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PART I. TRANSFORMATION PROPERTIES OF THE
FIEI D EQUATIONS AND CONSERVATION LA%8

1. Units and notation

INCE the requirements of relativity theory
and quantum theory constitute the hypoth-

eses of every theory it is natural to use h, the
Planck constant, divided by 2m, and c, the
velocity of' light in vacuum, as units. This means
that all quantities are to be reduced to the
dimensions of a power of Length by multiplication
with the requisite powers of A and c. For ex-
ample, the quantity E in the following will mean
the energy divided by hc a magnitude with a
dimension cm '; g will mean the momentum in
terms of the unit A and will likewise be of the
dimension cm ', I', the angular momentum in
the unit k, is dimensionless; e, the electric charge
in the unit (hc)& is dimensionless; the electro-
magnetic potential y; and the electromagnetic
field strengths f;s fs, hav——e, in—the unit (i'rc)&

the dimensions cm ' and cm ', respectively. The
reciprocal length associated with the rest mass m
of a particle will be designated in the following
by a=me/I'r.

In accord with the above conventions we shall
use the length so=et of the light path as the time
coordinate; however, the imaginary tinle coordi-

*This report is an improved form of an article written
for the Solvay Congress, 1939, which has not been pub-
lished in view of the unfavorable times,

nate x4=ixo ——ict will also be employed. Thus
tensor indices designated by small italic letters
i, k, ~ which run from 1 to 4 involve the
imaginary time coordinate. It is expedient to use
in this connection a special rule for the trans-
formation to complex conjugate quantities. For
quantities with an index zero a star shall mean
the conjugate complex in the ordinary sense
(e.g. , ss* is the conjugate complex of the charge
density ss,'s, is the current vector). In general
we shall mean by U;k~ ~ the conjugate complex
of U;s ~ ~ ~ multiplied by (—1)" where n is the
number of 4's among the i, k. (e.g. , s4 iss, ——
s4* isss)——

Dirac's spinors u, where p=i, , 4, are
always given a Greek index which runs from 1

to 4; I,* means the conjugate complex of u, in
the ordinary sense.

%e shall denote wave functions, insofar as
they are vectors or tensors, by the capital, letter
U with components U;, U;~, ~ . -, the symmetry
character of the tensors is sometimes separately
specified. The electromagnetic and gravitational
fields occupy special positions in that they are
classical and the rest masses of the particles
associated with them are zero; we shall therefore
use for them the usual symbols y, , f,& fs, and- ——
g;& =g&;, respectively.

The energy-momentum tensor is defined so
that —T44 and —i'1I,4 where 4= 1, 2, 3, are, re-
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spectively, the energy density 8" and the mo-
mentum density G measured in terms of the
natural units.

2. The variation princip1e and the energy-
momentum tensor: gauge transformation
and. current vector

(a) Xo external fields. —First we shall consider
all quantities as ordinary c numbers and proceed
from a Lagrange function I which depends on
any functions q&"& of x; (i =1, , 4) and their
first derivatives,

r
I';;= I';;=

)
—I&E,;, 4d'x (6)

one. We shall see, however, that in many cases
this condition is capable of being fulfilled only
in the g number theory. For this theory we shall
assume that the order of the factors in the
expressions for the physical quantities is at our
disposal in the various special cases.

In addition to the canonical energy-momentum
tensor 1;I, there is the angular momentum tensor
M; j A.,

———3f;;, k which by means of

q&,.
" r&q'——"&/Bx&„

but which does not depend explicitly on the
coordinates x;. Nothing special need be assumed
here about the effect on q&"& of (proper) Lorentz
transformations; the invariance of the real func-
tion L, with respect to these transformations is
sufficient. As is well known, the variation prin-
ciple

L(qk~"& q~"&)d4x=0

for i, j=i, 2, 3, defines the total angular mo-
mentum, and which likewise satisfies a con-
tinuity equation

Q&,. 835,;, &,/»&, 0. ——

This tensor can be obtained most simply, with
the use of the invariance of the Lagrange func-
tion with respect to Lorentz transformations
(including the three-dimensional rotations), in

the following way. By means of the infinitesimal
Lorentz transformation

in which the variation is assumed to be zero at
the limits, determines the field equations

hx;= Q; hw;;x; in which Ro;; = —hw;;, (8)

Z~ (~/». )L(~L/~q~'"') j (~L/~q'"') =—o (3)

An energy-momentum tensor can be formed from
the Lagrange function

the quantities q("' are transformed at a fixed
space-time point according to

hq =P P S; qhw;;.

T;&, Q„(BL/c&q&, &"——&)q„.'& Ll;&„—(4)
This can be written

which, because of (3), satisfies the continuity
equation hq Q S$7 opql5wf j

a(j
Z~ ~T'~/»a=0 (5)

It is to be noted that the variation
We shall call the T,&, defined by (4) the canonical
energy momentum tensor. It is in general not
symmetric, nor is the energy density in general
positive definite. In this connection it is necessary
to bear in mind that for given values of the
energy-momentum integrals the localization in

space of the energy and momentum is uniquely
determined only in the gravitation theory, where
the production of the gravitational field gives
the energy-momentum tensor a direct physical
content.

In the absence of interaction, the condition
that the total energy be positive is a necessary

hq =g'(x+ 8x) —g(x)

is different from

h*(q) =q'(x) —q(x) = hq —P, q;hx,

hwgg(xfg&' x&q&+S;) Opq)

It may also be seen that

Pq, = (a/», ) (vq).

This relation does not hold for by~.

(10)

(10a)
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It is now easy to put the variation of J'Ldx
into the form

I.dx= 8*Ldx+P, [a(L8x& &)/», jdx, (11)

in which again we have set

8L=L'(x') I.(x);-h*I.=I.'(x) L(x)-.

From (13a, b) it follows uniquely that

f', '= Ze kL —s', "v(8L/8e)

It is to be emphasized that the tensor 8;; is

symmetric only by virtue of the field Eqs. (3).
Moreover, we have, by (12) and (13b),

If b~L can be obtained by an infinitesimal
Lorentz transformation the variation of the
integral must vanish because of the Lorentz
invariance of L. By considering (3) and (10a)
we find'

8LI
b*q+L&x, =0.

8Ãp Rgb

Using Eqs. (11) and (4), we can get from the
equality

p, (8L/8', )8 g+Lbxj. pM;;, I,bw——;;,

gs4d V= Ts4d V. (15a)

From (14c) we get, similarly, for the angular
momentum tensor

The equality of the total energy, momentum
integrals over space-like volumes calculated f'rom

T;, and 8;4 follows from (14):

an expression for the angular momentum tensor:

M;;, ~ x;T;~ x;T;~——+Pq (—8L/8gg)5;;, .pq. (12)

This completes the proof of the continuity Eq.
(7) which, by use of Eq. (5), can be put in the
form

If we define, therefore, a tensor skew-symmetric
in jandk,

f',a)- (13a)

by the relation

f' ~~+f~, 'k—= Z. e (8L/8v~)s'~, "a, (13b)

8'~ = T'~+K~ (8f'~~/»~),

is, by (7a) and (13b), symmetric in i and j,

and satisfies a continuity equation

Q 88;g/»g =0.

(14)

(14a)

(14b)

' See %. Pauli, Mathematical Erfcyclopedia, Article on
relativity, pp. 616, 62"I, especially Eqs. (1'l0) and (181).

P;; = tM;;, 4d V = Jt (x;8;4 x;8;4)d V. (1—5b)

The general definition (14) of the symmetric
energy-momentum tensor has been given by
Belinfante' and Rosenfeld. ' Since the localization
of the energy plays a role principally in the
theory of gravitation it is an important fact that
the energy momentum tensor defined in the
gravitation theory4 goes over into the one used
above in the particular case of special rela-
tivity. It is to be noted, however, that the energy
density obtained from the 8;&, vi2'. , —844, is
positive definite only in special cases.

In order to prepare for the introduction of
external electromagnetic fields, it is useful to
divide the field quantities q into the complex
quantities U(x), their complex conjugates U (x)
which are to be considered as independent of
U(x), and the real quantities V(x). Every sum
over q then decomposes into sums over U, U*

and V, so that, for example, the energy mo-

~ F.J. Belinfante, Physica 5, 887 (1939).For the relation
to gravitation theory see Physica 7', 305 (1940).

3L. Rosenfeld, 1lfemoires de I,'Academic Roy. Belgigle
6, 30 (1940).

4 D. Hilbert, Gsch. ¹ch.Heath. Phys. (1915), p. 395.
For generalization to spinors see H. Weyl, Zeits. f. Physik
56, 330 (1929).
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mentum tensor assumes the form

T;&, Q——, (U,*'&(BI./B Ug*&"))+(BL/B Ug&'&) U, &'&

+(BL/B V„&"&)V, &'&) Lb—;„. (16)

U(s') ~U(r) fo t'ai' U+ (t )~U+ (r )g
—s& (17)

We postulate that the Lagrange function L, shall
be invariant with respect to such phase changes
with an arbitrary constant value of o., Differ-
entiation of I with respect to the phase then
gives the relation

We introduce as possible transformations on
the O'"', U*("), even in the absence of external
fields, a change in phase which is constant in

space and time:

D&, (B/B—x—(,) ieq—(, (21)

and when applied to the U*(") by the operator
which is the complex conjugate of the D&:

ciated with the diferent charges, which have to
be proportional to the charges.

(h) The presence of external electromagnetic

fields. —We expressly assume that all field equa-
tions are contained in, or follow from, the
relations (3) which are a consequence of the
variation principle, so that it is unnecessary to
add any supplementary conditions. With this
assumption it is possible to introduce an externa'I

electromagnetic field by replacing the operation
B/Bx), when applied to the U'"& in the Lagrange
function and the wave equations, by the operator

Z. L U*'"'(BL/B U"')+Z. U~*'"'(BL/B U.*")3 D&*=(B/Bx&)+icy( (21')

=P, [U"(BL/BU")

+zk U~" (BLIBU('"') j.
This makes it possible to define a vector sI,

sk=ei P $(BL/BU{,'"') U"
—U*'"'(BL/B U&.."))j

where e is a constant. As can easily be seen,
sl, satisfies the continuity equation

P&, (Bsi/Bx(, ) =0. (20)

Ke interpret sl, as the electromagnetic current.
It can, of course, be defined uniquely only if the
external electromagnetic fields are given. The
real fields, which permit no phase transformation
of the form (17), describe particles which in

general cannot be sources of e1ectromagnetic
fields and which therefore have neither electro-
static nor magnetostatic properties. The electro-
magnetic field itself, which is associated in the
particle picture with photons, is described how-

ever by the real fields.
We have, for simplicity, assumed that all the

complex fields contained in L, belong to particles
of the same charge. If we wanted particles of
different charges to be connected through these
fields it would be necessary to require the in-

variance of I. with respect to transformations
like (17) for the various U('& with dÃerent values
n„of the phase Of for the diferent fields asso-

The operator B/Bxq is left unchanged when
applied to real fields V&'&; in the following
therefore we shall not refer to these fields. The
rpq is the electromagnetic potential (with dimen-
sions as given in $1) and e is the cha.rge of the
particles measured in the unit (hc)&. The field
strengths are given by

f'~ = (Bv ~/Bx*) (Be'/»~—); (22)

the existence of the field exhibits itself in the
non-commutation of the operators DI, .

D*D& —D(D*= ief'a—
D'*D(.* D&:*D'*= t—'ef'&

(22a)

U, () —D, U(). U g(r) D g Ug{r) (1I)

The equations which derive from the variation
principle (2) for fixed yi take the form

D&,~(BL/B U{,&"&) —(BI-/B U'"&) =0;
(3')

Dg, (BL/B Ug" &"&) —(BI./B U*&"&) = 0.

In the derivative with respect to U("' we always
keep the Uq&"& (not the B U&"&/Bx&„.) constant.
However, if, in addition to these equations,

The new Lagrange function is thus obtained by
changing the meaning of the UI„-(") and UI,*(") in

the unchanged function

L(U (r) U(r) U 4(r) Uk(r))

In the new function we have
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1 Bn

6 Bxg
(23b)

where now a may be an arbitrary function of
position. This is always correct if the Lagrange
function in the absence of external 6elds is
invariant with respect to the transformation (17)
with constant phase. For, from (1') it follows
that

V„(r&~U (r&eia ~ U 4(r&~ U 4(r&e-ie (23c)

also holds for the transformation (23a, b). Fur-
thermore it follows from the gauge invariance
that

(BI /BU&, &'")~(BL/BU&, ("&)e *~

( / ") ( / ")
(BI./BV, *( &) (BL/8 V„*& &).'-.

