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1. INTRODUCTION

HIS report is a discussion of a group of
researches that began to appear in the

scientihc literature around I927 and which dealt
mith elastic co11isions between electrons and
gaseous molecules. In these researches a well-
de6ned beam of electrons was allowed to pene-
trate a gas-61led chamber and the number of
electrons scattered from the beam at various
scattering angles mas measured. The original
investigators in the 6eld hoped, no doubt, to
accomplish two things by this type of experiment.
They hoped not only to enhance the existing
knowledge of atomic structure but also to de-
termine the behavior of an electron beam when

the beam was scattered by an atom whose
dimensions were comparable with the beam's
associated de Broglie wave-length. With regard
to investigating atomic structure, it has been
pointed out that the electron more or less plays
the role of' a probe; the atom's electrostatic
held is the region to be probed. This conception
of the electron as a probe probably seems more
plausible to the experimenter since he can by
proper regulation of the electron's energy choose
that part of the atom he wishes to probe. For
example, if he wishes to explore the I and M
shells of an atom like argon, he uses electrons with
energies somewhere near 50 electron volts. To
investigate the region nearer the nucleus he em-

ploys faster electrons, electrons whose energies
are to be measured in kilovolts. The experimental
data yielded by these investigations have in

almost all cases given evidence that the atomic
fields are those predicted by the best available
method of wave mechanics. Besides this rather
important con6rming evidence regarding atomic
structure, these researches have also shown that
the classical particle theory of an atom-electron
collision is wholly inadequate, except when the
electrons are moving with very large velocities.
The wave theory, ' on the other hand, has been

8

so successful in its interpretation of these
scattering experiments that these experiments
may nom be regarded as important experimental
evidence supporting the wave theory of electron
propagation.

2. SCATTERING OF ELECTRONS AS PARTICLES

The conception of the electron as a probe is of
course only acceptable if the electron beam is
considered to be composed of electron particles
rather than a beam of de Broglie electron waves.
In the scattering process, according to the
classical particle theory, the colliding electron
describes within the atom a curved path, as it is
attracted towards the center of the atom by
some sort of centralized electrostatic force. The
angle of scattering 8 is de6ned as the angle
between the radial path of departure from the
atom and the electron's initial direction. The
magnitude of this angle depends upon the kind
of field through which the electron passes, upon
how fast the electron was initially moving, and
just how it was approaching the scattering
atom. The latter factor is represented by the
impact parameter p which is denned as the
shortest distance between the center of the atom
and the electron's path had the electron passed
on without being defIected. Since all manners of
approach are possible, which is equivalent to
saying that all values of p are equaily probable,
the problem is solved as soon as the relationship
between 8 and p is found. From this relationship
the number of paths leaving the atom between
the angles e and e+d8 can be easily ascertained.
It is thus apparent that the problem of particle
scattering is that of finding the distribution of
electron paths within the scattering atom. It has
been shown that if the atomic force 6eld is an
inverse-square-1am 6eld, that is, the field that
mould accompany a bare nucleus, the paths are
hyperbolas with the scattering center at one of
the foci. The relationship between scattering
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angle and impact parameter for this field is
given by

tan 8/2 =2Ze'/Ep,

where Ze is the nuclear charge and E the initial
kinetic energy of the electron. Fig. 1 shows
several of these paths for particles undergoing
a deflection in the field of a bare nucleus. With
all manners of the electron's approach equally
probable, this field gives a preponderance of
paths in the forward direction. The majority of
electrons show very little deviation in their
passage through a field furnished by a bare
nucleus and the scattering curve follows a cosec4

(8/2) law.
One becomes aware of the fact that in the

particle theory the position of each individual
electron is known throughout the scattering
process. Every scattered electron has one direc-
tion of app'roach or impact parameter p, and
follows a specific path through the scattering
field. For example, one can say of every 500-volt
electron which has been scattered at an angle
8=120' by a bare hydrogen nudeus, that it has
approached the nucleus as if to pass it at a
distance of 0.033 angstrom and has followed a
a hyperbolic orbit coming as close as 0.013
angstrom to the nucleus at the apex of its orbit.

The expression for the number of electrons
scattered per unit solid angle at the angle 8„when
the central force field varies as Zs'/r', is given by

I(8) = (Z'e4 cosec4 (8/2))/16E'. (2)

The above expression was first developed by
Rutherford for the scattering of o.-particles by an
atomic nucleus. For any other type of central
field the path may be determined' from the
1 elationsh, ip

I(8) = (J/m'v' sin 8) (dJ/d8)

Fze. 1. Schematic diagram of several electron paths in
the Coulomb 6eld surrounding a bare nucleus located
at 0.

in which J may be found from

8/2 —ir/2 — (8/8 J) (2m(Z —V) —J'/r') &dr =0,
~0

where fp ls the positive zero of the term in the
brackets. The quantity V in the expression is the
potential field. Only the inverse-square-law
field, however, leads to a simple analytical ex-
pression such as (2) for the scattering formula.

3. ScATTERING oF ELEcTRoN WAvEs

In the wave theory of scattering the beam of
electrons which is directed into the scattering
chamber is represented by a plane wave of wave-
length X=h/mv. In the scattering experiments
discussed here the electron energies range, for
the most part, from one to a thousand electron
volts and thus the associated de Broglie wave-
lengths vary from about one-half angstrom to
ten angstroms. The very fact that these wave-
lengths are comparable with atomic dimensions
suggests that the explanations of the scattering
events involve a diffraction phenomenon. It
develops that this suggestion is correct and as a
result the scattering theories lead to solutions
of two general types. One of these resembles
Raleigh's treatment of the scattering of sound
waves by small particles and the Mie-Debye
theory of the scattering of light waves by small
spheres. The other is an application of Huygens'
principle as it has been applied to the scattering
of light.

To understand the conditions under which
these two theories are applicable one first
defines atomic "size" as it is used in the theory
of electron-atom collisions. Here "size" depends
not only upon the extent of the atomic field
but also upon the energy of the colliding electron.
"Size" is defined as that radial distance r, at
which the potential held of the atom numerically
equals the electron's initial kinetic energy. The
effective size, or r„is thus flexible, diminishing
as faster colliding electrons are considered.

It has been found that the ratio of the colliding
electron's wave-length Xo to the effective atomic
radius r, may be used as a criterion for designat-
ing just when these two types of wave theories
are best applied. It can be shown that if Xo/r, is
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Mie-Debye method is more advantageously used.
In Fig. 2 are shown two scattering curves for
argon which are representative of these two
types of wave scattering. The curves are ac-
companied by a diagram showing the relative
magnitudes of the effective radius r„and the
wave-length of the scattered wave. The calcula-
tions for Fig. 2 were made by using the Thomas-
Fermi values for the field. One observes that
fast electron scattering is of the undistorted
wave type whereas the slow electron scattering
is of the distorted wave type.

4. MOJAVE SCATTERING WITH DISTORTION

0 90 I80
SCATTERING ANGLE

90

Ftc'. 2. Scattering curves of argon representing distorted
and undistorted wave scattering. Corresponding ratios of
wave-lengths to argon atomic radii, r„alsoshown.

about unity, the amplitude of the wave repre-
senting the plane incident beam is practically
unaltered as it passes through the scattering
atom. This is equivalent to representing the
incident wave everywhere throughout the atomic
field by the plane wave expression exp (iks) If, .
however, Xg&r, this approximatim is no longer
plausible and the incident wave front becomes
appreciably distorted inside the scattering atom.
It has become customary to describe the scat-
tering associated with these two theoretical
treatments as the scattering of distorted and
undistorted waves. Cases of scattering occurring
with distortion are easily distinguished from
those without by the nature of the scattering
curves. Scattering curves from distorted wave
scattering show peaks and valleys suggestive of
di6raction patterns, whereas the undistorted
wave scattering gives curves which fall oH

monotonically with angle.
The theories using Huygens' principle lend

themselves best to the treatment of those cases
in which the wave fronts are distorted only a
little as the wave passes through the atom. That
is to say, Huygens' method is used most success-
fully when the electron's associated de Broglie
wave-length is of the same order of magnitude
as the eR'ective atomic radius r, . When, however,
XQ&r. , a method patterned after the optical

The Mie-Debye wave problem of scattering is

simply that of finding the amplitude of the wave

f at large radial distances from the scattering
atom, where P for this particular problem is a
solution of Schrodinger's wave equation. The
incident beam is represented by a plane wave
of unit amplitude traveling in the s direction

P; = exp (iks)

The scattered wave P, travels out radially from
the scattering atom with an amplitude which is
a function of 8 as well as r. In this expression

k = 27r/X =me2~/k= 2&E&min /k (4)

in which X is the associated de Broglie wave-

length. The sum of these two waves

is a solution of Schrodinger's equation

'%if+(k' —87r'm V(r)/k')/=0

in which V(r) is the spherically symmetrical
potential field of the scattering atom. Schroding-
er's equation as it stands is dif6cult to solve
directly, partly because the atomic field V(r) can-
not be expressed as a simple function of r. How-
ever, a. solution of Eq. (5), which is ~alid,
incidentally, for distorted as well as undistorted
waves, has been obtained by Faxen and Holts-
mark' by means of an expansion of the P's.

In the Faxen and Holtsmark solution P is

expanded into a series of smaller amplitude
terms. In applying this expansIon it is con-
venient to apply it first to the incident wave.
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Let P,(r, 8) be divided into a 8 and an r function, wave gives the sinusoidal expression

thus

P;(r, 8) = C; P P„(cos8)g„(r)/r,
a~0

(8)

~here the g„'s are solutions of the following

series of diRerential equations

d'g „/dr'+ (k' n(n—+1)/r') g. =0. (9)

The n's appear originally in the solution as whole

number indices but further considerations show

that they also have a physical significance. They
are the angular momentum quantum numbers

associated with the electrons in the incident
beam. So one observes that the incident electron
wave has been expanded into a series of terms
in which each term is associated with a different

angular momentum quantum number n. Each
term also shows a diferent angular distribution
which is given by the Legendre coefficients

P (cos 8). These individual terms in the expan-

sion of P; play a role similar to the various im-

pact parameters p belonging to the individual

electrons of the beam in the particle theory.
A similar treatment carried out for the scattered
wave gives with the aid of (5),

y, (r, 8) = O(8)g(r)/r.

