ( )
2 W Js— A=N(s)IIN— )\2(3)]
(b) primary photon of energy W,
1 1 pitixg, W, d
(W, E, >\)—~~~f ( ) Blos
E J;_ o [A=Ai(8) I =Ne(8)] (2.38)
1 1 p+®,We\*  [A(s)+A]ds '
& (Wo, W) =—— (—) .
21t W Jo—ino D\-—)\l(s)][)\—)\g(s)]

The integration paths in the above integrals run parallel to the imaginary axis, to the right of all
the poles. For A> — gy, there is only one pole on the positive half plane of s; this pole lies on the
real axis and is defined by the equation

M(s)=A. (2.39)

It can easily be shown that there is an infinite number of poles on the negative half plane because
of the behavior of the logarithmic derivative of the factorial function, which enters in A(s).

Let us consider the expression for £, in Eq. (2.37). For E<E,, the integrand tends to zero at the
limit for s= — . Hence, deforming the contour to the left, the integral can be expressed as the
sum of the residues at all the poles. Each pole contributes a term proportional to (E,/E)*. For
the pole on the positive real axis, s is real and positive, whereas for those in the negative half plane,
R(s) <0. The latter poles contribute terms which are negligible with respect to the first one if EKE,.
A similar conclusion applies to the other Laplace integrals. Hence, for energies small compared with
the primary energy, £, and &, are given by:

(a) for a primary electron of energy E,,

1 7Eo\* 0'0+)\1(S)
L(Eo, E,\) = —— —)

ENE/ [h(s)=ha(s) Va(s)’
[A1(5) = Na(s) IN'1(s) (2.40)
1 7Eo\¢ C(s)
21(E07 Wv x) = _—(_) ;
WAW/ [hi(s) —Na(s) IN1(s)
(b) for a primary photon of energy W,
1 /Wo\¢ B(s)
QK(WOY Er )‘) = —'_('——— ’
ENE 7 [\(s)—=Ne(s)IN1(s)
(2.41)

(W, W, A) = _~(_W_°” A(s)4+M(s)
) ) [Aa(s) = Aa(s) Na(s)

In the above equations, s is defined by the condition (2.39), hence X\ coincides with Ai(s). N'1(s)
indicates the derivative of \; with respect to s and is given as a function of s in Table VII. For A= —¢,,
s=+ o and the expressions (2.40) and (2.41) go to infinity. It follows that the half plane of con-
vergence of the Laplace integrals is to the right of the point A= —g,.

We write also the expressions for the integrals of II, which are easily obtained using Eq. (A. 8)
of Appendix I*:

* The expressions for the Mellin integrals have been given by Landau and Rumer (L38). The expressions for the Laplace
integrals have not previously been published.
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(a) primary electron of energy E,

8

1 0
Mu(Eo, s—1, t) =— ——————{[go+M1(s) ] exp [Mi(s)t]—[ao+No(s) ] exp [No(s5)£]},
s M(8) = N2(s)

(2.42)
1 Eo & 0’0+)\1(S)
QH(E()v Ev A) = __("_) )
SNE/Z () —N2(s) IN'1(s)
(b) primary photon of energy W,
We* [oo+M ao+ N2
Mu(Wo, s—1,t)=— LootAu(9) Lot Anls)] exp [Mi(s)t]—exp [Na(s)t],
sC(s) Ai(s) —No(s)
(2.43)

B(s)
Dha(s) = Na(s) IN1(s)

1 /7Wo\*
Ra(Wo, E, \) = ~—(—
s\ E

§29. Track Length, Center of Gravity, and Longitudinal Spread

The expressions for the track length z, the position of the center of gravity {, and the longitudinal
spread r corresponding to , v, or II are immediately derived from the expressions for the Laplace
integrals of the same functions. Indeed, it is easily seen that

) . 1 9%
LN =0

. [1 % (1 68)2] [a (1 68)]
rr=f-—— - — =f —f — —
{ IN? Lon/ hoo LAA\R AN/ Lo
Using the results of the foregoing section and the numerical values listed in Table VII, one gets:*
(a) primary electron of energy E,

a

2x(Eo E) =——————=0.437—,
A (1DN1(1) E? E?
cQ) E, E,

2, (Eo, W) =—————— — =0.572—, (2.44)
A(DN1(1) W2 w2
go E Eo
zn(E,, E) —

= —=043
N (DN(1) E
(b) primary photon of energy W,

B(1) W, Wo
2e(Wo, E) =———— —=0.437—,
A(DN1(1) E? E
A1) W, Wo

2y(Wo, W) =———— —=0.572—, (2.45)
Aa(1)N1(1) W2 W
B(1) W, Wo
an(Wo, E) = =0.437—

N1 E

* The expressions for the track lengths have been given by Nordheim and Hebbs (N39). The other expressions have
not previously been published.
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The {’s have expressions of the form

1
f=——y+h=1.01y+h, (2.46)
M1(1)

where y is the logarithm of the ratio between the initial energy (E, or W,) and the energy under
consideration (E or W) and & has, for the various functions, the values listed in Table VI. The 7's
are given by expressions of the form

oo _ M) +E=1.61y+E (2.47)
Ty TR '

TABLE VI. Values of h in Eq. (2.46) and of k in Eq. (2.47).

Quantity ix(Eo, E) iy(Eo, W) in(Eo, E) iz(Wo, E) iy(Wo, W) in(Wo, E)
h 1.0 1.2 0.03 1.8 20 0.8
k -0.1 1.0 -0.7 1.1 2.1 0.5

where y has the same meaning as in (2.46), and the values of & are given also in Table VI. It may be
noted that the dependence of the track lengths on energy‘is the same as for the normal spectra defined
in §27. The above expressions, of course, break down when the energies approach that of the primary
particle.

§30. Differential and Integral Spectra

The expressions for the differential and integral spectra of electrons and photons can be obtained
from Egs. (2.35), (2.36), (2.42) and (2.43), by using the inversion formula of the Mellin transforma-

tion. For instance,
&+1i%

1
w(E, )dE=— — E—I. (s, t)ds,

21!"5. E §—1i%

where the integration path is any line parallel to the imaginary axis in the positive half plane.
Similar expressions hold for v and II. Introducing the logarithm of the energy, one gets:
(a) for a primary electron of energy E,,

dy it dy it
w(Eqo, E, t)dE= —— dsH(s) exp [ys+M(s)t]—— f dsH,(s) exp [ys+Na(s)t], (2.48)
271 Ji—iw e Js—iw
where
Eo 0’0+>\1(S) 0'U+)‘2(s)
y=log —-—), H\(s)=————, Hy(s)=————
E A1(s) —Na(s) A(s) —Na(s)
dy 6+
Y(Eo, W, )dW = —— dsL(s){exp [ys+Ai(s)i—3 log s]—exp [ys+ro(s)t—3 log s}, (2.49)
wl Yé—io
where

\V's C(s)

E,
=log(—) and L(s)=— .
Y Og(W) and  Lis) Ai(s) —Ae(s)
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1 pitin
I(E,, E, t) =;—' f dsH,(s) exp [ys+Mi(s)t—log s]
§—iw

i
1 8+
+__'f dsHs(s) exp [ys+Na(s)t—log s], (2.50)
27t Jo—in
where v, Hy(s) and H,(s) are as in Eq. (2.48);
(b) for a primary photon of energy W,,
dy 8+i%o
(W, E, t)dE= —;—' dsM(s){exp [ys+Ai(s)t+3 log s]—exp [ys+No(s)t+3 log s}, (2.51)
T Vi—in
where W CootM() Loote(s)]
Ai(s s
y=log (—0) and M(s)=— o o .
E Vs C(s)[A(s) = Na(s) ]
dy it dy iti=
v(Wo, W, t)dW = _E——' dsH,(s) exp [ys+)\1(s)t]—~—.f dsH(s) exp [ys+N2(s)t], (2.52)
Tl v §5—in L V5—in

where y=log (Wo/W) and H(s), Hs(s) are as in Eq. (2.48):

1 §+1im
II(Wo, E, t)=— f dsM(s){exp (ys+Ai(s)t—3% logs) —exp (ys+Nao(s)t—3 log s)}, (2.53)
§—io0

27

where y, M(s) are as in Eq. (2.51).

In the preceding equations each integrand has been written as the product of a function which
changes slowly with s(H:(s), Ha(s), L(s) or M(s)) and an exponential term of the general form
exp (ys+A(s)t—n log s). The exponential term has a saddle point at the point § defined by the
equation

y+N(8)t—n/5=0. (2.54)

The point § lies on the positive real axis, and the exponent has a sharp minimum there as one
goes along the real axis. But since it is true for any analytic function f(x+44y) that

(9%/9x%) +(8%f/9y*) =0

the exponential term must have an equally sharp maximum at the point §, as one progresses at
right angles to the real axis, which is the direction of the path of integration. If we make the inte-
gration path go through the point 8, the most important contribution to the integral will come
from a portion of the integration path in the immediate neighborhood of §. Hence we can treat the
slowly varying functions of s as constants, evaluating them at the saddle point. We are left with
integrals of the type

1 s+in

— exp [ys+A(s)t—n log s]ds,

21ri s—io

which can be calculated by developing the exponent in a Taylor series of powers of (s—3§) and
neglecting terms of order greater than two. Using (2.54) we get

ys+A(s)t—n log s=y5+N(8)t—n log s+ [N (8)t+n/s2][(s—3)?/2].

Since the path of integration is a straight line parallel to the imaginary axis, we can set (s—§) =1x,



284 B. ROSSI AND K. GREISEN

and the integral becomes

1 w0

E— exp [y§+N(8)t—n log S]f exp { — (x2/2)[N'(8)t+n/5*]}dx
™ —%0

1 1 1 1 (ev)®
- 5--M\(8)! —7 log §]=—— —
am DV R D o s /st

Thus each of the functions =, v, and II is expressed as the sum of two quantities, proportional
to exp [A1(8)¢t] and exp [A2(8)t], respectively. Since A, is always negative and larger in absolute
value than \;, the second term can be neglected when ¢ is not too small. We finally obtain, dropping
the bar on the s,*

(a) for a primary electron of energy E,

exp [A(8)t].