(BL/8 U*&"')~(BL/8 U'&"&)e'~.

(24)

(24+)

It is because of this that the operators D~ in the
lirst and D in the second Eq. (3') are consistent.

Ke shouM like in particular to note the
difference between 6elds like U&"), U*~") which
under the gauge group suRers a transformation
of the type (23a) which we shall call the gauge
transformation of the first type, and 6elds, such
as the electromagnetic 6eld, the potentials of
which undergo gauge transformations of the
second type (23b). This distinction is manifested
through the fact that only expressions which are
bilinear in U and U* are associated with physi-
cally measurable quantities even when the asso-
ciated 6eM is quantized according to the Bose
statistics. On the other hand the real 6elds V
and the electroinagnetic field strengths (when
quantized according to the Bose statistics) are
measurable quantities. From this it follows that,
in principle, only gauge invariant quantities can
be obtained by direr. t measurement. (The im-

supplementary conditions form a part of the
theory, the new supplementary conditions ob-
tained by the substitutions (21) and (21') may
not be compatible with the other equations
without additional terms.

The theory obtained in this manner is in-

variant with respect to the gauge transformation

U("&~v"e'~; U~('~U*&"&e ' (23a)

since the terms which involve q ~ cancel. Similarly
we have for the derivative of the gauge invariant
Lagrange function I with respect to x~.

(BL/Bxi) =Q, $(BL/8 U'"')D&, U'"'

+Q; (BL/8 U,'"')Dgg); U&"&

+ (BL/8 U""&)D&,*v*&"&

+P; (BI/8 U;*&"')Dg~D;~ U*"j.
The terms which include y cancel out as a result
of relation (18) which remains valid when the
meaning of U~'"', U~~'"' is changed according
to (1').

We define now the current vector s&, and the

energy tensor T;&, as before by expressions (lt&)

and (4). As a result of (3') the continuity Eq. (20)
for the current continues to hold. From the
energy-momentum tensor we obtain by making
use of (3') and the expression for BL/Bx&:

BT@/Bxq g„{[(D~D; ——D&,) U('](B—L/8 U, '"')

+L(D&,*D;*—D;*D&,*)U*'"&](BI/8 U*&"')
J .

From (20) and (19) it follows, therefore, that

BT; /Bx =f;,s, (25)

It is necessary that this equation hold for the
energy tensor of the original U field where there
is an external electromagnetic field since it
expresses the existence of the Lorentz force.
It finally justifies our looking upon s& as the
electromagnetic four-vector current.

We have not yet considered the generation of
the electromagnetic 6eld by means of the U
6eld. The above formulation suggests that this
generation can be obtained by the Maxwell

portance of the fact that the rest mass of the
photons must be exactly zero for transformations
of the second type is discussed in Part II,
g2(c) and 2(e).)

The following formal remark is of use for
calculations in connection with the current vector
and energy-tensor. Let f* be an arbitrary func-

tion of the U("), U*'"', U~("', U~*&") which is
multiplied by e ' in a gauge transformation of
the first type, and g another function of these
quantities which is multiplied by e' . Then

(8/Bx.)(f*g)= (Da*f*)g+f*(D.g),
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equation Bf,I./Bx&,
——s, since then the continuity equations

equation
8fg./Bx, +8f k/Bx, +8f„/Bxg =0,

(8/Bxi, ) (T;g+ 5o,) =0

is satisfied where T;I, is the energy tensor of the
U field and

is that of the electromagnetic field. However,
the application of the particle picture, or the
second quantization of the U field to this formu-
lation of the rule for the generation of the
electromagnetic field gives rise to the known
dif6culties of the infinite self energy; these
difficulties have not yet been overcome.

Ke include here a discussion of the possibility
of introducing additional terms in the Lagrange
function which depend explicitly on the field

strengths f,~, and which are consistent with the
postulate of gauge invariance. The original defini-
tion of the current still applies and its continuity
equation holds, but in place of (25) we have'

&To/Bxa= fosg ,'(BL/Bf—„,—)(Bf„,/Bx;)

This makes additional terms in T;~: and sj, neces-

sary, since for the new quantities T;I„-' and sI,
' the

relation

which arise from (22).
The use of such additional terms for the de-

scription of particles which have a magnetic
moment will be discussed in Part II, $)2(d)
and 3(a).

PART II. SPECIAL FIELDS

in which 0 is the operator

=6—(8'/Bx. ') = Q (8'/Bx ) (2)

and a=me/h where rn is the rest-mass and h is
the quantum of action divided by 2x. Qle do
not require that U be real.

The wave Eq. (1) can be obtained from the
variation principle

1. The wave fields of particles without spin

(a) The wave equation, current vector, and
energy-momentum tensor. —The simplest example
of a relativistically invariant wave equation is
the scalar equation

0 U —&'U=Oi

itTa /~s=f~pl (25')

must be valid.
The sA, can be found most easily from the

equation which arises from the variation of qI„.,
L, = (8U*/Bx;)(BU/Bx;)+~'U*U (3)

(d'x=four-dimensional volume element) if we
use for the Lagrange function

namely,

8J~Ld = —
J

sp' ——sg —(8/Bx () (BL/8fi.,i) (26)

From this we get for the current vector by Eq.
(19) (I)

sI ~f;((8 U*/Bxl, ) U —(8 /exp) U*)," (4)

The new term satisfies the continuity equation in which & is the charge of the particles measured

so that in the natural unit (hc)'*. This current vector
RSVP /Bxp =0 (20') satisfies the continuity equation

also holds. Equation (25') is now fulfilled if
we put

T,g' T I, f;„BL/8f„,— ——

This can be established by the use of the Maxwell

' The factor @ in the additional term arises from the fact
that the summations over r and s are independent. With
this rule we have for the variation of the field strengths

bl. = ~(81./t'Bf„, )bf„,.

Bsy/Bxy = 0. (5)

BU* BU BU* BU
~i7c + —I 6;f,.

BXs BXIc OXIDE BXs
(6)

' This sequence of factors proves convenient in the q
number theory since it avoids a zero-point charge.

The energy-momentum tensor Tf;q is defined
in this case by
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This likewise satis6es the continuity equation

~2 ap/~xp =0. (7)

This form of the equations has a greater simi-
larity to the form of those in the vector theory
which will be discussed later. Furthermore they
can be derived from a variational principle by
using the Lagrange function

L, = (8 U*/Bx;) U,+ U;*(8U/Bx;)

—U;*U;+«'U*U, (3)

The T;~ is symmetric; furthermore the energy
density —T44 is positive dehnite —an important
property:

pe gU

BX4 BX4

+grad U* grad U+«'U*U

gUg gU

BXp BXO

+grad U grad U+«'U*U.

It is often useful to transform the wave equation
of the second order into a system of wave
equations of the first order as follows:

U«=DU/Bxp, 8U«/Bxp «'U. ——

in a cubic lattice of length I., the components of
the wave numbers must be integral multiples
of 2pr/L.

The wave Eq. (1) requires that the propaga-
tion vectors (kp, lt)* of the waves satisfy the well
known relation

k '=k'+«'

kp will always be dehned as the positive root:

kp =+(k'+ «')». (10')

The notation is chosen so that the amplitudes
of the Fourier decomposition which are pro-
vided with a star are multiplied by exp (ikpxp)
while those without the star are multiplied by
exp (—ikpxp); the (2kp)» is always to be taken
as positive.

From (5) and (7) we have for the total energy,
total momentum and total charge

VA may now write

U*(x, xp) = ( V)-» Qp (2kp)-»

X {U+ (k) exp [i(—It x+kpxp)]

+ U (k) exp [i(it x —kpxp)]}, (11)

U(x, xp) = ( V)»Q p(2kp)»

X {U+(k) exp [i(k x —kpxp)]

+ U '(k) exp [i(—It x+kpxp)]}. (11*)

e=— s4d V=p Qg, [U+ (k) U+(k)
1

z

the UI„U and their complex conjugates are to
be independently varied. Z= — T44d V= Qp kp[Up*(k) U+(k)

We mention finally the theory which is dual J
to (1). In this the scalar U is replaced by a + U (k) U *(k)],
pseudo-scalar Up~ which is antisymmetric in G ~ l [U „(k)U (k)+U (k)U p(k)]
all indices and the vector UA, by a pseudo-vector
U~~ which is also antisymmetric in all indices.
The equations analogous to (1) are then

(12)

(13)

—U *(k) U (k)]. (14)

= & UIclmn-2 TT

(b) Eigenstates in momentum space Ckarge.
coejngaIe solutions. —It is known that the most
general solution of (1) can be written as a sum
of plane waves. If we introduce a large cube with
edge length I. so that the solutions are periodic

Equation (14) shows that the eigenvibrations of
negative frequency in the UP (and positive
frequency ' in U) belong to states of negative
charge. This is in agreement with the fact that
the sign of the current vector changes when U
and U* are interchanged in (4) whereas the
energy momentum tensor remains unchanged.
VJ'e can say, therefore, that the solution U* of

* In cases where no ambiguity exists the (vector) quan-
tities k and x will be indicated by italic type.
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the wave equation which is the conjugate com-
plex of a given solution U(x, xo) is the "charge
conjugate solution. " This is also in accord with
the treatment of the problem by means of the
general principle of Part I when external electro-
magnetic fields are present. The principle re-
quires that the wave Eq. (1) be replaced by

Q; D,'U —ii'U=O.

d F/dxo i [H, Ii]—— (16)

be valid for every physical quantity F which
does not explicitly depend on the time. II is the
Hamiltonian operator which expresses the total
energy divided by kc.

The U+(k), U+*(k), U (k), U *(k) defined by
(11) and (11*)contain the time explicitly; this is
not the case for the quantities.

u~(k) = U~(k) exp ( ikoxo);—

u~*(k) = Ua*(k) exp (+ikoxp),

since these can be expressed in terms of U, U*,

~ For the theory of pair production based on this theory
see W. Pauli and V. Weisskopf, Helv. Phys. Acta 7', 809
(&934).

8 The logical development of this method, including the
interaction between particles, is given by the formalism of
Dirac with more than one time-variable. See P. A. M.
Dirac, Quaefles Meghawms (Oxford, 1935), second edition.

This equation remains correct if U and e are
replaced by U~ and —e, since then DI, goes
over to DI,*.'

In II3(c) it is shown tha, t in the case of half
integer spins the relation between complex con-
jugate and charge conjugate solutions is some-
what more complicated.

The theory given here must be associated with
particles without spin since for a given k and a
given sign of ko there exists only one eigenstate.

(c) Quantization We d.o—not wish to base
the following discussion explicitly on the canonical
formalism because an unnecessarily sharp dis-
tinction between time and space is introduced in
this formalism, and this is convenient only in
the absence of supplementary conditions in-
volving the canonical variables at a given instant.
%'e use here a generalization of the method of
quantization first used by Jordan and Pauli in
the case of the electromagnetic field. ' Moreover
we shall require that the relation

8 U/Bxo, 8 U*/Bxp without the explicit introduc-
tion of xo. ' Since the U~(k) are constant in the
force free case, we get from (16) the relations

and

i[H, u~(k)] = ik—pu~(k);

i[H, ~~(k)] = ikou+*(k)

[H, U~(k)] = kpU—~(k);

[H, U~*(k)]= k o U~*(k).

(18)

We erst discuss the quantization according to
the Bose statistics. The values of all bracket
symbols of the type

[U(k), U(k')], [U*(k), U*(k')],

[U(k), U*(k')],

in which the U and U* can be given + or-
indices in an arbitrary way, follow uniquely
from (12) and (18) if one further assumption is
included, namely, that these bracket symbols are
themselves c numbers. In fact, from (12) and (18)
it follows that only the last of the above bracket
symbols is diA'erent from zero and this one only
if k =k' and the + or —indices for the two
quantities are the same. We find from (18) that

LU+(k) U+*(k)]=[U-(k) U-*(k)]=1. (19)

are the positive integers (including zero). It is
this that makes the familiar transition to the
particle picture possible. From (12), (13) and (14)
it follows (as can be shown by familiar methods)
that N+(k) and N (k) belong to the charge +e
and the charge —e, respectively, and that both
belong to the momentum +k. We see from (12)
that for every value of k there is a zero-point
energy of the vacuum of one quantum, ko',

thus the zero-point energy per eigenstate present

' The quantities U+(k}, U+~(k) are also very important
when there is an interaction of the U 6eld with other 6elds.
If, in this case, the Hamiltonian function is given by
IIo+0 where IIo is the Hamiltonian operator for the force
free case, and 0 is the interaction energy, Eq. (16}requires
simply that

&Uy(k)/dxp=iPQ, Uy(k) j; dU *(k}/dxo=i)Q, U~*(k) j.