Schrodinger's equation for only the incident

wave is obtained by setting V(r) =0 in (5),
which gives

VQ,+O'P; =0.

A well-known solution to this equation is

n=ao

f,(8, r = ~ ) = C; P P„(cos8)

Xsin (kr —ns. /2)/kr =exp (iks) .(12)

One notes that the asymptotic solution for the
scattered wave should have the same general
form as that of the incident wave, since (9) and

(11) are identical for large r Th.e scattered wave

diHers from a plane wave solution only in the
value of an arbitrary constant. This constant is

the very significant phase shift constant
The asymptotic solution of (11) for the scattered
wave with the phase shift constant q„introduced
1s

P, (8, r =' ~ ) = C; P P (cos 8)
m=0

Xsin (kr n7r/2) +q„)/—kr. (13)

Both g(r) and G(r) are zero at the origin, and

sinusoidal but out of phase at large r and s.
The behavior of Go(r) and g~(r) in going from

the inside to the outside region of a scattering
atom is shown in Fig. 3. The dotted lines in the
figure depict go(r), for the incident waves, and

the solid lines G0(r) for the scattered wave in the
region of the atomic scattering field. It is ob-
served that the shift in phase is largest for slow

electrons. These curves were computed by
McDougall' for helium, using Hartree's values

for the field. It is this phase shift which is largely

n~co

P,(r, 8) = C, P P.(cos 8)G„(r)/r
n 0

(10) IO +OITS
, -l,fat

in which the G„'sare solutions of

d'G /dr+ (k' —8s-'m V(r)/k'
n(n+1) Ir')—G=0 (11).

Although a solution of (11) with the proper
boundary condition yields at once the amplitude
distribution of the scattered wave this solution
is not required, since one is interested in P. only

at large distances from the scattering center.
Thus one is able to postpone the dif6cult task of
determining f within the atomic field by obtain-

ing only asymptotic solutions of (9) and (11).
The asymptotic solution of (9) for the incident

8 sovoivs

\ + g c

~ 2$VOLTS7, = D.784

o. lt'. IG /N
Qaj Qi;

0 I 2 3 4 5&~ ANCSTROMS

FIG. 3. Dotted lines represent go{r) for incident wave and
solid lines G0{r) for scattered wave in helium. Phase shifts
&0 are also indicated, arbitrary ordinate scale. McDougall,
reference 5.
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responsible for the ultimate shape of the scatter-
ing curve.

By satisfying the boundary conditions the
constants C~ and C~ are also determined and the
complete expression for the amplitude of the
scattered wave becomes

P,(|I, r =' ~ ) = (2ik) ' Q (2n+ 1)
+~0

X (exp (2is.) —1)

XP.(cos e) exp (ikr)/r. (14)

The number of electrons scattered per unit solid

angle is given by the square of this amplitude
and is

I(8) =A'+8',

A = (2k)
—' Q (2n+1) (cos 2rl„—1)P„(coslt),

B=(2k)-' g (2n+1) sin 2s P„(costI).
n 0

5. THE PHASE SHIFT

r

exp ]
2si J:dr ~.

E. r=RO
(16)

The value of r =Ro is that value of r at which X

Although it is clear from the preceding section
how g is introduced into the solution for the
scattered wave, it is yet to be shown how it is
related to the potential field V(r). True, it can
be obtained from direct numerical integration of
the equation for G(r) (11), but this is mathe-
matically dif6cult. There are several approxi-
mate methods of calculating the g's from a given
potential distribution V(r), and perhaps the
Wentzel-Kramers-8rillouin- JeEreys method' is

the most instructive. If the factor in the brackets
of Eq. (11) were not a function of r, the solution
of (11) would simply be exp (27riZr) where X' is

defined as the factor contained in the brackets.
The W-K-8-J method makes use of the fact that
iF X varies very little while r is changing by not
more than one wave-length, X can be replaced
by an expression which takes on an aspect of an
average value for E.Thus the W-K-8-J solution
for the phase of the held wave is

Fio. 4. Schematic diagram showing how the factors which
affect the phase shift in Eq. (17}vary with r.

is equal to zero. By applying a similar approxi-
mation to the field-free wave and subtracting the
two, we obtain for the phase shift, or the phase
difference, g„,

or

3 (k'+Ss'm V(r)/h' n(n+1)—/r') &dr

R1

—
F (k' —n(n+1) /r') &dr (17)
R2

GCI ~so

Xgr —
i E„dr

Ry &Rq

in which Ri and R~ are the values of r for which

E, and E„arezero. Generally the phase shifts
are larger the larger the atomic field. They are
also larger for slower electrons, that is, for elec-
tron beams of long wave-length. How these
factors contribute to the numerical value of the
phase shift may be seen in the schematic repre-
sentations of Fig. 4 and Fig. 5. The shaded area
in Fig. 5 is proportional to the phase shift.

While the W-K-8-J method is excellent for
visualizing how the phase shift is afFected by
k, V and n, it still gives only approximate values.
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Just how accurate these values are will be dis-
cussed in Section 17 where they will be compared
with other methods of arriving at phase shift
data.

6. AMPLITUDE HARMONICS

From expression (14) giving the amplitude of
the scattered wave, it is apparent that the
amplitude is the sum of a series of individual
terms. These are called harmonics. Each ampli-
tude harmonic represents a wavelet with its own
particular angular distribution. Thus, a beam of
electrons having only electrons with n=4, if
such a beam can be imagined, would yield a
scattered wave given by P4' (cos 8), that with
m=2, Pss (cos 8). These hypothetical distribu-
tions are shown in Fig. 6. It is a feature of the
wave theory method that every harmonic con-
tributes to the distribution of scattered electrons
over the entire angular range. This is in direct
contrast with the particle situation, where one
impact parameter value accounts for electrons
scattered at only one scattering angle. Since the
amplitudes of these harmonics may have plus

(cos e)

90'
FIG. 6. Hypothetical distribution of scattered electrons

realized for harmonics n = 2 and n =4.

and minus values, one can speak of the intensity
of the scattered wave as resulting from the
interference effect of the various harmonics,
As to the magnitude of each harmonic, we see
that it depends upon n and the atomic held
V(r). These factors are contained in (2@+1)and
(exp (2is ) —1), respectively. It develops that
frequently the latter expression is zero for all but
one or two harmonics, so that the shape of the
scattering curve may depend upon only a few
Legendre coeAicients. In fact, there are many
examples where the scattering curves take on the
form given by the squares of just one Legendre
coef6cient.

Since the n's are the angular momentum quan-
tum numbers, each harmonic is identihed with
a physical property of the particle electron. The
n's are analogous to the impact parameters p of
the particle theory, since they give the approxi-
mate distances at which the electrons would
pass the scattering center were they to pass on
undeflected. The harmonics of small n, for
example, refer to the electrons of small angular
momentum which pass near the nucleus whereas
those of very large n correspond to those which
might even be so far removed as to be unde-
flected by the atomic 6eld. If n equals 2x times
the angular momentum, then with the aid of the
defining equation (4) for l'r it can be shown that
ri is related to p by the expression

p = is/k =nX/2 a=1.94n/(el-ectron volts) &, (19)

Fin. 5. The areas under &he curvesare proportional to &he wheie p in the last term is expressed in angstrom
phase shifts, growing sma11er for larger angular momentum
quantum numbers n. Schematic diagram. units.
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7. WAVE SCATTERING WITHOUT D ISTORT ION

In the preceding treatment of the wave prob-
lem the scattered wave was treated as if it were
the vector sum of a series of harmonics. Born's
treatment of the problem leads to an entirely
diferent mathematical form for the amplitude
of the scattered wave and suggests a different
picture of the scattering process. According to
Born's theory, when the plane wave strikes the
atom each volume element in the atom sends
out a spherical wavelet. These wavelets start
out in phase but possess diferent amplitudes
depending upon the value of the potential held
at the volume element. The resultant amplitude
of the scattered wave is then obtained by sum-

ming vectorially all the amplitudes of the incli-

vidual wavelets. This is identical with the
optical method of Huygens and Kirchhoff.

In Born's treatment' use was made of the fact
that Schrodinger's wave equation (5) when
written in the form

&'P+ k'f = 8z'mh 'V(r') P(r-')

has a solution'

2irm t» exp (ik~r —r'))
4=4'(~ y z)—

h' & Jr —r'J

XV(")P(")d", (»)
where P, is a solution of

V'P, +k'$„=0.
or is simply the incident wave, P;=exp (ikz) In.
expression (21) the primes refer to the coordi-
nates of the atom. The bold face symbols are
vectors. It can be easily shown that for large
values of r (21) becomes

/ =exp (ikz) —2m.mr —'h ' exp (ikr)

incident wave remains undistorted in its passage
through the atom.

We now define the scattering function f(8) by

f=f;+f,=exp (ikz) —r 'f(8) exp—(ikr) (23)

and by comparison with (22), write

f(8) = —texp (ik(no n—).r)2zmh 'V(r)dr, (24)
J

where no is unit vector along the s axis so that
a=no r.

