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N the view of many who cultivate physics, its
principal aim is to prove all things subject to
a few short general laws. Yet whenever this aim is
achieved in some restricted field, there is likely to
follow a strange and depressing result. Reduced
to law, the field becomes dull; the thrill of dis-
covery and the pleasure of simplification are
gone, it may even be hard to sustain a proper
delight in the beauty of order. But if when this
stage has been reached an exception is found at
last, the excitement is all the greater because of
the scope of the law; and the proof of the rule has
prepared the setting for the exception.

Now of all the fields of physics, two of those
most thoroughly subject to rules of long standing
are the flow of heat through matter and the flow
of fluids through tubes. Liquid helium when
exceedingly cold—within 2.2° of the absolute
zero—violates these rules in a thoroughgoing
way, and therefore is for the present the most
exciting fluid in nature. It is far out of the com-
mon in respect of magnitudes also; by which I
mean, that it is a much better conductor of heat,
and also flows much more readily, than anything
else which at present is known. To have come on
a fluid like this is like finding unexplored land in
the midst of an ancient community, or a tract of
primeval prairie among the corn fields of the
Middle West.

It must at once be said that there are two
forms of liquid helium, one of which is unre-
markable. The temperature which I gave as 2.2°
-— it is called the ‘‘lambda-point” by a suggestion
of Ehrenfest's—is the transition not between
liquid and gas, but between the ordinary and the
extraordinary liquid. These are known as helium
I and helium II. The transition between the two
was detected first by a kink in the curve of
density against temperature—not a very notable
kink, but still the effect was observed as early as
1911 (by Onnes). Most of the measurable quali-
ties (density, dielectric constant, specific heat,

* A lecture given before the Colloquia of the Case School
of Applied Science and the University of Rochester, and
clsewhere.

heat of vaporization, surface tension, conductivity
for heat, viscosity) change appreciably as the
liquid passes over from one to the other form:
With some the change is trivial, with others
tremendous. But there is no latent heat of
transformation detectable, though the methods
of detection are very delicate;f and this makes
people hesitant to speak of the two as ‘“‘phases.”

The only distinction between the two that
“meets the eye’” was recorded in 1932 at Toronto.
To express it in words written later by Wilhelm,
Misener and Clark: “Helium I visibly boils as it
is being evaporated, in a way similar to ordinary
liquids; but immediately the lambda-point is
passed, boiling stops, and the liquid appears to be
absolutely quiescent.”” This text suggests how the
temperature of liquid helium is varied in experi-
ments where variation is desired: there is a pump
incessantly working away at removing the
gaseous helium which is steadily boiling off, and if
the experimenter wishes to cool or to warm the
liquid, he speeds up the pump or slows it down.
There is another and a famous method for
attaining still lower temperatures, that of
“adiabatic demagnetization,” which is applied
not to the helium directly but to a paramagnetic
salt adjoining it; but at the temperatures reached
by this it appears (though little is known as yet)
that helium II is no longer so remarkable. The
methods of measuring temperature, in these far-
from-familiar ranges, are very interesting and not
always quite reliable; but this subject would
absorb the whole article if I were to give it a
chance, and so we must for the present accept the
temperature-values as given.

Now we turn to the strangest of the phenomena
and the simplest of the experiments: the ‘‘creeping
films" of helium II and the observations which
reveal them.

None of the facts in this field is more striking
than the easiest to be observed of all. If a cup
partly full of helium II is lowered partway into a

t Had the latent heat been as much as 0.001 as great as
the specific heat of the liquid near the lambda-point, it
would have been detected.
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F1aG. 1. Cryostat for the study of
the creeping film of liquid helium I1
(Daunt and Mendelssohn: Proceed-
ings of the Roval Sociely).
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bath of the same liquid, the levels within and
without come gradually and exactly to the
identical height, as if there were a perforation in
the cup or a siphon over its rim—but there is no
siphon and there is no perforation. The cup need
not even be partially full to start with—it can be
empty initially, and still the liquid will climb
invisibly over its rim from the bath. If it is
suddenly lifted so that the inner level is now
above the outer, it drains back into the bath.
Indeed even if lifted completely out of the bath
the cup continues to drain, and the liquid is
found eventually hanging or dripping in droplets
from the outer side of the bottom.