From the relations we find by familiar processes
that the eigenvalues of

N+(k) = U+*(k) U+(k)

N (k) = U '(k) U (k)
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D(x, xo) =
(2or)P ~

~

~

sin kpxp
d'kea x

kp
(22)

and kp is defined by

ko ——(k'+ ii') &.

The form of the D function is uniquely deter-
mined by the requirement that it satisfy the
wave equation

QD —x'D =0 (22')

and the relations

D(x, 0) =0 (BDj8xp)., o b(x). ——

For x=0 we find

1
D(x, xo) = ["p(r —rp) —b(r+rp)].

4mr

In the general case of x/0 the singularity on
the light cone is still. given by this expression;
however, D is no longer difFerent from zero
inside the cone. In fact, one finds"

i 8
D(x, xp) = ——— F(r, xp), — (24)

4mr Br

'Jp(a(xp' —ro)P) for xo&r

F(r, xo) =~ for r &xp) r(25)—
'.—Jp(~(xpo —ro)P) for —r&xo.

The change of the value of the function I" by ~i
"See P. A. M. Dirac, Proc. Camb. Phil. Soc. M, j.oo

(&934).

in the vacuum is a half quantum, $kp, as is the
case in the electromagnetic 6eld.

%'hen we go over to the bracket symbols of
the field functions U(x, xp) themselves we find

on using (11) and (19) that

i[U(x, xo), U(x', xo')]

=i[U*(x, xo), U*(x', xo')]=0 (21)

and that

i[U(x, xo), U*(x', xo')] =i[U*(x, xo), U(x', xo')]

=D(x—x', xp —xo'). (21)

The D function in (21) is defined by the
equation

on the light cone corresponds to the 8-like

singularity of D which occurs there. It is of par-
ticular importance for what follows that D
vanishes outside of the light cone (i.e., for
r)xo& —r).

From Eqs. (21) and (21') the known commuta-
tion relations may be obtained by first difFer-

entiating with respect to x and then substituting
Xp Xp

i[U(x, xo), U*(x', xo)]=0,

a U(x, xo)
—

& U'(x, xo)
, U*(x', xo) =p, U(x', xo)

BXp 8Xp

= 8(x-x').

Ke turn now to a consideration of the quan-
tization when the exclusion principle is assumed
to be operative. Using the Hamiltonian function
(8) or (12) as a basis for our procedure, we must
require first of all that the relations (18) continue
to hold where the bracket symbols have their
previous meaning; on the other hand the ex-

pr essions

[U(k), U(k')], [U*(k), U*(k')],

[U(k), U*(k')]+

are c numbers. (The bracket symbol used here
is defined by [A, B]+ AB+BA——.) From (18) it
follows as before that the first two of these
brackets are always zero while the last is different
from zero only if k=k' and the + or —indices
on the two quantities occurring in the brackets
are the same. Furthermore we have

U~*(k) U+(k) + U+(k) Upo(k) = 1,

U-*(k) U (k)+U (k) U *(k)= —1.

The last of the two equations exhibits a con-
tradiction of the assumption that U* shall be
the Hermitian conjugate of U, since if the
assumption is satisfied, the left side of the
equation is essentia11y positive. This assumption,
however, is required in order that physical
quantities, as for example the charge density sp

shall have real eigenvalues.
%'e can also show that the scalar field theory

cannot be quantized in accord with the exclusion
principle without reference to the special. Hamil-
tonian and Eqs. (16). Besides the function D
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1 1
Di(x, xo) =

(2zr)
"-r' xo—'

In general we may write

118
Di(x, xp) = — Fi(r, xo),

47r r Br

(23')

(24')

Fi(r, xo) ='

1v'0[~'(xo' r')']-

for xp )f or —r Qxp
(25')—zIZO'" [z~(r' —x ')i]

for r&xp& —r.

Xp is the Neumann function; IIp"' is the first
Hankel cylinder function. The strongest singu-

larity of D~ which occurs on the light cone is
defined by (23) even in the general case of «WO.

Since the scalar field U(x, xo) must satisfy the
wave equation (1) and must be relativistically
invariant, wp have as the only possibilities the
relations

[P(x, x,), U*(x', )x]o~=cD(x x', xp —xo')—

+c,Di(x x', xo —xo'), —(26)

where c and c~ are constants. Ke shall therefore
expressly postulate for the following that any
two physical quantities, the relative coordinates
of which lie outside the light cone, commute.
As a consequence the left side of (26) must
vanish for such points if we use the plus sign.
Otherwise the non-commutativity, in the ordi-

nary sense, of the gauge invariant quantities
which are bilinear in U and U*, e.g. , the charge
density, would follow. "

The justification of our postulate lies in the
fact that measurements at space-time points
which have a space-like connection line can never
perturb one another since signals cannot be
propagated with a velocity greater than that of

"Compare W. Pauli, Inst. H. Poincard Ann. 6, 137
(1936}.For the generalization of these considerations to the
case of any integral spin, see W. Pauli, Phys. Rev. SS, 716
(1940).

there is another which is invariant and which
satisfies the wave Eq. (1), namely,

1 t d'k
Di(x, xo) = ' e'~. * cos (koxo). (22')

(2x)' ~ ko

For ~=0 we have

light. In any event theories which employ the Dj
function in the quantization, instead of or in
addition to the D function, have very different
consequences from those which are known at
present.

Thus if our commutativity postulate is ful-
filled, the constant ci in (26) must vanish so
that we have

If, however, the bracket with the plus sign is
introduced, the left side is intrinsically positive
for x=x', xp=xp', while the right side vanishes
for xp ——xp'. Thus we arrive at a contradiction
similar to the one obtained above. "

The result of our arguments is that a rela-
tivistic theory for particles without spin based
on general postulates must necessarily be quan-
tized in accord with the Einstein-Bose statistics.

(d) A real geld. —In this case we always have
U= U*; the current vector vanishes identically;
the associated particles cannot generate an elec-
tromagnetic field. For the Lagrange function and
energy momentum tensor we write:

I.=-' Q (BV/Bx )'+-'~'V'

BVBV
Tik —I.b;p.

(27)

(27')

An additional relation exists between the coeffi-
cients of the I'ourier expansion (11)

V (k) = U~(k); V *(k)= V *(k).

This enables us to write (11) in a simpler form:

V(x, xo) = ( U) & Pp (2ko) &

X[V(k) exp [i(k x —koxo)]

+ U*(k) exp [i(—k x+koxo)]. (28)

For the energy and momentum we have

8= 2& —',ko[V*(k) U(k)+ V(k) V~(k)], (29)

6=Q k-,'[V*(k) U(k)+ V(k) V*(k)]. (30)

"This also becomes clear through a spatial Fourier ex-
pansion of U and U~. If u(k) = U+{k)+U {k), ~*(k) =
U+~{k)+U ~(k) )see Eq. (17}j are the associated ampli-
tudes (21') required for x0 ——x&' for the case of the exclusion
principle fe(k), N*(k) j+=0 for every eigenstate; this has
as a consequence U+(k) = U (k) =0.

[U(x, xo), U*(x', xo')]

=const D(.x x', x, ——x, '). (21)
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The commutation relations (11) remain valid

[V(k), V*(k)]=1, (31)

while the brackets [V(k), V(k') ], [V~(k), V*(k')]
and, if k/ir', [V(k), V"(k')] vanish. From Eq.
(29) we see that the zero-point energy of the
vacuum is again a half quantum, —,'ko, per eigen-
state. In place of (21) we have

i[V(x, xo), V(x', xo')]=D(x x', xo——xp'). (32)

In the quantization in accord with the exclusion

principle there are two possibilities: either the
energy becomes a constant c number, which is
impossible, or the function D j appears in the
right of (32), which contradicts our previous
postulates.

It may be noted that the original form of the
theory with a complex function U is clearly
equivalent to one with two real fields V= V*,
8'= lP' which correspond to the real and imagi-
nary parts of U. In this connection it is useful
to introduce a factor 1/N so that no numerical
factor occurs in the commutation relations. %e
put, therefore,

tion relations of the form (31), we obtain for the
energy E and the momentum G the sum of two
expressions, one in U and one in 8', of the form

(29) and (30), respectively; for the charge we
find on the other hand

= '
P„[W(k)V*(k) —V(k) W*(k)]. (37)

The "abbreviated" theory with a single real field

V can be obtained from the above by striking
out S' and setting the current vector equal
to zero.

2. Wave Sells for particles of spin 1

(a) The c number theory for case of no external

fields. —This case holds the center of current
interest since Yukawa supposed the meson to
have spin 1 in order to explain the spin depend-
ence of the force between proton and neutron.
The theory for this case has been given by
Proca.

The simplest possibility for a generalization of
the theory formulated in $1 seems to be that
which is obtained by introducing a vector field

U~ which satisfies the wave equation

=D(x x', xo —xo'), —

i[V(x, xo), W(x', xo')]=0.

(34)

The energy tensor (7) becomes

"8V 8V BW'BlV
+

8x& Bx@ Bx; Bxq
(33)

t 8V) ' (BW) '
i+I )

+-'"(V+W)
EBxoJ & Bxo)

The current vector, however, is

Sp=e (36)

If the V and 8 are expanded in terms of the
eigenstates according to (28) with the commuta-

U= (2)-1(V+iW) U*= (2)-~(V iW) — (33.)

It then follows from (21) that

i[V(x, xp), V(x', xp')]

=i[W(x, xo), W(x', xo')]

8 Up jBxg ——0. (39)

The meaning of this becomes especially clear in
the rest system of the particle where the wave
held depends periodically on the time but not
on space coordinates. In this system (39) requires
the vanishing of U4., from this it is clear that in
this case, as a consequence of (39) the energy
is necessarily positive. It follows from the Lorentz
invariance of the theory that in general the total
energy E (the volume integral of the energy
density) is positive. It will appear later that we
can also prove for this case that the energy
density at every space point is positive de6nite.

and the components of which are treated as
independent scalars. It is easy to see, however,
that with such a formulation the component
U4=iUO gives rise to negative terms in the
energy when the signs are so taken that the
space-like components of the vector U~ are
associated with positive energy terms. This
difficulty can be removed by requiring, in addi-
tion to (38), the supplementary condition
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A skew-symmetric tensor U;&= —UI, ;, which is
related to the UI, as the field strengths are
related to the potential in electrodynamics can
be formed from the UI, by a rotation:

This can be transformed into a symmetric tensor.
Following the general formulation of Part I,
Eqs. (14), (13c), we get upon using (40) and
(41)

U,s = (8 Us/8x~) —(8 U, /8xt)

By means of (38) and (39) we get from (40)

(4o)

where

8
T's = H'a+ ( UI&' U'+ U'* Us.),

Bxt.

(45)

(8 U;t/8xg) +s' U, =0. (41) H;t
——Ht; ——U,„"Ul„+Up,*U,,+s'(U,*UI:+UI*U;)

This relation is important in that it shows that
U; is uniquely defined by a given U;&, just as
the U;k is defined by U, from (40). As a conse-

quence, for non-vanishing rest-mass, the addition
of a gradient to U; is not permitted. Hence no

gauge transformations of the second kind exist
for the U; when x&0. It is worth noting that
(38) and (39) follow from (40) and (41). When

(41) is dilferentiated with respect to x, and
summed over i, the first term vanishes because
of the skew symmetry of U, I, and we get (39).
Equation (36) then follows upon the substitution
of (40) into (41). Finally we have from (40) the
relations

(8 Ua/Hxi)+ (8 U~, /8xp) + (8 Uk(/8x;) = 0. (42)

There are certain advantages in considering
(40) and (41) as the basic equations of the theory
and the remaining equations as derived, since

(40) and (41) can be obtained from a variation
principle

8 "I.d =0,

if for I is taken

(8' 8 U;)
~ = —-,'U;.*U'~+ ,' U;~*(-

L 8x~ 8xk )

(HUE* 8U,")
( U;„+s'U;*U;. (43)

BXs l9XA, ~

(In this expression the customary dummy index
con~ention is employed. ) In the variation process
the quantities U;, U;I, = —U~; and their conju-
gates are to be varied independently.