From the form of expression (24) it is ap-
parent that the scattered wave is that which
would be produced if each volume element
was the origin of a wavelet with an amplitude
equal to 2~m V(r)/h'. The integral (24) may be
partially integrated in the spherical polar form
to give

r" sin (47rpr) V(r)
f(8) = —8ir'mh —'

~ r'dr (25)
0 4x'pr

in which p stands for X ' sin (8/2). Born's
formula (25) gives a smooth scattering curve
which falls o6' monotonically with angle. The
amplitude of the scattered wave is greater at
small angles, as is evident from an inspection of
Fig. 7 which illustrates formula (25). The
scattered curve f'(8) can be obtained at once
from (25) by a series of integrations whenever
the data for the field V(r) are available.

exp —ika. r' V r' r' dr', 22
0

where n is a unit vector in the direction of r.
Since in the above expression (22) f{r') is not
known, Born proposed that an approximate form
for f(r') be adopted. Born replaced f(r') by
exp (ikz') which is simply the expression for an
undistorted incident wave. Born's approximation
amounted to assuming that the amplitude of the

r

[NTPRFERFNCE FACTOR- eeyellp er 0

large~ or 8

FiG. 7. An illustration of the behavior of those quantities
which acct the amplitude of the scattered electron wave
as given in Eq. (25).
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8. X-RAY STRUCTURE FACTORS AND ELECTRON

SCATTERING

Mott' greatly simplihed the above expression
by introducing the atomic structure factor Ii

de6ned by

~BAFT'I NaaclcNP' Se~fAtp~its ~
de/C
thetieg

sin 4m'pt'

F(p) =4s p(r) — r'dr,
0 4xp, r

(2&)

where ep—(r) is the charge density. When V(r)
in (25) is replaced by

V(r) =— r~ p(r')dr'
+e2

Frr~. 8. Ratio of amplitude of wave scattered by atomic
electrons and bare nucleus to that scattered by bare

(27) nucleus as a function of p. See Eq. (29).

and, use is made of (26) we have

f(e) = (Z —F(p)) cosec' (8/2). (28)
21+8

This may also be written

me'Z em'F(p)
(~) =

2h'p, ' 2h'y'
(29)

The first term of (29) is the scattered amplitude
to be expected from the nucleus if it were devoid
of atomic electrons while the second is the ampli-
tude to be expected from the atomic electrons if
they were all located at the center of the atom
and had the effective charge F(p). We infer from
this that the amplitude of the scattered wave is
the sum of a nuclear wave and a negative atomic
electron wave in which both waves are scattered
according to the inverse-square law and in which
the central charges are Z and F, respectively.

It is convenient to write the intensity of the
scattered wave as

m'e'Z' ( 2F(p) F'(p) q
1(e)=~(e)=

~

I — + l. (8O)
4h'p' & Z Z'

The behavior of f(6) as p varies is shown in Fig. 8
where the ratio of the nuclear and electronic
scattering to the scattering of' a bare nucleus
are plotted against p. One observes that since I'"

is a function of 0 that, unlike bare nuclear
scattering, the atomic scattering curve varies in
shape for different electron energies and different
atoms. The curves of Fig. 8 reveal how at large
angles the scattering is largely nuclear whereas

at small angles it is more evenly divided between
the electronic and nuclear scattering.

9. SCATTERING WITH ELECTRON EXCHANGE

In the two previous scattering theories one
sought a solution of the stationary Schrodinger
equation for the coupled system of atom and
electron which represented an incident and a
scattered wave. In these treatments the atomic
electrons did not participate in the scattering
event except insofar as they contributed to the
potential field V(r) of the scattering atom. When,
however, the P of Schrodinger's equations is
written so as to include the wave function of
the bound as well as the scattered electron, there
appears in the solution an eRect which changes
the predicted scattering curves considerably,
especially for slow electrons. This effect, if it had
a counterpart in the particle theory, would be
that arising from the interchange of the colliding
electron and the atomic electron at the moment
of collision. The exchange of electrons requires
a wave amplitude function f for the ejected
electrons in addition to that required for those
which are simply scattered without an exchange.
The general theory of electron exchange was
hrst developed by Oppenheimer" and later ex-
tended by Feenberg, "and Massey and Mohr. "

To illustrate the application of the theory of
electron exchange to the problem of scattering,
the relatively simple case of scattering by atomic
hydrogen will be considered. Let f(rs) designate
the wave function belonging to the bound
electrons and let F(rt) be that of the colliding
electrons. In a similar manner let G(rs) be the
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tudes so combine as to give the following in-
tensity for the scattering wave

~(~)=l If+gl'+l If (35)

IO 20 30 40 50
ELECTRON ENERGY IN VOLTS

FIG. 9. Ratio of electron-exchange amplitude g to
nonexchange amplitude f for scattering by hydrogen at 0',
Massey and Mohr, reference 12.

wave function representing the bound electrons
which have been expelled and X{r~) be the wave
function of those colliding electrons which replace
those that are expelled. If the collision occurs
without an exchange of electrons the wave
equation is written as

(~P+~P+&+e'/r i
+e'/rg+e'/r, 2)P, (rg, r2) =0 (31)

in which P, (r~, r~) may be expanded into

4.(r» r~) =4(r~) ~(ri).

In the event of exchange the wave equation
becomes

(~P+~22+&+e'/r i
+e'/r2+e'/r ~2) |k,(r„r&)=0 (32)

in which |k.(rq, rq) =G(r2)X(r|).
Just as before an asymptotic solution of the

nonexchange Eq. (31) is desired which represents
an incident and a scattered wave

F(r~) =exp (iks)+f(8)r ' exp (ikr). (33)

Also an asymptotic solution for the exchange Eq.
(32) is sought, which has the form

G(rg) =g(8)r-' exp (ikr) (34. )

If the electrons were distinguishable the num-

ber scattered would simply be proportional to f'
and the number ejected proportional to g'. The
intensity of the scattered wave wouM then be

2(~) = If+g I'

However, since the wave functions are required
to be antisymmetric certain restrictions are
placed upon the manner in which the amplitude
of ejected electron wave and scattered electron
wave combine, It can be shown" that the ampli-

If the contribution from the ejected electron
wave is small so that g—+0, then the above ex-
pression again returns to the nonexchange solu-
tion, I(8)=f'(8)

Several approximate methods have been used
to solve (31) and (32) and a fuller discussion will

be deferred until later. The relative contribution
from the g and f waves may be ascertained from
the calculated f and g curves of Fig. 9. The con-
tribution of the ejected electron wave g is
illustrated here by plotting the ratio g/f as a
function of the colliding electron energy. The
data were calculated by Massey and Mohr for
scattering in hydrogen at 8 =0' by using a Born
type of approximation to solve (31) and (32).
It can be seen that the exchange process has
the greatest e8ect upon the scattered wave at
small electron velocities. In Fig. 10 Feenberg's
scattering curves for helium as calculated with
and without the exchange correction are also
shown.

FIG. 10. Theoretical
scattering curves, full
line w i t h exchange, 1@
dotted without ex-
change, Feenberg, ref-
erence 11.
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10. EARx.v MEAsUREMENTB

A method for studying electron scattering at
one angle was devised by Hughes and Jones"
(1926) and R. Kollath" (1928). Observations
were made on the number of electrons scattered
at the scattering angle of 90' while the energy
of the colliding electron was varied. In e8'ect
these observers measured that fraction of the
Ramsauer absorption coefFicient which originated
in the scattering of electrons at this one angle.
A method which extended the observations to all
angles was developed by Dymond" (1927).
Dymond's observations over a11 angles were
made possible by the introduction of a rotatable
electron gun into the collision chamber. The gun
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was manipulated from the outside through a
ground glass joint. The apparatus was similar to
that shown in Fig. 11.Unfortunately in Dymond's
first work the data were not reliable because of
improper shielding in the collision chamber, as
Harnwell" (1928) was able to show. Other
scattering measurements made at this time were
those by Dymond and Watson, " Harnwell, "
Arnot, 2' McMillen" and Rose'~ These experi-
ments were carried out over the rather small
angular range of 10 to 60' and over an electron
energy range of from 8 to 200 electron volts.

In 1931 Bullard and Massey, " Arnot, '4 and
Pearson and Arnquist" extended the angular
range to 120' and made the interesting discovery
that the scattering curves had a form suggestive
of diHraction patterns. These were at once
pointed to as new evidence for the wave-like
behavior of electrons. It is interesting to note
that the Faxen and Holtsmark' (1927) theory
for electron scattering had been developed
several years earlier and the data computed
from which these diffraction curves couM have
been predicted. The theory and calculations were
carried out for a comparison with experimental
data on the closely related Ramsauer effect.

MEAsUREMENT METHQDs

Scattering measurements are made by per-
mitting a beam of electrons to penetrate a gas-
filled chamber. This is illustrated in Fig.
where C is the gas-filled collision chamber and bb
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Fr@. 11. Scattering apparatus with electron gun G,
scattering chamber C, electron energy hlter F and collector
8; Hughes and McMillee, reference 32.
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Fia. 12. Comparison of scattering measurements made
by diHerent observers on 80-volt electrons scattered in
mercury.

the electron beam. Of those electrons that are
scattered at the collision center 0, some are
scattered at a particular angle 8 and enter the
electron energy filter F. Here electrons of energies
other than the desired one are filtered out of the
scattered beam, those remaining pass on into
the collector E. The collector is a sensitive
current-registering device, such as an electrom-
eter, which gives a measure of the number of
electrons in the scattered beam. By rotating the
gun G the magnitude of the scattered beam as a
function of the angular gun setting or scattering
angle is procured. The readings thus recorded are
corrected to give the current of the scattered
beam I(8) per unit length of the collision path,
per unit solid angle, per unit of initial electron
beam current and per atom per unit volume.
Measurements thus corrected are referred to as
"scattering coeScients, " "scattered intensity, "
or effective cross section for scattering at the
angle 8." Brode's" probability of scattering 5(8)
is measured in terms of unit pressure at O'C and
is equal to 3.56X 10" I(8).