This was observed in 1922 and by Kamerlingh
Onnes himself; but most of what is known in
detail was found in recent work in Oxford by
Daunt and Mendelssohn. I show their sketch of
their cryostat as Fig. 1. The central ‘“‘tube”
contains the bath of liquid helium II at V, and B
is a symbol of the cup or “beaker” suspended
from the winch above. Around and over the bath
are protective sheaths of liquids not quite so cold
but still very chilly: helium I at 4, hydrogen in
D, and nitrogen in D;. These make it next to
impossible for heat to be conducted to the bath;
but ordinary daylight may vaporize the helium I1
too rapidly for convenience, and these experi-
ments were done in the light of neon tubes.
Observation by eye, with or without the aid of a
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cathetometer, is made upon the rise or fall of the
menisci in beaker and bath. In the pictured
apparatus, the beaker being about a centimeter
in breadth, the rates of fall or rise were of the
order of millimeters per minute.

Let the beaker be filled to a level higher than
that of the bath. Slowly and steadily it empties
itself, till either the two levels are equated or else
the experimenter suddenly plunges the cup down
so deep that the interior level becomes the lower,
whereupon instantly (so far as can be told) it
proceeds to fill itself out of the bath at just the
same rate as previously it was emptying. This is
vividly shown in Fig. 2, where also one sees how
nearly constant the rate is—a remarkable fact!
There are, it is true, departures from constancy
of rate if either the inner or the outer level is
within a centimeter or two of the beaker-rim;
there is also a slight upward trend of the rate of
transfer with the difference of height between the
levels, too small to be seen in Fig. 2. The fact
that there are such departures is less striking by
far than the fact that they are slight enough to be
neglected in the first analysis. Indeed the efflux
from the beaker and the rate thereof are not
contingent on the presence of the liquid bathing
the outside of the wall. The outflow continues
when the beaker is lifted quite out of the bath,
and it continues also—and at the identical rate—
when the beaker is girdled by a wire heated to
such a degree that the film cannot pass over or
even approach it without being vaporized.

Now having twice employed the word and
concept “film”" I must make haste to justify it.
To cite one of the aptest of the Daunt-Mendels-
sohn experiments: the beaker was designed with a
cylindrical hollow of which the radius had a
particular value Ry down to a certain depth below
the rim, and a smaller value Ry,/a below that
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Fi1G. 2. Rise and fall of meniscus in beaker and bath
(Daunt and Mendelssohn).
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depth: @ was 3.58. As the meniscus in its fall
passed by the point of sudden narrowing, its rate
of fall changed quickly from one steady value to
another and a higher one (Fig. 3). Let us form
first a hypothesis destined to be proved wrong by
the experiments, and then a happier one. Suppose
the rate of efflux to be proportional to the exposed
area of liquid (as it should be, if the effect is a
simple evaporation). It would then alter in the
proportion 1:a? at the point of sudden narrowing;
but at the same point, the rate of fall of the
meniscus entailed by any constant rate of efflux
would alter in the proportion a? : 1; the actual
rate of descent would therefore not change at all.
But the rate of descent does change, and so the
first hypothesis is false. Moreover it changes in
sensibly the ratio ¢ : 1 (actually, 3.57 to 1 was
observed, a remarkable agreement!) and this
shows that the rate of efflux varies as the circum-
ference of the beaker, i.e., as the breadth of wall
in contact with the outflowing liquid. This is the
prime quantitative reason for believing in a film
of constant speed (or, not to go one single further
step beyond the data, a film of constant product-
of-thickness-and-speed) clambering up and over
the wall which dips into the helium II.