E. B DE 1 H,(s) Ey\*dE
w(Eo, E, t)dE= ————(-E) —E—exp [A(s)t],

(2m)E [N (s)t ]
(2.55)
()
t=— I X
)’1(3) o8 E
o, W, 0dW 1 1 L(s) Ep\*dW \
o W, = — —) — ()t ],
" (2m)} /s [x"l(s)t+(1/2s2)]%(w) g &P D]
(2.56)
1 E, 1
)}
Ni(s) w7l 2s
1 1 H(s) Ep\*
H(Eo, E, f)= - ("—) exp D\l(s)t],
(2m)ts [N"1(s)t+(1/s) PN E
(2.57)
w5
Xl(S) . ¢ E N '
(b) for a primary photon of energy W,
(We, E. 1)E 1 v M(s) /Wo)adE \
T 0 ’ = - - ¢ 1 t y
2 Y toi— g\ g ) E P e
(2.58)
1 W, 1
el ()}
Ni(s) E 2s
Wo, W, 0)dW = ) (Woy aW o Do
¥ (Wo, W, -(Zr)%[x,,l(w(w - exp DM
(2.59)
t=— : lo (E
T T \w )
1 M(s) Wo\®
Wo, E, = i— — ) 1 y
. D= e vs D\”l(s)t+(1/2s2)]*(E) P D] 60)

t=—

1 Wy 1
[ ()3l
)\'1(8) E 2s

* See Iwanenko and Sokolow (138), Snyder (S38), Schénberg (S40).
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TasLE VII.

s A(s) B(s) C(s) Na(s) M(s) Ni(s) N1(s)
0.0 0.0000 1.546 © — + —® +

0.1 0.1520 1.400 12.842 —4.715 +3.789 —25.005 —
0.2 0.2863 1.280 6.123 —3.330 2.270 — 9.488 +75
0.3 0.4067 1.180 3.923 —2.749 1.569 — 5.415 +26
0.4 0.5152 1.095 2.846 —2.415 1.127 — 3.654 12.5
0.5 0.6146 1.022 2.214 —2.201 0.813 — 2.693 7.6
0.6 0.706 0.959 1.802 —2.055 0.576 — 2.093 495
0.7 0.791 0.905 1.513 —1.953 0.389 — 1.685 3.50
0.8 0.870 0.855 1.3014 —1.878 0.235 — 1.389 2.55
0.9 0.943 0.812 1.1400 —1.824 0.108 — 1.1660 1.97
1.0 1.0135 0.7733 1.0135 —1.7868 0.000 — 0.9908 1.5634
1.1 1.078 0.7383 09112 —1.760 —0.092 — 0.8501 1.275
1.2 1.142 0.7065 0.8276 —1.744 —-0.171 — 0.7333 1.060
1.3 1.200 0.6778 0.7580 —1.734 —0.239 — 0.6362 0.893
1.4 1.257 0.6514 0.6988 —1.732 —0.298 — 0.5531 0.764
1.5 1.311 0.6272 0.6484 —1.734 —0.350 — 0.4825 0.655
1.6 1.363 0.6049 0.6047 —1.741 —0.395 — 0.4214 0.565
1.7 1.412 0.5842 0.5666 —1.751 —0.435 — 0.3691 0.487
1.8 1.460 0.5650 0.5329 —1.762 —0.470 — 0.3238 0.423
1.9 1.506 0.5473 0.5032 —1.780 —0.500 — 0.2841 0.370
2.0 1.550 0.5306 0.4767 —1.797 —0.526 — 0.2498 0.320
21 1.592 0.5148 0.4528 —1.816 —0.550 — 0.2202 0.277
2.2 1.634 0.5004 0.4313 —1.837 —0.570 — 0.1943 0.241
2.3 1.674 0.4866 0.4117 —1.859 —0.589 — 0.1719 0.210
2.4 1.713 0.4736 0.3940 —1.882 —0.605 — 0.1523 0.182
2.5 1.750 0.4614 0.3776 —1.904 —0.619 — 0.1354 0.159
2.6 1.787 0.4499 0.3627 —1.928 —0.632 — 0.1205 0.138
2.7 1.821 0.4389 0.3489 —1.951 —0.643 - 0.1077 0.120
2.8 1.857 0.4285 0.3362 —1.977 —0.654 — 0.0964 0.107
2.9 1.892 0.4186 0.3243 —2.003 —0.663 — 0.0863 0.093
3.0 1.923 0.4093 0.3134 —2.026 —0.671 — 0.0777 0.080
4.0 2.211 0.3352 0.2347 —2.264 —0.720 — 0.0307

5.0 2.448 0.2847 0.1882 —2.480 —0.742 — 0.0146

6.0 2.648 0.2479 0.1574 —2.669 —0.752 — 0.0080

7.0 2.822 0.2198 0.1354 —2.837 —0.759 — 0.0048

8.0 2977 0.1975 0.1189 —2.988 —0.763 — 0.0031

9.0 3.115 0.1794 0.1060 —-3.123 —0.765 — 0.0021
10.0 3.239 0.1644 0.0957 —3.246 —0.766 — 0.0015

Equations (2.55) to (2.60) represent the solution of our problem. Numerical calculations are
carried out as follows. Given the primary energy E, or W, and the energy E or W at which we
want to determine any of the functions =, v, or II, we first calculate the values of ¢ for a set of values
of the parameter s, and then enter corresponding values of s and ¢ in the expression for the function
required. The quantities Ai(s), N1(s), N’1(s), Hi(s), H(s), L(s) and M(s) which appear in Egs.
(2.55) to (2.60) are given as functions of s in Tables VII and VIII.

The expressions for the differential and integral spectra depend only on the thickness ¢ and on
the ratio of the initial energy to the energy of the observed shower particles, which result agrees
with that predicted in §26. For a given value of this ratio, the intensity of the differential as well
as of the integral spectrum increases at first with increasing ¢, goes through a maximum and then
decreases again. The optimum thickness T coincides approximately with the value of ¢ which makes
the function exp (ys+Mi—nlogs) a maximum, because the other terms change slowly with ¢.
Thus T is defined by the equation

Ly +N1($) T —(n/5)1(3s/9t) = +Mi(s) =0,



286 B. ROSSI

AND K. GREISEN

which gives, remembering that Eq. (2.54) is satisfied,

)\1(3) =0.

Hence, according to Table VII,

s=1,

T'=—(y—n)/N1(1)=1.01(y —n).

(2.61)

The maximum values of the functions 7, v and II are easily obtained by putting s=1, \,=0, =T
in Egs. (2.55) to (2.60). The maximum values and the optimum thicknesses are explicitly given in

Egs. (2.62) to (2.67):
(a) Incident electron of energy E,

T,,(Eo, E) =1.01 lOg (Eo/E),

w(Eo, E, Tx)dE=

Y (E()v Wv T‘Y)dw=

II(Eo, E, Tn) =

(b) Incident photon of energy W,

(W, E, T:)dE=

T, (Wo, W)=1.01 log (W,/W),

y(Wo, W, Ty)dW =

(2.62)
0.137 E,
— dE
[log (Eo/E) ]t E?
T E, =1 l E —% ’
v(Eo, W) 01[log (Eo/W)—1%1] (2.63)
0.180 E,
—dW
[log (Eo/W)—0.187 W2
T Eo,E=1011 EoE—l y
n( ) [log (E./E)—1] (2.64)
0.137 E,
[log (Eo/E)—0.37) E
T.(W,, E)=1.01[1 Wo/E)+37],
( ) (log (Wo/E)+3] (2.65)
0.137 W 5
[log (W,/E)+0.18] E?
2.66
0.180 Wod ( )
[log (Wo/W) ]t W2
Tu(W,, E)=1.01[1 Wo/E)—1%7,
n( ) [log (Wo/E)—3] (2.67)

0.137 Wo

(W, E, Tn) =

Note that the optimum thickness T in either
case is about one radiation length greater for =
than for II. This is to be expected, since the
maximum for energies larger than E occurs at
smaller depths than the maximum for energy E.
It is seen also that the maximum number of
electrons with energy greater than E is propor-
tional to the ratio between the initial energy and
E. The expressions for the optimum thickness T°
may be compared with the corresponding ex-

[log (Wo/E)—0.183] E

pressions for the position of the center of gravity
{, given in Egs. (2.46). It is seen that { exceeds
T by a quantity independent of energy, which
indicates that the increase of number of particles
with thickness before the maximum is more rapid
than the decrease beyond the maximum.

In the neighborhood of a given energy and of
a given thickness the differential energy spectra
of electrons and photons are approximately
represented by a power law with exponent
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TasLe VIII.

s Hi(s) Ha(s) L(s) M(s)
0.0 0.500 0.500 0.469 0.533
0.1 0.537 0.463 0.478 0.521
0.2 0.543 0.457 0.489 0.507
0.3 0.542 0.458 0.498 0.499
0.4 0.536 0.464 0.508 0.489
0.5 0.526 0.474 0.520 0.480
0.6 0.513 0.487 0.531 0.471
0.7 0.496 0.504 0.541 0.463
0.8 0.477 0.523 0.551 0.453
0.9 0.456 0.544 0.560 0.443
1.0 0.4328 0.5672 0.5672 0.4328
1.1 0.408 0.592 0.573 0.422
1.2 0.383 0.617 0.576 0.410
1.3 0.357 0.643 0.578 0.397
1.4 0.331 0.669 0.577 0.384
1.5 0.306 0.694 0.574 0.370
1.6 0.281 0.719 0.568 0.355
1.7 0.257 0.743 0.561 0.340
1.8 0.235 0.765 0.554 0.325
1.9 0.213 0.787 0.542 0.310
2.0 0.194 0.806 0.530 0.295
2.1 0.176 0.824 0.518 0.280
2.2 0.160 0.840 0.505 0.266
2.3 0.145 0.855 0.492 0.252
2.4 0.132 0.868 0.478 0.240
2.5 0.120 0.880 0.465 0.227
2.6 0.109 0.891 0.451 0.215
2.7 0.099 0.901 0.438 0.204
2.8 0.090 0.910 0.425 0.193
29 0.082 0.918 0.412 0.183
3.0 0.075 0.925 0.401 0.173
4.0 0.034 0.966 0.304 0.108
5.0 0.018 0.982 0.242 0.073

—(s+1) and the variation of the number of
particles with depth follows approximately an
exponential law with exponent Ayf. The relation
between the ‘‘absorption coefficient,” —X\;, de-
scribing the wvariation with depth, and the
exponent — (s+1) describing the energy distribu-
tion is the same as in the case of the elementary
solutions discussed in §27. In particular, the
energy distribution of electrons and photons at
the maximum is approximately represented by
the normal spectrum (2.23), which corresponds
to A1=0

The approximations made in calculating the
differential and integral spectra limit the validity
of the expressions obtained to values of { not
smaller than about one radiation length and
energies not too close to the initial energy. This
is evident from the very fact that for t=0 some
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TABLE IX. Integral electron spectrum I1(E,, E) for electron
initiated showers, calculated by the method of successive
colli;ions under approximation A. l=t/log 2 (from Arley,
A38).

1 |log Eo/E=2 4 6 8 10
0.2 1.00 1.05 1.08 1.11 1.14
0.4 1.03 1.17 1.30 1.43 1.55
0.6 1.06 1.35 1.64 1.93 2.26
0.8 1.09 1.58 2.09 2.64 3.23
1.0 1.12 1.84 2.65 3.54 4.56
2.0 1.09 3.35 6.78 11.7 18.3
3.0 0.93 4.56 12.64 26.8 50.2
5.0 0.50 5.17 26.21 80.5 206.