The pressure in the collision chamber is kept
low enough so that the probability of collecting
electrons that have suffered more than one
collision is negligibly small. This pressure is such
that the electron m. f.p. is comparable with the
dimensions of the co11ision chamber. The repro-
ducibility of experimental scattering curves is
indicated in Fig. 12, where the results of four
observers" " in four diferent laboratories are
compared. The curves, as usual, have been fitted
at some arbitrary point, since no absolute
measurements were taken. In consideration of
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the smallness of currents measured and the
difficulties that are involved in the alignment of
electron beam and receiving cone of the analyzer,
the agreement is very satisfactory.

To measure the change of scattered intensity
with energy of the colliding electrons is much
more difficult, due to changes in the shape and
orientation of the electron beam with electron
energy. Also there is some doubt as to whether
slits permit the passage of electrons equally well

for all electron energies. An absolute determina-
tion of I(e) requires such a precise knowledge of
the effective geometry of the apparatus that it
has been made by only one observer. Werner"
constructed an apparatus especially designed to
measure absolute scattering, and estimated his
error of measurement to be as much as 10 percent
for moderately fast electrons and 15—20 percent
for 30- and 40-volt electrons.

The apparatus of Fig. 11 is that of Hughes and
McMillen. "The electron gun is rotated about
the collision center from the outside by means of
a ground glass joint. The slit system S4—S5
defines the scattered beam and reduces the leak
of gas into the filter. Potentials on M and N
produce an electrostatic field v hich spreads the
scattered electrons into groups according to their
energies. The energy groups for 50-volt electrons
scattered at 10' in helium is shown in Fig. 13.
Because of the good resolution that is attained
with the electrostatic analyzer, it lends itself
readily to the study of inelastic scattering
problems.

Arnot's" apparatus, shown in Fig. ~4, diR'ers

from the above chieBy in the type of electron
filter used. A retarding potential method is
employed to repel charged pg, rticles other than

50 26 20 ENERGY LOSSKS 0
Fir. 13. Energy distribution of 50-volt electrons scat-

tered at 10' in helium as determined by the electrostatic
analyzer method, McMillen, reference 21.

FiG. 14. Electron
scattering appara-
tus utilizing a re-
tardrn, g potent'a COLLECT
method, Arnot, ref-
erence 33. KLKCTRO
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elastically scattered electrons from the entrance
to the collector. A potential on S4 repels positive
ions, and an appropriate one on S5 repels in-
elastically scattered electrons. Since the resolu-
tion does not depend on the opening to the filter,
as it does in the electrostatic analyzer, the
method is particularly useful for measuring
scattered currents of small intensity. A retarding
potential analysis of a scattered beam for 8=7'
in mercury is shown in Fig. 15. The curve is that
obtained by Tate and Palmer" for 80-volt
electrons. For this curve an apparatus similar to
Fig. 14 was employed.

For slow electrons with energies below the
excitation potentials no energy filter is neces-
sary, and a simple collector like that of Ramsauer
and Kollath, ~ shown in Fig. 16, suffices. It has
the added advantage of possessing very large
collecting areas which facilitate the measure-
ment of scattered beams of small intensity. The
collectors numbered 1 to 11 in the diagram are
zones of a sphere which can be separately con-
nected to an electrometer. The scattered current
as recorded is proportional to the scattering
between 8 and 8+d8 rather than per unit solid
angle. The eR'ective length of collision path and
the average solid angle subtended by the zones
are determined from the geometry of the appa-
ratus. Ramsauer and Kollath were able to make
observations with electrons of energy as low as
0.6 volt.

In the movable gun arrangement of Fig. 11
and Fig. 14 the small angle limit is set by the
dimensions of the electron beam while the large
angle limit is 6xed by the width of the gun at
the point where it intercepts the scattered beam.
Gagge" surmounted the large angle limit diffi-

culty by performing the experiment in the
presence of a magnetic field which was aligned
perpendicular to the scattering plane. Both the
incident and scattered beams then have curved
paths, and from Fig. 17 it is clear how for 180'
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scattering the gun is in such a position as not to
intercept the scattered beam. The gun in the
180' position is dotted in the diagram. The
collector is mechanically moved from the out-
side so as to be in the proper position for collect-
ing the elastically scattered electrons. The read-
ings extended from 20' to 180'. In this method
as well as in other methods the collector current
readings are reduced to unit effective length of
collision path. The variation of the correction
near 180' is very much larger than the variation
in the readings themselves, so that precise
measurements on the geometry of the incident
and scattered beams are very essential.

When the gas to be studied has an inappreci-
able vapor pressure at room temperature a
special scattering chamber is required. Childs
and Massey" constructed an apparatus in which
the vapor was introduced into the collision
chamber by means of a diffuse jet. The jet
originates in the heated oven 0, shown in Fig. 18,
and condenses on a liquid-air trap r. Since in
this case the collision volume is small the vapor
density is approximately the same throughout
the collision volume. A retarding potential
method is used for energy analysis. Childs and
Massey studied the scattering of cadmium and
zinc with this apparatus. Since the effective
pressure obtainable with the diffuse jet method
is fairly small, McMillen~' employed an appa-
ratus in which the entire collision chamber was

8 4or w5
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Fit. 16. Ramsauer and Kollath's (reference 34)
scattering apparatus.
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Fio. 18. Childs and Massey's
(reference 35) scattering appa-
ratus for vapors. Vapor from
oven 0 condenses on liquid-air
trap r. Electrons leave gun 6
and are collected at B.
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FIG. 17. Gagge's (reference 30) scattering apparatus with
magnetic field perpendicular to diagram.
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kept at oven temperature. In this way the
pressure maintained in the collision chamber was
that corresponding to the oven temperature.
The scattered beam intensity was quite large,
and the apparatus yielded good results in a
study of potassium.

12. ScoPE oF MEAsUREMENTs

0 20 40 60 SO IOQ
RKTAROINQ POTKNTIAL IN VOLTS

Fic. 15. Energy distribution of 80-volt electrons scat-
tered at 10' in mercury as determined by the retarding
potential method, Tate and Palmer, reference 28.

At present the scattering from twenty-five
different gases has been observed. These include
atoms whose atomic numbers range from Z= 1

to Z=80. The angular range extends from about
5' to 180' and the observations have been made
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with electrons whose energies extend from 0.6 to
2000 electron volts. A summary of the experi-
mental data is given in Table I. The work of
Kuper on helium, neon and argon might also be
mentioned here even though the angular range
of his measurements extended over the rather
limited range of from 0.3' to 6.0'. The electron
energies were large extending from 49,500 to
87,700 electron volts.

A typical scattering curve containing a di6rac-
tion pattern is shown in Fig. 19. The curves
represent the scattering in mercury for various
electron energies and were obtained by Arnot.
When the scattered intensity I(e) is plotted in

polar coordinates the results are as shown in

Fig. 20. This illustration appears in a paper by
Ramsauer and Kollath" and concerns the scat-
tering of slow electrons in argon.

I I

2079

Qe34, 41, 42

Ne38, 84, 88, 41, 43

A82, 38, 34, 88, 44, 47

Kr38, 84, 48

Xe88 "
Hg24, 27, 28, 30, 48

K88
Zn4'

Cd85
88, 37, 38, 39, 40, 41

N 38, 38, 41

CO88, 34

CO 88, 88

C H 49, 50

33, 38, 50

C H 49, 50

Br24'
48

PH 38

H2S"
C,H,49

CC1.4'-
CHBr24'
CF 52

CBr452

13. ScxrxERING j:N THE AToMIc FIELD PREDoMI:-

NxvED Bv mE NUcl. EUs

The atomic 6eld close to the nucleus is
furnished almost entirely by the nucleus and the
presence of the surrounding electrons may be
safely disregarded. For small values of v the
field V(r) is purely a Coulomb field given by

V(r) =Ze'/r.

Because the atomic field close to the nucleus is

large, only the fastest electrons have a chance of
reaching this region, and this they can do only
if their impact parameter is small. Since all
electrons with small impact parameters are
scattered at large angles, one looks for evidence
of nuclear scattering at large angles of scattering
and in the scattering curves of fast electrons.
The relationship between impact parameter,
electron energy and scattering angle is given
in (1).The distribution of electrons scattered by
a bare nucleus is one which shows a predominance

TABLE I. Gases in %kick elastic electron scattering measure-
ments kaw been made.

I
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FIG. 19.Scattering curves for mercury, Arnot, reference 24.

of scattering in the forward direction. The
scattering curve, according to (2), falls off
monotonically with the scattering angle. The
shape or the slope of the curve is the same for
all nuclei and all electron energies, being inde-
pendent of both Z and E.

An identical expression for nuclear scattering
may also be obtained from the Born-Mott wave
theory expression for atomic scattering. If in
expression (30) the terms representing the con-
tribution made by the atomic electrons are set
equal to zero the expression then represents the
intensity of the scattered nuclear wave and is
identical with (2). It is also to be noted that the
atomic electron terms in (30) go to zero when
the atomic structure factor F goes to zero. This,
as can be seen in Fig. 8, occurs for fast electrons
and at large angles of scattering.

Experimental evidence of bare nuclear scatter-
ing is found in the scattering of 500-volt electrons
by helium for scattering angles greater than 70 .
The data obtained by Hughes, McMillen and
Webb4' are shown in Fig. 21, along with a
curve calculated from the nuclear scattering
expression (2).

Since the orbit followed by an electron is
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ELECTRON GUN

i'ei . .

Frr. 20. Model of angular distribution of scattered
electrons when plotted in polar coordinates, Ramsauer and
Kollath, reference 34. Scattering gas is argon.

known whenever scattering by a bare nucleus
takes place, it is possible to 6nd hov far into the
atom these electrons penetrate. The particle
theory gives for the distance of closest approach
the expression

l
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Fro. 22. %erner's (reference 54) apparatus for measuring
the intensity of the scattered beam at two 6xed angles, 45
and 90'.

hollow ring in a plane perpendicular to the
electron beam. Electrons other than those elasti-
cally scattered were kept from the collector by

6 IO IS

and for the impact parameter Eq. (1). For 500-
volt electrons scattered at 90' by a helium atom
one finds by using (1) and (36) that r;„=0.015
angstrom. This is, as expected, well inside the
atomic electron shell whose mean radius is about
0.3 angstrom.