Taking this as established, we can think about
choosing a numerical measure for the effect. It
must be the rate of efflux or influx of helium II
per unit breadth of overflowed wall. According to
Daunt and Mendelssohn this is a sharply
varying function of temperature, as Fig. 4 dis-
plays: imperceptibly small at the lambda-point,
it rises with falling temperature to the value 1.5
cc per cm per second at 1.5°, and thence onward
to 1.0° is sensibly constant. The measurements
were made with beakers of glass, and accordingly
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F1G. 3. Dependence of rate of fall of meniscus on diameter
of beaker (Daunt and Mendelssohn).
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F1G. 4. Dependence of rate of flow of film on temperature
(Daunt and Mendelssohn).

it is to the flow of helium II over glass that these
figuresrefer. They may however be correct for the
flow of helium II over any smooth surface, since
in an experiment with a beaker of copper
carefully polished the rate was about the same. A
strand of rough copper wires passing from beaker
to bath had made the efflux much more rapid in
one of the first experiments.

To convert these figures into speeds of flow, one
must ascertain the weight of the film per unit
area. To do this Daunt and Mendelssohn coiled
up a strip of copper having an area of 1000 square
centimeters, soldered to it a needle-point, and
lowered it until the point dipped into the ‘‘bath,”
which for this purpose was confined to a capillary
projecting downwards from the body of the
cryostat-tube. The needle was expected to serve
as a bridge whereby the helium II would cross to
the strip, on which it would presumably spread
itself out as a film of the type desired. The level
of the liquid in the capillary was measured just as
the point was lifted out, and then again when the
strip had been raised so high in the tube that it
was warm enough to shed its coating, the sub-
stance of which presumably found its way back to
the capillary. From the difference of these levels
Daunt and Mendelssohn computed values of
weight-per-unit-area which they translated into
values of film-thickness, assuming in so doing
that the volume-density of the film is the same as
that of liquid helium II in bulk. These values are
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scattered* between 25 and 50 mu. The thickness
being taken as 50 mg, the speed of flow is figured
as 20 cm/sec. at 1.1°,

Now we are going to consider such topics as the
transport of heat by helium II and the passage of
the liquid itself through very narrow channels.
These are intricate and perplexing, and if I had
begun the article with them many a reader might
have been discouraged very soon. I deferred
them, however, not as a stratagem, but because
in studying first the fantastic ease of motion of
helium II along a surface we may have become
acquainted with the cause of many a curiosity.
The creeping films may indeed convert the
transport of heat into something very unlike a
simple conduction through motionless matter,
and the passage of the liquid through a capillary
into something very contrasted to a simple
viscous flow.

Experiments on both are done with capillaries,
usually but not always cylindrical in bore,
connecting two broader containers of helium II.
In the study of passage, the liquid sinks from the
upper container through the tube into the lower,
gravity being the impelling force; the tempera-
ture is, of course, the same throughout. I shall
later state the laws which a classical fluid in such
circumstances would obey. In the study of
transport of heat, a temperature-difference AT is
established between the containers, and there is
no palpable motion after equilibrium is reached.
[t is assumed that all the transport is through the
column of liquid in the capillary; this at first
seems strange, but after all, the glass walls of a
capillary are very poor thermal conductors, and
the containers themselves are often protected by
evacuated spaces. Sometimes (as in the work of
Allen and his colleagues at Cambridge and in the
later Leyden work) AT is steadily maintained by
a heater-wire in which electric current is gener-
ating heat at a known and steady rate, say Q
calories per second. Sometimes (as in the earlier
Leyden work) AT is raised to an initial value
AT, and then the supply of heat is suddenly cut
off; the warmer container thereupon cools down

* The extent of the scattering, i.e., of the discrepancies
between different values, is disconcerting; but there is the
reassuring feature that the same method, when applied at
temperatures above the lambda-point, gave no sign of a
film at all, though films of thicknesses as low as one mu
could have been detected.
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and heat departs from it at the rate Cd(AT)/dt
—C standing for the specific heat of the warmer
container and its content, which must be known
if the method is to be used.