TaBLE X. Integral electron spectrum IL(Wo, E) for photon
initiated showers, calculated by the method of successive
collisions under approximation A.l=t/log 2 (from Arley and
Eriksen, A40).

l log Wo/E =2 4 6 8 10
0.2 0.200 0.234 0.242 0.246 0.248
0.4 0.350 0.432 0.462 0.482 0.502
0.6 0.484 0.636 0.716 0.782 0.848
0.8 0.598 0.858 1.01 1.16 1.32
1.0 0.694 1.07 1.36 1.65 1.96
2.0 0.926 2.26 4.08 6.44 9.38
3.0 0.940 3.40 8.44 16.6 30.0
5.0 0.494 4.70 19.6 56.4 144.

TaBLE XI. Differential photon spectrum for electron
initiated showers, calculated by the method of successive
collisions under approximation A. l=t/log 2; the figures
listed in the table represent W (Eo, W) (from Arley and
Eriksen, A40).

l log Eo/W =2 4 6 8 10

0.2 0.129 0.130 0.133 0.136 0.138
0.4 0.244 0.251 0.265 0.275 0.293
0.6 0.352 0.389 0.428 0.468 0.504
0.8 0.453 0.543 0.622 0.684 0.795
1.0 0.550 0.724 0.867 1.02 1.22
2.0 0.933 1.91 3.47 5.19 7.41
3.0 1.02 3.16 7.94 14.8 25.1

5.0 0.850 5.89 18.6 50.1 113.

TABLE XII. Differential photon spectrum for photon

initiated showers, calculated by the method of successive
collisions under approximation A. l=t/log 2; the figures
listed in the table represent W~(Wo, W) (from Arley and
Eriksen, A40).

! log Wo/W =2 4 6 8 10
0.2 0.0136 0.016 0.016 0.016 0.016
0.4 0.0483  0.0556 0.0588 0.0596 0.0607
0.6 0.0979 0.120 0.130 0.137 0.140
0.8 0.158 0.193 0.225 0.240 0.262
1.0 0.224 0.299 0.350 0.389 0.450
2.0 0.535 0.923 1.40 2.00 3.06
3.0 0.768 2.09 4.23 6.92 11.6
5.0 0.776 4.32 13.4 31.6 83.1
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of the functions reduce to the é-function, which
cannot be represented by an analytical expression.

An application of the formulae developed in
the present article is found in the graphs given in
Figs. 15 and 16, representing II(E,, E, ) and
W~ (E,, W, t) as functions of ¢ for various values
of E¢/E and E,/W, respectively.

§31. The Method of Successive Collisions

Bhabha and Heitler have developed a method
of approach to the problem of cosmic-ray
showers which differs from the analytical method
described in the preceding articles and can be
characterized as the method of successive
collisions.

The procedure is as follows. Given an electron
of energy E, incident at =0, one calculates the
probability fo(E,, E, t) of this electron having an
energy larger than E at the depth ¢. Then one
computes the number of photons with energy
larger than E emitted by the electron at various
points of its path, and the number f,(E,, E, t) of
electrons produced by these photons, called
electrons of the first generation, which reach the
thickness ¢ with energy larger than E. In a
similar way the electrons of the second and
succeeding generations are evaluated. The total
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number of electrons with energy greater than E
at the thickness ¢ is finally expressed as the sum
of the numbers of electrons of the various
generations:

H(Eo, E, t) =f0(E0, E, t) +f1(Eo, E, t)
+fo(Eo, E, )+ - - -.

The series converges fairly well only when E
is not much smaller than E, and ¢ not larger than
a few radiation lengths. This is, on the other
hand, the case in which the expressions derived
analytically break down. Thus the two methods
are complementary.

In the original calculations of Bhabha and
Heitler, as well as in the calculations of Arley,
who extended Bhabha and Heitler’s results, the
following approximations were made. The prob-
ability fo of an electron having an energy larger
than a certain fraction of its original energy
after traversing a thickness ¢ was calculated
from Eq. (1.35). The numbers of photons and
electrons produced in a given thickness were
evaluated from the simplified expressions (1.32)
and (1.50a) for the probability of radiation
processes and the probability of pair production.
Some numerical results are given in Tables

IX-XII.

(2.68)

B. Shower Theory under Approximation B

§32. The Diffusion Equations

In the present section we assume that all shower electrons lose by collision an amount € of energy
per radiation length. ¢ is regarded as independent of energy, and the production of high speed elec-
trons by collision is neglected. Radiation processes and pair production are described by the
asymptotic formulae for complete screening, unless otherwise stated. Compton effect is still disre-
garded. From the above approximations we may expect accurate results down to energies of the
order of the critical energy, at least for substances of low atomic number. For substances of high
atomic number, the validity of the theory is limited at small energies by the breakdown of the
asymptotic formulae for radiation phenomena and pair production.

The inclusion of the collision loss merely adds a term to Eq. (2.11). Every electron, traversing
the thickness dt, loses by collision an amount € of energy. Because of this energy loss, a number
m(E+dE)edt of electrons enters the energy interval (E, dE) from the upper boundary, and a number
m(E)edt of electrons leaves the same energy interval from the lower boundary. Hence the net variation
in the number of electrons between E and E+4dE caused by the collision loss is

[7(E+dE) — (E) Jedt = e(37/IE)dEdt
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Fic. 15. Integral electron
spectra II(E,, E, t) for electron
initiated showers, calculated 2
under approximation 4, accord-
ing to Eq. (2.57).
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and Eq. (2.11) becomes

or(E, t ! vE d 1 1 E on(E, ¢
__1r_<_.2=2f —y(—, t);//o(u)——uw—f I:W(E, ) ———af —, t)]<p0(v)dv+e il ) (2.69)
ot 0 u u 0 1—2 \1—9 oE

The collision loss does not affect dy/dt. Hence the second diffusion equation (2.12) remains

unchanged :
Iv(W,t) LW dv
————-=f 7r(~, l)¢o(v)-—aoy(W, t). (2.12)
ot 0 /) v

§33. Elementary Solutions

We want first to investigate the elementary solutions of Eqs. (2.69), (2.12); i.e., the solutions of
the type (see §27)
w(E, t)= F.(E)e*, (W, t)=F,(W)e. (2.70)

Upon substitution we obtain

: ' 1 E dF,(E)
AF.(E)=2 f F(E/u)po(u)(du/u) — f [F,,(E)——l—_—vF,(l———)]m(v)dv—}—e —

—v

(2.71)
(coFN) Fy (W) = f Fa(W/0) 0ol0) (do/o).

For energies large compared with ¢, the collision term can be neglected and Egs. (2.71) go over
into (2.14), which are solved by the power functions (2.15). This suggests the following expressions
for F.(E) and F,(W):

F.(E)=aE~(GtVp(s, E/e),
(2.72)
Fy(W) =bW—(t0g(s, W/e),

where s is a positive number and the functions p and g tend to 1 for energies large compared with e.
It follows that X\ must satisfy (2.18) and has, for each value of s, two possible values, A\; and A, as
given by (2.19). The corresponding ratios between the coefficients ¢ and b are given by (2.20).
Substituting the expressions (2.72) in the diffusion equations (2.71) and taking (2.20) into account,
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F1G. 16. Differential photon
spectra for electron initiated
showers, calculated under ap-
proximation A, according to
Eq. (2.56). The ordinate gives
logio Wy (Eo, W, t).
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one obtains

=2 20 [ Eevson [

—(1—9) p(s, = ]wo(v) v—(s+ )P(S’ ‘;)E"‘m_’ o

C(s)g(s, W/e)=f vp(s, W/ev) po(v)dv.

Elimination of g yields

Ap(s, E/e) =

) f u’%(u)duf 2500(v) p(s, E/euv)d‘v——f {p(s, E/e)
ao 0 0 0

) 1 1 € é)p(s, E/G)
( 7)) ﬁ S, E/é( 1‘) ]}(po(ﬂ)dv (S )P(sv E/G)E I 3(E/€) ( ’ )
or, putting E/e—x,

A (s, %)= f wpo(u)du f v oo(0)p(s, x/uv)dy

0

Uo‘f‘)\(.")

p(syx) 9p(s, x)
+ .

x dx

- f (5(s, %) — (1—0)*p[s, /(1 —0)]} eo(@)dv— (s+1) (2.74a)

The solution of Eq. (2.74a) can be found by performing a Mellin transformation in x. This pro-
cedure leads to an expression of the following form :*

1 f—“i” L(—=»)I'(s+7r+1)

p(s, x)=— K(s, r)x~"dr, (2.75)
— 1% F(S+1)

2wt

where K (s, r) is a function of the complex variable r and of the parameter s, and satisfies the re-
currence equation

B(s+7r)C(s+7r)

[R(S)+A (s+r)—
0’0+)\(S)

]K(s, ry=rK(s,r—1) (2.76)

* See Snyder (S38); Serber (S38a).
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with the boundary condition
K(s, 0)=1. (2.77)

The integration path in Eq. (2.75) runs parallel to the imaginary axis, to the left of the pole at
r=0 (where I'(—7) becomes infinite) and to the right of the pole at r= —(s+1) (where I'(r+s+1)
becomes infinite). The details of the derivation are given in Appendix II. For each value of s there
are, of course, two solutions pi(s, x) and ps(s, x) and, therefore, two functions K,(s, ) and Ks(s, r),
corresponding to the two possible choices for A.

The second equation (2.73) yields

(5, 5) = 1 f"“”‘ I'(=r)(s+r+1) C(s+7)
SRR T(s+1) CGs)

271
where x=W/e and the integration path runs to the left of the pole at »=0 and to the right of the
pole at r= —s.
Substituting (2.75) and (2.78) in (2.72) and remembering (2.20), we obtain the following expres-
sions for F.(E) and F,(W):

K(s,r)x~7dr, (2.78)

b0 P(=n)T(s+r+1)

F.(E)=aeG+th— K(s, r)x— sty
2wt J_s—ix I'(s+1)
(2.79)
a 1 —btw P(—p)(s+r+1)
Fy(W)=—- e GtD— C(s+r)K(s, r)x—ttstdy,
ao+A(s) 2wt J—5—in I'(s+1)

where A(s) and K(s, 7) are either \i(s), Ki(s, 7) or \a(s), Ka(s, 7).
The expression for the integral electron spectrum Fp(E) is obtained by integration of F.(£)
with respect to the energy.

1 f‘“i” (=)' (s+7)

@ k] a
Fu(E) = f F.(E)E =e f Folex')dx' =—¢ ZK(s, r)x=0+0dr,  (2.80)
E z 5— i I‘(S)

s 2m

wherc the integration path is to the left of the pole at =0 and to the right of the pole at = —s.