For the canonical energy tensor defined in

accord with I (4) we have

—8;g( ,' U„*U-,.+s'U„*U,). (46)

From (37) it follows on the one hand that

8H I„/8xg =8'T s/8xp,

so that from the vanishing of the second diver-
gence we can conclude the vanishing of the first,
and on the other hand that

) H 4d V = I T 4d V, (45b)

U4= & Uo, U4a =&UOI, U Q

U4„* i Usp*——(k =1, 2, 3), (47)
3

W= —H44= Q Uoj."Usa++ U*I*U'i:

+ (UsUs+sQ Ua*Ug). (48)
k=1

The energy density, therefore, is positive-definite
as in the scalar theory.

The current vector defined according to I
(19) is

s;= (Ut;,"U,—U,"U,,). (49)

We shall see, however, that this expression is not
unique since additional terms in I. proportional
to f;s can modify it even in the absence of
external fields.

from which it is clear that it makes no difference
whether the total energy and total momentum
is calculated by means of the canonical or the
symmetric tensor.

From (41) we get for the energy density —H44

on the introduction of the quantities Uo, UOI„"

BU, BU,*
+ U~. —L ~'I;

BXs BXg
(44)

"In this connection it is important to note the meaning
of U~*(4=1, 2, 3) and U~as given in Part I. UO*and UOI,

*
denote the actual conjugate complex values of U& and UOk.
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Vfe shall sketch the dual theory to the above without going into details. The vector U; is

replaced by a tensor Ui „which is skew-symmetric in all indices (pseudo-vector) and U;o by a
skew-symmetric tensor of the same type as the original U;o. Equations (39) to (42) are replaced by

8 U)~. ~ Um~a ~ U~I, i ~ hakim =0t

U;o =8 U;o„/Bx„

~Ua,
+ + —«'K'o = o.

8X) BXs OX'

& Ug, /Bx;=0.

(31')

(41')

(42')

(b) Zigenstatss in the momentum space W—e first write the amplitudes of the three spatial com-
ponents of U'o (without normalization)

U*(x, xo) =(V) & Po (2) &{Uq~(k) exp [i(—k x+koxo)]+U (k) exp [i(k x ko—xo)]},

U(x, xo) = (V) 1 Zo (2) 1{U+(k) exp [i(& x —koxo)]+U *(k) exp [i(—k x+koxo)] },
(50)

in which ko is given by (10). The.supplementary condition (39) then requires for the fourth compo-
nents of Ug,

~ and Up

Uo*(x, xo) = (V)-& Po (2)—&[(1/ko)k U~*(k) exp [i( k—x+k o)x]o

+(1/ko)it U (k) exp [i(k x —koxo)]],

Uo(x x,) = ( V)-& Qo (2)-&[(1/ko)k U+(k) exp [i(k x —koxo)]

+(1/ko)k U '(k) exp [i(—k x+koxo)]].

(51)

If we define a spatial vector Vo with components Uoo (k = 1, 2, 3) and a second vector V with com-
ponents Uo„Uoi, Uoi, we find from (35)

~o'(, o)=(V) 'Z. —[{—k.U+"(k)+(&/ko)(& U+'(k))} p({:—& +k~])
+{koU (k) —(&/ko)(& U (k)) } exp (i[& *—koxo])],

~o(x xo) = (V) 1 Zo [{koU+(k) (&/ko)(&'U+(k) } exp (i[& x koxo])—
V2

+ {—k U *(k)+(k/ko)(lK U *(k))} exp (i[ kx—+kox,])]

(52)

Vo(x, xo) = V & Q —[—[k x U ~(k)]exp (i[—k x+koxo])
V2

+ [It oo U (k)] exp (i[k x—koxo])],
(53)

z
V(x xo) = ( V) o Po —[[k ooU+(k)] exp [i(k I—koxo)] —[k xU o(k)] exp (i[—k x+koxo])].

For the energy, momentum, and charge, we obtain from (41), (42), (43), with the abbreviations

~+(k) =ko(U+*(k) U+(k)) (1/ko)(~ —U+*(k))(& U+(k)),

&-(k) =ko(U-*(k) U-(k)) —(1/ko)(& U-'(k))(& U-(k))
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the results,
Z=pgko[N~(k)+N (k)],

G=ppk[N+(k)+N (k)],

e = e Qp [N+(k) —N (k) ].

(56)

(57)

(58)

The expressions N+(k) and N (k) are bilinear forms in the three components of U and U*. They
can be brought into diagonal form and normalized if the U and U* are divided into a component
parallel to k (longitudinal vibration) and two components perpendicular to k (transverse vibration).
Let e1 and e2 be two complex orthogonal unit vectors normal to k

(e„e,) = 5„„(e,lt) = (e„k)= 0 (r, s =1, 2).

(ko) & lt
U~(k) = (kp)

—
& Q e„U„,~(k)+ — Ug, ~(k),

r=1, 2 fkf

(ko)'
U~'(k) = (ko)-& p e„U„,~(k)+ U~, ~(k),

r=l, 2 fkf

the N+(k) and N (k) appear in normal form

N+(k) =P U„+(k) U, , ~(k); N (k) = P U„ (k) U„, (k). (60)

This is simply the transformation to the principal axis.
(c) Quantization Befo.—re we formulate the commutation relations we shall point out a difference

between the special case x=0—the electrodynamics —and the one in which we are interested. In the
electrodynamics it is usual to quantize the vector components U; as independent scalars in accord
with an immediate generalization of (21)

i[U;(x, xo), U~*(x', xo')] =i[U,*(x, xo), U~(x', xo')] = hoD(x x, xo xo'). —

However, the relation (39) must then be introduced as an auxiliary condition in the form

(BUg/»I, )4=0

The operator 8 U~ /»~on the left of this relation need not commute with all other quantities but
gives zero when applied to the Schrodinger function 4. But it is required of an auxiliary condition
that it commute with its conjugate complex at di8'erent space-time points. In our case a simple
calculation shows that

i[Ra (& U~/»~). .., Pa (~ Uk*/»k). .. ]= — D(x —x', xo —xo').

However, QD = ~2D, and for ~/0 the right side is not zero. %e have the result, therefore, that for
non-vanishing rest-mass the commutation relations for the U; cannot be the same as those for
independent scalars.

The simplest method for getting a consistent second quantization in the case TWO (which we now
expressly assume) is to formulate the commutation relations in such a way that not only the wave
Eq. (38) but also the supplementary Eq. (39) is identically satisfred as equations in q numbers.
Such a formulation is the following:

1 82
7[U;(x, xo), U *(x', xo')] =i[U, (x, xo), U (x', xo')] =

f
b; —— fD(x —x', xo —xo'). (61)

K»~Ox')
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From this it follows that
[aU, /Bx;, U,*(x', xo')]=0 as ( —~')D=O.

The bracket symbols which have not been explicitly written [U;(x, xo), Uz(x', xo')] and [U;*(x, xo),
Ua*(x', xo')] must vanish. From (61) we get furthermore

8 )
[U; (x, xo), U,*(x', xo')]=i[U, *(x, x ), U, (x', x ')]={8, —8;, {D(x x', xo ——x,'),

l9x j Bxy

i[U,k(x, xo), U„~(x', xo')]=i[U„g*(x, xo), U„(x', xp')]

(62)

(63)

4, —~;. —4. +~'. D(x x', xp —x—o'). (63)
XsBX8 BXyBXs BXsBXr BXpBXr

Note that (61) leads to expressions for [U4(x), U*(x')] and for I U4(x), [8U4*(x')]/Bx4I with xo ——xo'

which are different from zero in contradistinction to the results obtained from the "canonical"
commutation relations.

Stuckelberg" has given a variant of the above formulation. He introduces two auxiliary fields-
a vector A; and a scalar Bo—which satisfy the supplementary condition

(BA;/Bx;+M)4 =0.

If we treat the A; and 8 as independent scalars with respect to their commutation relations, we get

From this we have

i[A;(x, xo), AI,"(x', xo')] = b;gD(x —x', xo —xo'),

i[B(x, xo), B*(x', xo') ]=D(x x, xo —xo—).

i[(BA;/Bx;+ aB), „,(BA „*/Bx;+~B*).. .,.]=0

Thus the supplementary condition is consistent. Furthermore this makes the total energy positive
provided the Lagrange function consists of a sum of contributions from the independent field com-
ponents A;, B. Then the U; which satisfy the relation

(8 U, /Bx~)%'= 0
are given by

t98
U; =A;+-

K BX'

This leads us back to the commutation relations (61) for the U;. For the A; and B there exist gauge-
tra nsforrnations of the second type

A =A;+Of/Bx;; B'=B—rf, with Cjf K'f = 0. —

The U; are invariants with respect to this transformation group.
The advantage of this method, as Stuckelberg shows, is that the interaction between the mesons

described by such fields and protons and neutrons can be handled by a formalism which is completely
analogous to that employed by Dirac" for the treatment of the interaction between light and
electrons.

In the following, however, we shall not introduce the auxiliary fields, and shall treat the supple-
mentary Eq. (39) simply as an identity.

"E.C. G. Stuckelberg, Helv. Phys. Acta 11, 225—299 (1938).
"See P. A. M. Dirac, Quantum Mechanics (Oxford, 1935), second edition. In the case of mesons the supplementary

conditions on A; and 8 remain homogeneous even in the interaction with the heavy particles (this is not so in the ana-
logous case for light) while on the other hand additional terms occur in UO which arise from the difference between digqr-
entiation with respect to the time of the meson held and with respect to general time.



W. PAULI

The only arbitrariness which yet remains in (61) is associated with the possible introduction of a
numerical factor on the right side. This is connected through Eq. (16) with the corresponding normal-
ization of the numerical factor in the Hamiltonian operator. Vje show here that the normalization
of (61) is in agreement with the use of (44) for the energy momentum tensor. For this purpose the
decomposition of the fields into eigenstates is most suitable. In the calculation of the energy ex-
pression one must take into consideration the order of the factors. As can be seen from Eq. (12),
the factors in the terms arising from the U(k) and U*(k) appear in an order which is the reverse of
that in Eq. (55). As is shown further by the comparison with (18), Eqs. (16) require that the com-
mutation relations for the U, (k) and U„*(k) be

[U.. +(k), U.. +*(k)3=[U;-(k) U..-*(k)j=~- (r s=1 2 3) (64)

while all other brackets in the given quantities must vanish. From this, however, it follows that the
U(k) and U*(k) [see Eq. (50)j satisfy

1([U;, +(k), U, ,*(k)]= [U,, (k), U, *(k)7= —
(

8; +—k;k (65)
koE «' )

Introducing these results into Eqs. (50), (51), we get agreement with (61) for D given by (22).
We see, therefore, that the quantities N+(k) and E (k) defined tkrougk (65) give the number vf

particles with chcrf e +1 and —1, respectively, and with momentum k. The sequence of factors in the
energy expression leads, as in )1 (6) to a zero point energy of a half quantum per eigenstate.

As in the scalar theory it is impossible to quantize in accord with the exclusion principle for the
function [1—(8'/Bx k) $D vanishes for xk =xo' just as D does.

The distinction between longitudinal and transverse vibrations is lost in the rest system for the
particle, i.e. , for the case k=0. The introduction of the normal vibrations according to (59) is super-
fluous as well as singular since the second part of (65) vanishes. Moreover, as follows from (51) and
as has already been mentioned, U0=0. For a given sign of the frequency, therefore, we have in the
rest system three characteristic solutions which can be transformed into one another by spatial
rotations of the coordinate systems. The statement that the field theory under discussion, when
quantized, describes particles of spin 1, and only such particles, is thus justified.