Thus in both cases there is transport of a known
quantity of heat per unit time (call it Q) down a
cylindrical column of liquid with a temperature-
difference AT or AT, between the ends thereof.
The ratio Q/AT would serve as a measure for the
facility of this transport. However in dealing
with ordinary conductors of heat, it is the
custom to give the value of the ratio

Q QL

- = =K,
AAT L) AAT

L and A here standing for the length and the
cross-sectional area of the capillary. In an ordi-
nary conductor « is found to be independent of L
and 4 and AT (so long as AT is not so great that
the properties of the substance vary appreciably
along the column). The substance is then be-
having like a classical conductor of heat, and it is
proper to call « the ‘‘thermal conductivity”
thereof. For helium II there are few data as yet
bearing upon the dependence of k on L and 4, but
the facts about to be quoted will strongly suggest
that here we have no classical conductor!
Nevertheless the symbol « and the name of
conductivity are still applied to the ratio
aforesaid. I will use the former but not the latter.

For helium II, then, the transport of heat along
narrow cylindrical columns is in two ways
sensational: « varies with AT and Q (which of
these last one takes as independent variable is not
important); and the values of « for the lower
values of AT and of Q are higher by far than the
greatest thermal conductivities yet reported for
other kinds of matter.

To give examples: the Leyden school (Keesom
and Keesom) first reported 190 cal. deg.™! sec.™!
cm™! for k of helium II and 0.00006 for « of the
only-slightly-warmer helium I. Of these two
values the latter is like the thermal conductivities
of gases at ordinary temperatures, but the former
is “about two hundred times that of copper at
ordinary temperatures, or about fourteen times
that of very pure copper at liquid-hydrogen tem-
perature.”” Even then, helium II stood out as
“by far the best heat-conducting substance we
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F1G. 5. « values as function of temperature for various
values of heat-flow Q (Keesom and Saris). Divide ordi-
nates by 4.19 to translate into units used in context. Q is
expressed in watts/cm?.

know’’; and how much more so from the later
Leyden data which yielded «-values as high as
1900!

Since « declines as Q and AT increase, the
foregoing values correspond to especially low AT
values, presumably the lowest which could be
readily measured; values of 0.001° were lately
evaluated “‘with an accuracy of about 5 percent”
at Leyden, the temperature-gradient along the
capillary being then about 0.00003° per centi-
meter. Moreover for given AT, « passes through a
maximum in the neighborhood of 1.9° (Fig. 5),
and accordingly those values were taken in that
temperature-range.* Below 1.0° « has already
dropped down a large part of the way toward
“normal” values, as we shall presently see.

I have passed quickly over the problem of
measuring AT, as though it were so easy as not to
be worthy of mention; but the contrary is the
case, and there is a remarkable story here.

At Leyden the estimates of the temperatures
at the two ends of each capillary were made by
methods still deemed reliable (by measuring
resistances of wires or susceptibilities of para-
magnetic salts). At Cambridge the estimate of

* Some information about the dependence of ¥ on L and
A (page 260) appears in the paper of Keesom and Saris
(Physica 7, 241 86940)). No dependence on L was found,
and at 1.42° and 1.6° no dependence on A. From the
plausible notion that heat is carried by a creeping film
along the walls, it would follow that « should increase with
diminishing 4. At temperatures from 1.84° on upward, a

slight increase was indeed found, not however great enough
to sustain the notion.

SUPERFLUID 261
AT was made by a method then deemed equally
reliable, indeed perhaps much more so. Allen and
his colleagues arranged the capillary to connect a
“bath” similar to that of Fig. 1 with a bulb
initially evacuated and shielded well against
inflow of heat. The difference in height between
thelevelsin bulb and in bath should then be equal
to the difference in pressure between the vapors
within the bulb and over the bath, respectively.
The vapor-pressure of helium II is a function of
temperature previously well determined; thus
knowing the temperature of the bath, the ob-
server should be able from that difference in
height to determine the temperature of the liquid
in the bulb. The bulb was traversed by a heater
wire; on sending a current through this wire,
Allen and Jones observed that the meniscus in
the bulb was forced down, and from its new
position they computed AT and then « in the way
aforesaid. All seemed well, until when working
near their lowest attainable temperature (at
1.08°) they found that when the wire was slightly
heated the meniscus in the bulb went up instead
of down!