The complex integrals in Egs. (2.79) and (2.80) are difficult to compute in the general case. How-
ever, when x<«<1 the integrands go rapidly to zero with decreasing 7, and the integrals can be evalu-
ated by the method of residues, deforming the contour of integration to the left. The behavior in
the neighborhood of x=0 is determined by the residue at the first pole to the left of the integration
path, which is found at = — (s+1) for F, and at r= —s for F, and Fn. Considering only this residue,

one finds
F(E)= et qi(s)+gqa(s) log (¢/E) ],

1
Fy(W)=e“’E/q3(s), (2.81)
Fu(E) =€ qa(s),
where
a 2.1
QQ(S)Z— K(S, —3)1
s ao+A(s)
a 1.36
gs(s) =— K(s, —s), (2.82)
s a0+ A(s

a
qa(s) =;K(s, —s).
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The quantity ¢i(s) in the equation for F, can obviously be disregarded in comparison with the
logarithmic term for sufficiently small E. The expression for ¢i(s) is rather complicated and will not
be given explicitly.

The function K(s, —s) can be calculated as explained in Appendix II. The results for K=K, are
represented in Fig. 17.

It is seen that, when the energy tends to zero, the integral spectrum of electrons tends to a finite
value, the differential spectrum of electrons diverges as —log E, and the differential spectrum of
photons diverges as 1/W. That the value of Fr(0) is finite is an obvious consequence of the energy
loss by collision. It may be recalled that the expression for Fn(E) calculated neglecting the collision
loss diverges as 1/E* at E=0.

One may question the physical significance of the above results, since the assumptions under
which they have been obtained are not valid for energies small compared with e. However, the
conclusions regarding the behavior of F,, F, and Fy at the limit for zero energy are qualitatively
correct. Moreover, it will be shown that the integral spectrum of electrons calculated under the
present approximation yields an accurate evaluation of the specific ionization (see §38).

An alternative way to solve Eq. (2.74) is suggested by the following considerations (R41). Roughly
speaking, the effect of the collision loss is to reduce the energy of each shower electron by a certain
amount, proportional to e. Therefore, we may try to find an approximate solution of Egs. (2.69),
(2.12) by substituting E+me for E in the solution of Egs. (2.11), (2.12); i.e., by putting

€ —(s+1)
F.(E) =a(E+me)‘<“+‘)=a[E(1+mE)] . (2.83)
An obvious refinement of Eq. (2.83) is
€ —(s+1)
F,(E)=a[p(s, —)E] )
E
(2.84)
€ € €\?
u(s, -—) = 1+m1(8)——+rnz(8)(—) +--
E E E
and we are thus led to the following expression for p:
p(s, E/e)=[u(s, ¢/E)]J~¢+b, (2.85)

The coefficients in the expansion for p are computed by making use of Eq. (2.74). The result
for m, and m; is

s+2 s+2
m1=1/F(s, 1), mao=m,* —my ’ (286)
2 F(s, 2)
where
B(s+n)C(s+n)
F(s,n)=A\s)+A(s+n)——mM8MMm .
o’o+)\(S)

There are, of course, two functions (u; and u,) for each value of the exponent s, corresponding to
the two values (A\; and \z) of A. The two first coefficients m,(s) and m2(s) in the expansion for u;
are given as functions of s in Fig. 18. Evaluation of the terms of higher order seems to indicate
that the series is only partially convergent. However, for energies not smaller than about twice the
critical energy, one obtains a fairly good approximation by breaking off the series at the terms of
second order in ¢/E.
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Expressions similar to (2.84) can be found for the functions F,(W) and Fu(E). We shall put

Cis) 1
F, —| vl s, —
( 0’o+)\(S)W[ (s ) ]

g(sv W/e)——[u(s, C/W):}— ’ (2.87)

u(s, i) =1+n1(s)i+n2(s)(f-) T
w w w

Fu(E)=(a/s)[(s, ¢/E)E]™,

€ € €\ (2.88)
p(SY *) =1+71(S)—‘+72(S)(“) +oe
E E E

The expression for F, is suggested by the behavior of the differential photon spectrum at small
energies [see Eqgs. (2.81)]. The coefficients in the series for » and p can easily be calculated in terms
of the coefficients in the series for u, by using the second of Egs. (2.73) and the relation

and

f (u(s, ¢/ENE'J"¢tVdE" = (1/5)[a(s, ¢/ E)E]™,

which follows immediately from the definition of p. It is found that

s+1 C(s+1)
ny=—" nmy,
s C(s)
s+1 C(s+2)rs+1 (s+1)(s+2)
ne= n1%+ [ mz—————m12],
2 C(s) s 2s (2.89)
ri=m,,
s+1
Vo= ma.
s+2

Again, there are two values of v (v; and »;) and two values of p (p; and p;) for every value of s.
The first two coefficients in the expansions for », and p, are given in Fig. 18.

§34. Correction for the Deviation of ¥ from ¥,

It has been pointed out repeatedly that the formulae for complete screening do not represent
accurately the probabilities for pair production and radiation phenomena when the energy is not
large compared with 137u.Z—%. Inspection of Figs. 9, 13 and 13a shows that the discrepancy is more
pronounced in the case of pair production than in the case of radiation processes. Putting the exact
expressions for ¢ and ¢ in the diffusion equations would complicate the mathematical problem
considerably. However, in the particular case of the normal spectrum (A=0) it is possible to correct,
at least approximately, for the deviation of the actual probability for pair production from its
asymptotic value. To this purpose, we write the Egs. (2.71) for the case of the normal spectrum,
substituting for oo and ¥o(#) the more accurate expressions o(W) and [a(W) /oo JWo(%) (see §19):

o O EYo e [ [ Y e 8

(W) Fy(W) = f Fo(W/5) oo(0) (dv)2).
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The above equations are formally identical to (2.71) for A=0 if we consider F,(E) and
[e(W) /oo ]F4(W) as the unknown functions instead of F.(E) and F,(W). Therefore, the solution
is obtained from (2.72) by changing F,(W) into [o(W)/ao]Fy(W). One sees that the expression
for the differential spectrum of electrons remains unchanged, while that for the differential spectrum
of photons is multiplied by the ratio between the asymptotic value oo of the absorption coefficient
and its value for the energy W under consideration.

§35. Solution for a Single Incident Electron or Photon

It has been proved in §30 that, when the energy loss by collision is neglected, the shower produced
by a single incident electron of energy E, is described by the functions

i 1 s+iwd [ ao+)\1(5) D\ ( )l] 00+)\2(S) D\ ( )t:]] Ey
m(Eo E, )_21ri ~£—m ’ A1(s) = Na(s) i Aa(s) = Aals) B B (2.90)

Fo W, )= ) R DuE)]— exp Da()
B W= . () —has) P P LA L et

which givé the differential spectra of electrons and photons at various depths. The functions = and ¥
can be considered as linear combinations of elementary solutions of the type (2.21), where, however,
the parameter s is now a complex quantity. The coefficients are

dS 00""')\1(8) —dS 60+)\2(S)

=—————Fy and ay=—o0 Ey.
2w )\1(5)—X2(S) 27 )\1(8)—X2(8)

As first indicated by Snyder (S38), for E¢>> ¢ one can obtain an approximate solution of the shower
problem including collision loss by substituting in Egs. (2.90) the elementary solutions of the diffusion
equations (2.69), (2.12), in place of the elementary solutions of the diffusion equations (2.11), (2.12).
This substitution gives

1 +iw (X} )\1 E
w(Eo,E,t)=—f ‘ ds‘—»i—ipl(s, —) exp [Ai(s)t]

21!'1: )\1(8)—)\2(5)
_ovthl) ( ) Dna( >t]} 2.91)
—_ ex 2(S y .
M) —has) P *

B Wiy e [ g { ( W) A ( Aa(s) ]E"s
0y ) = - _ 1 y T 1 t 2 B 2 t
v ) 21ri>£—iw ST L S Lt R e)exp[ Mpa

The functions = and v defined by Egs. (2.91) are linear combinations of the elementary solutions
of the diffusion equations (2.69), (2.12) ; hence = and v are themselves solutions of these equations.
We want to investigate the behavior of these functions at =0. Putting =0 in Egs. (2.91), we obtain

(B, E, 0) 1 f“’iwd[ ago+Ai(s) E) ao+Na(s) ( )]EO
T i e xl(s)—xﬁ(s)p‘(s’ ) e\ B

(Eo, W, 0) = 1 f5+i°°d C(s) [ ( W) ( W)] Ey*
Ve i e () =)L\ ) TR Wt

The quantities p;, p» and gi, g differ from 1 by terms of the order of ¢/E and ¢/ W, respectively.
If in (2.92) we set p1=p2=1 and g1=g.=1, 7(Eo, E, 0) and v(E,, W, 0) reduce to §(E—E,) and
zero, respectively; i.e., we return to the earlier treatment neglecting collision loss. For energies
large compared with ¢, therefore, =(E,, E, 0) coincides approximately with §(E— Eo) and v(E,, W, 0)

(2.92)




COSMIC-RANY THEORY 2935

is approximately zero. Moreover, when E> Eq, and W> E, the integrals in Egs. (2.92) may be evalu-
ated by deforming the contour to the right, because the integrands go to zero for R(s) = + . Since
the integrands have no poles in the positive half plane, #(E,, E, 0) and y(E,, W, 0) are in any case
identically zero for energies larger than E,. On the other hand, both w(E,, E, 0) and v(E,, W, 0)
may differ considerably from zero for energies of the order of ¢ or smaller. We conclude that, when
E>>e¢, the expressions for w and vy given by Eqgs. (2.91) satisfy approximately the boundary conditions
describing a single incident electron of energy E,. More precisely, Eqs. (2.91) represent the shower
produced by a primary electron of energy E, accompanied by a virtual distribution of electrons and
photons, which does not extend beyond E, and has appreciable intensity only in the neighborhood
of the critical energy, e. Such a shower cannot differ appreciably from the shower produced by a
single electron of energy E, because the contribution of primaries of small energy to the further
development of the shower is negligible.

The expressions for the differential spectra of electrons and photons in the case of a single incident
photon can be found by exactly the same procedure.

§36. Explicit Expressions

Explicit expressions for the various quantities describing a shower can be derived from the formulae
developed in the preceding section.* We indicate shortly the procedure and give the final results.

The Laplace integrals of = and y are obtained by multiplying the corresponding functions by
et and integrating with respect to ¢ from 0 to «. Thus, for instance,

1 “ -+ iw 0'0+X S) 0’o+)\2(S) E Eos
QT(EO, E, )\) =__f e—)‘tdtf ds [ ( )e)q( Ot _ (S, __)e)\z(a) t] .
2wt 0 5= ioo Xl(S) )\2(5) S) )\2(5) € Est!