(d) The c number tkeory when there is an ex-
ternal electromagnetic field. —The general rule of
I CI2(b) for the extension of the Geld equations
when an external field is present may be immedi-
ately applied if we begin with the variation
principle. By means of the operators

Dk 8/Bxk 1 rp ,ekDk 8/Bxk+ ze pk i

we may now write the generalized Lagrange
function (43) as

I.= ', U;k'U;k+—~2-U;k'(D;Uk DkU;)—
+ ,'U, ,(D;*U,* D,*-U,')+«'U, *—U; (66).

we now get, on a,pplying the operator D, to (68)
and summing over i,

«'D;U; 2ief;k U,k = 0—; (69)

Finally, the substitution of (67) into (68) and
use of (69) leads to

Qk Dk'U, «'U; &ef;kUk——

furthermore, we get in place of (42),

D i &a,+D' U~i, +Dl, ~h

ie(f i; Uk+f—,k K+fki U;) (70)

%'e get from the variation principle

DkU'I+K'U'. =0,
(67)

(68)

i e Bf„ ieU„— f„D;U„=—0. (71)—
2 K~ Qx' 2 K2

in place of (40) and (41). Using the fact that

Dd4 —DkD' = ref'k, —

It is to be noted that Eqs. (67), (68), which can
be derived directly from the variation principle,
are distinguished from (69), (70) and (71)



RELATIUISTI C F IELD THEORI ES

through the fact that they contain no terms in

which f;«occurs explicitly.
Expression (49) for the current vector is

unchanged in this theory except for the altered
meaning of the U;«, in accord with I, $2(b), we
have for the energy tensor, instead of (44)

T'«= U«.*(D U.)+(D,*U,*)U«. L&;«—, (44)

this can be transformed into the symmetric
energy tensor 8„«of Eq. (46) which, therefore,
remains valid.

The discussion of the non-relativistic limiting
case shows" that the particle described by the
field possesses a magnetic moment which has the
same ratio to the mechanical moment as for the
classical rotating charge, namely ek/2moc. How-

ever, this result is not unique. It is possible to
introduce new terms into the Lagrange function
of the form

D«U*«+ «'U'+Ki~f'«U«=o, (68')

and the current vector according to I (26)
becomes

8
s«' ——s« iM (—Ui*U« U«*U&). —

Bx)
(49)

For small velocities of the particle this change
introduces a factor (1+K) into the original
expression for the magnetic moment; the mo-

ment, therefore, can be given an arbitrary value.
(e) Remarks on real folds and the special case

of vanishing rest mass. The tra-nsition —to real
fields is accomplished by means of the scheme of
$1(d); we put U«= (1/v2)(V«+iW«) where U«

and t/t/I, are real. The theory with a single real
vector is obtained by identifying Uq and U~

in a position space and in the momentum space
by identifying the U+(k) and U (k). Instead of
X+(k) and X (k) one obtains in the expression
for the energy and momentum only the one
number

X(k) =ko(U*(k) U(k)) ——(k U*(k)(k U(k)).
&o

"A. Proca, J. de phys, et rad. t ij 9, 61 (1938}.

L' L= eK ,'—f;«i(U, *-U« U«*U~)—, (66')

in which X is a dimensionless factor. This leads
to no change in (67), but (68) must be replaced by

The current vector and the charge vanish.
Recently this possibility has been introduced for
the description of neutral mesons. "

An important and in a certain sense a singular
special case is that of vanishing rest-mass m =0.
As is well known, this case includes the quantum
electrodynamics. The Lagrange function and the
energy tensor depend only on the U;I, . The
equations derived from the action principle

(40')

(41')

together with the U;I, remain invariant if an
arbitrary gradient is added to U~,. or, in other
words, in gauge transformations of the second
kind

U«~ U«+ (~f/~x«).

This transformation seems to establish a funda-

mental and qualitative difference between the
cases a=0 and l~:AO. On this basis an assumption
to the eR'ect that the photons have a very small

but finite rest mass seems to be physically un-

satisfactory. Since a gauge transformation of the
first kind could not be applied to the photon
field if ~=0, the gauge transformation of the
second kind with phase factor which depends
arbitrarily on space and time, exp [iot(x, x,)j
would no longer be possible for electron and
proton fields.

We mention here the possibility of a complex
field for the case ~ = 0; a current vector s~ is

then defined by (49). The current vector would

not then be invariant with respect to the sub-

stitution (72) but the volume integrated total
charge would be. (This can be seen by use of
Eq. (49).) However, we know of no case of «=0
and integral spin which requires for its descrip-
tion a complex field (or tsvo real fields). We shall,

therefore, assume that the (U;, U;«) field is real

and identify it with the photon field (y, , f;«)
The singularity of the case ff:=0 exhibits itself

in the c number theory through the fact that
for this case Eq. (39) and the wave equation of
the second order (38) for U, are no longer con-
sequences of Eqs. (40') and (41'). In the q

number theory the commutation relations (61)
become singular. There are two methods for

"N. Kemmer, Proc. Camb. Phil. Soc. 34, 354 (1938)
(Part III).



W. PA UL I

(Bqp/Ox')%'= 0 (39)

for the state under consideration, and the wave
equation of the second order for the vector
potential

formulating the theory when ~=0. One consists
in introducing no commutation relations for
quantities which are not invariant with respect
to the substitution (72) and retaining the com-
mutation relations (63) for the field strengths
with unrestricted validity of the gauge group.
The other method was developed by Fermi" and
has certain advantages in calculations on the
interaction between light and charged particles.
In this theory the supplementary condition
(already mentioned in (c))

there occur the familiar 4-rowed matrices
(k = 1, , 4) which satisfy the relations

-', (vn ~+v~v;) = &;~ (74)

As is well known, the u defined by Eq. (73)
satisfies the wave equation

Pu —x'u=0. (73a)

momentum j(j+1) for the state of a single
photon is given by j= 1 rather than j= 0."
3. Dirac's positron theory (spin -', )

(a) The c number theory .I—n the Dirac wave
equation of the electron

yl, (Bu/Bxl„.) + ~u = 0,

are introduced as q number relations. The latter
equations introduce a limitation on the gauge
group to such f as satisfy the second order wave
equation

(But/Bxp) yjKu~ ,.=—0.

The functions u have four components u, (p=1,
4). We shall use (yt,.u), and (utyq), as

abbreviations for P, yl,. „u, and P, u, yq „, re-

spectively. The Lorentz invariance of the system
of Eqs. (73) with given yk requires that for the
orthogonal substitution

(72)af=0.
However, this limitation makes it possible to
require the following simple commutation rela-
tions for the y;.

(38) We introduce in addition the adjoint functions
u~ which satisfy

i[p;(x, xo), y&(x', xo') j
= bgg)(x-x', xo-x0').

+i ~k +idnky

there exists a similarity transformation of the y;
which has the property

It should be noted that in analysis into eigen-
vibrations which was made in b) we now have
k, = Ik

I
and

& 'V'&=Qu&aVk.

The u, and u,~ are transformed according to

(75)

iV(k) = Ikf (V(k))' — (& U(k))'-= IkI(U (k))".

where

u'=Au,

u~'=~u~A '.
(76)

(76t)

k
Ui(k) =U(k) —— (k U(k))

fkf

is the component of U normal to k. Only the two
transverse vibrations associated with r=1, 2,
appear in the energy expression, and for a given
k there are only two physically different states.

As mentioned in Part I the spin of the photon
is exhibited through the fact that the lowest
eigenvalue of the square of the total angular

E. Fermi, Rev. Mod. Phys. 4, 125 (1932); P. A. M.
Dirac, Quantum Mechanics (Oxford, 1935), second edition.

Ke shall not give a proof of the existence of A

for Lorentz transformations. "Ke note simply
that the matrix A is defined by (75) only to
within a constant factor. Ke shall limit this
factor to the four roots of unity ~1; +i by the
additional requirement

Bet 4=1. (75a)

For the proper (continuous) Lorentz group the

"W. Pauli, IIandbuch der Physik, Vol. 24/1, p. 259.
"For proofs see P. A. M. Dirac, Quantum Mechanics

(Oxford, 1935},second edition. W. Pauli, f.nst. H. Poipqare,
Ann 5, 109 (1936).



RELATIVISTIC F I ELD THEORIES

+ sign is now uniquely determined in (76+) as
can be shown by a continuity argument with
(75) and (75+); for the reflections of the space
coordinates or the time the factor ~ i or ~z in

A and the sign in (76+) remains undefined. In the
following it will prove to be useful to take the A

as follows:

A. =iy4

~ = y»&2V3

for x = —x, x4 ——x4.1

fol x =x, x4 = —x4.

(77a)

(77b)

for x'= —x, x4' ———x4. (77c)

This establishment —proposed by Racah"—is in
agreement with (75).

The form (73) of the wave equation is useful
for the discussion of the Lorentz invariance.
Reality relations, however, become clearer when
the equation is put into the form

1 ( Bu Bu* q
Q — Q

21- ( Bxo Bxp )

(81)

Bu Bu*
+~ u'e —— .nu

~
+~u*Pu.

Bx Bx )
Incidentally L vanishes if the wave equations
are satisfied. Using Eq. I (19) we get for the
current vector

or
Sg = tZQ~+Icu

$0 = eu Q, s = au~0,'u,

(82)

The wave Eqs. (73) and (78) can be derived
from a Lagrange function

1 ( Bu But
ut"yg — 'rA, u

~
+Kutu

2 E Bxy Bxy

(Bu(Bxo) +a (Bu/Bx) +f~Pu = 0,
where

(78) and for the canonical energy tensor, remembering
that L=O,

n~=ip4yI, for 0=1, 2, 3 and P=y4. (79)

From (74) we see that it is permissible to take
the yk and therefore the a and P as Hermitian
matrices: we shall always so take them in the
following. The complex conjugate of Eq. (78) is
therefore

BQ+ 8Q+
+—'c tKu P=0.

Bxo Bx

Comparison with (73+) shows that we may put"-
Q =Q p4. (80)

From ut'=u~'y4 and (76) it follows now that

ut' =ut(y4Aty4),

where by A~ we understand the Hermitian con-
jugate of A. After comparing this with (76+) and
(77) the sign in (76+) can be made more precise:

ut'=+u A ' for fixed direction of time,
u'= —«'X-»

for reversal of direction of time,

(72)

(72+)

"G. Racah, Il Nuovo Cimento 14, 322 (1937}.
~~ Usually a factor i is employed on the right side of (80}.

We prefer, however, not to follow this procedure in order
to make the i appear in the expression for the current
vector.

if (76) and (80) hold with the + sign without
excep tlon.

1( Bu But
T, (uty ——y u ~.

2t ax; ax;

This satisfies the continuity equation and leads
to the same results for the volume integrated
total momentum as does the canonical tensor.

For the energy density and momentum density
we obtain from (83) and (80)

1(
tV= T44=

i
—u*— + u i, (83a)

2i( ax, ax, )'
i It' BQ Bu*

6=—
i

u*—— u i.
2i& ax ax )

(83b)

It is important to note that the charge density is
positive definite while the energy exhibits two
different signs.

As a consequence of the substitutions (77) the
current vector behaves like an ordinary vector
with respect to spatial reflections; the com-
ponent s4 does not change sign, however, when

23 W. Pauli, Nandbuch der Physi&, Vol. 24/I, p. 235.

This tensor is not symmetric but by a familiar
transformation, "which is contained as a special
case in Eqs. I, (13c), (14), we get

e,s= 2(T;~+ T~;).
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the sign of the time coordinate is changed
whereas the space components s~ do then ex-
perience a change in sign. A reversal of the signs
of all coordinates, therefore, leaves the sI, un-

changed. On the other hand the energy tensor
changes sign, as can also be seen from (76+)
when the signs of all coordinates are changed.

We consider now the up which are plane waves
with a definite propagation vector (Ir, ko). From
(73a) it again follows that k02=k'+ii'. It is seen
that for a given k and a given sign of ko there are
two solutions of the wave Eqs. (73) or (78)
which, in the rest system @=0, may be trans-
formed into one another by spatial rotations.
The particles associated with these waves thus
have the spin ~.

We want now to investigate more closely the
connection between the solutions

u, =a,"(k) exp (i[k x —koxo]) for r=1, 2 (84a)

where by ko we mean, as in IICI1 and 2, the positive
quantity,

k =+(k'+x')&

If the ap' are suitably normalized we may write

Z. b.*"b'=&- (85)

By means of the method of the annihilation
operators, and with the help of the wave equation
we find |

p u,"a,*"= (ko+(e h)+~p);
2ko

Q b,"b.~"= (ko —(e k) —~p).
2ko

(86)

Furthermore, there exists a Lorentz invariant
ordering between the solutions with positive and
negative frequency. '4 In order to show this we

note that u satisfies the same wave equation as
u+, where

u, =b,"(k) exp (i[ k—x k—~o])
for r= I, 2, (84b)

The matrices a*, p*, the complex conjugates of
a, p, are defined by

A pis' 'af py' Agp y pg pir ir p o

Such a matrix as C actually exists since —p*, a~

satisfy the same relation (74) as p, a and the p&.