An alternative experimental test for inverse-
square law scattering is furnished by a measure-
ment of the change in intensity of the scattered
beam at a 6xed scattering angle for varying
electron energies. The intensity will, according
to (2), vary inversely as the square of the electron
energy. orner" "carried out such an experi-
ment, by collecting electrons scattered at 90'.
Fig. 22 shows the apparatus. The collector is a

7 ERING SY
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Fr6. 21. Bare nucleus scattering in helium, 500-volt
electrons. Full line, calculated; dots, experimental; Hughes,
McMillen and Vfebb, reference 42.
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LOG E
Fr6. 23. Dotted lines show curves to be expected from

scattering by bare nucleus. Full lines are Werner's (refer-
ence 53) observed values showing tendency to follow
inverse-square law scattering for central charge corre-
sponding to a shielded nucleus.
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FK'. 24. Experimental scattering curves of helium 4,'heavy
lines) showing agreement with Born's theoretical curves
(light lines} for fast electrons only. Hughes, McMillen and
%'ebb, reference 42.

retarding potentials. Absolute measurements
were made and the log of the scattered intensity
plotted against the log of the electron energy.
In this manner of representation the curve, if
the scattering is inverse-square law scattering,
is a straight line with an intercept proportional
to Z'. From Fig. 23 it can be seen that for helium
the inverse-square law scattering is approached
for electrons of 500 volts energy, and that the
effective charge Z is as it should be, just 2.

For neon there is some evidence of inverse-
square law scattering, but over a very limited
region, that is, from about 30 to 75 volts. The
nuclear charge is 2 rather than 10, which shows
that the e6ective scattering field lies partly
outside the external electron shells of the atom.
In argon inverse-square law scattering appears
between 100- and 200-volt electron energies, and
indicates a net charge of about 6. Thus scattering
for a fixed angle and a small energy range can at
times take on the characteristics of inverse-
square law scattering, and when it does the
nuclear charge is partially reduced by the
shielding effect of the atomic electrons.

14. EXPERIMENTAL EVIDENCE SUPPORTING

BGRN 8 THEoRY

By working with helium, Hughes, McMillen
and %'ebb42 were able to show not only that the

scattering followed the Born law but also, by
making observations with electrons of various
energies, they were able to determine the limit-
ing electron energies for which the Born formula
held. Their experimental results, extending from
10' to 170', and for electrons of energy 50 to
700 volts, are shown in Fig. 24, where they are
also compared with the theoretical Born curves.
The heavy lines are drawn through the experi-
mental points and are dashed only where they
do not coalesce with the theoretical curves.
These are represented as light full lines. It
should be emphasized that all the experimental
curves are drawn to one scale and all the theo-
retical curves drawn to one scale. There was but
one arbitrary adjustment, and that was the
fitting of the experimental and the theoretical
700-volt curves. It is apparent that for electrons
whose energies are 500 volts or greater the Born
scattering curves are in excellent agreement with
the experimental curves. For 350-volt electrons
and less the calculated curves become increas-
ingly unlike the experimental ones, and in all
cases underestimate the scattered intensity at
both very large and very small angles.

For heavier atoms the tests of Born's theory
reveal that the theory is insufficiently accurate
to show agreement with the experimental curves
except over a limited angular range. In mercury,
for example, Jordan" finds that 2000-volt elec-
trons follow the Born formula from 10' to 40'
Arnot" also found agreement for 800-volt
electrons in Xe, A and Kr up to a 60' scattering
angle. Kuper, " by using 78,000-volt electrons,
discovered that Born's theoretical curves co-
alesced with his experimental curves from 0.3'
to 3' for argon, 1' to 3' for neon but not over
any part of the angular range of 0.2' to 3' for
helium.

In Werner's investigation of the scattering at a
fixed angle with the apparatus shown in Fig. 22,
great care was exercised in measuring the length
of the collision path and effective dimensions
of the collector so that absolute measurements
might be made. His results are shown in Fig. 25,
where the log of the scattered intensity is plotted
against the log of the incident electron energy.
Curve A is the calculated nuclear scattering,
curve 8 that given by Born's formula, and C the
experimental curve. The estimated error is indi-
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cated in the 6gure. One observes that the abso-
lute scattering measurements are in good agree-
ment with those calculated for the electrons
scattered at 90' as long as the electron energies
are greater than 150 volts. At 45' the estimated
error is larger but the experimental curve for
150-volt electrons lies just within the estimated
experimental error.

CL2
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15. BORN SCATTERING AND ATOMIC ELECTRON

DISTRIBUTION

Whenever it is known that Born's theory of
scattering is valid, it is possible to determine
atomic structure factors and the atomic electron
densities, p(r) from the experimental scattering
data. Let I represent the experimentally deter-
mined scattering values and R that to be ex-
pected from the bare nucleus of the scattering
atom considered. Then Born's formula (30)
becomes

I/R = (1 F/Z)'—

F=Z Z(I/R) l. —

h I I

o o~ oi oe ov OI
C ANOSTROMS

FlG. 26. Comparison of Morse's electron scattering
determination of the electron density in helium iith the
x-ray scattering determination by Kollan.

for the atomic structure factor F we have

sin (4s pr)
4s.

~l p(r) rdr =Z Z(I/R) —l. (37)
0 4xp

Since both p(r) and the right side of the above
Eq. (37) may be expanded into a series of terms
in sin (4s-pr), the above expression becomes, by
Fourier's reciprocal theorem, "

Bt nntnhinintt this with the ttefintntt Eq. (26) & „(„~tf 4 „(Z Z(iytt)t)

Xsin (47rpr)dp. (38)
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F16. 25. Scattering at 6xed angles in helium. Curve A,
theoretical for bare nucleus; curve C, Born's theory;
curve 8 experimental. No arbitrary adjustments on vertical
scale. %erner, reference 31.

Morse" used the above relationship to obtain the
electron density distribution for helium. The
experimental data I were taken from McMillen's
observations on helium. Although these measure-
ments included only small angles of scattering,
Morse's calculated electron density curve agrees
well with that found by Wollan from x-ray
measurements. This is shown in Fig. 26, where
Morse's and Wollan's electron densities are
plotted against r.

16. DISTORTED Q"AUES AND DIFFRACTION

PATTERNS

In an earlier section it was pointed out that
whenever the wave-lengths of the co11iding
electrons are much larger than the effective
radius of the atom the scattering is accompanied
bv an appreciable distortion of the wave as it
passed through the scattering atom. The re-
sulting scattering curves reveal peaks and valleys
suggestive of optical diHraction patterns.
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The theory discussed in Section 4 gave ex-
pression (14) for the amplitude of the scattered
wave. Each nth term or nth harmonic of (14)
has an angular distribution given by P (cos 8).
The magnitude of each harmonic depends upon
the value of n through the term (2n+1) and
upon the phase shift q„appearing in the terms
(cos (2ii„)—1) and sin (2s„).

One important feature of the scattering ex-
pression (15) is that although the ri's vary regu-
larly with n they appear in (15) in trigonometric
functions. These introduce erratic changes in the
q terms as e takes on its consecutive values.
The factor (cos (2' ) —1), for example, is a
maximum whenever the g's are equal to odd
multiples of s./2. Upon that occasion the factor
attains a value of 2. For even multiples of s./2
the factors are zero. The second factor involving
the phase shifts, sin (2ri„),has a maximum value
of unity when ri is equal to odd multiples of s./2
and a zero value for even multiples of s/4. Thus
the harmonics whose q's are near odd multiples
of s./2 are the predominating ones, while those
whose phase shifts have values equal to even
multiples of s/2 and s./4 disappear from the
scattering expression.

This behavior of the harmonics as e takes on
its integral values is illustrated in Fig. 27. The
data are calculated for the real part of expression
(14) and refer to 100-volt electrons scattered at
30' in potassium. The phase shift terms oscillate
about zero up to m=3 and thereafter rapidly
fall off to zero. The terms involving n alone
increase steadily with n. The 8 term, P(cos e),
varies, at least in the range 8=30' to 8=150',
sinusoidally with n, and has a period propor-
tional to 8 '. The behavior of the harmonics as
a whole, obtained by multiplying together the
three terms comprising the harmonics, is shown
in the lower part of the 6gure. The expression
after the 6rst few irregular variations takes on
the appearance of a damped oscillation.

That the period of the variation of P (cos e)
is proportional to 8 ' explains why at small
angles the scattering is always large. Here the
period is so long that a complete period is not
attained before the phase shift values die out and
only the positive values of P„(cos8) occur.
These add up to yield a large scattering ampli-
tude. But at large angles the period is small,

(cat g %C70R

FIG. 27. Upper figure shows variation of P„(cos8), phase
shift factor and e factor belonging to real part of Eq. (14).
Lower figure shows variation of real part of (14) as function
of n. Scattering gas potassium, electron energ Y j.00 electron
volts, scattering angle 30'

promoting many oscillations, which when added
together, because of their plus and minus values,
yield a very small net amplitude.

17. PHASE SHIFTS AND THEIR DETERMINATION

The phase shift arises from a shift in phase of
the radial component G, of the f wave as it
passes through the atomic field V(r) This .com-
ponent is a solution of the differential Eq. (10).
The phase shift is measured with respect to the
undeflected wave whose radial component g is a
solution of (9). McDougall' has obtained the
values for g and G for helium by solving (9)
and (10). For V(r) McDougall used the Hartree
6eld data. His results are shown in Fig. 3. The
full line is the shifted Go component and the
dotted the go component of the undeflected
wave. One sees from the diagram that the
magnitude of the shift decreases with increasing
electron velocity. It is also clear that the range
over which 6 is affected by the field increases for
slow electrons.