On making and testing this strange observa-
tion, Allen and Jones were willing to discredit
their own former conclusions as to the dependence
of k on AT. It was not necessary to be so drastic,
since at Leyden also « has been found to decrease
as AT increases; but it seems likely enough that
the numerical values earlier published at Cam-
bridge for the quantity then called « should be
reconsidered in this light. At any rate the interest
of the discovery outweighs by far the incon-
venience of having to revise the inferences as to
the transport of heat!

Taking off the top of the bulb and making it
thus again a ‘beaker” (Fig. 6, left) so as to
establish equality of pressure over the liquids
within and without, Allen and Jones again
observed the rise of level within the beaker when
the heat was turned on, ‘“increasing with in-
creasing heat-flow and, for constant heat-flow,
increasing with decreasing temperature.” It has
even been found (by Daunt and Mendelssohn)
that the same effect occurst when there is no hole
in the beaker and all the transfer occurs by the
film creeping over the rim. One might remember

t The level-difference may reach 5 mm!



262

the effect by thinking that the helium II climbs
out of the bath and into the beaker in order to get
warm. The experimenters express it however by
saying that when heat is flowing one way along a
capillary containing helium II, there is a tendency
for the liquid to flow bodily the other way. The
dependence of this tendency on the radius of the
capillary was being studied by Allen and Reekie
just at the outbreak of war, and they were finding
indications that the tendency is reversed for
broader tubes and that near the capillary wall it
is not the same as it is in the middle of the lumen.

Related to these facts is the prettiest sight of
all in this field, the fountain-like spray of what is
called the “fountain-effect.”” Allen and Jones had
taken a tube of glass open at both ends, and
submerged it partly in helium II; the upper end,
narrowed to a capillary, emerged from the bath;
the lower end, broadened and curved in a
semicircle, was packed with emery powder (Fig.
6, right). Shining an ordinary 60-watt flashlight
on the powder-filled end of the tube, they saw
shooting out of the upper end a steady jet of the
liquid which broke and fell as a spray! it actually
sprang as much as 16 cm above the lip of the
tube. Here presumably is the tendency of the
liquid to flow against the heat carried to an
extreme, because the channels between the

REATING
CcoIL

F16. 6. Apparatus for showing variation of level in
beaker when heated (left) and fountain-effect (right)
(Allen and Jones; Proceedings of the Royal Society).
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powder-grains through which liquid and heat
alike must creep are so extremely narrow.

We are far from having exhausted the transac-
tions of heat with helium II. There is for instance
an experiment (of Daunt and Mendelssohn) in
which the liquid flows through a porous plug, and
the temperature rises (by 0.01° or so) on the side
which it is leaving. Perhaps this is a sort of
inverse of the phenomenon of the jet. I will,
however, leave the subject after describing the
trend of specific heat, which is exceptional though
not quite so greatly anomalous as the apparent
thermal conductivity which we have just con-
sidered or the apparent viscosity to which we
shall later come.

The trend of specific heat on both sides of the
M-point is shown in Fig. 7 (from the Leyden
school). For helium I on the right there is a
decline with falling temperature (the upturn near
the N-point being ascribed to the presence of
small regions in the fluid where helium I has
already been transformed to helium II). At the
\-point there is a sudden upward jump to what
proves to be the highest value achieved by
helium II, since with further cooling the specific
heat drops steadily away. Further down the
scale, between 0.8° and 0.2° (so Pickard, Kiirti
and Simon of Oxford have reported) the specific
heat is varying as the cube of the temperature.
This is what may be called a normal or con-
ventional behavior for liquids and solids. The
fact suggests that helium I may lose its anomalies
in becoming exceedingly cold; and indeed, when
Kiirti and Simon measured the k-value they found
itlow—0.022at0.5°and 0.002 at 0.2°. Apparently
then helium II, instead of being queerer the
colder it is, passes through a sort of maximum of
queerness not very far below the \-point, and
turns back toward the norm as it approaches the
absolute zero.