From (87) it is clear that C*C commutes with all

y~. it is thus a constant. We note without proof
that the matrix C is symmetric where the y~ are
Hermitian"

Cg p Cpy' ~ (88a)

It follows from this that the constant C*C is
positive. It is therefore possible to obtain

C*C= 1 (88b)

by suitably choosing the arbitrary constant
factor in C. There is a special representation of
the yi for which a and ip are real; the C is then
the unit matrix.

There is an invariance of the ordering ex-
pressed in (87) with respect to Lorentz trans-
formations if by virtue of (76) we can get from

(87) to the corresponding equation for the
primed functions, i.e. , if

~*C=C~ or X*=C~C-&. (89)

The proof of the validity of this relation has been
given for proper Lorentz transformations in

reference 25. As can be seen from (77) A is
defined for all reflections so that (89) continues
to be valid. Therefore the ordering indicated by
(87) remains invariant with respect to all re-
Hections.

Clearly a permitted specialization of the ap" is
obtained by setting

b„*'(k) = P, C,.a,"(k); a,*'(k) =P C,.b."(k) (90).
Following Kramers, " we can speak of the two
solutions associated through (87) as charge con-

jugate solutions. The terminology is justified by
a consideration of the effects of an external
electromagnetic field. This can be done accord-
ing to Part I, CI2(d) by the substitution of
(8/Bxi, )~Di, in the wave Eq. (73) or (78). If u+

ZL = CQ+, Q+= C Q

p*= —CpC ', a~= CaC '.

"See reference 11, Inst. H. Poincare Ann. , p. 130.

(87)

(88)

~ Inst. H. Poincard Ann. 5, 109 (2936), p. 2228'. , and
p. 230.

~6 H. A. Kramers, Proc. Amst. Akad. Sci. 40, 814 (2937).
The concept of the charge conjugate solutions may be
generalized for higher arbitrary spin values. We cannot,
however, go into this matter here.
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satisfies the wave equation with the charge +e,
then n satisfies it with the charge —e. It
appears, on the other hand, that the current
vector (82) retains its sign in the charge con-

jugate states. However, we shall see that this
defect is removed in the q number theory.

In this connection it is of interest, in analogy
to the procedure of Section 2(d) to add terms of
the form

L' L= 1—', uty-, yt, uf;i

to the Lagrange function; the f,q are the ex-
ternal fiel strengths in natural units (I, $1) and I
is of the dimension of a length. 9fithout the
additional terms we have, as is well known, the
value e/2a for the magnetic moment. We then
get in an external field the modified wave
equation

yiDgu+ ~u+ ,'itf;I y—;you=0

For small particle velocity we are led to an addi-
tional term in the magnetic moment which has
the form —l(hc)&. By Eq. I (27) we see that the
additional term in the wave equation requires a
new term in the current. For the new current
we have

(92)

It is noteworthy that for the electron the
magnetic moment is just -', (e/~) so that the
additional term is unnecessary. The situation is
diR'erent, however, for both proton and neutron.
The magnetic moment of the latter must be
obtained from the new term alone for, as &=0,
the substitution of D& for 8/Bx& is unnecessary.
It is also important that in going to the charge
conjugate solution the sign of 3 must change
together with that of e, these solutions are thus
also conjugate with respect to the magnetic
moment of the particle (see I, fj2). It should be
noted that the additional term introduces a new
constant with the dimension of a length into the
theory. For a discussion of the consequences,
for the case of spin 1, of additional terms in the
Lagrangian and the resulting terms in the current
vector, see $2(d).

(b) Quantisation in accord with the exclusion
principle. —We have seen that for spin -', the
energy in the c number theory is not positive

definite; there are just as many negative as
positive energy eigenvalues. This condition mould
be unchanged through the introduction of Ein-
stein-Bose quantization. Dirac has pointed out,
however, that the difficulties of the negative
energy states are eliminated through a change in

the definition of the vacuum if quantization in

accord with the exclusion principle is introduced.
The vacuum is defined as the state with the
smallest energy among those having values for
the occupation numbers of the states which are
compatible with the exclusion principle. This
limits the values of the occupation numbers of a
non-degenerate eigenstate to 0 and 1. The
vacuum therefore is defined as that total state
in which all individual negative energy states
are occupied. The absence of a particle from a
negative energy state, a so-called hole, then
behaves, relative to the newly defined vacuum,
as a particle with positive energy and opposite
charge to the original.

This formulation of the Dirac theory of holes
is not entirely symmetric with respect to the two
particles of opposite charge. We shall follow
below a formalism proposed by Heisenberg"
which expresses the same physical content in

more symmetric manner.
For this purpose we begin with the formulation

of the commutation relation for the wave func-
tions. When the exclusion principle applies, we
must consider, according to Jordan and Wigner,
the bracket

[u, (x, xo), u.*(x', xo') ]+=—u, (x, xo),u."(x', xo')

+u.*(x', xo')u, (x, xo).

It is to be noted that not only the wave equation
of the second order (73a) but also the wave
equation of the first order (73) or (78) must be
fulfilled by the right side of this expression.
This is the case if

[u, (x, xo), u.*(x', xo')]+

t'8 8I I i~P
I

—D(x——x—' xo —xo') (93)
I ax, ax ),.

in which D is the function belonging to the wave
equation of the second order with rest-mass ~

27M. Heisenberg, Zeits. f. Physik 90, 209, and 92, 692
I,'1934).
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which is defined in Eqs. (24), (25). By making
use of the wave function Qt the matrices yI„- and
Eqs. (79) and (80), we may rewrite (93) in the
form

i[u, (x, xo), u.t(x', xo') ]+
8

+~I
} D(x x', xp ——xp'). (94)

E axe ),.
The wave equation of the first order is fulfilled

since the operator (8/exp)I+a (8/Bx)+i~P ap-
plied to (93) or the operator yp(8/Bxo)+~I to
(94) produces the operator — +~', which anni-
hilates the D function. The form (94) shows the
relativistic co-variance of the expression which
has been set up while the reality relations are
most readily seen from (93). The consistency of
expression (93) with the plus sign in the bracket
is based essentially on the fact that first deriva-
tives I'more generally, derivatives of odd order
would be possible) of the D function occur on
the right. As a consequence the right side be-
comes an even function of x —x', xo —xo', and for
x =x' and xo =xo' the algebraic requirement that
the left side be positive is satisfied. In fact we
have for xp ——xp' according to (22")

[u, (x, xp), u, *(x', xp')]+ B„b(x x')——. (93a)—

We now introduce the decomposition of the u, (x)
into eigenvibrations.

u, (x, xo) = ( V) & Qp P
1f 2

X{u+"(k)a,'(k) exp (i[k x —kpxp]

+u P'(k)b "(k) exP (i[—k x+koxp) },
u, *(x, xp) = (V)-& Qp Q

r=l, 2

)& {u+P"(k)a,*'(k) exp (i[ kx+k—oxo]

+u '(k)b, *"(k) exp (i[k x —kpxp]) I,

in which u~'(k) and u "(k) and their conjugates
are q numbers, while the c number factors
a,"(k) and b„"(k) are defined and normalized
through (84) and (85). From (85) and the
definition of the D function (22), the equivalence
of (93a) with the bracket relation

[u+"(k), u~*'(k)]+= [u '(k), u *'(k)]~=8„(95)
follows; all remaining brackets with the plus
sign in these quantities vanish.

%e carry further the idea of the Dirac theory
of holes by introducing the following rule of
Heisenberg for the sequence of factors which is
to be used in transforming calculations in the
c number theory to the q number theory. Let F
be any Hermitian operator of the c number
theory; then

Qp FprrQrr = Q FQ

is to be replaced by

-', (u, *F,.u, —u, F„u,*)=-', (u*Fu —uF"u*). (96)

The last form is also correct in the sense of the
operator calculus if F contains an Hermitian
differential operator. For the associated operator
density terms must eventually be added in which
the differential operator acts on the first term
and which in the integration over the volume
gives the same as the terms in the expression.
The application of this rule to the expressions
(82a), (83a, b) for the energy momentum and
charge leads at once to

or by making use of (95) and the definitions

N„+(k) =u+*'(k) u+"(k),

N, .-(k) =u *"(k)u "(k),
(97)

Z=gg, kp P [N+(k)+N, (k) —l]'
r=l, 2

G=pi k Q [N,+(k)+N, (k) —&],
r=l, 2

e=p Po P [N,+(k) —N„-(k)].
r=l, 2

(98b)

It is easy to see, furthermore, that on the basis
of the Heisenberg rule, relations (16) with the
ordinary bracket are fulfilled for all quantities
which do not explicitly contain the time.

It is also to .be noted in connection with
the definitions (97) that for quantization with

2= Qi ko Q P(u+""u+" u+'u+—*")
r=l, 2

+-', (—u 'u *"+u *'u ")],
G=gp k Q [-', (u+*'u+" u+"u—~*')

r=l, 2

+p( —u "u "+u "u ")],
e=p Pi P [-,'(u+*"u+"—u+"u+*')

r=l, 2

+-', (u 'u *"—u *'u ') ],
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u=(1/~t2)(v+iw), u*=(1/V2)c(v —iw), (99)

where in analogy with (87) v and w fulfill the
Lorentz invariant reality conditions

v*= Cv, m*= Cm (100)

and satisfy the same wave equations as I does.
The inverse of (99) is

brackets with the plus sign in (95) the eigen-
values of both n„*l„and n„u„* are 0 and i and
therefore both expressions can serve as dehnitions
of the number of particles. The choice (97) is
made so that the energy is smallest when all E
vanish; thus this corresponds to the case of
the vacuum. As a consequence we obtain a
negative zero-point energy of the vacuum which
amounts to a half quantum per eigenvibration. '-'

(c) Decamposition with respect to charge conj u

gate functions. The case of a rton elect-ric particle
of spin —',."—We first make a decomposition of
our spinor held which corresponds exactly to the
decomposition (33) of the scalar field U into its
real and imaginary parts: we get

with o.) In particular, for x~ ——xo' we have

[v, (x, xo), v, (x', x.')]+= [w, (x, x,), n. (x', xo') ]
= C.,*b(x—x'). (101a)

The Heisenberg rule now replaces the u,*F„i~,
with Hermitian I' of the c number theory by
the expression

', v(CF -F*C)—v+ ', w(CF-F'C)—w

z

+ v(CF+—F*C)w w(—F—~C+ CF)v. (102)

The application of this to the vector current
where F is I, a leads as a consequence of (88)
to the vanishing of the (v, v) and (w, w) terms;
thus

so ———,'(vCw —wCv); s =—(vcnw —wncv).
2

For the energy and momentum densities we have
F= —(1/i) (ct/ctxo) and F= (1/i) (cl/ax), respec-
tively. In these cases the mixed terms vanish
and we are left with

v = (1/&2) (u+ C*u*),

n = (1/v2) —(u —C"u*).

(99a)

1 i ( BV BV
W= ——

(
vC — Cv

)i 4 E clxo &xo

ilaw Bw

+~ wC — Cw ), (103)
ax, ax, ) '

The plus brackets ([ ]+) between v and w vanish
and we have

[v, (x, x,), v.(x', x.')]+——[w, (x, xo), u. (x', xo')]+

= C.,*[u,(x, xo), u, *(x', xp )]+ (101)

for the right side the value (93) can be intro-
duced. (Because of the properties (88a, c) of C,
the right side is in fact symmetric with respect
to the interchange of x, xo with x', xo' and of p

"The concept of the energy density seems to be more
problematic in this theory than that of the volume inte-
grated total energy. The energy density is no longer positive
definite for the theory of holes, in contradistinction to the
case for the theories discussed in fbi and 2. This is also
shown in the c number theory; even if limitation is made
to wave packets in which the partial waves all have the
same sign of the frequency in the phase exp it k I—k~0)
the energy density I,

'as distinguished from the total energy)
cannot be made positive definite.

~' This theory was first developed by E. Majorana I Il
Nuovo Cimento 14, 171 (1937)j in which use is made of the
special representation of the. Dirac matrices with a real and
C=I which is mentioned above. For the general case see
G. Racah, reference 21, and H. A. Kramers, reference 26.