A complete set of phase shift data for one
atomic field is a set which gives values for all
values of k as well as for all e values. Now since
a set of phase shifts represents an atomic 6eld,
it should be possible, in theory at least, to
determine these phase shifts from the experi-
mental scattering curves and with these obtain
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the atomic potential field V(r). In practice,
however, this is seldom carried out because the
procedure is a lengthy one.

Exact method

The exact method is accomplished by the
numerical integration of (10) with, of course, the
proper boundary conditions. Holtsmark, '7 by
following this rigorous but somewhat lengthy
method, computed phase shifts for the atomic
fields of argon and krypton. The 6eM data em-

ployed by him were those of the Hartree field
corrected for distortion of the atomic field by
the electron, i.e., for polarization. McDougall
also applied the exact method but used an un-

polarized Hartree 6eM. His phase shift data are
for helium. A simpli6cation in the numerical
integration method. which has greatly reduced
the mechanical labor has been made by Hartree,
Kronig and Petersen. " In their method all

phase shifts are obtainable from a skeleton out-
line of initially calculated data. They furnish an
extensive table of exact phase shifts for the
atomic 6eld of chlorine.

W-K-8-J method

Approximate methods of phase shift determi-
nations, although less accurate, are frequently
more desirable because of the ease with which
the calculation can be carried out. A method
due to Jeffreys yields expression (17). This
solution is based on the assumption that R
and R„are separated by a 6nite interval and
that the 6rst integrand in the neighborhood of
R and R~ behaves like r. For n=o the latter
assumption ceases to be true. However, in a
similar method by Wentzel, Kramers, '0 and
Brillouin, referred to as the W-K-B method,
this assumption is more nearly valid. In this
method, e(n+1) in the above expression is
replaced by (n+$)'. The two methods are iden-
tical for large n. Where it is convenient to refer
to these two methods as one it is called the
W-K-8-J method.

It is illuminating to examine the roots of the
integrands of (1'/), namely R, and R~, for here
one 6nds that if s is large they correspond to
two familiar quantities which occur in the
particle theory of scattering. They are the
distance of closest approach and the impact

ii„=s t r (Vr)(J„+(kr))'dr
Jo

(39)

~ To identify the roots of X, in (18) when n is large,
X, is set equal to zero. Then one obtains

k'+8+m V(r) ja—&'jR,'=O.
The replacement of k and n by their equivalent expressions
in (4} and (19) gives

E+ V(r}—EPjR '=0.
The energy equation for an electron following a path in a
central force field is given by

(~)mr'+ ($)mr'oP+ V(r}=E
in which co is the angular velocity. At the distance of closest
approach the velocity i' is zero and r by definition is R,.
This gives for the energy equation

{~)mR 'oP+ V{r)=E.
From the law of the conservation of angular momentum
we have that {$)mRo'd'= p'P'/R ~ which when substituted
in the above defining energy equation for R, gives an
equation identical with that obtained above from K,. To
find the roots of K in {18)we have that

k' —N(n+1}jR~'=0
and upon replacing e by the expression given in (19) one
obtains at once R„=p.

parameter p of an electron whose angular
momentum is n and energy K* Consequently
we may say that the W-K-8-J method expresses
the phase shifts as a function of that potential
field existing between two specific radial dis-
tances, which on the particle theory are the
closest distance of approach and the impact
parameter. Thus one is able to associate the
phase shifts with a specific region in the scatter-
ing field.

The usefulness of the W-K-8-J method was
extended by Henneberg, ' who incorporated the
Thomas-Fermi field. Hen neberg was able to
show how, by a simple numerical process, phase
shifts for one atomic number Z could be obtained
from those of another atom of diRerent atomic
number Z'. By using Henneberg's relations one
can obtain phase shifts for any atom whose
atomic field can be accurately portrayed by the
Thomas-Fermi 6eld. Henneberg gives a fairly
complete set of phase shifts for mercury.

Born method

A third method of computing phase shifts is
the one given by Mott, "which is accurate only
when the Born approximation is valid. If the
exact scattering formula is equated to the Born
expression one finds that the phase shifts are
given by
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in which J(kr) are Bessel's functions. Since the
expression is good only where the Born approxi-
mation is valid, the method gives satisfactory
results only for q's less than 0.5 radian.

Allis and Morse method.

Allis and Morse" have developed a method of
finding the g's that is particularly well suited
for the simplified atomic field model which they
use. This model consists of a nucleus of charge
Ze surrounded by a spherical shell of charge
—Ze at ro. The phase shifts turn out to be func-
tions of two parameters, x= kro and P= (Zro/2)&

Both quantities have significant interpretations.
The quantity x is the ratio of the circumference
of the spherical shell to the de Broglie wave-
length of the incident electrons, while P is the
square root of the integral of the eRective charge
r V(r) and is a measure of the scattering power of
the atom. Phase shift data have been tabulated
by Allis and Morse for various sized atoms
denoted by x and for atoms of various eRective
charges P.

In order to test the accuracy of the various
approximate methods for determining the phase
shifts, Arnot and Baines" calculated a set of
phase shift values in which various approximate
methods of calculation were used. For these
calculations one 6eld was used throughout. They
employed the Hartree field for krypton and their
data for 54-volt electrons are shown in Table II.
Arnot and Baines concluded that except for
the phase shifts for which n was very small or
very large, the Jeffrey's method gave satis-
factory values. The breakdown of the J-W-K-8
method for large e's is somewhat compensated
for by the fact that it is just here that the Born
approximation method becomes valid. One ob-
serves in Table II that for phase shifts of 0.5
radian or less the Born method gives very satis-

A =0

Krypton
Argon
Neon
Helium

EXACT
METHOD

W-K-8-J
METHOD

4m+2. 74
3~+1.04
2m+0. 852
~+0.180

factory results. The W-K-8-J method is more
accurate for atoms of small atomic number.
This is brought out in Table III, in which qo for
several of the inert gases are compared with the
corresponding exact determinations of go. In
view of the large errors involved in the determi-
nation of go, Hughes and Bilinsky'4 devised an
extrapolation method for determining the qo's

of any electron energy when po's are exactly
known for just two electron energies.

One may summarize the eRectiveness of the
approximate methods by pointing out, as did
Arnot and Baines, that in the calculation of
phase shifts an exact method is advisable for the
go's and the Born method for q„&0.5. For all
others the W-K-8-J method is the most con-
venient and satisfactory.

In the method of Allis and Morse, where the
simple atomic field model was used, the phase
shifts obtained by them were in excellent agree-
ment with the absorption coefficient data. It is

LTS

i(e)
l0 VOLTS

TABLE I II. Calculated phase shifts for the inert gases
(n=0; k=0}.

TABLE II. Calculated phase shifts for 54-volt electrons
scattering in kryPton.

EXACT JEFFREY S BORN S
DETERMINATION APPROXIMATION APPROXIMATION

250 WLTS

9.696
7.452
4.469
1.238
0.445
0.143

10.612
7.710
4.748
1.410
0.557
0.190

0.779
0.414
0.144

30' 50' 70' 90' ~~0' I50' 150'
SCATTERING ANGI F

FK'. 28. Scattering curves of krypton calculated for
Hartree fields, full lines, and for Thomas-Fermi fields,
dotted lines. Experimental points, %ebb, reference 64.
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calculate scattering curves based on some the-
oretical atomic field and compare it with the
scattering curve found experimentally.

The Hartree Gelds

In general, scattering curves for these 6elds
have shown good agreement with the experi-
mental curves. A comparison of the curves for
krypton are shown in Fig. 28. The full line is the
theoretical curve, based on Hartree's value. The
calculations were made by Hughes and Bilin-
sky, '4 with Jeffrey's method for calculating the
phase shifts.

Fit-. 29. Scattering curves for krypton calculated from a
polarized Hartree 6eld. Experimental points, %ebb,
reference 47.

somewhat surprising to find, then, that a very
large difference exists in their phase shift values
when they are compared with those obtained by
a more accurate method. The differences are
very large, especially for small n's. The applica-
tion of these data by Allis and Morse to scatter-
ing curves of argon, however, showed that when
electrons had energies between 16 and 40 volts
there was fair agreement with the experimental
curves. The data mere not applied to scattering
curves of other atoms, and it is difficult to
estimate, in view of this lack of calculated data,
to just what extent this simple model is successful
in portraying the chief characteristics of the
scattering curves.

18. CGMPARIsoN wITH ExIsTING ATGMIc

FIELD DATA

In comparing experimental data for electron
scattering with the best available theories, one
recognizes that an additional factor must be
considered before judging too critically any
discrepancy between theory and experiment.
This factor is the atomic field data V(r) which
occurs directly or indirectly in all the scattering
formulas. It would be desirable, perhaps, to
convert experimental readings into field data
V(r) so that a direct comparison might be made
between these experimental values and the
theoretical values of the atomic field, such as the
Hartree or Thomas-Fermi values. Unfortunately
such a conversion is mathematically dificult and
it has consequently become the practice to

Polarized Hartree fields

For slow electrons the scattering curves are
much more susceptible to a polarized atomic
6eld. Holtsmark" found that the Hartree fields

gave theoretical absorption coe%cients which
agreed with the experimental measurements if
the fields were corrected by the addition of a
polarization term. The scattering curves for
krypton based on the Hartree 6eld which was
corrected for polarization are shown in Fig. 29,
where they are compared with the experimental
curves of %ebb. 4' Bullard and Massey" also
found that the Hartree 6elds corrected for
polarization were successful in fitting the experi-
mental points of slow electron scattering in
argon.