The integration path for the integral with respect to s can be chosen to the right of the point s
defined by \i(s) =\. Then R(A\;—)\) <0 and the integration with respect to ¢ can be performed first.
This yields

1 fa+iood [ got+Ai(s) pi(s, E/e)  aotNa(s) pals, E/e)"Eg

¢.(Eo, E, \) =— s
2mi M) —ha(s) A=Ails)  Ma(s)—Na(s) A—Aa(s) JE=+

The complex integral can be evaluated in the same way as that entering in the expression for the
Laplace integral calculated neglecting the collision loss. When E is sufficiently small compared
with E,, the integral is practically equal to the residue of the integrand at the point s defined by
M(s) =\ and therefore

e (Eo, E, \) =2, O(Ey, E,\)pi(s, E/e), (2.93)

where @ (E,, E, \) is the Laplace integral of n(E,, E, ) calculated with neglect of the collision loss,
and is given by (2.40).
For energies larger than about 2e one can use the expression (2.85) for p;, hence

o+ Ai(s) Ey®
Q.(Eo, E, ) = — (2.93a)
[Ai(s) = N2(s) IN'1(s) [wals, e/ E)ET]e+1
and similarly [see (2.40), (2.42)],
C(s) Ey* 1
8‘Y(EOv W1 )\) = T
[A1(s) =Ne(s) IN'1(s) [ona(s, ¢/ W)W W
(2.94)
co+Ni(s) E,

1
Qn(Eo, E \N=— .
s [N () =N2(s)IN'1(s) [pa(s, ¢/E)E]

* The expression for the integral electron spectrum at E=0 has been given by Snyder (S38) and Serber (S38a). The
expressions for the other quantities have not previously been published.
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Analogous expressions hold for a photon-initiated shower [see (2.41), (2.43)]:

B(s) Wee
QF(WO) E) x)= - y
[A1(8) =N2(s) IN'1(s) [pa(s, ¢/ E)ETH
A 1 Wo? 1
&, (W, W, )= - DTN — (2.95)
[Ai(s) =N2(S) N'1(s) [wals, ¢/ WYW]* W
B(S) Wo"

1
8H(I/I/m E1 )\) =-" .
s DA(8) = Ae(s) IN1(5) [oa(s, ¢/E)E]"
The expressions for the track lengths are given by the Laplace integrals for A=0:
(a) Primary electron of energy Eq

2:(Eo, E)=0.437E,/[11(1, ¢/E)E?,
2,(Eo, W)=0.572E,/[v:(1, ¢/ W)W?2], (2.96)
zn(Eo, E)=0.437E,/[p:(1, ¢/E)E].
(b) Primary photon of energy W,
2:(Wo, E)=0.43TW,/[m1(1, ¢/E)ET?,
2,(Wo, W)=0.572W,/[vi(1, ¢/ W)W?], (2.97)
(W, E)=0.43TW,/[p1(1, ¢/E)E].

The expressions for the position of the center of gravity and for the longitudinal spread can be
obtained by the method developed in §29. One readily sees that, if the derivatives of u, » and p
with respect to s are neglected, Eqgs. (2.46) and (2.47) are still valid, provided one takes y =log (E/uE)
[or y=log (Wo/uE)] for the case of the differential electron spectrum, y=log (E,/»W) [or y=log
(Wo/vW)] for the case of the differential photon spectrum, and y=log (Eo/pE) [or y=log (W,/pE)]
for the case of the integral electron spectrum.

The complex integrals entering in the expressions for the differential spectra can be evaluated
by the saddle point method. For energies not smaller than the critical energy the functions p and g
can be considered as slowly varying functions of s. Using again for p and g the expressions (2.85),
(2.87) and following the procedure developed in §30, one obtains

1 Hl(S) E0’
w(Ey, E, t)YdE= exp [Ai(s)tJdE,
(2m)} [N"1(9)t ]t [ua(s, ¢/ E)E]*+!
(2.98)
t=— ! lo (E)
T T P\&/)
1 1 L(s) Ey* 1
Y(Eo, W, )aW = — — exp [Mi(s)t W,
(2m)} A/s [N 2(s)t+(1/258) Tt [oa(s, ¢/ W)W )* W 290
1 Eo\ 1 '
=— log ( — ) ——1|,
‘ k'l(s)[ 0g(W) 25]
W(Es E, )= - o B! Dha(s)t]
o D ot s VAN (/s Donte, o BET > O (2.100)

t=—

()

1
)\,1(8)



COSMIC-RAY THEORY 297

Similarly, the expressions for w(W,, E, t), v(Wo, W, t) and II(W,, E, t) are obtained by substi-
tuting (u1E)~¢+D for E~C+D in (2.58), (v, W)—*W! for W—6+D in (2.59) and (p:1E)~* for E~* in (2.60).
It is seen that the number of shower particles is reduced by the collision loss. For instance, the
number of electrons with energy above E is found to be equal to the number of electrons with energy
above p.E calculated without considering the collision loss.
For energies small compared with ¢, the expression (2.75) for p can be used. One obtains for = (Eo, E, t)
1 e g+ a(s)

m(Ey, E, t) = ——— ds——————FE¢e D exp [M(s)t]
’ 4?2 Jo—iw  Ai(s) —Na(s) ’
—i+ i I‘(-—r)I‘(s+r+1) ,
f e = Ky (5, 7) xS0y (2.101)
o e P(s41)
1 e go4Na(s) Stio [(—p)l(s+7+1)
~f ds Eqe s+ exp [Na(s)t ] Ko(s, r)a—tstr+Ddy
Gor? in Xl(S) —XQ(S) —b— iw I‘(S+1)

and for the integral clectron spectrum

bt i ds ao+Ai(s) —i [(—7)D(s+7)
Eo, E, t)= —— — ) exp [A(s)t _—
e 0= f— s Mi(s)— )\2(5)( ) exp [hfs)] —b— i I'(s)

1
Kl(S r)x (s+r)dr+__

f’H".“ ds O’u+)2($) (Eo
472

7% —.9—)\1(5)'—)\2(5) —:—) P [)\2(S)t:|

e (=4
f K y(s, 7)x~ 0y, (2.102)
—b—iw I'(s)

The integrals with respect to 7 in the expression for II are practically equal to the residues of the
integrands at 7= —s if E<Xe (see §33). At the limit for E=0, we have accurately

1 f“’iw ds O’o+)\1(5)

11(Ey, 0, {) =—
2mi Js—ie 5 Ai(s) —N2(s)

Ep\*
~—) Ki(s, —s) exp [Mi(s)t]

1 bt ix dS 0’0+)\2($) Eo
( ) K(s, —s) exp [A2(s)t]. (2.103)
21(1: d—iw § )\1 S) )\2(8)

The second term in (2.103) can be neglected with respect to the first, and this can be evaluated
by the saddle point method, in which we consider Ki(s, —s) as a slowly varying function of s.
The calculation is exactly similar to that leading to Eq. (2.57), and the result is

(Eo, 0, )= 1 1 Hi(s)K(s, —s) ( o)S ()]
0, 0, ¢ ex W)t
(21r) s V() (1/s) TN € P

(2.104)
1 E, 1
SENCE
Ni(s) € s
Similarly one obtains
11 M(s)Kq(s, —s) Wy ® )
H(Wo, 0, ) =—— — () ewnnon,
(2m) /s [>\"1(S)t+(1/252)]% €
(2.105)

e ()3
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It may be noted that the expressions for the integral spectrum at £=0 calculated under approxi-
mation B closely resemble the expressions for the integral spectrum at £ =e¢ calculated under approxi-
mation 4. A graphical representation of II(E,, 0, t) as a function of ¢ for various values of E/e
is given in Fig. 19.

Multiplication of (2.103) by et and integration from t=0 to t= % yields an expression for the
Laplace integral of II(E,, 0, £), which is very similar to (2.37) and can be evaluated in the same
way. From the expression for the Laplace integral, the expressions for the track length, the position
of the center of gravity and the longitudinal spread are readily obtained. We give the results without
further discussion.

(a) Primary electron of energy E,

1 0«)+)\1(S) Eo\*
ValEa, 0, )= -~ s, —9().
s [A(s) = X2(s) NV u(s) €

Z[](Eo, 0) :()437K1(1, - l)Eu/E:Ea/é, (2.106)

in(Eo, 0) =1.01 log (E¢/€)+0.4,
TIIZ(E(), 0) =1.61 IOg (En/e) —0.2.

(b) Primary photon of energy W,

1 B(s) Woy®
gﬂ(Wl)y Oy X) =—-- Kl(sr _S) (—) )
s [A(s) = X2(s) TN 1(s) €
Zn(Wo, 0)=0437K1(1, —1)Wo/€=W0/€, (2107)

t-[[(Wo, 0)= 1.01 lOg (I/V()/E)'*"l.z,
2 (W, 0) =1.61 log (W,/e€)+0.9.

The equations for zn(Eo, 0) and zu(W,, 0) express the obvious fact that the track length of all
shower electrons equals the initial energy divided by the collision loss per unit length (see W39a,
R40). This result is obtained from the present calculations in which terms proportional to negative
powers of Eo/e or Wy /e are neglected, and confirms that the method is accurate when E, or W, is large
compared with e (see S38).

C. Total and Specific Ionization. The Low where V), represents the average energy spent

Energy End of the Spectrum per ion pair produced and depends only on the
nature of the gas. ’

The reason for V, being independent of the

It is a well-known experimental fact that the energy and of the nature of the ionizing particle
total number of ion pairs produced when an is made clear by the following considerations.
When the primary particle is absorbed by the
gas, its energy is spent in exciting the atoms and
producing secondary rays partly by collision,
partly by radiation phenomena. The secondary
rays will excite more atoms and produce tertiary
electrons and photons, and so on. It is clear that
an electron will continue to lose energy by
J=Eqy/ Vs, (2.108) inelastic collision as long as its energy is larger

§37. Total Ionization

alpha- or a beta-particle is completely absorbed
by a gas is proportional to the energy of the
particle, and, for a given energy, is the same for
both types of particles. Hence, the total number
of ion pairs produced by an alpha- or beta-
particle of energy E, is given by
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K(s,-s)

Ll
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Fi1c. 17. Function K,(s, —s) defined by Egs. (2.76),
(2.77). The curve has been drawn using the values of K,
listed in Table XV (Appendix II). The slope at s=1 (as
given by Eq. (A. 16)) is indicated by the dashed line.

than the lowest excitation potential of the atoms,
and that any photon will readily be absorbed by
photoelectric effect as long as its energy is larger
than the minimum ionization potential. On the
other hand, if an atom is brought to a highly
excited state by inelastic collision of an electron
or by absorption of a quantum, it promptly
loses the excitation energy by emitting a photon
or an Auger electron. It is seen that the degrada-
tion of the initial energy goes on until nothing
else is left but a certain number of atoms in the
lowest ionized level, and a certain number of
electrons and photons of a few ev energy. The
fraction of the initial energy which is used in
producing ionization depends essentially on the
relative probability for excitation and ionization
of the atoms. It is not appreciably affected by
the nature of the primary particle nor by its
energy because, in any case, most of the ioniza-
tion and excitation processes are produced by
secondary electrons of small energy. Hence the
approximate proportionality of the number of
ion pairs to the primary energy expressed by
Eq. (2.108).
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The above considerations make us confident
that the proportionality, which is experimentally
established for energies up to a few million ev,
will still hold for particles of much larger energy,
such as those which form the cosmic radiation.
Thus we shall use Eq. (2.108) to calculate the
total ionization produced either by an electron
or by a photon of energy E,. The values of the
constant V, for various gases, as deduced from
experiments with alpha- and beta-particles, are
summarized in Table XIII. It is seen that V,
is not a smooth function of the atomic number.
It would be very difficult to calculate V, theo-
retically, although its general trend can easily
be understood. It may be noted that V, is
particularly small in those gases in which
excitation is unlikely compared with ionization.
On the contrary, the value of the ionization
potential does not influence V, very strongly, as
might be expected at first.