1 1 ( ctv ctvG=--
i
.c———cv ii 4 ( Bx Bx )

Bw clw

+~ nC — Cu
~

. (104)
Bx Bx

The transition to the charge conjugate state is
realized by the substitution

V~V, Gl~ —VV.

The current vector changes its sign properly for
this transformation while the energy and mo-
mentum are unchanged. In the c number theory
just the reverse would have happened since there
the current vector would have the (v, v) and
(w, w) terms and the energy and momentum the
(v, w) terms.

The decomposition into eigenstates is simply
performed if we require the condition (90) for
the a,~", fi,*"and decompose the quantities u "(k)
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and zz+r(k) in accordance with

1
u+"= (—v"+iw');

1
zz "=—(v"—iw")

VZ

[Vr, Vkr] = [Wr WOr]

[vr was] [wr vos] —0

1
"rr — (Vrrr zw4r) .

ZZ
or (Ver+ZWSr)

v2 V2

& (106)

The case ~ =0 permits no gauge transformation
of the second type for the case of spin —,', just as
for spin 0. Such transformations occur for a=0
for spin 1 and higher spins.

4. A special synthesis of the theories for spin 1

and spin 0

We write the Eqs. (1) for the wave field of a
particle without spin in a form which is analogous
to that of (73).

We then have Pi, (8zz/zlxg) + iizz = 0. (110)

v.(~)=(l') 'Z. Z
1, 2

Xv"(k)zz, r(k) exp [i(k x —k~0)7

+v*"(k)b,"(k) exp ( i[k—x kox—o]) I, (108)

w, (~)=(1') 'Z~ 2
f'=1) 2

&& Iw"(k)a,"(k) exp [i(k x—kpxp)]

+w*'(k)b, "(k) exp ( i[k—x —koxo]) I.

The energy, momentum and charge become

F= Qz Q ko(v*'v'+w*"w" —1), (109a)

6= Qg Q k(v*"v"+w*w' —1), (109b)
t'=1, 2

e = z P & P z(vrw'r w"v'"—)
t'=1, 2

(109c)

The Majorana abbreviation of the theory through
the identification of the charge conjugate states
is obtained by striking out the part w(x) and its
bracket relations, retaining therefore only the
first half of the relations (100), (101a). Thus

1( Bv 8
W= —

f
vC — Cv ),

4z E ax, ax,
(103)

F-= Qi Q ko(v*'(k)v"(k) ——,'). (109)
1, 2

The current vector vanishes identically as does
also the magnetic moment; thus the particle
cannot be a source of an electromagnetic field
at all. Obviously this possibility exists only in
the q number theory with quantization in accord
with the exclusion principle. It is not yet known
whether the neutrino which plays a role in the
theory of P-decay should be described by the
abbreviated or unabbreviated theory.

The Pq in this equation are 5-rowed matrices;
four rows operate on the vector U~, the fifth on
the scalar U. We shall represent the field com-
ponents, (ii) &Uit, (ii)&U as U, with p=1, 2,

5, and use Pizz as an abbreviation for
+Pi„zz,. Th, e factor (ii) & before Ui and the
(i~)» before U are introduced to make the equa-
tions more symmetric; in this notation u*u has
the dimensions of a reciprocal volume as in the
Dirac theory.

Equations (41), (42) for the field in the case
of spin 1 can also be written in the form (110).
For this purpose the P~ must be four 10-rowed
matrices four rows of which operate on the vector
U~ and six on the skew-symmetric tensor U;~.
The field components (z)&Uq, (~) &U;i are repre-
sented as u, with p = 1, . ~, 10.

Du%n30 has noticed the interesting fact that
both the 5-rowed and the 10-rowed matrices
fulfill the commutation relationships.

PAPi+PiPiP'= &nPi+4iP'

The algebra generated by these relations can be
studied independently of special representations
of the hypercomplex numbers P just as was the
case for the algebra based on Dirac's y;.

The four matrices Pi the unit matrix I, and
all powers and products of the P~ generate 126
linearly independent quantities. [The number of
independent powers and products is limited by
(111).]A 5-rowed and a 10-rowed representation
of this algebra have already been specified.
Beside these there is a trivial 1-rowed representa-
tion in which the PI, are zero and I is just 1.
These representations are irreducible in the

"R.J. DufFin, Phys. Rev. 54, 1114 (1938).
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From (111)we have as a special casealgebraic sense; there are no other irreducible
representations. "

If, therefore, we omit the trivial 1-rowed
representation (to which, however, we shall
return later in a special connection) Eqs. (111)
contain nothing but the formulations of the
heories for particles of spin 0 and 1 given in

CIIa1 and 2. However, we shall, following Kemmer, "
discuss the formalism a little further for it
seems that it can be generalized to include higher
values of the spins.

On forming the part of (111) which is skew-
symmetric in k and l we get by making use of the
definition,

P;PiP;=0 for iAk (111a)

and on the other hand

(111b)
The matrices

n/ = 2P/' 1—
have simple properties:

'gk I) 'gi gk 'gk gi ) (115)

P;i)/, = —
i)/, P;, for iQk. P;q;=i);P;. (116)

si/ = s//: =—P/P/ P/P/, —
the result

P,s/, &
—si&P; = 8/iP/ —b;/P/

If we assume, as is compatible with (111), that

112
the P/, and therefore also the s/, are Hermitian
(in analogy with the Dirac matrices) we can with
the help of i)4 [in the Dirac theory (Eq. (80)
y4 is used] define the functions Nt by

By means of this equation it ca i be shown that
Eqs. (110) are Lorentz invariant. If the or-
thogonal transformation

ut =u g4)

which satisfy the equations

(117)

xi P o//xk

for fixed P/,. corresponds to the transformation

u'= Au,

this A must satisfy the relation

& 'P,&=Z/ &*/P/,

which is analogous to (75). For infinitesimal
transformations

x/.
"=xi+ Q«//x/

ok~ = —~~k numerical coefficients

&=I+~ Q/ Q«//&// sk~
———s~k matrices,

we obtain the relation (113)."We see that the
sk~ defined through determine the behavior of
the u„ in the infinitesimal transformations.

It is important for calculations with the Pq to
note that these matrices have no reciprocals.

"The system of the hypercomplex numbers P;, I, and
the powers and products of p; is known to the algebraists as
semi-simple. According to a general theorem relating to the
dimensionality of the representations and the order of the
system, we have 126= 1'+5~+10 .

~ N. Kemmer, Proc. Roy. Soc. Ale, 91 {1939};F.
Booth, A. H. VA'ison, Proc. Roy. Soc. A17'5, 483 {1940};
A. H. Wilson, Proc. Camb. Phil. Soc. 36, 363 {1940}."See in this connection, for example, the article on wave
mechanics, Handbuch der Pkysik, Gl {A'), p. 222.

(But/Bx/, )P/, /~ut =—0 (110+)

a current vector
Si = LN)Pg1/'

and a canonical energy tensor

BN But
7;.=II ~'P. — P» I.

ax; ax; )

(119)

the sk and T;k satisfy the continuity equation.
A certain amount of calculation is required to

pass from (110) to the wave equation of the
second order. We multiply (110) by P/P, (8/Bx/)

and which transform in proper Lorentz trans-
formations as

u~ =utA I,

thus (utu) is an invariant with respect to these
transformations. For the spatial reflections [see
(77a)j x'= —x', x4'=x4, there are two possi-
bilities, namely u'=g4u and u'= —q4u. The latter
belongs to the dual theories mentioned [Eqs. (9),
(37'), (38')] in gl and 2.

By means of the ut it is easy to construct a
Lagrange function

BN 81St
I.=-',

I
utP/, — Pi@ I+Kutu, (118)

Bxk 8xk )
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and obtain
82u Bu

~(P(P;PI, +PkP;P)) +«PiP, =0,
~Xk~X l ~X l

or by means of (111),

It is easily verified that this is consistent with
the wave Eq. (110).

A special reducible representation is obtained—as was noted by Duffin —by the relation

P«(B'u/Bxl, Bx;)+«P (P; (Bu/Bx() =0. P« =k(v«1'+vs'I) (126)

Using (110) again, therefore, gives

Bu/Bx; =P(P;(Bu/Bxi)

Hy differentiating this expression with respect to
x; and summing over i we get

Qu —z2u =0. (122)

On the other hand we have from (110) and (121)

Bu Bu
+sg, +«P,u=0.

8X,' BXA;

(123)

Ke wish to call attention here to the existence
of the possibility of another formulation of the
theory, which is obtained when we start with
(123) rather than with (110). By multiplication
with 1 —P;2 we get the result (121) and further

P;[PI„(Bu/Bxg). +«u5=0 (.110)

This is a weaker relation than (110) since the
matrices P; have no reciprocals. For the 1-rowed
representation of the P; incidentally, where P, =0,
I=1, we get from (110) and (121) the solution
Q =const.

Returning now to the original theory in which
the constant solutions are excluded by (122) we
note that with certain transformations (see I,
)2) we can obtain, following Kemmer, the sym-
metric energy tensor

8,« ——«[ut(P, P«+P«P, )u —5,«utu5, (124)

which also satisfies the continuity equation.
According to (114), (117) the associated energy
density is positive definite,

8"= —844 = r~:u*u.

The commutation relations read

z up x, xp, u~ x, xp

8 1 a2
= P« (P«P~+PA—)—

BXA; 2K OX';BX l

&([D(x—x', xo —xo') 5. (125)

The yI, and yl,
' are Dirac matrices which operate

on diR'erent groups of four indices. The I is the
unit matrix in the first system of indices, the I'
in the second system. The P~ therefore are made

up of 16 rows and 16 columns and the associated
wave functions u» thus have 16 components. "

It appears arbitrary, however, not to reduce
the 16-rowed representation (126) of the P« into
its irreducible constituents. These are just the
5-rowed, the 10-rowed and the trivial 1-rowed
representations. "

This reduction finds a counterpart in the
decomposition of the 16-component quantities

upp If the rule of Racah is introduced for the
space-like reflections, the symmetric part of u»
(for which u» ——u, ,) which belongs to'the 10-
rowed representation, consists of a skew-sym-

metric tensor and an ordinary vector; the anti-
symmetric part splits into a scalar which is

associated with the 1-rowed representation and

'4 If the special representation (126) is used in the field
equations (110), the equations of de Broglie's "Theory of
photons" result. If the representation is used with (123)
instead of (110) another formulation of de Broglie's theory
is obtained which permits the constant solutions, —de
Broglie's so-called "solutions d'annihilation. "On the basis
of the interpretation of this paper, however, the de Broglie
theory does not describe photons at all, but rather is a
unified description of two particles with equal non-
vanishing rest-mass, with spin values 0 and 1.

gee refer in this connection to the arguments, cf. $2(e),
on the gauge-transformations of the second kind which
oppose the assignment of a non-vanishing rest-mass to
the photons.

3 This decomposition was carried out in detail by J.
Geheniau, I.'electron et Photon (Paris, 1938). It arises
naturally, moreover, when two interacting particles of spin
—,
' are considered. For example, in the case of the deuteron
which is composed of a proton and neutron (we may
assume that the difference of their rest-masses may be
neglected) the 5-rowed representation is associated with
the singlet state, the 10-rowed with the triplet state. I Com-
pare also the older work of N. Kernmer, Helv. Phys. Acta
10, 47 (1937) where the relative motion of neutron and
proton is discussed on the basis of various assumptions for
the interactions between them. 'j In general the different
representations belong to states of different energy (the
degeneracy is removed by the interaction). The one-rowed
representation belongs to the combination of a proton with
a positive, and a neutron with a negative rest-mass, and
has no direct meaning in the c number theory.
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f. ABLE I. Scattering of mesotrons by a Coulomb field. ED=initial energy of mesotron; &=mass of mesotron;
8=angle of scattering; q=80/Mc'.

TYPE OF MESOTRON
SPIN AGNETIC MOMENT

(UNITS lit) (UNITS eA /2Mc) CRoss SEcTIQN FoR ScATTERING

1 e' ~ g' dQ

4 Mc2 (q' —1)' sin' 8/2

1 e ' g' 1 . 8 dQ

4 Mc' (q2 —1)' (q —1) 2 sin' 8/2

(~—1)2 e» dn

4 Mc' sin2 8/2

4 Mc2 (gs —1)2
~

sin4 0/2

(y —1)' e'
3 3fc'

* III and U hold only for y)+1. I, III, V. Corben and Schwinger, Phys. Rev. 58, 953 (1940). II. C. Miler, Zeits. f. Physik 70, 786 (1931);Ann.
d. Physik (5) 14, 531 (1932). IU. Laporte, Phys. Rev. 54, 905 (1938); Massey and Corben, Proc. Camb. Phil. Soc. 35, 463 (1939).

a pseudo-vector and pseudo-scalar for the 5-

rowed representation. ""
S. Applications*

AVe conclude this report with some simple

applications of the theories discussed in Part II,
Ia)I, 2(d) and 3(a), of the interaction of particles
of spin 0, 1, and -,'with the electromagnetic field.