Thomas-Fermi 6eld

That the Thomas-Fermi field should yield
theoretical scattering curves which are not so
good as those of the Hartree 6eld is to be ex-
pected. A comparison of curves from these tmo
6elds is available in Fig. 28. The dashed curve
is that computed with the Thomas-Fermi 6eld.
The phase shifts were calculated by Jeffrey's
method. Although the general form of the ex-
perimental curve is evident in the theoretical
curve obtained mith the Thomas-Fermi 6eld, the
fit is somewhat better when the Hartree fields
are used. Other tests of the Thomas-Fermi held
were made with the Henneberg' phase shifts.
These include 135- to 180-volt electrons in

mercury, ' 5- to 100-volt electrons in potassium, "
and 80-volt electrons in argon. The curves for
mercury are shown in Fig. 30.The Thomas-Fermi
field is quite successful in presenting the principal
features of the experimental curves and has
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OLTS

VOLTS

angstroms. With this Field phase shifts were
calculated by the W-K-B-J method. The com-
puted curves gave good agreement with their
experimentally obtained curves. The comparison
was carried out for 30, 54 and 122-volt electrons.

Successful as these correlations of theory and
experiment have been, it is to be noted that for
slow electrons scattering in helium and hydrogen
the theory fails to give results which agree with
the experimentally observed curves. This dis-
agreement is caused, in part at least, by the
failure to consider the effect of exchange as
discussed in Section 9.

O' M' 60' 90' IP.O' I5O' leO'
SCAT TERING ANQLF

Fio. 30. Scattering curves for mercury calculated by
utilizing the Thomas-Fermi 6eld; Henneberg, reference 6.
Experimental points; Arnot, reference 27 and Jordan,
reference 48.

yielded curves that compare favorably with the
measured curves for atoms of atomic number as
low as 18.

Childs and Massey" find that for zinc the
Thomas-Fermi field is inaccurate at large radial
distances. As a substitute they employed a
modified Thomas-Fermi field. For r&r0 where
ro is the radius of the 3f shell given by Slater's
rules, the Thomas-Fermi values for V(r) were
used. Foi r pro the field was extrapolated to give
a zero value at the radius of the outer shell,
which for zinc turned out to be at ro ——2.1

4
P„(cos8J

Xe

~ y ~

O $0 00 90 &CO VO J4 40 04 ISO L$0
$CATTKANC ABACI. K

FK'. 31. Comparison of I'4»{cos 8) and experimental
scattering curves of I» and Xe, also phase shift data for
Z=58. Electron energies were 80 electron volts.

19. DIFFRACTION PATTERNS AND

ATOMIC NVMSER

The manner in which diAraction patterns vary
with atomic number depends in part upon the
energy of the electrons that are employed. We
will at first conFine ourselves to those electrons
scattered just inside the valence electron shell,
i.e. , for electrons of energy just greater than that
of the atomic ionization potential. An examina-
tion of these experimentally observed difII'raction

patterns reveals, first of all, that each one has
a recognizable form and moreover, that these
forms are identifiable in terms of Legendre
coefficients. The following groups are easily
recognized:

The P4P4 grouy

We observe that of the atoms of large Z there
are two whose scattering curves show similar
characteristics. These are Iq and Xe. Their
di8raction patterns are shown in Fig. 31 and
contain three peaks located at 50', 90' and 120'
with valleys at 30', 70', 110' and 150'. The
reason these are called the P4P4 group is ap-
parent from an examination of the plot of
P4'(cos 8), which is also shown in the 6gure.
It, too, exhibits three peaks located at 50', 90'
and 120'. The fact that the height of the experi-
mental peaks is not the same as that given by
the P4'(cos0) is obviously due to the other
Legendre coefficients. These two elements, I of
Z=53, and Xe of Z=54, include all the elements
so far studied above Z=48, except mercury,
which will be discussed later in conjunction with
cadmium. The phase shift curve is also given in
the Figure and is presented as a function of n.
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These data were obtained by interpolating
between those for mercury and those for krypton,
and thus the curve represents the phase shifts
of an atom of atomic number Z=58.

fh~o & g 0 4

The PSP; group

The experimental scattering curves of Zn,
Br~ and Kr have two peaks and are classed as
the P&; group. They resemble the function
P32(cos 0) in that they show peaks at 60' and
120' and valleys at 40', 90' and 130'. The ex-
perimental curves and PP(cos 8) are shown in
Fig. 32. It will be noted that zinc with X=30
tends to show some of the characteristics of the
next lowest group, PIP~. These three atoms
represent all that have been studied in the region
Z=30 to Z=48. (Measurements made in cad-
mium Z =48 do not include electrons with
energies as high as 80 volts. ) The phase shift
curve in the figure is that Qf krypton.

The I',I'~ group

The gases PH3, H2S, A and K all have scatter-
ing curves showing a single peak. This is located
at 90'. The experimental curves are shown in
Fig. 33 with a plot of the function P22(cos 8) for

~~0 t P„g 4

Ps (cosa)

Z= l6 Z*I5 g=tg
0 JO 40 QO )CO 0 40 QO giO gO LSO 80'0 QO IPO i@0

DCATTF„SINCi A KCiLE

FIG. 33. Comparison of PP{cos 8) and experimental
scattering curves of PHg, HyS, A and K, also phase shift
data for Z=18; eighty-volt electrons.

purposes of comparison. Since the scattered
intensity is roughly proportional to Z', the atoms
in the molecules PHS and H&S which play the
important part in determining the nature of the
scattering curves are the heavier ones, P and 5.
Consequently these scattering curves may for
our purposes be regarded as atomic scattering
curves. That the experimental curves are of the
I'2P& type is self-evident. In the phosphorus
curve Z=15, one notes that the 90' peak has
almost disappeared. This is not surprising, in
view of the fact that phosphorus is only 6ve
atomic numbers removed from neon. Neon's
pattern is of the I'&P& type and has a valley at
90'. Chlorine, not shown in the diagram, also
belongs to the PIPq group. Its scattering curve
is obtainable from measurements on CC14. The
phase shift variation with n, also shown in the
figure, was calculated from the Thomas-Fermi
held of' potassium.

4

Z, = Io

0 8~ SC OO i~lfe 80 So Oo i@0 l5
SCAT'TRAINS ANGl. K

Jbi OO OO 4 0 aSb 40 OO tg4 45O
SCATTKANCL AHCLK

Fto. 32. Comparison of PP{cos 8) and experimental Fr@. 34. Comparison of PP{cos 8) and experimental
scattering curves of Zn, Brg and Kr, also phase shift data scattering curves of NI and Ne, also phase shift data for
for Z =36; eighty-volt electrons. Z ~ 10; eighty-volt electrons.



106 J. HOWARD McM ILLEN

and the intensity for Horn scattering becomes

4 0 JO' 50'QO' MO 4 W Oy P4 lt.O &$0
8CATTEAINC' AHC L, C

FK'. 35. Comparison of P0'(cos 8) and experimental
scattering curve for He, also phase shift data for Z=2;
eighty-volt electrons.

Th8 PyPj gj.'OQp

This group includes N, Ne and possibly C.
The scattering curves show a deep valley at 90'
and can be represented by cos'(8/2) which is
PP(cos 8). These curves are shown in Fig. 34.
The phase shift curve is for neon and is only
approximately correct in that it was obtained
by interpolating between the one for helium and
the one for argon.

Th8 PpPp gfoQp

For helium and possibly carbon the experi-
mental curves are rather fiat and suggest a large
contribution from P02(cos 8). See Fig. 35. Al-

though the predicted diffraction curve for helium
is fiat, the effect of exchange, which was dis-
cussed in Section 9, give the curves a larger
variation with angle. The phase shift curve is
that calculated by McDougall f'or helium.

An explanation for these pattern types and
their variation with Z is at once forthcoming from
an inspection of the phase shift data. %'e shall
for the most part follow the analysis originally
made by Arnot. 4' One begins by recognizing
that Born's scattering formula and the Faxen
and Holtsmark expression (14) are equivalent
over a certain narrow range of electron energies.
Over this range Born's theory is exact and the
incident wave is inappreciably distorted. It can
be shown that the associated phase shifts in this
range are small, never exceeding one-half radian.
Let p„'be those phase shifts which satisfy Born's
requirements and are equaI to or less than 0.5
radian. Then since exp(2' ') = (1+2is„') the
expression for the amplitude of the scattered
wave is

B=—(P(2n+1)(2is„')P (cos 8))'
4k

me' ) Fq'
4k'p'( Z)

If, however, only part of the amplitude
harmonics have phase shifts satisfying the condi-
tion g„&0.5, then the amplitude of the scattered
wave may be written as the sum of those har-
monics with q„'&0.5 and those with q„&0.5.
Thus the amplitude is given by

n=to
I~=B~+ P (2n+1) exp (2is„1)—

2ik n=o

n=n'

XP (cos 8) — P (2n+1)
2ik

Xexp (2is„'—1)P„(cos8) (42)

in which it is understood that n' is the index. of
the largest phase shift satisfying the requirements
for Born scattering. Let g„"be the difference
between the actual value of the phase shift and
that required in Born's expression (40), that is,
let rl "=r& —s„'.Then (42) may be written

1 n-n'
I&= P (2n+1) exp (2is." 1)P.(co—s 8)

2ik

+ P (2n+1) exp (2is„' 1)P (—cos e)
2jk n=o

n-n
+ g (2n+1) exp (2iq ' —1)P„(cos8)

2jk n-o
(43)

and

( 1 n, a' 2

I=~ B&+ P (2n+1) exp (2is„"—1)
~

. (44)
2ik ~=o )

If we neglect the cross products, which will be
small, the expression for the scattered wave
becomes

B&= P(2n+1)(2is. ')P.(cos 8)
2ik

(40)

I=B+k ' sin' soPP(cos 8)
+9k ' sm' rl&P~'icos 8)

+25k ' sin' g.P22(cos 8) + . . (45)



ELECTRO N SCATTER I NG I N GASES I07

If the phase shifts for all n's are less than 0.5
radian, which is true incidentally for Z= j. , all

hut the first term in (45) is zero and the scatter-
ing curve is simply a Born scattering curve
which falls oA monotonically with angle. As Z
increases, the g's for each successive e attain
values larger than 0.5 radian. The phase shift
data in Figs. 31 to 35 show how as Z gets larger,
one more q has a phase shift greater than 0.5.
With each vf )0.5 one more term in (45) ls

eITective and the resulting scattering curves take
on the following sequence of forms

8
8+I'gPO
X+POPO+I'gP g

8+Po+0++1+1+PQP2

0' 40' 60 l20' 40' 80' l20'
SCAT rKRING ANGLE

FIG. 36. Showing similarity in scattering curves of
mercury and cadmium when scattered electrons have
energies near 50 electron volts. Childs and Massey,
reference 35.