We are now to study the passage of helium II
through capillary tubes; and in so doing we shall
be forced along the same mental path as in our
study of the transport of heat through this liquid.
There we began by assuming conduction of heat
to take place in the classical manner; but the
quantity which should have been the thermal
conductivity turned out to be strangely high and
strangely variable, and at the end it was sug-
gested that these results imply that the transport
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of heat is not altogether by classical conduction.
Now we are to begin by assuming helium II to
flow in the classical manner of a conventional
viscous fluid; but very soon it will be apparent
that the quantity which should be the ‘“‘coefficient
of viscosity” is strangely low and strangely
variable, and that the best way of dealing with it
is to drop the supposition that the liquid is
behaving as though it were ordinarily viscous.

But what exactly is this standard, the behavior
of a classical viscous fluid flowing conventionally
through a tube? It may not be amiss to remind
the reader thereof, and in so doing take occasion
to define the variables of the experimental
problem. The chief dependent variable, which I
shall loosely call the rate-of-passage of the liquid,
is best defined as the volume-per-second of liquid
traversing or emerging from the tube: I denote it
by V.. The velocity of the liquid varies from a
maximum in the axis to a minimum at the wall,
the latter generally taken to be zero. Dividing V,
by A, the cross section of the tube, one gets a
quantity which is a sort of average velocity;
usually it is miscalled ‘‘velocity’ and is denoted
by ». The primary independent variables are r
and [ the radius and length of the tube, and p the
pressure-head or pressure-difference between the
ends; in the classical fluid it is the pressure-
gradient p/l which dominates, not p separately
nor [ separately. As the viscosity of a fluid
usually depends on the temperature 7', this last
is also an independent variable.

For the ordinary viscous fluid moving through
a cylindrical tube, these variables are linked by
the formula of Poiseuille

- w(l) o/
,—8 . rip/t).

Thus the rate of passage varies directly as the
pressure-head inversely as the tube-length, di-
rectly as a high power (the fourth) of the tube-
radius. The constant 7 is the ‘‘coefficient of
viscosity.” Temperature appears in the formula,
not explicitly indeed, but implicitly through 7.
Since usually liquids become more viscous with
cold, the expectation is that the rate of passage
will fall with falling temperature.

Ordinary liquids conform to all of these rules,
but helium II not to any.

THE
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Fi1G. 7. Specific heats of the two forms of liquid helium,
plotted as functions of temperature (W. H. and A. P.
Keesom; Physica).

(When the flow is between plane-parallel walls
instead of through a narrow cylinder, the formula
differs from Poiseuille’s by only the substitution
of the third power of the wall-to-wall distance
for 7* and the substitution of another numerical
constant for (w/8). This case was realized in a
very ingenious way by Giauque, who filled a
capillary of glass with hot molten solder which
cracked away from the glass when it cooled,
owing to the known difference between the
thermal coefficients of expansion—the annular
passage left between was so slightly curved that
its walls could be regarded as plane-parallel.
Kapitza also observed the flow between parallel
surfaces optically smooth; it was rather a rush
than a flow, since even when the surfaces were
lying one on top of the other the liquid oozed
through so rapidly that no measurements could
be made.)

Let us have in mind the magnitudes concerned.
In the Allen-Misener experiments, the pressure
was varied from 160 down to 5 dynes/cm (the
higher figure corresponding to a 15-mm column
of liquid helium)—the tube-length, from one mm
to 40 cm—the temperature, from 1.15° to 2.18°K,
the upper of these temperatures being the
lambda-point. As for tube-radius, there were
individual tubes of diameters 438 and 153 and 50
and 16.2 microns, but the most striking results
were obtained with multiple channels made in an
ingenious way, which I must pause to describe.
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F1G. 8. Variation with temperature of the exponent s in
the relation v=p* obtaining for flow through capillaries
(Allen and Misener: Proceedings of the Royal Society).

A tightly-bound bundle of wires was slipped into
a metal pipe, which then was drawn through a
succession of steel dies of decreasing diameter till
the wires were mashed together to and even
beyond the threshold of deformation. The chan-
nels between the wires were taken to be twice as
numerous as the wires, and the average cross
section estimated by sending through them a
fluid known to behave classically and with a
known viscosity (ordinary gaseous helium) and
using Poiseuille’s formula for computing the
area. This average cross section corresponded to
radius-values of 3.9u for one and 0.12x for
another bundle of channels, but it is not supposed
that these were truly circular in section. Giauque's
annular slit between solder and glass had a
breadth of about one micron.