§38. Specific Ionization

Consider the shower produced by a single pri-
mary electron or photon of energy E, and con-
sider all shower particles with energy greater than
n which are present at the thickness t(np <E,)"
Let p,(t)ot be the total amount of energy given
up by all these particles to secondaries of
energy smaller than % in the layer (¢, 6¢). The
energy of any particle falling below the limit 7
during the traversal of the layer &8¢ is included in

12| P

=
S

1 —
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F16. 18. First and second coefficients in the series for u;,
v, p1 (Eqs. 2.84, 2.87, 2.88) as functions of s.
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Fic. 19. “Total’”’ number of
electrons II(E,, 0, t) for electron
initiated showers, calculated
under approximation B, accord-
ing to Eq. (2.104). Multiplica-
tion by ¢/V, vields the specific
ionization j(E, ) [see Eq.
(2.110)7.

py(t)dt. If n coincides with the limiting energy
M0, py becomes what we have agreed to call the
energy dissipation. The integrated energy loss
Jo®p,(t)dt is obviously independent of n and
equal to the initial energy. However, the energy
loss in a given layer depends on 7. If 7, for
instance, is decreased, a larger number of rays
comes into consideration, while the energy given
to secondaries of energy smaller than n by each
ray is decreased. The two effects work in opposite
directions, but do not necessarily compensate
each other.

The energy p,(t)d¢ lost by the shower particles
in a given layer 8t manifests itself ultimately in
the production of a number p,(£)8t/Vo of ion
pairs. In general, not all of these ions will be
produced in the layer & itself, because part of
the energy p,6t is given to secondary rays which
travel some distance before being absorbed. On
the other hand, secondary rays generated in
preceding layers may penetrate the layer 6 and
produce some ionization in it. It is clear that the
difference between p,(¢)8¢/V, and the actual
number of ion pairs formed in 8¢ tends to zero
for very small . More specifically, the difference
is negligible when 7 is so small that the number
and energy distribution of shower particles can
be considered as constant over a distance equal to
the range of particles of energy ». In conclusion,
the general expression for the specific ionization is

1
j(t) =— lim p,(t). (2.109)
Vo 10

0

The specific ionization j(¢) can be calculated
explicitly if we introduce again the simplifying

assumptions made in the preceding section B;
more specifically, if we describe radiation phe-
nomena and pair production by the asymptotic
formulae for complete screening, neglect the
Compton effect and consider the energy lost by
collision as given up in infinitesimal amounts at
the rate of e ev per radiation length.
The quantity p,(f) may be expressed by

(1)t = 8t[ell(n, t) +enm(n, £)
+ (terms depending on radiation
and pair production) ],

where the first term represents the energy loss
of particles with energy greater than 7, and the
second term represents the energy of the particles
which fall below the limit 5 while traversing &,
because of collision losses. As 5 tends to zero,
the first term tends to €I1(0, ¢)8¢, while the other
terms vanish. Hence

J(4) =11(0, t)e/ V. (2.110)
11(0, t) represents the total number of electrons
at ¢, irrespective of energy, and is given by Egs.
(2.104) and (2.105) for the cases of a primary
electron of energy E, and of a primary photon
of energy W, respectively.

The center of gravity {, and the longitudinal
spread of the ionization r; are given by the same
formulae which give the center of gravity and
the longitudinal spread of the total number of
electrons I1(0, f) [see Eqgs. (2.106), (2.107)].

Despite the drastic simplifications used, the
final expression for the specific ionization is
probably accurate. In fact, the behavior of
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TaBLE XIII. Average energy spent per ton pair produced
in various gases [ from Rutherford, Chadwick and Ellis,
Radiations from Radioactive Substances (1930), p. 81].

Gas z Vo (EV)
Hydrogen 1 33.0
Helium 2 27.8
Nitrogen 7 35.0
Oxygen 8 32.3
Neon 10 274
Argon 18 25.4
Krypton 36 22.8
Xenon 54 20.8
Air — 35.0

shower particles of large energy is correctly
accounted for, including the production of low
energy electrons and photons by high energy
particles. The behavior of electrons and photons
of small energy is not correctly described; i.e.,
some error is made in evaluating the distribution
in space of the ionization caused by the absorp-
tion of low energy electrons and photons. This
error, however, cannot affect the final result
seriously because the range of low energy elec-
trons and photons is small compared with the
range of the shower itself, hence the exact value
of the range is of no great importance, provided
the total number of ions formed is correctly
computed.

§39. The Low Energy End of the Specirum

The determination of the energy distribution
of electrons and photons with energy small
compared with the critical energy constitutes a
very difficult problem. In the low energy region,
as already pointed out, the asymptotic expres-
sions for the probabilities of pair production and
radiation cannot be used, and the Compton
effect as well as the production of secondary
clectrons by collision must be taken into con-
sideration. The consequence is that the equations
become so involved as to discourage any attempt
at analytical solution. Therefore, no general
expressions for the low energy end of the spec-
trum can be given and one must treat every
single problem separately, by methods of
numerical approximations.

The determination of the track lengths 2z,
and z, is particularly important in connection
with the problem of the energy distribution of
clectrons and photons in equilibrium with a
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harder radiation (see §40), and also because the
functions z. and 2, describe the properties of a
shower in the neighborhood of the maximum.
In the case of showers produced by primary
electrons or photons with energy large compared
with ¢, Egs. (2.96), (2.97) can be used to calculate
2, and z, down to an energy n two or three times
as large as the critical energy e. For smaller
values of the energy, the functions 2z, and 2, can
be calculated by the following procedure. One
first calculates the number of electrons and
photons of energy E’ smaller than n created by
electrons and photons of energy larger than 7.
This can be done easily: one multiplies the
production probabilities per unit length by the’
differential track lengths of electrons and photons
with energy larger than 7, and then integrates
over the energy. The asymptotic formulae for
the probabilities of pair production and radi-
ation can be used. The number of electrons
which drift through the upper boundary 7
because of the energy dissipation by collision is
given by ez.(n). The differential track length of
the low energy electrons directly produced by
high energy particles (they may be denoted as
electrons of the first generation) can then be
obtained by multiplying the number of electrons
produced in the various energy intervals (E’, dE')
by the distance they travel while their energy is
reduced from E+4dE to E(E<E'). Similarly,
the differential track length of the photons of
the first generation is obtained by dividing the
number of photons produced in the various
energy intervals (W, dW) by the total absorption
coefficient of photons of energy W. In a similar
way, one can calculate the track lengths of the
particles of the second and of the successive
generations, where by particles of the nth
generation we understand the particles produced
by particles of the (n—1)th generation. In these
calculations, of course, one must use either the
correct expressions for the probabilities of the
various phenomena involved, or simplified ex-
pressions which give a good approximation at
low energies.

Calculations along this line have been carried
out by Bethe* and confirm the qualitative
conclusions rcached under approximation B [sec

* We are greatly indebted to Professor Bethe for making
available to us his results, which are not yet published.
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Eq. (2.81)]; i.e.,, that at the limit for small
energies the differential spectrum of electrons
diverges logarithmically, while the differential
spectrum of photons behaves as 1/W. Bethe's
numerical results on the energy distribution of
low energy photons in air are given in Fig. 20.

D. Electrons and Photons in Equilibrium
with a Harder Radiation

§40. General Method

Let us suppose that electrons or photons are
produced in matter by some kind of primary
rays, like mesotrons, which are more penetrating
than the electrons or photons themselves. The
secondary electrons or photons will multiply
into showers and an equilibrium condition
between the primary rays and the shower
particles will be reached as soon as the primary
rays have traversed a sufficient thickness.

In order to have the most general case, we
shall assume that electrons as well as photons
are produced, with arbitrary energy distribu-
tions. Let n.(E, to)dEdt, be the average number
of electrons with energy (E, dE) generated in the
layer (fo, dto) and n.(W, to)dWdt, the average
number of photons with energy (W, dW) gener-
ated in the same layer. Let us consider the
shower produced by all electrons and photons
generated in the layer (¢, dty). The differential
spectra of electrons and photons, which describe
this shower at a distance ¢ from the layer
(to, dto), are obviously proportional to dto and will
be denoted by dtoﬂ'(E, to, tl) and dto’Y(W, to, t’).
These two functions satisfy the diffusion equa-

| -E-‘w:,(s,,w l
VARN
\\
\
\
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€
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F16. 20. Low energy end of the photon spectrum,
according to Bethe. Multiplying the ordinates by (Eo/e)
X (@W /W) gives the differential track length z,(E, W)dW.
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tions of the multiplication theory [Egs. (2.11),
(2.12) if we follow approximation A4, or Egs.
(2.69), (2.12) if we follow approximation B] and
the boundary conditions

W(Ev to, 0) =n1r(Ev to),
(2.111)
v (W, to, 0) =n (W, to).

Let 7,(E,t) and v,(W,t) be the differential
spectra of electrons and photons observed at the
thickness ¢. These functions are given by

ms(E, t) =f m(E, t—1, t")dt,

’ (2.112)
7 (W, )= f AW, 1=, 1),

0

The upper limits of integration can be taken
as + « if one assumes that, at the thickness ¢,
the amount of matter traversed by the primary
rays is larger than the maximum range of
showers.

In order to proceed any further, one has to
make some definite assumption about the vari-
ation of the rate of production of electrons and
photons with depth. In many cases one can
assume that the intensity of the primary radia-
tion, and consequently the rate of production of
secondary rays, does not change appreciably
over a distance equal to the maximum range of
showers. In this case one can put in Egs. (2.112)
m(E, t—t, t')==(E, t, ¥) and v(W, (=¥, t)
=+v(W, t,t) and one obtains

ms(E, t) =fw7r(E, L 1)dl =z.(E, 1),
y (2.113)
vs(W, t) =f y(W, ¢, t)dt' =z,(W, 1),

where 2.(E, t)dt and z,(W,{)dt represent the
differential track lengths of electrons and photons
for the shower originated by the incident radia-
tion (2.111) in (¢, dt).