In the last two cases we denote the value
eh/2ilIc of the magnetic moment as the normal

one, where 3f is the rest mass of the par-
ticle. The assumption of a more general value

y(eh/2ilIc) for the magnetic moment demands
the introduction of additional terms, propor-
tional to y —1, in the Lagrangian or Hamiltonian.
These terms are given, for spin 1, by Eq. (66'),
with y= I+X, and for spin —,

' by Eq. (9'), with

y = 1 —(2M'c/h) L(hc) &/eel. The applications which

we consider are the radiationless collision of two

charged particles, the Compton effect, brems-

"In this connection see the table of Eq. (31) of the
author's work in the Inst. H. Poincare Ann. 6, 109 (1936);
especially p. 129. As Racah has pointed out, the behavior
of the quantities defined in the work quoted is just reversed
if his rule for the reflections is used; thus the quantities
designated by 01, sz, 0 which belong to the skew-symmetric
part of upp become respectively a pseudo-scalar, a pseudo-
vector, and an ordinary scalar while the quantity sp, &, &]

which belongs to the symmetric part of u» becomes an
ordinary vector.

'~ See especially the work of F. J. Belinfante, Nature 143,
201 (1939); Physica 6, 870 (1939), who proposes a descrip-
tion of the meson field in terms of a symmetric 'undor'
upp' =up'p-*I am indebted to Dr. H. C. Corben for discussions
concerning the content of this section.

strahlung, and pair generation. Since the cross
sections for these processes may be used to
understand the nature of the penetrating com-

ponent of cosmic radiation, we shall for con-
venience use the word "mesotron" to denote the
particle, of charge e, to which various values of
the spin and the magnetic moment are at-
tributed.

(a) Radiationless collision of mesotrons with

electrons. —In Table I is given the cross sections
for the scattering of mesotrons by a Coulomb
field with a fixed center; in Table II the cross
sections for a mesotron in electromagnetic inter-
action with an electron, in the coordinate system
in which the electron is initially at rest. The
cross sections are calculated by the well-known

method of Mftller, introducing the matrix ele-

ments of the interaction of the electron with the
electromagnetic field produced, according to the
different theories, by the mesotron. In both this
process and the process of bremsstrahlung, dis-
cussed in (c), we are interested particularly in

the case in which the initial energy Bo of the
mesotron is large compared with 3IIc'. The
results given in Table II and in rows III and V
of Table I hold only for this case, giving the
leading terms in n=EO/cVc'. In both tables,
cases III and IV are one order of magnitude in

g greater than I and II, and V is again one
order of magnitude larger than III and IV.
Both here and for all other processes discussed
below the cross sections for a given value of the
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TABLE II. Cross sections for elastic scattering offast mesotrons by electrons, in coordinate systems in vchich electron is initially
at rest. Terms of order (M/m)(Mc2/eEp) or smaller have been neglected. &=mesotron mass; m=electron mass;

Bp= initial mesotron energyppMc2; eEp= energy transferred to the electron.

SPIN
(UNITS A)

TYPE OF MESOTRON
MAGNETIC MOMENT

(UNITS ek/2Mc) CROSS SECTION PER COLLISION

e' 2 M Mc2 de
(

2

-(~-~) —(j -.).Mc2|—e+—

2m e' 2M Ep
3 Mc2 m Mc2

I, III, V. Corben and Schvringer, Phys. Rev. 58, 95'3 {1940).II. C. M&11er, Ann. d. Physik (5) 14, 531 (1932); Bhabha, Proc. Roy. Soc. A164
257 (1938). IV. Massey and Corben, Proc. Camb. Phil. Soc. 35, 463 (1939);Oppenheimer, Snyder and, Serber, Phys. Rev. 5'F, lS (1940).

TABLE III. Cross sections for Compton scattering. kp ——initial energy of quantum; k =final energy of quantum;
scattering particle of muss M, and initially at rest; 8 =angle of scattering.

TYPE OF SCATTERING PARTICLE
SPIN MAGNETIc MoMENT

CROSS SECTIONS FOR SCATTERING THROUGH
ANGLE H. VALID FOR ALL ENERGIES,

ExcEPT FQR CAsE III.

dO, ——,cos' 8

d( )
e ik k

IV
e' 2|k', |

dQ
2

——,1+cos' 8+48 ~ » f kkp(28 —64 cos 8

+$2 cos2 8}+(k2+kp2) (29—16 cos 8+cos2 8) J

TABLE II IA. Cross sections for Compton scattering. ¹tation the same as in Table III.

IA

IIA

TYPE OF SCATTERING PARTICIE
SPIN MAGNETIc MoMENT TQTAL ScATTERING CRoss SEcTIoN ko)QMc~

(")' "

2+II1 ~ 2

I I IA
e

( )
ko

36 Mc2 Mc2

References for Tables III, IIIA:
I, IA, IV. Booth and Vhlson, Proc. Roy. Soc. AIV5, 483 (1940). II, IIA. Klein and Nishina. Zeits. f. Physik 52, 8.3 (1929); Nishina, Zeits. f.

Physik 52, 869 {1929};Tamm, Zeits. f. Physik 62, 845 (1930). III, IIIA, IVA. Corben (unpublished). III. S. B. Batdorf and R. Thomas, Phys.
Rev. 59, 621 (1941).
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TAM, E IV. Cross sections for bremsstrahlung. Bp=initial energy of mesotron, &&Mcs; M =mass of mesotron;
12(1-.)«Ep=energy of emitted y-ray; Z=atomic number of material traversed; A =, Ep.

SPIN
TYPE OF MESOTRON

MAGNETIC MOMENT CROSS SECTION

aZ'd« — {ln A —g).

es ', 16 3«1—«

Mc' 3 4) aZ'd« ——+ {ln A —i'}

e' ', 4 (1—«)Ep
Z (y —1) d -, l +—ln'A —2-ln A+Mc' Mc'Z&

IV ( dZ2d«, .—(2 —2«+ 7«')

16(1—«) 13«5«'3«12 24{1—«)

TABLE IVA. Cross sections for pair-production. Ep=initial energy of y-ray; «Ep=energy of positive mesotron created;
12«(1—«)M=mass of mesotron; Z=atomic number of material traversed; 8=,

&
Ep.5''Z&

IV

TYPE OF MESOTRON
MAGNETIC MOMENT CROSS SECTION

(
e' s 16

aZ'd« —«(1 —«) (ln 8- —,')

e' ' 16
Mc') Z'd —(g —(1—}}{ln a ——,'}

3

~ sZ&
+" +'

2
2 ~ 4 ~~ ~ 2Z ~

I ~ ~ II ~ ~ ~

e' ', 4 «{1—«}Ep
Mc' Mc'Z&

(
e' ', BpaZ'd«, i

—(7-2«+2«')+Mc' Mc'Z& 40

References for Tables IV, IVA:
I, IV. R. F. Christy and S. Kusaka, Phys. Rev. 59, 414 (1941), II. W. Heitler, The Quantum Theory oj Radiation (Oxford, 1936), p. 168 (Brems-

strahlung), and p. 197 (pair-production). In each case appropriate modification has been made for the finite size of the nucleus. III. S. B. Batdorf
and R. Thomas, Phys. Rev. 59, 621 (1941).The author is indebted to Mr. Thomas for informing him of his results.

spin (except 0) are smallest when the magnetic
moment assumes its normal value ek/2 Mc.38

(h) Scattering of a light quantum (Compton

effect).—For the calculation of the cross sections
for this process and for the emission process
discussed under (c), the use of the quantization
of the electromagnetic field is not necessary. As is
wel1 known, " the results may be derived from

3' It may be added that for the eigenvalue problem of
the mesotron in a static Coulomb field no complete orthog-
onal system of eigenfunctions exists for cases III, IV and V
{in distinction to cases I and II) since for these cases there
occurs in the second order wave-equations a singularity at
r =0 which is too strong. See I. Tamm, Comptes rendus
U. S.S. R. (Doklady) 29, 551 (1940); I. Tamm, Phys. Rev.
58, 952 (1940};H. C. Corben and J. Schminger, Phys. Rev.
58, 953 (1940}.

"The relation of the two methods to each other is dis-
cussed in detail by W. Pauli, Handbuch der I'kysik, article
on wave mechanics, $15, pp. 201 et st.

ordinary wave mechanics with the aid of certain
formal postulates, in accordance with the general
correspondence with classical theory. The results
of the perturbation theory are given in Table III,
and are valid for all energies. The total scattering
cross sections, as given in Table IIIA, hold only
for values of kQ, the energy of the incident
quantum, large compared with Mc', only leading
terms in the ratio ko/cVc' being given. For the
di6'erential cross section for scattering through
a given angle we must bear in mind that the
conservation of energy and momentum leads to
the relation

kQ

1+ (1 —cos tt)
Mc'
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As for the radiationless collision cross sections,
the results for III and IU are of higher order
than for I and II.

(c) Emission of a light quantum by a mesotron

in the field of a nucleus (Bremsstrahlung) and pair
generation. —For the application of this process
to cosmic radiation it is not permissible to
idealize the nucleus as a point charge; rather one
supposes that the nuclear charge Ze is distributed
over a sphere of radius d. For this radius one
assumes, according to the statistical nuclear
model, the ~alue d=5/6 eh/M .c

For the case Bo&&Sic', the results of the
various theories are given in Table IV. Again
cases III and IV yield a cross section of higher
order than I and II.

The transition probabilities for the Compton
effect and the emission process are not inde-

pendent of each other, for the latter may be
also calculated by the method of virtual quanta4'

(although for case IV this method must be con-
trolled by the direct method). The virtual quanta
method consists in considering the coordinate
system in which the mesotron is at rest and

taking the Fourier expansion of the field of the
quickly moving nucleus. The scattering of a
light quantum out of this held, the cross section
for which may be taken from the formulae for
the Compton effect, then corresponds in the rest
system of the nucleus to the emission of a
quantum.

Very closely connected with the emission of a
light quantum is the process of pair generation

by a quantum. Indeed, according to the theory
of holes, the process involved is of the same
kind as the emission process, the only differences

being that (in the case of pair production) the

light quantum is present in the initial and ab-
sorbed in the final state, and that the electron in

the initial state has a negative energy. The
orders of magnitude of the cross sections for
pair-production (Table IVA) are the same as
for the corresponding bremsstrahlung processes.

Even if the fundamentals of the various
theories are correct, some limitation of the
validity of the derived results arises from the
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fact that the cross sections as calculated by the
perturbation theory are only a first approxi-
mation. This is especially important in the cases
of spin ~~, with an anomalous magnetic moment,
and spin 1 for which particles the cross sections
increase with increasing energy. The validity of
the first approximation of the perturbation
theory in these cases has been discussed by
Oppenheimer" and by Landau. "The first author
uses the criterion that in the coordinate system
in which the mesotron and the light quantum
have equal and opposite momenta the interaction
energy between the mesotron and the quantum
must be small compared with the unperturbed
energy of either one. The second author employs
the condition that the transition probabilities for
all othe' processes that could arise from the same
initial state (the emission of several pairs or
light quanta, for example) must be small in
comparison with the probability for the process
in question. For bremsstrahlung, pair generation
and the Compton effect, these two criteria
give, for cases III and IV, the same condition
Eo&(hc/e')Mc' or hv&(hc/e')Mc' "On the other
hand, for spin 0 and for spin ~, with normal
magnetic moment these criteria are fulfilled for
all energies if (Ze'/hc)«1.

Although it is clear that these criteria are
certainly necessary conditions for the validity of
the first approximation of the perturbation
theory, a closer investigation of the sufficiency
of these conditions (particularly for spin 0)
would be desirable. Such an investigation de-
mands a discussion of the higher approximations
of the perturbation theory. As these lead to
infinities which must be avoided by a suitable
cutting-off, the problem is, however, not a
purely mathematical one, being connected with
the physical problem of the region of applica-
bility of the foundations of the underlying
theory.
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