We consider first the dependence of rate of
passage on pressure, which is to serve as the
primary test as to whether a fluid is classical. It
is required that v should be proportional to ».
Otherwise expressed : unless the plot of log v against
log p 1s a straight line of slope unity, the fluid is not
behaving classically (except in one case), and it is
pointless or worse than pointless to try to
compute the viscosity.

The cumbrous phrasing of this statement is
suggested by the fact that ¢ s a feature of helium
11 that under nearly all conditions the plot of log v
against log p is a straight line but the slope s thereof
is not unity. This fact emerges from the data of
Allen and Misener, who found values of slope
ranging all the way from 0.8 down to practically
zero. Many of these appear in Fig. 8, where s is
treated as a dependent variable, 7" being the
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independent variable and r the parameter which
varies from curve to curve.

It is not surprising that the approach of s to the
classical value of unity should be closest for the
fattest capillaries and the highest temperatures;
it is perhaps surprising that the approach should
be so incomplete at best; it 4s surprising, and
decidedly so, that in some conditions (the
narrowest channels and the lower temperatures)
the amount of the pressure-head should make no
perceptible difference to the rate of passage! One
is reminded of the behavior of the gliding films in
which helium II creeps out of beakers; but of
this, more later.

Before going on to the dependence of V, on the
other variables, we must be reminded that there
is after all another value of s which is not
incompatible with a classical fluid. This is the
value 0.5, which occurs when the liquid is in
“turbulent” motion—that type of motion which
occurs when certain limits of speed and other
variables are transgressed, and is distinguished
by a most irregular and chaotic eddying and
whirling throughout the moving mass. Poiseuille’s
formula with its s value of unity applies to the
other extreme case, that of “laminar” flow when
the water travels evenly along in straight lines
parallel to the axis of the capillary. Allen and
Misener observed the s value 0.5 with their
shortest and fattest capillaries, and also (which
seems strange) for the passage of helium II
through tightly-packed powder.

We must notice briefly the dependence of V, on
the other variables. As for I: with a constant
pressure-head, the rate of passage should diminish
towards zero as ! is increased—with helium II it
diminishes indeed, but so slowly as to suggest a
limit greater than zero, as though with a finite
pressure the liquid could creep even through a
tube of indefinite length. As for the dependence
on 7, let us think of » the mean velocity in
preference to V,: it ought to increase as 7* (since
V, ought to increase as %) but instead it passes
through a minimum and thereafter rises gradually.
Let us proceed in imagination from the wider
tubes to the narrower: it appears that below
about 15y, the narrowness promotes the flow of
the fluid, as though the proximity of the walls
encouraged it. As for temperature: the rate of
passage falls off with increasing warmth for
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every capillary except the fattest, and the
narrower the passage the more sharply » and V,
fall off as the temperature climbs toward the
lambda-point; we see this behavior in Fig. 9. The
liquid in the tube of broadest bore is acting like
an ordinary fluid growing less viscous as it
warms up; but for the others we should have to
say the contrary, if the evidence were not
convincing that the notion of viscosity no longer
has a place.

Returning to the dependence on radius: sup-
pose that for V, we write a hypothetical formula
in powers of 7:

Vo= Ar+Bri4Crd- -

and apply it to the curves of Fig. 10, which stand
for V,/r plotted as function of » for various
combinations of T and p. For the lower tempera-
ture there is indeed an intercept on the axis of
ordinates, and therefore a coefficient 4 which
does not vanish. The trend of the curve is linear
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at first, and therefore B does not vanish; later it
is concave-upward, and so the further terms are
not to be disregarded. Were the liquid classical,
only the term in 7* would appear, in accordance
with Poiseuille’s law; how far this is from the
truth!

Altogether then we find helium II a very
remarkable thing, one of those few to which the
word “unique’” is properly applied. Theorists
have been busy for several years in attempts to
explain its qualities. It is to be hoped that the
data already in print are sufficient for their
purposes; for owing to the location of all but one
of the laboratories of which the work has here
been cited, it seems likely that we shall not soon
get further information.
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