That this sequence of patterns is present in the
experimental curves has already been noted.
The pattern type, however, is that given solely
by the Legendre coeScient of largest m. Arnot
suggest that this may be due to the fact that
phase shifts of lower n always have factors so
nearly alike that the sum of their harmonics
yield nothing but smooth curves. It may also
happen, of course, that the phase shift angles for
the lower n's consistently represent even multi-
ples of n j2 which results in a cancellation of
these phase shift factors. The Born scattering
and background scattering from other Legendre
coefficients is only prominent at the small angle
region.

20. DIFFRACTION PATTERNS FOR HEAVY ATOMS

That the phase shift data and scattering curves
have changed in a regular manner with Z is to
be taken as evidence that the atomic scattering
held also varies in a regular manner with Z. A

TABLE IV. Comparison of the atomic electron she/ls for
Hg and Cd.

comparison, however, of the scattering curves
for cadmium and mercury illustrates a situation
in which the scattering curves do not depend
upon Z in the manner found above. The di8'rac-
tion patterns for both of these gases when elec-
trons of 42 volts energy are used show identical
characteristics, which at 6rst seems very sur-
prising in view of the great diR'erence in their
atomic numbers. Their scattering curves as ob-
tained by Childs and Massey" are shown in
Fig. 36. This apparent anomaly is explained
away by Childs and Massey, who show that the
electrons were scattered in that part of the atomic
held which for these two atoms actually had the
same magnitude and was located at the same
radial distance from the center of the atom. They
arrived at this conclusion from an inspection of
the data shown in Table IV, which presents the
main features of the outer shells of these two
atoms. From the magnitude of the ionization
potentials it is apparent that the electrons were
scattered in the 0 shell of mercury and the N shell
of cadmium. Since both the shell radii and
ionization potentials are the same, the similarity
in the scattering curves is understandable.

SHELL
NUMBER OF
ELECTRONS

RADIUS
(IN A)

ION IZAT ION
POTENTIAL
IN VOLTS

ARGON

TABLE V.

KRYPTON MERCURY

Hg

P
0

Hg

2
18
32

Cd Hg Cd Hg Cd

2 15 1 97 10 4 8 95 B+POPo
18 050 046 250 250
18 0.17 0.15 1800 1500

~ ~ ~

B+ ~ ~ .PgP~
B+ ~ ~ -PaPx+ Pa Ps
B+ - ~ P~P~

~ ~ 4

B+. PgPg
B+ - ~ PgP3+ P4P4
B+ ~ ~ PaPa
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Fj.o. 37. Variation of diffraction patterns with energy
of scattered electrons, and the associated phase shift
curves.

Slower electrons such as 18-volt electrons are,
however, inRuenced by the outer shell, which
for these two atoms are not alike and hence
give dissimilar scattering curves. The curves for
18-volt electrons are also shown in Fig. 36.

21. VARIATION OF DIFFRACTION PATTERNS WITH

COLLIDING ELECTRON ENERGIES

A brief' survey of the phase shift data for
different electron energies show how the pat-
terns change as electrons of diRerent energies are
considered. The very fastest electrons, those for
which Born's approximation is valid, have q's
less than 0.5 radian. These phase shifts increase
for slower electrons and are roughly proportional
to (E) &. As slower electrons are considered
phase shifts are attained which are greater than
the critical value 0.5 radian. These then manifest
themselves in the scattering curves as additions
to the Born scattering and reveal themselves
in that angular range of the scattering curve at
which the Born scattering is a minimum, namely
at large angles.

Going to still lower electron energies, we 6nd
that not all phase shifts continue to increase.
All those above and including a certain limiting
q„goto zero. This limiting g divers for diRerent
atoms; in mercury it is for x=4; in krypton
m=3; in argon m=2, helium m=1. We show in
Fig. 37 sketches of the phase shift data for
mercury, krypton and argon. Because of this

behavior of the p's for slow electrons, we may to
a hrst approximation expect the patterns to take
on the sequence of forms given in Table U as
slower electrons are used.

8, as before, stands for Born scattering. Be-
cause certain of the g's approach zero as 8—+0 the
predicted patterns go through a reversal. The
patterns found experimentally follow Table V,
except that they are all that of the type given by
the largest n harmonic rather than a composite
pattern of all the harmonics. This is the
behavior also observed in Section 19.The experi-
mental curves in Fig. 37 show this eRect in
argon. For slow electrons (310 volts) the curve
is of the PjPj type. Continuing to 100-volt
electrons, the type becomes one of higher order
PIP2, but reverts again to P&P& for 9-volt elec-
trons. For krypton, Fig. 37 shows the pattern
going through the sequence P~P2 P+8 P—2P~. —
Mercury changes from P&3 type to P4P4 and
back again to P&3. The patterns of the highest
order are always for that e which is the 6rst to
go to zero as E approaches small values.

We continue our observation of the diffraction
pattern variation with electron energy by con-
sidering what happens for very slow electrons,
electrons for which the scattering takes place
in the outer valence electron shells. Unfor-
tunately sets of data for this class of electron
energies are not very complete. Ramsauer and
Kollath's" observation of the inert gases, hows
ever, aRord us at least one example of slow elec-
tron scattering. We show in Fig. 38 their curve-

INERT GASES

0' 45' 90' l35' ISO
SCATTERING ANGLE

FK'. 38. Showing similarity of curves for the scattering of
slow electrons in inert gases (reference 40).
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for 1,5-volt electron scattering in argon, krypton
and xenon. The curves all show the same pattern
and thus betray those characteristics of the
scattering 6eld which pertain to the valence
property of the atoms. We take these curves to
be representative of slow electron scattering by
closed shells.

22. ELECTRON EXCHANGE AND

POLARIZATION EFFECTS

For very slow electrons and scattering atoms
such as helium and hydrogen the Faxen and
Holtsmark theory even when incorporating the
accurate Hartree 6elds, does not predict scatter-
ing curves that are entirely in agreement with
experiment. This discrepancy has been shown to
be due to two eRects which become prominent
for light atoms and scattered electrons of small
energy. Cne of these is the exchange eRect
described in Section 9, the other an atomic
polarization precipitated by the scattered elec-
tron. As shown in Fig. 30, the theoretical curves
which have taken into account the eRects of
electron exchange show greater variation with
angle thaii those which do not. Massey and
Mohr's" exchange theory yeilds the curves
shown in Fig. 39. In the same figure are shown
the curves without exchange as calculated from
the Faxen-Holtsm ark's Eq. (15), in which
Hartree fields were used. To show further that
no reasonable change in the field wi11 make the
nonexch ange curves more satisfactory, the
scattering curves using the Allis and Morse held
is also shown. One observes that only Massey
and Mohr's electron exchange curves have the
general form required by the experimental curves.

In the derivations of both the Born and

Dg
g.s v H i0q H

0 60 l20 0 60 I20 l80
SCATTERNQ ANQf E:

FIG. 39. F, theoretical scattering curves including elec-
tron exchange eRects. Bg„theoretical curves using Hgartree
fields but no exchange e8ects. Di, theoretical curves using
Allis and Morse 6elds and no exchange efFects.

o ao 40 6o So ioo

ANS ~ OF SCm~&ING
FIG. 40. Showing how experimental points for scattering

in hydrogen follow Massey and Mohr's (reference 65)
theoretical curves which include polarization efFects. Full
line, polarization; dotted line, without polarization.

Faxen-Holtsmark theories of scattering it was
supposed that the atomic field was a static 6eld
and one not disturbed or polarized by the scat-
tered electron. Actually this supposition is not
entirely true, and atomic collisions when they
occur with slow electrons are subject to a
polarization eRect. Holtsmark" showed, for ex-
ample, that absorption coe%cients for slow
electrons could not be entirely accounted for if
an unpolarized atomic 6eld were used. Holts-
mark, to meet the demands of the experimental
absorption curves, was forced to add to the
Hartree 6elds a term representing this eRect.
The polarization 6eld which he chose fell oR as
r ' at large distances from the center of the atom.
The field after being corrected for polarization
was later shown to give scattering curves that
were in excellent accord with the observed curves.
This is shown in Fig. 29.

Since the polarization 6eld falls o8 as r 4, the
field becomes much larger than the held of the
static atom at large distances from the atom.
Thus a polarized atom, in contrast with the
static atom, may be regarded as possessing an
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additional spherical shell which is capable of
scattering electrons and which lies outside the
hitherto considered atomic boundary. Because
the field is weak in this added shell, the electrons
are deviated very little and the scattering curve
shows an increase in the small angle scattering
region.

Massey and Mohr" have shown that the
polarization scattering may be expressed as the
interaction of inelastically scattered electron
waves and elastically scattered electron waves.

They have obtained solutions for scattering in

hydrogen and helium. Their scattering curves
for hydrogen are shown in Fig. 40 and compared
with the experimentally determined points. An
interesting feature of Massey and Mohr's
analysis is its prediction regarding the scattering
at |t=O'. Their solution reveals that for this angle
the scattering becomes logarithmically in6nite.
All experimental evidence points to scattering
in support of this since the curves rise rapidly
at angles approaching 8=0'.
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