When the variation of the primary intensity
with depth cannot be neglected, one can often
approach the actual conditions closely by
assuming that the rate of production of electrons
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and photons decreases exponentially with depth;
i.e.,

n.(E, to+t') =n.(E, to) exp (—ut'),

(2.114)
ny (W, to+t") =n, (W, ty) exp (—ut’).
It follows that
w(E, t—t,t'y=n(E, t,t') exp (ut'),
(2.115)
7(W1 t_t,) tl) =7(Wy t! t/) exp (#tl)y
and
n(B,0= [ otn(E, 1 A B, ~),
’ (2.116)

vo(W, t)= f ey (W, t, t)dt = (W, —u),
0
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where &,(E, —u) and &,(W, —u) are the Laplace
integrals for A= —u of the functions = and v at
to=¢. Hence the problem of determining =, and
v, is reduced to the problem of determining the
Laplace integrals of the functions = and ¥ which
satisfy the diffusion equations of the multiplica-
tion theory and the boundary conditions (2.111).
For A=0, the Laplace integrals coincide with the
track lengths, which give the solution of our
problem in the case that the variation of the
primary intensity with depth can be neglected.
It may be recalled that the Laplace integrals
converge only when A> —gy. Physically this
means that an equilibrium condition between
the primary rays and the secondary shower
particles exists only when the ‘‘absorption
coefficient” u of the primary rays is smaller than
the absorption coefficient of the shower photons.

§41. Spectra at Large Energies

If we limit ourselves to shower particles of large energies, approximation 4 can be used and the
Laplace integrals in Eq. (2.116) can be calculated following step by step the procedure developed

in §28.

The Mellin integrals with respect to energy of the Laplace integrals with respect to ¢ are defined
again by Egs. (2.30) where, however, M., (s, 0) and M, (s, 0) are given by

M (s, 0) =f Esn.(E, t)dE,
0

(2.117)
", (s, 0)=f Wen, (W, t)dW,
rather than by (2.31) or (2.32). '
The solution of Eqgs. (2.30) is
(o +N)PR(s, 0)+B(s)Pt, (s, 0)
N.(s,\)=
RESMONRE2HON (2.118)
ots, 2 < OB O HTA) 3 (5, 0) B
\ (s, —
RESONRESHON
and the inversion formula of the Mellin transformation yields
1 +ie (go4+ NI (s, 0)+B(s)M, (s, 0) 1
N DL OFBOMG.0) 1,
27t Jo—in A=) TN =Na(s) ] Est1
(2.119)

LW, \)=—

2w

lf"““’ C(s)M(s, 0)+[A() +A 1My (s, 0) 1
§—iw [)\"')\1(5)][)\—)\2(8)]

S
Wstt

In calculating ¥.(E, N) for a certain value E of the energy, we can take 7, and 7, as equal to
zero for energies smaller than E, because shower particles of energy E cannot be produced by primary
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electrons or photons of energy smaller than E. Hence I, (s, 0) and M, (s, 0) become

M, (s, 0) = f Eo'na(Eo, 1)dEo=Gg®,

¥ (2.120)
M, (s, 0) = f Wony(Wo, 0)dWo=B5,

E

where Ex® and Wx® represent, respectively, the sums of the sth powers of the energies given to
clectrons and photons of energy larger than E by the hard component, in one radiation length.
The complex integral in the expression for ¥, can be evaluated by taking the residues at all the
poles to the left of the integration path. Each pole contributes a term of the form

Cp W
) )
fl(s} Est! +f2(S/ Estl ’

There is only one pole on the positive real axis, at the point defined by Ai(s) =X\, and the residues
at the poles in the negative half plane can be neglected with respect to this one, if the average energy
of the secondary electrons and photons with energy larger than E is sufficiently large compared
with E. A similar conclusion applies to the expression for £,. One then obtains

aot+Ai(s) (S B(s) BWg®
8ﬂ'(Ev )‘) == - y
[A(8) =A2() IN'1(5) E+1 [ha(s) —Na(s) IN'u(s) E*+?
(2.121)
C(s) Cw A(s)+N(s) Wy
87(W’ )‘) =—- —_ ,
I:)\x(S) —XQ(S)])\’l(S) WH'1 [)\1(8) -)\2(3)]>\’1(8) W'H'1
where s is defined by Ai(s) =A.
The corresponding expression for the Laplace integral of the integral spectrum is
1 oo+ Ai(s) G 1 B(s) Wy
(B, \) = —— — S ( - (2.122)
S [)\1(5)—)\2(8)]%'1(5) Es N [)\1(8)'—)\2(5)]k'1(8) E:
For A=0, s=1 and Egs. (2.121), (2.122) give
0.437
2 (E) = ——(Ex" +We ),
E2
0.572
3, (W) =—W7;‘(@W“)+§ISW“)), (2.123)

37
zn(E) = —E—(@E(” +WeV),

where (EzV+Wxr™) and (Cw®+Ww D) are the total energies given to secondaries of energy larger
than E and W, respectively, by the hard component, per radiation length. These expressions are

very similar to those for the track lengths in showers produced by a single incident electron or
photon [see Eqs. (2.44) and (2.45)].
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§42. Specific lonization. Spectra at Low Energies

Let us denote by total specific ionization, jr,
the total number of ion pairs produced by the
primary particle and by all its secondary rays
per radiation length. If the wvariation of the
primary intensity over a distance equal to the
maximum range of showers can be neglected,
jr is obviously equal to the total energy loss of
the primary particle divided by V,:

_ 1 ( dE)
Jr=—\ ——
V() dt total

The total specific ionization must not be
confused with the primary specific ionization jp
defined in §6, which represents the number of
ion pairs produced by the primary particle
directly.

The problem of calculating the total specific
ionization in the case that the variation of the
primary intensity with depth cannot be neglected
has not yet been solved satisfactorily. The main
difficulty arises from the fact that, in general,
the average energy of all electrons and photons
produced by the primary rays directly is not
large compared with the critical energy and,
therefore, the procedure developed in §§35, 36,
38 cannot be used. The same difficulty is en-
countered when one tries to calculate the energy
spectra of secondary electrons and photons in
the neighborhood of the critical energy e.

An approximate method for determining the
track lengths, which can be used also when the
initial energy is not large compared with ¢, has
been developed by Tamm and Belenky (T39).
The approximation consists in replacing the
actual diffusion equations with slightly different
equations, which can be more easily handled;
a device which had been used previously by
Carlson and Oppenheimer (C37). We refer the
reader to the original paper for further details.

(2.124)

E. Fluctuations. Lateral Spread of Showers
§43. Fluctuations*

It has already been mentioned that the
problem of determining the probability for a
* See for discussions of this problem Furry (F37), Arley

(QS%)), Euler (E38), Nordsieck, Lamb, and Uhlenbeck
(N40).
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certain deviation from the average behavior of a
shower has not yet received a satisfactory
solution. We shall, therefore, limit ourselves to
a few remarks.

Let N(E,, t) be the total number of particles
irrespective of energy which is found, on the
average, at the thickness ¢ when a primary
particle of energy E, is incident at {=0. If the
shower particles were independent of each other,
the probability P(N) of N rather than N
particles being present at ¢ would be represented
by the Poisson law

P(N)=eN(N)V/N! (2.125)

which gives for the mean square deviation from
the average

(N=N)Hpn=(Nw—(N)?=N. (2.126)

The particles of a shower, however, are not
independent, since they arise from the same
primary ray. Hence the use of Eqgs. (2.125) and
(2.126) is not justified, although there are some
reasons to believe that the Poisson distribution
may be roughly valid at large thicknesses (see,
for instance, E38).

Furry (F37) made an attempt to determine
the function P(N) using a simplified model for
the shower phenomenon. In the Furry model
the shower particles are considered to be all of
the same nature and it is assumed that each
particle traversing a thickness d¢ of matter has a
definite probability, proportional to df, of
splitting into two equal particles. The collision
loss is neglected. These assumptions lead to a
value of N which increases exponentially with

thickness, and to the following expressions for
P(N) and [{((N—N)*]}:

1 1 N—1
P(N)=—_-[1—-—_] , o (2.127)
N N

(N=N))=N(N-1). (2.128)

It is seen that according to the Furry model
the fluctuations are much larger than those
calculated from the Poisson formula. Indeed,
the mean square deviation is approximately pro-
portional to (N)? rather than to N. The most
serious source of error in Furry's calculations
arises from neglecting the collision loss. The
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effect of the collision loss becomes more and
more noticeable with increasing thickness, as
shown by the fact that the average number of
shower particles N should pass through a maxi-
mum and then decrease again instead of in-
creasing continuously as the Furry model would
indicate. Therefore, we may expect Egs. (2.127)
and (2.128) to be approximately valid only for
small thicknesses.

Recently Nordsieck, Lamb, and Uhlenbeck
(N40) attacked the fluctuation problem from a
more general standpoint, using again the Furry
model but taking into account, at least roughly,
the energy loss by collision. They did not reach
any closed expression for P(N) but were able
to calculate some values for the mean square
deviation. The results are given in Table XIV,
where z=log (Eo/0.4¢) and o= [(N?)p— (N)*]/N.

The quantity ¢ is 1 according to Poisson’s
formula, and N —1 according to Furry’s formula.
It is seen that the actual value lies between
these two extremes, except for t=4z. On the
other hand, the authors state that their results
for t=4z are the least accurate. Hence the
conclusion seems justified that, in general, the
fluctuations are intermediate between those
predicted by the Poisson and Furry formulae.

§44. Lateral Spread of Showers

We have considered so far only the longitudinal
development of showers. The shower particles,
however, do not travel exactly in the same
direction as the primary particle which has
produced the shower, because of the finite angle
of emission of electrons and photons and because
of the multiple scattering of electrons. Following
Eq. (1.53c), and remembering that for high
energy electrons energy and momentum are
practically identical, we find that the root mean
square angle of scattering of electrons of energy
E in one radiation length is given by E,/E, where
E,=21X10¢ ev. This angle may be compared
with the average angle of emission, which is,
both for electrons and photons, of the order of
ue/E (see §§10 and 16). It is seen that the average
angle of emission is much smaller than the
average angle of scattering in one radiation
length. Since the average distance between two
emission processes is of the order of magnitude
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TABLE XIV. Mean square deviation from the average num-
ber of particles in a shower (from Nordsieck and others, N40).
z=log (Eo/0.4¢); o=[(N»n—(N)?]/N.

z=4.75 z2=7.0
¢ N o t N o
2z 20.4 9.6 | 2z 159 42
3z 9.7 6.5 | 32 60 29
4z 2.5 44 | 4z 9 16.5

of a radiation length, it follows that only
scattering needs to be taken into account in
calculating the spread of showers.

Let us consider a shower propagating in a
homogeneous medium. Since the scattering is
inversely proportional to energy, the shower
particles of high energy remain concentrated in
a narrow cone. The electrons of low energy,
which are produced all along the central core,
are scattered away from the axis of the shower.
The smaller the energy, the larger is the angle of
divergence. On the other hand, low energy shower
particles are readily absorbed and do not
contribute to the further development of the
shower. Therefore, the lateral extension of the
shower does not continue to increase as the
shower develops in matter, but very soon reaches
a limit determined by the range of low energy
shower particles, and remains thence constant.

Calculations on the spread of showers have
been carried out by Euler and Wergeland (E40)
and by Bethe (B41). A consistent theory has
been developed recently by Nordheim (N41)
along the following lines. Consider an electron
of energy E, incident at t=0 and let 7(E,, E, {)dE
be the average number of shower electrons with
energy between E and E+dE at the thickness ¢.
These electrons will travel at various angles
with respect to the trajectory of the primary
electron and will be found at various distances
from the axis of the shower. We want to calculate
the mean square angle of deflection (®?), and
the mean square distance from the axis (X?)a.
Let us consider the shower at an intermediate
level # and let w(E,, E’, ¢)dE’ be the number of
dlectrons with energy (E’, dE’) at ¢'. In traversing
the thickness dt’, these electrons undergo a
certain amount of scattering and the mean square
angle of deflection is (E,/E’)!dt'. The same
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electrons produce a number
w(Eo, E', ')dE'-w(E’', E, t—t')dE

of electrons of energy (E, dE) at the thickness ¢.
The angle and the position of all of the descend-
ent electrons is affected by the scattering which
the parent electrons have undergone in the
layer (¢, dt'). Such scattering contributes a term
equal to (E/E')dt to the mean square angle of
deviation of each descendent electron at ¢, and
a term equal to (E./E’)*(t—t)%d¢t to its mean
square distance from the core. Since the de-
scendent eclectrons under consideration are a
fraction

w(Eo, E',t')dE' -w(E', E, t—t")
T(EO) Er t)

of the total number of electrons of energy
(E, dE) at ¢, it follows that (©?%), and (X?) can
be calculated by the following integrals:

1 Eo t Ea 2
o [Taw [ ()
‘n'(Eo, E, t) E 0 E,

XW(EOv Elv t/)W(Elv Ev t—t/), )
(2.129)

1 Eq t
(X2>Av=*~*——f dE’f dr'(t—t')?
w(Eo, E, t) Jg 0

E\?
X(—) w(Ey, E', t")w(E', E, t—1").
El

Thus, the problem of determining (©2, and
(X is solved, at least in principle, if the
function w(E,, E, t) describing the longitudinal
development of the shower is known. The
function w(E,, E, t) can be calculated accurately
if we limit ourselves to energies sufficiently
large to justify the use of approximation 4
(see Part II, Section A). In this case, evaluation
of the integrals (2.129) yields

(O, =0.55(E,/E)*? (radians)?,
(2.130)
(X% =0.60(E,/E)* (radiation lengths)?2.
The problem of determining (@) and (X*)a
for low energy particles is more difficult because
the function =(E,, E,!) cannot be given in a

closed form. Numerical calculations have been
carried out by Nordheim for the case of air,
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which is particularly important because of the
so-called Auger showers. The root mean square
distance from the axis of the shower, for all
electrons irrespective of energy, turns out to be
of the order of 100 meters in air at N. T. P.
This figure is in agreement with the results
obtained by Bethe (B41), while the calculations
of Euler and Wergeland (E40) had given a
much lower value for the spread.

As for the distribution functions, it is assumed
that both the angular distribution and the space
distribution of shower particles of a given energy
can roughly be represented by a Gaussian law.
The distribution, of course, is not even approxi-
mately Gaussian when particles of all energies
are taken into consideration.

Appendix I
(a) The Laplace Integral

Given a function f(x) of a real variable x, the Laplace
integral or Laplace transform of f(x) is defined by the
equation

UIVES [; e Maf(x)d (A. 1)

where X is a complex parameter. We assume the integral to
be convergent at the lower limit. If the integral converges
at the upper limit for a certain value X\, of A, it also con-
verges for all values of X for which R(A) >R(\,), where R
indicates the real part. On the other hand, if the integral
diverges for a certain value X\, of A, it also diverges for all
values of X for which R(\) <R(N»). Hence, in general, the
function €;(A) is defined in the half plane to the right of a
straight line parallel to the imaginary axis.
The following formulae can easily be proved:

L7/ (N) =2 (N) —(0), (A.2)
where f'=df/dX\;
2 = — (&0~ F(O)], A 3)
where F(x)=fmf(x’)dx’;
[;T"nsf(x)Lf (=D [Cxf@dx. (A4

An important property of the Laplace transformation is
that, under not very restrictive conditions, the corre-
spondence between f(x) and £,(\) established by Eq. (A. 1)
is unique; i.e., there is only one function f(x) which has
2;(A) as its Laplace integral. If €,(A) is known, f(x) can be
determined by the following inversion formula:

1@ =5 [0,

where the integration path ¢ is a straight line running
parallel to the imaginary axis, in the half plane of con-
vergence of {,(\).

(A. 35)
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(b) The Mellin Integral

Given a function f(y) of a real variable y, the Mellin
integral, or Mellin transform of f(y) is defined by the
equation

Wy(s) = [ yf )y, (a.6)

where s is a complex parameter. If the integral diverges at
the lower limit for a certain value s, of s, it also diverges
for all values of s for which R(s) <R(ss). If the integral
diverges at the upper limit for a certain value s, of s, it also
diverges for all values of s for which R(s) > R(ss). Hence, if
the Mellin integral converges anywhere, its field of con-
vergence is a strip bounded by two straight lines parallel to
the imaginary axis.
The following formulae can easily be proved:

Myo(s)=—sMy(s—1),
where f'=df/dx;

(A.7)

Mr(s) = My (s+1), (A9

where F(y)= j;’ “f(y)dy'.

The Mellin transformation, like the Laplace transfor-
mation, is in general unique and can be inverted by the
following formula:

) =5z foy ey (s)as,

where the integration path C runs parallel to the imaginary
axis within the strip of convergence.

(A.9)

Appendix 11
Let

M,(s, r) = fo “xp(s, x)dx

be the Mellin integral of the function p defined by Eq.
(2.74a). Since lim p=1, the integral is convergent at the
z=»©

upper limit only for R(r) <—1. Hence, the field of con-
vergence of M (s, 7) will be a strip extending from r= —1
to the first singularity to the left of this point.

By multiplying both sides of Eq. (2.74a) by x" and
integrating with respect to x from 0 to « one obtains for
Mo(s, 7) the following recurrence equation:

[)\(S)+A(s+r+1)—B(5+'j; Qf((;)+r+1)]

XMp(s, 7)=—(s+r4+1)My(s, r—1). (A. 10)

The function Mp(s, #) has a singularity at r=—1, as
already pointed out and as indicated by the fact that the
coefficient of Mp(s, ) in (A. 10) vanishes for r=—1. It
follows immediately from Eq. (A. 10) that other singu-
larities occur at r=0 and at r=#» where % is any positive
integer. Again, at r= — (s+1) the coefficient of M, (s, 7) is
infinite and the coefficient of M,(s, r—1) is zero. This
suggests that M,(s, r) has singularities at r= —(s+2) and
at r = — (s+n) where 7 is any positive integer larger than 1.
It is convenient to eliminate part of the singularities by
writing M, (s, 7) as the product of a function having simple
poles at r=—1,0, 1, -+, r=—(s+2), r=—(s+3), ---,

AND K. GREISEN

and a new unknown function. We set therefore
iy _D(=nD(s+r+1)
g-np(sr r l)— P(S+1) K(Sy ’)r
where I'(y) is the gamma-function and has simple poles at
y=0, —1, =2, ---,
Substituting (A. 11) into (A. 10) and remembering that
yI'(y) =T(y+1), we obtain

(A. 11)

[A+ (1)~ Betrt)Cbr+ D]
XK(s,74+1)=(+1)K(s, r)

or

[)\(s) +A(s4r)— B—“;t.?ffff')]

XK(s,r)=rK(s,r—1). (A, 12)*

Suppose that Eq. (A. 12) has been solved. Introducing

the solution into (A. 11) and applying the inverse Mellin
transformation, one gets

—5+im
p(s, %) =51;f tm T Mu(s, r—1)dr

-
L e (=AD(srE1)
_21”:‘/:5_:}» X TG+1) K(s,r)dr, (A.13)

where the integration path runs parallel to the imaginary
axis, to the left of the pole at =0 and to the right of the
pole at 7 = — (s41). At the limit for x= », the integrand in
Eq. (A. 13) vanishes for all values of  with a positive real
part. Hence, the integral is equal to the residue at =0,
which is given by 272K (s, 0). Since

lim p(s, x) =1,

>
it follows that

K(s,0)=1.

For r=0 the coefficients of both K(s, 7) and K(s, 7r—1) in
(A. 12) vanish and the ratio between K (s, —1) and K(s, 0)
is given by

K(s, —=1) .. 1 _B(s+1)C(s+1)
o =im o +ae+n o}
dA(s) 1 d X
= ds _”0+A(s) Z; [B(S)C(é):],

_n=d4®__ 1 4
K(s, =1) =50 s 2 [BOICO)]
By repeated application of Eq. (A. 12) one can easily obtain
the values of K(s, ) for any real integral value of 7. Thus,

for instance,

K(s, —=2) = —K(s, —1)[)\(5)+A(s—1)

(A. 14)

_B(s—l)C(s—l)]

ao+A(s)
K(s, =3) = = 1K —)[Mo)+A (-2 - ZEZ2E=D],
1 B(s+1)C(s+1)
oD 1)=>\(S)+A(s+1)—~————ﬂ+)\(s)
1 1 _B(s+2)C(s+2)].
XG, 2) "3RG, D [*(s)“"‘(‘“) Y ]

Recurrence equations can also be found for the derivatives
0K (s, r)/ds and K (s, r)/dr, by differentiating (A. 12) with
respect to s and with respect to 7, respectively. Since
K(s, 0) =1, we have the condition dK (s, 0) /s =0. Starting

* See Snyder (S38); Serber (S38a).
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from this value and using the recurrence equation, onc can
determine K (s, )/3s for an arbitrary value of s and any
integer value of 7. On the other hand, Eq. (A. 12) gives
directly the logarithmic derivative of K(s, ) with respect
to 7 for a sufficiently large value of 7. Indeed, for r, suffi-
ciently large,

or] G I

~_1 F(s, n) F(s, ri+1)
~ 2[10g P +log 1

B(s+7)C(s+1).

0’0+)\(8)
Once 8K (s, 7)/dr is known for a particular integer value of
r, it can be calculated for any other integer value using the
recurrence equation.

In the practical applications, one is mainly interested in
the values of the function K, for r = —s; i.e., in the function
of one variable K (s, —s). The derivative of this function
with respect to s is given by

dK (s, —s) _ (aK(s, r)) _ (_t"K_(fi)_) .

], (A. 15)

where

F(s,r)=X\s)+A(s+7)—
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TasLe XV.

s Ki(s, =s)

1.00
2.29
3.45
5.98
10.61
18.15
29.19

QNP W= O

The values of K;(s, —s) for s=0, 1, 2, 3, 4, 5, and 6 are
given in Table XV. The derivative of K(s, —s) has been
calculated explicitly for s=1 and is given by
(d———K‘(S' ”'s)) =0.85.
ds =1
Using the values of K,(s, —s) listed in Table XV and
the value of the derivative at s=1 given by (A. 16), it is
possible to draw a fairly accurate interpolation curve, on
which the values of K;(s, —s) for non-integer values of s

(A. 16)

ds ds ar can be read. Such a curve is represented in Fig. 17.
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